
* AD-A250 237
/Il i!$ IIfrlliilllli T IC

I,. 'r
WL-TM-92-104 u

DECOMPOSED FUNCTION
CARDINALITY OF SELECTED
LOGISTIC FUNCTIONS

Timothy N. Taylor
WL/AART-2
WPAFB OH 45433-6543

System Concepts Group
Applications Branch
Mission Avionics Division t_

Approved for public release:
Distribution is UnlimitedN l

Avionics Directorate
Wright Laboratory
Wright-Patterson AFB OH 45433-6543

1?9 2 JK .y



FOREWORD

This technical memorandum was prepared by Timothy N. Taylor. This report

documents an experiment in decomposing logistic functions (a set of

functions which belong to the class of chaotic functions) and correlating

their Decomposed Function Cardinality (DFC) with their Lyaponov exponent.

This work was carried out in the System Concepts Group, Applications Branch,

Mission Avionics Division, Avionics Directorate, Wright Laboratory,

Wright-Patterson AFB, Ohio 45433-6543. This study was performed under

work unit 0100AAI3, Pattern Theory 2.

The author wishes to thank Dr Timothy Ross and Mr Michael Noviskey of

WL/AART, Wright-Patterson AFB, Ohio. Additional thanks goes to

Prof Jim Wolper and Ms Christine Yoon.

This Technical Memorandum has been reviewed and approved.

TIMOTHY N.TALOR, 1st LtiJSAF
Electronics Engineer

SyStem Concepts Group

hief, System Concepts Group

Applications Branch

A:OUSN'Q 

Fo r

!AWvti ind/or:DLt i Spoctal



Decomposed Function Cardinality of Selected
Logistic Functions

Timothy Taylor

April 7, 1992

1 Introduction

This memo documents the results of Pattern Theory 2 Task Order 3. The objective
of this task was to decompose a set of logistic functions. In our prior experiments
into the phenomonology of function decomposition (reported on in Pattern Theory:
An Engineering Paradigm For Algorithm Design WL-TR-91-1060), we decomposed a
wide variety of non-chaotic functions. The logistics functions decomposed in this task
represent our first look at the ability of decomposed function cardinality (DFC) to

measure complexity (or patternness) in a chaotic function. For each logistic function
that we decomposed, we also calculated an approximation of the Lyaponov Expo-
nent, a common measure of complexity in chaotic functions, and then computed the
correlation between DFC and the Lyaponov Exponent over all functions.

2 Background

2.1 Introduction to Pattern Theory

Pattern Theory is primarily an approach to solving the basic problem of algorithm
design: to begin with some abstract definition of a function (i.e., a formula, a table
of values, a set of samples, etc.) and to end with a computer algorithm that realizes
that function. It is our contention that what makes this problem solvable is the
existence of some structure in the function that we call 'pattern-ness' and that if
we can automate the process of discovering the underlying pattern in any patterned

function, we can then automate the process of algorithm design.
There is a 'common sense' recognition that patterns occur in many forms: strings,

sequences, images, etc. It seems that patterns are easier to remember, easier to
extrapolate, and, also, easier to describe in a simplified form. This last concept relates
pattern-ness to simplicity, or the inverse of complexity, and it is this concept we have
chosen to focus on for two reasons. Firstly, computational complexity already has
a well developed theory, and, secondly, it is quantifiable. There are many measures



of computational complexity. We feel that the one we've chosen, DFC, captures
the essence of complexity in the sense of patterns. In the above-mentioned TR, the
generality of DFC was supported both theoretically, by relating it to time complexity,
program length, and circuit complexity, and experimentally by decomposing more
than 1000 different functions of various types and different degrees of pattern-ness.

2.2 Function Decomposition

The decomposition of binary functions was first described by R. L. Ashenhurst in
1958. The first textbook on the subject was A New Approach to The Design of

Switching Circuits, by H. L. Curtis published in 1962. By "function", we mean the
traditional mathmatical function: a set of ordered pairs (az,f()) so that for every
x there is exactly one f(x). In general, functions may have more than one variable:
(f(,y,z)). The decomposition of a function is an expression of that function in
terms of a composition of other functions. Suppose

then the RHS is the decomposition of f.
Decomposing binary functions was of particular use in reducing the number of

circuit elements in switching circuit designs in the early 1960's. The method suggested
by Curtis is useful for decomposing functions of five variables or less, but functions
of six variables are difficult to decompose by hand, and functions of seven varibles
or more are intractable. In the summer of 1989, Chris Vogt and Michael Noviskey
design,-d and wrote a program in Ada which can decompose binary functions of up
to ten variables. We refer to it as the Ada Function Decomposer (AFD) and it has
ten versions which each approach the decomposition process with slightly different
heuristics. On the AART VAX 11/780 it takes between half an hour and three hours
to decompose a typical 8 variable function using the fastest version. A ten variable
function might take several days. This program was used to produce the experimental
results presented in this paper.

