AL-TR-1991-0102

ARMSTRONG

LABORATOR

Y

THE GEBODIII PROGRAM USER'S GUIDE AND DESCRIPTION

Mary Earick Gross

BEECHER RESEARCH COMPANY 323 GREENMOUNT BOULEVARD DAYTON, OHIO 45419

MARCH 1991

FINAL REPORT FOR PERIOD SEPTEMBER 1987 TO MARCH 1991

Approved for public release; distribution is unlimited.

92-12833

92 5 13 028

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Harry G. Armstrong Aerospace Medical Research Laboratory. Additional copies may be purchased from:

> National Technical Information Service 5285 Port Royal Road Springfield VA 22161

Federal Government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

> Defense Technical Information Center Cameron Station Alexandria VA 22314

> > TECHNICAL REVIEW AND APPROVAL

AL-TR-1991-0102

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Peter G Susher

PETER A. LURKER, Lt Col, USAF BSC Acting Director Biodynamics and Biocommunications Division

REPORT D	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
gathering and maintaining the data needed, and	i completing and reviewing the collection of for reducing this burgen, to Washington Hei	information. Send comments rega adquarters Services, Directorate fo	eviewing instructions, searching existing data sources, irding this burden estimate or any other aspect of this r information Operations and Reports, 1215 Jefferson ject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	March 1991	Technical Rep	port, Sept 1987-March 1991
4. TITLE AND SUBTITLE	_		5. FUNDING NUMBERS
The GEBODIII Program U	Contract F33615-87-C-0530 PE 62202F		
6. AUTHOR(S)			PR 7231
Mary Earick Gross			TA 723123 WU 72312309
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Beecher Research Compa			REPORT NUMBER
323 Greenmount Bouleva Dayton OH 45419	5		001
9. SPONSORING / MONITORING AGE	NCV MAME/S) AND ADDRESS/ES		10. SPONSORING / MONITORING
Armstrong Laborat	ory, Crew Systems iocommunications	Directorate	AGENCY REPORT NUMBER
•	AFB, OH 45433-657	3	AL-TR-1991- 0102
11. SUPPLEMENTARY NOTES		·····	
12a. DISTRIBUTION / AVAILABILITY S Approved for public re	12b. DISTRIBUTION CODE		
13. ABSTRACT (Maximum 200 word	;)		
This report documents t generates human and dum sets include the body s locations and range of user's guide which desc part is the program des its original documentat	my body data sets for segments' geometric an motion characteristic cribes how to install scription which expla:	r use in dynamic nd mass propertie cs. The first pa , run, and use GB	modelling. The data es, and the joints' art of this manual is a EBODIII. The second
The improvements and ch sets, incorporation of segment inertial proper	human stereophotometr ties and joint locat s for adult human day	rically generated ions for adult hu ta sets, addition	l data to calculate uman data sets, addition n of an option to
of joint characteristic output data for the for segments for the adult kilograms to newtons, u	human data sets, a cl use of prompts to ask	hange in the unit for filenames, a	t of weight from
of joint characteristic output data for the for segments for the adult kilograms to newtons, u changes to make the pro	human data sets, a cl use of prompts to ask	hange in the unit for filenames, a	t of weight from and programming
of joint characteristic output data for the for segments for the adult kilograms to newtons, u changes to make the pro 14. SUBJECT TERMS Anthropometry, Bioegnin Mathematical Model	human data sets, a cl use of prompts to ask ogram more user friend	hange in the unit for filenames, a dly.	t of weight from and programming 15. NUMBER OF PAGES 152 16. PRICE CODE
of joint characteristic output data for the for segments for the adult kilograms to newtons, u changes to make the pro 14. SUBJECT TERMS Anthropometry, Bioegnin Mathematical Model	human data sets, a cl use of prompts to ask ogram more user friend	hange in the unit for filenames, a dly.	t of weight from and programming 15. NUMBER OF PAGES 152 16. PRICE CODE N/A
of joint characteristic output data for the for segments for the adult kilograms to newtons, u changes to make the pro 14. SUBJECT TERMS Anthropometry, Bioegnin Mathematical Model 17. SFCURITY CLASSIFICATION 1	human data sets, a cl use of prompts to ask ogram more user friend neering, Biomechanics 8. SECURITY CLASSIFICATION	hange in the unit for filenames, a dly. , Data Bases, 19. SECURITY CLASSIFIC	t of weight from and programming 15. NUMBER OF PAGES 152 16. PRICE CODE N/A

PREFACE

This manual is written in two parts. Part 1 is the user's guide which describes how to install, run, and use GEBODIII. Part 2 is the program description which explains the program modifications and computations. This manual should be used in conjunction with the report <u>Development of an Interactive Computer Program to</u> <u>Produce Body Description Data</u>, L. Douglas Baughman, July 1983, AFAMRL-TR-83-058.

Accession For		
NTIS	GRA&I	C
DTIC 7	AB	
Unanno		
Justi	lication	
By Distribution/		
Availability Codes		
Dist	Avail ar Specie	

TABLE OF CONTENTS

•

- - - - -

PART 1	USER'S GUIDE	1
1.1		1
1.2	PROGRAM FLOW	3
1.3	REGRESSION EQUATIONS AND THEIR USE	9
1.4	SEGMENT ELLIPSOID ALIGNMENT	13
	1.4.1 ADJUSTING THE SEGMENT ELLIPSOID ALIGNMENT	13
PART 2	PROGRAM DESCRIPTION	15
2.1		15
2.2	CHILD AND USER-DEFINED BODY DIMENSIONS OPTIONS .	16
2.3	ADULT HUMAN FEMALE AND ADULT HUMAN MALE OPTIONS .	16
	2.3.1 Body Geometry	17
	2.3.1.1 Reference axis systems	18
	2.3.1.2 Segment ellipsoid semiaxes	20
	2.3.1.3 Segment ellipsoid centers	21
	2.3.1.4 Joint center locations	22
	2.3.2 Inertial Properties	22
	2.3.2.1 Segment centers of mass	22
	2.3.2.2 Moments of inertia	22
	2.3.2.3 Segment weights	25
	2.3.3 Joint Characteristics	25
	2.3.4 Comparison of Stereophotometric Data	
	Distributions with Air Force Distributions .	26
2.4	DUMMY DATA SETS	29
APPENDIX	A HAND DIMENSION REGRESSION EQUATIONS	31
APPENDIS	B JOINT CENTER LOCATION REGRESSION EQUATIONS	35
APPENDIX	C PRINCIPAL MOMENTS OF INERTIA REGRESSION	
EQU	JATIONS	69

APPENDIX D	VOLUME REGRESSION EQUATIONS	91
APPENDIX E	ANTHROPOMETRIC TERMS AND LANDMARK DESCRIPTIONS	101
APPENDIX F	ANTHROPOMETRY DESCRIPTIONS	109
APPENDIX G	SUMMARY STATISTICS	125
APPENDIX H	EXAMPLE OUTPUT LISTINGS	131
REFERENCES		141

LIST OF FIGURES

٠

NO.	TITLE	
1	Interactive Flow Chart	4
2	Seventeen Segment Configuration	16
3	Bivariate Plot for Stature and Weight: 1967 USAF and	
	Stereometric Males	26
4	Bivariate Plot for Stature and Weight: 1968 USAF and	
	Stereometric Females	27

LIST OF TABLES

I	Expressions for Forearm and Hand Semiaxes	19
II	Landmarks Used in Expressions to Define Joint Center	
	Locations	22
III	Expressions for Joint Center Locations in Global Axes .	23

PART 1

USER'S GUIDE

1.1 INTRODUCTION

Program GEBODIII is the latest version of GEBOD (GEnerator of BOdy Data). GEBOD is a program which is used to automate the process for generating the body description portion of the Articulated Total Body (ATB) model (Obergefell, et al., 1988) input data set. GEBOD was originally developed and documented by Baughman (1983). GEBODII was released in 1988, but was not documented. This manual documents the changes made for GEBODII as well as those made for GEBODIII. GEBODIII is similar in operation to GEBOD, although the output may be quite different. The changes apparent to the user while running the program are the prompting for output filenames and the addition of the option to output data for either 15 or 17 body segments. Otherwise, the program appears unaltered. Major changes to the program include the addition of dummy data sets and the use of human stereophotometric data to calculate segment inertial properties and joint locations for adult human data sets. Refer to the introduction to Part 2, Program Description, for a brief summary of all modifications.

GEBODIII provides body data for several human subject types. They are: child (2-19 years), adult human female, adult human male, and a human based on user-supplied body dimensions. Also available are the following manikin data sets: Hybrid III dummy with seated pelvis (50th percentile), Hybrid III dummy with standing pelvis (50th percentile), and Hybrid II dummy (50th percentile). For all of the above subject types, GEBODIII provides segment data for mass, center of gravity location, contact surface dimensions, principal moments of inertia and their associated directions. Further, for the adult human female, the adult human male, and the manikin data sets, the program outputs elastic, viscous, and joint stop properties for

each joint. All calculations are done in English units, but output is also available in metric units.

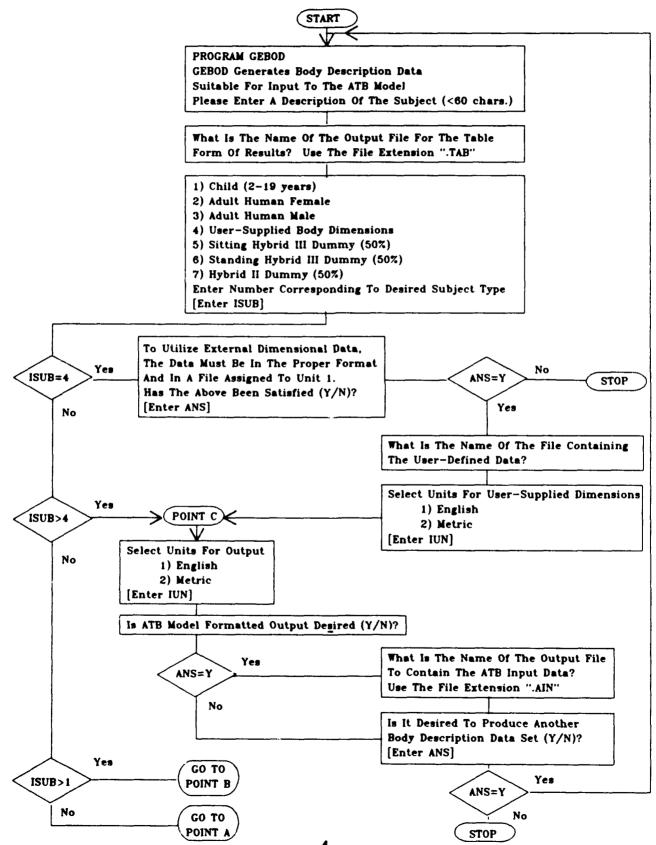
GEBODIII accesses up to seven files or input/output (I/O) devices. Prompts for the user are written to the console, I/O unit 6. Interactive user input is received through the console, I/O unit 5. Body description data produced by GEBODIII is written to both I/O units 3 and 9. Data written to unit I/O 3 is formatted for the ATB model input data set, and the data written to I/O unit 9 is a tabular presentation of the data. If the user selects the User-Defined Body Dimensions option, the body description data is input using an external data file through I/O unit 1. GEBOD.DAT is an external file containing data that is needed by GEBODIII, such as the subject type option titles and selected ATB input data sets available to the user. The GEBOD.DAT file is distributed with the GEBODIII program and is always assigned to I/O unit 2. GEBOD.DAT should not be changed by the user.

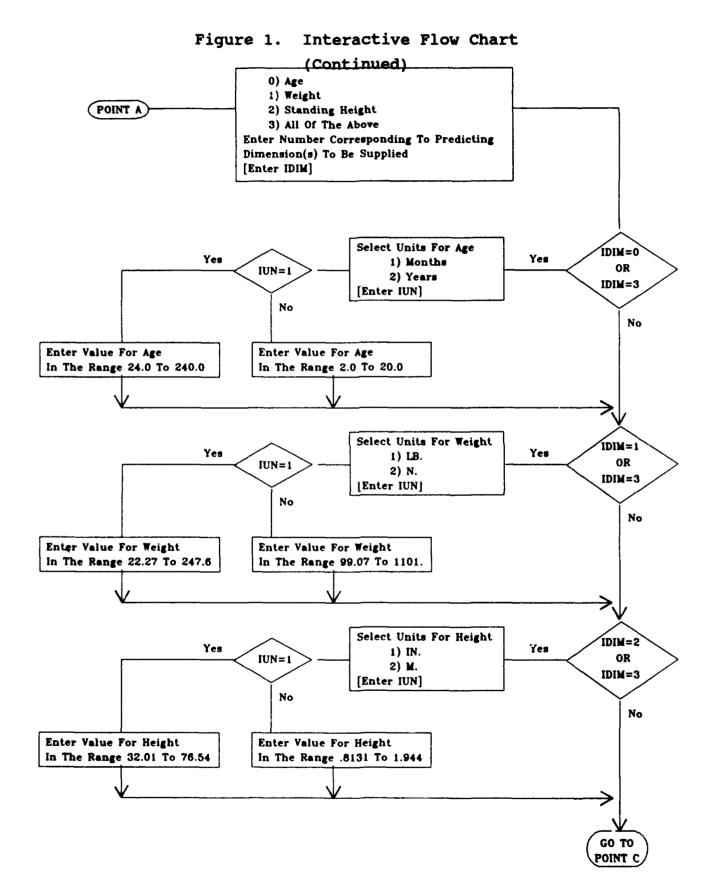
The user is prompted for the filenames to be assigned to I/O units 1, 3, and 9. The first time through the program, the filenames assigned to I/O units 3 and 9 must be new names. An error will occur if a file with the chosen filename already exists in the computer directory. However, on subsequent runs through the program (when the user responds "y" to the prompt asking if it is desired to produce another body description data set), the user may enter the same filenames for I/O units 3 and 9. When this is done, the output is appended to the end of the existing file rather than overwriting the file.

To install GEBODIII, the source code and GEBOD.DAT files must be copied onto the user's computer. The source code must then be compiled using the Fortran compiler available to the user. To run the program, type "GEBODIII". The user is then prompted for output file names and other required program inputs.

1.2 PROGRAM FLOW

The interactive program flow is depicted in Figure 1. After the program is started, GEBOD prompts the user for a description of the subject that is less than 60 characters long. This description can be left blank by hitting <ENTER>. The user is then prompted to provide a filename for the tabular body description output.


Next, the user is asked to choose the desired subject type from the option menu. The possible choices are:


- 1. Child (2-19 years)
- 2. Adult Human Female (based on female stereophotometric and Air Force personnel data)
- 3. Adult Human Male (based on male stereophotometric and Air Force flying personnel data)
- 4. User-Supplied Body Dimensions
- 5. Sitting Hybrid III Dummy (50%)
- 6. Standing Hybrid III Dummy (50%)
- 7. Hybrid II Dummy (50%)

If option 1, Child (2-19 years), is chosen, the user is asked to select the parameters which will be used to generate the subject data set. The user can select age, weight, standing height, or all of the above. If age is selected, the user is asked to specify months or years as the units in which age will be given. Then the user is asked to provide the age. A range for the possible values of age is displayed on the screen to assist the user in providing an appropriate age. Similar procedures are followed for weight and standing height, if they were selected by the user. For weight, the possible units of input are pounds or newtons. For standing height, possible units of input are inches or metars.

Options 2 and 3, Adult Human Female and Adult Human Male,

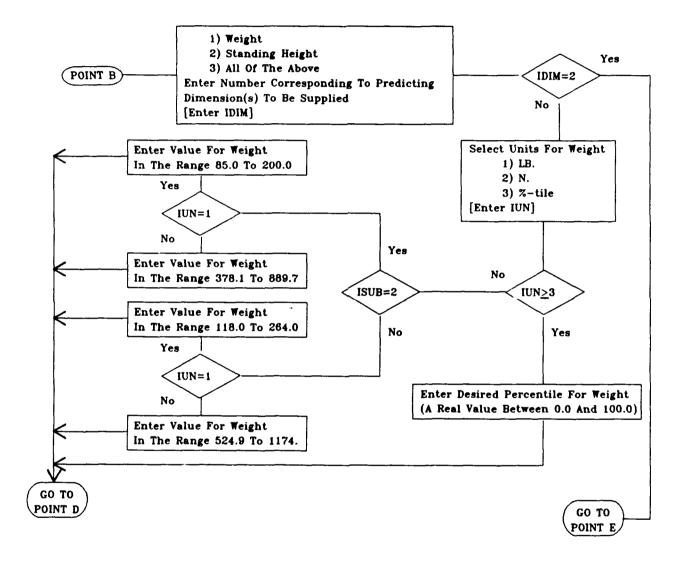

Figure 1. Interactive Flow Chart

Figure 1. Interactive Flow Chart (Continued)

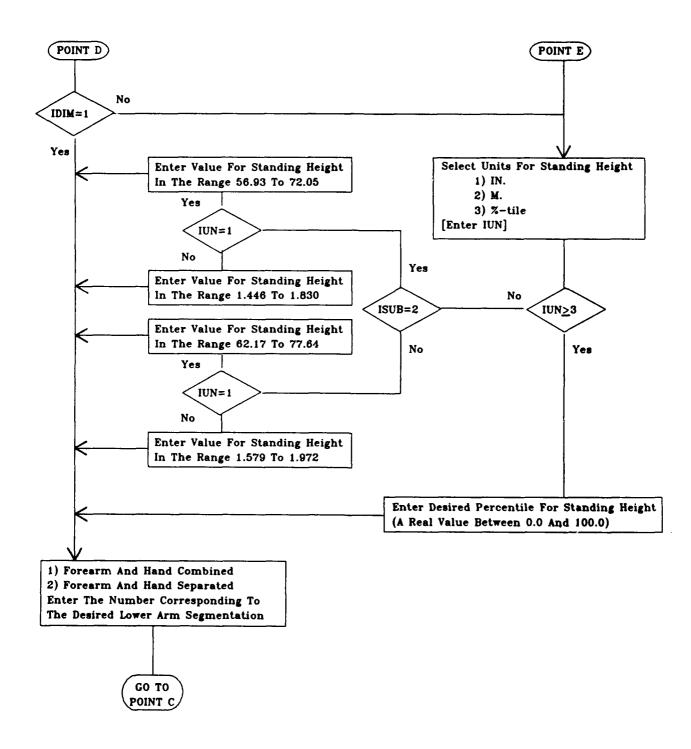


Figure 1. Interactive Flow Chart (Continued)

respectively, use the same procedure as option 1, except that the option to input age is omitted. After the specified data have been entered for these options, the program asks the user to select the desired lower arm segmentation scheme: forearm and hand combined resulting in output for 15 segments and 14 joints, or forearm and hand separated resulting in output for 17 segments and 16 joints.

If option 4, User-Supplied Body Dimensions, is selected, the user is asked to select the units in which the user-supplied body dimensions are to be provided. The choices are English (inches and pounds) or metric (meters and newtons). (See Appendix A of Baughman (1983) for more details on the use of option 4.)

The manikin options 5 through 7 refer to specific data sets stored in GEBOD.DAT; they do not require any user-supplied description of the subject.

When all user input for the description of the subject has been completed, the user is asked to select the units for output, either English (inches and pounds) or metric (meters and newtons). Next, the user is asked if ATB model formatted output is desired. If the user does not intend to use the output from this program as input to the ATB model, the user should specify "n" and the program output will consist solely of a tabular presentation of the data. If "y" is specified, the user is asked to supply the name of the file to contain this data and the program output will provide both a tabular presentation of the data and an ATB model formatted presentation of the data.

After the calculations and output are completed, the user is asked if another body description data set is to be generated. If not, execution stops. If another data set is desired, the program loops back to the beginning of the program and the input process is repeated.

1.3 REGRESSION EQUATIONS AND THEIR USE

Regression analysis is a method widely used in anthropometry for predicting various body measurements from known body measurements. All regression equations for the Adult Human Female and the Adult Human Male options used by GEBODIII are based on weight, standing height, or both. The goal was to use this limited description to achieve the best possible prediction of other body measurements for a subject. The coefficient of determination or R-square (R^2) value is an indicator of the predictive ability of a regression equation. The R^2 value associated with each regression equation is given in the appendices containing these regression equations. For example, the following regression equations to predict shoulder height can be found in Appendix D of Baughman (1983).

Shoulder Height = .7182E-01 * Weight + 42.77 R^2 = .3049 Shoulder Height = .8751 * Standing - 3.936 R^2 = .9194 Shoulder Height = .7555E-02 * Weight + .8469 * Standing - 3.096 R^2 = .9218

where Shoulder Height, generally referred to as \hat{Y} , is the predicted dependent variable. Predictor or independent variables are generally referred to as X_i and in the above example are Weight and Standing Height.

 R^2 is calculated according to the following four steps:

1. The prediction error that would result without the use of the regression equation is calculated. This prediction error is the sum of the squared differences between the observed value of Y at each observed value of X_1 (and X_2) and the mean value of Y.

$$\Sigma(Y_i - Y)^2$$
, i=1,...,n

2. The prediction error that would result from using the regression equation to predict the behavior of the dependent variable is calculated. This prediction error is the sum of the squared differences between the observed value of Y and the predicted value of Y at each observed value of X_1 (and X_2).

 $\Sigma(Y_i - \hat{Y}_i)^2$, i=1,...,n

3. The resulting prediction error from step 2 is subtracted from the resulting prediction error from step 1. This difference represents the reduction in the prediction error achieved by using the regression equation predictions rather than the mean.

4. This reduction is expressed as a percentage by dividing the difference from step 3 by the result from step 1 to obtain a percentage reduction in the amount of the prediction error and is equal to R^2 .

The values of R^2 are always between zero and one, or equivalently, a percentage between 0 and 100 percent. A value of 0 implies that the regression equation is useless in reducing the prediction error and, therefore, has little or no predictive ability beyond that provided by using the mean value. A value of 50 percent implies that the prediction error has been reduced by 50 percent, or cut in half, by using the regression equation. Finally, a value of 100 percent indicates that no prediction error occurs when the regression equation is used.

In some instances, the regression equations used by GEBODIII may yield questionable results. This is true when one or more subjects in the regression analysis sample have extreme values for standing height and/or weight. In this case, due to the use of the least squares method, the regression line may have been disproportionately skewed toward the extreme. A user running the program may input a value for standing height and/or weight that

is within the specified range of reasonable values, but end up with an unreasonable value for a predicted variable.

While R^2 is a measure of the relationship between the dependent and independent variables, it can not be used as the sole indicator of the effectiveness of the regression equation. If there is an extreme value pulling the regression line toward that value, the R^2 value may be quite high, while the regression equation may not best represent the data.

If the regression results from using GEBODIII appear to be unsatisfactory, the user should first check the measurement description and summary statistics to determine whether the predicted value is reasonable. It is important to check these descriptions, especially when comparing regression results between males and females, since the method of measurement may vary somewhat.

The following example demonstrates the importance of referring to the measurement descriptions and summary statistics to determine the usefulness of predicted body measurements. The regression equation for the ankle height of an adult male of 179.84 pounds (800 newtons) and 72.05 inches (1.83 meters) results in a predicted value of 5.6 inches (.1422 meters). The equation for an adult female of equal standing height and weight results in a predicted value of 3.01 inches (.0723 meters). These values seem to be quite different and raise suspicion regarding their validity. However, the female dimension was measured from the standing surface to the lateral malleolus landmark, while the male dimension was measured from the standing surface to the level of minimum ankle circumference, which is found above the lateral malleolus landmark. The female ankle height is, therefore, expected to be noticeably shorter than that of the male. The mean value of these measurements confirms that the predicted values are reasonable.

If the predicted value is found to be unreasonable after checking the measurement description and summary statistics, it is safe to assume that the regression line is affected by an extreme value. In this case, the mean value of that measurement instead of the predicted value generated by GEBODIII should be used.

The user should examine the tabular output of GEBODIII to determine that the predicted body measurement values are reasonable. If the user decides to change some of the body measurements predicted by the program, the User-Supplied Body Dimensions option can be used. In this case, the user must create an input file that will be read through unit 1, containing all 32 body measurements. Refer to Appendix A of Baughman (1983), for specifics on the format of the file. The user can supply the body measurements from GEBODIII and substitute alternate values in place of those predicted values which are unreasonable. The body measurements provided by running GEBODIII with this user-defined data file will reflect the new values.

The measurement descriptions and summary statistics for adult male and adult female anthropometry are provided in Appendix F of this manual. An explanation of anthropometric terms used is presented in Appendix E. The actual regression equations used for predicting anthropometry (except for the hand) are given in Appendix D of Baughman (1983). These equations have remained unchanged. The regression equations for the hand dimensions of the Adult Human Female and Adult Human Male options have been added to GEBODIII and are given in Appendix A of this manual. Also, regression equations for joint center location, principal moments of inertia, and segment volume for the Adult Human Female and Adult Human Male options have been incorporated into the program and are given in Appendix B, C, and D of this manual, respectively.

1.4 SEGMENT ELLIPSOID ALIGNMENT

The segment ellipsoid positions were obtained by using regression equations to locate the joint center with respect to the center of gravity for each segment. Using the ATB model, the ellipsoids were then visually aligned by adjusting each ellipsoid center with respect to the segment center of gravity, so that as the segments moved, the ellipsoid alignment was maintained. Currently, there is no anthropometric data available upon which to directly predict the location of the ellipsoid center with respect to the segment center of gravity; therefore, the expressions used to calculate these locations were derived by trial-and-error and are, in most cases, based on joint center locations or segment semiaxes. Section 2.3.1.3 in Part 2 of this manual describes this process in more detail.

1.4.1 ADJUSTING THE SEGMENT ELLIPSOID ALIGNMENT

There may be some instances where the user is not completely satisfied with the segment ellipsoid alignment as shown in a plot of the program output. This may occur when the subject is <u>extremely</u> tall and skinny or <u>extremely</u> short and fat. Ellipsoid alignment is easily changed by altering the ellipsoid center with respect to segment center of mass data in the B.2 cards in the ATB input data set. By adjusting the X, Y, and Z values in the local coordinate system, the user should be able to align the ellipsoids as desired.

Most ellipsoid alignments provided by GEBODIII are reasonable, and the ellipsoid centers should not be altered unless a graphic plot of the body indicates such action.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

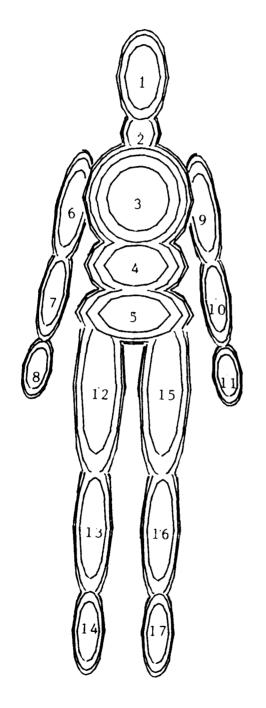
PART 2 PROGRAM DESCRIPTION 2.1 INTRODUCTION

This part describes in more detail the modifications and improvements that were made to create GEBODIII. These changes are as follows:

- The option to output data for the Sitting Hybrid III, Standing Hybrid III, and the Hybrid II manikin data sets was added.
- 2) Human stereophotometric data (McConville, et al., 1980; Young, et al., 1983) were incorporated into the program in the form of regression equations used to calculate segment mass properties and joint center locations for the adult human options.
- 3) Joint characteristics for the adult human options were added.
- 4) The option to output data for either combined or separated forearm and hand segments for the adult human options was added.
- 5) Since kilograms is a metric unit of mass, not weight, all weight data is now output in metric units of newtons. Also the use of meters and centimeters was inconsistent for metric output in GEBOD. GEBODIII makes use of meters only.
- 6) The user is prompted for filenames to be used by the program.
- 7) Alterations to make the program more portable to other computers were made.

Changes 1, 2, 3, and 4 are described more thoroughly in the following sections.

2.2 CHILD AND USER-DEFINED BODY DIMENSIONS OPTIONS


The methods of calculating body data for subject type options 1 and 4, the Child and the User-Defined Body Dimensions options, respectively, have not been altered with this version of GEBOD. Refer to Baughman (1983) for details describing these calculations.

2.3 ADULT HUMAN FEMALE AND ADULT HUMAN MALE OPTIONS

The methods of calculating body data for subject type options 2 and 3 have been changed significantly. Previously, the methods used by GEBOD to calculate the segment mass properties were based on the segment ellipsoids, not directly measured body geometry or mass properties. This method was replaced with calculations from stereophotometrically generated body surface data obtained from both male and female sample populations (McConville, et al., 1980; Young, et al., 1983). Joint center locations were based on three-dimensional surface landmark data also available in the stereophotometric data sets.

With past versions of GEBOD, output was limited to body data for 15 segments where the forearm and hand were considered as one segment. Because of the many applications involving hand movement, the need arose to consider the forearm and hand segments separately, connected by the wrist joint. This option was incorporated into GEBODIII, making available body data for 17 segments. Figure 2 depicts the 17 segment configuration. Regression equations to calculate hand length, hand breadth, and hand thickness were added to GEBODIII. These equations are given in Appendix A.

2.3.1 Body Geometry The body geometry includes the contact ellipsoid semiaxes and

- 1. Head
- 2. Neck
- 3. Thorax
- 4. Abdomen
- 5. Pelvis
- 6. Right Upper Arm
- 7. Right Lower Arm
- 8. Right Hand
- 9. Left Upper Arm
- 10. Left Lower Arm
- 11. Left Hand
- 12. Right Thigh
- 13. Right Calf
- 14. Right Foot
- 15. Left Thigh
- 16. Left Calf
- 17. Left Foot

Figure 2. Seventeen Segment Configuration

joint locations for each segment in the local reference axis system.

2.3.1.1 Reference axis systems

All data output by GEBODIII are described with respect to the segment local reference axis systems. Each segment's local axis system is defined such that its origin is at the segment center of mass and, when the body is in a standing position with the toes pointing down, the local axis systems' positive Z-axes point down, positive X-axes point forward, and positive Y-axes point to the right of the body.

The stereophotometric data was collected in a global axis system defined with the body in the standard anatomical position with the origin on the floor centrally located between the subject's feet and directly underneath the body. The axes are defined so that the positive X-axis points forward, positive Y-axis points to the left of the body, and positive Z-axis points upward from the origin. The hands of the female subjects were positioned with the palms facing anteriorly; the hands of the male subjects were positioned with the palms facing posteriorly.

