
Plates! All DTIC reproduct. AD-A250 232
tons will be in black and IiIllllHiIIIIIII

1. A61NCY USE ONLY (Leav e WhV e J W . REPORT DATE .

3/3/92 Fin l 9/15/90 - 9/14/91

-7. 7 IO .. TE.. .

Development and Application of New Algorithms for t // °,f
The Simulation of Compressible Flows with Moving
Bodies in Three Dimensions L"/~

Rainald Lohner " $

Jean Cabello

7. PERFORMING ORGANIZATION NAME(S) ANO ADORESS(ES) S. PERFORMING ORGANIZAtION
REPORT NUMBER

The George Washington
University

School of Engineering and Applied Science AF CR.TR- 0 2 9
Washington, D.C. 20052

9. SPONSORING;MONITORING AGENCY NAME(S) ANO AD (10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

APOSR/NA T I59
Building 410 ELECTE
Bolling AFB, DC 20332-6448 MA, 2 . "'.,9..,

11. SUPPLEMENTARY NOTES C
12a. OISTRISUTIONiAVAILABILITY STATEMENT 12b. DISTRIBUTION COOE

Approved for Public Release
Distribution Unlimited

1 3. ASTR ACT. .,fJA,mum 200 wo,dt)

A new CFD capability for compressible flows with moving bodies was developed.
The salient features of this capability are:
a) Fast and reliable 3-0 unstructured grid generation;
b) Flow solvers for moving frames of reference;
c) Adaptive mesh regeneration during transient runs;
d) On-line display of results; .
e) Post-processing and movie-making capability. -.

92-12949

14. SUSJECT TERMS A~--u/c 1S. NUMBER OF PAGES
~rc T O~~ iz) ~ " '' 16 Plus 5 Append.

(n &S 4-16. PRICE COE

17 SECURITY CLASSIFICATION 18. SECURiTy CLA1SiF CATION III. SECURITY CLASSIFICATiON 10. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFILRD UNCLASSIFED L
!.SN li.0.u? 280-siaO Stancara ;arm 298 (Rov 2 ts9!

2,..e "y A.'4%s l
I4IciI2

It

,. , o

Ac.*toa Toy

TL_

ly-

Final Report for Contract AFOSR-89-0540 IAvailability Codes

veil and/or

Contract Monitor: Dr. Leonidas Sakell :Dist speojal

Prepared by:

Rainald L6hner and Jean Cabello
CMEE/SEAS, The George Washington University

Washington, D.C. 20052

Accomilishments

The work carried out under this contract may be subdivided according to the following
topics:
1) Grid Generation and Pre-Processing;
2) Flow Solvers;
3) Grid Adaptation;
4) Rigid Body Motion;
5) Visualization and Animation;
6) Demonstration Calculation and Results.

The description of the main accomplishments of the present work are listed according
to these topics in the following.

1. GRID GENERATION AND PRE-PROCESSING

All the unstructured grids required for the simulation of compressible flows with moving
bodies were generated using the advancing front technique [1]. At the beginning of
the present contract, we had a working, but slow and unreliable unstructured grid
generator. The following improvements to this original capability were implemented as
part of this grant.

1.1 Reliable 3-D Grid Unstructured Generator: We improved the reliability of the 3-D
grid generator to a point where it could be used for the many regenerations that typi-
cally take place during a transient flow simulation with moving bodies. This significant
increase in reliability was achieved by:

a) not allowing any bad elements during the generation process; and
b) enlarging and remeshing those regions where new elements could not be introduced.

Thus, we first attempt to complete the mesh, skipping those faces that do not give rise
to good elements. If pockets of unmeshed regions remain, we enlarge them somewhat,

and regrid them. This 'sweep and retry' technique has proven extremely robust and
reliable. In fact, the 3-D unstructured grid generator has not failed a single time since
this capability was implemented.

1.2 I ncorporation of Stretching in 3-D Grid Generator: The ability to generate
stretched elements has the potential paynff of order-of-magnitude reductions in the
required number of elements and CPU time. Stretching was taken into account during
all phases of the grid generation process: when generating sides along lines, triangles
on the surfaces, and tetrahedra in the domain. The most difficult of these was the
generation of triangles on surfaces.

1.3 Fast 3-D Grid Generator: A typical CFD run with moving bodies requires many
regriddings. Thus, it may cost as much to advance the flow solver as to regrid. There-
fore, the grid generator has to be made as fast as possible. The following techniques
were used to improve the performance of the advancing front grid generator:

a) Filtering: Typically, the number of close points and faces is far too conservative,
i.e. large. As an example, consider the search for close points: there may be up to
eight points inside an octant, but of these only one may be close to the face to be
taken out. The 'lea is to filter out these 'distant' faces and points in order to avoid
extra work afterwards. While the search operations are difficult to vectorize, these
filtering operations lend themselves to vectorization in a straightforward way, leading
to a considerable overall reduction in CPU requirements.

b) Automatic Reduction of Unused Points: As the front advances into the domain and
more and more tetrahedra are generated, the number of tree-levels increases. This
automatically implies an increase in CPU-time, as more steps are required to reach the
lower levels of the trees. In order to reduce this CPU-increase as much as possible,
all trees are automatically restructured. All points which are completely surrounded
by tetrahedra are eliminated from the trees. This procedure has proven to be ex-
tremely effective. It reduces the asymptotic complexity of the grid generator to less
than O(N log N). In fact, in most practical cases one observes a linear O(N) asymp-
totic complexity, as CPU is traded between subroutine call overheads and less close
faces on average for large problems.

c) Global H-refinement: While the basic advancing front algorithm is a scalar algo-
rithm, h-refinememt can be completely vectorized. Therefore, the grid generation pro-
cess can be made considerably faster by first generating a coarser, but stretched mesh,
and then refining globally this first mesh with classic h-refinement [2]. Typical speed-
ups achieved by using this approach are 1:6 to 1:7.

1.4 Local Remehing: Practical simulations revealed that the appearance of badly dis-
torted elements occurred at a frequency that was much higher than expected from the
element size prescribed. Given the relatively high cost of global remeshing, we explored
the idea of local remeshing in the vicinity of the elements that became too distorted.
Thus, wherever the elements become too distorted, we open up 'holes' in the mesh. We

then recompute the error indicators, and remesh adaptively the 'holes' using the ad-
vancing front method. Typically, only a very small number of elements (< 10) becomes
so distorted that a remeshing is required. Thus, local remeshing is a very economical
tool that has allowed us to reduce CPU-requirements by more than 60% for typical
runs.

1.5 Mesh Smoothing and Optimization: After the advancing grid generator has filled
the region to be meshed with elements, it is advisable to smooth the mesh in order to
improve the element quality further. This not only avoids bad results due to deformed
elements, but also allows larger timesteps to be taken, significantly reducing CPU
requirements. Two different ways of optimizing or smoothing unstructured grids were
explored.

1.5.1 Spring System Analogy with Local Regeneration: The spring system analogy has
been widely used for smoothing unstructured grids. Each side or edge in the mesh is
supposed to represent a spring. Thus, the force acting on each point is given by:

nsi

f, = c (x,-x,) , (1)
j=1

where c denotes the spring constant, xi the coordinates of the point, and the sum
extends over all surrounding points. The time-advancement for the coordinates is
accomplished as follows:

Ax= at-f, (2)
lis,

At the boundary of the domain, Ax = 0. Usually, 3-4 passes over the mesh yield an
acceptable mesh. Unfortunately, this type of smoothing can produce negative elements.
Typically, these are very few compared to the overall number of elements (< 1%). This
makes local remeshing an attractive option. Therefore, we treat these negative elements
as distorted, remove them, and regrid these 'holes' again. To our knowledge, no other
grid generator presently in operation uses smoothing on a routine basis. This has
enabled us to produce the best unstructured grids presently available, as the statistics
clearly show. Figure 1 is an example of such a statistic.

1.5.2 Smoothing via Optimization: The idea here is to state a functional that describes
the optimal mesh. Then, the present mesh is optimized using a Pollak-Ribiere conjugate
gradient algorithm. This technique has been used extensively, and very successfully, for
the optimization of structured grids. However, unlike most finite difference techniques,
it is completely general, and thus can be extended to unstructured grids. Its main
advantage is that it will never give rise to elements with negative Jacobians. This
technique has been described in detail in Refs.[3-5]. Starting from a mesh that was
already smoothed using the spring system analogy, one observes always an increase
in quality. In some cases, this improvement is dramatic, leading to increases in the

MESH QUALITY STATISTICS

Before Mes Improvement

powcentage

46140

Iso'5

4t~ 0m e0 "

O I -I Cd ~tt IIW t

X a 0 10 f0 10 10 10 10 10 10 1.4 111 U 2A 3 34 32 At 491 5 54 54 62 66 7' 7, 1
IWAr-Sn"le WeQ ralos. I

Af. 6 ~ Immunf

I II Ia I

2D Wo

0

W
S 0

O 10 3X 4W 40 70 10 90 100110120 130140 150100 170 14 1.8 2.2 210 3 3 34 ,2 4246 S 54 9 6216 "4 S

Fig I .Mesh Quality Statistic. This Figure Demonstrates the Sinifcant Mesh-Quality

Improvmet Obtaine using the Advanced 3-D Smoothing Algorithm Recently Developed

-p l l

allowable timestep of an order of magnitude [5]. We have included more information
on this optimization technique in Appendix 1-4.

1.6 Mesh Post-Processor: Practical runs show that even after smoothing or otherwise
improving the mesh a few badly distorted elements may still remain. Remember that
in 3-D, where even grids for inviscid flow calculations exceed 1 million tetrahedra, every
small possibility becomes a reality. These badly deformed elements that remain at the
end are removed with a special post-processor [5]. The elements in question are deleted
by collapsing one of their sides and removing one of the points without creating any
elements of worse shape.

1.7 Diasmostics: An extensive suite of diagnostics subroutines that check for input
errors was added to the grid generator. The most common types of errors (double
point definition, unclosed surfaces, surface orientation, surface crossings, incomplete
boundary condition definition, etc.) are checked internally by the grid generator at run-
time. Our experience has been that these diagnostics not only significantly improves
the reliability of the CFD runs, but also reduces problem set-up times considerably by
pointing the user to potential problems.

1.8 PREGEN/PREBACK: During the course of the present effort it became clear
that the error-free problem setup was the most real-time intensive factor of a typical
CFD run with moving bodies. Therefore, a considerable amount of effort was spent in
reducing the burden of specifying the problem to be solved. Two tools were developed
to this end:
1.8.1 PREGEN: PREGEN consists of a suite of subroutines that allows the user to
produce grid generator compatible, error-free input in a faster way. PREGEN not
only allows the user to exercise basic CAD-CAM operations (shrinking, translations,
rotations, surface lofting, etc.), but also eases the merging of several parts of the surface
into one cohesive, well-defined input-file. This allows the merger of files produced by
different users and/or different surface generators. PREGEN has a whole series of built-
in diagnostics to avoid such undesirable features as doubly defined points, isolated
points or lines, badly defined lines or surfaces, etc. PREGEN is highly interactive,
allowing the user to monitor every step during problem set-up in a graphical way.

1.8.2 P A PREBACK generates 3-D background grids by lofting or rotating
a 2-D triangulation. In addition, it allows interactive operations to move background
grid-points around (translation, rotation, shrinking, etc.), as well as to modify the grid-
generation parameters in space (size, shape). By being able to see both the surface-
defining CAD-CAM data and the background grid, the user can quickly generate a
background grid that is suited for the desired distribution of element size, stretching
and stretching directions in 3-D space.

2. FLOW SOLVERS

All the flow solvers used for the present effort are based on finite elements and operate
on unstructured grids. At the beginning of the period of performance, the flow solvers
were based on FEM-FCT techniques [6], and worked on element loops. This type of
flow code has been the workhorse for many of the runs done. In the last half year
we have developed some new flow solvers that were aimed specifically at reducing the
indirect addressing (i/a) cost and the memory requirements. These newer flow codes
are based on an edge data-structure, and use new renumbering techniques to reduce
both the cache-misses as well as to increase the performance on vector machines. The
main accomplishments in this area are detailed in the following.

2.1 ALE Capability: In order to handle the moving frames of reference associated with
the moving finite elements, the partial differential equations need to be modified. This
is most easily accomplished by the Arbitrary Lagrangian-Eulerian (ALE) formulation.
The derivation of the equations may be found in [7]. Here, we just state the final form
of the equations of motion. Given the velocity field w for the elements

w = (w, wwz) , (3)

the Euler equations that describe an inviscid, compressible fluid may be written as

'p(u'-w)p ,p

Pu (u i - W)PU' +P PuZ

puy + (u'-w)pu' =-V.w puy . (4)

puZ (ui - iw)puz PUZ

pe ,t (u - w)pe + u'p pe

Observe that in the case of no element movement (w = 0), we recover the usual Eulerian
conservation-law form of the Euler equations. If, however, the elements move with the
particle velocity (w = v), we recover the Lagrangian form of the equations of motion.
From the numerical point of view, Eqn.(4) implies that all that is required when going
from an Eulerian frane to an ALE-frame is a modified evaluation of the fluxes on the
left-hand side, and the additional evaluation of source-terms on the right-hand side.
These ALE equations were implemented in all the flow solvers used for the present
effort.

