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In Search of A Unified Theory of Biological Organization: What Does the Motor
System of A Sea Slug Tell Us about Human Motor Integration?

I. ABSTRACT

We summarize the behavioral, electrophysiological, and immunohistochemical
findings in the sea slug, Pleurobranchaea, and compare these finding to those
obtained in other invertebrate animals, in higher animals, and in humans. The
findings show that there is "massive" distribution and sharing of information
occurring, respectively, through diverging and converging network connections.

We examine the findings of reductionist approaches and find them inadequate
to answer the problems arising from such widely distributed, multifunctional, and
highly converging networks whose activity may be variable. Such findings indicate
that "cooperative" actions among groups of neurons may arise dynamically and
nonlinearly in shifting contexts or "consensuses" of response in which individual
neurons may have different functions, even during times when the behaviors are
similar. Control of these systems is emergent, "fuzzy", and error-prone rather than
being reflexive or following explicit causes and effects that can be read from the
"switchboard" circuit of the connections between neurons.

A unified theoretical perspective is needed that accounts for both the emergent
and switch-board systems. Two problems apply in both cases: First, animals may
have evolved highly specialized behaviors whose underlying neural networks may
not necessarily reflect generally applicable principles. Second, owing to their
complexity, it may not be possible to characterize biological networks in sufficient
detail to permit an understanding of the system through simulation of the system
itself. Thus, we use biological information only as indications or points of departure
to identifying first principles that are not initially intended to account for a
particular behavior, but to provide insights into generally-applicable self-organizing
processes at the local-neuron level that can then be used to understand how large-
group action emerges.

We discuss a number of these avenues to examine computationally and
biologically, e.g: (1) Error and variation may not only be products of but may be
causally related to the generation system dynamics. (2) The possibility that attractors
provide avenues for energy- or error-minimization yields mechanisms from which
emerge many important building blocks, e.g: the ability of groups of synapses to
encode different categories of information simultaneously; threshold effects that
enhance system function; and input signal dynamics which not only carry encoded *‘é’-—-
information but also provide a variety of search strategies for locating attractor -
basins. (3) Minimal network architectures may be identified that permit bifurcation -
into different dynamical states. (4) Computer graphical analysis of spatio-temporal o
activity may show how different attractors are established and move and merge in -
space and time. (5) Competition between synapses may continuously sculpt and
readjust network connections to changing conditions.
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We summarize the behavioral, electrophysiological, and immunohistochem-
ical findings in the sea slug, Plevrobranchaea, and compare these finding to
those obtained in other invertebrate animals, in higher animals, and in hu-
mans. The findings show that there is “massive” distribution and sharing
of information occurring, respectively, through diverging and converging
network connections.

We examine the findings of reductionist approaches and find them inade-
quate to answer the problems arising from such widely distributed, muiti-
functional, and highly converging networks whose activity may be variable.
Such findings indicate that “cooperative” actions among groups of neurons
may arise dynamically and nonlinearly in shifting contexts or “consensuses”
of response in which individual neurons may have different functions, even
during times when the behaviors are similar. Contiol of these systems is
emergent, “fuzzy,” and error-prone rather than being reflexive or following
explicit causes and effects that can be read from the “switchboard” circuit
of the connections between neurons.

A unified theoretical perspective is needed that accounts for both the emer-
gent and switch-board systems. Two problems apply in both cases: First,

1991 Lectures in Complex Systems, SF1 Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 1




2 George J. Mpitsos and Seppo Soinila

animals may have evolved highly specialized behaviors whose underlying
neural networks may not necessarily reflect generally appiicable principles.
Second. owing to their complexity, it may not be possible to character-

ize biological networks in sufficient detail to permit an understanding of
the system through simulation of the system itself. Thus. we use biolog-
ical information only as indications or points of departure to identify'y/
first principles that are not initially intended to account for a particular
behavior, but to provide insights into generally applicable seif-organizing
processes at the local-neuron level that can then be used to understand
how large-group action emerges.

We discuss a number of these avenues to examine computationally and bio-
logically, e.g., (1) error and variation may not only be products of but may
be causally related to the generation system dynamics. (2) The possibil-
ity that attractors provide avenues for energy or error minimization yields
mechanisms from which emerge many important building blocks, e.g., the
ability of groups of synapses to encode different categories of information
simultaneously; threshold effects that enhance system function; and input
signal dynamics which not only carry encoded information but also provide
a variety of search strategies for locating attractor basins. (3) Minimal net-
work architectures may be identified that permit bifurcation into different
dynamical states. (4) Computer graphical analysis of spatio-temporal activ-
ity may show how different attractors are established and move and merge
in space and time. (5) Competition between synapses may continuously
sculpt and readjust network connections to changing conditions.

li. INTRODUCTION: GRAND UNIFICATION THEORIES

Much of our discussion here will address the functional meaning of divergence and
convergence of connections among peurons. At the simplest level, both are anatomi-
cally definable: divergence occurs when a single neuron sends synapticl!} projections
to many other neurons, and convergence occurs when many neurons send projec-
tions onto a common follower neuron. A more functional definition is to say that
divergence distributes information, whereas convergence produces sharing of infor-
mation. The consequence of divergence is to increase the size of the co-functional
group of neurons. but this alone would only produce a set of independent pro-
cessors. In parallel programming, the programmer breaks down a problem into
different components and then assigns each component to a different processor;

(1} We use the terms “synaptic projections” and “connections” to refer both to well-defined pre- and
postsynaptic structures involving localized transmutter release and to morphologically indistinct
structure invoiving diffuse transmitter release.
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the programmer distributes the components, but the processors act independently.
Similarly, there may be muitiple sites of learning, perhaps arising from divergence
of input-stimuius pathways onto many different cells. and each site may involve
different cetlular mechanisms, but uniess there is some interaction or convergence,
each site processes informauon independently. Because of its potential for sharing
information. convergence forces many neural sites to work interdependently. Thus,
convergence iies at the heart of our definition of parallel processing in biological
systems.-371% a5 it does in simple connectionist neural networks33 that have little
resemblance to biological ones.