3 The Logistic Map

The Logistic Map is composed of a group of functions dependent on a constant t
which are of the form:

Ftx.+) =kxi- 4~)

where i is a real number less than 4.0. For any I, an initial value for x can be chosen
between zero and one. Each successive x is then dependent upon the preceeding Z
and is also bounded between zero and one.

For values of p less than 3.0, the sequence will converge to a single point. When
ja is slightly greater than 3.0, the sequence will converge to two points between which

2



1.00 I I

s%..

S0.50 -

0.25 "-

0.00
2,80 3.10 3.40 3.70 4.00

Figure 1: The Logistic Map

it will oscillate. For increasing values of p up to approximately 3.5, the sequence
converges to a fixed number of points (first four and then eight) between which it
oscillates. For .i greater than approximately 3.55, there are regions in which the
sequences are chaotic. Although the values in these chaotic sequences are bounded,
the sequences never converge to any finite number of points. Interestingly, for a
few discrete values of u greater than 3.55, regions of stability again arise where the
sequences will converge to a number of fixed points, but in these 'post-chaos' regions,
the number of fixed points is always odd, rather than being a power of two.

A plot of the two-dimensional 'logistic map' as it is commonly shown is repro-

duced in figure 3. The sequences were produced by choosing an initial z = .25 and
eliminating the first 200 transient terms.

4 The Experiment

There were two considerations in the design of the experiment. The first was, which
particular functions from the logistic map should we choose to decompose? Because
the decomposition process takes a significant amount of time, we had to be fairly
selective in our choice of IL's. The second was, how best should we translate these
sequences of real numbers into binary functions which we can decompose?

After some discussion, we initially chose roughly forty values for 1 which fell into
four general categories:

1. 3.5 to 3.9 at an interval of tenths and one point at 3.99

2. 3.61 to 3.85 at an interval of hundreths

3



3. 3.775 to 3.785 at an interval of thousandths

4. 3.825 to 3.835 at an interval of thousandths

The first group was chosen to give a broad look at the generally increasing com-
plexity in the logistic map. We were primarily concerned with the area of the logistic
map which was chaotic, so values for i less than 3.5 were not used. The second group
was chosen to obtain a finer resolution in the chaotic region. At this point, enough
detail is provided to see variations in complexity within the chaotic region. The last
two groups were chosen specifically to compare the DFCs of the functions in each
tight region to the Lyaponov exponents for functions there. It was known a priori
(and it is obvious from looking at the logistic map) that in the first narrow region
(3.775 to 3.785) the Lyaponov exponent is relatively high, indicating a good deal of
complexity, and also that in the second region (3.825 to 3.835) there is a sudden dip
in the Lyaponov exponent indicating a decrease in function complexity.

Each of these sequences was generated in the same way that the logistic map was
generated: x0 was chosen to be .25, and the first 200 transient terms were eliminated.
A discussion of our confidence that the initial value chosen for z would change the
binary function resulting from the sequence, but would not have an effect on the DFC
of the function, is presented in Appendix B.

We answered the second consideration by using the same general method described
in our Pattern Theory report when we decomposed other (non chaotic) sequences:
The first step was to translate the sequences of real numbers into sequences of binary
numbers. There are several ways to do this; in this case we applied a simple threshold:
if the nth number in the real sequence was greater than .5 then th? nth number in the
binary sequence was chosen to be 1; if the nth number in the real sequence was less
than or equal to .5, the nth number in the binary sequence was chosen to be 0. The
second step then was to translate the binary sequence into a binary function. This was
simply done by allowing each succeeding number in the sequence to be the succesive
output of a function with a number of binary inputs equal to 1092 of the number of
elements in the sequence. We chose to decompose sequences of 256 elements each.
This translated the sequences into functions of eight binary variables where the nth
element in the sequence was defined to be f/(xl,..., xs) where X7 +... + X

° +1 = n.
Although some information is lost by doing this sort of transformation, a rea-

sonable amount of information is still retained. For example, the binary sequence
arising from the logistic function for t = 3.5 is a repetition of '0111', a cluster which
captures the fourness of the double bifurcation at that point in the logistic map. At
around /z = 3.83 the binary sequence becomes a repetition of '011', a similarly simple
cluster which captures the threeness of the logistic map at this point inside the region
of chaos. In other regions where more complexity exists, there are no such simple
analyses of the binary functions; however, there still exists a sense of the movement
from the upper to the lower half of the logistic map.