2.2 Ede-Based Solvers: A significant reduction in indirect addressing (i/a) costs can
be realized by going from an element to an edge-based data structure for the flow
solver. We developed a new series of edge-based flow solvers. When developing these
new codes, we incorporated all the coding lessons that we learned over the years. The
latest code, FEFLO93, runs at a sustained rate of 115 MFlops on the CRAY-YMP, and
has significantly less Flops per update than the previous code (FEFLO54). At the same

time, i/a costs were reduced by a factor of 3.5. We plan to continue the development
of this new capability in the future, and expect to reduce i/a costs by another factor
of 3 shortly.

2.3 Renumbering Strategies: This development was carried out specifically for machines
with small cache-memory, like the CONVEX or the INTEL hypercubes. The idea is to
still be able to operate in vector-mode, but to avoid large jumps in data accessed. Of
the many techniques explored, the following two were the mosts successful:

2.3.1 Element Renumberinm According to Smallest Point: The elements are renum-
bered according to their smallest point. This technique by itself reduced CPU times
for typical runs by 50% on the IBM RISC-6000/530 for large grids.
2.3.2 Small Group Element Colouring: In order to avoid memory conflicts inside vector-
loops, elements or edges have to be grouped together, or 'coloured'. For a CRAY, the
aim is to achieve as small a number of groups with as large a vector as possible. For
a CONVEX, such a modus operandi will lead to a large number of cache-misses. The
idea is to reduce the vector lengths to 64 or 128, but to operate on local data as much
as possible. This is accomplished by first renumbering according to smallest point, and
then by colouring in small groups, always starting at the beginning.

2.4 Linelets: Any implicit flow solver (and we will need these for Navier-Stokes simu-
lations) requires the solution of a large system of linear equations of the form

Ku = r, (5)

where K is the matrix arising from implicit timestepping, u the desired vector of
unknowns, and r the right hand side vector. The fastest way to solve such large sys-
tems of equations is through the use of unstructured multigrid solvers. They require
good smoothers, as well as efficient intergrid transfer operators. During the present
year, we developed a class of iterative solvers that lie between the complexity of mul-
tiple grids and the excessive memory requirements of direct solvers. Codes based on
structured grids have explored for a long time the useful properties of line-relaxation.
Line-relaxation offers an economical way to circumvent directional stiffness by joining
together neighbors of neighbors along the line. Thus, it offers a practical way to derive
good preconditioneu and smoothers. The concept of lines translates to snakes in the
context of an unstructured grid. The corresponding relaxation scheme to solve Eqn.(5)
becomes

K1 K2 Au = r- Ku. (6)

Here K 1 , K 2 denote the entries of K for the active point-point combinations that define
the snake. Observe that this formulation is not dimensionally consistent. Therefore, a
better formulation is to use

K = D(I + E)D - D(I + E1)(I + E2)DI , (7)

a) Original Discretization

b) Snake

c) Linelets

Figure 2: Snake and Linelets ror a 2-D Discretization
Preferred Direction: (1,0)

where D, E denote the diagonal and off-diagonal entries of K. Thus, the relaxation
scheme becomes

DI(I + E)(I + E 2)DiAu = r - Ku. (8)

In order to achieve higher rates of convergence, we use Eqn.(8) within a preconditioned
Conjugate gradient algorithm. As an unstructured grid usually does not possess an
equal number of gridpoints along a certain direction, the resulting snakes may often
exhibit folding (see Figure 2b). This implies that the information flow from the do-
main to the boundary may be slowed down considerably. This is not important for
smoothers, but crucial for the preconditioners required in one-grid solvers. In order to
obtain a steady flow of information towards the boundaries in all directions, we recon-
nect the snake in the direction it intended to continue wherever it folds. This gives
rise to a more complex structure, which we call linelet (see Figure 2c). Whereas the
storage requirements of snakes are fixed (3N, where N is the number of unknowns), the
storage requirements of linelets depend on the structure of the mesh and the renum-
bering chosen. Using reverse Cuthill-McKee ordering, as well as octrees, one observes
O(5N - ION) storage requirements. This is deemed acceptable, as it takes much more
than 6N operations to build a new right-hand side. As expected, the convergence rate
of the preconditioned Conjugate gradient algorithm increases considerably when going
from snakes to linelets. This completely new concept went through several stages of
development. Starting with snakes, we soon realized the problems with folding, and
had to develop ways to construct the linelets in an efficient way. Because the size of
the system of equations to be solved depends on the numbering of nodes, near-optimal
renumbering schemes had to be tested. We went through four generations of renumber-
ing strategies. Compared to our current scheme, a simple-minded renumbering would
yield equation systems that require 4-8 times more storage and CPU for the same per-
formance. So far, we have used this linelet-based solver for scalar elliptic problems. In
the coming year, we will extend it to the fully coupled compressible Navier-Stokes case.

2.4.1 Vectorization of Linelet-Matrix Solution: The first linelet-matrix solvers we im-
plemented were based on the general Crout LU decomposition, which can be found
in many Finite Element textbooks. Performance tracing on the CRAY-YMP showed
that this portion of the code was running at about 2.5Mflops, dismal for a machine
that is rated at 25OMflops per processor. This Veiy low speed was the result of short
vector lengths in the mainly tridiagonal structure of the linelet-matrix. Vectorization
of both the LU factorization, as well as the forward and backward reduction during
solution can be accomplished if one processes in parallel as many linelets as possible.
The entries in the linelet-matrix are categorized into diagonal (points with prescribed
unknowns), tridiagonal or non-tridiagonal. At each stage, all active non-tridiagonal
inhibitors are processed first. Thereafter, all available tridiagonal entries are processed
in vector-mode. Towards the end of the factorization or reduction process, the available
number of tridiagonal locations may diminish to a point where scalar processing of the
remaining entries is faster than extremely short vector-loops. For this reason, a scalar

Linelet

Matrix Solution

V-rT 1234567812345678 9 12345678
ST DOT 10..... 16 1
STDO 18 24

Figure3: Efficient Solution of Linelet Matrix Systems

tridiagonal category is added to the complete solver. The complete factorization or

reduction process, illustrated in Figure 3, is then given by:

1. Identify 'Origins' (V)
2. Solve For Non-Tridiag. 'Inhibitors' (SV,DOT)

3. Solve For Available Tridiagonals (V)
4. Solve For Remaining Linelets (FS)
5. If Not Finished: GOTO 2.

The vectorized version of the linelet-solver presently runs at 15Mflops. This represents
a speed-up of 7 as compared to the scalar version, but is still deemed unacceptable.
Further research is being devoted to this subject at the present time. Of course, for
the solution of blocks of unknowns (as required for the compressible Navier-Stokes
equations), as compared to a single variable, the achievable Mflop-rate is expected to
be significantly higher.

2.5 Coding of Body Force Reduction Subroutines: In order to couple the flowfields with
the rigid body motion one has to extract the forces and moments exerted by the fluid
on the bodies present. These data reduction subroutines were coded and tested.

2.6 Turbulence Model: The algebraic Baldwin-Lomax turbulence model [8] was imple-
mented in the 2-D flow solver. This is the simplest way to add the effects of turbulence.
The model is straightforward to implement as the only difference in the flow equations is
the increase of viscosity. The model represents the inner and outer parts of a boundary
layer as follows:
Inner ipart

= pill [ky(1 - ezp(-y/A))]2

Outer part:

At = CCcppYm.zFg7,

with

F(y) = ylwI(1 - exp(-y/A))

The exponential factor in the inner part is the Van Driest damping factor which matches
the damping of the wall. In the second equation, F,., is computed along a normal
to the wall. This is particularly easy when dealing with structured grids, but requires
some effort for unstructured grids. The required data structures were discussed by
Rostand [9]. One complete evaluation of the turbulent viscosity requires the following
transfer of information:
a) Vorticity from elements or points in the mesh to the approrriate normals to the walls.
Along each normal, the vorticity IJw is required to evaluate the turbulent viscosity. This

transfer of vorticity is accomplished with a linked list of intersections of normals to the
wall with elements of the mesh. This list is constructed by starting from the surface and
moving along the normal. All that is required to do so is a list of elements surrounding
elements.
b) Transfer of the turbulent viscosity from the normals to the walls to the elements or
points of the mesh. In the present case, we transfer to points. This not only reduces the
transfers required (there are less points than elements in a mesh), but also introduces a
beneficial smoothing effect at element level. For each point in the mesh close to wetted
surfaces, we find the closest normals surrounding it, and then the two closest points
along each of the normals. Thus, a point in the mesh assembles the turbulent viscosity
from four points along the normals of a wetted surface. The search for the closest points
is done using quad-trees [10]. In the case of the mixing of several boundary layers, pt
is computed from the contribution of each wall weighted by its distance to the point.

3. ADAPTIVE REFINEMENT

Any adaptive refinement scheme is composed of an error indicator and a refinement
strategy. Adaptive remeshing was chosen for the refinement strategy. This seems
natural, as it allows to couple adaptation and body motion in a straightforward way.

3.1 Development of Suitable Error Indicators for Adaptive Remeshing: We extended
the highly successful modified interpolation theory error indicator [2,11] to 3-D. This
error indicator can be generalized to multidimensional situations by defining the fol-
lowing tensors:

(DO)", = h c f IN'IINIILUj ldn (9)

(D1),A1 = h 2 jIN"IINJUjIdfl , (D2)1 = h 21 j N/kN,''W Uj 1 (10)fa (,Ik o)

which yield an error matrix E of the form:

E= Exy Ey =X- 0 E22 0 •X (11)

Exx E1 , E,1 0 0 E33

The principal eigenvalues of this matrix are then used to obtain reduction parameters
j'i, in the three associated eigenvector directions. Note that due to the symmetry

of E this is an orthogonal system of eigenvectors that defines a local coordinate sys-
tem. The required eigenvalue/eigenvector solvers for 3X3 matrices were vectorized and
incorporated into the code.

3.2 Smoothing of Element Size. Stretching and Stretching Directions: In the context
of transient problems it is very important to generate grids which do not exhibit mini-
mum element sizes that are much smaller than the prescribed minimum element size.

Practical calculations indicated that the grids produced by simply taking the described
error indicator and the resulting distribution of element sizes, stretchings and stretch-
ing directions did not meet this requirement. In other words, they were too irregular.
Far superior grids were obtained by smoothing and limiting the initial distributions
obtained for element sizes, stretchings and stretching directions.

4. RIGID BODY MOTION

Rigid body motion algorithms are essential for moving body simulations. On the
other hand, just as CFD is more than a flow solver, so rigid body motion is more
than a rigid body timestepping scheme. We found that in order to make rigid body
motion user-friendly, i.e. accessible to a larger user group, significant graphical interface
developments were required.

4.1 Development of a Rifourous Rigid Body Motion Algorithm: If one simply inte-
grates the motion of rigid bodies without enforcing the rigidness explicitly, the shape
may change over the course of the calculation. By transforming at every timestep to
the body reference system, this is avoided. At the same time, the moments of inertia
tensor only needs to be inverted once, and is much easier to construct.

4.2 PREMOV: In order to avoid costly mistakes by wrong user-input, we developed
a graphical pre-processor for cases where the body motion is prescribed. This code
reads the same input data as the actual flow-solver, but displays immediately the
trajectories prescribed. In doing so, the user can assess before the run whether the
correct trajectories were specified in the input file. Given that a user may have very
specific motion-types in mind, a graphical checking tool like PREMOV is essential.

5. VISUALIZATION AND ANIMATION

Many of the breakthroughs that took place over the performance period of the present
grant were only possible due to the advent of powerful 3-D graphics workstations. On
the other hand, we had to harness this power by developing extensive libraries to display
whatever was required. The following tools were developed as part of this effort.

5.1 O D L: This library allows to display any desired quantity while the CFD
code is running interactively on a workstation. Thus, it allows to monitor and check
a run as it proceeds in real time. ONLIDISPL has proven invaluable for input data
checking and debugging, adding a new dimension of user-friendliness. On the other
hand, it is clear that big runs can not be done on a workstation. But the user may
want to run a coarser mesh interactively on the workstation, make sure everything is
working as desired, and then run the big problem on a supercomputer in batch mode.