In attempting to understand the functional implications of divergence and con-
vergence even in smail networks. Pribram’s**> analogy to holograpay for distributed
memory storage seemed a possibility,'*! particularly, as Mpitsos and Cohan37 later
reported, since some networks are able to reorganize similar motor output patterns
of activity after neurons are removed that appear to control the pattern of activ-
1ty going to motor neurons. In these studies, the neuron was removed from taking
part in the motor pattern by hyperpolarizing it below its firing threshold. This pro-
duced two types of errors: cessation of firing in the motor neurons that it controiled,
and cessation of all motor activity. Eventually, the original pattern recovered even
though the nyperpoiarized neuron. and the motor neuron(s) it drove, did not take
part in the reiormed motor pattern. Since the overall firing pattern in the reformed
activity in the motor roots appeared similar to the original pattern, it seems rea-
sonable that the error was somehow distributed throughout the generator network.
By analogy to holograpiy, the “picture” of activity emerging from the memory dis-
tributed among the pattern-generating neurons exhibited graininess when bits of
information were iost rather than exhibiting holes or gaps in some regions while re-
talning high resoiution in others as would occur in some neurai networks.!3* We use
“graininess’ here because fewer neurons became involved in the reformed pattern
than in the original one. yet the overall structure of the pattern seemed the same.
There are problems even with the notion of holography, and in cartying the anal-
ogy of graininess too far, but for the present purposes. the real question that these
studies point 10 is one of memory storage and control in high-dimensionai systems.
The high dimensionality that we refer to is not just in the number of interacting
components. It aiso includes. as we shall discuss. the storage of different forms of
information within the same set of synapses and nonlinear ways of addressing it.

While it is easy to see high dimensionality, and the consequences of it, in the
human cortex. it has not been so easy to admit that it exists in animals that
neuroscience persists in calling “simple.” A world view that polarizes animais into
simple and complex (into generalizations relating to invertebrate and vertebrate
phyla) emerged: e.g., see comment in Edelman.®! A wide variety of factors. includ-
ing the technoiogy of intracellular microelectrode recordings,*® the ability to use
these recording methods on cells that can be identified in different experimental
preparations. findings showing that activity is encoded within the central nervous
system itself for generating patterned motor activity,!33 the importation of the
ethologist's'!* fixed-action pattern (FAP), identification of functional types of cells
such as command neurons that control central patiern generators and stereotyped
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behaviors or FAPs, 1192 and the related findings showing that much of this activity
is geneticaily encoded.!® worked together to entrench reductionism. Though each
finding remains useful in its own right, concepts developed from reductionist single-
neuron methods have proved inadequate to understand distributed. muitifunctional,
and variabje systems.

It is an interesting discovery that many biological systems. being potentially
high dimensional. may generate complex behavior that is governed by relatively
low-dimensional dynamics.i?} Choatic systems fall into this category, and. because
of their complex response dynarmics. have been a subject of considerable attention
over the past ten years.-$2152:156.170 We shall summarize some of these efforts. But
rather than dealing with the verifiability of chaos itseif or of any dynamic process.
which has aiready been addressed sufficiently elsewhere,*3! what we wish to do
here is to address common features of all nervous systems which give rise to or
exclude the ability of the systems to produce particular response dynamics. This is
to say that the important features are not so much whether repetitive activity, as
one exampie, is generated by limit-cycle or chaotic dynamics. as it is of the system
characteristics that permit different activities to arise.

It may be useful to forewarn the reader that our own perspective of brain func-
tion, or of the function of systems composed of aggregates of noniinearly interacting
components. has two parts. one experimental and the other philosophical. It is essen-
tial, of course. that the philosophy or theory one holds about the actions of a system
must have a foundation on hard biological fact. However, problems arise when doing
only that. Take just one example: All visual systems use on-responses to respond to
the onset of light, and off-responses to respond to the off-set of light. But knowing
the cellular and physiological mechanisms that generate off-responses in some moi-
lusecs wouid lead one completely astray about the mechanisms that produce them
in vertebrate animais.3?-18¢ Evoiutionary seiection mechanisms tend to optimize
the adapuivesl mechanisms in each organism. Thus. owing to diversification and
optimization. it is often difficult to determine what features permit generaiization
across organisms. or for that matter. across integrative systems within an organism
because the various systems may have deveioped under different evolutionary con-
straints. It is possible to argue in favor of comments one might find in print. which

(3l There is often no need to go beyond its definition of dynamics simply as “time-dependent
variations of activity,” though there are different forms of dynamics. Rather than presenting a
formal definition, we shall introduce various ideas that modify our standard working definition as
they arise in the course of the discussion.