In segmenting the data, McConville and Young defined the standard anatomical axis systems for each segment based on body surface landmarks. In general, anatomical axis systems are defined so that the positive X-axes point forward, positive Y-axes point to the body's left, and positive Z-axes point distal to proximal. Complete definitions of the anatomical axis systems are given in McConville, et al. (1980) for males and Young, et al. (1983) for females.

Based on the above definitions, the transformation from the segment anatomical axis system to the local axis system consists of a translation to the segment center of mass and a 180 degree rotation about the anatomical X-axis for all the segments except

the neck and pelvis. The landmarks used to define the anatomical axis systems for these two segments result in X-axes that are not horizontal in the standing position. Therefore, the transformation from the segment anatomical axis system to the local axis system for these two segments includes a rotation about the Y-axis after the X-axis rotation. For the neck, this Y-axis rotation is +30 degrees and for the pelvis, -12 degrees. The transformation cosine matrix from the neck anatomical axis system to the neck local axis system is:

```
\begin{bmatrix} \cos(30^\circ) & 0 & \sin(30^\circ) \\ 0 & -1 & 0 \\ \sin(30^\circ) & 0 & -\cos(30^\circ) \end{bmatrix}
```

The transformation cosine matrix from the pelvis anatomical axis system to the pelvis local axis system is:

```
\begin{bmatrix} \cos(12^\circ) & 0 & -\sin(12^\circ) \\ 0 & -1 & 0 \\ -\sin(12^\circ) & 0 & -\cos(12^\circ) \end{bmatrix}
```

The transformation cosine matrix from the anatomical axis system to the local axis system for all other segments is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

In the stereophotometric data for the adult human female forearms, the anatomical Z-axis is represented as a vector from the ulnar styloid landmark to the radiale landmark. This vector crosses the forearm diagonally from lateral to medial which did not conform to the desired vertical alignment of the segment axes. Therefore, the anatomical axes were redefined as follows:

RIGHT FOREARM

Z axis - vector from radial styloid to radiale Y axis - normal from Z axis to ulnar styloid X axis - $\underline{Y} \times \underline{Z}$ Origin - at radiale

LEFT FOREARM

Z axis - vector from radial styloid to radiale Y axis - normal from ulnar styloid to Z axis X axis - $\underline{Y} \times \underline{Z}$ Origin - at radiale

The local reference axes for the right and left forearm segments were obtained by rotating the above anatomical axes 180 degrees about the X axis and translating the origin to the center of mass.

2.3.1.2 Segment ellipsoid semiaxes

Segment ellipsoid semiaxes are based on anthropometric dimensions. Expressions to calculate ellipsoid semiaxes for the right and left forearm and right and left hand segments are given in Table I where references to the i^{th} body measurement are made by DD_i. The body measurements are in Appendix F. The

EXPRI	ESSIONS FOR	TABLE I FOREARM AN	I D HAND SEMIAXES (IN)
SEGMENT	X	¥	<u>Z</u>
Forearms	$DD_{21}/2\pi$	DD ₂₁ /27	Females: $(DD_{18} - DD_{33}) * 0.5$ Males: $(DD_{18} - DD_{33}) * 0.6$
Hands	DD ₃₄ *0.5	DD ₃₄ *0.5	DD ₃₃ *0.5

expressions to calculate ellipsoid semiaxes for all other

segments have not changed from previous versions of GEBOD (Baughman, 1983).

2.3.1.3 Segment ellipsoid centers

Previous versions of GEBOD made the assumption that the segment ellipsoid center was located at the segment center of mass (CM) for most segments. For the pelvis, abdomen, thorax, and feet segments, GEBOD calculated the global location of the ellipsoid center in the Z direction based on predicted body description data and mumerical integration was used to calculate the segment CM in the Z direction. Then the segment ellipsoid center Z location was subtracted from the Z location of the segment CM to give the segment ellipsoid center in the local reference axis system on the B.2 card of the ATB input data set.

No such assumptions are made in GEBODIII, since it is known that the segment CM is not, in most cases, actually located at the segment ellipsoid center. However, the exact location of the ellipsoid center with respect to segment CM is not known either. Therefore, the ellipsoid center in each local axis system was arrived at by visually aligning the segment ellipsoids with respect to each other.

Ellipsoids were aligned for an average size adult human male subject by adjusting ellipsoid centers segment-by-segment, beginning with the feet and working up to the head. The arm segments were aligned with each other and then with the rest of the body. The alignment was validated for a small and a large male subject. The ellipsoids of the adult human female were similarly aligned.

The 15 and 17 segment ellipsoid configurations align well for the adult human male. For the adult human female, the 15 segment ellipsoid configuration aligns well; however, in the 17 segment ellipsoid configuration, all segments are well aligned, except

the hands. The user may wish to adjust ellipsoid locations for some subjects, as described in section 1.4.1 of Part 1, so that the hand alignment is more reasonable.

2.3.1.4 Joint center locations

The three-dimensional joint center locations were calculated in the global axis system for each male and female stereophotometric subject based on three-dimensional landmark locations. Table II contains a list of landmarks used in the expressions to define joint center locations. Table III contains a list of the expressions. The expression used to locate the hip joint center is from Andriacchi and Strickland (1985). All other expressions were obtained by experimentation. These global joint center locations were transformed to the local reference axis systems. The resulting joint center locations were then used to calculate regression equations to estimate joint center locations in the local reference axis system for adult human female and male subject type options. These regression equations are in Appendix B.

2.3.2 Inertial Properties

2.3.2.1 Segment centers of mass

The segment centers of mass are indirectly located by defining the origins of the segment local reference axis systems to be at the segment centers of mass and specifying the remaining data, such as the joint and ellipsoid center locations in the local reference axis systems.

2.3.2.2 Moments of inertia

The principal moments of inertia were calculated from the stereophotometric data for each female and male subject. These data were used to calculate regression equations to predict each segment's principal moments of inertia for the adult human female and male subject type options. These regression equations are in

TABLE II LANDMARKS USED IN EXPRESSIONS TO DEFINE JOINT CENTER LOCATIONS

Landmark Number	<u>Landmark Name</u>
1X, 1Y, 1Z	Left Tragion
2X, 2Y, 2Z	Right Tragion
3X, 3Y, 3Z	Cervicale
3X, 3Y, 3Z 4X, 4Y, 4Z	Tenth Rib Midspine
5X. 5Y. 5Z	Posterior Superior Iliac Midspine
6X. 6Y. 6Z	Posterior Superior Iliac Midspine Right Acromion
7X. 7Y. 7Z	Right Medial Humeral Epicondyle
8X. 8Y. 8Z	Right Medial Humeral Epicondyle Right Lateral Humeral Epicondyle
9X. 9Y. 9Z	Right Radial Styloid
10X. 10Y. 10Z	Right Radial Styloid Right Ulnar Styloid
11X, 11Y, 11Z	Left Acromion
12X. 12Y. 12Z	Left Medial Humeral Epicondyle
13X. 13Y. 13Z	Left Lateral Humeral Epicondyle
14X, 14Y, 14Z	Left Radial Styloid
15X, 15Y, 15Z	Left Ulnar Styloid
16X. 16Y. 16Z	Right Trochanterion
17X. 17Y. 17Z	Right Anterior Superior Iliac Spine
18X. 18Y. 18Z	Right Anterior Superior Iliac Spine Symphysion
19X. 19Y. 19Z	Right Lateral Femoral Epicondyle
	Right Medial Femoral Epicondyle
21X, $21V$, $21Z$	Right Medial Malleolus
22X. 22Y. 227	Right Lateral Malleolus
23X, 23Y, 23Z	Left Trochanterion
	Left Anterior Superior Iliac Spine
25X 25V 25Z	Left Lateral Femoral Epicondyle
	Left Medial Femoral Epicondyle
27X 27V 277	Left Medial Malleolus
	Left Lateral Malleolus
201, 201, 204	here have at maileorus

TABLE III EXPRESSIONS FOR JOINT CENTER LOCATIONS IN GLOBAL AXES (IN)

<u>Joint Name</u> Head-Neck	<u>Location</u> X	<u>Expression</u> (1X + 2X) / 2.
neud neek	Ŷ	(1X + 2X) / 2. (1Y + 2Y) / 2.
	Z	(11 + 21) / 2. ((12 + 32) / 2.) - 1.1811
Neck-Thorax	X	((12 + 32) / 2.) = 1.1811 3X + 2.0079
Neer morax	Ŷ	3Y - 2.0079
	Z	31 32 - 0.9843
Thorax-Abdomen	X	4X + 2.0079
morax abdomen	Ŷ	4Y + 2:0079
	Z	42
Abdomen-Pelvis	X	5X + 2.0079
Abdoment leivis	Ŷ	5Y - 2.0079
	Z	51 52
Right Shoulder	X	6X
Argae baburuer	Ŷ	6Y + 1.4961
	Z	62 - 1.4961
Right Elbow	x	(7X + 8X) / 2.
Right Dibow	Ŷ	
	Z	(7Y + 8Y) / 2.
Right Wrist	X	(7Z + 8Z) / 2.
Right WIISt	Ŷ	(9X + 10X) / 2.
	Z	(9Y + 10Y) / 2.
Left Shoulder	X	(9Z + 10Z) / 2.
Dere Suburdet	X Y	11X
	Z	11Y - 1.4961
Left Elbow	X	112 - 1.4961
Delt Elbow	X Y	(12X + 13X) / 2.
	Z	(12Y + 13Y) / 2.
Left Wrist		(122 + 132) / 2.
Derc Wrisc	X	(14X + 15X) / 2.
	Y	(14Y + 15Y) / 2.
Diabt Nim	Z	(142 + 152) / 2.
Right Hip	X	16X
	Y	(17Y + 18Y) / 2.
	Z	((17Z + 18Z) / 2.) - 0.5906
Right Knee	X	(19X + 20X) / 2.
	Y	(19Y + 20Y) / 2.
	Z	(19Z + 20Z) / 2.
Right Ankle	X	(21X + 22X) / 2.
	Y	(21Y + 22Y) / 2.
	Z	(21Z + 22Z) / 2.
Left Hip	X	23X
	Y	(18Y + 24Y) / 2.
	Z	((18Z + 24Z) / 2.) - 0.5906

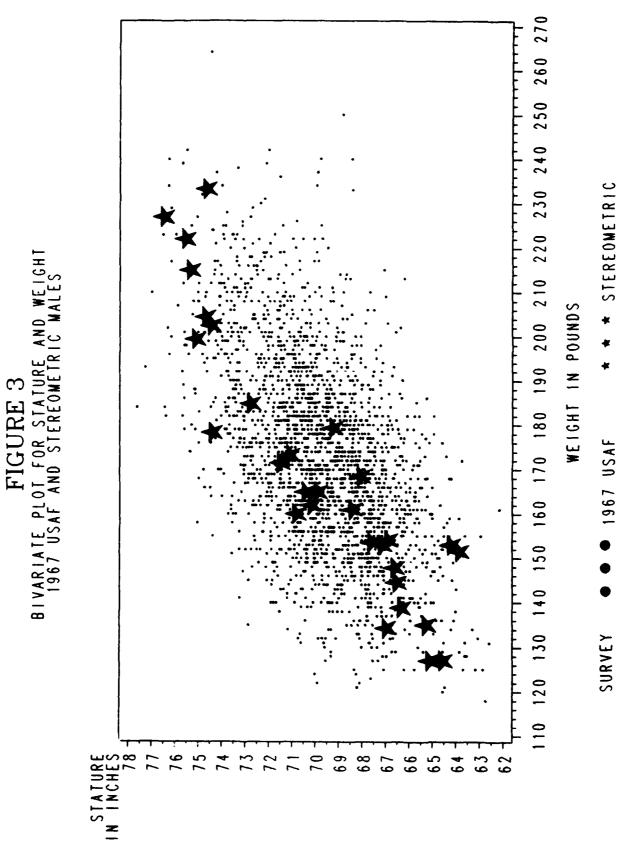
	TABLE III	(Continued)
Left Knee	x	(25X + 26X) / 2.
	Y	(25Y + 26Y) / 2.
	Z	(25Z + 26Z) / 2.
Left Ankle	Х	(27X + 28X) / 2.
	Y	(27Y + 28Y) / 2.
	Z	(27Z + 28Z) / 2.

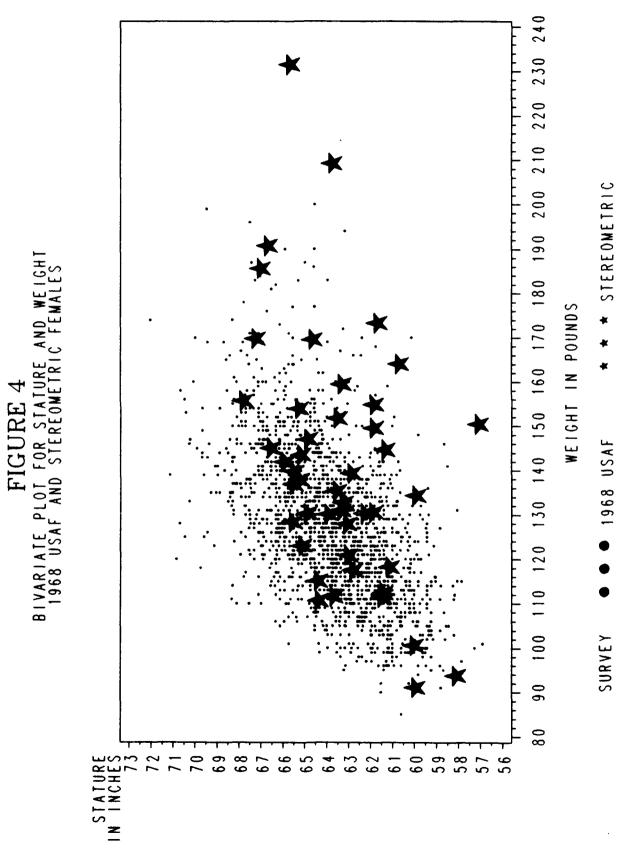
Appendix C. Mean principal axes orientations for both the adult male and female subject type options were determined with respect to the local axes and used for all subjects.

2.3.2.3 Segment weights

The stereophotometric data were used to calculate the volume of each segment for each female and male subject. The volumes were used to calculate regression equations to predict segment volumes for the adult human female and male subject type options. These regression equations are in Appendix D. The estimated volumes are transformed to weights using the relationship, weight (slugs) = volume (in³) * density (slugs/in³), where density is a constant 1.12287E-3. The segment weights are then converted to pounds and adjusted so that their sum equals the total body weight.

2.3.3 Joint Characteristics


Most of the joints' elastic, viscous, and joint stop characteristics were obtained from a number of sources, including Engin and Chen (1987), and adjusted to provide physically realistic ATB model results. For the joints that did not have a complete set of properties available, the characteristics were estimated based on data from the other joints. These characteristics have been used in ATB simulations by Armstrong Laboratory (AL) with good results for several years.


2.3.4 Comparison of Stereophotometric Data Distributions with Air Force Distributions

Originally, the only actual human data used by GEBOD was from the 1967 and 1968 USAF anthropometric surveys. When the idea was conceived to incorporate into GEBODIII the inertial property data provided by the stereophotometric surveys, it became necessary to compare the USAF and stereophotometric surveys to determine the compatibility of the data.

Selection of the male stereophotometric data subjects was based on the 1967 USAF survey stature and weight distribution. Figure 3 is a bivariate plot of the 1967 USAF stature and weight distribution overlaid with the male stereophotometric stature and weight distribution. The slope of the two data distributions show that the relationship between stature and weight for the two survey distributions is similar, as expected. This demonstrates the soundness of using the male stereophotometric data to obtain inertial properties in GEBODIII.

Selection of the female stereophotometric data subjects was based on a civilian female stature and weight distribution. Figure 4 is a bivariate plot of the 1968 USAF stature and weight distribution overlaid with the female stereophotometric stature and weight distribution. It shows that the stereophotometric females are shorter and heavier than the USAF females; therefore, the relationship between stature and weight is different for the two surveys. In spite of this difference, comparisons of GEBODII and GEBODIII to the actual data of several stereophotometric subjects have shown a vast improvement by using the stereophotometric data to produce inertial property output, over using the geometric approximations.

2.4 DUMMY DATA SETS

Output is available for the following dummy data sets: Hybrid III with seated pelvis (50th percentile), Hybrid III with standing pelvis (50th percentile), and Hybrid II (50th percentile). The data set for the Hybrid II dummy, also known as the Part 572 dummy, was developed by Fleck, Butler, and DeLeys (1982), to be used in validating the Crash Victim Simulator (CVS), an earlier version of the ATB model. The development of the Hybrid III dummy data sets is fully documented in Kaleps, et al. (1988). The user can choose input and output in English (pounds, inches) or metric (newtons, meters) units, and the output format can be in ATB input format, tabular format, or both. Since these data sets were compiled under different efforts, the amount of data varies somewhat. For example, the Hybrid III data sets include surface deformation properties, whereas the Hybrid II data set does not.

Because the dummy data sets do not change, they are stored in the GEBOD.DAT file which is read by GEBODIII. The ATB formatted input data set for each dummy is stored in English and metric units, in the GEBOD.DAT data file. In the file, each data set is preceded by a line which indicates how many lines are in the following data set and provides a data set title. This title is used to find the data set to be used. When a title match is found, GEBODIII simply reads the appropriate English or metric data from GEBOD.DAT and writes it to the appropriate output units.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX A HAND DIMENSION REGRESSION EQUATIONS

This appendix contains a complete listing of the hand dimension regression equations developed for the adult human female and the adult human male options. The regression equations for the adult human female are based on the 1968 U.S. Air Force survey (Clauser, et al., 1972) and the equations for the adult human male are based on the 1967 U.S. Air Force survey (Grunhofer and Kroh, 1975). The predicting variables are weight (lb) and standing height (in). The predicted hand dimensions are in inches. At the top of each set of regression equations are listed the range of values, mean, and standard deviation of the predicting variables within that subject type option. For each hand dimension, a separate regression equation is riven against each of the predicting variables. The last regression equation is a multiple regression equation based on both predicting variables. With each regression equation, the coefficient of determination (R^2) is given. Since hand depth was not measured in the 1968 U.S. Air Force survey, the regression equations given for female hand depth are based on the 1967 U.S. Air Force survey and, therefore, are the same as the equations given for the males. The regression equations are based on 1905 female subjects and 2420 male subjects.

DIMENSIONS	
HAND	
FEMALE	
ADULT	
ROR	
EQUATIONS	
REGRESSION	

REDICTING VARIABLES		
DICTIN	RIABLE	
A	DICTIN	

WEIGHT	RANGE :	85.00	200.00	MEAN:	127.30	s.D.:	16.590
STANDING HEIGHT	RANGE:	56.93	72.05	MEAN:	63.82	s.d.:	2.364

REGRESSION EQUATIONS FOR HAND BREADTH

				920004 01			9440 - C+48
HANU BKEAUTR		1 - 00000	109194.	12004.21			
HAND BREADTH	- -	0.024549	*STANDING	+1.403283			R**2 = 0.1436
HAND BREADTH	-	0.002769	*WEIGHT	+0.014202 *	+0.014202 *STANDING +1.711157	+1.711157	R**2 = 0.2080

REGRESSION EQUATIONS FOR HAND LENGTH

R**2 = 0.1466	R**2 = 0.3614	R**2 = 0.3669
		+1.325739
+6.122934	+1.103882	+0.088582 *STANDING +1.325739
0.008718 *WEIGHT	0.096038 *STANDING	0.001995 *WEIGHT
N	H	H
HAND LENGTH	HAND LENGTH	HAND LENGTH

R**2 = 0.0667 +0.912979 +0.623029 REGRESSION EQUATIONS FOR HAND DEPTH (BASED ON MALE DATA) 0.006630 *STANDING 0.000996 *WEIGHT N HAND DEPTH HAND DEPTH

R**2 = 0.0381

R**2 = 0.0720

+0.741114

+0.002881 *STANDING

0.000828 *WEIGHT

1

HAND DEPTH

REGRESSION EQUATIONS FOR ADULT MALE HAND DIMENSIONS

PREDICTING VARIABLES

ME I GHT	RANGE :	118.00	264.00	MEAN:	173.60	S.D.:	21.440
STANDING HEIGHT	RANGE :	62.17	77.64	MEAN:	69.82	s.D.:	2.437

REGRESSION EQUATIONS FOR HAND BREADTH

	R**2 = 0.1995	R**2 = 0.1685	R**2 = 0.2439
			+1.917571
	17	8	+0.016569 *STANDING
	+2.906047	+1.567278	+0.01656
	*WEIGHT	* STANDING	*WEIGHT
	0.003424	0.027691	0.002455
	Ħ	Ħ	N
ł	HAND BREADTH	HAND BREADTH	HAND BREADTH
	UNNH	HAND	HAND

REGRESSION EQUATIONS FOR HAND LENGTH	R HAN	D LENGTH			
HAND LENGTH	N	• 0.005839 *WEIGHT	+6.504896		R**2 = 0.1503
HAND LENGTH	Ħ	0.086296 *STANDING +1.493816	+1.493816		R**2 = 0.4239
HAND LENGTH	H	0.001076 *WEIGHT	+0.061423 *STANDING +1.647298	+1.647298	R**2 = 0.4276

REGRESSION EQUATIONS FOR HAND DEPTH	FOR E	IAND DEPTH					
HAND DEPTH	Ħ	0.000996	*WEIGHT	+0.912979			R**2 = 0.0667
HAND DEPTH	Ħ	0.006630	* STANDING	+0.623029			R**2 = 0.0381
HAND DEPTH	H	0.000828	*WEIGHT	+0.002881	+0.002881 *STANDING +0.741114	+0.741114	R**2 = 0.0720

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX B

JOINT CENTER LOCATION REGRESSION EQUATIONS

This appendix contains a complete listing of the regression equations for the joint center locations in the local axis system developed for the adult human female and the adult human male options. The regression equations are based on human stereophotometric surface landmark location data (McConville, et al., 1980; Young, et al., 1983). The predicting variables are weight (1b) and standing height (in). The predicted joint center locations are in inches. At the top of each set of regression equations are listed the range of values, mean, and standard deviation of the predicting variables within that subject type option. A joint center location is described by a threedimensional location in each adjoining segment in that segment's local reference axis system. For the X, Y, and Z location of each joint location, a separate regression equation is given against each of the predicting variables. The last regression equation is a Sultiple regression equation based on both predicting variables. With each regression equation, the coefficient of determination (R^2) is given. The regression equations are based on 46 female subjects and 31 male subjects.

REGRESSION EQUATIONS FOR ADULT FEMALE JOINT CENTER LOCATIONS

HEAN: MEAN: 200.00 72.05 85.00 56.93 RANGE: RANGE: PREDICTING VARIABLES STANDING HEIGHT WEIGHT

16.590 2.364

s.D.: s.D.:

127.30 63.82

R**2 = 0.0009 $R^{**2} = 0.3959$ -3.727573 +0.062264 *STANDING -0.084100 -1.330381 REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT PELVIS X COORDINATE -0.006868 *STANDING -0.011939 *WEIGHT -0.014132 *WEIGHT N N ABDOMEN-PELVIS WRT PELVIS ABDOMEN-PELVIS WRT PELVIS **ABDOMEN-PELVIS WRT PELVIS**

= 0.4601

R**2

R**2 = 0.1700 R**2 = 0.0780 R**2 = 0.1842 -0.009832 *STANDING +0.918761 +0.343410+1.306908 REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT PELVIS Y COORDINATE -0.021026 *STANDING -0.002634 *WEIGHT -0.002288 *WEIGHT N N ABDOMEN-PELVIS WRT PELVIS ABDOMEN-PELVIS WRT PELVIS ABDOMEN-PELVIS WRT PELVIS

 $R^{*}2 = 0.5264$ $R^{*}2 = 0.0097$ $R^{**2} = 0.5760$ +0.062141 *STANDING -3.082532 +0.553757-0.060794 REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT PELVIS Z COORDINATE -0.025001 *STANDING -0.015625 *WEIGHT -0.017813 *WEIGHT . N ABDOMEN-PELVIS WRT PELVIS **ABDOMEN-PELVIS WRT PELVIS** ABDOMEN-PELVIS WRT PELVIS

R**2 = 0.0547 R**2 = 0.0122 R**2 = 0.0549	
CORDINATE +0.152484 +0.413536 -0.000992 *STANDING +0.210518	
*STANDING	
OOMEN WRT ABDOMEN Y COORDINATE -0.001232 *WEIGHT +0.152484 -0.006846 *STANDING +0.413536 -0.001197 *WEIGHT -0.000992	
ABDOMEN Y *WEIGHT *STANDING *WEIGHT	
BDOMEN WRT ABDOMEN -0.001232 *WEIGHT -0.006846 *STANDII -0.001197 *WEIGHT	
RAX-AI • • •	
IS FOR THO ABDOMEN ABDOMEN ABDOMEN	
ATION WRT WRT WRT	
REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT ABDOMEN Y COORDINATE THORAX-ABDOMEN WRT ABDOMEN = -0.001232 *WEIGHT +0.152484 THORAX-ABDOMEN WRT ABDOMEN = -0.006846 *STANDING +0.413536 THORAX-ABDOMEN WRT ABDOMEN = -0.001197 *WEIGHT -0.000992	

	$R^{*} = 0.0119$	$R^{*+2} = 0.0154$	R**2 = 0.0194
			+0.012887 *STANDING -2.036457
			*STANDING
COORD INATE	-1.282322	-2.171454	+0.012887
ABDOMEN Z	*WEIGHT	.016781 *STANDING -2.171454	
DOMEN WRT	= 0.001250 *WEIGHT	0	0.000796 *WEIGHT
ORAX-AB	Ħ	Ħ	N
REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT ABDOMEN Z COORDINATE	THORAX-ABDOMEN WRT ABDOMEN	THORAX-ABDOMEN WRT ABDOMEN	THORAX-ABDOMEN WRT ABDOMEN

KEGRESSION EQUATIONS FOR NECK-THORAX WRI THORAX X COORDINATE	= -0.009617 *WEIGHT +0.994733	= 0.001555 *STANDING -0.458953	= -0.011684 *WEIGHT +0.058713 *STANDING -2.440950
HECK-THORAX	9 8	.0	9 8
SQUATIONS FOR 1	WRT THORAX	WRT THORAX	WRT THORAX
NOTSSEADER	NECK-THORAX	NECK-THORAX	NECK-THORAX

R**2 = 0.3981 R**2 = 0.0001 R**2 = 0.4865

REGRESSION EQUATIONS FOR NECK-THORAX WRT THORAX Y COORDINATE	NECK-THORAX WRT THO	DRAX Y COOR	DINATE			
NECK-THORAX WRT THORAX	= -0.001619 *WEIGHT	*WEIGHT	+0.270258			R**2 = 0.0917
NECK-THORAX WRT THORAX	= 40. 002989	0.002989 *STANDING	+0.231867			R**2 = 0.0022
NECK-THORAX WRT THORAX	= -0.001829 *WEIGHT	*WEIGHT	+0.005958	+0.005958 *STANDING	-0.078373	H
REGRESSION EQUATIONS FOR NECK-THORAX WRT THORAX Z COORDINATE	NECK-THORAX WRT THC	RAX Z COOR	DINATE			
NECK-THORAX WRT THORAX	= -0.012330 *WEIGHT	*WEIGHT	-5.068301			R**2 = 0.3482
NECK-THORAX WRT THORAX	= -0.154705 *STANDING	*STANDING	+3.014805			N
NECK-THORAX WRT THORAX	= -0.008315 *WEIGHT	*WEIGHT	-0.114029	-0.114029 *STANDING	+1.604334	N
REGRESSION EQUATIONS FOR HEAD-NECK		WRT NECK X COORDINATE	2			
HEAD-NECK WRT NECK		*WEIGHT	-0.874711			R**2 = 0.0086
HEAD-NECK WRT NECK	= -0.025848	0.025848 *STANDING	+0.961229			R**2 = 0.0216
HEAD-NECK WRT NECK	= 0.002773 *WEIGHT	*WEIGHT	-0.039412	-0.039412 *STANDING	+1.431563	H
NEGRESSION EQUATIONS FOR HEAD-NECK	-	WRT NECK Y COORDINATE	1 E			
HEAD-NECK WRT NECK	= -0.000777 *WEIGHT	*WEIGHT	+0.102504			R**2 = 0.0207

	$R^{**2} = 0.0207$	$R^{**2} = 0.0013$	$R^{**2} = 0.0317$
			+0.007351 *STANDING -0.327647
			*STANDING
TE	+0.102504	-0.151979	+0.007351
WRT NECK Y COORDINATE		0.002285 *STANDING -0.151979	*WEIGHT
	-0.000777 *WEIGHT	0.002285	-0.001036 *WEIGHT
FOR HEAD-NECI	H	H	N,
AUGRESSION EQUATIONS FOR HEAD-NECK	HEAD-NECK WRT NECK	HEAD-NECK WRT NECK	HEAD-NECK WRT NECK
Ž	HE	HE/	HEA

REGRESSION EQUATIONS FOR HEAD-NECK	OR HEAD-NEC	-	WRT NECK Z COORDINATE	TE			
HEAD-NECK WRT NECK	H	-0.000979 *WEIGHT	*WEIGHT	-2.031634			R**2 = 0.0116
HEAD-NECK WRT NECK	H	-0.026838	*STANDING	-0.465923			$R^{++2} = 0.0628$
HEAD-NECK WRT NECK	•	-0.000041 *WEIGHT	*WEIGHT	-0.026639	*STANDING	-0.472829	H
REGRESSION EQUATIONS FOR LEFT	OR LEFT HIP	WRT PELVIS X COORDINATE	X COORDIN	ATE			
LEFT HIP WRT PELVIS	N	-0.004163 *WEIGHT	*WEIGHT	+1.208000			R**2 = 0.0367
LEFT HIP WRT PELVIS	H	-0.009597 *STANDING	*STANDING	+1.230671			
LEFT HIP WRT PELVIS	H	-0,004621	*WEIGHT	+0.013008	+0.013008 *STANDING	+0.446799	Ħ
REGRESSION EQUATIONS FOR LEFT LEFT HIP WRT PELVIS	OR LEFT HIP	X 1	NT PELVIS Y COORDINATE).007290 *WEIGHT -1	ATE -1.228729			R**2 = 0.4431
LEFT HIP WRT PELVIS	H	-0.013859	*STANDING	-1.376161			R**2 = 0.0115
LEFT HIP WRT PELVIS		-0.008218	*WEIGHT	+0.026342	+0.026342 *STANDING	-2.170156	
REGRESSION EQUATIONS FO	FOR LEFT HIP	WRT PELVIS Z COORDINATE	Z COORDINA	ATE			
LEFT HIP WRT PELVIS	•	0.004525 *WEIGHT	*WEIGHT	+2.157463			R**2 = 0.2473
LEFT HIP WRT PELVIS		0.013873 *STANDING	*STANDING	+1.914401			Ħ
LEFT HIP WRT PELVIS	Ħ	0.004876 *WEIGHT	*WEIGHT	-0.009982 *STANDING	*STANDING	+2.741591	N

ł

	R**2 = 0.0658	R**2 = 0.0130	R**2 = 0.1245
			-0.045884 *STANDING +2.911839
			*STANDING
ATE	+0.226837	+2.001882	-0.045884
WRT THIGH X COORDINATE	*WEIGHT	-0.019642 *STANDING +2.001882	THOI 3W*
WRT THIGH	0.003749 *WEIGHT	-0.019642	0.005364 *WEIGHT
KNEE	W		
LAN			
FOR 1			
REGRESSION BOUATIONS FOR LEFT KNEE	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH
NOIE	NEE W	NEE W	M 22)
REGRES	LEFT KI	LEFT K	LEFT KI

	R**2 = 0.0232	$R^{++2} = 0.1012$	$R^{**2} = 0.1017$
			-0.028390 *STANDING +1.269591
			*STANDING
ATE	-0.391704	+1.301907	-0.028390
REGRESSION EQUATIONS FOR LEFT KNEE WRT THIGH Y COORDINATE	-0.001190 *WEIGHT -0.391704	-0.029322 *STANDING +1.301907	*WEIGHT
WRT THIGH	-0.001190	-0.029322	-0.000191 *WEIGHT
KNEE	H	W	N
FOR LEFT			
JATIONS	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH
N BO	WRT	WRT	WRT
OISSI	KNEE	KNEE	KNEE
REGRI	LEFT	LEFT	LEFT

	$R^{*+2} = 0.0031$	R**2 = 0.5754	R**2 = 0.6567
			-4.090649
			+0.226249 *STANDING -4.090649
LTE	+9.148730	-2.942030	+0.226249
E WRT THIGH Z COORDINATE	0.001195 *WEIGHT +9.148730	0.193124 *STANDING -2.942030	WEIGHT
WRT THIGH	0.001195	0.193124	-0.006771 *WEIGHT
KNEE	Ħ	N	
FOR LEFT			
REGRESSION EQUATIONS FOR LEFT KNE	WRT THIGH	WRT THIGH	WRT THIGH
REGRESSION	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH

	R**2 = 0.1557	R**2 = 0.0048	R**2 = 0.1665
			-0.016450 *STANDING +0.852695
			*STANDING
ATE	-0.109920	-0.061637	-0.016450
LEFT ANKLE WRT CALF X COORDINATE	0.004811 *WEIGHT -0.109920	0.009918 *STANDING -0.061637	*WEIGHT
E WRT CALF	0.004811	0.009918	0.005390 *WEIGHT
ANKL	N	N	
LEFT			
FOR			
LEGRESSION EQUATIONS FOR	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF
NOIS	ALLE	NKLE	NKLE
REGRES	LEFT A	LEFT A	LEFT A

.