4



Figure 2: DFC Values vs | for Logistic Map

DFC Values for Logistic Map
V2A

300

260 z F
200

ISO

Ic

3.5 .56 U .6 .6 &7 .75 3.6 8 .66 4

Once these decisions were made, a short program was written in Turbo Pascal
to produce the binary functions corresponding to the chosen values of Ji. The func-
tions were then decomposed using the quickest AFD algorithm. In cases where the
DFC seemed unusually high, a few functions were decomposed again, using a more
exhaustive version.

4.1 The Results

The actual DFC values obtained for each region explored are shown graphically in
the chart included in Figure ??. The first thing to notice is that decompositions were
found for many of the sequences in the chaotic region, thus demonstrating the gener-
ality of DFC as a measure of complexity. It's visually apparent that the complexity
of the logistic map increases as one moves toward the right, and if you follow the
DFC values corresponding to u = 3.5,3.6 ... 3.99 you will notice that they do show a
steady increase. The intervals of hundreths between DFC values give us a fairly clear
picture of the existence of regions of stability within the chaotic region. Although
there is an overall steady increase in DFC with increasing IL, there are some values
of t (notably 3.63, 3.74 and 3.83) where the DFC suddenly drops. A quick glance at
the logistic map will show that these arc the same places where the functionz become
visibly less chaotic.

In Chaotic Dynamics of Nonlinear Systems, S. Neil Rasband suggests that the
Lyaponov exponent is a good indicator of chaos. Our experiments have shown that
there is a strong correlation between the DFC values and the Lyaponov exponent.
The Lyaponov exponent for the logistic map is shown graphically in Figure ??. For
the values of ja chosen in the third group of functions, the Lyapononv Exponent is

5



Figure 3: Lyaponov Exponent vs a for Logistic Map

Lyapunov exponent for Logistic map.
3)000 terms *urnmed. step size - 0.00626

1

0.5 "-

0-

-0.5
-1

3.6 3.7 3.9

fairly stable and relatively high. The average DFC over the region was 224 (87.5
%DFC) and similarly stable. By contrast, for the values of L chosen in the fourth
group, the Lyaponov exponent is low with a sharp dip. The average DFC over the
fourth region was only 118 (46.1 %DFC) and there is also a sharp dip in precisely the
same place: u = 3.832.

In the course of the experiment, 49 different functions were produced and decom-
posed. After the decomposition was complete, we computed an approximation of the
Lyapononv exponent for each value of i and calculated the overall correlation. It was
found to be .904. Further statistical analysis of the relationship between DFC and
the Lyaponov exponent is shown in Figure ??.

The obvious and significant conclusion to be drawn from the experiment is that
DFC is a robusc. measure of complexity for chaotic as well as non-chaotic functions.

p DFC L.E.
3.5 28 -.8656
3.6 164 .1812

3.61 136 .1955
3.62 164 .1997
3.63 64 -.0136
3.64 140 .2284

3.65 140 .2482
3.66 140 .2841
3.67 140 .3070
3.68 188 .3456

Figure 4: DFC and L.E.

6



JA DFC L.E.

3.69 208 .3501
3.70 224 ,3495
3.71 224 .3609
3.72 224 .3632
3.73 224 .3837
3.74 96 -.1041
3.75 224 .3566
3.76 224 .3830
3.77 224 .4033

3.775 224 .3306
3.776 224 .3760
3.777 224 .3922
3.778 224 .3863
3.779 224 .3845
3.78 224 .3985
3.781 224 .4082
3.782 224 .3961
3.783 224 .4132
3.784 224 .4152
3.785 224 .4170
3.79 224 .4262
3.80 224 .4359
3.81 224 .4245
3.82 224 .4325
3.825 224 .4242
3.826 224 .3996
3.827 224 .3510
3.828 196 .3129
3.829 80 -.1703
3.83 80 -.3682
3.831 80 -.6556
3.832 0 -1.325
3.833 80 -.6174

3.834 80 -.4228
3.835 80 -.3090
3.84 80 -.0447
3.85 120 .0082
3.9 256 .4867
3.99 256 .6368

Figure 5: DFC and L.E. continued. Correlation = .90432
7



Appendix 1

It can be easily demonstrated that logistic functions which converge to a
,' puint or a finite and small number of points will exhibit this convergence

regardless of the initial value chosen for c. However, demonstrating that a
chaotic logistic function retains the same degree of complexity, independent
of the initial z, is a little more difficult. When the value of p is sufficiently
great that the function will not converge to any finite sequence, different initial
z 's will always generate completely different infinite sequences. We know that
the Lyapunov exponent, which is a common measure of complexity in chaotic
systems, is completely independent of the initial z, so we felt it would be good
to check whether or not the DFC for any given p was dependent on the initial

We chose p = 3.8 and generated four sequences, using initial z's of 0.25,
0.4, 0.6 and 0.8 and eliminating the first 200 elements. The functions were
named '1og38', log38a', 'log38b' and 'log38c' respectively. The decompositions
are shown on the following pages. Although the functions are dearly different
and chaotic, it is also clear that they decompose to the same cost and in exactly
the same way.