[31The term -adaptive” implies some conformation of a system (biological or computationai} that
allows it to survive in its environment. The process of conforming, as we shall discuss in detail
in section VIIL may represent a gradient descent in the error of the response with respect to
the response required for survival, or in the energy required to generate the response. That there
may be locai minima in such conformations indicates that there may be non-optimal ways of
responding, and. conversely. it indicates that there may also be an absolute minimum representing
some optimai way that the system might respond for a given environmental demand, though local

minima may be sufficient for survival.
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go something iike this: Owing to the observation that evolution conserves mecha-
nisms, what we understand of mechanisms of learning in a simpie animal such as
a sea slug wiil allow us to understand the mechanism of learning in humans. But
to take that argument is to torget the equaily important fact that diversification is
a crucially important driving force in bioiogical evoiution, not only through varia-
tions arising from random factors. but also through deterministic low-dimensional
factors whose dynamics gives them a iife of their own. _

As neurobpiologists. we are interested in the integrative mechanisms of sea slugs,
crayfish, insects, leeches. lampreyvs. or humans. But from a broader perspective, we
wish to ask whether there are scaie-independent principies. nameiy, ones that apply
to different leveis of organization. from chemical processes to ceilular, organismal,
and social ones. The question is: Can we identify unifying principies, as one might
say of the attempts to establish grand unification theories (GUTs) in physics?
Unfortunately biological systems are too complex and uncontrollable to permit such
a synthesis presently, as we shall try to show in the present paper. One possibility
is to conduct computer simulations of models that reduce a particular biological
system within the bounds of definable characteristics. While this may give insight
into mechanisms pertaining to that system. it may not provide much insight into
general principles.

An alternative simulation approach is to use biological information as “points
of departure” to conduct computer simulations that do not necessarily attempt to
replicate the structure or function of any particular biological system. We go fur-
ther to suggest that it might be useful to use simulation systems that are actually
extreme caricatures of biology, but which nonetheless might generaily give insight
into biology. Eventually. what we hope to do is to obtain some idea about how net-
work archnitecture incorporates various iinear and nonlinear interactions between
neurons to allow the network. as a whoie. 10 generate different types of response
dynamics. \We want also to understand how these fundamental network principles
become scuipted selectiveiy to produce the neural responses observed in individual
animals. The neural architecture in individual organisms may retain more or less
of these primal features. as required or permitted by the tasks presented for adap-
tive fitness. Thus. by seeking to identify common principles from which differen:
mechanisms may emerge. we are joining a call to reconsider the importance of com-
parative biology,>? a subject which has suffered as research has become entrenched
in animai-specific encampments. But. as we nope will become apparent, our efforts
will not be to determine. for exampie. whether command processes are the same
in different animals or to define the command process more exactly. As important
as such issues are, we shall nonetheless aim to address comparisons at a broader or
more abstract level. Much of our discussion here wiil center on making analogies
through commonality in dynamical principies rather than in mechanisms.

There are. of course. many people who. in one way or another, have addressed
the question of how cooperative action anses among groups of intercommunicat-
ing individuals. The works of Grossberg. for example, on neural networks and
the mathematical foundation of many of psychological phenomena are too numer-
ous even to summarize adequately.”""? It is a theme of modern neural network
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connectionism,*3° in studies of chemical dynamics,®33:16% and in mammalian ner-
vous system.‘’® In many biological aspects, it can be traced back to Darwin,*?
and to Aristotle.!3® Such works notwithstanding, we shall attempt to show in the
present discussion that a unifying theory of how neurons (or individuals of any
type) act cooperatively within a group is presently lacking. Along the way we shall
also attempt to identify ways for continuing the search for unifying principles.

In the course of this paper we shall first describe the behaviorai, physiolog-
ical, and immunohistochemical studies in our experimental system the sea slug
Pleurobranchaea, and then compare these resuits to those obtained in other in-
vertebrate animals and in vertebrates. Another gastropod molluse. the sea slug
Aplysia. has been the focus of reductionist researches in many laboratories that
have attempted to explain animal behavior and associative learning in terms of
definable reflexes. Section VII deals with reductionism; we examine these findip s,
show the difficulties that have arisen, and then reassess them from the point of viuw
of parallel-distributed processing. Given growing interest in nonlinear dynamics in
model mathematical and physical modeis, we examine the viability of applying tools
arising from these studies to biological systems. In section IX. we suggest computer
methods which might give some insight into how the integrated activity of large
numbers of neurons might arise from interactions occurring locally between indi-
vidual neurons. Thanks to the work of René Thom,*3? we use a call from Aristotle’
to summarize the intent of our own work begun two decades ago: ““rirot—vr—thts~

ﬁuppmd-fa-be?,” namely, “Now let us make a fresh start,” at least to point out

what it is that traditional thinking in neurobiology does not address sufficiently,

and what the problems are in progressing further. e —— ,./—_—_\\
7 aa wa A cendinct cn
. vl
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lil. FINDINGS IN A SEA SLUG
1. BEHAVIOR

Pleurobranchaea is a large sea slug, a member of the opisthobranch gastropod mol-
luscs, ranging in size from a few millimeters to tens of centimeters. depending on
its age. Its general body features resemble a snail, though like land slugs, it has
no shell (see photographs in Mpitsos*40:141:143:145) The animal exhibits a relatively
large repertoire of behaviors, 4l including, righting when turned upside down, defen-
sive withdrawal, mating, egg-laying, feeding and a variety of other mouth-related
behaviors involving the mouth, lips, jaws. and radula (a structure analogous to