+0.490224 R**2 = 0.2546 +0.662149 R**2 = 0.0023 -0.011276 *STANDING +1.150037 R**2 = 0.2859	TE +7.665443 -1.644392 +0.144112 *STANDING -0.767549 R**2 = 0.6923	
	WRT CALF Z COORDINATE .010244 *WEIGHT +7.665443 .169399 *STANDING -1.644392 .005169 *WEIGHT +0.144112	
0.002479 *WEIGHT +0 0.002794 *STANDING +0 0.002876 *WEIGHT -0	WRT CALF Z COORDINATE).010244 *WEIGHT +7).169399 *STANDING -1).005169 *WEIGHT +0	
000	000	
LEFT ANKLE WRT CALF LEFT ANKLE WRT CALF LEFT ANKLE WRT CALF	REGRESSION EQUATIONS FOR LEFT ANKLE LEFT ANKLE WRT CALF =	
WRT CALF WRT CALF WRT CALF	EQUATIONS WRT CALF WRT CALF WRT CALF	
LEFT ANKLE WRT CALF LEFT ANKLE WRT CALF LEFT ANKLE WRT CALF	REGRESSION EQUATION Left Ankle Wrt Calf Left Ankle Wrt Calf Left Ankle Wrt Calf	

	R**2 = 0.2780	R**2 = 0.0915	R**2 = 0.2865
			-3.546826
	333	194	-0.016329 *STANDING -3.546826
LEFT SHOULDER WRT THORAX Y COORDINATE	-0.007228 *WEIGHT -4.502333	-0.048877 *STANDING -2.418194	-0.0163
THORAX Y	*WEIGHT	*STANDIN	*WEIGHT
ULDER WRT	-0.007228	-0.048877	-0.006653 *WEIGHT
EFT SHO	H	•	H
REGRESSION EQUATIONS FOR L	LEFT SHOULDER WRT THORAX	LEFT SHOULDER WRT THORAX	LEFT SHOULDER WRT THORAX
BQUATI(ER WRT	ER WRT	BR WRT
NOISS	SHOULD	SHOULD	SHOULD
REGRE	LEFT	LEFT	LEFT

R**2 = 0.0122 R**2 = 0.0653

-0.001195 *STANDING -0.554493

+0.289319

-0.025529 *STANDING

. .

LEFT SHOULDER WRT THORAX LEFT SHOULDER WRT THORAX

-0.004974 *WEIGHT

R**2 = 0.2738	R**2 = 0.1352	R**2 = 0.0784
R**2 = 0.2243	R**2 = 0.0045	R**2 = 0.1036
R**2 = 0.3532	R**2 = 0.1935	R**2 = 0.3103
+1.725595	-0.777683	+2.117934
RDINATE	RDINATE	RDINATE
-2.292073	+0.306781	+0.094641
+2.984474	-0.297477	+1.648055
-0.068658 *STANDING	+0.018533 *STANDING	-0.034576 *STANDING
ORDINATE	ORDINATE	JRDINATE
-2.292073	+0.306781	+0.094641
+2.984474	-0.297477	+1.648055
-0.068658	+0.018533	-0.034576
ER WRT THORAX Z CO	WRT UPPER ARM X COORDINATE	WRT UPPER ARM Y COORDINATE
.009839 *WEIGHT	0.002178 *WEIGHT +0.3067	.001552 *WEIGHT +0.0946
.104962 *STANDING	0.004684 *STANDING -0.2974	.021026 *STANDING +1.6480
.007421 *WEIGHT	0.002831 *WEIGHT +0.0185	.002770 *WEIGHT -0.0345
JLDER WRT THORAX Z -0.009839 *WEIGHT -0.104962 *STANDI -0.007421 *WEIGHT	0 0 0	
	2812 12 12 12 12 12 12 12 12 12 12 12 12 1	are the second sec
NS FOR J	FOR 1	FOR I
THORAX	ARM	ARM
THORAX	ARM	ARM
THORAX	ARM	ARM
ISSION EQUATIONS FOR	EQUATIONS	EQUATIONS FOR
SHOULDER WRT THORAX	WRT UPPER	WRT UPPER ARM
SHOULDER WRT THORAX	WRT UPPER	WRT UPPER ARM
SHOULDER WRT THORAX	WRT UPPER	WRT UPPER ARM
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT THORAX Z COORDINATE	REGRESSION EQUATIONS FOR LEFT ELBOW	regression equations for left elbow
LEFT SHOULDER WRT THORAX = -0.009839 *WEIGHT -2.2920	LEFT ELBOW WRT UPPER ARM = -(Left elbow wrt upper arm = (
LEFT SHOULDER WRT THORAX = -0.104962 *STANDING +2.9844	LEFT ELBOW WRT UPPER ARM = -(Left elbow wrt upper arm = -(
LEFT SHOULDER WRT THORAX = -0.007421 *WEIGHT -0.0686	LEFT ELBOW WRT UPPER ARM = -(Left elbow wrt upper arm = (

	R**2 = 0.0160	R**2 = 0.5685	R**2 = 0.6105
			-1.897919
			*STANDING
DORD INATE	0.001443 *WEIGHT +4.768148	0.101351 *STANDING -1.462191	+0.113917 *STANDING -1.897919
UBGRESSION BOUATIONS FOR LEFT BLBOW WRT UPPER ARM Z COORDINATE	*WEIGHT	*STANDING	
WRT UPPE	0.001443	0.101351	-0.002569 *WEIGHT
ELBO	¥	Ħ	*
LEFT			
FOR	ARM	ARM	ARM
EQUATIONS	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM
NOISSEU	ELBOW	ELBOW	ELBOW
REGR	LIET	LEFT	LINI

•

LEPT W	RIST	WRT	LEFT WRIST WRT FOREARM	N	-0.002159 *WEIGHT	*WEIGHT	-0.398799			R**2 = 0.2280
LEFT W	RIST	WRT	LEFT WRIST WRT FOREARM	N	0.002610	0.002610 *STANDING -0.868622	-0.868622			R**2 = 0.0024
LEFT W	RIST	WRT	LEFT WRIST WRT FOREARM	N	-0.002719 *WEIGHT	*WEIGHT	+0.015910 *STANDING -1.329823	*STANDING	-1.329823	$R^{**2} = 0.3019$

	$R^{*+2} = 0.0911$	R**2 = 0.0069	R**2 = 0.0932
			-0.004092 *STANDING +0.507902
			*STANDING
DINATE	0.002050 *WEIGHT +0.268465	0.006644 *STANDING +0.135630	-0.004092
LEFT WRIST WRT FOREARM Y COORDINATE	*WEIGHT	*STANDING	*WEIGHT
ST WRT FOR	0.002050	0.006644	0.002195 *WEIGHT
MRIS	H	Ħ	N
LEFT			
LEGRESSION EQUATIONS FOR	LEFT WRIST WRT FOREARM	LEFT WRIST WRT FOREARM	LEFT WRIST WRT FOREARM
NOISSE	WRIST	WRIST	WRIST
REGRI	LEFT	Lani	LEFT

	R**2 = 0.2493	R**2 = 0.3964	R**2 = 0.4648
			: +0.071904 *STANDING +0.620039
			*STANDING
DINATE	+4.827643	+0.036891	+0.071904
REGRESSION EQUATIONS FOR LEFT WRIST WRT FOREARM Z COORDINATE	0.005970 *WEIGHT +4.827643	0.088721 *STANDING +0.036891	*WEIGHT
IT WRT FORE	0.005970	0.088721	0.003438 *WEIGHT
WRIS	N	H	H
Lant			
FOR	RM	RM	RM
LIONS	FOREA	FOREA	FOREA
EQUA	WRT	WRT	WRT
NOISS	LEFT WRIST WRT FOREAR	LEFT WRIST WRT FOREARM	LEFT WRIST WRT FOREARM
REGRE	LEFT	LEFT	LEFT

	R**2 = 0.6802	R**2 = 0.0056	R**2 = 0.7664
			-5.193227
			*STANDING
COORDINATE	-0.019772 *WEIGHT +0.143418	-0.021236 *STANDING -1.294467	+0.091198 *STANDING -5.193227
ABDOMEN X	*WEIGHT	*STANDING	
PELVIS WRT	-0.019772	-0.021236	-0.022984 *WEIGHT
-NEWC	H	N	N
IS FOR ABD	ABDOMEN	ABDOMEN	ABDOMEN
UNTION	S WRT	S WRT	S WRT
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN X COORDINATE	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN

R**2 = 0.0836	R**2 = 0.1045	R**2 = 0.4431	R**2 = 0.1030
R**2 = 0.0196	R**2 = 0.0134	R**2 = 0.0003	R**2 = 0.0088
R**2 = 0.1653	R**2 = 0.1049	R**2 = 0.5236	R**2 = 0.1049
-1.242811	+3.302052	-2.201607	+0.097628
* STAND I NG	*STANDING	*STANDING	ORDINATE +0.263659 +0.388480 +0.002837 *STANDING
COORDINATE	COORDINATE	COORDINATE	200RD INATE
+0.328813	+3.602727	+0.983155	+0.263659
-0.726543	+4.410323	-0.203739	+0.388480
+0.026858	+0.005138	+0.054425	+0.002837
ABDOMEN Y	ABDOMEN Z	THORAX X (THORAX Y C
*WEIGHT	*WEIGHT	*WEIGHT	*WEIGHT
*STANDING	*STANDING	*STANDING	*STANDING
*WEIGHT	*WEIGHT	*WEIGHT	*WEIGHT
<pre>4-PELVIS WRT -0.002098 0.011969 -0.003043</pre>	I-PELVIS WRT	ABDOMEN WRT	ABDOMEN WRT
	0.006352	-0.009861	-0.001615
	0.026823	-0.003191	-0.005550
	0.006533	-0.011778	-0.001715
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN Y COORDINATE	REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN Z COORDINATE	REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT THORAX X COORDINATE	REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT THORAX Y COORDINATE
ABDOMEN-PELVIS WRT ABDOMEN = -0.002098 *WEIGHT +0.328813	ABDOMEN-PELVIS WRT ABDOMEN = -0.006352 *WEIGHT +3.602727	THORAX-ABDOMEN WRT THORAX = -0.009861 *WEIGHT +0.98315	THORAX-ABDOMEN WRT THORAX = -0.001615 *WEIGHT +0.26365
ABDOMEN-PELVIS WRT ABDOMEN = 0.011969 *STANDING -0.726543	ABDOMEN-PELVIS WRT ABDOMEN = -0.026823 *STANDING +4.410323	THORAX-ABDOMEN WRT THORAX = -0.003191 *STANDING -0.20373	THORAX-ABDOMEN WRT THORAX = -0.005550 *STANDING +0.38848
ABDOMEN-PELVIS WRT ABDOMEN = -0.003043 *WEIGHT +0.026858	ABDOMEN-PELVIS WRT ABDOMEN = -0.006533 *WEIGHT +0.005138	THORAX-ABDOMEN WRT THORAX = -0.011778 *WEIGHT +0.05442	THORAX-ABDOMEN WRT THORAX = -0.001715 *WEIGHT +0.00283

REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT THORAX Z COORDINATE THORAX-ABDOMEN WRT THORAX = -0.000672 *WEIGHT +6.49914 THORAX-ABDOMEN WRT THORAX = 0.116738 *STANDING -1.00580 THORAX-ABDOMEN WRT THORAX = -0.005777 *WEIGHT +0.14500	THORAX-A	ABDOMEN WRT THORAX (-0.000672 *WEIGHT 0.116738 *STANDI -0.005777 *WEIGHT	OMEN WRT THORAX Z COORDINATE 0.000672 *WEIGHT +6.499148 0.116738 *STANDING -1.005807 0.005777 *WEIGHT +0.145001	OORDINATE +6.499148 -1.005807 +0.145001	ORDINATE +6.499148 -1.005807 +0.145001 *STANDING -1.985855	-1.985855	R**2 = 0.0018 R**2 = 0.3878 R**2 = 0.4971
REGRESSION EQUATIONS FOR NECK-THORAX NECK-THORAX WRT NECK = -0.	NECK-THC	NAX WRT NECK X COOL -0.007552 *WEIGHT	X WRT NECK X COORDINATE 0.007552 *WEIGHT +1.	NATE +1.201707 -0.201707			R**2 = 0.3833 B**? = 0.0026
NECK-THORAX WRT NECK	1 11	-0.009435 *WEIGHT	*WEIGHT	+0.053479	+0.053479 *STANDING -1.927716	-1.927716	$R^{**2} = 0.4978$

LEGRESSION EQUATIONS FOR NECK-THORAX	OR NECK-THO	RAX WRT NEC	WRT NECK Y COORDINATE	ATE	
NECK-THORAX WRT NECK	Ħ	-0.000118	= -0.000118 *WEIGHT +0.087301	+0.087301	$R^{*+2} = 0.0005$
NECK-THORAX WRT NECK	H	0.001304	0.001304 *STANDING -0.012118	-0.012118	R**2 = 0.0004

 $R^{*} = 0.0016$

-0.045733

+0.002273 *STANDING

-0.000198 *WEIGHT

.

NECK-THORAX WRT NECK

	1.874695 R**2 = 0.0169	0.974095 R**2 = 0.0033	+0.023319 *STANDING +0.510109 R**2 = 0.0319
REGRESSION EQUATIONS FOR NECK-THORAX WRT NECK Z COORDINATE	= -0.001914 *WEIGHT +1.874695	0.009939 *STANDING +0.974095	-0.002735 *WEIGHT +0
	H		H
	NECK-THORAX WRT NECK	NECK-THORAX WRT NECK	NECK-THORAX WRT NECK

DNS FOR HEAD-NECK WRT HEAD X COORDINATE) = -0.001043 *WEIGHT +0.447425 R**2 = 0.0118	0 = -0.012418 *STANDING +1.088722 R**2 = 0.0120	0.0168 * Correction -0.000838 * STANDING +(.964575 R**2 = 0.0168	DNS FOR HEAD-NECK WRT HEAD Y COORDINATE
REGRESSION EQUATIONS FOR HEAD-NECK	HEAD-NECK WRT HEAD	HEAD-NECK WRT HEAD	HEAD-NECK WRT HEAD	REGRESSION EQUATIONS FOR HEAD-NECK

HEAD-NECK WRT HEAD	H	0.000004 *WEIGHT		-0.008092			R**2 = 0.0000
HEAD-NECK WRT HEAD	N	-0.002926	-0.002926 *STANDING +0.178242	+0.178242			R**2 = 0.0050
HEAD-NECK WRT HEAD	Ħ	0.000130 *WEIGHT	*WEIGHT	-0.003560	-0.003560 *STANDING +0.200243	+0.200243	R**2 = 0.0062

COORDINATE
N
HEAD
WRT
HEAD-NECK
FOR
EQUATIONS
REGRESSION

HEAD-NECK WRT HEAD	•	*WEIGHT	+2.562778			$R^{**2} = 0.0030$
IEAU-NECK WRT HEAU = IEAU-NECK WRT HEAD = IEAD-NECK WRT HEAD	-0.000937 *WEIGHT	*STANDING	0.012146 *STANDING +1.742763 -0.000937 *WEIGHT +0.016730	+1.742763 +0.016730 *STANDING +1.583809	+1.583809	

	R**2 = 0.0015	R**2 = 0.0058	+0.012865 *STANDING +0.043868 R**2 = 0.0059
			*STANDING
NTE	0.000587 *WEIGHT +0.796702	0.013522 *STANDING +0.021085	+0.012865
WRT THIGH X COORDINATE	*WEIGHT	*STANDING	*WEIGHT
WRT THIGH	0.000587	0.013522	0.000134 *WEIGHT
REGRESSION EQUATIONS FOR LEFT HIP	H	H	
ION EQUATIONS	LEFT HIP WRT THIGH	LEFT HIP WRT THIGH	LEFT HIP WRT THIGH

R**2 = 0.1030	R**2 = 0.0266	R**2 = 0.0027
R**2 = 0.0926	R**2 = 0.5424	R**2 = 0.0359
R**2 = 0.1384	R**2 = 0.5670	R**2 = 0.0566
-0.009823	+3.722436	+1.762649
*STANDING	* STANDING	E +0.555212 +1.578664 -0.020634 *STANDING
CE	E	тЕ
+1.338086	-5.490560	+0.555212
-0.386833	+3.239372	+1.578664
+0.023035 *STANDING	-0.157442 *STANDING	-0.020634
WRT THIGH Y COORDINATE	WRT THIGH Z COORDINATE	WRT CALF X COORDINATE
0.003034 *WEIGHT +	-0.002696 *WEIGHT -	0.000358 *WEIGHT +
0.033907 *STANDING -	-0.143511 *STANDING +	-0.015328 *STANDING +
0.002223 *WEIGHT +	0.002848 *WEIGHT -	0.001085 *WEIGHT -
	WRT THIGH Z COORD -0.002696 *WEIGHT -0.143511 *STANDI 0.002848 *WEIGHT	
OR LEFT HIP	OR LEFT HIP H	or left knee =
REGRESSION EQUATIONS FOR LEFT HIP	REGRESSION EQUATIONS FOR LEFT	REGRESSION EQUATIONS FOR LEFT KNEE
LEFT HIP WRT THIGH =	LEFT HIP WRT THIGH	LEFT KNEE WRT CALF = -
LEFT HIP WRT THIGH =	LEFT HIP WRT THIGH	LEFT KNEE WRT CALF = -
LEFT HIP WRT THIGH =	LEFT HIP WRT THIGH	LEFT KNEE WRT CALF = -

R**2 = 0.0688	R**2 = 0.0034	R**2 = 0.0719
		+0.003604 *STANDING +0.528090
		*STANDING
+0.739006	+0.770943	+0.003604
*WEIGHT	*STANDING	*WEIGHT
-0.001305	-0.003399	-0.001432 *WEIGHT
	H	×
LEFT KNEE WRT CALF	LEFT KNEE WRT CALF	LEFT KNEE WRT CALF
	= -0.001305 *WEIGHT +0.739006	CALF = -0.001305 *WEIGHT +0.739006 CALF = -0.003399 *STANDING +0.770943

R**2 = 0.0179 R**2 = 0.4941 R**2 = 0.5242	R**2 = 0.0003 R**2 = 0.0345 R**2 = 0.0453	R**2 = 0.0276 R**2 = 0.0011 R**2 = 0.0292
E -5.912482 +0.964099 -0.125014 *STANDING +1.402925	-0.886272	+0.214693
*STANDING	*STANDING	TE +0.327165 +0.331144 +0.001922 *STANDING
TE -5.912482 +0.964099 -0.125014	ATE -1.759546 -0.991690 -0.014923 *STANDING	NTE +0.327165 +0.331144 +0.001922
WRT CALF Z COORDINATE 0.001815 *WEIGHT - 0.112359 *STANDING + 0.002587 *WEIGHT -	WRT FOOT X COORDINATE .000096 *WEIGHT -1 .011883 *STANDING -0 .000621 *WEIGHT -0	WRT FOOT Y COORDINATE .000619 *WEIGHT +0 .001436 *STANDING +0 .000686 *WEIGHT +0
1 1	000	000
DR LEFT KNE = =	DR LEFT ANK) = =	R LEFT ANK
REGRESSION EQUATIONS FOR LEFT KNEE LEFT KNEE WRT CALF = = = = = = = = = = = = = = = = = = =	REGRESSION EQUATIONS FOR LEFT ANKLE LEFT ANKLE WRT FOOT = LEFT ANKLE WRT FOOT = - LEFT ANKLE WRT FOOT = -	REGRESSION EQUATIONS FOR LEFT ANKLE LEFT ANKLE WRT FOOT = - LEFT ANKLE WRT FOOT = - LEFT ANKLE WRT FOOT = -
REGRESSION LEFT KNEE LEFT KNEE LEFT KNEE	REGRESSION LEFT ANKLE LEFT ANKLE LEFT ANKLE	REGRESSION LEFT ANKLE LEFT ANKLE LEFT ANKLE

-1.390017 +0.173574 -0.026004 *STANDING -0.000618 *WEIGHT H Ħ LEFT ANKLE WRT FOOT

0.000359 *WEIGHT

N

LEFT ANKLE WRT FOOT

R**2 = 0.0272 R**2 = 0.3464 R**2 = 0.3540

-0.027762 *STANDING +0.234536

REGRESSION EQUATIONS FOR LEFT ANKLE WRT FOOT Z COORDINATE LEFT ANKLE WRT FOOT

R**2 = 0.0036	R**2 = 0.0013	R**2 = 0.4711
R**2 = 0.0017	R**2 = 0.0967	R**2 = 0.4082
R**2 = 0.0040	R**2 = 0.1296	R**2 = 0.6225
-0.838722	+2.585896	+1.022113
*STANDING	*STANDING	*STANDING
COORDINATE	ER WRT UPPER ARM Y COORDINATE	COORDINATE
-0.943311	.000301 *WEIGHT +0.307212	-3.607257
-0.773132	.030760 *STANDING +2.302225	+2.376788
-0.001787 *STANDING	.001672 *WEIGHT -0.038941 *STANDING	-0.079112 *STANDING +1.022113
IPPER ARM X	PPER ARM Y	PPER ARM Z
*WEIGHT	*WEIGHT	*WEIGHT
*STANDING	*STANDING	*Standing
*WEIGHT	*WEIGHT	*WEight
ULDER WRT UPPER ARM 3	ULDER WRT UPPER ARM)	ULDER WRT UPPER ARM
-0.000450 *WEIGHT	0.000301 *WEIGHT	-0.010772 *WEIGHT
-0.003679 *STANDING	-0.030760 *STANDING	-0.118178 *STANDING
-0.000387 *WEIGHT	0.001672 *WEIGHT	-0.007986 *WEIGHT
	L SHOU	L HO
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT UPPER ARM X COORDINATE	REGRESSION EQUATIONS FOR LEFT SHOULD	REGRESSION EQUATIONS FOR LEFT SHOULDER WRT UPPER ARM Z COORDINATE
LEFT SHOULDER WRT UPPER ARM = -0.000450 *WEIGHT -0.943311	LEFT SHOULDER WRT UPPER ARM = 0	LEFT SHOULDER WRT UPPER ARM = -0.010772 *WEIGHT -3.607257
LEFT SHOULDER WRT UPPER ARM = -0.003679 *STANDING -0.773132	LEFT SHOULDER WRT UPPER ARM = -0	LEFT SHOULDER WRT UPPER ARM = -0.118178 *STANDING +2.376788
LEFT SHOULDER WRT UPPER ARM = -0.000387 *WEIGHT -0.001787	LEFT SHOULDER WRT UPPER ARM = 0	LEFT SHOULDER WRT UPPER ARM = -0.007986 *WEIGHT -0.079112

DINATE	+0.571416	-0.544126
REGRESSION EQUATIONS FOR LEFT ELBOW WRT FOREARM X COORDINATE	*WEIGHT	.010734 *STANDING
30W WRT FOR	-0.003082 *WEIGHT	0.010734
OR LEFT EL!	Ħ	H
UATIONS PC	LEFT ELBOW WRT FOREARM	IT FOREARM
DE NOISSE	ELBOW WR	LEFT ELBOW WRT FOREARM
REGR	LEFT	LEFT

R**2 = 0.1963 R**2 = 0.0171 R**2 = 0.3160

+0.031179 *STANDING -1.253089

-0.004179 *WEIGHT

LEFT ELBOW WRT FOREARM

.