5.2 FEPOST3D/MOVIESUBS: FEPOST3D is based on FEPLOT4D, our standard
3-D plotting capability, but performs all the CPU-intensive filtering operations on the
supercomputer within any of the 3-D codes. Only the plane or surface triangulations
are sent back to the SGI-IRIS-4D/80GT for plotting. The user specifies before the

run the planes and surfaces to be inspected. The typical size of plot-files is reduced
from 130-160Mbytes (complete 3-D flowfield, 2Mtetra) to 2.5-4Mbytes (plane/surface).
Although seemingly trivial, this capability is essential when trying to produce a movie,
or running large 3-D problems via a network.

5.3 FEMOVIE3D: We completed a first movie-making capablity for 3-D runs. After
obtaining the dumps from the CRAY, FEMOVIE3D will run in batch mode on the IRIS
and generate a series of pixel-dumps. These pixel-dumps are then shipped to a movie-
making center to obtain either VHS or 0.25in format movies. Although we consider
this as only the first generation of a more sophisticated movie-making software, it
still represents a significant development, as it enabled us to assess the problems and
important ingredients that a good movie-making toolkit must possess.

6. DEMONSTRATION CALCULATIONS AND RESULTS

6.1 Unstructured Grid/Remeshing Transient 3-D Runs: With the developed tools we
performed the first ever transient unstructured 3-D runs with adaptive remeshing. The
results are summarized in [2], which is included here as Appendix 5.

7. PUBLICATIONS

All of the developments listed above were reported extensively in the literature. The
main papers published are listed in chronological order:

[1] R. Lbhner and J.D. Baum - Unstructured Grid Methods for Store Separation;
Proc. 8th JOCG Airframe/Stores Compatibility Symp. , Ft. Walton Beach, Fl.,
October 23-25, 1990.

[2] R. L6hner - Three-Dimensional Fluid-Structure Interaction Using a Finite Element
Solver and Adaptive Remeshing; Computer Systems in Engineering 1, 2-4, 257-272
(1990).

[3] R. L~hner and J.D. Baum - Three-Dimensional Store Separation Using a Finite
Element Solver and Adaptive Remeshing; AIAA-91-0602 (1991).

[4] J. Cabello, R. L6hner and O.P. Jacquotte -A Variational Method For the Opti-
mization of Directionally Stretched Elements Generated by the Advancing Front
Method (AFM) - Proc. Third It. Con. on Numerical Grid Generation in CFD
and Related Fields, Barcelona, Spain, June 3-6 (1991).

(5] J. Cabello, R. L6hner and O.P. Jacquotte - A Variational Method for The Opti-
mization of Two- and Three-Dimensional Unstructured Meshes - Proc. 1st U.S. Na-
tional Congress on Computational Mechanics, Chicago, Illinois, July 21-24 (1991).

[6] J. Cabello, R. L6hner and O-P. Jacquotte - A Variational Method for the Op-
timization of Two- and Three-Dimensional Unstructured Meshes; AIAA-92-0450
(1992).

8. CONCLUSIONS AND OUTLOOK

We have developed a CFD capability to compute 3-D compressible flows with moving
bodies. This is a new capability that so far is unmatched. It represents a new major
step in CFD, as it allows to compute flows of engineering interest that were previously
untractable by CFD means. The developments that took place over the last two years
have been decribed.

In the future, we plan to expand the developed capabilities as follows:

a) Development of Flow Solvers for high Re-number Viscous Flows: We will exten-
the linelet-concept to the fully coupled linear equation systems that arise for im-
plicit Navier-Stokes solvers.

b) Turbulence Models: We will incorporate the k - e model into the implicit Navier-
Stokes solver.

c) Development of suitable gridding algorithms for high Re-number viscous flows:
We plan to start with a semi-structured approach, whereby we construct prisms
away from the triangulated surfaces. Although not general enough, this will serve
as a starting point for later developments, and a way to gather experience for
simulations of high Re-number flows.

d) Development of suitable error indicators for high Re-number viscous flows: The
idea here is to develop error indicators that sense were to refine boundary layers
and shear layers, and that work even for highly stretched grids.

e) Improvements in movie-making capabilities: The main aim of this improvement is
to be able to run the movie on the workstation before going to the movie-making
center. At the same time, we must be able to compress the information to an
extent that a 3min movie can be stored effortlessly on a small disk. This will be
accomplished through image compression algorithms.

f) Further test runs: we plan to look for available experimental and/or numerical
data in the literature in order to set up runs to test the algorithms developed.

9. REFERENCES

(11 R. L6hner and P. Parikh - Three-Dimensional Grid Generation by the Advancing
Front Method; Int. J. Num. Meth. Fluids 8, 1135-1149 (1988).

[2] R. L5hner - Adaptive Remeshing for Transient Problems; Comp. Meth. Appi.
Mech. Eng. 75, 195-214 (1989).

[3] J. Cabello, R. L6hner and O.P. Jacquotte -A Variational Method For the Opti-
mization of Directionally Stretched Elements Generated by the Advancing Front
Method (AFM) - Proc. Third Int. Conf. on Numerical Grid Generation in CFD
and Related Fields, Barcelona, Spain, June 3-6 (1991).

[4] J. Cabello, IL L5hner and O.P. Jacquotte - A Variational Method for The Opti-
mization of Two- and Three-Dimensional Unstructured Meshes - Proc. 1st U.S. Na-
tional Congress on Computational Mechanics, Chicago, Illinois, July 21-24 (1991).

[5] J. Cabello, R. L~hner and O-P. Jacquotte - A Variational Method for the Op-
timization of Two- and Three-Dimensional Unstructured Meshes; AIAA-92-0450
(1992).

[6] R. Lbhner, K. Morgan, J. Peraire and M. Vahdati - Finite Element Flux-Corrected
Transport (FEM-FCT) for the Euler and Navier-Stokes Equations; Int. J. Num.
Meth. Fluids 7, 1093-1109 (1987).

[7] J. Donea - An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient
Dynamic Fluid-Structure Interactions; Comp. Meth. Appl. Mech. Eng. 33, 689-723
(1982).

[8] B.S. Baldwin and H. Lomax - Thin Layer Approximation and Algebraic Model for
Separated Turbulent Flows AIAA 78-257 (1978).

[9] P. Rostand - Algebraic Turbulence Models for the Computation of 2-D High Speed
Flows Using Unstructured Grids; ICASE Rep. 88-63 (1988).

[10] R. Ldhner - Some Useful Data Structures for the Generation of Unstructured Grids;
Comm. Appl. Num. Meth. 4, 123-135 (1988).

[111 R. L6hner - An Adaptive Finite Element Scheme for Transient Problems in CFD;
Comp. Meth. Appl. Mech. Eng. 61, 323-338 (1987).

APPENDIX 1-4: GRID OPTIMIZATION

1 - Introduction

Unstructured meshes, especially triangles in two dimensions and tetrahedra in
three dimensions, are recognized as the more suitable to fit any complex arbitrary
domain shape. Various algorithms [1-7,15] have been developed to fill any arbitrary
domain while preserving element quality to some extent. Unfortunately, for most
techniques, the required versatility of the algorithms used to generate unstructured
grids leads to some loss of mesh quality. Since finite element solvers are sensitive to
the quality of the grid employed and all generation techniques to date may generate
bad elements, means to improve or smooth an initial mesh must be found.

Most of the smoothing techniques available in the literature are based on the
spring system analogy [8,9]. The mesh is viewed as a network of nodes connected
by springs of constant stiffness. The smoothing process consists in moving the
nodes until the spring system is in equilibrium. Even though this method is easy
to implement and presents the advantage of requiring low CPU-time and memory,
some drawbacks have been reported. For example, for non-convex domains, the
spring analogy smoothing may lead to negative jacobians in the vicinity of a concave
boundary.

2 - Optimization of two-dimensional unstretched meshes

In the present work, we started using a variational method (10-14] to optimize
two-dimensional unstretched triangular meshes. The approach presented is based
on the principles of continuum mechanics (appendix 1). The theoretical fradiework
is inspired by the three-dimensional non linear elasticity theory. Starting from
basics geometrical axioms, lying on mechanical properties, we introduce a functional
defined as a measure of the deformation between a reference cell and a current
cell. This functional depends upon the principal invariants of the deformation
matrix (metric tensor) derived from the transformation between the two cells. The
mesh optimization leads to a minimization problem of an energy-like hyperelastic
material, quasi incompressible. A convexity property is imposed to the functional;
then the minimization problem is well-posed. The minimization will be performed
by a conjugate gradient method (appendix 4).

3 - Optimization of two-dimensional stretched meshes (art. Barcelona)

Dimensional features appear quite often in multi-dimensional fluid flows (e.g.
shocks, contact discontinuities, etc ...). It has been shown by previous work [7] that
allowing directionally stretched elements is an efficient way to increase the solution
accuracy without drastically increasing the number of elements.

The advancing front method (AFM) proposed by Peraire et al. [7], L6hner [15]
Lrihner and Parikh [6] is able to generate stretched elements in the direction of the

flow features. Unfortunately, the unstructured grid generated with the advancing

1J

front technique may lack the desired distribution of the grid points in some regions.
As the numerical stability and accuracy of flow solutions may be affected if the grid
points are not distributed smoothly, the initial mesh generated by the AFM must
be smoothed.

The variational method was extended to the optimization of two-dimensional
stretched triangular meshes generated by the AFM. Being able to cope with the
optimization of two-dimensional unstretched meshes, we needed to devise a way
to transform the stretched mesh into an unstretched mesh. This was done by the
introduction of a transformed space. A transformation, depending on the mesh
parameters used to construct a stretched element, was performed to obtain an
element which should look like an equilateral element. This transformation is just
a rotation of the element, in order to align the stretching direction with the x-axis
and a shrinking of the element (along the x-axis) of a factor equal to the inverse
of the stretching factor. Asuming that the element generated in the physical space
has exactly the characteristics given by the mesh parameters, then the resulting
element after transformation would be an equilateral triangle. The optimization is
performed on the transformed space. Finally, the optimized mesh is transformed
back (using the inverse transformation) from the transformed into the physical
space.

4 - Optimization of three-dimensional stretched meshes

In three dimensions, a transformation between the physical and transformed
space was devised as an extension of the two-dimensional transformation. n the
transformed space, all tetrahedra are assumed to be regulars (all faces being equi-
lateral triangles). The variational method is applied in the transformed space.
First, a measure of the deformation between a transformed and reference element is
computed. The total deformation is obtained by summation of the elementary con-
tributions. Second, the interior mesh points are repositioned in order to minimize
the total deformation. Finally, the elements are transformed back to the physical
space.

5 - Optimization of three-dimensional unstretched meshes (art. AIAA-92-0450)

For the special case of three-dimensional unstretched tetrahedral meshes there
is no need to go back and forth between the physical space and the transformed
space. The method is directly applied in the physical space. A special version of
the code has been written for the optimization of unstretched meshes. This version
requires less memory and less cpu-time than the general one.

6 - Post-processin;

Using a moving node method we are tied to the topology given by the initial
mesh. Some routines have been written which change the topology of the mesh.

2

These routines are used to either remove cells with negative jacobians or cells which
are marked as distorted according to a quality criterion. These routines have been
isolated and can be used as a "black box" during the post-processing step of any
initial or optimized mesh. During the conjugate gradient iterations we may get
folded elements with negative jacobians. These elements will be unfolded as the
conjugate gradient iterations are carried along and no cell with negative jacobian
will remain when the minimum is reached. Nevertheless, these negative jacobians
will usually appear in some pathological regions of the mesh. We suspect that
these elements originate where the advancing front closes small gaps in order to fill
the whole domain. Therefore, it is preferable to take out these elements, chang-
ing locally the topology of the mesh, rather than carrying the conjugate gradient
iterations to convergence.

7 - Minimization aliorithm

Within the domain, the optimal location of the physical nodes is computed
by an iterative conjugate gradient algorithm (appendix 4). The multidimensional
minimization problem is reduced to a succession of one dimensional problems in a
descent direction. The one dimensional search for a minimum leads to find the root
of a three (in two dimensions) or five (in three dimensions) degree polynomial of
one -"triable. The coefficients of this polynomial depend on the differential of a.
The formulas for these differentials are given in appendices 2 and 3.

8 - Conclusion

The scope of a variational method, widely used for the optimization of struc-
tured grids, has been extended in order to perform the optimization of two- and
three-dimensional stretched or unstretched unstructured meshes. This moving node
method is not tied to the advancing front method or to any particular generation
technique and can be initialized by any arbitrary grid, even a grid with overlapped
cells..

In the paper presented in Barcelona, the variational method was able to give
acceptable results in a two-dimensional case where the spring analogy failed. The
robustness and efficiency of the method was tested for a mesh in which the location
of the points wan altered. The method was able to unravel this "chaotic" mesh
and to give a smooth one. For stretched meshes the method was able to exert
more control on the grid according to the parameters specified by the user in the
background mesh.