4] The ensuing discussion also relies on the term “behavior.” and identifies a number of behaviors
within the repertoire of what the animal can do. For the moment, we use -behavior” to refer
specifically to a definable respanse of the animal. or generically to some unspecified but potentially
identifiable response. We shall see Ly section [IL.7. however, that the definition of behavior, of
behavioral repertoire, and of behaviorally muitibehavioral or multifunctional systems (ones that
can produce different behaviors using the same sets of neurons) needs to be revised to take into

account the consequences of variation in “contexts” of neuronal group action.
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a tongue). Feeding behavior usually has dominance over the other behaviors. For
example, animals normaily withdraw from tactile stimuli applied to their head re-
gions. but in the presence of food. withdrawai responses are suppressed in feeding-
motivated animais.*5:143 The most obvious feature of the feeding behavior is the
rapid bite-strike response in which the entire jaw structures comprising the pro-
boscis are rapidly thrust out to bite at a food object and then rapidly withdrawn.
Feeding aiso consists of bite-ingestion movements in which food is grasped ana then
sequentially drawn into the mouth cavity largeiy through cyciicai inward ana out-
ward movements of the radula and coordinated movements of the anterior regions
of the jaws and mouth. A third stage of feeding consists of swallowing movements
in which food is passed from the buccai cavivy through the esophagus and then into
the stomacn. The bite-ingestion and swailow components of feeding?* are excei-
lent for neurophysiological work because of their osciilatory characteristics, muci
as might happen in humans during opening and closing of the jaws and related
movements of the tongue. Because of the sequence of oscillations. the behavior per-
sists and is amenable to analysis. whereas singie-shot behaviors such as withdrawal
are more difficult to analyze. However, as in humans. the number of cycles that
the animai may exhibit during a single bout of bite-ingestion and swallow is often
short and possibly nonstationary in its temporal characteristic. which. as discussed
below. pose difficult problems in studies aimed at understanding the dynamucs of
the behavior.

The jaws. radula. mouth, and lips of the animal generate many different and
variable behaviors.'3 These inciude severai components of feeding, regurgitation.
defensive biting, among others.34122.123.124.128.136 The animai also exhibits seif- and
inter-animai gill grooming,**® but we presently have no way to evoke gill-grooming
benavior reuably. However. of all its behaviors. inter-animal gill-grooming 1s par-
ticulariy interesting because Plevrooranchaee is cannibalistic. raising questions 1nto
the mecnanisms th.; turn carmivorous feeding mouth. radula. and jaw movements
1ato cleaning movements.

2. NEUROPHYSIOLOGY

A. KEY FEATURES OF ALL MOUTH-RELATED BEHAVIORS CAN bt EXAMINED
THROUGH A SMALL POPULATION OF NEURONS, THE BCNS The cerebropleural
ganglion ( “brain”) of Pleurobranchaea innervates the mouth and anterior head re-
gions. wiereas the buccal ganglion innervates the muscles that move the jaws and
radula. Thus. coordination of buccai-orai behaviors. namely ones that involve both
the buccai structures and the mouth and lips, must happen through these ganglia.

The oniy way this can happen is through the buccal-cetebral neurons (BCNs),
of which there are approximately 15-20 in each half of the two buccal hemigangiia.
The BCNs are unique because they are: (1) the only cells in the buccal ganglion
that project to the brain. except for two bilaterally paired giant neurons whose
function 1s presently unknown. and (2) that are either directly involved in generating
the centrai pattern generator for the buccal behaviors or intimately invoived in
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controlling it.33:34137 There may be other oscillators located in the brain. but by
comparison to the effect of the BCN oscillator. other oscillators have weak effects.
The BCNs and the two giant cells are the only sources of information to the brain
about processes in the buccal gangiion. All of the behaviors invoiving movements
of the mouth and lips in coordination with the tongue and jaws must act through
BCNs. and since the BCNs are part of the central pattern generator. they do more
than perform coordination of the different motor centers.

Although the various mouth-reiated behaviors may invoive thousands of neu-
rons, key features of the information required to generate these behaviors may be
obtained from much smailer subsets of neurons consisting .primariy of the BCNs
and some of the neurons with which they interconnect. Thus. the BCNs acting in-
dividually and as a group are muitifunctional because they must generate activity
pertaining to muitiple behaviors.

B. CONNECTIVITY OF THE BCNS Figure 1 summarizes -he BCN connections. The
evidence for these connections _hzvﬁ)een described in several publications.>*33.34.137
The present evidence indicates that they connect with one another primarily polysy-
naptically, as indicated by the interneurons in Figure 1; however. many of these
polysynaptic connections may be through other BCNs. In a few cases there may be
mutual inhibitory connections between the BCNs, but the exact connectivity, if it
can be defined. remains for further study. As indicated schematicall in Figure 1.
many BCNs converge onto the same target motor neurons. and individual BCNs
diverge onto different motor neurons. [n turn. the motor neurons neurons feed back
to the BCNs that drive them. An idenuified group of neurons in the brain. the
paraceredrai neurons (PCNs). converge onto the BCNs. and the BCNs feed back to
the PCNs.3.86.137

The actual biological network is mucn larger and more interconnected than
shown in Figure 1. For example. there are different pools of neurons that send axons
out of the prain through the various motor roots. of which there are approxamately
a dozen on each side of the brain. though some motor neurons send axons out
different roots. Additionally, it is necessary to consider that there are numerous
pools of interneurons. Thus. the number of converging and diverging connections in
the brain and buccal ganglion is quite large. Moreover, just as there are interactions
between the brain and buccal ganglion, there are interconnections between the brain
and other ganglia. Therefore. the extended network consistine of neurons affecting
the BCNs. and ones that the BCNs arfect. involves hundreds of neurons.