REGRE	NOISS	BQUI	REGRESSION EQUATIONS FOR LEFT ELBOW	R LI			WRT FO	WRT FOREARM Y COORDINATE	DINATE			
LEFT	ELBOW	WRT	LEFT ELBOW WRT FOREARM				0.00273	0.002733 *WEIGHT	-0.439706			R**2 = 0.2903
LEFT	ELBOW	WRT	LEFT ELBOW WRT FOREARM				01112	0.011124 *STANDING -0.760839	-0.760839			R**2 = 0.0346
LEFT	BLBOW	WRT	LEFT ELBOW WRT FOREARM				0.00282	0.002828 *WEIGHT	-0.002710	-0.002710 *STANDING -0.281113	-0.281113	R**2 = 0.2920
REGRE	NOISS	EQUA	REGRESSION EQUATIONS FOR LEFT ELBOW	R LE	a ta:	LBOW	WRT FO	WRT FOREARM Z COORDINATE	U I NATE			

0	001266	*WEIGHT	-3.837578			R**2 = 0.0301
- 9	062200	*STANDING	-0.067568			$R^{*}2 = 0.5233$
•••	001117	*WEIGHT	-0.067663 *	STANDING	+0.121867	R**2 = 0.5427
	• • • •	-0.001266 -0.062200 0.001117	-0.001266 *WEIGHT -0.062200 *STANDING 0.001117 *WEIGHT	-0.001266 *WEIGHT -3.837578 -0.062200 *STANDING -0.067568 0.001117 *WEIGHT -0.067663 *	LEFT ELBOW WRT FOREARM = -0.001266 *WEIGHT -3.837578 LEFT ELBOW WRT FOREARM = -0.062200 *STANDING -0.067568 LEFT ELBOW WRT FOREARM = 0.001117 *WEIGHT -0.067663 *STANDING	-0.001266 *WEIGHT -3.837578 -0.062200 *STANDING -0.067568 0.001117 *WEIGHT -0.067663 *STANDING +0.121867

	R**2 = 0.0120	$R^{**2} = 0.0013$	3 R**2 = 0.0121
			+0.09357
			*STANDING
NTE	+0.177910	+0.299369	0.001213 *WEIGHT +0.001441 *STANDING +0.093573
X COORDINI	*WEIGHT	0.004494 *STANDING +0.299369	*WEIGHT
T WRT HAND	-0.001162 *WEIGHT +0.177910	-0.004494	-0.001213
REGRESSION EQUATIONS FOR LEFT WRIST WRT HAND X COORDINATE	H		H
EQUATIONS I	WRT HAND	WRT HAND	WRT HAND
REGRESSION	LEFT WRIST WRT HAND	LEFT WRIST WRT HAND	LEFT WRIST WRT HAND

REGRESSION EQUATIONS FOR LEI	LEFT WRIST	T WRT HAND	WRT HAND Y COORDINATE	VTE			
LEFT WRIST WRT HAND	Ħ	0.000030 *WEIGHT		+0.556676			$R^{*}2 = 0.0001$
LEFT WRIST WRT HAND	N	0.001113	0.001113 *STANDING +0.490214	+0.490214			R**2 = 0.0007
LEFT WRIST WRT HAND	N	-0.000011 *WEIGHT		+0.001169 *STANDING +0.488283	TANDING	+0.488283	R**2 = 0.0007

R**2 = 0.0228 R**2 = 0.2176 R**2 = 0.2198		R**2 = 0.2196
TE -1.983893 -0.314857 -0.029283 *STANDING -0.270318		
*STANDING	TE	
ATE -1.983893 -0.314857 -0.029283	WRT FOREARM + HAND X COORDINATE	+0.846465
	RM + HAND	
r Wrt Hand z Coordin -0.000769 *WEIGHT -0.027999 *Standing 0.000263 *WEIGHT		-0.003248 *WEIGHT
WRIST H H H H H H H	el bow	I N
	LEFT	HAND
FOR 1	FOR	I + W
REGRESSION EQUATIONS FOR LEFT WRIST LEFT WRIST WRT HAND = - LEFT WRIST WRT HAND = - LEFT WRIST WRT HAND = -	REGRESSION EQUATIONS FOR LEFT ELBOW	LEFT ELBOW WRT FOREARM + HAND
RIST RIST RIST RIST	I NOIS	LBOW
regres Left W Left W Left W	REGRES	LEFT E

	R**2 = 0.2196	$R^{**2} = 0.0001$	R**2 = 0.2701
			+0.020166 *STANDING -0.333610
NTE			*STANDING
X COORDINA	+0.846465	+0.337849	+0.020166
ARM + HAND		0.000803 *STANDING +0.337849	*WEIGHT
WRT FORE	-0.003248 *WEIGHT	0.000803	-0.003958 *WEIGHT
ILBO(•	N	N
LEFT 1	HAND	HAND	HAND
REGRESSION EQUATIONS FOR LEFT ELBOW WRT FOREARM + HAND X COORDINATE	LEFT ELBOW WRT FOREARM + HAND =	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND
BQU	WRT	WRT	WRT
ESSION	ELBOW	ELBOW	ELBOW
REGR	LEFT	LEFT	LEFT

	R**2 = 0.1429	R**2 = 0.0336	R**2 = 0.1437
			+0.002525 *STANDING -0.813010
ATE			*STANDING
Y COORDINI	-0.665277	-1.230285	+0.002525
REGRESSION EQUATIONS FOR LEFT ELBOW WRT FOREARM + HAND Y COORDINATE	*WEIGHT	0.014558 *STANDING -1.230285	*WEIGHT
W WRT FORE	0.002549 *WEIGHT	0.014558	0.002460 *WEIGHT
ELBO	Ħ	N	N
LEFT	HAND	HAND	
ATIONS FOR	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND
nga BQU/	WRT	WRT	WRT
NOISSE	ELBOW	ELBOW	ELBOW
REGRI	LEFT	LEFT	LEFT

	R**2 = 0.0238	R**2 = 0.3509	R**2 = 0.5444
			-0.105913 *STANDING -0.165942
LTE			*STANDING
Z COORDINA	-6.363632	-1.095296	-0.105913
WRT FOREARM + HAND Z COORDINATE		-0.079112 *STANDING -1.095296	*WEIGHT
W WRT FORE	0.001749 *WEIGHT	-0.079112	0.005479 *WEIGHT
ELBO	R	ĸ	H
LEFT		HAND	HAND
REGRESSION EQUATIONS FOR LEFT ELBOW	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FORBARM + HAND
	WRT	WRT	WRT
ESSION	ELBON	ELBON	BLBON
REGR	LEFT	LEFT	LEFT

REGRESSION EQUATIONS FOR ADULT MALE JOINT CENTER LOCATIONS

PREDICTING VARIABLES

WEIGHT	RANGE:	118.00	264.00	MEAN :	173.60	s.D.:	21.440
STANDING HEIGHT	RANGE:	62.17	77.64	MEAN:	69.82	s.D.:	2.437

	R**2 = 0.2171	R**2 = 0.2056	R**2 = 0.2221
			+1.373596
			*STANDING
COORD INATE	+0.336494	-0.055467 *STANDING +2.940071	-0.020925 *STANDING +1.373596
PELVIS X (*WEIGHT	*STANDING	
PELVIS WRT PELVIS X COORDINATE	-0.007468 *WEIGHT	-0.055467	-0.004973 *WEIGHT
DOMEN-1	N	N	H
REGRESSION EQUATIONS FOR ABDOMEN-F	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS

	R**2 = 0.0645	R**2 = 0.1544	R**2 = 0.2168
			-1.929495
			*STANDING
COORDINATE	0.001240 *WEIGHT -0.190457	0.014645 *STANDING -1.002466	+0.035087 *STANDING -1.929495
LVIS WRT PELVIS Y COORDINATE	*WEIGHT	*STANDING	*WEIGHT
PELVIS WRT	0.001240	0.014645	-0.002943 *WEIGHT
BDOMEN-I	H	N	N
REGRESSION EQUATIONS FOR ABDOMEN-PEI	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS

	R**2 = 0.1774	R**2 = 0.1821	R**2 = 0.1884
			-0.238589
			*STANDING
OORDINATE	-1.587701	+0.613143	-0.027220 *STANDING -0.238589
PELVIS Z C	<pre>= -0.005949 *WEIGHT -1.587701</pre>	<pre>= -0.046001 *STANDING +0.613143</pre>	
PELVIS WRT	-0.005949	-0.046001	= -0.002704 *WEIGHT
DOMEN-I	K	N	N
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT PELVIS Z COORDINATE	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS	ABDOMEN-PELVIS WRT PELVIS

R**2 = 0.4097	R**2 = 0.0030	R**2 = 0.0669
R**2 = 0.2750	R**2 = 0.0092	R**2 = 0.0732
R**2 = 0.4293	R**2 = 0.0154	R**2 = 0.0741
-1.968791	OORDINATE +0.045566 -0.279903 +0.015994 *STANDING -0.747169	OORDINATE -0.617623 -0.027172 -0.009209 *STANDING -0.161189
OORDINATE -0.225546 +2.102789 +0.035172 *STANDING	*STANDING	*STANDING
COORDINATE	COORDINATE	COORDINATE
-0.225546	+0.045566	-0.617623
+2.102789	-0.279903	-0.027172
+0.035172	+0.015994	-0.009209
ABDOMEN X	MEN WRT ABDOMEN Y	ABDOMEN Z
*WEIGHT	0.000424 *WEIGHT	*WEIGHT
*STANDING	0.005690 *STANDING	*STANDING
*WEIGHT	0.001483 *WEIGHT	*WEIGHT
BDOMEN WRT ABDOMEN X	BDOMEN WRT ABDOMEN	ABDOMEN WRT ABDOMEN Z
-0.008732 *WEIGHT	0.000424 *WEIGHT	-0.001523 *WEIGHT
-0.054611 *STANDING	0.005690 *STANDI	-0.012164 *STANDING
-0.012925 *WEIGHT	-0.001483 *WEIGHT	-0.000425 *WEIGHT
HORAX-AI	iorax-at	jorax-ae = =
is for ti	IS FOR TI	is for th
Abdomen	Abdomen	Abdomen
Abdomen	Abdomen	Abdomen
Abdomen	Abdomen	Abdomen
JATION	JATION	ATION
I WRT	I WRT	WRT
I WRT	I WRT	WRT
I WRT	I WRT	WRT
REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT ABDOMEN X COORDINATE	REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT ABDOMEN Y COORDINATE	REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT ABDOMEN Z COORDINATE
THORAX-ABDOMEN WRT ABDOMEN = -0.008732 *WEIGHT -0.225546	THORAX-ABDOMEN WRT ABDOMEN = 0.000424 *WEIGHT +0.045566	THORAX-ABDOMEN WRT ABDOMEN = -0.001523 *WEIGHT -0.617623
THORAX-ABDOMEN WRT ABDOMEN = -0.054611 *STANDING +2.102789	THORAX-ABDOMEN WRT ABDOMEN = 0.005690 *STANDING -0.279903	THORAX-ABDOMEN WRT ABDOMEN = -0.012164 *STANDING -0.027172
THORAX-ABDOMEN WRT ABDOMEN = -0.012925 *WEIGHT +0.035172	THORAX-ABDOMEN WRT ABDOMEN = -0.001483 *WEIGHT +0.015994	THORAX-ABDOMEN WRT ABDOMEN = -0.000425 *WEIGHT -0.009209

	R**2 = 0.1844	$R^{**2} = 0.0773$	$R^{++2} = 0.2584$
			-2.020320
			*STANDING
DINATE	+0.506433	+1.270817	-0.010448 *WEIGHT +0.050980 *STANDING -2.020320
AGRESSION EQUATIONS FOR NECK-THORAX WRT THORAX X COORDINATE	-0.004370 *WEIGHT +0.506433	-0.021594 *STANDING +1.270817	WEIGHT
LX WRT THOI	0.004370	-0.021594	-0.010448
NECK-THOR		N	ľ
TIONS FOR	THORAX	THORAX	THORNX
NON BOUN	RAX WRT	RAX WRT	RAX WRT
REGRESSI	NECK-THORAX WRT THORAN	NECK-THORAX WRT THORAN	NECK-THORAX WRT THORAX

REGRESSION EQUATIONS FOR NECK-THORAX	R NECK-THO		WRT THORAX Y COORDINATE	DINATE			
NECK-THORAX WRT THORAX	N	0.000351	*WEIGHT	-0.081110			R**2 = 0.0047
NECK-THORAX WRT THORAX	H	0.006307	*STANDING	-0.461996			R**2 = 0.0262
NECK-THORAX WRT THORAX	H	-0.002332	*WEIGHT	+0.022507	*STANDING	-1.196661	R**2 = 0.0621
REGRESSION EQUATIONS FOR NECK-THORAX	NECK-THO		WRT THORAX Z COORDINATE	DINATE			
NECK-THORAX WRT THORAX	#	-0.018898 *WEIGHT	*WEIGHT	-4.412312			R**2 = 0.6222
NECK-THORAX WRT THORAX	H	-0.145204	*STANDING	+2.514372			R**2 = 0.6305
NECK-THORAX WRT THORAX	H	-0.009230	*WEIGHT	-0.081093	*STANDING	-0.393043	R**2 = 0.6560
REGRESSION EQUATIONS FOR HEAD-NECK WRT NECK X COORDINATE	HEAD-NECT	K WRT NECK	X COORDINA	24			
HEAD-NECK WRT NECK	H	-0.002543 *WEIGHT	*WEIGHT	+0.025044			R**2 = 0.0286
HEAD-NECK WRT NECK	N	-0.030706	*STANDING	+1.737397			N
HEAD-NECK WRT NECK		0.006505	*WEIGHT	-0.075888	-0.075888 *STANDING	+3.786370	
REGRESSION EQUATIONS FOR HEAD-NECK WRT NECK Y COORDINATE	HEAD-NECH	K WRT NECK	Y COORDINA	le			
HEAD-NECK WRT NECK	H	0.001546	001546 *WEIGHT	-0.173776			R**2 = 0.0554
HEAD-NECK WRT NECK	K	0.004449	*STANDING	-0.221235			R**2 = 0.0079
HEAD-NECK WRT NECK	H	0.005912	*WEIGHT	-0.036615	* STAND ING	+1.640983	R**2 = 0.1470

	R**2 = 0.3484	R**2 = 0.2998	N		R**2 = 0.0566	R**2 = 0.0602	$R^{*+2} = 0.0614$	R**2 = 0.0315 R**2 = 0.1251 R**2 = 0.2004	R**2 = 0.2082	R**2 = 0.1503	H
			-1.713902				-2.326116	-2.280386			+1.173000
			-0.004100 *STANDING				+0.018500 *STANDING	*STANDING			-0.019355 *STANDING
TE	-1.917117	-0.211768	-0.004100	ATE	-1.409181	-2.718103	+0.018500	ATE -1.525887 -0.608464 +0.015223 ATE	+0.213696	-1.822410	-0.019355
WRT NECK Z COORDINATE	-0.005257 *WEIGHT	-0.037224 *STANDING	-0.004769 *WEIGHT	WRT PELVIS X COORDINATE	0.003450 *WEIGHT	0.027144 *STANDING	0.001244 *WEIGHT	WRT PELVIS Y COORDINATE -0.003493 *WEIGHT -1 -0.021645 *STANDING -0 -0.005308 *WEIGHT +0 WRT PELVIS Z COORDINATE	.007201 *WEIGHT	697 *STANDING	
FOR HEAD-NECK WRT	-0.00	E0.0- =	-0.00		- 0.00	= 0.02	-0.0	LEFT HIP WRT PELVIS = -0.003493 = -0.021645 = -0.005308 LEFT HIP WRT PELVIS		= 0.046697	- 0.009509
REGRESSION EQUATIONS FOR I	HEAD-NECK WRT NECK	HEAD-NECK WRT NECK	HEAD-NECK WRT NECK	REGRESSION EQUATIONS FOR LEFT HIP	LEFT HIP WRT PELVIS	LEFT HIP WRT PELVIS	LEFT HIP WRT PELVIS	REGRESSION EQUATIONS FOR LEFT HIP LEFT HIP WRT PELVIS = = LEFT HIP WRT PELVIS = = LEFT HIP WRT PELVIS = =		LEFT HIP WRT PELVIS	LEFT HIP WRT PELVIS

COCCTA 0. REGRESSION EQUATIONS FOR LEFT KNEE WRT THIGH X COORDINATE 0.001399 *WEIGHT l LEFT KNEE WRT THIGH LEFT KNEE

R**2 = 0.0210	R**2 = 0.0235	R**2 = 0.0237
		-C.929842
		+0.009211 *STANDING
-0.473292	-1.024659	+0.009211
*WEIGHT		*WEIGHT
0.001399 *WEIGHT	0.011302 *STANDING	0.000301 *WEIGHT
N	H	H
THIGH	THIGH	THIGH
WRT 1	WRT 1	WRT
KNEE	KNEE	KNEE
LEFT	LIZI	LEFT

	R**2 = 0.3286	R**2 = 0.2466	R**2 = 0.3322
			+0.005090 *STANDING -0.176244
			*STANDING
IATE	+0.076015	+0.841626	+0.005090
WRT THIGH Y COORDINATE	*WEIGHT		*WEIGHT
LEFT KNEE WRT THIG	= -0.002624 *WEIGHT	<pre>= -0.017356 *STANDING</pre>	= -0.003231 *WEIGHT
ATIONS FOR L	THIGH	THIGH	THIGH
REGRESSION BOUATIONS FOR	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH
RE	LE	LE	LE

R**2 = 0.6807	R**2 = 0.8644	R**2 = 0.8670
		-2.897506
+6.437359	-1.983336	+0.188340 *STANDING -2.897506
0.019553 *WEIGHT	0.168181 *STANDING	-0.002902 *WEIGHT +
KNEE WRT THIGH	RT THIGH =	•
LEFT KNEE W	LEFT KNEE WRT THIGH	LEFT KNEE WRT THIGH

REGRESSION EQUATIONS FOR LEFT ANKLE WRT CALF X COORDINATE

R**2 = 0.0265	R**2 = 0.0315	$R^{++2} = 0.0315$
		+0.010855 *STANDING -0.377643
		*STANDING
+0.160367	-0.396212	+0.010855
*WEIGHT	0.011264 *STANDING	*WEIGHT
0.001353 *WEIGHT	0.011264	0.000059 *WEIGHT
N	H	N
LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF
ANKLE W	ANKLE W	ANKLE W
LEFT	LEFT .	LEFT

REGRESSION EQUATIONS FOR LEFT ANKLE WRT CALF Y COORDINATE	0.001027 *WEIGHT +0.579538	0.007310 *STANDING +0.243695
DR LEFT AN	•	N
NS PO	B .	B L
ATIO	CAL	CALI
NO	WRT	WRT
NOISS	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF
REGRE	LIBIT	

R**2 = 0.0833	R**2 = 0.0724	R**2 = 0.0835
		+0.001030 *STANDING +0.528482
		*STANDING
+0.579538	+0.243695	+0.001030
*WEIGHT	*STANDING	*WEIGHT
0.001027 *WEIGHT	0.007310 *STANDING	0.000904 *WEIGHT
N	ĸ	ł
LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF

REGRESSION EQUATIONS FOR LEFT ANKLE WRT CALF Z COORDINATE

R**2 = 0.6751	R**2 = 0.8678	-4.879344 R**2 = 0.8718
+5.987117	-3.594633	+0.219241 *STANDING -4.879344
0.022061 *WEIGHT	0.190912 *STANDING -3.594633	-0.004078 *WEIGHT
H	N	N
LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF	LEFT ANKLE WRT CALF

REGRESSION EQUATIONS FOR LEFT SHOULDER WRT THORAX X COORDINATE

R**2 = 0.0306	R**2 = 0.0183	R**2 = 0.0339
		+0.021617 *STANDING -1.401451
		*STANDING
-0.330012	+0.534831	+0.021617
	-0.021080 *STANDING +0.534831	
-0.003569 *WEIGHT	-0.021080	-0.006147 *WEIGHT
N	N	H
THORAX	THORAX	THORAX
WRT	WRT	WRT
LEFT SHOULDER WRT THORAX	LEFT SHOULDER WRT THORAX	LEFT SHOULDER WRT THORAX
LEFT	LEFT	LISI

	R**2 = 0.4825	$R^{++2} = 0.4917$	$R^{**2} = 0.5103$
			-0.046756 *STANDING -2.439382
			*STANDING
ORDINATE	-4.756775	-0.081562 *STANDING -0.860951	-0.046756
THORAX Y CC	*WEIGHT	*STANDING	*WEIGHT
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT THORAX Y COORDINATE	= -0.010585 *WEIGHT	-0.081562	-0.005011 *WEIGHT
PHS TT	W	H	ĸ
NS FOR LE	THORAX	THORAX	THORAX
UATIO	K WRT	K WRT	NRT
SION BC	HOULDER	HOULDER	LEFT SHOULDER WRT THORAX
REGRES	LEFT SHOULDER WRT THORAX	LEFT SHOULDER WRT THORAX	LEFT SI

	R**2 = 0.7469	R**2 = 0.6979	R**2 = 0.7608
			+1.521159
			*STANDING
ORD INATE	-0.941024	-0.145784 *STANDING +5.879542	-0.049677 *STANDING +1.521159
HORAX Z CC	*WEIGHT	*STANDING	
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT THORAX Z COORDINATE	-0.019759 *WEIGHT	-0.145784	-0.013836 *WEIGHT
C SHO	N	H	N
LEF			
S FOR	HORAX	HORAX	HORAX
ATION	WRT T	WRT T	WRT T
	DER	DER	DER 1
SSION	LEFT SHOULDER WRT THORAX	INOHS	LEFT SHOULDER WRT THORAX
REGRE	LEFT	LEFT SHOULDER WRT THORAX	LEFT

	R**2 = 0.0041	R**2 = 0.0000	R**2 = 0.0281
			-0.010484 *STANDING -0.168033
			*STANDING
ORD INATE	-0.687652	-0.000164 *STANDING -0.636033	-0.010484
ER ARM X CO		*STANDING	*WEIGHT
LEFT ELBOW WRT UPPER ARM X COORDINATE	0.000236 *WEIGHT	-0.000164	0.001486 *WEIGHT
ELB(N	Ħ	H
LIEL			
FOR	ARM	ARM	ARM
REGRESSION EQUATIONS	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM
EQUA	WRT	WRT	WRT
NOISS	ELBOW	ELBOW	ELBOW
REGRE	LEFT	LEFT]	LEFT]

	R**2 = 0.3721	R**2 = 0.2486	R**2 = 0.3907
			+0.487316
			*STANDING
DORDINATE	-0.032913	0.015905 *STANDING -0.709936	-0.010496 *STANDING +0.487316
WRT UPPER ARM Y COORDINATE		*STANDING	*WEIGHT
W WRT UPPI	0.002549 *WEIGHT	0.015905	0.003801 *WEIGHT
L ELBO	M	N	Ħ
LEFI			_
FOR	ARM	ARM	ARM
REGRESSION EQUATIONS FOR LEFT ELBOW	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM
ON E	IM MO	IM MO	in MO
ESSI	ELB	ELB	ELB
REGR	LEFT	Left	LEFT

	R**2 = 0.6643	R**2 = 0.7356	R**2 = 0.7426
			+0.069127 *STANDING +0.302829
			*STANDING
ORDINATE	+3.729019	0.087840 *STANDING -0.545825	+0.069127
I WRT UPPER ARM Z COORDINATE	*WEIGHT	*STANDING	*WEIGHT
W WRT UPPE	0.010936 *WEIGHT	0.087840	0.002694 *WEIGHT
REGRESSION EQUATIONS FOR LEFT ELBOW	N	N	N
R LEF	¥	X	×
S FO	R AR	R AR	R AR
LION	UPPE	UPPE	UPPE
EQUA	WRT	WRT	WRT
NOIS	ILBOW	ILBOW	ILBOW
REGRES	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM	LEFT ELBOW WRT UPPER ARM

REGRESSION EQUATIONS FOR LEFT WRIST	WRI		WRT FOREARM X COORDINATE	DINATE			
LEFT WRIST WRT FOREARM	N	-0.000335 *WEIGHT	*WEIGHT	+0.421124			$R^{*}2 = 0.0017$
LEFT WRIST WRT FOREARM	N	-0.002143 *STANDING	*STANDING	+0.513798			$R^{*+2} = 0.0012$
LEFT WRIST WRT FOREARM		-0.000462 *WEIGHT	*WEIGHT	+0.001068	+0.001068 *STANDING	+0.368203	$R^{**2} = 0.0018$
REGRESSION EQUATIONS FOR LEFT WRIST	WRI		WRT FOREARM Y COORDINATE	UD I NATE			
LEFT WRIST WRT FOREARM	H	-0.001105 *WEIGHT	*WEIGHT	+0.209175			R**2 = 0.0900
LEFT WRIST WRT FOREARM	N	-0.005287 *STANDING	*STANDING	+0.390359			R**2 = 0.0354
LEFT WRIST WRT FOREARM	N	-0.002761 *WEIGHT	*WEIGHT	+0.013894	+0.013894 *STANDING	-0.479452	R**2 = 0.1320
REGRESSION EQUATIONS FOR LEFT WRIST	WRI		WRT FOREARM Z COORDIANTE	LD I ANTE			
LEFT WRIST WRT FOREARM	N	0.012050 *WEIGHT	*WEIGHT	+4.379713			R**2 = 0.6704
LEFT WRIST WRT FOREARM	H	0.104273	0.104273 *STANDING	-0.853654			R**2 = 0.8617
LEFT WRIST WRT FOREARM	N	-0.002226	*WEIGHT	+0.119738	*STANDING	-1.554957	R**2 = 0.8656
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN X COORDINATE	-Nen-	PELVIS WRT	ABDOMEN X	COORDINATE			
ABDOMEN-PELVIS WRT ABDOMEN	N	= -0.009768 *WEIGHT	*WEIGHT	-0.707969			R**2 = 0.4324

R**2 = 0.4183 R**2 = 0.4460

-0.031889 *STANDING +0.872569

+2.751955

-0.073331 *STANDING -0.005966 *WEIGHT

. .

ABDOMEN-PELVIS WRT ABDOMEN ABDOMEN-PELVIS WRT ABDOMEN

	R**2 = 0.1224	R**2 = 0.1760	R**2 = 0.1820	
	-	1		
			+0.035671 *STANDING087294	
COORD INATE	-0.319296	0.025420 *STANDING -1.622431	+0.035671	
ABDOMEN Y	*WEIGHT	*STANDING	*WEIGHT	
PELVIS WRT	0.002777 *WEIGHT	0.025420	-0.001476 *WEIGHT	
DOMEN-P	H	N	H	
S FOR AE	ABDOMEN	ABDOMEN	ABDOMEN	
TION	WRT 2	WRT 1	WRT 2	
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN Y COORDINATE	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN	

	R**2 = 0.0130	R**2 = 0.0002	R**2 = 0.0604
			-0.073932 *STANDING +5.630429
			*STANDING
COORDINATE	+1.966064	0.001903 *STANDING +2.191356	-0.073932
ABDOMEN Z		*STANDING	*WEIGHT
PELVIS WRT	0.002103 *WEIGHT	0.001903	0.010917 *WEIGHT
OMEN-F	M	M	H
REGRESSION EQUATIONS FOR ABDOMEN-PELVIS WRT ABDOMEN Z COORDINATE	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN	ABDOMEN-PELVIS WRT ABDOMEN

	R**2 = 0.1976	$R^{**2} = 0.0805$	R**2 = 0.2825
			-2.188490
			*STANDING
COORDINATE	-0.004447 *WEIGHT +0.471228	-0.021669 *STANDING +1.227710	+0.053662 *STANDING -2.188490
THORAX X C	*WEIGHT	*STANDING	
DOMEN WRT	-0.004447	-0.021669	-0.010845 *WEIGHT
ORAX-AB	N	H	N
REGRESSION EQUATIONS FOR THORAX-ABDOMEN WRT THORAX X COORDINATE	THORAX-ABDOMEN WRT THORAX	THORAX-ABDOMEN WRT THORAX	THORAX-ABDOMEN WRT THORAX

R**2 = 0.0026	R**2 = 0.0162	R**2 = 0.0405
		-0.947308
		*STANDING
-0.052755	-0.350661	+0.018048 *STANDING -0.947308
*WEIGHT	*STANDING	*WEIGHT
0.000258	0.004892	-0.001894 *WEIGHT
M	M	N
THORAX	THORAX	THORAX
THORAX-ABDOMEN WRT	THORAX-ABDOMEN WRT	THORAX-ABDOMEN WRT THORAX
	0.000258 *WEIGHT -0.052755	<pre>= 0.000258 *WEIGHT -0.052755 = 0.004892 *STANDING -0.350661</pre>

REGRESSION	EQU	ATIONS	FOR	HEAD-NEC	K WRT HEAD	REGRESSION EQUATIONS FOR HEAD-NECK WRT HEAD X COORDINATE	E			
HEAU-NECK WRT HEAD	WRT	HEAD		H	= -0.000144 *WEIGHT	*WEIGHT	+0.308559			
HEAD-NECK WRT HEAD	WRT	HEAD		W	0.001555	<pre>= 0.001555 *STANDING +0.175426</pre>	+0.175426			
HEAD-NECK WRT HEAD	WRT	HEAD		N	-0.001915 *WEIGHT	*WEIGHT	+0.014854	*STANDING	+0.014854 *STANDING -C.427684	

R**2 = 0.0008 R**2 = 0.0125

R**2 = 0.0004

REGRESSION EQUATIONS FOR HEAD-NECK		HEAD	WRT HEAD Y COORDINATE	re			
HEAD-NECK WRT HEAD		00205	0.000205 *WEIGHT	-0.021428			R**2 = 0.0035
HEAD-NECK WRT HEAD		00182	0.000182 *STANDING +0.000749	+0.000749			R**2 = 0.0000
HEAD-NECK WRT HEAD	.0.0	01066	0.001066 *WEIGHT	-0.007220	-0.007220 *STANDING +0.336399	+0.336399	$R^{++2} = 0.0165$

Z COORDINATE
HEAD
WRT
D-NECK
HEAL
FOR
DUATIONS
BO
REGRESSION

REGRESSION EQUATIONS FOR LEFT HIP WRT THIGH X COORDINATE

R**2 = 0.2395	R**2 = 0.1080	R**2 = 0.3188
		-0.084976 *STANDING +2.465770
		*STANDING
-1.745973	-3.251331	-0.084976
	0.041092 *STANDING -3.251331	*WEIGHT
0.008018 *WEIGHT	0.041092	0.018149 *WEIGHT
H	H	H
THIGH	THIGH	THIGH
HIP WRT	LEFT HIP WRT 1	HIP WRT
LEFT F	LEFT 1	I LART

			*STANDING
TE	+0.946000	0.040538 *STANDING -0.889305	-0.000721 *STANDING
REGRESSION EQUATIONS FOR LEFT HIP WRT THIGH Y COORDINATE	*WEIGHT	*STANDING	*WEIGHT
WRT THIGH	0.005854 *WEIGHT	0.040538	0.005940 *WEIGHT
dih '	W	N	Ħ
LEFT			
FOR			
UATIONS	LEFT HIP WRT THIGH	LEFT HIP WRT THIGH	LEFT HIP WRT THIGH
DA RO	WRT	WRT	WRT
SSSIC	HIP	HIP	ЧIР
GCR	E-	E	E

0.005940 *WEIGHT -0.000721	= 0.005940 *WEIGHT
0	= 0.005940 *WEIGHT

REGRESSION EQUATIONS FOR LEFT HIP	HIP	WRT THIGH Z COORDINATE	COORDINA'	LE			
LEFT HIP WRT THIGH	H	-0.012406 *WEIGHT -5.428231	*WEIGHT	-5.428231			R**2 = 0.4001
LEFT HIP WRT THIGH	H	-0.116746	* STAND ING	-0.116746 *STANDING +0.616039			$R^{**2} = 0.6082$
LEFT HIP WRT THIGH	Ħ	0.008809 *WEIGHT	WEIGHT	-0.177933 *STANDING +3.390843	*STANDING	+3.390843	R**2 = 0.6429

	R**2 = 0.0980	R**2 = 0.0369	R**2 = 0.1482
			-0.033166 *STANDING +1.858137
			*STANDING
TE	+0.214312	-0.180944	-0.033166
WRT CALF X COORDINATE	0.002519 *WEIGHT +0.214312	0.011798 *STANDING -0.180944	*WEIGHT
E WRT CALF	0.002519	0.011798	0.006473 *WEIGHT
KNEI	N	N	N
FOR LEFT			
REGRESSION EQUATIONS FOR LEFT KNEE	LEFT KNEE WRT CALF	LEFT KNEE WRT CALF	LEFT KNEE WRT CALF
REG	LEF	LEF	LEF

	R**2 = 0.1105	R**2 = 0.0271	R**2 = 0.2211
			-0.026653 *STANDING +1.634335
			*STANDING
TE	+0.313320	0.005467 *STANDING +0.177735	-0.026653
WRT CALF Y COORDINATE	0.001446 *WEIGHT +0.313320	*STANDING	*WEIGHT
E WRT CALF	0.001446	0.005467	0.004624 *WEIGHT
L KNEE	H	N	N
FOR LEFT			
REGRESSION EQUATIONS FOR LEFT KNEE	LEFT KNEE WRT CALF	KNEE WRT CALF	KNEE WRT CALF
REGRESSIO	LEFT KNEE	LEFT KNEE	LEFT KNEE

R**2 = 0.2768	R**2 = 0.2737	R**2 = 0.2883
		-0.326148
		*STANDING
-0.870575	+0.183444	-0.010984 *STANDING -0.326148
	*STANDING	
-0.002927	-0.022221	-0.001618 *WEIGHT
W	H	N
r root	r foot	LEFT ANKLE WRT FOOT
EWR	EWR	E WR
ANKL	ANKL	ANKL
LEFT	LEFT	LEFT
	-0.002927 *WEIGHT -0.870575	<pre>= -0.002927 *WEIGHT -0.870575 = -0.022221 *STANDING +0.183444</pre>

TNATE 00000 e FCC^B Foy ANVI D 1000 004 ŭ 1

R**2 = 0.0565	R**2 = 0.0108	R**2 = 0.1301
		-0.021757 *STANDING +1.218738
		*STANDING
+0.140367	+0.075380	-0.021757
	*STANDING	*WEIGHT
0.001036	0.003455	0.003630 *WEIGHT
Ħ	M	H
WRT FOOT	WRT FOOT	WRT FOOT
LEFT ANKLE	LEFT ANKLE	LEFT ANKLE WRT FOOT
	0.001036 *WEIGHT +0.140367	<pre>= 0.001036 *WEIGHT +0.140367 = 0.003455 *STANDING +0.075380</pre>