In the paper presented at the AIAA meeting, for the optimization of un-
stretched three-dimensional tetrahedral meshes, a more appropriate formulation
than the general one, have been presented in order to save cpu-time and memory
space. For all the examples presented the quality of initial meshes, already smoothed
by the spring analogy, have been improved with an increase of about eight to nine

3

per cent around the optimal angle (angles between fifty and eighty degrees) along
with a decrease of angles leading to flat elements (i.e. angles lower than thirty and
greater than one hundred and fifty degrees). Also, for all examples, an increase of
a factor two approximately is obtained for the minimum radii ratio of the inscribed
over the circumscribed sphere. This is an important result, given that the minimum
radii ratio drives the allowable time step of finite element solvers.

References

[1] 3. F. Thompson - Numerical Grid Generation - North-Holland (1980)

[2] S.H. Lo - A New Mesh Generation Scheme for Arbitrary Planar Domains - Lot.
J. Num. Meth. Eng. , 21, 1403-1426 (1985).

[3] N. Van Phai - Automatic Mesh Generation with Tetrahedron Elements - Int.
J. Num. Meth. Eng. , 18, 237-289 (1982).

[41 T. J. Baker - Developments and Trends in Three-Dimensional Mesh Generation
- Appl. Num. Math. Vol. 5, 275-304 (1989)

[5] T. J. Baker - Three Dimensional Mesh Generation by Triangulation of Arbi-
trary Point Sets - AIAA-87-1124

[61 R. L6hner and P. Parikh - Three-Dimensional Grid Generation by the Advanc-
ing Front Method - Int. J. Num. Meth. in Fluids, Vol 8, 1135-1149 (1988).

[7] J. Peraire, M. Vadhati, K. Morgan and O.C. Zienkiewicz - Adaptive Remeshing
for Compressible Flow Computations - J. Comp. Phys., 72, 449-466 (1987).

[8] J. C. Cavendish - Automatic Triangulation of Arbitrary Planar Domains for
the Finite Element Method- Int. J. Num. Meth. Eng. , 48, 679-696 (1974).

[9] R. Carcaillet, S. R. Kennon and G. S. Dulikravich - Optimization of Three-
Dimensional Computational Grids - ALAA Paper 85-4087, Colorado Springs,
CO.

[101 0.- P. Jacquotte - A Mechanical Model for a New Generation Method in C.F.D.
- Comp. Meth. Applied Mech. Eng., Vol. 26, 323-338; also ONERA T.P. N O

1988-48.

[i] O.- P. Jacquotte and J. Cabello - A Variational Method for the Optimization
and Adaptation of Grids in C.F.D. - 2"" rnt. Conf. on Num. Grid Generation
in C.F.D., Miami Beach, Florida, USA , December 5-8, 1988, Pineridge Press;
also ONERA T.P. N o 1988-99.

[121 0.- P. Jacquotte and J. Cabello - A New Variational Method for the Generation
of Two- and Three-Dimensional Adapted Grids in C.F.D. - 7 th Int. Conf. in

4

Finite Elements Meth. in Flow Problems, Huntsville, Alabama, USA , April
3-7, 1989; also ONERA T.P. N O 1988-99.

(13] 0.- P. Jacquotte and J. Cabello - Three-Dimensional Grid Generation Method
Based on a Variational Principle - La Recherche Arospatiale, English version,
N o 1990-4.

[14] J. Cabello - Mithode Variationnelle
d'Optimisation et d'Adaptation de Maillages Structures Tridimensionnels -
Doctoral Dissertation UniversWtd Paris Sud (ORSAY), February, 1990.

[15] R. Lhner - Some Useful Data Structures for the Generation of Unstructured
Grids - Comm. Appl. Num. Meth., Vol 4, 123-135 (1988).

[161 J. Cabello, R. L6hner and O.P. Jacquotte - A Variational Method For the
Optimization of Directionally Stretched Elements Generated by the Advancing
Front Method (AFM) - The Third Int. Conf. on Numerical Grid Generation
in C.F.D and Related Fields, Barcelona, June 3-6 1991.

[17] J. Cabello, R. L6hner and O.P. Jacquotte - A Variational Method For the
Optimization of Two- and Tree-Dimensional Unstructured Meshes Abstract
in The first U.S. National Congress on Computational Mechanics , Chicago,
Illinois, July 21-24, 1991.

5

APPENDIX 1

Construction of the functional

Theory

We review the mechanical and mathematical properties of the functional used to
measure the deformation. A more detailed explanation of the foundations of the
method can be found elsewhere 10,14].

1.1. - Mechanical Assumptions

Let us consider a transformation x(t) between a reference element and a physical
element. First, we restrict the dependence of the functional up to the first order
derivative of the transformation :

= Or(x,F) with F = Vx (1)

As the functional should not change if we apply a translation to the physical element,
we further restrict a to rely on the transformation x solely through its gradient F.

a(x,F) = a(F) (2)

Since any rotation of the physical element must not change the measure we require
the following identity to hold for a :

oa(F) = a'(Q . F) for any orthogonal matrix Q (3)

Furthermore, since the measure must also be invariant for any reference rotation
we impose:

a(F) = a'(F. Q) for any orthogonal matrix Q (4)

To sum up, we require the functional's invariance to rigid motions of both reference
and physical element. It means that a functional following the four axioms and
properties aforementioned is independent of the orthonormal basis in which the
gradient F is computed. This property can be written as,

a = a(Q- F. Qt) for any orthogonal matrixQ (5)

The axioms and properties (1) to (4) are well known in three-dimensional elasticity
theory [101. They characterize the energy of an hyperelastic (1), isotropic (4).
homogeneous (2) material satisfying the axiom of frame indifference (3).

From these properties, it can be shown that the functional a depends only on
the invariants of a matrix C, called the right Cauchy-Green tensor of the transfor-
mation x, and defined as

6

C=FtF=Vxt-Vx (6)

At any point 7 = (, ,) in the reference space, the invariants, noted 11, 12 and 13
are given by the formulae :

11 = tr (C)

- I nFIIZ
= Ilx4112 + IIx'1I12 + IIxCI2 (7)

12 = tr(Cof(C))
= 11Cof F112

- IIxf A x,?l11 + IIxC A XCfll + jjx,, A xC1 (8)

13 = det (C.)
= (detF)2

= ()

with,

J = detF

= det(xf,x,,,xC) (jacobian) (10)

and the symbols 11.I1m, 11.t1v, tr (.), det (.) and Cof(.) denoting, respectively, the
matrix norm, the vector norm, the linear operator trace and the two non linear
operators determinant and cofactor.

a = a(II,, 3) (11)

In order to controi the element orientation and prevent negative jacobians, the
invariant I (inmsitive to the orientation) is replaced by the jacobian. From now
on, we are seeking for a functional in the general form,

o a(II,I2, J)12 (12)

II '7

Vowing to establish a well-posed minimization problem, we force the functional to
be locally convex in the neighborhood of a rigid transformation.

1.2. - Mathematical Assumptions

Rigid transformations - i.e. translations, rotations - verify the following equivalent
properties:

x()is a rigid transformation (13)

F = Vx is a direct orthogonal matrix (14)

F= CofF and J =+1 (15)

(11,12, J) = (3,3,1) (16)

In the sequel, rigid transformations will be characterized by the subscript index 0.

Owing to the shape preserving property of a rigid transformation we impose a
normalization condition :

do = 0 (17)

Then, an equilibrium condition is settled for rigid transformations,

Dal0 = 0 (the null tensor) (18)

Finally, in an attempt to obtain a unique minimum, the functional is dssumed to
be convex in the neighborhood of a rigid transformation :

D2a of > 0 (positive-definite tensor) (19)

In these expressions D and D2 denote respectively the first and second-order differ-
ential of the functional.

1.3. - Functional Chosen

We are now in position to move on to the practical choice of the functional. Several
candidates verifying both mechanical and mathematical requirements can be found
in the literature (111. In order to devise a functional more amenable to numerical
computations we choose a polynomial form, discussed in details in [5), that can be
expressed in three dimensions as :

a3= C 1 (II - 13 - 2) + C 2(12 - 213 - 1) + C 3 (J _ 1)2 (20)

8

with the convexity condition (19) leading to the inequality

3C 3 >4(0C1 + C 2)>O (21)

In two dimensions, the expression reduces to

with, the inequality

K >C >0 (23)

9

APPENDIX 2

Two-Dimensional Optimization

Numerical aspects

The numerical approximation of the transformation and its derivatives are
presented.

introduction

We want to compute the deformation between a current element in the physical
space (x, y) and a reference element in a reference space (, 77). The current
element is a triangle given by its vertices coordinates ((xi); i = 1, 3) while the
reference element is a triangle given by its vertices coordinates ((c.); i = 1,3). A
linear transformation x is assumed between the reference triangle and the current
triangle.

2.1. - Linear transformation x

For the vector transformation x we assume that each scalar transformation, i.e. x
and y, is a linear function of _ = (C, q) i.e.

x() = ((C, 17), Y(,))(
x = at + b q+ c a -- (a , a), b -=(b, b), c-=(c, c).

Following the line of the classical finite element method the above vector transfor-
mation can also be defined by :

i=3

x = x, N (2)

Knowing the vertices coordinates in the physical space the vector transformation is
completely defined as soon as the element shape functions Ni, i = 1,3 are known.

2.2. - Element Shave Functions :

From expression (2), the linear shape functions are defined such that Ni has the
value unity at node i and is zero for the remaining nodes :

N(1 , 77j) = 6, Vi,j; 1 < ij < 3 (3)

N(C, q) = aC + bi + c, Vi; 1<.i <13 (4)

10

with 6,0 referring to the kronecker symbol and a,, bi and ci being scalar values.

2.3.- Com zutation of the Shape Functions

From equations (3) and (4) we deduce that the unknowns (a,, bi, ci) are solutions
of the system:

'2 1i b, = 6,i2 (5)[3 1 C J [i3J

That we can rewrite,

A. u = r (6)

with,

C1 771 1 a
A-- '2 1 ; r= 6,2K3 73 1 c [623]

The system of equations defined by (6) has a unique solution if the determinant of
the matrix A does not vanish. Introducing the circular permutation (ij,k) between
indices 1,2,3 we obtain :

ai = ('1 - 7k) /deter

bi =(k -)/ deter (7)
Ci = (jM/ - 61'7)) / deter

with

deter = det A

= 2(area of the reference element) (8)

Remark 2 :

- The area of the reference triangle is defined by

1
area = j1 (C2 -f,)^(6 -WI

where the symbol A represents the vector product.

From expression (4) and (7) the element shape functions are completely defined.
Afterwards, the vector transformation is defined by expression (2).

11

One convenient and practical way to verify that the basis functions are correctly
defined consists in noticing that the sum of the three basis functions is a linear
function taking the value unity on three points. Consequently, the sum N +
N2 + N3 is the constant function unity and we have:

N, +N 2 + N3 = 1 (9)

We will need to compute the derivatives of the vector function x. According to
expression (2) the derivatives are :

aN 0N 2 9N 3
N =Nac X 2 3 (10)

X9= X1 a + X 2 2- + X 3 -N
aN71 ONT O~

2.4. - ComVutation of the derivatives

The elements shape functions being linear, their derivatives are constants. These
constants are given by derivation of formula (4) leading to:

aN,= = a=b (11)

Remark 4

Using expression (9) we deduce that the sum of all the derivatives vanishes
(i.e.):

ON ON2 ON3 ON ON2 aN3 = 0 (12)

The equalities (12) offers a good way to verify numerically the computation of
the element shape function derivatives.

At this point, we defined all the elements required to compute the transformation
and its derivatives. The forthcoming section is devoted to the computation of the
invariants for the right Cauchy-Green tensor and their derivatives which will be
used for the minimization of the functional. The computation of the functional and
its derivatives will be used during the minimization performed by the conjugate
gradient.

2.5. - Comvutation of the invariants

Let us remind that we have chosen to approximate the vector transformation by a
linear function:

12

x = x1N1 + x 2N2 + x3N 3

with

the derivatives are constants given by the expressions:

{x(x) = xal+x 2 a2 +x3a3 (13)
x,(x = xbl+x 2b2 +x 3b 3

Remark 5

- From expression (13), the derivatives are linear function of the vertices coordi-
nates X, X 2, X3

The vector function gradient, F, is a (2 x 2) matrix defined by

F =Vx
= [x] , x7 (14)

The Cauchy-Green matrix is :

C = FtF (15)

Finally, the two invariants of the Cauchy-Green tensor are:

I, = tr (C] (16)

13 = det (C) = j 2

with

J = det (F) (17)

the jacobian of the transformation

2.5 - Comuutation of the invariants

2.5.1. - omutdation of the iacobian

The jacobian is computed using the expression:

J = det (x4, x1) (18)

Remark 6

13

1 - The jacobian is independent of t and q. It only depends on the vertices coor-
dinates of the current element (physical space).