What we hope to achieve in our present line of work is to add neuron poois
to the core model shown in Figure 1. We want especially to obtain the temporal
relationships in the firing of as manyv of the neurons as possible. partly to use the
data to reassess the concjusions we have already reached. and partly to use it to
obtain some insight into how such large numbers of neurons interact with one an-
other. The time of firing of all BCNs and PCNs is being extracted from muitiple

A
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BRAIN
{Cerebro-pieurai ganglion)

CBC b
(Cerebro-buccai connective) i

R1
BUCCAL GANGLION

FIGURE 1 Cartoon showing central features of converging and diverging connections
in Pleurodranchaea nervous system. BCN: buccal-cerebral neurons. I: interneuron.
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FIGURE 1 (cont'd.) M: Motor neuron. PCN: Paracerebral neuron. Size of each of
these pools of neurons is about 10 to 20 units each. There are many more motor
neuron poois, one for @acn motor root; some cslls send axons out muttiple roots. R1:
motor root that innervates muscies for opening jaws. R3: motor root for closing jaws.
Motor roots of brain are not shown. For clarity of presentation, the BCN-motor neuron
connections are shown on the left, ana BCN-PCN connections are snown on the night.
(llustration nere has been modiied from Figure 1 in Moitsos-=>*.

recordings conducted simuitaneousiy at different extraceilular sites aiong the nerves
that connect the brain and buccai gangiia (the cerebro-buccai connectives. CBCs).
Since activity occurs in both directions in the CBC. the muitiple recording sites
allows us to determine the direction of propagation of firing 1n different nerve fibers.
and thereoy to distinguish between the BCNs and other neurons. it is only a matter
of extended labor to inciude the time of firing of motor neurons in the different
motor roots.

The point of all of this work, however. is not to obtain a complete network.
but to use the data to assure that our computer simulations of different model
assumptions will provide activity that refects the activity in the biological system.
A particuiarly important aspect of this work will be to obtain an indication of the
types of variations and motor pattern blending that the system generates.

Owing to similarities in their gross neuroanatomical features. which distribute
different functions to the buccai gangiion and to the brain. tae principles obtained
in Pleurooranchaea may hold in many other snails and slugs. Moreover, it is likely,
though not demonstrated sufficientiy. that neurons analogous to the BCNs in Pleu-
robranchaea may have simiiar tunctions in ail snaiis ana siugs. But it is not clear
presentiy wnether other snais and siugs generate as many mouth-reiated behav-
iors as Pleurobranchaea. and whether the behaviors in these other animais are as

variable.

IV. DISTRIBUTED FUNCTION, MULTIFUNCTIONALITY, AND
VARIATION

1. RATIONALE FOR CHANGE IN CONCEPTUAL FRAMEWORK: SINGLE
CELLS TO CONTEXTUAL GROUPS

Our initial aim for studying this "simpie” sea siug was to understand the cellu-
lar basis of learning. The many control experiments in the studies of Mpitsos and
Collins'*® and Mpitsos. Collins. and McClellan*%! were the first to demonstrate that
sea slugs are capable of Paviovian and avoidance associative iearning, and even ear-
lier work. though not as extensively controlled. promised that associative learning
could be examined in isolated nervous systems.'*® However. work begun in the mid
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1970s. closeily examined the motor patterns and behaviors. and showed that net-
works are muitifunctional in being capable not only ot generating different behaviors
and that similar motor patterns can yvieid different behaviors.32.132.123,124.125.136.137
More importantly the motor patterns of different behaviors often blend with one
another and the underlving motor patterns of neural and muscular activity are
quite variable3>136:137 Ag discussed beiow. rather than a definable retlex system, it
seemed possible that networks of neurons work by flexible contexts of action. The
variations 1n the contexts might invoive iinear regroupings or might arise from non-
linearities tnat cause rapid shifts or bifurcations in the patterns of activity generated
by the network. It became apparent that attempts to attribute specific function to a
given neuron. or to locate the engram of a learned behavior 1o a particular synapse
couid fail.

Consequently, we had to backtrack, to reassess how it is that even innate or
“unlearnea” motor patterns arise in such systems before we couid address the prob-
lem of how newly learned information is incorporated into the network. Although
we continued to conduct learning studies after the observations made in the mid to
late 1970s. our rationale for doing them has not been to find the locus of learning
at specific synapses, but to determine whether learning couid actually be identified
in the responses of reduced preparations.-36:133:139 Additionally, given the indica-
tion that information may be distributed over many neurons it was necessary to
develop the technology for identifying popuiations of neurons that are involved in
specific aspects of learning among which we could examine how learning affected
cooperative actions among neurons in the population. -15.148.149,172

The idea of cooperativity, which Freeman and coworkers-*? have used to ad-
vantage i1 their studies of rabbit olfactorv bulb. resembles what we refer to as
“contezrts in neuronal group function. Much of the discussion in this paper will
attempt to present our understanding of functional contexts. Early in the devei-
opment of the idea of command neurons {cells that evoke stereotypic behaviors),
Davis ana Kennedy*?** showed that eaci command neuron of the lobster swim-
meret system produces characteristicaily different effects and selectively controls
different motor neurons, indicating that the command process arises from group
action 1n which each command neuron performs specific subtasks of the command
process and activates a particular set of motor neurons. Later work. such as the find-
ing in Pleurobranchaes that command neurons receive feedback connections from
the motor network that they drive.® blurred functional distinctions that may be
attributed to single neurons because function seemed to be shared. Davis*! used the
term “consensus”’ to refer to the emergent actions that might arise among groups
of interacting neurons. In studies on locust walking, Kien3%:°! used “consensus’ to
refer to variable activity in ensembles of neurons. Qur thinking on the ability of
groups of neurons to act contextually includes variation in the effects produced by
individuai neurons, by the group as a whole, and in the neurons that constitute
the group. For the present discussion we use the idea of “contexts” interchangeably
with “consensus.” partly because we. too. are inclined to believe that its meaning of
“all or most” is descriptive of what may often take place in the number of neurons
that become active during normal behavior.
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Although there are similarities between our use of the -contexts/consensus’
and Davis’ and Kien's use of “consensus.” there are also some important differ-
ences which we shall address. Qur definition relies on many factors other than the
number of neurons that become active. Therefore. we hold off a definition. which is
given in section IV .8, unul have first presented behaviorai exampies, and provided
discussions of principies reiating to variation. dynamics. and noniinear function.