 $R^{*} = 0.2652$ R**2 = 0.2500 R**2 = 0.2709 -1.562600 -0.010619 *STANDING -2.088906 -0.725991 -0.029067 *STANDING -0.003922 *WEIGHT -0.002656 *WEIGHT Ħ N Ħ LEFT ANKLE WRT FOOT LEFT ANKLE WRT FOOT LEFT ANKLE WRT FOOT

$R^{++2} = 0.4213$	R**2 = 0.7355	R**2 = 0,8360	
		-0.191127 *STANDING +333065	
		*STANDING	
-5.139949	+0.450460	-0.191127	
	-0.105511 *STANDING +0.450460	*WEIGHT	
-0.010462 *WEIGHT	-0.105511	0.012325 *WEIGHT	
Ħ	N	H	
.	F	6	
CALF	CALF	CALF	
KNEE WRT	LEFT KNEE WRT	KNEE WRT	
KNEE	KNE	KNE	
LEFT	LEFT	LEFT	

REGRESSION EQUATIONS FOR LEFT KNEE WRT CALF Z COORDINATE

REGRESSION EQUATIONS FOR LEFT ANKLE WRT FOOT X COORDINATE

	$R^{*}2 = 0.0100$	$R^{**2} = 0.0042$	$R^{*+2} = 0.0141$
			-0.009715 *STANDING +0.851770
63			*STANDING
COORD INATE	+0.370250	+0.225499	-0.009715
IPPER ARM X	*WEIGHT	0.004095 *STANDING +0.225499	*WEIGHT
ILDER WRT U	0.000830 *WEIGHT	0.004095	0.001988 *WEIGHT
SHOU	N	H	ĸ
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT UPPER ARM X COORDINATE	LEFT SHOULDER WRT UPPER ARM	LEFT SHOULDER WRT UPPER ARM	LEFT SHOULDER WRT UPPER ARM
REGRESSION B	LEFT SHOULDE	LEFT SHOULDE	LEFT SHOULDE

	R**2 = 0.0216	R**2 = 0.0275	$R^{**2} = 0.0276$
			+1.056967
6.7			-0.012485 *STANDING +1.05696
COORDINATE	+0.438159	+0.994151	-0.012485
IPPER ARM Y	*WEIGHT	-0.011100 *STANDING +0.994151	*WEIGHT
LDER WRT U	-0.001289 *WEIGHT	-0.011100	0.000199 *WEIGHT
SHOUI		N	N
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT UPPER ARM Y COORDINATE	LEFT SHOULDER WRT UPPER ARM	LEFT SHOULDER WRT UPPER ARM	LEFT SHOULDER WRT UPPER ARM
REGRE	LEFT	LEFT	LEFT

	R**2 = 0.8340	R**2 = 0.7856
COORDINATE	-2.702344	+3.541350
SHOULDER WRT UPPER ARM 2	= -0.017979 *WEIGHT -2.702344	<pre>= -0.133190 *STANDING +3.541350</pre>
REGRESSION EQUATIONS FOR LEFT SHOULDER WRT UPPER ARM Z COORDINATE	LEFT SHOULDER WRT UPPER ARM	LEFT SHOULDER WRT UPPER ARM

R**2 = 0.7856	R**2 = 0.8518	
	-0.048317 *STANDING -0.307549	
	*STANDING	
+3.541350	-0.048317	
-0.133190 *STANDING +3.541350	*WEIGHT	
-0.133190	-0.012218 *WEIGHT	
N	N	
ARM	ARM	
UPPER	UPPER	
WRT	WRT	
SHOULDER WRT	LEFT SHOULDER WRT UPPER	
LEFT	LEPT	

	R**2 = 0.0606	R**2 = 0.0803	$R^{*}2 = 0.0811$
			-0.011628 *STANDING +0.233035
			*STANDING
DINATE	-0.001087 *WEIGHT -0.343308	+0.138748	-0.011628
WRT FOREARM X COORDINATE	*WEIGHT	0.009549 *STANDING +0.138748	0.000299 *WEIGHT
W WRT FORE	-0.001087	-0.009549	0.000299
ELBO	N	N	Ħ
REGRESSION EQUATIONS FOR LEFT ELBOW	LEFT ELBOW WRT FOREARM	LEFT ELBOW WRT FOREARM	LEFT ELBOW WRT FOREARM
REGRESSION	LEFT ELBOW	LEFT ELBOW	LEFT ELBOW

*STANDING +1.685847 R**2 = ***2 = ***2 ***2 ****2 ****2 ****2 ********	LEFT ELBOW WRT FOREARM	OR LEFT	ELBOW WRT FOREARM Z C = -0.008121 *WEIGHT = -0.068772 *STANDI - 0.000459 ************************************	0.000497 *WEIGHT -0.00 WRT FOREARM Z COORDINATE 0.008121 *WEIGHT -3.24 0.068772 *STANDING +0.17	-0.296420 -0.002470 *STANDING DINATE -3.248134 +0.173893	* STAND ING	-0.139945	H H H H H
WRT HAND Y COORDINATE 0.000876 *WEIGHT -0.409282 0.009716 *STANDING 40 065499	ION EQUAT IST WRT F IST WRT F IST WRT F	LEFT FOR LEFT AND AND		X COORDIN *WEIGHT *STANDING *WEIGHT	.381869 .194259 .026309	* STANDING	+1.685847	N N N
	ION EQUAT IST WRT F IST WHT H	LIONS FOR LEFT AND	<u></u>) Y COORDIN *WEIGHT *STANDING	АТЕ -0.409282 +0.085499			

	R**2 = 0.4129	R**2 = 0.4873	ING -0.807723 R**2 = 0.4876	
VTE	-2.065060	-0.740092	-0.025368 *STANDING -0.807723	
LEFT WRIST WRT HAND Z COORDINATE	-0.003239 *WEIGHT	-0.026859 *STANDING -0.740092	-0.000215 *WEIGHT	
FOR LEFT WRIST	1	N	•	
REGRESSION EQUATIONS FOR	LEFT WRIST WRT HAND	LEFT WRIST WRT HAND	LEFT WRIST WRT HAND	

	R**2 = 0.0500	R**2 = 0.0640	R**2 = 0.0642
			-0.015052 *STANDING +0.497303
LTE			*STANDING
X COORDIN	-0.248755	+0.415082	-0.015052
WRT FOREARM + HAND X COORDINATE		-0.013239 *STANDING +0.415082	*WEIGHT
W WRT FORE	-0.001534 *WEIGHT	-0.013239	0.000261 *WEIGHT
ELBO		H	N
LEFT	HAND	HAND	HAND
REGRESSION EQUATIONS FOR LEFT ELBOW	LEFT ELBOW WRT FOREARM + HAND =	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND
N EQ	W WR	WR.	W WR
ESSIO	ELBO	ELBO	ELBO
REGR	LEFT	LEFT	LEFT

	R**2 = 0.0003	$R^{**2} = 0.0002$	R**2 = 0.0003
			-0.297182
\TE			-0.000523 *STANDING -0.297182
Y COORDINA	-0.323101	-0.349634	-0.000523
REGRESSION EQUATIONS FOR LEFT ELBOW WRT FOREARM + HAND Y COORDINATE	*WEIGHT	0.000634 *STANDING -0.349634	*WEIGHT
W WRT FORE	0.000104 *WEIGHT	0.000634	0.000167 *WEIGHT
ELBC	¥	N	H
LEFT	HAND	HAND	HAND
FOR	+ W3	+ W2	+ W2
SNOIL	POREAL	FOREAF	FOREA
EQUA	WRT	WRT	WRT
NOISS	LEFT ELBOW WRT POREARM + HAND	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND
REGRE	LEFT	LEFT	LEFT

	R**2 = 0.4954	R**2 = 0.7253	$R^{++2} = 0.7548$
			-0.131946 *STANDING +1.117759
LTE .			*STANDING
Z COORDINA	-5.421995	-0.717790	-0.131946
ARM + HAND	*WEIGHT	-0.091470 *STANDING -0.717790	*WEIGHT
W WRT FORE	-0.009904 *WEIGHT	-0.091470	0.005827 *WEIGHT
ELBO	¥	N	H
LEFT	HAND	HAND	HAND
REGRESSION EQUATIONS FOR LEFT ELBOW WRT FOREARM + HAND Z COORDINATE	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND	LEFT ELBOW WRT FOREARM + HAND
ESSION	ELBOW	ELBOW	ELBOW
REGRI	LEFT	LEFT	LEFT

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX C

PRINCIPAL MOMENTS OF INERTIA REGRESSION EQUATIONS

This appendix contains a complete listing of the X, Y, and Z principal moments of inertia regression equations developed for the adult human female and the adult human male options. The regression equations are based on human stereophotometric data (McConville, et al., 1980; Young, et al., 1983). The predicting variables are weight (1b) and standing height (in). The predicted principal moments of inertia are in slugs-inches squared. At the top of each set of regression equations are listed the range of values, mean, and standard deviation of the predicting variables within that subject type option. For the principal moments of each segment, a separate regression equation is given against each of the predicting variables. The last regression equation is a multiple regression equation based on both predicting variables. With each regression equation, the coefficient of determination (R^2) is given. The regression equations are based on 46 female subjects and 31 male subjects.

REGRESSION EQUATIONS FOR THE ADULT FEMALE PRINCIPAL MOMENTS OF INERTIA

PREDICTING VARIABLES					
WEIGHT	RANGE: 85.00	85.00	200.00	MEAN:	MEAN: 127.30
STANDING HEIGHT	RANGE:	56.93	72.05	MEAN:	63.82

16.590 2.364

s.D.: s.D.:

MOMENT
7
PELVIS
FOR
EQUATIONS
REGRESSION

R**2 = 0.8909	R**2 = 0.0748	R**2 = 0.9078
		+3.603102
13.500050	25.921050	-0.292277 *STANDING +3.603102
*WEIGHT -13.500050	*STANDING -25.921050	*WEIGHT
0.163756	0.559154	0.174048
N	N	N
PELVIS X MOMENT	PELVIS X MOMENT	PELVIS X MOMENT
PELVIS	PELVIS	PELVIS

MOMENT
2
PELVIS
FOR
EQUATIONS
REGRESSION

R**2 = 0.8391	$R^{*}2 = 0.0278$	R**2 = 0.8942
0	0	-0.537341 *STANDING +16.353070
-15.09049	-14.32552	-0.53734
*WEIGHT -15.090490	*STANDING -14.325520	*WEIGHT
0.161932	0.347382	0.180853
	N	H
PELVIS Y MOMENT	PELVIS Y MOMENT	PELVIS Y MOMENT

REGRESSION EQUATIONS FOR PELVIS 2 MOMENT	VTIONS F	OR P.	ELVIS Z MOMENT		
PELVIS 2 MOMENT	2.4	M	0.256230 *WEIGHT	*WEIGHT -22.912750	R**2 = 0.8749
PELVIS Z MOMENT	£.	H	· 0.647401 *STANDING	*STANDING -27.906070	R**2 = 0.0402
PELVIS Z MOMENT	£.	M	0.282011 *WEIGHT	-0.732180 *STANDING +19.932170	$R^{**2} = 0.9175$

REGRESSION EQUATIONS FOR ABDOMEN X	FOR	ABDOMEN X MCMENT			
ABDOMEN X MOMENT		0.031055 *WEIGHT	-2.473941		$R^{**2} = 0.2987$
ABDONEN X MONENT	N	-0.101966 *STANDING	+8.374269		$R^{++2} = 0.0232$
ABDOMEN X MOMENT	H	0.041855 *WEIGHT	-0.306717	-0.306717 *STANDING +15.474200	R**2 = 0.4722
REGRESSION EQUATIONS FOR ABDOMEN Y	FOR	ABDOMEN Y MOMENT			
ABDOMEN Y MOMENT	H	0.025354 *WEIGHT	-2.300540		$R^{*} = 0.2752$
ABDOMEN Y MOMENT	H	-0.120106 *STANDING	+8.895873		R**2 = 0.0445
ABDOMEN Y MOMENT		0.035739 *WEIGHT	-0.294939	-0.294939 *STANDING +14.958350	R**2 = 0.4971
REGRESSION EQUATIONS FOR ABDOMEN Z	RON	ABDOMEN Z MOMENT			
ABDOMEN Z MOMENT	N	ത	-4.781197		R**2 = 0.3359
ABDOMEN Z MOMENT	H	-	*STANDING +13.622860		R**2 = 0.0232
ABDOMEN 2 MOMENT	H	0.073073 *WEIGHT	-0.526336	-0.526336 *STANDING +26.018390	R**2 = 0.5223
REGRESSION EQUATIONS FOR THORAX X MOMENT	FOR	THORAX X MOMENT			
THORAX X MOMENT	u	0.301112 *WEIGHT	-12.786380		R**2 = 0.7948

R**2 = 0.1686 R**2 = 0.7968

+ 0.195281 *STANDING -24.213590

1.634667 *STANDING -74.125640

H

> THORAX X MOMENT THORAN X MOMENT

H

0.294236 *WEIGHT

REGRESSION EQUATIONS FOR THORAX Y THORAX Y MOMENT = 0.2396	FOR	THORAX Y MOMENT 0.239654 *WEIGHT	GHT	-11.027040			R**2 = 0.7959
THORAX Y MOMENT	Ħ	1.409968 *STA	*STANDING	-66.762300			R**2 = 0.1983
THORAX Y MOMENT	H	0.229547 *WEIGHT	GHT	+0.287040	*STANDING	+0.287040 *STANDING -27.823750	R**2 = 0.8027
REGRESSION EQUATIONS FOR THORAX Z	FOR	THORAX Z MOMENT					
THORAX Z MOMENT	H	0.241791 *WEIGHT		-14.322190			R**2 = 0.8408
THORAX Z MOMENT	N	0.882539 *STA	*STANDING	-36.276030			R**2 = 0.0806
THORAX Z MOMENT	N	0.254565 *WEIGHT	GHT	-0.362777	-0.362777 *STANDING	+6.906433	R**2 = 0.8521
REGRESSION EQUATIONS		FOR NECK X MOMENT					
NECK X MOMENT	N	0.000609 *WEIGHT	GHT	+0.024464			R**2 = 0.2657
NECK X MOMENT	H	0.007888 *STA	*STANDING	-0.390459			R**2 = 0.3209
NECK X MOMENT	Ħ	0.000400 *WEIGHT	GHT	+0.005931	+0.005931 *STANDING	-0.322579	R**2 = 0.4158
REGRESSION EQUATIONS FOR NECK Y MOMENT	FOR	NECK Y MOMENT					
NECK Y MOMENT	H	0.000637 *WEIGHT	GHT	+0.049083			R**2 = 0.2170

NECK Y MOMENT

0.008916 *STANDING -0.427217

H N NECK Y MOMENT

0.000390 *WEIGHT

R**2 = 0.3738

R**2 = 0.3065

+0.007010 *STANDING -0.361095

	REGRESSION EQUATIONS FOR NECK Z MOMENT NECK Z MOMENT = 0.001055 *W NECK Z MOMENT = 0.007630 *S NECK Z MOMENT = 0.000950 *W	801 8 8 8 8	NECK Z MOMEN 0.001055 * 0.007630 * 0.000950 *	NT *WEIGHT *STANDING *WEIGHT	+0.004830 -0.330893 +0.002985	+0.004830 -0.330893 +0.002985 *STANDING	-0.169815	R**2 = 0.4597 R**2 = 0.1732 R**2 = 0.4816
,	REGRESSION EQUATIONS FOR HEAD X MOM HEAD X MOMENT = 0.003316 HEAD X MOMENT = 0.003406 HEAD X MOMENT = 0.003406	80 F	M	NT *WEIGHT *STANDING *WEIGHT	+1.350839 +0.922638 -0.002556 *STANDING	* STAND I NG	+1.500424	R**2 = 0.1717 R**2 = 0.0224 R**2 = 0.1723
73	REGRESSION EQUATIONS FOR HEAD Y MOMENT HEAD Y MOMENT = 0.003768 *W HEAD Y MOMENT = 0.017871 *S HEAD Y MOMENT = 0.003792 *W	ас н н н О	HEAD Y MOMEN' 0.003768 ** 0.017871 ** 0.003792 **	NT *WEIGHT *STANDING *WEIGHT	+1.486574 +0.883056 -0.000679	+1.486574 +0.883056 -0.000679 *STANDING	+1.526312	R**2 = 0.1671 R**2 = 0.0271 R**2 = 0.1671
	REGRESSION EQUATIONS FOR HEAD Z MOMENT HEAD Z MOMENT = 0.002513 *W HEAD Z MOMENT = 0.010754 *S HEAD Z MOMENT = 0.002578 *W	ROR R R R R	HEAD Z MOMENT 0.002513 *V 0.010754 *V 0.002578 *V	NT *WEIGHT *Standing *WEIGHT	+1.021677 +0.693090 -0.001858 *STANDING	*STANDING	+1.130428	R**2 = 0.2127 R**2 = 0.0280 R**2 = 0.2134

REGRESSION EQUATIONS FOR THIGH X MOMENT	FOR	THIGH X MOMENT					
THIGH X MOMENT	M	0.010001 *WEIGHT	GHT	+0.181037			R**2 = 0.6511
THIGH X MOMENT	H		*STANDING	-3.923329			R**2 = 0.3535
THIGH X YOMENT	N	0.008388 *WEIGHT	GHT	+0.045824	+0.045824 *STANDING	-2.500468	R**2 = 0.7326
REGRESSION EQUATIONS FOR THIGH Y MOMENT	FOR	THIGH Y MOMENT					
THIGH Y MOMENT	N	0.009711 *WEIGHT	знт	+0.192135			R**2 = 0.6421
THIGH Y MOMENT	N	0.085729 *STAN	*STANDING	-3.881509			R**2 = 0.3602
THIGH Y MOMENT	N	0.008085 *WEIGHT	знт	+0.046176	+0.046176 *STANDING	-2.509969	R**2 = 0.7286
REGRESSION EQUATIONS FOR THIGH Z MOMENT	FOR	THIGH Z MOMENT					
THIGH Z MOMENT	H	0.001081 *WEIGHT	THE	-0.049435			R**2 = 0.7459
THIGH Z MOMENT	N	0.004096 *STAN	*STANDING	-0.157097			R**2 = 0.0771
THIGH Z MOMENT	Ħ	0.001132 *WEIGHT	нт	-0.001441 *STANDING	*STANDING	+0.034888	R**2 = 0.7538
REGRESSION EQUATIONS FOR CALF X MOMENT	FOR (CALF X MOMENT					
CALF X MOMENT	M	0.028391 *WEIGHT	TH	-0.062710			R**2 = 0.5802
CALF X MOMENT	N	0.239876 *STAN	- DNID	*STANDING -11.289330			R**2 = 0.2981
CALF X MOMENT	Ħ	0.024095 *WEIGHT	TH	+0.122004 *STANDING	*STANDING	-7.202003	R**2 = 0.6440

R**2 = 0.5785 R**2 = 0.3066 R**2 = 0.6469	R**2 = 0.7348 R**2 = 0.1066 R**2 = 0.7358	R**2 = 0.3877 R**2 = 0.4296 R**2 = 0.5782	R**2 = 0.4350 R**2 = 0.5785 R**2 = 0.7214
-7.342105	-0.221596	-0.145019	-0.766749
*STANDING	*STANDING	*STANDING	* STAND I NG
-0.030029 -11.352770 +0.124957 *STANDING	-0.412023 -1.374711 -0.003254	+0.013433 -0.179437 +0.002708	+0.055107 -0.909509 +0.014045 *STANDING
E I GHT Tand i Ng E i Ght	ALF Z MOMENT 0.006683 *WEIGHT 0.030000 *STANDING 0.006798 *WEIGHT	COT Z MOMENT 0.000298 *WEIGHT 0.003700 *STANDING 0.000203 *WEIGHT	OOT Y MOMENT 0.001336 *WEIGHT 0.018162 *STANDING 0.000842 *WEIGHT
NS 70R	NS 70R 70R 8 8 8	NS FOR FOR F	NS POR 7
REGRESSION EQUATIONS FOR CALF Y MOMENT CALF Y MOMENT = 0.028043 *W CALF Y MOMENT = 0.240618 *S CALF Y MOMENT = 0.23643 *W	REGRESSION EQUATIONS FOR CALF Z MOMENT CALF Z MOMENT = 0.006683 *W CALF Z MOMENT = 0.030000 *S CALF Z MOMENT = 0.006798 *W	REGRESSION EQUATIONS FOR FOOT Z MOMENT FOOT Z MOMENT = 0.000298 *W FOOT Z MOMENT = 0.003700 *S FOOT Z MOMENT = 0.000203 *W	REGRESSION EQUATIONS FOR FOOT Y MOMENT FOOT Y NOMENT = 0.001336 *W FOOT Y MOMENT = 0.018162 *S FOOT Y MOMENT = 0.000842 *W
		75	

R**2 = 0.4444	R**2 = 0.7883	R**2 = 0.8268	R**2 = 0.8998
R**2 = 0.5633	R**2 = 0.3689	R**2 = 0.3099	R**2 = 0.0937
R**2 = 0.7157	R**2 = 0.8572	R**2 = 0.8656	R**2 = 0.9090
-0.756870	-2.298105	-2.103820	-0.015321
*STANDING	*STANDING	*STANDING	*STANDING
+0.059885	-0.318302	-0.444038	-0.280054
-0.907403	-3.594248	-3.648074	-0.625907
+0.013958	+0.033833	+0.028364	-0.004524
FOOT X MOMENT	FOR UPPER ARM X MOMENT	UPPER ARM Y MOMENT	UPPER ARM Z MOMENT
0.001379 *WEIGHT	= 0.008832 *WEIGHT	0.010102 *WEIGHT	0.003440 *WEIGHT
0.018299 *STANDING	= 0.071212 *STANDING	0.072898 *STANDING	0.013084 *STANDING
0.000887 *WEIGHT	= 0.07641 *WEIGHT	0.009104 *WEIGHT	0.003599 *WEIGHT
NS FOR FOR N N N		NS FOR	NS FOR
REGRESSION EQUATIONS FOR FOOT X MOMENT	REGRESSION EQUATIONS	REGRESSION EQUATIONS FOR UPPER ARM Y	REGRESSION EQUATIONS FOR UPPER ARM
FOOT X MOMENT = 0.001379 *W	UPPER ARM X MOMENT	UPPER ARM Y MOMENT = 0.010102	UPPER ARM Z MOMENT = 0.003440
FOOT X MOMENT = 0.018299 *S	UPPER ARM X MOMENT	UPPER ARM Y MOMENT = 0.072898	UPPER ARM Z MOMENT = 0.013080
FOOT X MOMENT = 0.000887 *W	UPPER ARM X MOMENT	UPPER ARM Y MOMENT = 0.009104	UPPER ARM Z MOMENT = 0.003599
		76	

	REGRESSIC	REGRESSION EQUATIONS FOR FOREARM X	FOR		MOMENT				
	POREARM X MOMENT	TNEMOM 1	H	0.003558	*WEIGHT	-0.061760			R**2 = 0.6509
	FOREARM X MOMENT	TNEMOM	H	0.026886	*STANDING	-1.267104			R**2 = 0.2675
	FOREARM X MOMENT	MOMENT	H	0.003155	*WEIGHT	+0.011453	+0.011453 *STANDING	-0.731933	R**2 = 0.6911
	REGRESSIO	REGRESSION EQUATIONS FOR FOREARM Y	FOR		MOMENT				
	FOREARM Y MOMENT	MOMENT	Ħ	0.003352	*WEIGHT	-0.051225			R**2 = 0.6341
	FOREARM Y MOMENT	TNAMOM	N	0.026467	*STANDING	-1.259055			R**2 = 0.2846
	FOREARM Y MOMENT	MOMENT	H	0.002923	*WEIGHT	+0.012167	+0.012167 *STANDING	-0.763188	R**2 = 0.6839
	REGRESSIC	REGRESSION EQUATIONS FOR FOREARM Z	FOR		MOMENT				
77	FOREARM Z MOMENT	MOMENT	N	0.000969	*WEIGHT	-0.057900			R**2 = 0.7556
,	FOREARM Z MOMENT	MOMENT	N	0.003471	*STANDING	-0.141681			R**2 = 0.0698
	FOREARM Z MOMENT	MOMENT	H	0.001023	*WEIGHT	-0.001535	-0.001535 *STANDING	+0.031913	R**2 = 0.7669
	REGRESSIO	REGRESSION EQUATIONS FOR HAND X MOMENT	FOR	HAND X MOME	NT				
	HAND X MOMENT	MENT	W	0.000389	*WEIGHT	+0.025665			R**2 = 0.3857
	HAND X MOMENT	MENT	N	0.003603	*STANDING	-0.148178			R**2 = 0.2377

R**2 = 0.4495

+0.002052 *STANDING -0.094394

0.000317 *WEIGHT

H

HAND X MOMENT

REGRESSION EQUATIONS FOR HAND Y MOMENT	R HAND Y MOMENT				
HAND Y MOMENT	- 0.000320 *WEIGHT	+0.022715			R**2 = 0.3766
- HAND Y MOMENT	• 0.003186 *STANDING	-0.134415			N
HAND Y MOMENT	• 0.000251 *WEIGHT	+0.001957 *STANDING	STANDING	-0.091781	N
REGRESSION EQUATIONS FOR HAND Z MOMENT	L HAND Z MOMENT				
HAND Z MOMENT	· 0.000112 *WEIGHT	+0.005927			$R^{**2} = 0.3822$
HAND Z MOMENT	• 0.000718 *STANDING	-0.023783			R**2 = 0.1120
HAND Z MOMENT	• 0.000105 *WEIGHT	+0.000202 *STANDING	STANDING	-0.005915	R**2 = 0.3896
REGRESSION EQUATIONS FOR FOREARM PLUS HAND X MOMENT FOREARM + HAND X MOMENT= 0.010001 *WEIGHT +0.1	FOREARM PLUS HAND X M	IOMENT +0.181037			R**2 = 0.6511
FOREARM + HAND X MOMENT=	0.086858 *STANDING	-3.923329			R**2 = 0.3535
FOREARM + HAND X MOMENT=	0.008388 *WEIGHT	+0.045824 *STANDING	STANDING	-2.500468	R**2 = 0.7326
REGRESSION EQUATIONS FOR FOREARM FLUS HAND Y MOMENT	FOREARM FLUS HAND Y M	OMENT			
FOREARM + HAND Y MOMENT=	0.009711 *WEIGHT	+0.192135			R**2 = 0.6421
FOREARM + HAND Y MOMENT=	0.085729 *STANDING	-3.881509			R**2 = 0.3602
FOREARM + HAND Y MOMENT=	0.008085 *WEIGHT	+0.046176 *	*STANDING	-2.509969	R**2 = 0.7286

	R**2 = 0.7459	R**2 = 0.0771	R**2 = 0.7538
			+0.034888
			-0.001441 *STANDING +0.034888
MOMENT	-0.049435	5 *STANDING -0.157097	-0.001441
US HAND Z	*WEIGHT	*STANDING	*WEIGHT
FOREARM PLI	0.001081	0.004096	0.001132
REGRESSION EQUATIONS FOR FOREARM PLUS HAND Z MOMENT	FOREARM + HAND Z MOMENT= 0.001081	FOREARM + HAND Z MOMENT=	FOREARM + HAND Z MOMENT=
REGRESSION	FORBARM + H	FOREARM + H	FOREARM + H

REGRESSION EQUATIONS FOR ADULT MALE PRINCIPAL MOMENTS OF INERTIA

PREDICTING VARIABLES

WEIGHT	RANGE:	118.00	264.00	MEAN:	173.60	s.D.:	21.440
STANDING HEIGHT	RANGE :	62.17	77.64	MEAN:	69.82	s.D.:	2.437

REGRESSION EQUATIONS FOR PELVIS X MOMENT

$R^{*} = 0.8049$	R**2 = 0.5914	R**2 = 0.8179
		+4.171488
		*STANDING
*WEIGHT -9.541327	*STANDING -43.364990	-0.276669 *STANDING +4.171488
*WEIGHT	*STANDING	*WEIGHT
0.117920	= 0.771563	0.150906
H	M	N
PELVIS X MOMENT	PELVIS X MOMENT	PELVIS X MOMENT
PELVIS	PELVIS	PELVIS

REGRESSION EQUATIONS FOR PELVIS Y MOMENT

R**2 = 0.7515	$R^{**2} = 0.5441$	R**2 = 0.7668
		+5.198404
		*STANDING
-9.275152	-40.783950	-0.292018 *STANDING +5.198404
*WEIGHT -9.275152	*STANDING -40.783950	*WEIGHT
0.111156	0.721944	0.145972
M	W	H
PELVIS Y MOMENT	PELVIS Y MOMENT	PELVIS Y MOMENT
PELV	PELV	PELV

R**2 = 0.7516REGRESSION EQUATIONS FOR PELVIS Z MOMENT Ħ

-0.395182 *STANDING +8.162018

R**2 = 0.5378 R**2 = 0.7696

-11.424750 0.138637 *WEIGHT PELVIS 2 MOMENT PELVIS Z MOMENT

0.185753 *WEIGHT

N

PELVIS Z MOMENT

0.895104 *STANDING -50.351390

ABDOMEN X MOMENT	N	ABDOMEN X MOMENT = 0.016729	*WEIGHT	-1.190717			R**2 = 0.4715
ABDOMEN X MOMENT	N	0.106385	*STANLING	-5.774367			R**2 = 0.3273
ABDOMEN X MOMENT	N	0.023542	*WEIGHT	-0.057141	-0.057141 *STANDING	+1.641403	R**2 = 0.4877
ATIONS	FOR	REGRESSION EQUATIONS FOR ABDOMEN Y MOMENT	MOMENT				
ABDOMEN Y MOMENT	N	0.009820	*WEIGHT	-0.755341			R**2 = 0.4073
ABDOMEN Y MOMENT	N	0.059706	*STANDING	-3.254342			R**2 = 0.2585
ABDOMEN Y MOMENT	H	0.015721	*WEIGHT	-0.049498	-0.049498 *STANDING	+1.697984	R**2 = 0.4378
ATIONS	FOR	REGRESSION EQUATIONS FOR ABDOMEN Z	TNEMOM				
ABDOMEN Z MOMENT	H	0.026073	*WEIGHT	-1.943402			R**2 = 0.4752
Z MOME	H	0.163224	*STANDING	-8.906807			H
ABDOMEN Z MOMENT	N	0.038481	*WEIGHT	-0.104076	-0.104076 *STANDING	+3.214991	N
ATIONS	FOR	REGRESSION EQUATIONS FOR THORAX X MOMENT	OMENT				
THORAX X MOMENT	N	0.530761	*WEIGHT	-39.709080			R**2 = 0.9315
THORAX X MOMENT	N	3.724962	*STANDING	-209.56920			R**2 = 0.7875
THORAX X MOMENT	H	0.504281	*WEIGHT	+0.222097	+0.222097 *STANDING -50.717090	-50.717090	8±#3 = 0 8330