2 - The jacobian is an homogeneous polynomial of degree 2 i.e.

J = E a , xiyi with ai E R (19)
1<i<3
<Rj<3

where zi, yj represents the cartesian components of vertex xi.

3 - The jacobian represents the ratio of the current element surface over the refer-
ence element surface.

2.5.2. - Computation of the first invariant I,

By definition, the first invariant is :

Ii = tr [C] (23)

thus, we deduce from expressions (14) and (15),

11 = lx(112 + lixf7112 (24)

which allows us to compute I, through expression (13) of the vector function deriva-
tives.

Remark 7

1 - The first invariant is independent of and 7, depending only on the vertices
coordinates.

2 - 11 is a second order homogeneous polynomial of the coordinates (Zi, Y1I, X2, Y2,
Z3, Y3).

2.6. - Differentiation of the invariants

So far, we have seen how the two invariants are computed. From expressions
(18) and (21), the computation of the invariants J and I, is related to the com-
putation of the vector functions xf and x.. Now, we are going to give the formulas
for the differentiation of the invariants and their derivatives.

2.6.1. - Notations :

In the following we note

x = (Xl, 19 -2, 112, X3, Y3) - (xIt, x 2t, X3t) (22)

and

14

b = (h*, hl, h', hy, h', h) = (hit, h 2 t, h 3 t) (23)

with,

Xi = zI and i

representing respectively the vertices of the triangle and a direction vector at the
vertices (This direction vector may be the descent direction at the vertex).

Remark 8 :

- The R6-vector x is the variable of our problem (x represents the three vertices
coordinates). According to expression (2), the vector transformation x is com-
pletely defined when the three vertices coordinates xi, x2 and x 3 are defined.
Thus, there is a one-to-one correspondence between the vector transformation
x and the R' vector x.

2.6.2. - Differentiation of the transformation derivatives

From expression (13) we get for the vector function derivatives:

= zzX2 ,X 3) 1 [

[f _-(1 SI , 3 = I y(X1,X2,X3)

The above expressions show the derivatives dependence on the variable x. Using
the standard differentiation rules, the vector function differential is:

d xjx) b = d= [(,X!2,X3) (hf,h ,h3)1 (24)

and,
dx, (x)" h_ = r d z,,(X,X 2,x3). (h,h,h) h3 l (25)

I Yq(YI, Y2,Y3) (0~, hy, h)j
with,

d &1 X,,X3) (01, h', h) = -hzl 'I + !!A h' + (26)

and similar formulas holding when interchanging z by y and the subscript by q/.

2.6.2. - Differentiation of the iacobian

From definition (18) of the jacobian and using the differentiation rules we obtain

d JW .()b det (d xe(x)(),,)+ det(xf, d x,(x)(b) (27)

15

Remark 9

1 - As the vector functions xf and xq are linear functions of the variable x we have
the following relation :

d xf(x). b)=xf(_b
= bh (28)

where h C is the vector function defined by equation (13) when replacing x by
h . Then, we can rewrite (27) in the form :

d J (x). (b) = det (b ,x.) + det (xf, h,1) (29)

2 - Using the differentiation rule we get the higher order differential of the jacobian.

2.6.4. - Differentiation of I.

Using the same notations and applying the differentiation rules to formula (21) we
deduce :

dIi(x)(b)=2(h .x + h",,x,,) (30)

2.2.3. - Coimputation of the functional

= CI(II - 13 - 1) + C2(J _ 1)2 (31)

- 11 is a polynomial of degree 2.

- J is a polynomial of degree 2.

- 13 is a polynomial of degree 4.

From all the previous sections we are able to compute numerically a and its deriva-
tives.

16

APPENDIX 3

Three-Dimensional Optimization

Numerical aspects

The numerical approximation of the transformation and its derivatives are
presented in three dimensions.

introduction

By the same token, following the same line of thinking, the numerical approximation
presented in two dimensions can be extended to three dimensions. We want to
compute the deformation between a current element in the physical space (z, y, z
) and a reference element in a reference space (, ,q, C). The current element is
a tetrahedron given by its four vertices coordinates ((2 ,); i = 1, 4) while the
reference element is a tetrahedron given by its vertices coordinates ((Ci); i = 1, 3).
A linear transformation x is assumed between the reference triangle and the current
triangle.

3.1. - Element Shape Functions

The basis functions Ni are linear functions defined by the relations:

= 6,, Vi,j; 1 < i,j <4 (1)

N=(, -- aiC + bi'Y + cj(+ di (2)

with Ci = (i, j, () the coordinates of the vertices of the tetrahedron in the refer-
ence space (C 77, ().

3.2. - computation of Ni(E. n. C1

The unknowns a,, bi, ci and di are solutions of the linear system:

(aji + bitq + c,(, + d, = 6i

1E) aif2 + bir72 + c,(2 + d, = 6i2
{ } + b,73 + C,(3 + di, = ,3

aI,4 + bi774 + c,(4 + d, = 6 i4

The determinant of this system is given by :

deter =- b 172 (2 6,2
C3 773 (3 63

G 174 (4 6,4

17

If deter $ 0 then the system E has a unique solution.

Remark 1 :

- The summation of the basis functions is a linear polynomial of degree 1, equal
to I at four points. Therefore, this polynomial is the constant polynomial equal
to 1 and we have:

N, +N 2 +N 3 +N4 = 1

3.3. - Computation of the derivatives

All derivatives are constant and given by the expressions:
8Nl . N1 b "N=

N2 _ aN2 ON2on2 = a 2 ; (9 C2

ON3 _3 ,N 3 N3
a on ac

aN4 aN4 ON4

Remark
- The derivatives of the sum of the basis functions is null (i.e.)

Ei~ - - = 0 for i=1, 2,3 with (I, 2, t3) =(t, r,

3.4. - -Computation of the invariants

The transformatiom x may be rewritten as:

i=4
x-- xNj (3)

with,

g = Yi ; 1, 2,3,4
zi

The derivatives are constants given by the expression:

18

i=4xj 1c _,Nj,fj for i 1 , 2, 3 with (I, (,3=(, 2, ¢) (4)
Ii

and,
8N,

representing the derivative of the shape function Ni with respect to the variable j.
We obtain,

x4(c) = aix, + a2x 2 + a3X3 + a4x4

x,,(,) g bjxj + b2x 2 + b3 x 3 + b4 x4 (5)

xC(X) = cIxI + c2 x2 + c3x3 + c4 x4

The vector function gradient, F, is a (3 x 3) matrix defined by

F=Vx

= [xf , x', x] (6)

The Cauchy-Green matrix is:

C = Ft F (7)

Finally, the three invariants of the Cauchy-Green tensor are:

= tr (9)

- I~X(II + Il~xI2 + IfII (8)

12 = tr(Cof())

SIlCof FIIn
Alx A x'1112 + Ilx A X<1+ IIx A X(1 (9)

13 = det (CQ)

= (detF)
2

1 2 (10)

19

with,

J = detF

= det(xf,x,, xC) (jacobian) (11)

and the symbols 11.1Im, 1I.1Iv, tr (.), det (.) and Cof(.) denoting, respectively, the
matrix norm, the vector norm, the linear operator trace and the two non linear
operators determinant and cofactor.

3.5. - Differentiation of the invariants

The computations of the invariants are carried out using formulas (3) of the basis
functions derivatives. The next step is to find the formulas for the differential of
these invariant which will be used to compute the differential of the functional.

3.5.1 - Notations:

In the following we note,

x = (zi,z2,X3,z 4,YI, Y2, y3, Y4 ,zI,z 2 ,z3,z 4)

and

with,

X i Yi h hy
= =hT]

representing respectively the vertices of the tetrahedron and a direction vector at
these vertices.

3.5.2 - Differentiation of the transformation derivatives

The derivtive of the transformation x is :

r &(I,X2iX3iX4) 1
= I Y((Y, Y2,Y3, Y4)

Lz((zI , Z2, Z3, Z4)J

For the differential of the vector function xf at point x applied to vector h we
have:

20

8 _ h a _x a 9 _ a _ h
xxb dI a(x), b =x+ 4

d dz(). h = h+ 2h2 + h+

and the same relations holding for r and C.

3.5.3 - Differentiation of the iacobian

The jacobian being related to the derivatives by the expression:

J (x) = (x(, x?, x)

with xf, x,,, xC, linear functions of the variable x, the differentiation gives:

d J (_).(b)= d x(x)(b)" (xn A xC)+
d d xn(x)().(xC A x()+

d x(X)(_).(XC A x,,) (12)

The scalar obtained above is the summation of the scalar product between the
differential of the derivative function and the vector product of the two remaining
derivatives. The differentiation of the derivatives simplifies to:

d xj(x)-(b) = xf(_h)

= h (13)

where b C is the vector defined by relation (3) while replacing variable x by h
The differential of the jacobian rewrites :

d J(N).(b)= be-(xv A xc)+ b,,.(x(A xc)+ bC-.(x A x,) (14)

We can also deduce the higher orders differentiation of the functional J and with
the same notations and considerations introduced previously we obtain:

d2J(:6 b, b) =2[(xf, b ,, b C)+
(, X,,, _ C)+

(h , ,,xc)] (15)

21

d 3 j(.h b ,)=6(h,,,) (16)

3.5.4. - Difrentiation of 1,

d I b)=2 (b C.x,, + b C.xC (18)

d 2I 1(-I)(b, h)=2 (b±.be+ h,._h,+ bC.h¢) (19)

3.5.5. - Differentiation of I2

12 = (x(A x,1) 2 + (x, A xC) 2 + (x(A xf) 2 (20)

d1 2 =2 (x A X).-h b A _x,+!C A h,7}

+(1cA C). {- A x +A_. A hC}

+ (_C A xf).{hb(^A -t +Ac A he} (21)

d 212 =2 ((_f A X.+xf A hq) 2

"(bq A xC +x,, A 5_)2

" (b: A x + b A ̂ -) 2

+2 [(g_ A x,). (at A h,)
(,A XC)(, A h)
(.X A Xf))(bC A hf) (22)

d 312 = 12 [(bf A X, + ZA A hl)_(bt A hl)
+ (b A X b (4, A hA)
+ (b A :gt +x_¢ A hf)-(h A hf)]) (23)

From expression (23) we see that the scalar function d3 12 is linear and then for
the computation of d 412 (constant i.e. independent of the variable x) we use the
previous expression replacing x by h .

22

3.5.6. - Differentiation of the functional

a = Ci(I - I3 - 2) + C2(2 - 213 - 1) + C3(J t 1)2 (24)

I I1 is a polynomial of degree 2 (with respect to the variable x)

1 2 is a polynomial of degree 4 (with respect to the variable x)
• J is a polynomial of degree 3 (with respect to the variable x)

Therefore the functional a is a polynomial of degree 6 of the vertices coordinates.
Reordering and gathering the terms, a rewrites in the general form:

ClII + C212 + -Y j 2 - 2C 3 J +6

with,
7 =C 3 -CI-2C2 and 6=C 3 -2C,-C 2

The differentiation of a gives :

da'(g).b =Cld I1 (x). h +C 2 d I2(x) h-+
(2-7 J (x) 2C3) dJ(xg) h

d '(:x).(b, _)= Cld I I(h)h)
+ C2 d2(jx). (b_, _h) +27f(dJ(x). b)2+

[2J(jx)-2C3 d J(x).(b,hb)

4a'(;).(b4)=C 2 d 1 2 (b)(h, b, h)+

47(d J(x).(h))dJ 2)(hh[27J(xc)-2] d J(b).(h, b)+

6-y(d j (K .(_h h))2

d "a(:g).(b)-y qd J (_).(b, b d J b_).(, h)

d 6a((x).(h 6)=20td J(h).(h, h) 2

23

APPENDIX 4

Conjugate Gradient Algorithm

V = {x; x E Wnunk}

nunk = ndimn*npoin (unstretched meshes)
= ndimn*nnodes*nelem (stretched meshes)

a is a polynomial of degree 2*ndimn (ndimn = 2 or 3)

To find the point x minimizing ain the multidimensional space V a Conjugate Gra-
dient Algorithm is used. This algorithm reduces the multidimensional minimization
problem to a succession of one-dimensional minimization problems. The different
steps are sketched below :

Initialization

x0 E V; coordinates of the initial mesh.

ho = -Va(xo)

Assume that x,- 1 and h ._1 are known,

1 - Computation of x, :
X = Xn.-1 +Pn b .- i

with, pn = Arg min+o'(xP. +p h.- 1)

2 - Computation of yn :

with, Gn = -Va(x.)