2. CONTEXT OF NEURONAL GROUP ACTION: INFERENCES FROM
BEHAVIORAL CHOICE

The following example may help to explain our use of the term “consensus” (or
“context”’): One of the original purposes for studying Pleurodranchaea was to ex-
amine how animals “choose” to perform a particular behavior when confronted
simultaneously by many stimuli that often require conflicting responses. as might
occur in the natural environment.** For example. turning an animal upside down
evokes righting behavior having a definable duration. Presenting food to the ani-
mal produces several components of feeding behavior at definable thresholds. When
turning the animal upside down and presenting food simuitaneously, righting times
significantly increase. but feeding thresholds remain constant. By such simultaneous
presentations of different stimuli to evoke pairs of behaviors. it is possible to define
a behavioral hierarchy,* and to view the process of establishing the hierarchy as a
reflex system where one behavior inhibits another.??

It is necessary, however, to €0 one step further. Early studies on behavioral
“choice” !*6 indicated that some behaviors seem to blend into one another. as Kirsti
Bellman*? was to show later in lizards. In Pleurobranchaea. for example. the anterior
portion of the foot may start to twist in order to right. but. at the same time. it may
begin to cup around the descending solution of the food stimuius. The anterior foot
appears to be attempting to perform two contradictory behaviors at the same time.
Even when righting behavior starts. it is slowed because the foot’s motor-system is
still receiving conflicting activities. one for righting and one ior feeding. We do not
deny that reflexes involving inhibition can be found. but doing that alone places
one’s concepts on the side of the razor’s edge in which behavior. and the underlying
neurointegrations. are viewed as set and repeatedly definable structures. The im-
portant issue to us is the process of forming the behavioral “choice” during the time
that the animal is presented multiple stimuli rather than a stereotyped behavioral
hierarchy. The two approaches speak about the same behaviors but give different
explanations. The contextual approach views behavior as arising fluidity among
many different and blendable behaviors. The reflex approacn views the animal as
a generator of a set of fixed-action patterns (FAPs; e.g., Gillette®?), each reiating
to definable ar " repeatedly identifiable responses in the animai. The definition of
behaviorai hierarchy forces one to think of behaving animals as concatenations of
reflexes or FAPs that are repeatedly definable. In the extreme situation in which an
inverted animal lies motionliess, neither feeding nor righting, the definition of behav-
ioral hierarchy would lead one to develop experiments showing inhibition between
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feeding and righting sensory-motor systems, as shown for the interaction between
feeding and withdrawal.’® It would also iead one to identify a particular locus in
the nervous system at which such inhibition takes place. The variability of activity
in Pleurooranchaes. and the high degree of converming and diverging connections
in its nervous system lead us to believe that such localization of mechanism may
be misieaaing. By contrast. when taking these factors into account. one's focus is
directed to dynamically sniiting contexts of activity 1n which the identity and loca-
tion of the underiying mechamsm for a behavior is not fixed. just as the behavior
may not be fixed and always distinguishable from others. One is more apt to think
of variably emerging networks rather than "switchboard” reflexes.

Thus. aithough the definition of behavioral hierarchy is useful for categoriza-
tion, and aithough it is defined using the behaviorai choice paradigm, it dangerousiy
excludes the dynamics within choice-making processes. To be sure, reflex actions are
indications of a process. but the retiex approach leads one to examine the structure
of the network itself whereas an approach that deals with the dynamics of inter-
actions leads one to examine principies of interaction from which networks emerge
not only variably but also nonlineariy, as we shall try to illustrate in section VII,
when deaiing with reductionism. and in section IX when dealing with computer
simuliations. Inhibitory interactions between motor systems may be used by both
explanations. but the dynarnical approach uses inhibition either as a potential ex-
planation that may or may not actuaily take place. or as a participating variable
in a system that expresses the dynamics. In either of these non-reflex explanations,
the role of inhibition may not be discernible from the structure of the network it-
self. thougn dynamical expianations must also account for conditions that actually

express regexes.

3. CONTEXT OF ACTION IN THE BUCCAL-ORAL SYSTEM

The buccai-oral system of Pleurobrancaaes. consisting of the lips, mouth. radula.
and jaws. seemns to magniiy variation and behavioral blending because, as noted
above, it is capable of generating many different behaviors and variants within
individual behaviors. Moreover, biending happens among the various mouth-related
behaviors themselves, as weil as with behaviors produced by other motor systems.
A number of studies have provided criteria for identifying motor patterns relating to
particular buccal-oral behaviors. McClellan*?2124.125.126 an4 Croll and Davis®3-39
have established specific motor pattern differences in electrical recordings made
from muscies and nerves to distinguish between feeding, regurgitation. and rejection
behaviors. but even McClellan's studies demonstrated that different behaviors can
be generated by similar motor patterns.