REGRESSION EQUATIONS FOR THORAX Y MOMENT	FOR	THORAX Y MO	MENT				
THORAX Y MOMENT	N	0.401215	*WEIGHT	-31.048660			$R^{**2} = 0.9176$
THORAX Y MOMENT	N	2.804530	*STANDING	-158.66330			R**2 = 0.7696
THORAX Y MOMENT	H	0.389010	*WEIGHT	+0.102369	+0.102369 *STANDING -36.122420	-36.122420	$R^{*}2 = 0.9178$
REGRESSION EQUATIONS FOR THORAX Z MOMENT	FOR	THORAX Z MO	MENT				
THORAX Z MOMENT	Ħ	0.339041	*WEIGHT	-26.329640			H
THORAX Z MOMENT	Ħ	2.289070	*STANDING	-128.51820			R**2 = 0.7480
THORAX Z MOMENT	Ħ	0.384835	*WEIGHT	-0.384092	*STANDING	-7.292557	R**2 = 0.9597
REGRESSION EQUATIONS FOR NECK X MOMENT	POR	NBCK X MOMB	LN				
NECK X MOMENT	H	0.001387	*WEIGHT	-0.057555			N
NECK X MOMENT	N	0.008977	*STANDING	-0.448591			R**2 = 0.3683
NECK X MOMENT		0.001842	*WEIGHT	-0.003815	-0.003815 *STANDING	+0.131522	R**2 = 0.5234
DECENTIONS FOR NECK Y MOMENT	NOR	NECK Y MOME	LN				
	, , , ,						D##7 - 0 5740
NECK Y MOMENT	H	0.001538	*WEIGHT	-0.046986			1
NECK Y MOMENT	H	0.009658	*STANDING	-0.459772			H
NECK Y MOMENT	N	0.002251	*WEIGHT	-0.005980	-0.005980 *STANDING	+0.249402	R**2 = 0.5483

NECK Y MOMENT

	REGRE	REGRESSION EQUATIONS FOR NECK Z MOMENT	FOR	NECK Z MOMI	ENT				
	NECK	NECK Z MOMENT	N	0.002032	*WEIGHT	-0.080039			R**2 = 0.5675
	NECK	NECK Z MOHENT	H	0.012447	*STANDING	-0.603564			R**2 = 0.3654
	NECK	NECK 2 MOMENT	Ħ	0.003190	*WEIGHT	-0.009710	-0.009710 *STANDING	+0.401225	R**2 = 0.6057
	REGRE	REGRESSION EQUATIONS FOR HEAD X MOMENT	FOR 1	HEAD X MOME	LNS				
	HEND	HEAD X MOMENT	N	0.003680	*WEIGHT	+1.541396			R**2 = 0.1550
	HEND	HEAD X MOMENT	Ħ	0.029540	*STANDING	+0.104170			R**2 = 0.1715
	HEAD	HEAD X MOMENT	M	0.000918	*WEIGHT	+0.023162	*STANDING	+0.393387	R**2 = 0.1732
	REGRE	regre ssion eq uations for head Y moment	FOR F	IEAD Y MOME	TNI				
83	HEND	HEAD Y MOMENT	ĸ	0.004619	*WEIGHT	+1.686967			R**2 = 0.1563
ı	HEAD	HEAD Y MOMENT	N	0.037161	*STANDING	-0.122760			R**2 = 0.1737
	HEAD	HEAD Y MOMENT	H	0.001097	*WEIGHT	+0.029538	*STANDING	+0.222949	R**2 = 0.1752
	REGRES	REGRESSION EQUATIONS FOR HEAD Z MOMENT	POR H	IEAD Z MOME	LN				
	HEAD 2	HEAD Z MOMENT	N	0.002481	*WEIGHT	+1.179516			R**2 = 0.1883
	HEAD	HEAD Z MOMENT	N	0.018242	*STANDING	+0.327581			$R^{++2} = 0.1747$
	HEAD 2	Z MOMENT	M	0.001784	*WEICHT	+0.005853	*STANDING	+0.889437	R**2 = 0.1914

THIGH X MOMENT						
		0.025793 *WEIGHT	-1.226292			R**2 = 0.7960
THIGH X MOMENT	W	0.198665 *STANDING	-10.713900			R**2 = 0.8106
THIGH X MOMENT		0.012263 *WEIGHT	+0.113484	+0.113484 *STANDING	-6.850978	R**2 = 0.8415
REGRESSION EQUATIONS FOR THIGH Y MOMENT	R T	HIGH Y MOMENT				
THIGH Y MOMENT	Ħ	0.025638 *WEIGHT	-1.215490			R**2 = 0.7976
THIGH Y MOMENT	н	0.197470 *STANDING	-10.645990			$R^{**2} = 0.8122$
THIGH Y MOMENT		0.012191 *WEIGHT	+0.112791	+0.112791 *STANDING	-6.805867	R**2 = 0.8431
REGRESSION EQUATIONS FOR THIGH Z MOMENT	L L	IIGH Z MOMENT				
THIGH Z MOMENT	H	0.001576 *WEIGHT	-0.089792			R**2 = 0.7937
THIGH Z MOMENT		0.010433 *STANDING	-0.550339			$R^{**2} = 0.5971$
THIGH Z MOMENT	L.	0.001932 *WEIGHT	-0.002988	-0.002988 *STANDING	+0.058323	R**2 = 0.8022

R**2 = 0.8908 R**2 = 0.8120 R**2 = 0.9011 +0.360857 *STANDING -21.851520 -3.966057 0.472882 *STANDING -26.931780 0.059151 *WEIGHT 0.016127 *WEIGHT REGRESSION EQUATIONS FOR CALF X MOMENT N N N CALF X MOMENT CALF X MOMENT CALF X MOMENT

REGRESSION EQUATIONS FOR CALF Y MOMENT CALF Y MOMENT = 0.059948 *W CALF Y MOMENT = 0.478795 *S CALF Y MOMENT = 0.016664 *W	OR CALF Y MOMENT = 0.059948 *WEIGHT = 0.478795 *STANDING = 0.016664 *WEIGHT	-4.009954 ; -27.253020 +0.363043 *STANDING -22.003800	G -22.003800	R**2 = 0.8125 R**2 = 0.8896 R**2 = 0.9004
REGRESSION EQUATIONS FOR CALF Z MOMENT CALF Z MOMENT = 0.006279 *W CALF Z MOMENT = 0.045091 *S CALF Z MOMENT = 0.005253 *W	OR CALF Z MOMENT = 0.006279 *WEIGHT = 0.045091 *STANDING = 0.005253 *WEIGHT	-0.366041 -2.447107 +0.008599 *STANDING	G -0.792265	R**2 = 0.8423 R**2 = 0.7456 R**2 = 0.8470
REGRESSION EQUATIONS FOR FOOT Z MOMENT FOOT Z MOMENT = 0.000680 *W FOOT Z MOMENT = 0.005213 *S FOOT Z MOMENT = 0.000342 *W	<pre>DR FOOT Z MOMENT = 0.000680 *WEIGHT = 0.005213 *STANDING = 0.000342 *WEIGHT</pre>	-0.031023 -0.279382 +0.002840 *STANDING	s0.171776	R**2 = 0.7643 R**2 = 0.7704 R**2 = 0.8036
REGRESSION EQUATIONS FOR FOOT Y MOMENT FOOT Y MOMENT = 0.003810 *W FOOT Y MOMENT = 0.030630 *S FOOT Y MOMENT = 0.000920 *W	DR FOOT Y MOMENT = 0.003810 *WEIGHT = 0.030630 *STANDING = 0.000920 *WEIGHT	-0.199205 -1.690426 +0.024242 *STANDING	-1.400724	R**2 = 0.6925 R**2 = 0.7683 R**2 = 0.7752

REGRESSION EQUATIONS FOR FOOT X MOMENT	EQUATIONS	FOR	FOOT X MOME	NT				
FOOT X MOMENT	INT	N	0.003966	*WEIGHT	-0.201562			R**2 = 0.7064
FOOT X MOMENT	INT.		0.031694	*STANDING	-1.740607			R**2 = 0.7744
FOOT X MOMENT	TN	H	0.001088	*WEIGHT	+0.024139	+0.024139 *STANDING	-1.397969	R**2 = 0.7836
REGRESSION EQUATIONS FOR UPPER ARM	EQUATIONS	FOR		X MOMENT				
UPPER ARM X MOMENT	MOMENT	H	0.014407	*WEIGHT	-1.124170			R**2 = 0.8534
UPPER ARM X MOMENT	MOMENT	N	0.102891	*STANDING	-5.859214			R**2 = 0.7471
UPPER ARM X MOMENT	MOMENT	N	0.012455	*WEIGHT	+0.016378	*STANDING	-1.935950	R**2 = 0.8567
REGRESSION EQUATIONS FOR UPPER ARM	EQUATIONS	FOR	JPPER ARM Y	MOMENT				t
UPPER AKM I MOMENT TIDDED ADM V MOMENT	MOMENT	N N	659610.0 ACOOLL 0	*STANDINC				R##2 = 0.7355 b##7 = 0.7355
UPPER ARM Y MOMENT	MOMENT		0.014648	TH913W*	+0.008278 *STANDING	*STANDING	-1.664030	
REGRESSION EQUATIONS FOR UPPER ARM	EQUATIONS	FOR 1		Z MOMENT				
UPPER ARM Z MOMENT	MOMENT	N	0.003008	*WEIGHT	-0.243573			R**2 = 0.7795
UPPER ARM Z MOMENT	MOMENT	Ħ	0.019116	*STANDING	-1.066814			$R^{*+2} = 0.5403$
UPPER ARM Z MOMENT	MOMENT	H	0.004244	*WEIGHT	-0.010361	*STANDING	+0.269960	R**2 = 0.8068

BWT = 0.008108 *WEIGHT -0.490309 R**2 R**2 = BWT = 0.005150 *WEIGHT +0.024805 *STANDING -1.719764 R**2 = BWT = 0.005150 *WEIGHT +0.024805 *STANDING -1.719764 R**2 = BWT = 0.005150 *WEIGHT +0.024805 *STANDING -1.719764 R**2 = UNTIONS FOR PORTANK MOMENT -0.008330 *WEIGHT +0.023708 *STANDING -1.682993 R**2 = R**2 E E R**2 E	REGRESSION EQUATIONS	FOR	FOR FOREARM X MOMENT					
DING -3.342158 R**2 HT +0.024805 *STANDING -1.719764 R**2 HT -0.507917 R**2 R**2 DING -3.416692 R**2 R**2 HT -0.507917 R**2 R**2 HT -0.507917 R**2 R**2 HT -0.023708 *STANDING -1.682993 R**2 HT +0.023708 *STANDING -1.682993 R**2 R**2 HT +0.023708 *STANDING -1.682993 R**2 R**2 R**2 HT -0.03312 *STANDING +0.084157 R**2 R	FOREARM X MOMENT	H		-0.490309				
HT +0.024805 *STANDING -1.719764 R**2 = R**2 = DING -3.416692 *STANDING -1.682993 R**2 = R**2 = HT +0.023708 *STANDING -1.682993 R**2 = R**2 = DING -0.430113 R**2 = R**2 = HT -0.003318 *STANDING +0.084157 R**2 = R**2 = HT -0.003318 *STANDING -0.226637 R**2 = R**2 = DING -0.352180 R**2 = DING -0.352180 R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 = R**2 = R**2 = R**2 = R**2 = R**2 = DING -0.352180 R**2 =	FOREARM X MOMENT	N		-3.342158				
HT -0.507917 HT -0.023708 *STANDING -1.682993 HT +0.023708 *STANDING -1.682993 R**2 = HT -0.080312 DING -0.430113 HT -0.003318 *STANDING +0.084157 HT -0.003318 *STANDING +0.084157 R**2 = R**2 = R**2 = R**2 = R**2 = R**2 = H**2 = H**2 = H**2 =	FOREARM X MOMENT	Ħ		+0.024805	*STANDING	-1.719764		
DING -3.416692 *STANDING -1.682993 R**2 = HT +0.023708 *STANDING -1.682993 R**2 = HT -0.080312 DING -0.430113 HT -0.080318 *STANDING +0.084157 R**2 = HT -0.003318 *STANDING +0.084157 R**2 = HT -0.017110 HT -0.017110 HT -0.017110 HT +0.004227 *STANDING -0.226637 R**2 =	REGRESSION EQUATIONS FOREARM Y MOMENT	POR -	FORTARM Y MOMENT 0.008330 *WEIGHT	-0.507917			R**2 = 0.8418	
HT +0.023708 *STANDING -1.682993 R**2 = HT -0.080312 DING -0.430113 HT -0.003318 *STANDING +0.084157 R**2 = HT -0.003318 *STANDING +0.084157 R**2 = HT -0.017110 HT -0.017110 HT -0.017110 HT +0.004227 *STANDING -0.226637 R**2 =	FOREARM Y MOMENT	N		-3.416692				
HT -0.080312 DING -0.430113 HT -0.003318 *STANDING +0.084157 HT -0.003318 *STANDING +0.084157 R**2 = HT -0.017110 HT -0.017110 HT +0.004227 *STANDING -0.226637 HT +0.004227 *STANDING -0.226637 R**2 =	FOREARM Y MOMENT	W		+0.023708	*STANDING	-1.682993		
 0.001633 *WEIGHT -0.003318 *STANDING +0.084157 0.001633 *WEIGHT -0.003318 *STANDING +0.084157 0.001633 *WEIGHT -0.003318 *STANDING +0.084157 8**2 = 0.001633 *WEIGHT -0.003318 *STANDING 0.000903 *WEIGHT -0.017110 0.000903 *WEIGHT -0.017110 0.006996 *STANDING -0.352180 0.000399 *WEIGHT +0.004227 *STANDING -0.226637 	REGRESSION EQUATIONS	POR	FOREARM Z MOMENT	CIE080 0-			R**2 = 0.7807	
 0.001633 *WEIGHT -0.003318 *STANDING +0.084157 R**2 = 0.001633 *WEIGHT -0.003318 *STANDING +0.084157 R**2 = 0.000903 *WEIGHT -0.003318 *STANDING -0.226637 R**2 = 0.000399 *WEIGHT +0.004227 *STANDING -0.226637 R**2 = 	FUREARM & MOMENT	4 14		-0.430113				
FOR HAND X MOMENT = 0.000903 *WEIGHT -0.017110 = 0.006996 *STANDING -0.352180 = 0.000399 *WEIGHT +0.004227 *STANDING -0.226637 R**2 =	FOREARM Z MOMENT	N		-0.003318	*STANDING	+0.084157		
 C.000903 *WEIGHT -0.017110 C.006996 *STANDING -0.352180 C.000399 *WEIGHT +0.004227 *STANDING -0.226637 R**2 = 	REGRESSION EQUATIONS	FOR	HAND X MOMENT					
<pre>main a contend of a contend a c</pre>	HAND X MOMENT	¥		-0.017110			H	
C.000399 *WEIGHT +0.004227 *STANDING -0.226637	HAND X MOMENT	W		-0.352180				
	HAND X MOMENT	N		+0.004227	*STANDING	-0.226637		

REGRESSION EQUATIONS FOR HAND Y MOMENT	ONS FOR	HAND Y MOMENT				
HAND Y MOMENT	M	0.000736 *WEIGHT	-0.013369			R**2 = 0.6358
HAND Y MOMENT	N	0.005787 *STANDING	-0.292308			R**2 = 0.6741
HAND Y MOMENT	M	0.000270 *WEIGHT	+0.003913	*STANDING	-0.207325	R**2 = 0.6888
REGRESSION EQUATIONS FOR HAND Z MOMENT	ONS FOR	HAND Z MOMENT				
HAND Z MOMENT	Ħ	0.000290 *WEIGHT	-0.006137			R**2 = 0.7508
HAND Z MOMENT	H	0.002093 *STANDING	-0.102979			R**2 = 0.6714
HAND Z MOMENT	N	0.000235 *WEIGHT	+0.000459	+0.000459 *STANDING	-0.628883	R**2 = 0.7564
REGRESSION EQUATIC	ONS FOR	REGRESSION EQUATIONS FOR FOREARM PLUS HAND X MOMENT	MOMENT			
FOREARM + HAND X MOMENT=	MOMENT=	0.025793 *WEIGHT	-1.226292			R**2 = 0.7960
FOREARM + HAND X MOMENT=	MOMENT ≈	0.198665 *STANDING	*STANDING -10.713900			R**2 = 0.8106
FOREARM + HAND X MOMENT=	MOMENT=	0.012263 *WEIGHT	+0.113484	+0.113484 *STANDING	-6.850978	R**2 = 0.8415
REGRESSION EQUATIC	ONS FOR	REGRESSION EQUATIONS FOR FOREARM PLUS HAND Y MOMENT	GOMENT			
FOREARM + HAND Y MOMENT=	MOMENT=	0.025638 *WEIGHT	-1.215490			R**2 = 0.7976
FOREARM + HAND Y MOMENT=	MOMENT=	0.197470 *STANDING	*STANDING -10.645990			R**2 = 0.8122
FOREARM + HAND Y MOMENT=	MOMENT=	0.012191 *WEIGHT	+0.112791	*STANDING	-6.805867	R**2 = 0.8431

			-0.002988 *STANDING +0.058323
HOMENT	-0.089792	-0.550339	-0.002988 *S
FOREARM PLUS HAND Z N	0.001576 *WEIGHT	0.010433 *STANDING	0.001932 *WEIGHT
REGRESSION EQUATIONS FOR FOREARM PLUS HAND Z MOMENT	FOREARM + HAND Z MOMENT= 0.001576 *WEIGHT	FOREARM + HAND Z MOMENT= 0.010433 *STANDING	FOREARM + HAND Z MOMENT= 0.001932 *WEIGHT

R**2 = 0.7937 R**2 = 0.5971 R**2 = 0.8022

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX D VOLUME REGRESSION EQUATIONS

This appendix contains a complete listing of the segment volume regression equations developed for the adult human female and the adult human male options. The regression equations are based on human stereophotometric volume data (McConville, et al., 1980; Young, et al., 1983). The predicting variables are weight (1b) and standing height (in). The predicted segment volumes are in cubic inches. At the top of each set of regression equations are listed the range of values, mean, and standard deviation of the predicting variables within that subject type option. For the volume of each segment, a separate regression equation is given against each of the predicting variables. The last regression equation is a multiple regression equation based on both predicting variables. With each regression equation, the coefficient of determination (R^2) is given. The regression equations are based on 46 female subjects and 31 male subjects.

VOLUME
SEGMENT
FEMALE
FOR ADULT
QUATIONS
REGRESSION E

200.00
85.00
RANGE :
NE I GHT

THOI SW	RANGE :	85.00	200.00	MEAN:	127.30	s.D.:	16.590
STANDING HEIGHT	RANGE:	56.93	72.05	MEAN:	63.82	s.D.:	2.364

REGRESSION EQUATIONS FOR PELVIS VOLUME

PELVIS VOLUME		6.726632 *WEIGHT -329.739300	-329.739300	R**2 = 0.8796
PELVIS VOLUME	Ħ	20.382420 *STANDING -675.801500	-675.801500	R**2 = 0.0581
PELVIS VOLUME	#	7.259390 *WEIGHT	-15.130090 *STANDING +555.627400	R**2 = 0.9061

REGRESSION EQUATIONS FOR ABDOMEN VOLUME

$R^{*2} = 0.1825$	R**2 = 0.0423	R**2 = 0.3596
		-17.626310 *STANDING+1008.704000
-22.733250	*STANDING +669.115500	-17.626310
*WEIGHT	*STANDING	*WEIGHT
1.381251	-7.833098	2.001907
H		H
ABDOMEN VOLUME	ABDOMEN VOLUME	ABDOMEN VOLUME

REGRESSION EQUATIONS FOR THORAX VOLUME

THORAX VOLUME	M		+75.115720		$R^{**2} = 0.8692$
THORAX VOLUME	N	35.735550 *STANDING -	*STANDING -1159.42000		$R^{**2} = 0.1484$
THORAX VOLUME	H	7.344659 *WEIGHT	-0.194087 *STANDING +86.472870	+86.472870	R**2 = 0.8692

i

|

REGRESSION EQUATIONS FOR NECK VOLUM	FOR	NECK VOLUME					
NECK VOLUME	Ħ	0.128394	*WEIGHT	+26.857100			R**2 = 0.2260
NECK VOLUME	H	1.911736	*STANDING	-76.406010			R**2 = 0.3607
NECK VOLUME	*	0.073788	*WEIGHT	+1.550769	*STANDING	-63.889100	R**2 = 0.4224
REGRESSION EQUATIONS FOR HEAD VOLUM	FOR	HEAD VOLUME					
HEAD VOLUME	N	N	*WEIGHT	+200.341900			R**2 = 0.2018
HEAD VOLUME	N	1.134469		*STANDING +165.596000			R**2 = 0.0267
HEAD VOLUME	N	0.271286	*WEIGHT	-0.192644	*STANDING	-0.192644 *STANDING +211.614900	R**2 = 0.2025
REGRESSION EQUATIONS FOR THIGH VOLU	POR	THIGH VOLUME					
THIGH WOLUME	N	4.303679 *WEIGHT	*WEIGHT	+7.249268			R**2 = 0.8300
THIGH VOLUME	H	28.505460 *STANDING	*STANDING	-1195.84300			R**2 = 0.2621
THIGH VOLUME	N	3.986669	*WEIGHT	+9.002912	*STANDING	+9.002912 *STANDING -519.573000	R**2 = 0.8517
REGRESSION EQUATIONS FOR CALF VOLUME	FOR	CALF VOLUME					
CALF VOLUME	N	1.181796	*WEIGHT	+24.553420			R**2 = 0.7279
CALF VOLUME	N	7.057509	*STANDING	-256.930700			R**2 = 0.1868
CALF VOLUME	H		*WEIGHT	+1.541819	*STANDING	-65.669080	R**2 = 0.7352

FOOT VOLUME	101 PJ		1.821366 0.091837	1.821366 *STANDING 0.091837 *WEIGHT	-74.274540 +1.372106	74.274540 +1.372106 *STANDING	-58.695980	R**2 = 0.5001 R**2 = 0.6463
RECRESSION EQUAT	RECRESSION EQUATIONS FOR UPPER ARM	or u	PPER ARM VO	VOLUME	-13 68633 0			D**2 = 0 0243
UPPER ARM VOLUME	VOLUME	• •	3.988159	*STANDING	3.988159 *STANDING -158.182600			R**2 = 0.3243 R**2 = 0.1779
UPPER ARM VOLUME	NOLUME	N	0.762054 *WEIGHT	*WEIGHT	+0.260234	+0.260234 *STANDING	-28.913310	R**2 = 0.9250
REGRESSION	REGRESSION EQUATIONS FOR FOREARM VOLUME	OR F	OREARM VOLU	æ				
FOREARM VOLUME	LUME	N	0.368884 *WEIGHT	*WEIGHT	+4.717636			$R^{++2} = 0.7614$
FOREARM VOLUME	LUME	N	1.873929	1.873929 *STANDING	-62.260620			R**2 = 0.1414
FOREARM VOLUME	LUME	N	0.365933 *WEIGHT	*WEIGHT	+0.083808 *STANDING	*STANDING	-0.186533	$R^{*+2} = 0.7616$

	R**2 = 0.4192	R**2 = 0.1765	R**2 = 0.4468
			+0.216218 *STANDING -1.107230
			*STANDING
	+11.545190	-10.828770	+0.216218
		0.496572 *STANDING -10.828770	*WEIGHT
AND VOLUME	0.064923 *WEIGHT	0.496572	0.057309 *WEIGHT
FOR H	N	N	N
REGRESSION EQUATIONS FOR HAND VOLUM	HAND VOLUME	HAND VOLUME	HAND VOLUME

R**2 = 0.7521 R**2 = 0.1616 R**2 = 0.7543		
-1.277008		
LE +16.262700 -73.074510 +0.299737 *STANDING		
DREARM PLUS HAND VOLUME 0.433808 *WEIGHT + 2.370267 *STANDING - 0.423253 *WEIGHT		
REGRESSION EQUATIONS FOR FOREARM PLUS FOREARM + HAND VOLUME = 0.433808 FOREARM + HAND VOLUME = 2.370267 FOREARM + HAND VOLUME = 0.423253		
	95	

REGRESSION EQUATIONS FOR ADULT MALE SEGMENT VOLUME

PREDICTING VARIABLES

WEIGHT	RANGE:	118.00	264.00	MEAN :	173.60	s.D.:	21.440
STANDING HEIGHT	RANGE:	62.17	77.64	MEAN:	69.82	s.D.:	2.437

REGRESSION EQUATIONS FOR PELVIS VOLUME

REGRESSION EQUATIONS FOR ABDOMEN VOLUME

	R**2 = 0.2698	R**2 = 0.1745	R**2 = 0.2873
			-3.565218 *STANDING +190.109500
	+13.403290	*STANDING -182.934400	-3.565218
	*WEIGHT	*STANDING	*WEIGHT
	0.759174	4.660814	1.184239
	N	H	H
r	ABDOMEN VOLUME	ABDOMEN VOLUME	ABDOMEN VOLUME

REGRESSION EQUATIONS FOR THORAX VOLUME

R**2 = 0.9522	R**2 = 0.7745	R**2 = 0.9526
		-3.479255 *STANDING +30.167790
		*STANDING
-142.278600	-3114.55300	-3.479255
*WEIGHT	*STANDING -3114.55300	4 *WEIGHT
9.568200	65.865370	9.983014
N	M	N
THORAX VOLUME	THORAX VOLUME	THORAX VOLUME

REGRESSION EQUATIONS FOR NECK VOLUME

R**2 = 0.5468	R**2 = 0.3883	R**2 = 0.5613
		.407520
		-0.850014 *STANDING +57.407520
+15.277530	1.825996 *STANDING -63.947340	-0.850014
*WEIGHT	*STANDING	*WEIGHT
0.283901 *WEIGHT	1.825996	0.385245 *WEIGHT
H	H	N
NECK VOLUME	NECK VOLUME	NECK VOLUME

REGRESSION EQUATIONS FOR HEAD VOLUME

	R**2 = 0.1628	R**2 = 0.1643	R**2 = 0.1712
			ING +171.398700
	*WEIGHT +223.758300	STANDING +131.907200	+1.056407 *STANDING +171.398700
	0.251318 *WEIGHT	1.927238 *STANDIN	0.125367 *WEIGHT
	H	H	N
1	HEAD VOLUME	HEAD VOLUME	HEAD VOLUME

REGRESSION EQUATIONS FOR THIGH VOLUME

$R^{**2} = 0.9117$	R**2 = 0.8089	R**2 = 0.9171
		+4.771981 *STANDING -214.339100
WEIGHT +22.178710	*STANDING -1095.67700	+4.771981
- 3.366777 *WEIGHT	24.206470 *STANDING	2.797834 *WEIGHT
N	N	N
THIGH VOLUME	THIGH VOLUME	THIGH VOLUME

REGRESSION EQUATIONS FOR CALF VOLUME

R**2 = 0.8473	R**2 = 0.8298	R**2 = 0.8785
		+4.429010 *STANDING -198.275400
+21.243680	8 *STANDING -426.461700	+4.429010 *
6 *WEIGHT	*STANDING	4 *WEIGHT
1.252436	9.460768	0.724384
H	N	H
CALF VOLUME	CALF VOLUME	CALF VOLUME

POOT VOLUME		0.291110 *WEIGHT 2.257187 *STANDI 0.128008 *WEIGHT	0.291110 *WEIGHT 2.257187 *STANDING 0.128008 *WEIGHT	+9.215927 -98.911440 +1.368013	+9.215927 98.911440 +1.368013 *STANDING	-58.588170	R**2 = 0.7735 R**2 = 0.7981 R**2 = 0.8238
REGRESSION EQUATIONS FOR UPPER ARM	FOR L		VOLUME				
UPPER ARM VOLUME	H	0.757131 *WEIGHT	*WEIGHT	-10.831830			R**2 = 0.8642
UPPER ARM VOLUME	H	5.123630	*STANDING	5.123630 *STANDING -239.858200			R**2 = 0.6793
UPPER ARM VOLUME	N	0.851218 *WEIGHT	*WEIGHT	-0.789154	*STANDING	-0.789154 *STANDING +28.281800	R**2 = 0.8670
REGRESSION EQUATIONS FOR FOREARM VOLUME	FOR	OREARM VOLU	Me				
FOREARM VOLUME	10	0.451460 *WEIGHT	*WEIGHT	+6.405045			R**2 = 0.8453
FOREARM VOLUME	8	3.096293	*STANDING	3.096293 *STANDING -133.036500			R**2 = 0.6825
FOREARM VOLUME	N	0.478980 *WEIGHT	*WEIGHT	-0.230826	*STANDING	-0.230826 *STANDING +17.845720	R**2 = 0.8460

R**2 = 0.7538 R**2 = 0.7023 R**2 = 0.7672 -4.428604 +0.299688 *STANDING +10.425090 -31.637040 0.899664 *STANDING 0.122105 *WEIGHT 0.086374 *WEIGHT REGRESSION EQUATIONS FOR HAND VOLUME H HAND VOLUME HAND VOLUME HAND VOLUME

	+16.831
VOLUME	
HAND	0.573555 *WEIGHT
SUJI	3555
IN EQUATIONS FOR FOREARM PLUS HAND VOLUME	0.57
FOR	
ATIONS	TOT INT
	UNAH
NOI	+
REGRESSION	AMILION CINEN + MARIAGO

R**2 = 0.8482	R**2 = 0.7069	R**2 = 0.8483
		60
		+13.2419
		*STANDING
+16.831600	3.996506 *STANDING -164.711900	+0.072425 *STANDING +13.241960
*WEIGHT	*STANDING	*WEIGHT
0.573555 *WEIGHT	3.996506	0.564920 *WEIGHT
N	Ħ	*
POREARM + HAND VOLUME	FOREARM + HAND VOLUME	FOREARM + HAND VOLUME
FOREARM +	FOREARM +	FOREARM +

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX E

ANTHROPOMETRIC TERMS AND LANDMARK DESCRIPTIONS

Abduct: to move from the axis of the body or one of its parts.