3 - Compute the descent direction h

h ", - Gn + 3n b- n-1

4 - convergence test :

if I b n1 > e, n = n + 1, goto I

24

APPENDIX 5: SAMPLE CALCULATIONS

Computing Systems in Engineering Vol. 1, Nos 2-4, pp. 257-272, 1990 0956-0521/90 $3.00 + 0.00
Printed in Great Britain. © 1990 Pergamon Press pic

THREE-DIMENSIONAL FLUID-STRUCTURE
INTERACTION USING A FINITE ELEMENT SOLVER

AND ADAPTIVE REMESHING

R. LbHNE
Department of Civil, Mechanical and Environmental Engineering, School of Engineering and

Applied Science, George Washington University, Washington, D.C. 20052, U.S.A.

(Received I May 1990)

Abstiat-The combination of adaptive remeshing techniques, flow solvers for transient problems with
moving grids, and consistent rigid body motion integrators in three dimensions is presented. The resulting
scheme allows the economical simulation of fully coupled fluid-rigid body interaction problems of
arbitrary geometric complexity. Several results, showing three-dimensional store separation, are given to
demonstrate the capabilities developed.

1. INTRODUCTION simulating them accurately with a conventional,
algebraic turbulence model has to be forfeited.

Practical military applications where we encounter a The lowest order turbulence model that can yield
significant flowfield perturbation due to body motion acceptable results for flows of this type is the k, c
are as follows: ordnance store separation from model.
aircraft, interstage separation in rockets, shroud -Body motion: a futher degree of complexity is
removal for interceptors, separation of MIRVs, and added for the class of problems considered
torpedo launch. Civilian applications where we here due to the relation motion of the bodies
encounter a significant perturbation of the flowfields present. The bodies move through an already
due to body motion are as follows: reciprocating complex, highly nonlinear flowfield, modifying it
engines, turbines, propellers, ventilators and valves, constantly.

1.1. Store separation as a model problem All of these aspects, taken together, make the
intuitive prediction of these flows, as well as any

In order to focus the discussion and the relevant extrapolation from past experience, a very unreliable
ideas, consider the separation of ordnance stores design approach. The nonlinear character of these
from airplanes flying at supersonic speeds. Figure 1 flows also implies that safe deployment from a
illustrates some of the relevant physical processes mid-cavity position does not guarantee safe deploy-
involved in these situations, ment from a side-cavity position. The only other two

alternative design procedures besides computational
-Shock/shock interactions: at supersonic speeds, fluid dynamics (CFD), wind-tunnel measurements

the presence of shocks in the flowfields becomes and flight testing, are either extremely expensive or
unavoidable. With several bodies interfering with impossible.
each other, the shocks emanating from them Wind-tunnel experiments for store separation in
interact with each other in sometimes extremely the supersonic regime are difficult because:
complicated ways. 2

-Shock-boundary layer interaction: when shocks -Three non-dimensional numbers need to be
A impact on a surface, the boundary layer is greatly reproduced on the scaled model at the same time:

influenced by parameters such as shock-reflection Reynolds number, Mach number and Froude
angle, shock-strength, the pressure gradients up- number. For supersonic flows in particular, the
stream and downstream of the impact zone, and reproduction of all three non-dimensional numbers
body curvature. The resulting flowfield may in the wind-tunnel is practically impossible.
vary abruptly with only minor changes of flight -The release of ordnance stores requires several
conditions. seconds, a time-frame that would be too power-

-Turbulent, separated flows: given the highly consuming-and thus expensive-for most large
complex, and not aerodynamically streamlined wind-tunnels.
geometries of bomb-bays, many of the flowfields -The release of ordnance stores into a supersonic
contemplated will have vast regions of separated, free stream tends to accelerate these objects
turbulent flow. This implies that any hope of drastically, propelling them to high velocities very

257

258 R. L.,HNa

TS: S43iuw W i

AEnlargement of Area A

Fig. I. Store separation: relevant physical processes.

rapidly. Thus, one can expect extensive damage deployment from any other l.sition and/or any
from any experimental program of this sort, other speed and/or any other height. As one can see,

this can lead to an extremely lengthy, and costly,
Therefore, in-flight experiments appear as the only certification procedure for each new ordnance store
viable choice. However, this is a very primitive, and entering service.
extremely expensive, design process.

-A protoype has to be built to attain certainty in The situation outlined above for store separation is
the safety of the design. Production of a complete not much different from that encountered in all of
prototype on such uncertain terms-there is no the other engineering applications listed above. The
guarantee that it will deploy safely-appears almost main difficulty in predicting all of these flowfieids stems
unjustifiable. from the fact that body motion will, in most cases,

-Unsafe deployment may damage or destroy the lead to complex, time dependent flows. Advances in
carrier vehicle. This high risk implies additional computer speed and memory over the next decade
expenses in any test program. will allow the simulation of these flows on a routine

-The prototype has to be tested for each new release basis. Thus, one can expect CFD to gradually take the
position: safe deployment from a given position at lead role in the design process for these applications.
a certain speed and height does not imply safe The present effort represents a first step in this direction.

S_8, US S I

Three-dimensional fluid-structure interp-tion 259

1.2. General features of any computational fluid ation of the moments of inertia tensor can lead to
dynamics methodology for moving bodies difficulties.

The accurate simulation of three-dimensional time- (h) Interactive post-processing capabilities. Under-
dependent, compressible flows with moving bodies standing of the complex, time-dependent, three-
requires the following capabilities, dimensional flowfields requires instantaneous

visualization of several key parameters such as
pressure, Mach number, density, etc. An engineer

(a) Interactive grid generation methods. The fast, that cannot visualize immediately a computed
userfriendly, interactive generation of grids in flowfield, in order to make judicious changes in
three dimensions is essential to the success andwidepred aceptnce f ay CF tol inthe the design, will never accept CFD as a designw idespread acceptance of any C F D tool in the t o .T u ,a f s ,i t r ci e o k t t o - a eusercomuniy. Wthot sch capbiltythe tool. Thus, a fast, interactive, workstation-baseduser community. Without such a capability, the post-processing capability is required.
set-up times for new problems run in the order of
months, significantly reducing the benefits which This list indicates that techniques from several
may be realized from any CFD methodology, different areas of CFD and computer science must be
Thus, interactive grid generation methods for combined to meet the desired goal. It is therefore not
unstructured grids that reduce set-up times to surprising that very few attempts have been made to
days if not hours are a prime requirement. tackle the complete class of problems. Currently, the

(b) Solvers that can handle moving frames of refer- chimera grid scheme8 seems to be the most promising

ence. Since at the very least the portions of the approach for structured grids. In this approach, local
mesh close to the moving bodies will move in grids for each body are overset on a major grid that
time, the ability to describe the equations of covers the complete computational domain. For un-
motion for the fluids in moving frames of reference structured grids, Formaggia et al.9 used local remesh-
becomes mandatory. ing for regions of distorted elements in combination

with Eulerian and arbitrary Eulerian-Lagrangian
(c) High-order, monotonicity -preserving schemes. solvers in two dimensions to simulate store separation

These schemes are needed to simulate time- problems. In both cases, the body motion was pre-
dependent flows with strong shocks and other scribed, and no adaptive refinement techniques were
discontinuities that will arise in the flows of employed. In 1988 the present author presented a
interest in this effort (supersonic and hypersonic fully coupled two-dimensional fluid-rigid body inter-
speeds), action algorithm.' 6 This algorithm also employed

(d) Proper modeling of turbulent, separated flows, adaptive remeshing to accurately simulate the flowfield
The flowfields considered will have vast regions at hand. This development represented the first attempt
of separated, turbulent flow. The lowest order to combine and incorporate in a single, coherent
turbulence model that can yield acceptable results software package all of the requirements listed above.
for the flows considered here is the k, c model. The present paper extends this methodology to

(e) Fast regridding capability for regions with distorted three dimensions. While conceptually the same as the

elements. These are needed because the motion two-dimensional algorithm, the three-dimensional
of bodies may be severe, leading to distorted extension requires several important improvements:
elements which in turn lead to poor numerical better three-dimensional grid generators, consistent
results. three-dimensiotial rigid body motion integrators,

interactive plotting tools, and access to a large memory
(f) Adaptive refinement schemes. Experience over supercomputer for debugging. Given the currently

recent years" 7 has demonstrated that self-adaptive available computer hardware, and our lack of knowl-
refinement schemes are essential in reducing the edge in turbulence modeling, it seems unreasonable to
total number of degrees of freedom without include turbulence modeling at the present stage of
deteriorating the accuracy of the solution. In three development. Therefore, the present discussion will
dimensions, the ability to refine locally regions of center on Euler solvers, rather than Navier-Stokes
interest will determine the accuracy of the result solvers for compressible flows.
and whether it can be obtained in a reasonable The rest of this paper is divided as follows. Section
time. Given the currently available hardware, it is 2 treats the equations of motion for the flowfield in
impossible to solve three-dimensional problems arbitrary frames of reference, as well as their solution
using uniformly fine grids everywhere in the [items (b) and (c) above]. Section 3 deals with the
computational domain, equations of motion for the moving bodies [item (g)].

(g) Consistent rigid body motion integrators. In order In the present case, we restrict the description to rigid
to fully couple the motion of rigid bodies with the bodies. Section 4 outlines the gridding technique used
aerodynamic forces exerted on them, consistent [items (a) and (e)]. The gridding technique is also used
rigid body motion integrators must be developed, to adaptively regrid the computational domain [item
This task is relatively simple in two dimensions. (f)]. Finally, Sec. 5 contains numerical examples that
However, in three dimensions the temporal vari- demonstrate the capabilities developed.

260 R. LOHNER

2. THE EQUATIONS OF MOTION FOR THE FLUID where t an, ne tangential and normal vectors.
The desii ,entum at the new timestep should,

In order to handle the moving frames of reference however, have no normal velocity component (=O)
associated with the moving finite elements, the partial and has the form
differential equations need to be modified. This is most
easily accomplished by the Arbitrary Lagrangian- Apv' + = A[p(w + cxt)]. (4)
Eulerian (ALE) formulation. The derivation of the
equations may be found in Ref. 10. Here, we just state Combining Eqs (3) and (4), we obtain for the two
the final form of the equations of motion. Given the following cases:
velocity field w for the elements

w - (wi, WY, W1, (i) (a) givcn t

the Euler equations that describe an inviscid, com- Apvi ' = Apw + [(Apv* - Apw). t]- t; (5)
pressible fluid may be written asIp W~) - IP(uY - wY)p W W,)p Fp

pu W-wx)pu, + p (UY - WY)pu' u wz)pu~ IPu

Puy w,)pu' + (U - wY)PUY P p u ~ w)puY V-W p
PU 2 (-wI)pu ~ (U Y -wY)PU'u - w2)pu +p I puI
pe (u' - w')pe + up (uY - wy)pe x uypl (uz - w')pe + up peJ

Observe that in the case of no element movement (2)

(w = 0), we recover the usual Eulerian conservation-
law form of the Euler equations. If, however, the (b) given n
elements move with the particle velocity (w = v), we
recover the Lagrangian form of the equations of Api' + - Apv* - [(Apv* - Apw) n] n. (6)
motion. From the numerical point of view, Eq. (2)
implies that all that is required when going from an 2.2. The flow solver (FEM-FCT)
Eulerian frame to an ALE frame is a modified For the compressible flows described by Eqn (2),
evaluation of the fluxes on the left-hand side, and discontinuities in the variables may arise (e.g. shocks
the additional evaluation of source-terms on the or contact discontinuities). Any numerical scheme of
right-hand side. order higher than one will produce overshoots or

As the elements move, their geometric parameters ripples at such discontinuities (the so-called "Godunov
(shape-function derivatives, Jacobians, etc.) need to theorem"). In the present case the appearance of these
be recomputed every timestep. If the whole mesh overshoots, which may lead to numerical instability,
is assumed to be in motion, then these geometric is avoided by combining, in a conservative manner,
parameters need to be recomputed globally. In order a high-order scheme with a low-order scheme." The
to save CPU time, only a small number of elements temporal discretization of Eq. (2) yields
surrounding the bodies are actually moved. The
remainder of the field is then treated in the usual W +

1= U" + AU, (7)
Eulerian frame of reference, avoiding the need to
recompute geometric parameters. This is accomplished where A U is the increment of the unknowns obtained
by identifying several layers of elements surrounding for a given scheme at time t = t I. Our aim is to obtain
the bodies, which are then moved. As the number of a AU of as high an order as possible without intro-
layers increases, the time-interval between regridding ducing overshoots. To this end, we rewrite Eq. (7) as
increases, but so also does the cost per timestep.
Therefore, one has to strike a balance between the U"+1= UR+ AU+ (AUh- AU) (8)
CPU requirements per timestep and the CPU require-
ments per regridding. In the present case, we found or
that two to five layers of elements represented a good
compromise. U+I = UI + (AUh AU'). (9)

2.1. Boundary conditions Here AU and AU' denote the increments obtained

When imposing the boundary conditions for the by some high- and low-order scheme, respectively,
velocities at solid walls, we need to take the velocity whereas U' is the monotone, ripple-free solution
of the surface w into consideration. Denoting the at time t = t"+ I of the low-order scheme. The idea
predicted momentum at the surface as Apv*, we can behind FCT is to limit the second term on the
decompose it as follows: right-hand side of Eq. (9)

Apv* = Alp(w + at + on)), (3) U = U'+ lim(AU' - AU), (10)

Three-dimensional fluid-structure interaction 261

in such a way that no new overshoots or undershoots f r (16)
are created. It is at this point that a further constraint, = 0rorop

given by the conservation law (2) itself, must be taken
into account: strict conservation on the discrete level 0 = tr(I). 1 - I
should be maintained. The simplest way to guarantee
this for the node-centered schemes considered here y+-= -tx 1x + I' -Iy, (17)
is by constructing schemes for which the sum of the - 4. +
contributions of each individual element (cell) to its -4 +yy
surrounding nodes vanishes. This means that the we then have the following equations describing
limiting process [Eq. (10)] will have to be carried out we e have the foo n tib
in the elements (cells). Further details v., the limiting
procedure, its algorithmic implementation, and the
high- and low-order schemes employed may be found m, = F =mg -(pn dF (18)
in Ref. 11.