Having observed considerable motor-pattern variations, Mpitsos and
Cohan?36:133.139 devised a series of associative learning experiments to determine
whether a learned response persisted in even minimally dissected animais. The re-
sults cleariy showed that the behaviors of the undissected and dissected, behaving
animals were identical. as determined by direct observation of what the animal
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did in response to the applied experimental and control stimuli that were used
in training. However, when examining the electromyographic data alone, obtained
simulitaneousiy while observing the behaviors, it was not possible to identify con-
sistent differences in the firing patterns of muscles during feeding, regurgitation,
and rejection. The information had to reside within these patterns. but the infor-
mation itseif could not be read simpiy by examining the temporai orchestration
of activity in the recorded motor patterns. An alternative explanation is that the
information resides in the dvnamics of the neuromuscular system as a whole. i.e., in
the combination of interactions between the motor output, in the nonlinear ioading
presented by the muscies and mouth and jaw structures, and in the effect of sensory
feedback to the central nervous systems. Such systems may have qualities similar to
damped-driven oscillators whose dynamics are sensitive to changes in parameter-
constants that control the effects of different variables (e.g., see the description of
the Duffing oscillator in Thompson=-3!). Not inconsistent with this is that the animal
can perform a given behavioral effect successtully using combination of patterns. In
neural activity, it may be sufficient to have reached an approximating and variable
“consensus’ or “context” of action rather than requiring an explicit stereotyped
pattern.

The neural sources of some of this variation were identified in studies of iso-
lated nervous systems that were used in order to remove the influence of sensory
perturbations. For example, neurai patterns reemerge even when BCNs that were
initially responsible for generating patterned activity are reversibly removed from
the coactive networks (Figure 5 in Mpitsos-37), showing that different combinations
of neurons generate similar responses. Simiiariy, the firing of some BCNs shift vari-
ably between completely opposite pnases of the cycie of opening and closing of the
jaws (Figure 16 in Mpitsos*37). Graded intermediates may occur as the nervous sys-
tem generates patterns of rhythmic acuvity and spontaneously shifts into another
pattern.

Our view is that the intermeaiate and variable forms of activity give crucial
information about integrative mechanisms. Variations that occur within group ac-
tion must arise from variations at the ievei of individual neurons. To present these
ideas, the next two subsections discuss “attractors’ and “attracting states,” and
the role that different forms of variation and error have in the response properties

of biological systems.

4. DEFINITIONS: MODES OF COOPERATIVITY

A. ATTRACTORS AS DISSIPATIVE STRUCTURES An intuitive definition of attrac-
tor may be given by examining the property of attraction. Suppose for the moment
that we are dealing with a process governed by three variables. The state of the
system at any given time is represented by the values of the these variables. The
progression of these values over time define the parameter state space of the ac-
tivity of the systemn. Plots of these variables. one variable in each coordinate of
three-dimensional space. defines the phase space. The flow or trajectory from one
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point to another provides a view of the phase portrait of the dynamics of the activ-
ity. For continuous periodic activity, the trajectory is a closed loop. A brief external
perturbation. applied to one or any combination of the variables. wiil move the state
of the system away from the closed loop. If the trajectory then collapses asymptot-
ically back toward the closed loop, the system may be considered to be governed
by an attractor. The set of all possible perturbations, and subsequent dissipative
responses shown by the asymptotic recovery, define the imset to the attractor or
its basin of attraction. In the case of periodic activity the attractor is a limst cycle.
The activity could also be generated by chaotic attractors whose trajectories are not
represented by a limit set either before or after perturbations, but by an attracting
set. An inaication of this set may be viewed through the geomeury of the topolog-
ical manifold in which the trajectories mix. Examples of the mixing geometry of
attractors in Plewrobranchaea responses and model systems in our own work may
be found in Mpitsos!35142 and Andrade et al..® respectively. Though we have used
phase portraits to obtain an intuitive view of attractors, a single dynamical system
may have phase portraits containing muitiple, competing attractors.'3!

The above-cited work from our laboratory also discusses a variety of geomet-
rical and computational tools that may be used to determine whether the activity
is generated by limit-cycle or chaotic attractors. In either case. the most useful for
determining whether the system is generated by an attractor is to conduct the per-
turbation experiments described above, which a major focus of our present efforts
in both biociogical and model systems. Much experimental work needs to be done in
this way, but it is quite likely that attractors underile much biological function. as
shown, for example, by perturbation experiments designed to test for reseiting of L
the phase of oscillatory activity (an example of an externally applied current pules— [ Lt
to one oi the BCNs in Pleurobranchaea is shown in Figure 3 in Mpitsos'3?).

B. LOW DIMENSIONALITY IN HIGH-DIMENSIONAL SYSTEMS As the system evolves
to dissipate perturbations. one wouid observe that the ensemble of points in state
space decreases over time, i.e., that there is volume contraction. Volume contraction
simpiifies the topology of the structure defined by the trajectories, and as pointed
out by Thompson and Stewart,!3! “This can often mean that a compiez dynamical
system with even infinite-dimensional phase space...can settle to final behavior in
a subspace of only a few dimensions” p. 1.

This phenomenon is particularly important in biological systems because they
are inherently high dimensional. A singie cell in the visual cortex of the mouse,
for exampie. receives inputs from approximately 5000 other cells.?! each of which
may be a controlling variable. Numerical analyses of spontaneous cortical neuron
activity,*% of EEGs in olfactory buib.!™® cortex,*%17! and of motor patterns in
Pleurobranchaea,*3%:142 3] indicate that the activity is generated by relatively few
variables. One of the tasks facing work in animals such as Pleurobranchaea, and
of correlative computer simulations, is to identify the variabies, out of the many
available. that become active in low-dimensional activity, and to identify the con-
ditions among these variables that permit low dimensionality to arise. Part of the
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goal of our computer simulation is to define minimal structures that permit the gen-
eration of different types of attractors. and to determine how different attractors
might arise at different times within the same high-dimensional space. An interest-
ing possibility is that what determines which sub-space 1s occupied may simply be
a matter of what attractor becomes established first. In a sense. there may be a
type of competition such that the same behavior at some different times may be
generated by a somewhat different attractors arising from variable subsets of the
available high-dimensionai possibilities.