Acromiale Landmark (right and left): the most lateral point on the lateral margin of the acromial process of each scapula--a point on the tip of each shoulder.

Acomion: same as acromiale.

Ankle Landmark: the level of the minimum circumference of the ankle as established by measuring. Proximal to the malleoli (rounded bony prominences on either side of ankle).

Anterior: pertaining to the front of the body; as opposed to posterior.

Anterior Superior Iliac Spine (right and left) (females): the inferior point of each anterior superior iliac spine of the ilium.

Anterior Superior Iliac Spine (right and left) (males): the most prominent point of each anterior superior iliac spine of the ilium.

Axilla: the arm pit.

Biceps Landmark: the level of maximum bulge of the tensed biceps when the arm is bent to a right angle.

Biceps Circumference Landmark: same as biceps landmark.

Brow Ridges: the bony ridges of the anterior forehead which lie above the orbits of the eye.

Bustpoint Landmarks: most anterior protrusion of the right bra pocket.

Buttock Landmark: the maximum posterior protrusion of the right buttock.

Calf Landmark (right and left): the level of the maximum circumference of the calf as established by measurement.

Cervicale: the superior tip of the spine of the 7th cervical vertebra. (The protrusion of the spinal column at the base of the neck.)

Clavicale (right and left): The point on the most imminent prominence of the superior aspect of the medial end of each clavicle.

Dactylion: the tip of the middle finger.

Distal: the end of a body segment farthest from the head; opposed to proximal.

Epicondyle: bony eminence at the distal end of the humerus and femur.

Extend: to move adjacent segments so that the angle between them is increased as when the leg is straightened; opposite of flex.

Femoral Epicondyle, Lateral (right and left): the lateral point on the lateral epicondyle of each femur.

Femoral Epicondyle, Medial (right and left): the medial point on the medial epicondyle of each femur.

Temur: the thigh bone.

Flex: to move a joint in such a direction as to bring together the two parts which it connects, as when the elbow is bent.

Forearm Landmark: a level one tape width (6mm) distal to the crotch of the elbow with the elbow flexed 90 degrees.

Frankfort Plane: the standard horizontal plane or orientation of the head. The plane is established by a line passing through the right tragion and the lowest point of the right orbit (eye socket).

Glabella: the most anterior point of the forehead between the brow ridges in the midsagittal plane.

Gluteal Furrow: the furrow at the juncture of the buttock and thigh.

Humeral Epicondyle, Lateral (right and left): the lateral point on the lateral epicondyle of each humerus with the arm in the anatomical position.

Humeral Epicondyle, Medial (right and left): the medial point on the medial epicondyle of each humerus with the arm in the anatomical position.

Humerus: the upper arm bone.

Hyperextend: to overextend a limb or part of the body.

Ilium: the upper one of three bones composing either lateral half of the pelvis.

Inferior: below in relation to another structure; lower.

Lateral: lying near or toward the sides of the body; opposed to

medial.

Lower Arm Circumference Landmark: the level of maximum circumference of the tensed lower arm when the arm is bent to a right angle.

Malleolus, Lateral (right and left): the most lateral point on the lateral bony protrusion of each ankle.

Malleolus, Medial (right and left): the most medial point on the medial bony protrusion of each ankle.

Medial: lying near or towards the midline of the body; opposed to lateral.

Menton: the point of the tip of the chin in the midsagittal plane.

Metacarpal: pertaining to the long bones of the hand between the wrist and the phalanges.

Metatarsal: pertaining to the long bones of the foot between the tarsus and the phalanges.

Midpatella: a point one-half the distance between the superior and inferior margins of the patella.

Midsag': tal Plane: the vertical plane which divides the body into right and left halves.

Neck Landmarks: at the level of the juncture of the neck with the shoulders. This level is established by laying a string tie or a tape around the base of the neck.

Occiput: a bone forming the posterior base of the skull.

Omphalion: the level of the midpoint of the naval.

Patella: the kneecap.

Phalanges: the bones of the fingers and toes.

Popliteal: pertaining to the area of the back of the leg directly behind the knee.

Posterior: pertaining to the back of the body; as opposed to anterior.

Posterior Superior Iliac Midspine: the point on the mid-spine made at the level of the posterior superior iliac spines. A dimple often indicates the site of this iliac spine.

Proximal: the end of a body segment nearest the head; opposed to distal.

Radial Styloid (right and left): the distal end of each radius.

Radiale: the uppermost point on the lateral margin of the head of the radius.

Radius: the bone of the forearm on the thumb side of the arm.

Scapula: the shoulder blade.

Scye: a tailoring term to designate the armhole of a garment. Refers here to landmarks which approximate the lower level of the axilla.

Stylion: same as radial styloid.

Superior: above in relation to another structure; higher.

Suprapatella: the superior point on the patella while it is in the relaxed position.

Symphysion (females): the anterior point in the midsagittal plane on the notch of the superior border of the pubic symphysis, the anterior juncture of the pelvic bones.

Symphysion (males): the lowest point on the superior border of the pubic symphysis, the anterior juncture of the pelvic bones.

Tenth Rib: the inferior point on the inferior border of the lowest of the two tenth ribs. The midspine landmark is made at this level but marked on the midspine.

Tibiale: the uppermost point of the medial margin of the tibia (shin bone).

Tragion (right and left): the point located at the notch just above the tragus of each ear. This point corresponds to the upper edge of the ear hole.

Tragus: the small cartilaginous flap of flesh in front of the ear hole.

Trochanterion (right and left): the superior point on the greater trochanter of each femur.

Ulna: one of the bones of the forearm on the little finger side of the arm.

Ulnar Styliod (right and left): the most distal point of each ulna.

Vertex: the top of the head.

Waist Landmark: the level established by the subject placing an elastic tape around her "natural waist".

Wrist Landmark (females): the level of the extension of the radial stylion point across the anterior surface of the forearm perpendicular to the long axis of the forearm.

Wrist Landmark (males): the level of minimum circumference of the wrist just above (toward the elbow) the bony prominences on each side of the wrist.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX F ANTHROPOMETRY DESCRIPTIONS

Appendix F contains a description of each body dimension required by GEBODIII given in the order as referenced by the program. Neither the 1967 nor the 1968 USAF anthropometric survey included all the needed measurements. When a needed measurement was not taken from a survey, that measurement was derived from available measurements. A description of the available measurements is given. Since hand depth was not measured in the 1968 USAF female survey, refer to the male description. The first set of descriptions are for the adult human female and are taken directly from the 1968 survey report, Clauser, et al. (1972). The second set of descriptions are for the adult human male and are taken directly from the 1967 survey report, Grunhofer and Kroh (1975).

ADULT HUMAN FEMALE ANTHROPOMETRY DESCRIPTIONS

The number in parentheses following each description is the number by which this variable is identified in the original 1968 USAF survey.

- 0. WEIGHT: Subject stands on scales (nude or wearing lightweight undergarments) with feet parallel and weight distributed equally on both feet. (2)
- STANDING HEIGHT: Subject stands erect, head in the Frankfort plane, heels together, and weight distributed equally on both feet. With the arm of the anthropometer firmly touching the scalp, measure the vertical distance from the standing surface to the top of the head. (7)
- 2. SHOULDER HEIGHT: Subject stands erect looking straight ahead, heels together, and weight distributed equally on both feet. With an anthropometer, measure the vertical distance from the standing surface to the right acromiale landmark. (10)
- 3. ARMPIT HEIGHT: Measurement derived by subtracting Scye Circumference divided by π from Shoulder Height (see above).

Scye Circumference: Subject stands erect looking straight ahead. The right arm is abducted sufficiently to allow placement of a tape into the axilla. With a tape passing through the axilla, over the anterior and posterior-vertical scye landmarks and over the right acromiale landmark, measure the circumference of the scye. The axillary tissue is not compressed. (53)

4. WAIST HEIGHT: Subject stands erect looking straight ahead,

heels together, and weight distributed equally on both feet. With an anthropometer, measure the vertical distance from the standing surface to the anterior waist landmark. (13)

- 5. SEATED HEIGHT: Subject sits erect, head in the Frankfort plane, upper arms hanging relaxed, forearms and hands extended forward horizontally. With the anthropometer arm firmly touching the scalp, measure the vertical distance from the sitting surface to the top of the head. (23)
- 6. HEAD LENGTH: Subject sits. With a spreading caliper, measure in the midsagittal plane the maximum length of the head between the glabella landmark and the occiput. (96)
- 7. HEAD BREADTH: Subject sits. With a spreading caliper measure the maximum horizontal breadth of the head above the level of the ears. (97)
- 8. HEAD TO CHIN HEIGHT: Subject stands under the headboard looking straight ahead. The headboard is adjusted so that its vertical and horizontal planes are in firm contact with the back and the top of the head. Positioning the head in the Frankfort plane and using the special gauge, measure the vertical distance from the horizontal plane to the menton landmark. (104)
- 9. NECK CIRCUMFERENCE: Subject sits erect, head in the Frankfort plane. A piece of dental tape is placed around the neck, passing over all four neck landmarks. The measurer marks off with her thumbnail a length of tape corresponding to the subject's neck circumference, and then measures this tape segment with a standard tape. (36)
- 10. SHOULDER BREADTH: Subject sits erect looking straight ahead, upper arms hanging relaxed, forearms and hands

extended forward horizontally. With a beam caliper, measure the distance between the acromiale landmarks. (63)

- 11. CHEST DEPTH: Subject stands erect looking straight ahead, heels together, and weight distributed equally on both feet. With a beam caliper, measure the horizontal depth of the function at the level of the bustpoint landmarks. The reading is made at the point of maximum quiet inspiration. (74)
- 12. CHEST BREADTH: Subject stands erect looking straight ahead with arms slightly abducted. With a beam caliper, measure the horizontal distance across the trunk at the level of the bustpoint landmarks. (74)
- 13. WAIST DEPTH: Subject stands erect looking straight ahead, arms at sides, heels together, and weight distributed equally on both feet. With a beam caliper, measure the horizontal depth of the trunk at the level of the waist landmarks. The reading is made at the point of maximum quiet inspiration. The subject must not pull in her stomach. (75)
- 14. WAIST BREADTH: Subject stands erect looking straight ahead with arms slightly abducted. With a beam caliper, measure the horizontal breadth across the trunk at the level of the waist landmarks. (67)
- 15. BUTTOCK DEPTH: Subject stands erect, heels together and weight distributed equally on both feet. With a beam caliper, measure the horizontal depth of the trunk at the level of the buttock landmark. (77)

- 16. HIP BREADTH, STANDING: Subject stands erect, heels together and weight distributed equally on both feet. With a beam caliper, measure the maximum horizontal breadth of the hips. (68)
- 17. SHOULDER TO ELBOW LENGTH: Subject stands erect looking straight ahead and with arms relaxed. With a beam caliper held parallel to the long axis of the right upper arm, measure the distance from the acromiale landmark to the radiale landmark. (31)
- 18. FOREARM-HAND LENGTH: Measurement derived by summing Radiale-Stylion Length and Hand Length (see below).

Radiale-Stylion Length: Subject stands erect with arms relaxed. With a beam caliper held parallel to the long axis of the right forearm, measure the distance from the radiale landmark to the stylion landmark. (32)

- 19. BICEPS CIRCUMFERENCE: Subject stands with right arm slightly abducted. With a tape held in a plane perpendicular to the long axis of the upper arm, measure the circumference of the arm at the level of the biceps landmark. (55)
- 20. ELBOW CIRCUMFERENCE: Subject stands, right upper arm raised so that its long axis is horizontal, elbow flexed 90 degrees, fist tightly clenched and biceps strongly contracted. With a tape passing over the tip and through the crotch of the elbow, measure the circumference of the elbow. (59)
- 21. FOREARM CIRCUMFERENCE: Subject stands erect with right arm slightly abducted and hand relaxed. With a tape held in a

plane perpendicular to the long axis of the forearm, measure the circumference of the arm at the level of the forearm landmark. (60)

- 22. WRIST CIRCUMFERENCE: Subject stands with right arm slightly abducted. With a tape held in a plane perpendicular to the long axis of the forearm and hand, measure the circumference of the wrist at the level of the stylion landmark. (62)
- 23. KNEE HEIGHT, SEATED: Measurement derived by summing Knee Circumference (see below) divided by 2π and Tibiale Height.

Tibiale Height: Subject stands erect, heels together, and weight distributed equally on both feet. With an anthropometer, measure the vertical distance from the standing surface to the tibiale landmark on the right leg. (18)

- 24. THIGH CIRCUMFERENCE: Subject stands erect, heels approximately 10 cm apart, and weight distributed equally on both feet. With a tape held in a plane perpendicular to the long axis of the right thigh measure the circumference of the thigh at the level of the lowest point on the gluteal furrow. Where the furrow is deeply indented, the measurement is made just distal to the furrow.
- 25. UPPER LEG CIRCUMFERENCE: Measurement derived by summing the Thigh Circumference (45) (see above) and the Knee Circumference (46) (see below) and dividing the sum by two to obtain the average.
- 26. KNEE CIRCUMFERENCE: Subject stands erect, heels approximately 10 cm apart, and weight distributed equally on both feet. With a tape held in a plane perpendicular to the long axis of the right leg, measure the circumference of the

knee at the level of the midpatella landmark. The subject must not tense her knee during the measurement. (46)

- 27. CALF CIRCUMFERENCE: Subject stands erect, heels approximately 10 cm apart, and weight distributed equally on both feet. With a tape held in a plane perpendicular to the long axis of the right lower leg, measure the circumference of the calf at the level of the calf landmark. (47)
- 28. ANKLE CIRCUMFERENCE: Subject stands erect with weight distributed equally on both feet. With a tape held in a plane perpendicular to the long axis of the right lower leg, measure the circumference of the leg at the level of the ankle landmark. (49)
- 29. ANKLE HEIGHT, OUTSIDE: Subject stands with weight distributed equally on both feet. With the special measuring block, measure the vertical distance from the standing surface to the lateral malleolus landmark on the right leg. (21)
- 30. FOOT BREADTH: Subject stands erect, right foot in the measuring box, left foot on a board of equal height, and weight distributed equally. The right foot is positioned so that its long axis is parallel to the side of the box, the heel touches the rear of the box, and the media. metatarsalphalangeal joint touches the widest part of the foot, measure on the scale of the box the breadth of the foot. (95)
- 31. FOOT LENGTH: Subject stands erect, right foot in the measuring box, left foot on a board of equal height, and weight distributed equally. The right foot is positioned so that its long axis is parallel to the side of the box, the heel touches the rear of the box, and the medial metatarsal-

phalangeal joint touches the side of the box. With the measuring block touching the tip of the most protruding toe, measure on the scale of the box the length of the foot. (94)

- 32. HAND BREADTH: Subject sits, right forearm and hand raised with palm down. The fingers are together and straight but not hyper-extended. With a sliding caliper, measure the irreadch of the hand between metacarpal-phalangeal joints II and V. (92)
- 33. HAND LENGTH: Subject sits, right forearm and hand raised with palm up. The fingers are together and straight but not hyper-extended. With the bar of a sliding caliper parallel to the long axis of the hand, measure the distance from the wrist landmark to the dactylion. (91)

ADULT HUMAN MALE ANTHROPOMETRIC DESCRIPTIONS

The number in parentheses following each description is the number by which this variable is identified in the original 1967 USAF survey.

- 0. WEIGHT: Subject is nude. The scale is read to the nearest pound. (2)
- STANDING HEIGHT: Subject stands erect with head in the Frankfort plane. With the anthropometer arm touching the scalp, measure the vertical distance from the standing surface to the top of the head. (13)
- 2. SHOULDER HEIGHT: Subject stands erect. Using the anthropometer, measure the vertical distance from the standing surface to the right acromiale landmark. (15)
- 3. ARMPIT HEIGHT: Measurement derived by subtracting Scye Circumference divided by π from Shoulder Height (see above).

Scye Circumference: Subject stands, his right arm initially raised, and then lowered after the tape is in place. Measure the circumference of the scye with the tape placed as high as possible in the right armpit and passing vertically over the shoulder. (103)

- 4. WAIST HEIGHT: Subject stands erect, his head in the Frankfort plane. Using an anthropometer, measure the distance from the standing surface to the omphalion landmark. The subject must not pull in his stomach. (21)
- 5. SEATED HEIGHT: Subject sits erect, his head in the Frankfort plane, his upper arms hanging relaxed, and his

forearms and hands extended forward horizontally. Using an anthropometer, measure the vertical distance from the sitting surface to the top of the head. (32)

- 6. HEAD LENGTH: Subject sits. With a spreading caliper, measure the maximum length of the head between the glabella and the occiput in the midsagittal plane. (150)
- 7. معتبد EADTH: Subject sits. Holding the spreading caliper near the tips, measure the maximum breadth of the head in a line perpendicular to the midsagittal plane. (156)
- 8. HEAD TO CHIN HEIGHT: Subject stands comfortably under the headboard with his head oriented in the Frankfort plane. The headboard slide is then adjusted so that its wall and ceiling surfaces are in firm contact with the back and vertex of the subject's head. His head is rechecked for orientation and for continued contact at both points. Using the headboard caliper, measure the vertical distance from vertex to the menton landmark. (179)
- 9. NECK CIRCUMFERENCE: Subject stands erect, his head in the Frankfort plane. Holding the tape perpendicular to the long axis of the neck, measure the maximum circumference of the neck, including the Adam's apple. (66)
- 10. SHOULDER BREADTH: Subject sits erect, his head in the Frankfort plane, his arms hanging relaxed, and his forearms and hands extended forward horizontally. Using a beam caliper, measure the horizontal distance between the right and left acromiale landmarks. (50)
- 11. CHEST DEPTH: Subject stands erect, his head in the Frankfort plane. With a beam caliper, measure the horizontal depth of the trunk at the level of the nipples.

The reading is made at the point of maximum quiet inspiration. (62)

- 12. CHEST BREADTH: Subject stands erect, his head in the Frankfort plane, and his arms slightly abducted. Using a beam caliper, measure the horizontal distance across the trunk at the level of the nipples. (52)
- 13. WAIST DEPTH: Subject stands erect, his head in the Frankfort plane. Using a beam caliper, measure the horizontal depth of the trunk at the level of the omphalion landmark. The reading is made at the point of maximum quiet inspiration. The subject must not pull in his stomach. (63)
- 14. WAIST BREADTH: Subject stands erect, his head in the Frankfort plane. Using a beam caliper, measure the horizontal distance across the trunk at the level of the omphalion landmark. (53)
- 15. BUTTOCK DEPTH: Subject stands erect, his head in the Frankfort plane. Using a beam caliper, measure the horizontal depth of the trunk at the level of maximum protrusion of the buttocks. (64)
- 16. HIP BREADTH, STANDING: Subject stands erect, feet together. Using a beam caliper, measure the horizontal distance across the widest portion of the hips. (55)
- 17. SHOULDER TO ELBOW LENGTH: Subject sits erect, his head in the Frankfort plane, his arms hanging relaxed, and his forearms and hands extended forward horizontally. Using a beam caliper, measure the vertical distance from the right acromiale landmark to the bottom of the elbow (olecranon process). (42)

18. FOREARM-HAND LENGTH: Measurement derived by adding the Elbow-Wrist Length and Wrist Height, and then subtracting Dactylion Height.

> Elbow-Wrist Length: Subject stands erect, his right upper arm hanging at side, his lower arm and mand extended forward horizontally. Using the beam caliper, measure the distance from the tip of the right elbow to the stylion landmark. (44)

Wrist Height: Subject stands erect, his arms hanging naturally at his sides. Using the anthropometer, measure the vertical distance from the standing surface to the stylion landmark on the right wrist. (17)

Dactylion Height: Subject stands erect with his arms hanging at his sides, his elbows fully extended and his fingers pointing to the standing surface. Using the anthropometer, measure the vertical distance from the standing surface to the tip of the right middle finger. (18)

19. BICEPS CIRCUMFERENCE: Measurement derived by summing Biceps Circumference, Extended, Right; Biceps Circumference, Extended, Left; Biceps Circumference, Flexed, Right; and Biceps Circumference, Flexed, Left. This sum is then divided by four to obtain the average.

> Biceps Circumference, Extended, Right: Subject stands erect, his right arm extended with the hand about 30 cm from the side of the body. Holding the tape perpendicular to the long axis of the upper arm, measure the circumference of the arm at the biceps circumference landmark. (104)

Biceps Circumference, Extended, Left: Subject stands erect, his left arm extended with the hand about 30 cm from the side of the body. Holding the tape perpendicular to the long axis of the upper arm, measure the circumference of the arm at the biceps circumference landmark. (105)

Biceps Circumference, Flexed, Right: Subject bends his right arm to about a right angle and makes a fist while holding the upper arm horizontally. Using the tape, measure the circumference of the arm at the biceps circumference landmark. (106)

Biceps Circumference, Flexed, Left: Subject bends his left arm to about a right angle and makes a fist while holding the upper arm horizontally. Using the tape, measure the circumference of the arm at the biceps circumference landmark. (107)

- 20. ELBOW CIRCUMFERENCE: Subject bends his right arm to about a right angle and makes a fist while holding the upper arm horizontally. With the tape passing over the tip and through the crotch of the elbow, measure the circumference of the elbow. (109)
- 21. FOREARM CIRCUMFERENCE: Subject stands, his right elbow extended and his hand about 30 cm from the side of the body. Holding the tape perpendicular to the long axis of the arm, measure the circumference of the arm at the level of the lower arm circumference landmark. (110)
- 22. WRIST CIRCUMFERENCE: Subject stands, his right elbow extended, with the hand about 30 cm from the side of the body. Holding the tape perpendicular to the long axis of

the lower arm, measure the circumference of the wrist at the level of the wrist landmark. (112)

- 23. KNEE HEIGHT, SEATED: Subject sits with his feet resting on a surface adjusted so that the knees are bent at about right angles. Using an anthropometer, measure the vertical distance from the footrest surface to the suprapatella landmark on the right knee. (37)
- 24. THIGH CIRCUMFERENCE: Subject stands with his legs slightly apart. Holding the tape in a plane at right angles to the long axis of the right leg at the level of the lowest point on the gluteal furrow, measure the circumference of the upper thigh. (96)
- 25. UPPER LEG CIRCUMFERENCE: Subject stands erect. Holding a tape in a horizontal plane, measure the circumference of the knee at the level of the center of the relaxed patella. (98)
- 26. KNEE CIRCUMFERENCE: Subject sits erect, his feet resting on a surface so that the knees are bent at about right angles. With the tape passing under the popliteal area of the right leg and brought up at about a 45-degree angle over the knee, measure the maximum circumference of the right knee. (99)
- 27. CALF CIRCUMFERENCE: Subject stands with legs slightly apart. Holding a tape in a plane perpendicular to the long axis of the leg, measure the maximum circumference of the right calf. (100)
- 28. ANKLE CIRCUMFERENCE: Subject stands with legs slightly apart. Holding a tape in a plane perpendicular to the long axis of the leg, measure the minimum circumference of the right ankle. (102)

- 29. ANKLE HEIGHT, OUTSIDE: Subject stands with his right foot slightly forward and his weight equally distributed on both feet. Touch the measuring-block scale against the lateral side of the foot and measure the height of the landmark indicating the minimum circumference of the right ankle. (31)
- 30. FOOT BREADTH: Subject stands with his right foot in the foot box, the foot just touching the side and rear walls, its long axis parallel to the side wall, and his weight equally distributed on both feet. With the block touching the widest part of the foot, measure foot width from the side wall, using the scale on the floor of the box. (127)
- 31. FOOT LENGTH: Subject stands with his right foot in the foot box, the foot just touching the side and rear walls, its long axis parallel to the side wall, and his weight equally distributed on both feet. With the block touching the tip of the longest toe, measure foot length from the rear wall, using the scale on the floor of the box. (125)
- 32. HAND BREADTH: Subject sits with his right hand resting on a table, palm up, fingers extended and together. The thumb is held away from the hand. Using the sliding caliper, measure the maximum breadth from Metacarpale II to Metacarpale V. (136)
- 33. HAND LENGTH: Subject sits with his right hand resting flat on a table, palm up, fingers extended and together. With the bar of the sliding caliper parallel to the long axis of the hand, measure the distance from the wrist landmark to the tip of the longest finger. (134)
- 34. HAND DEPTH: Subject's right hand is held palm down with fingers extended and together, narrow profile towards the

measurerer. Maintaining light pressure on the spreading caliper, measure the thickness of the hand at the metacarpal-phalangeal joint of the third finger. (140)

APPENDIX G SUMMARY STATISTICS

The summary statistics given in Appendix G lists, for each variable (in alphabetical order), the mean, standard deviation (STD), a measure of symmetry in distribution (SKEW), a measure of kurtosis in distribution (KURT), the coefficient of variation (CV), minimum dimensional value (MIN), and the maximum dimensional value (MAX). The 1968 USAF survey statistics are based on N = 1905; the 1967 USAF survey statistics are based on N = 2420. Weight is expressed in pounds and all other dimensional values are expressed in inches. The statistics for both surveys were obtained using the Anthropometric Data Base at the Center for Anthropometric Research Data (Robinson, Robinette, and Zehner, 1989). The computational methods used to calculate these statistics can be found in Clauser, et al. (1972). The symmetry statistic (skewness) as given in that reference is subtracted from 3.00, so that a symmetric distribution approaches a skewness value of 0.0 rather than 3.0.

SUMMARY STATISTICS 1968 USAF FEMALES

VARIABLE NAME	MEAN	STD	SKEW	KURT	cv	MIN	MAX
ANKLE CIRC	8.29	.50	.26	05	6.11	6.8	10.0
ANKLE HT, OUTSIDE	2.66	.23	.04	.23	8.67	1.9	3.4
BICEPS CIRC	10.08	.90	.62	1.04	8.96	7.6	14.7
BUTTOCK DEPTH	8.32	.70	.54	.95	8.46	6.3	12.0
CALE CIRC	13.44	.88	.25	.29	6.58	10.5	17.5
CHEST BREADTH	11.02	.75	.47	.39	6.84	8.7	14.1
CHEST DEPTH	9.30	.75	.66	.71	8.17	7.2	12.7
ELBOW CIRC	10.62	.70	.26	.31	6.61	8.4	14.0
FOOT BREADTH	3.49	.19	.26	.55	5.61	2.7	4.3
FOOT LENGTH	9.47	.44	.12	14	4.69	8.2	10.8
FOREARM CIRC	9.24	.54	.38	.63	5.87	7.7	11.8
HAND BREADTH	2.97	.15	01	.03	5.16	2.4	3.4
HAND LENGTH	7.23	.37	.25	.02	5.22	6.0	8.6
HEAD BREADTH	5.71	.23	.11	.16	4.10	4.9	6.7
HEAD LENGTH	7.24	.26	.03	05	3.69	6.4	8.1
HEAD TO CHIN HT	8.62	.44	.15	.31	5.20	7.2	10.5
HIP BR, STANDING	13.76	.87	.39	.44	6.34	11.2	17.3
KNEE CIRC	14.29	.89	.45	.44	6.24	12.0	17.9
NECK CIRC	13.28	.66	.30	.11	4.97	11.2	15.7
RADIALE-STYLION LTH	9.20	.53	.14	.03	5.85	7.5	11.0
SCYE CIRC	14.60	.90	.42	.64	6.17	11.2	19.2
SEATED HEIGHT	33.70	1.24	.08	14	3.70	29.6	37.9
SHOULDER BREADTH	14.11	.64	.09	.19	4.57	12.1	16.3
SHOULDER HEIGHT	51.91	2.15	.14	21	4.16	45.7	59.8
SHOULDER TO ELBOW L	12.20	.64	02	.02	5.24	9.9	14.3
STANDING HEIGHT	63.82	2.36	.16	22	3.70	56.9	72.0
TIBIALE HEIGHT	16.52	.93	.22	.02	5.66	13.4	19.5
THIGH CIRC	21.83	1.66	.32	.42	7.61	17.1	28.3
WAIST BREADTH	9.49	.76	.52	.55	8.02	7.4	12.8
WAIST DEPTH	6.69	.65	1.14	2.42	9.83	5.1	10.0
WAIST HEIGHT	39.48	1.77	.15	14	4.49	34.3	45.4

SUMMARY STATISTICS 1968 USAF FEMALES (CONTINUED)

VARIABLE NAME	MEAN	STD	SKEW	KURT	CV	MIN	MAX
WEIGHT	127.28	16.59	.64	.86	13.03	85.0	200.0
WRIST CIRC	5.88	.27	.26	.14	4.76	4.9	6.9

SUMMARY STATISTICS 1967 USAF MALES

VARIABLE NAME	MEAN	STD	SKEW	KURT	CV	MIN	MAX
ANKLE CIRC	8.82	.49	.19	.12	5.64	7.1	10.5
ANKLE HT, OUTSIDE	5.40	.45	.36	04	8.35	4.0	7.0
BICEPS CIRC, EX, L	11.96	.92	.10	.00	7.70	8.6	15.1
BICEPS CIRC, EX, R	12.12	.92	.12	.00	7.59	9.1	15.2
BICEPS CIRC, FL, L	12.64	.88	.16	.06	6.99	9.9	15.7
BICEPS CIRC, FL, R	12.88	.88	.12	.05	6.90	9.9	16.0
BUTTOCK DEPTH	9.43	.80	.19	.14	8.57	6.7	13.3
CALF CIRC	14.64	.89	.11	.09	6.10	11.8	17.7
CHEST BREADTH	12.90	.83	.34	.24	6.46	10.2	16.3
CHEST DEPTH	9.65	.75	.12	02	7.87	7.5	12.4
DACTYLION HEIGHT	26.44	1.38	.11	07	5.23	22.4	31.0
ELBOW CIRC	12.29	.68	.18	02	5.59	10.1	14.5
ELBOW-WRIST LTH	11.80	.55	.10	.06	4.71	10.0	13.6
FOOT BREADTH	3.84	.19	.31	.20	5.07	3.3	4.6
FOOT LENGTH	10.64	.46	.15	.09	4.40	9.1	12.3
FOREARM CIRC	11.08	.57	.10	07	5.19	9.2	12.8
HAND BREADTH	3.50	.16	.12	04	4.66	2.9	4.0
HAND DEPTH	1.09	.08	.02	.74	7.56	.7	1.4
HAND LENGTH	7.52	.32	.16	.02	4.29	6.5	8.7
HEAD BREADTH	6.14	.21	.13	06	3.48	5.4	6.9
HEAD LENGTH	7.82	.26	.10	.18	3.39	6.8	8.8
HEAD TO CHIN HT	8.96	.40	02	13	4.49	7.5	10.2
HIP BR, STANDING	13.88	.74	.28	.57	5.35	11.2	17.5
KNEE CIRC	15.47	.83	.30	.22	5.40	13.1	19.1
KNEE HT, SEATED	21.95	.98	.09	.03	4.46	18.7	25.2
NECK CIRC	15.09	.75	.29	.19	4.98	12.8	17.7
SCYE CIRC	19.03	1.09	.08	.00	5.76	15.9	23.3
SEATED HEIGHT	36.68	1.25	.09	03	3.41	31.8	41.2
SHOULDER BREADTH	16.03	.76	07	.19	4.77	13.3	18.6
SHOULDER HEIGHT	57.16	2.26	.02	08	3.96	50.3	64.7
SHOULDER TO ELBOW L	14.15	.67	.11	05	4.77	12.0	16.8

SUMMARY STATISTICS 1967 USAF MALES (CONTINUED)

·---- ·

VARIABLE NAME	MEAN	STD	SKEW	KURT	CV	MIN	MAX
STANDING HEIGHT	69.81	2.43	.06	14	3.49	62.1	77.6
THIGH CIRC	23.15	1.74	.11	.17	7.54	17.9	29.8
UPPER LEG CIRC	15.22	.81	.19	.28	5.36	12.4	18.9
WAIST BREADTH	12.18	.94	.33	.60	7.72	9 - 2	17.3
WAIST DEPTH	8.78	.85	.37	.37	9.78	6.4	13.2
WAIST HEIGHT	41.91	1.85	.04	06	4.44	36.1	48.7
WEIGHT	173.59	21.45	.31	.09	12.35	117.9	264.0
WRIST CIRC	6.92	.36	.35	.07	5.23	5.9	8.1
WRIST HEIGHT	34.08	1.55	.12	05	4.55	29.6	39.5

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

APPENDIX H EXAMPLE OUTPUT LISTINGS

Appendix H contains an example output listing for the 15 segment configuration, and an example output listing for the 17 segment configuration.