3. THE EQUATIONS OF MOTION (Io) o fpo (19)
FOR THE RIGID BODIS Observe that, in two dimensions, the second term on

The movement of rigid bodies can be found in the left-hand side disappears, considerably simplify-
standard textbooks on classical mechanics (see e.g. ing the equations. However, in three dimensions it
Ref. 12). Due to its nonlinear character, rigid body usually does not. Another complication that arises
motion in three dimensions is not as straightforward only in three dimensions is the temporal variation of
as it may seem. Therefore, a more detailed description the inertial matrix 0. As one can see from Eq. (16),
of the numerical implementation used is given here. the values of 0 will vary as the body rotates. This
The situation under consideration is shown in Fig. 2. implies that during the simulation one has to follow
Given the position vector of any point of the body the local frame of reference of the body.

In order to update the velocities and positions
r=r. + r0 (i) of the bodies in time, we employ an explicit time-

marching scheme. This seems reasonable, as in
the velocity and acceleration of this point will be practical calculations the timescales of the body-

movement are much larger than those associated with
t = tc + to = V, + 0 x r0 (12) the fluid flow. Thus, we update v, o as follows:

f = #c + x r0 +to x (co x r0). (13) V+I =V'+AtV, (20)

Using the vector relationships t" +I =o" + Atdr. (21)

r x (co x (o) x r)) = (r. ((a x r))w - (r .)(o x r) A minor difficulty now becomes apparent: the magni-
tude of the timestep At is unknown before the startof the flowfield update. In the present case, the

and the abbreviations timestep of the previous timestep was taken instead.
This implies that the body movement is "lagging"

behind the flowfield by at most one timestep. How-
m= dm = p dOl (15) ever, practical simulations show that the actual error

is much smaller, as the magnitude of At does not
change abruptly. For the time-interval ft", 1"+], we
then have the average velocities

z = 0.5 * (v"+' +) (22)

IN ce, = 0.5 * (o" + I + o,). (23)

Combining Eqs (22) and (23) with Eq. (12), we are
now in a position to compute the velocities at the

z surface of the bodies, Wr.
Some of the simulations shown below required

several thousand timesteps. If one simply uses the
velocities obtained at the boundary from Eqs (22)
and (23), the body shape becomes more and more

Fig. 2. Rigid body motion. distorted. This is a purely numerical artifact. It can

262 R. LOHNER

C(B.l) Compute body forces and moments from
Eqs (18) and (19).

(B.2) Transform ,noments to the local frame of
I I reference of the body

A
-MI = (er . e')M. (28)

(B.3) Given the estimated timestep At, obtain the

accelerations $i, 6) from Eqs (18) and (19).
I (B.4) Given the accelerations, compute average

velocities -e', co" for time-interval [tnt + 1
]

from Eqs (22) and (23).
I I (B.5) Transform back the angular velocity a" from

the local frame of reference of the body to
Cartesian coordinates

Fig. 3. Elongation of body. Correct path: AB. Computed:
AC. (o/ = (ei" er)od. (29)

be explained by looking at the situation depicted in (B.6) Given the actual timestep At, update the
Fig. 3. The portions of the body with higher velocity poitin the c t l i ng ot u fae of
tend to "elongate" the body. This implies that one positions of the points lying on the surface of
ought to impose the exact rigid body motion when the body, as well as the points defining the
updating points on the surface. With reference to body geometry using Eqs (24)-(27).
Fig. 4, we decompose a point lying on the body at (B.7) Given the actual timestep At, update the pos-
time t = t" into three components itions of the centers of mass and the rotational

frame of reference using Eqs (24)-(27).

r" = r, + r, + r,. (24)
4. ADAPTIVE REMESHING

We can then define unit vectors in the directions of
r, and r, For typical compressible flow problems, we have

small regions of rapid change in the solution embedded
r" r,_ in large regions where the solution is smooth. In order

e, = -] e, = f- (25) to simulate correctly the interaction of these dis-
continuities or fronts, an appropriately fine mesh is

Furthermore, we define the vector e. as required. It would, however, be extremely wasteful
to have an overall fine mesh, as the regions where a

e. = e x e,. (26) fine mesh is required are small. Therefore, the use of
adaptive refinement techniques becomes imperative.

Then, given the incremental rotation angle Apo = As the bodies in the flowfield may undergo arbitrary

w I At, the new position for r is obtained from movement (see examples below), a fixed mesh structure
will lead to badly distorted elements. This means that

e' = r, + Atvl' + r, + Ir,I(cos(Awp)e, + sin(A 0)ej), at least a partial regeneration of the computational
domain is required. On the other hand, as the bodies

(27) move through the flowfield, the positions of relevant
The complete rigid body algorithm then consists of the flow features will change. Therefore, in most of the
following steps. computational domain a new mesh distribution will

be required. The idea is to regenerate the whole
zcomputational domain adaptively, taking into con-

sideration the current flowfield solution. In order to A
generate or regenerate a mesh we use the advancing
front technique:"73

(F.l) Use the current grid and solution, together
with appropriate error indicators, to define the
spatial variation of the size, the stretching, and
the stretching direction of the elements to be
generated. At the nodes of the current grid we
define the desired element size, element stretch-

Fig. 4. Decomposition of surface vector for rigid body ing. and stretching direction. In what follows
motion. we will denote this grid as the background grid.

Three-dimensional fluid-structure interaction 263

(F.2) Define the boundaries of the domain to be being able to smooth, the mesh quality was improved
gridded. This is typically accomplished by substantially.
splines in two dimensions and surface patches
in three dimensions. 4.1.2. Speed. The following means are used to

(F.3) Using the information stored on the back- achieve speed.

ground grid, set up faces on all these bound-
aries. This yields the initial front of faces. At (a) Use of optimal data structures. The operations
the same time, find the generation parameters that could potentially reduce the efficiency of the
(element size, element stretching and stretching algorithm to O(N's) or even O(N 2) are (see Sec. 2)
direction) for these faces from the background as follows.
grd

(F.4) Select the next face to be deleted from the -Finding the next tae to be deleted (step F.4).

front; in order to avoid large elements crossing -Finding the closest given point to a new point

over regions of small elements, the face form- (step F.5.2).

ing the smallest new element is selected as the -Finding the faces adjacent to a given point (step

next face to be deleted from the list of faces. F.5.3).

(F.5) For the face to be deleted. -Finding for any giving location the values of
generation parameters from the background grid

(F.5.1) Determine a "best point" position (steps F.3 ant F.7). This is an interpolation
for the introduction of a new point problem on unstructured grids.
IPNEW.

(F.5.2) Determine whether a point exists in the The verb "find" appears in all of these operations.
already generated grid that should be The main task is to design the best data structures
used in lieu of the new point. IF there for performing these search operations as efficiently
is such a point, set this point to IPNEW as possible. The data structures used are as follows.
and continue searching (go to F.5.2).

(F.5.3) Determine whether th c lement formed -Heap-lists to find the next face to be deleted from
with the selected point IPNEW does the front.
not cross any given faces. If it does, -Quad-trees (two-dimensional) and octrees (three-
select a new point as IPNEW and try dimensional) to locate points that are close to any
again (go to F.5.3). given location.

(F.6) Add the new element, point, and faces to their -Linked lists to determine which faces are adjacent
respective lists, to a point.

(F.7) Find the generation parameters for the new
faces from the background grid. The detailed implementation of these data-structures

(F.8) Delete the known faces from the list of faces. may be found in Ref. 13.

(F.9) If there are any faces left in the front, go to F4. (b) Filtering. Typically, the number of close points

and faces is far too conservative, i.e. large. As an
4.1. Recent developments example, consider the search for close points: there

A typical simulation where bodies undergo severe may be up to eight points inside an octant, but of
motion typically requires several tens, if not hundreds, these only one may be close to the face to be taken
of remeshings. Therefore, the grid generator must be out. The idea is to filter out these "distant" faces and
reliable and fast. points in order to avoid extra work afterwards. While

4.1.1. Reliability. We have recently increased the the search operations are difficult to vectorize, these
reliability of the grid generator to a point where it filtering operations lend themselves to vectorization
can be applied on a routine basis in a production in a straightforward way, leading to a considerable
environment. This significant increase in reliability overall reduction in CPU requirements.
was achieved by: (a) not allowing any bad elements
during the generation process; and (b) enlarging and (c) Automatic reduction of unused points. As the
remeshing those regions where new elements could front advances into the domain and more and more
not be introduced. Thus, we first attempt to complete tetrahedra are generated, the number of tree-levels
the mesh, skipping those faces that do not give rise increases. This automatically implies an increase in
to good elements. If pockets of unmeshed regions CPU time, as more steps are required to reach the
remain, we enlarge them somewhat, and regrid them. lower levels of the trees. In order to reduce this CPU
This technique has proven extremely robust and reli- increase as much as possible, all trees are automati-
able. It has also made smoothing of meshes possible: cally restructured. All points which are completely
if elements with negative or small Jacobians appear surrounded by tetrahedra are eliminated from the
during smoothing, these elements are removed. The trees. We have found this procedure to be extremely
unmeshed regions of space are then regridded. By effective. It reduces the asymptotic complexity of

264 R. LdHNER

the grid generator to less than O(N log N). In fact, E=I Ui+ - 2- UJ (30)
in most practical cases one observes a linear O(N) I , 17,+ U +IU,- U,1 _
asymptotic complexity, as CPU is traded between + c.[Ui+, + 2. 1 U,[+ I U,_ 1]
subroutine call overheads, and less close faces on
average for large problems. Defining the following "derivative quantities":

(d) Global h-refinement. While the basic advancing = c(IU,+I + 2 IUl + IUj 1 I) (31)
front algorithm is a scalar algorithm, h-refinement
can be completely vectorized. Therefore, the adaptiveD! = IU,+I - U I + [U, - U- 1 (32)
remeshing process can be made considerably faster
by first generating a coarser, but stretched mesh, D1 = IUj 2 -2 U, + U_ d, (33)
and then refining globally this first mesh w-th classic
h-refinement.6 Typical speed-ups achieved by using the error on the present ("old") grid is given by
this approach are 1: 6 to 1: 7.

Currently, the advancing front algorithm constructs D2E ' d = I 34
grids at a rate of 25,000 tetrahedra per minute on the Dl + DO (34)

Cray-XMP or Cray-2. With one level of h-refinement,
the rate is 190,000-200,000 tetrahedra per minute. This implies that a reduction of the current element
This rate is essentially independent of grid-size, but size hod by a fraction F, to
may decrease for very small grids.

h~w= " hld (35)
4.2. Local remeshing

Practical simulations revealed that the appearance will lead to the following estimated errors:
of badly distorted elements occurred at a frequency
that was much higher than that expected from the _D_

2
2

element size prescribed. Given the relatively high cost E" F, + DP (36)

of global remeshing, we explored the idea of local
remeshing in the vicinity of the elements that became Thus, given the desired error value E ' , the reduction
too distorted. Thus, we proceed as follows, factor , becomes

(L.1) Identify the badly distorted elements in the [D' + (D,!)2 + 4D9E- [D + D o]

layers that move, writing them into a list E' I E +
LEREM(I: NEREM). 2[D + D0

(L.2) Add to this list the elements surrounding these (37)
badly distorted elements.