PECIFY FUNCTION TABLE VALUES:
----------------------------

:nter 0 to input from a file, 1 from terminal,
,r 2 to QUIT program: Name of function: How many input variables does the fuicti
;nter decimal equivalent of binary input that has a true value: Enter decima eq
'A 3
)ate:

7 31 1991
unction ame:

.og38a
umber of variables:

8
1 2 3 4 5 6

101101111111111111010110111011011110110111111111101111010101011111101101iI01101111101111010111010101110111111101101111111111111
L0111101iii0ii011110li01111011010101011110101011010101011011101101
1101101111011010111101101111011011110101111011011101110101010101

7ost - 256

3etter decomp found
7 8 10 11 12 9

11110010101111010111111011101001
Cost - 32

1 2 3 4 5 6
0000001101000010010001101000000000000101101011000001010101000011

Cost - 64
1 2 3 4 5 6 i7

0011100010110110101010111111011100000001111010100001101011100011

Cost - 64
1 2 3 4 5 6 1;

0100110101000101011000010101000010010011110011100100010101100011

Cost - 64
Decomposition cost: 224
Node Information:

0 1 2 3 4 5
1 4 0 0 0 0

CPU Time:
90.00

CPU Time:

99.33
Node Information:

0 1 2 3 4 5
1 4 0 0 0 0

SPECIFY FUNCTION TABLE VALUES:

Enter 0 to input from a file, 1 from terminal,
or 2 to QUIT program: Thank you for using the PBML function Decomposer

13-a



OfCIFY ?UNCTION TABLE VALUES:

nter- 0 to input f om a file, I from terminal,
r 2 to QUIT program: Name of function: How many input variables does the fur cti
nter decimal equivalent of binary input that has a true value: Enter decima. eq
A 3
ate:

7 31 1991
unction name:
.og38b
'umber of variables:

8
1 2 3 4 5 6

i111101101011110101011011110101011011101110101111010110101110110
1010110 1113 o101111101110111111110111010101011111110111010110111
1111011011110110111101011011110110111010111011011110101011010101
1101011111011011110110111011010111101110110111101010101110110111

Cost - 256
------------------------------------------------------------------------------ --

Better decomp found
7 8 10 11 12 9

11011100101101111101101111100110
Cost - 32

1 2 3 4 5 6 V
0000110111111111110101100110000101010001010101101110100000101001

Cost - 64
1 2 3 4 5 6 i:

0011001000010011001001100000110101010100001010010100000111010001

Cost - 64
1 2 3 4 5 6 1;

0101011011100101011100001000111001010011101110101011111011110110

Cost - 64
Decomposition cost: 224
Node Information:

0 1 2 3 4 5
1 4 0 0 0 0

CPU Time:
90.97

CPU Time:
100.41

Node Information:
C 1 2 3 4 5
1 4 0 0 0 0

SPECIFY FUNCTION TABLE VALUES:

Enter 0 to input from a file, 1 from terminal,
or 2 to QUIT program: Thank you for using the PBML function Decomposer



P-CIFY FUNCTION TABLE VALUES:

:nter 0 to input f.om a file, 1 from terminal,
,r 2 to QUIT program: Nape of function: How many input variables does the fuicti
:nter decimal equivalent of binary input that has a true value: Enter decima' eq
'A 3
)ate:

7 31 1991
7unction name:
.og38c
iumber of variables:

8
1 2 3 4 56

1010110111011101010111011111101101111111101111101010110111101101
111101011010110111011010111110111011110111010101011110100110111
1011010111011101010110111110101011111111111010110111101011111111
111111101111110110101110111101010110101111o111O1o11011ol11011

Cost - 256

Better decomp found
7 8 10 11 12 9

1101101001110111100111111l1100
Cost - 32

1 3 4 5 6
000000011011001000000001100010111000011000111000oooo1ooooolo

Cost - 64
1 2 3 4 5 6 i

00001010010100101100001000CI000001001010111000111110011110011000

1 2 3 4 5 6 1:
01110110110001011001:OtOl 1O1l00100110000110010111011001010000010

Cost - 64
Decomposition cost: 224
Node Information:

0 1 2 3 4 5
1 4 0 0 0 0

CPU Time:
88.71

CPU Time:
97.82

Node Information:
0 1 2 3 4 5
1 4 0 0 0 0

SPECIFY FUNCTION TABLE VALUES:

Enter 0 to input from a file, 1 from terminal,
or 2 to QUIT program: Thank you for using the PBML function Decomposer