SAMPLE FIFTEEN SEGMENT OUTPUT

ADULT HUMAN MALE

SELE TED BODY DIMENSIONS

WEIGHT	168.5	LB.
STANDING HEIGHT	68.10	IN.

COMPUTED BODY DIMENSIONS

0	WEIGHT	168.5	LB.
1	STANDING HEIGHT	68.10	IN.
2	SHOULDER HEIGHT	55.66	IN.
3	ARMPIT HEIGHT	49.66	IN.
4	WAIST HEIGHT	40.69	IN.
5	SEATED HEIGHT	36.00	IN.
6	HEAD LENGTH	7.783	IN.
7	HEAD BREADTH	6.127	IN.
8	HEAD TO CHIN HEIGHT	8.885	IN.
9	NECK CIRCUMPERENCE	15.06	IN.
10	SHOULDER BREADTH	15.87	IN.
11	CHEST DEPTH	9.635	IN.
12	CHEST BREADTH	12.84	IN.
13	WAIST DEPTH	8.791	IN.
14	WAIST BREADTH	12.11	IN.
15	BUTTOCK DEPTH	9.416	IN.
16	HIP BREADTH, STANDING	13.74	IN.
17	SHOULDER TO ELBOW LENGTH	13.80	IN.
18	FOREARM-HAND LENGTH	19.00	IN.
19	BICEPS CIRCUMFERENCE	12.41	IN.
20	ELBOW CIRCUMFERENCE	12.16	IN.
21	FOREARM CIRCUMFERENCE	11.03	IN.
22	WRIST CIRCUMPERENCE	6.861	IN.
23	KNEE HEIGHT, SEATED	21.36	IN.
24	THIGH CIRCUMFERENCE	23.10	IN.
25	UPPER LEG CIRCUMFERENCE	15.06	IN.
26	KNEE CIRCUMFERENCE	15.30	IN.
27	CALF CIRCUMFERENCE	14.59	IN.
28	ANKLE CIRCUMFERENCE	8.755	IN.
29	ANKLE HEIGHT, OUTSIDE	5.247	IN.
30	FOOT BREADTH	3.794	IN.
31	FOOT LENGTH	10.43	IN.

WEIGHT CORRECTION FACTOR = .963

SAMPLE FIFTEEN SECARAT OUTPUT

CRASH VICTIM PARAMETERS (3-D)

								į						CARDS	5 B.2
8	THEFT	Ľ	WEIGHT	-RINCIPAL (LB-	PAL MOMENT OF (LB-SEC++2-IN)	P INERTIA N)	SEMI	SEGME SEMIAXIS (IN)	SEGMENT CONTACT (IN)	TI	LIPSOID CENTER (IN)	_	PRINC	PRINCIPAL AXES	(DEG)
н	SYM	SYM PLOT	(1.8.)	×	¥	17	×	ч	2	×	Y	12	MVX	FITCH	ROLL
-	1	-4	24.444	. 8965	.8257	1.0458	4.708	6.871	3.548	471	000.	.352	00,	00.	00,
7	ដ	7	5.109	.1431	.0813	.2176	4.396	6.055	3.893	-1.465	000.	411	00.	00.	00.
e	5	ę	51.324	4.1149	3.0331	2.6163	4.817	6.419	6.735	000.	.000	000.	00.	14.40	0 0 [.]
4	2	4	2.242	.0152	.0185	.0231	2.396	2.396	2.977	479	000.	1.719	.00	00 .	00.
ŝ	Ħ	s	9.200	1771.	.2016	.1324	3.892	3.063	5.641	-1.112	.000	.000	00.	36.00	00.
•	RUL	9	20.249	.2453	.2441	.0150	3.037	3.037	11.482	000.	322	.000	00.	00.	00.
2	RLL	7	7.841	4534	.4606	.0565	2.322	2.322	8.752	.929	-1.197	000.	00.	00.	00.
80	R	8	1.953	.0358	.0336	.0066	2.624	1.897	5.216	2.099	697	000.	-4.00	8.40	-6.10
•	Ц	σ	20.249	.2453	.2441	.0150	3.037	3.037	11.482	000.	.322	.000	00.	00.	00.
10	111	<	7.841	.4534	.4606	.0565	2.322	2.322	8.752	.929	1.197	000.	00.	00.	00.
11	LP.	¢۵	1.953	.0358	.0338	.0066	2.624	1.897	5.216	2.099	. 697	000.	4.00	8.40	6.10
12	RUA	υ	4.104	.1065	.1140	.0233	1.975	1.975	6.898	000.	240	000.	00.	00.	00.
13	RLA	۵	3,944	.2453	.2441	.0150	1.756	1.756	9.499	000.	.609	1.187	00.	00.	00.
14	VNT	ш	4.104	.1065	.1140	.0233	1.975	1.975	6.898	000.	.240	000.	00.	00.	00.
13	E	64	3.944	.2453	.2441	.0150	1.756	1.756	9.499	.000	609	1.187	8.	00.	8
•														CARD	CARDS B.3

-	NIOL	F		LOCA	(NI)NOII	- SEG(JNT)	LOCATI	- (NI)NO	- SEG(J+1)	JOINT AX	- (DEC) -		JOINT AXI	- (930)S	EG(J+1)
ŗ	SYM	FLOT	TNC	Y NId	¥	2	×	¥	2	AAW E	PITCH	ROLL	MAY	PITCH	ROLL
	p. ,	Σ	1	-1.40	00.		-2.30	00.		00.	00.	00.	00.	5.00	8.
2	3	2	2 0	-1.75	00.		36	8.		00.	00.	00.	00.	5.00	<u>.</u>
e	UP	0	о Е	31	00,		-1.00	00.		00.	00.	00.	00.	10.00	00.
4	ΗP	A 1	•	1.15	00.		. 26	00.		00.	00.	00.	00.	10.00	00.
ŝ	RH	o	1	54	2,14		26	-1.93		0 0 [.]	00.	00.	00.	-45.00	00.
9	RK	2	6 1	25	.37		.69	60		00.	00.	00.	0 0.	60.00	00.
1	B	ø	7 0	.37	75	9.36	1.35	35	-2.73	00.	00.06	00.	00.	10.00	00.
8			1 0	54	-2.14		26	1.93		00.	00.	00.	00.	-45,00	00.
6		n	9	25	37		.69	.60		00.	00.	00.	00.	60.00	00.
10		>	10	.37	.75		1.35	.35		00.	90.00	00.	00.	10.00	00.
11		3	30	97	6.47		.53	24		00.	00.	00.	00.	-4.10	00.
12		×	12 1	63	41		- 48	.30		00.	00.	00.	00.	-70.00	00.
13		¥	3 0	97	-6.47		.53	.24		00.	00.	00.	00.	-4.10	00.
4		2	14 1	63	14.		48	30		00.	00.	00.	00.	-70.00	00.

JOINT TORQUE CHARACTERISTICS

JOINT TO	JOINT TORQUE CHARACTERISTICS	ICS								CARDS B.4
	ali	FLEXURAL SPRING	SPRING CHARACTERISTICS	ISTICS		T	TORSIONAL SPRING CHARACTER STICS	ING CHARACTE	RISTICS	
	COEF		/DEG**J)	ENERGY	JOINT	SPRING CC LINEAR	SPRING COEF. (IN.LB. LINEAR DIADRAFIC	/DEG**J) CUBIC	ENERGY DISSIPATION	JOINT
INTOC	(1-1)	(J=2)	(J=3)	COEF.		(]-1)	(]=2)	(]=3)	COEF.	(DEC)
6 -	UUU	10 000	000	700	20.000	000.	10.000	000.	.700	5.000
E + 	000	10,000	000	700	20.000	.000	10.000	000.	.700	35.000
	000	5.000	000	700	25,000	000.	10.000	000.	.700	35.000
	000	5.000	000	700	25.000	000.	10.000	000.	.700	35.000
Ha v	000	10.000	000	.700	70.000	000.	.800	000.	.700	40.000
	000	1.800	000	, 700	60.000	000.	000.	000.	000.	.000
NR V	000	7.000	000	. 700	35.000	.000	10.000	000.	.700	26.000
A LH	000	10.000	000	.700	70.000	000.	.800	000.	.700	40.000
	000	1.800	000	, 700	60.000	000.	000.	000.	000	.000
	000	7.000	000	.700	35.000	000.	10.000	000.	.700	26.000
	000	10.000	000		122.500	000.	10.000	000.	.700	65.000
12 BF	000	1.800	000	.700	70.000	000	000.	000.	000.	.000
	000	10.000	000	. 700	22.500	.000	10.000	000.	.700	65.000
	000	1.800	000.	.700	70.000	000.	000	000.	.000	.000
										CARDS B.5
		.,	JOINT VISC	JOINT VISCOUS CHARACTERISTICS AND LOCK-UNLOCK CONDITIONS	RISTICS AND	LOCK-UNLOCI	CONDITIONS			
	VISCOUS	COULONS		FULL FRICTION	MAX TORQUE FOR		MIN TORQUE FOR	MIN. ANG	MIN. ANG. VELOCITY POP INI OCKED JOINT	IMPULSE RESTITUTION
	COEFFICIENT (IN.LB. SEC./DEG)	FRICTION COLF.		DEG/SEC.)	A LUCALD JU		(IN.LB.)	(RAD)	(RAD/SEC.)	COEFFICIENT
64 +1	.100	00.	30	30.00	9.	00	00.		00	00.
2 M	.140	8 .	30	30.00	Ū,	, 00	8.		00.	8.
3 NP	.100	8.	30	30.00		00.	8.		8.	9.8
4 BP	.100	8 .	30	30.00		00.	8.		8.8	8.8
5 RH	.100	8.	30	30.00		00	8.		8.8	

TNIOC	VISCOUS COEFFICIENT (IN.LB. SEC./DEG)	COULONS FRICTION COEF.	FULL FRICTION ANGULAR VELOCITY (DEG/SEC.)	MAX TORQUE FOR A LOCKED JOINT (IN.LB.)	MIN TORQUE FOR UNLOCKED JOINT (IN.LB.)	MIN. ANG. VELOCITY FOR UNLOCKED JOINT (RAD/SEC.)	IMPULSE RESTITUTION COEFFICIENT
р -		00	30,00	00.	00.	00.	00.
4 3 4 c	•	8.9	30.00	8	.00	00`	00.
• •		00	30.00	00	8.	00.	00.
		00	30.00	00.	00.	00.	00.
	100	8	30.00	00.	00.	00.	0.
A RK		00.	30.00	8.	<u>8</u> .	00.	00.
2		00.	30.00	8.	00.	00.	00.
R.I. R		00.	30.00	0.	00.	00.	00.
		8	30.00	8 .	00.	00.	00.
		00.	30.00	00.	0 0 [.]	00.	00.
		00.	30.00	8.	00 [.]	00.	8
		00.	30.00	00.	00 .	00.	00.
		00.	30.00	0.	00.	00.	0 0'
14		00.	30.00	00.	00.	00.	00.

SECRET INTEGRATION CONVERGENCE TEST INPUT

	VICTIV	LAR VELOCITIES	LTIES	LINEAR	AR VELOCITIES	TIES	WINSNY	ANGULAR ACCELERATIONS	ATIONS	LINEAR	R ACCELERATIONS	SNOIT
		(RAD/SEC.)	~		IN./SEC.)		a	AD/SEC. **	5)	E	N./SEC.**	<u>.</u>
SECRET	MAG.	ABS.	REL.	MAG.	ABS.	REL.	MAG.	ABS.	REL.		ABS.	REL.
NO. SYM	TEST	ERROR	ERROR	ISII	ERROR	ERROR	TEST	ERROR	ERROR	TEST	ERROR	ERROR
1 LT	.010	.010	.0100	.010	.010	.0100	.100	.100	. 1000	.100	. 100	.0100
2 CI	.010	.010	.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	.0000
5 55	.010	.010	.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	.0000
*	.010	.010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	.0000
5 8	.010	.010	.0100	000.	000.	0000.	.100	. 100	.1000	000.	000.	.0000
6 RUL	.010	010.	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
7 RLL	.010	.010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	.0000
8 RF	.010	.010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	.0000
b LUL	.010	.010	.0100	000'	000	.0000	.100	.100	.1000	000.	000.	.0000
10 LLL	.010	.010	.0100	000	000.	.0000	.100	.100	.1000	000.	000.	0000.
11 LF	.010	.010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
12 RUA	.010	.010	.0100	000.	000.	. 0000	.100	.100	.1000	000.	000.	0000.
13 RLA	.010	.010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
14 LUA	.010	.010	.0100	000.	000.	.0000	.100	. 160	.1000	000.	000.	0000.
15 LLA	.010	.010	.0100	000	000.	.0000	.100	.100	.1000	000.	.000	.0000

CARDS B.6

SAMPLE SEVENTEEN SEGMENT OUTPUT

ADULT HUMAN MALE

SELECTED BODY DIMENSIONS

WEIGHT	168.5	LB.
STANDING HEIGHT	68.10	IN.

COMPUTED BODY DIMENSIONS

0	WEIGHT	168.5	LB.
1	STANDING HEIGHT	68.10	IN.
2	SHOULDER HEIGHT	55.66	IN.
3	ARMPIT HEIGHT	49.66	IN.
4	WAIST HEIGHT	40.69	IN.
5	SEATED HEIGHT	36.00	IN.
6	HEAD LENGTH	7.783	IN.
7	HEAD BREADTH	6.127	IN.
8	HEAD TO CHIN HEIGHT	8.885	IN.
9	NECK CIRCUMFERENCE	15.06	IN.
10	SHOULDER BREADTH	15.87	IN.
11	CHEST DEPTH	9.635	IN.
12	CHEST BREADTH	12.84	IN.
13	WAIST DEPTH	8.791	IN.
14	WAIST BREADTH	12.11	IN.
15	BUTTOCK DEPTH	9.416	IN.
16	HIP BREADTH, STANDING	13.74	IN.
17	SHOULDER TO ELBOW LENGTH	13.80	IN.
18	FOREARM-HAND LENGTH	19.00	IN.
19	BICEPS CIRCUMFERENCE	12.41	IN.
20	ELBOW CIRCUMFERENCE	12.16	IN.
21	FOREARM CIRCUMFERENCE	11.03	IN.
22	WRIST CIRCUMFERENCE	6.861	IN.
23	KNEE HEIGHT, SEATED	21.36	IN.
24	THIGH CIRCUMFERENCE	23.10	IN.
25	UPPER LEG CIRCUMFERENCE	15.06	IN.
26	KNEE CIRCUMFERENCE	15.30	IN. IN.
27	CALF CIRCUMFERENCE	14.59	
28	ANKLE CIRCUMFERENCE	8.755	IN.
29	ANKLE HEIGHT, OUTSIDE	5.247	IN.
30	FOOT BREADTH	3.794	IN.
31	FOOT LENGTH		IN.
32	HAND BREADTH	10.43	IN.
33	HAND LENGTH	3.460	IN.
34	HAND DEPTH	7.374	IN.
~ -	div val Lil	1.077	IN.

WEIGHT CORRECTION FACTOR = .963

SAMPLE SEVENTEEN SECRENT OUTPUT

CRASH VICTIM PARAMETERS (3-D)

7.0		DEG)	ROLL	00.	<u>.</u>	<u>.</u>	80.	<u>8</u> .	00.	0 .	-6.10	<u>8</u> .	<u>.</u>	6.10	8.	.	-7.70	8.	8.	7.70
CAKUS B. Z		Ś				14.40														
		PRINCI	YAW PITCH			00.														
			2	.352	411	.000	1.719	.000	000.	.000	.000	.000	.000	000.	.000	000.	.000	.000	.000	000.
	OID	TER (IN)	Y			000.														
	CT ELLIPSOID	CEN	×		-	000.		-												
	ENT CONTAC	~	12	3.548	3.893	6.735	2.977	5.641	11.482	8.752	5.216	11.482	8.752	5.216	6.898	5.812	3.687	6.898	5.812	3.687
	SEGM	AXIS (IN	2 X X			6.419														
		IMAS	×	4.708	4.396	4.817	2.396	3.892	3.037	2.322	2.624	3.037	2.322	2.624	1.975	1.756	. 538	1.975	1.756	.538
	INERTIA	_	2	1.0458	.2176	2.6163	.0231	.1324	.0150	.0565	.0066	.0150	.0565	.0066	.0233	1110.	.0035	.0233	.0111	.0035
	COMENT OF	(LB-SEC++2-IN)	Y	.8257	.0813	3.0331	.0185	.2016	.2441	.4606	, 0338	.2441	.4606	.0338	.1140	.0716	.0087	.1140	.0716	.0087
	PRINCIPAL 1	(LLB-:	×	.8965	1641.	4.1149	.0152	.1771	.2453	. 4534	.0358	.2453	4534	.0358	.1065	.0698	.0107	. 1065	8690.	.0107
		WEIGHT	(FB .)	24.444	5.109	51.324	2.242	9.200	20.249	7.841	1.953	20.249	7.841	1.953	4.104	2.882	1.062	4.104	2.882	1.062
		SECHENT	I SYM PLOT	1 LT 1	2 CT 2	3 UT 3	4 X 4	5 H 5	6 RUL 6	7 RLL 7	8 RF 8				12 RUA C					

1 22	PIN		LOCATION X	. (NI)N	SEG(JNT) Z	LOCATI	LOCATION(IN) - X Y	- SEG(J+1) Z	JOINT AX WAY	IOINT AXIS(DEG) - YAW PITCH	SEG(JNT) ROLL	WAY WAY	CAN JOINT AXIS(DEG) - 3 YAW PITCH	CARDS B.3 - SEG(J+1) H ROLL
00.	00.	00.		-2.31		-2.30	00.	2.44	00.	00.	00.	00.	5.00	00.
00.	00.	00.		86		36	8.	7.21	00.	00.	00.	00.	5.00	00.
00.	00.	00.		-7.47		-1.00	8.	1.52	00.	00.	00.	00.	10.00	8.
00.	00.	00.		-2.56		.26	00.	2.37	00.	00.	00.	8.	10.00	00.
2.14	2.14	2.14		1.60		26	-1.93	-7.24	00.	00.	0 .	0.	-45.00	00.
.37	.37	.37		9.44		.69	60	-6.61	00.	00.	00.	00.	60.00	8.
75	75	75		9.36		1.35	35	-2.73	00.	90.00	00.	8.	10.00	8.
-2.14	-2.14	-2.14		1.60		26	1.93	-7.24	00.	00.	00.	<u>.</u>	-45.00	<u>8</u> .
37	37	37		9.44		.69	.60	-6.61	00.	00.	00.	00.	60.00	8.
.37 .75 9.36	. 75	. 75		9.36		1.35	.35	-2.73	00.	90.00	00.	00.	10.00	8. 0
6.47	6.47	6.47		-4.19		.53	24	-5.66	00.	00.	00.	00.	-4.10	8.
- 41	- 41	- 41		5.46		51	.22	-4.50	00.	00.	0 .	<u>.</u>	-70.00	00.
00	00	00		6.22		.16	.53	-2.57	00.	00.	00.	8.	00.	8.
-6.47	-6.47	-6.47		-4.19		. 53	.24	-5.66	00.	00.	0 0.	00.	-4.10	00.
.41	.41	.41		5.46		51	22	-4.50	00.	00.	00.	00.	-70.00	00.
00.	00.	00.		6.22		.16	53	-2.57	00.	0 0.	00.	00.	00.	00.

JOINT TORQUE CHARACTERISTICS

			TOTAL STORAGE				ĺ					
		ru.	FLEAURAL SPRING CHARACTERISTICS	G CHAKACTE	KISTICS		Ĥ	TORSIONAL SPRING CHARACTERISTICS	ING CHARACTE	RISTICS		
		SPRING COEP. (INLE		/DEG**J)	ENERGY	TNIOL	SPRING COEF.	EF. (INLB.	/DEG**J)	ENERGY	TNIOL	
g	THIOL	LINEAR	QUADRATIC	CUBIC	DISSIPATION		LINEAR	QUADRATIC		DISSIPATION		
		(1- ſ)	(7-2)	(]=3)	COEF.	(DEG)	(1=1)	(]=2)	(]=3)	COEF.	(DEG)	
-	9 4	000.	10.000	000.	.700	20.000	000.	10.000	000.	. 700	5.000	
1	3	000.	10.000	000.	.700	20.000	000.	10.000	000	.700	35.000	
ŝ	ЧР	000.	5.000	000.	.700	25.000	.000	10.000	000	. 700	35.000	
4	Å H	000.	5.000	000.	.700	25.000	000.	10.000	000.	.700	35.000	
'n	RH	000	10.000	000.	.700	70.000	000.	.800	000	.700	40.000	
9	X	000.	1.800	000.	.700	60.000	000.	.000	000.	000.	000	
~	R	000.	7.000	. 000	. 700	35.000	000	10,000	000	.700	26.000	
80	EI	000.	10.000	000.	. 700	70.000	.000	.800	000.	.700	40.000	
•	ĸ	000	1.800	000.	. 700	60.000	000.	.000	000.	000.	000	
9	1	000.	7.000	.000	.700	35.000	000.	10.000	000.	.700	26.000	
=	RS	000.	10.000	000.	. 700	122.500	.000	10.000	000	.700	65.000	
12	RE	000.	1.800	000.	. 700	70.000	000.	000.	000.	000.	000	
13	7 2	000.	1.800	000.	. 700	35.000	000.	1.800	000.	. 700	45.000	
14	รา	000	10.000	.000	. 700	122.500	000.	10.000	000	700	65.000	
15	31	000.	1.800	000	. 700	70.000	000	000	000	000	000	
16	L W	.000	1,800	000	700	35,000	000	1.800	000	2002	45,000	
					1	•						
											CARDS B.5	
				JOINT VISC	DOUS CHARACT	ERISTICS AN	JOINT VISCOUS CHARACTERISTICS AND LOCK-UNLOCK CONDITIONS	CONDITIONS				
		VISCOUS	COULOMB	FULI	FULL FRICTION	MAX TOROUE FOR		MIN TORQUE FOR	MIN. ANG.	MIN. ANG. VELOCITY	IMPULSE	51
ĝ	TNIOC	COEFFICIENT	E .		ANGULAR VELOCITY	A LOCKED JOINT		UNLOCKED JOINT	FOR UNLOC	FOR UNLOCKED JOINT	RESTITUTION	ION
	-	INLE. SEC./UEG)	(INLB.)		(DEG/SEC.)		INLB.) (INLB.)	(RAD/	(RAD/SEC.)	COEFFICIENT	ENT
1	9 4	.100	00.	30	30.00		.00	00.		00.	00.	
2	3	.100	0 0.	30	30.00		.00	00.		.00	00.	
•	UP	.100	8.	30	30.00		.00	00.		.00	00.	
4	HP	.100	8.	30	30.00		00.	00.		.00	00.	
ŝ	RH	. 100	8.	30	30.00	α. Π	.00	0 0.		.00	00.	
•	X :	.100	00.	30	30.00		00.	00.		.00	00.	
~	2	.100	0 0 ⁻	30	30.00		00.	00.		00.	00.	
•	5	.100	00.	30	30.00		00.	00.		00.	00.	
•	H.	.100	00.	30	30.00		00.	80.		00.	8.	
10	2	.100	00.	30	30.00		.00	00.		00.	00.	
11	RS.	.100	8.	30	30.00		.00	80.		00.	00.	
12	2	.100	8.	30	30,00		00.	00 [.]		00.	00	
EL	2	. 100	8 .	30	30.00		.00	0 0.		.00	°.	
4	LS	.100	<u>8</u> .	30	30.00	-	.00	00.		00.	°.	
13	5	.100	8 [.]	30	30.00		.00	0 0.		00.	00.	
16	E	.100	00.	30	30.00		00.	00.		.00	00.	

CARDS B.4

SECRET INTEGRATION CONVERGENCE TEST INPUT

CARDS B.6

-	ANGULAR VELOC	CITIES) INIT	AR VELOCI	TIES	ANGULA	R ACCELER	ATIONS 2)) TINEA	LINEAR ACCELERATIONS (IN/SEC.**2)	ATIONS 2)
3 22	446. ABS. REL TEST ERROR ERRO	REL. Error	MAG. TEST	MG. ABS. REI FEST ERROR ERRO	REL. Error	MAG. TEST	MAG. ABS. REL. TEST ERROR ERROR	REL.	MAG. TEST	ABS. Error	REL.
5	.010 .010	.0100	.010	.010	.0100	.100	.100	.1000	. 100	.100	.0100
5	10 .010	.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
3		.0100	000.	000.	. 0000	.100	.100	.1000	000.	000.	0000
1		.0100	000.	000.	. 0000	.100	.100	.1000	000.	000.	0000.
Ξ		.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	0000.
5		.0100	000'	000.	.0000	.100	.100	.1000	000.	000.	.0000
Ξ		.0100	000'	000.	0000.	.100	.100	.1000	000.	000	. 0000
5		.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
3		.0100	000.	000.	. 0000	.100	.100	.1000	000.	000.	0000.
3		.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.
5		.0100	.000	.000	. 0000	.100	. 100	.1000	000.	000.	. 0000
5		.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	0000.
5		.0100	000.	.000	. 0000	.100	.100	.1000	000.	000.	0000.
5		.0100	000.	000.	. 0000	.100	.100	.1000	000.	000.	0000.
5		.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	0000.
5		.0100	000.	000.	0000.	.100	.100	.1000	000.	000.	.0000
61		.0100	000.	000.	.0000	.100	.100	.1000	000.	000.	0000.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

REFERENCES

Andriacchi, T. P. and A. B. Strickland, 1983, Gait Analysis as a Tool to Assess Joint Kinetics. Published in <u>Biomechanics of</u> <u>Normal and Pathological Human Articulating Joints</u>, Necip Berme, Ali E. Engin, and Kelo M. Correia da Silva (eds.), Martinus Nijhoff Publishers, 1985, Dordrecht.

Baughman, L. Douglas, 1983, <u>Development of an Interactive</u> <u>Computer Program to Produce Body Description Data</u>, AFAMRL-TR-83-058, Air Force Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Clauser, Charles E., Pearl Tucker, John T. McConville, Lloyd L. Laubach and Joan Reardon, 1972, <u>Anthropometry of Air Force Women</u>, AMRL-TR-70-5 (AD 743 113), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Engin, Ali E. and Shuenn-Muh Chen, 1987, <u>Human Joint Articulation</u> <u>and Motion Resistive Properties</u>, AAMRL-TR-87-011, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Fleck, John T., Frank E. Butler and Norman J. DeLeys, 1982, Validation of the Crash Victim Simulator; Volume 2, Engineerirg Manual - Part II: Validation Effort, DOT-HS-806-280.

Grunhofer, H. J. and G. Kroh, 1975, <u>A Review of Anthropometric</u> <u>Data on German Air Force and United States Air Force Flying</u> <u>Personnel 1967-1968</u>, AGARD-AG-205 (AD A010 674), Advisory Group for Aerospace Research and Development, 7 Rue Ancelle 92200, Neuilly Sur Seine, France.

Kaleps, Ints, Richard P. White, Sr., Robert M. Beecher, Jennifer Whitestone and Louise A. Obergefell, 1988, <u>Measurement of Hybrid</u> <u>III Dummy Properties and Analytical Simulation Data Base</u> <u>Development</u>, AAMRL-TR-88-005, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

McConville, J. T., T. D. Churchill, I. Kaleps, C. E. Clauser and J. Cuzzi, 1980, <u>Anthropometric Relationships of Body and Body</u> <u>Segment Moments of Inertia</u>, AMRL-TR-80-119 (AD A097 238), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Obergefell, Louise A., Thomas R. Gardner, Ints Kaleps and John T. Fleck, 1988, <u>Articulated Total Body Model Enhancements; Volume 2:</u> <u>User's Guide</u>, AAMRL-TR-88-043, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Robinson, Joyce C., Kathleen M. Robinette and Gregory F. Zehner, 1988, <u>User's Guide to Accessing the Anthropometric Data Base at</u> <u>the Center for Anthropometric Research Data (U)</u>, AAMRL-TR-88-012, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Young, Joseph W., Richard F. Chandler, Clyde C. Snow, Kathleen M. Robinette, Gregory F. Zehner and Maureen S. Lofberg, 1983, <u>Anthropometric and Mass Distribution Characteristics of the Adult</u> <u>Female</u>, FAA-AM-83-16, Civil Aeromedical Institute, Federal Aviation Administration, Oklahoma City, Oklahoma.