(L.3) Form "holes" in the present mesh by: Notice that if the solution is smooth, implying
(L.3.1) Forming a new background mesh with D 1 Do, then the reduction factor reverts to

the elements stored in the list LEREM.
(L.3.2) Deleting the elements stored in LEREM //E,-

from the current mesh. E old (38)
(L.3.3) Removing all unused points from the

grid thus obtained, consistent with the second-order accuracy assumption
(L.4) Recompute the error indicators and new of linear elements. However, close to a discontinuity,

element distribution for the background grid. where D 1' DO, the reduction factor is given by
(L.5) Regrid the "holes" using the advancing front

method. En. (39)

EFold (9
Typically, only a very small number of elements

(< 10) becomes so distorted that a remeshing is In two and three dimensions we define the corre-
required. Thus, local remeshing is a very economical sponding matrices
tool that has allowed us to reduce CPU requirements
by more than 60% for typical runs. (Dv, = h2c. IN'I INJI JI dfl (4)

4.3. Determination of element sizes fu

In order to estimate the element size, stretchings, (D I)/,= h2 IN' I IN-U dO (41)
and stretching directions, we employ the modified kk

interpolation theory error indicator proposed in Ref. 3.
In one dimension, on a uniform grid of element size (DZ)k, = h 2fN'NdnUzf, (42)
h, this error indicator reduces to the following form:.Jo

Three-dimensional fluid-structure interaction 265

where N1 denotes shape-function of node I, and h is (A.2) Taking into consideration the kinematic
a typical element length. Given these matrices, we constraints for the body movements,
obtain the error-indicator matrix E and its modal update the velocities of the bodies at
decomposition I =t +1: v',, w "'. At the same time,

obtain the average velocities v,, o' for
E = X. 0 • O the time-interval [t", t] oa

E, Ey E. 1 0 E,2 0 (A.3) With the average velocities v,', o),obtain

(E,, E~ E.J 0 0 Ej the velocities w, on the surface of each
E0 E (43) body for the time-interval fn, t" +].

Each principal direction is then treated as a one- (A.4) Given the surface velocities wr on the

dimensional problem. Using Eq. (37), we obtain three boundaries of the global domain, obtain

diff.ent element sizes 6,, o2, 53 along the principal the global velocity field w n for the element

directions. This information is then used to regenerate movement.

a better grid for the problem at hand. We remark on (A.5) Advance the solution by one timestep

the following characteristics of the present error yields the actual timestep Atl.

indicator. (A.6) Given the actual timestep At' and the

(a) The error indicator is non-dimensional. Therefore, velocity field for the element movement

several variables may be monitored at the same wn , update the coordinates of the points.

time in order to accurately track all physical (A.7) Update the shape-function derivatives

phenomena present. Thus, we can monitor both

density (shocks, contact discontinuities) and elements that have been moved.
vorticity (boundary layers) for viscous flow (A.8) Update the centers of mass r, for the
problems bodies, as well as the coordinates of the

(b) The error indicator is bounded. This implies that points defining the body geometry.

the user does not have to change specified error (0.2) If the grid has become too distorted close to the

tolerances from run to run. We have found that moving bodies: adaptively remesh these regions.

for large classes of problems the specified error (0.3) If the desired number of timesteps between

tolerances could be left untouched without global remeshings has elapsed: adaptively

impediment to the adaptation process. We find remesh the complete computational domain.

this of particular value for the non-expert user (0.4) If the desired time-interval has elapsed: stop.

environment. Otherwise, advance the solution further (go to
0.1).

Before proceeding to the overall algorithm, we
summarize the steps required for one adaptive 6. NUMERICAL EXAMPLES

remeshing as follows. We consider two numerical examples that demon-

strate the effectiveness of the algorithms developed.
(R.1) Obtain the error indicator matrix for the grid- In both cases an idealized store release from a bay at

points of the present grid. supersonic speed (Ma. = 2.0) is simulated. Because

(R.2) Given the error indicator matrix, obtain the of symmetry, only half the flowfield domain needs to
element size, element stretching and stretching be simulated. Release into a supersonic flowfield will
direction for the new grid. necessitate the forceful ejection of stores. Therefore,

(R.3) Using the old grid as the "background grid," the motion of the stores was prescribed, and the
remesh the computational domain using the resulting forces computed. Adaptive remeshing was
advancing front technique. performed every 100 timesteps initially, while at latter

(R.4) If further levels of global h-refinement are times the grid was modified every 40 timesteps.
desired: refine the new grid globally. The maximum stretching ratio specified was S = 1.5.

(R.5) Interpolate the solution from the old grid to the Density and the absolute value of the velocity were
new one. chosen as indicator variables. The latter provided

suitable mesh adaptation to the shear layers in the
S. THE OVERALL ALGORITHM cavity. Even though the grid shows considerable

variation in element size, the average grid .size was of
The overall algorithm for the advancement of the the order of 280,000 tetrahedra for the first example,

solution in time is as follows, and 350,000 tetrahedra for the second one. On a
uniform mesh, the required number of elements

(0.1) Advance the solution one timestep. would have increased by more than an order of
(A.1) Compute the body forces and moments magnitude. The required CPU time for runs of this

from the pressure field and any exterior kind is of the order of several CRAY-XMP processor

forces. hours.

Fig. 5. 1. Single store separation. Surface mesh at T = 0.0.

Fig. 5.2. Single store qs-paration. Surface mesh at T = 0.0.
266

Three-dimensional fluid-structure interaction 267

PR113001

3. 054E 00
3.7481+00
3.6271.01

3.25K+00

3. 2M4 *ON3. MEOW40

3.0571.08
2.344E400

2. a too0

2. 161[4,0

2.62 4*00

2.374.E00

2. 144+0,
2 0331*0

I .3 1 SE O

11, $1E#(00

1. M O o,

1 3151#00

.i07101
I 4K01

S.60 1-01

Prsr FEFL052

Fig. 5.3. Single store separation. Surface pressure at T = 0.0.

6. 1. Single object falling into supersonic free stream already moved a considerable distance, the store in

The computational domain is shown in Figs 5.1 the front has just begun to move. As before, one

and 5.2. Observe that the doors of the bay simulated can clearly discern the extent of mesh adaptation, as

are somewhat thicker than in real life. The store is a well as the considerable change in shock-strengths and

slender object, resembling a missile. Figures 5.1 and shock-positions that occurred due to body motion.

5.2 show the mesh on the surface of the compu-
tational domain at time T = 0.0. The corresponding 7. CONCLUSIONS

pressure contours (30) are shown in Fig. 5.3. Figures We have demonstrated how the combination
5.4-5.6 show the surface mesh and the pressure of adaptive remeshing techniques, flow solvers for
contours (60) at time T = 8.5. One can clearly discern transient problems with moving grids, and integrators
the extent of mesh adaptation, as well as the consider- for rigid body motion allows the simulation of fully
able change in shock-strengths and shock-positions coupled fluid-rigid body interaction problems of
that occurred due to body motion. arbitrary geometric complexity in three dimensions.

The overall reduction in CPU times as compared
6.2. Multiple objectsfalling into supersonic free stream to those of uniformly fine grids depends strongly on

The computational domain is the same as before. the stretching ratios allowed by the physics of the

The two stores resemble bombs. The store at the back problem, but typically lies between 10 and 50. Areas

of the cavity is ejected first, followed by the store in that deserve further study are as follows:

the front of the cavity. Figures 6.1 and 6.2 show the -the diffusive effect of interpolation while remeshing
mesh on the surface of the computational domain at
time T = 0.0. The corresponding pressure contours --extension to Navier-Stokes problems
(60) are shown in Fig. 6.3. Figures 6.4-6.6 show the -treatment of multifluid interactions
surface mesh and the pressure contours (60) at time
T = 2.62. While the store at the back of the cavity has ---extension to flexible bodies and structures.

Fig. 5.4. Single store separation. Surface mesh at T = 8.5.

Fig. 5.5. Single store separation. Surface mesh at T = 8.5.
268

POMCISN

4.3211.01
4. 7W OW0
4.6011+00
4.4411.01
4.2611.0
4. 1211.0
3. 9W1.00
3.6011.0
3.6411.01
3.461101
3.3211.01
3.161 GE01
3. OOOE OW
2.6431.00
2.6=+100
2.5211.01
2. 36010
2.2011.00
2.040E#00

1.5611.0
1. 40K1.0
1.24M#=

9.200E-l1
7.6011E-0)
6.001-01
4.4111-0l

Prv~reFEFL 052
Fig. 5.6. Single store separation. Surface pressure at T = 8.5.

Fig. 6. 1. Multiple store separation. Surface mesh at T = 0.0.
269

Fig. 6.2. Multiple store separation. Surface mesh at T =0.0.

4.6CON6101

3.666466

3. 72=#M6
3.6am 000
3.4W61.0

3. 241I

3. 126146
3.006146

2. 64K#906
2. S201E 60

2.266146
2.166106
2.0461406

1.66610EN

1.2=0046
1.666140
9.606-61

a. 4= 1

Fig. 6.3. Multiple store separation. Surface pressure at T 0.F FL 05
270

Fi.64 utpesoesprain ufc eha .2

Fig. 6.4. Multiple store separation. Surface mesh at T =2.62.

271

272 R. L4OHNER

3. am900

3. 6gOE+O

(: .) • % .119CE 00

.. 3..90E.M

fjj "6 3 29 1

.'-- t r--{ 3.1'90E# 0 0
, '_3 3,, . t~omo

2.990E#00

~ ~" .~. 2 iSGcc*a
- 2 7M0EfO

' ., t,.'4 t. J(o

2.51E#80

, I.': 29"e. 04-O

1) 2.4903E+00

2. 390E#00O
'2.290E+00

E- 2.90E-0,
(l -4 OM+0OO

1,9000

ZE-4- 1 +00 .CCA

a. (WE t

d g ibe +u0

4.* S-O1
7 .0E-01

4. 909E- 0 1

FEFLO52

Fig. 6.6. Multiple store separation. Surface pressure at T = 2.62.

Acknowledgements-This work was partially funded by 7. J. Peraire, M. Vahdati, K. Morgan and 0. C.
"S AFOSR under contract AFOSR-89-0540. Dr Leonidas Zienkiewicz, "Adaptive remeshing for compressible

, Sakell was the technical monitor. The generous support of flow computations," Journal of Computational Physics
CRAY Research, Inc. in the form of ample CPU-time on a 72, 449-466 (1987).
CRAY-2S is also gratefully acknowledged. 8. F. C. Dougherty and J. Kuan, "Transonic store separ-

ation using a three-dimensional chimera grid scheme,
R"ERNCSAIAA paper 89-0637, 1989.

9 L. Formaggia, J. Peraire and K. Morgan, "SimulationREERNCSof a store separation using the finite element method,"
SI. B. Edney, "Anomalous heat transfer and pressure Applied Mathematical Modelling 12, 175-181 (1988).

distribution on blunt bodies at hypersonic speeds in the 10. J. Donea, "An arbitrary Lagrangian-Eulerian finite
C ,4

presence of an impinging shock," FAA Report No. 115, element method for transient dynamic fluid-structure
Aero. Research Institute, Sweden, 1986. interactions," Computer Methods in Applied Mechanics

2. R. Thareja, J. R. Steward, 0. Hassan, K. Morgan and and Engineering 33, 689-723 (1982).
J. Peraire, "A point-implicit unstructured grid solver for 1I. R. L6hner, K. Morgan, J. Peraire and M. Vahdati,
the Euler and Navier-Stokes equations." International "Finite element flux-corrected transport (FEM-FCT)
Journal of Numerical Methods in Fluids 9, 405-425 for the Euler and Navier-Stokes equations," International
(1989). Journal for Numerical Methods in Fluids 7, 1093-I 109

3. R. L6hner, "An adaptive finite element scheme for (1987).
transient problems in CFD," Computer Methods in 12. A. Sommerfeld, Vorlesungen iber Theoretische Mechanik,
Applied Mechanics and Engineering 61, 323-338 (1987). Harri Deutsch, Frankfurt (1976).

4. J. D. Baum and R. Ldhner. "Numerical simulation of 13. R. L6hner, "Some useful data structures for the gener-
shock-elevated box interaction using an adaptive finite ation of unstructured grids," Communications in Applied
element shock capturing scheme," AIAA paper 89-0653, Numerical Methods 4, 123-135 (1988).
1989. 14. R. L6hner and P. Parikh, "A three-dimensional grid

5. R. L6hner. "An adaptive finite element solver for generation by the advancing front method," International
transient problems with moving bodies," Computers & Journal of Numerical Methods in Fluids 8, 1135-1149
Structures 30, 303-317 (1988). (1988).

6. R. Ldhner. "Adaptive remeshing for transient problems," 15. J. Peraire, K. Morgan and J. Peiro, "Unstructured finite
Computer Methods in Applied Mechanics and Engineering element mesh generation and adaptive procedures for
75, 195-214 (1989). CFD." AGARD-CP-464, 18, 1990.