C. TURBULENCE, “ATTRACTING STATES, AND SELF-ORGANIZING CRITICALITY"
.Ih‘ﬁ Ziven weak connections, which are common in the Pleurobranchaes nervous
system,*3? it is not inconceivable that different limit-cycle and chaotic attractors
may emerge simultaneously within the same network. moving and blending in space
and time. and giving rise to the blending seen in whole-animal behavior’3® and in
some motor patterns.-3” These conditions may provide the opportunity for anaiogs
of turbulence to occur.*3! As discussed in the computer studies described in section
IX, we believe that large groups of neurons need not all act in a coordinated fash-
ion, particularly when a large number of relatively weak synapses are distributed
throughout the network. The statisticai properties of the network and the effect of
weak coupiing may permit conditions under which different subsets of the extended
network are able to begin acting cooperatively within themselves. Yet owing to
extensive convergence and divergence of the underlying connectivity, one subset of
neurons may influence the coordinated firing of other subsets. In this way, smail
foci of coordinated firing may move spatially, blend. or separate in to different foci,
much as one might envision of vortices in hydrodynamic turbulence. Instructive
examples of such phenomena in physical models have been presented in laboratory
simulation*"> and computer simulations of the formation of the large red spot of
Jupiter.--3 Videotapes showing the evoiution of vortices in the hydrodynamic model
and in the computer simuiations were seminal in solidifving ocur own intuition about
what may happen in neural systems.-*3 In considering the possibility of turbulence
in neural systems, our own feeling is that the definition of “attractor” in such cases
may not be as suitable as in more definable spatio-temporal structures. We prefer
to use the term “attracting states.”

Attracting states may have some resembiance to mechanisms of seif-organizing
criticality (SOC) proposed by Bak and coworkers.*0:11:12:13.3L,185 The jdeas have
been appiied to models of turbulence in forest fires* and the production of un-
predictable avalanches that occur when attempting to build mounds of sand by
piling one grain of sand over another.*® Local effects are deterministic and easily
observed but the global effects are not predictable from such local information.
and partly for these reasons, systems governed by SOC seem to be acting near
the “boarder of chaos.”!? To our knowiedge, SOC has not been applied to nervous
systems. We envision that conditions that would allow SOC to take place would
retain the deterministic character of monosynaptic actions between neurons. but
given weak interactions, would also permit statistical or random spatio-temporal
long-range effects through polysynaptic action.

/\




In Search of a Unified Theory of Biological Organization 17

§. CHAOS AND OTHER FORMS OF VARIATION

A. BIFURCATION PARAMETERS AND CHAOS We shall examine bifurcation pa-
rameters in more detail in a section IX. It is sufficient to state briefly that they are
parameter constants that control how a system (or its defining set of equations)
expresses its nonlinear characteristics. When the system is far from critical points,
changes in bifurcation constants have relativeiy little effect on the dynamics of the
system. At or near critical points. smail changes in bifurcation parameters produce
rapid changes (bifurcations) in the response of the system. Within certain ranges in
the values of these parameters. the system may exhibit rapid shifts between different
types of periodic activity and chaos as the parameter is successively changed.®13!

The simpiest definition of chaos is that it is completely deterministic at each
step of its temporal evolution, yet over the long term. its response is not predictable.
An exampie we shall discuss later is the logistic equation. giver by X,4; = R(1 —
Xn )X, where R is the bifurcation constant. This equation has no random factor in
it, yet, for certain values of R, it is not possible to predict the evolution of the time
series severai iterations into the future given some initial starting value. Despite its
long-term equivalence to random noise. the organized geometry in plots of X, versus
Xn41 cleariy show the deterministic. non-random character of chaos.}21:134.181

It is difficult to prove that bioiogical svstems generate chaotic attractors, owing
primarily to their short-lived and apparently nonstationary behavior.!3! However.
computer simulations have cleariy shown that Hodgkin-Huxley membranes>-3 and
the parabolic burster neuron, R;s, in the abdominal gangiion of Aplysia® may
be capable of bifurcating into a broad spectrum of simpie periodic and chaotic
activity. Our previous studies on the impiications of attractors and variation, and
of their impiication in the generation of contexts of interreiated firing in groups of
neurons. nave been discussed in behaviorai and neurophysioiogical studies.*36-137.144
And there is some evidence for chaos in the responses of individual BCNs and
motor neurons in Pleurodranchaea.-3314% Other activity of single neurons is more
consistent with noisy limit cycles.-33:146

The lessons to be gained from chaos are: (1) as illustrated by the logistic equa-
tion, variations arising from chaos are not “noise” superimposed on the information-
carrying signai: they themselves represent the information. (2) The information in
chaotic systems is always increasing with respect to information available at a given
initial time. This is to say that if chaos is to represent behavior, it is necessary to
use the long-term phase-space geometry of the attractor driving the system to gain
a view of what the behavior is like. Given equal noise-free conditions, the behav-
ior represented by periodic activity can be defined in a single orbit. (3) Periodic
or limit-cvclie activity dissipates perturbations differently than chaotic systems. As
pointed out by Conrad.®” limit cycles in biological motor systems dissipate pertur-
bations in ways equivalent to heat loss through the body structures innervated by
the neural systemn in question. whereas chaotic attractors dissipate the perturba-
tions by generating new variations. Limit-cycle attractors always return to doing
behaviors in the same stereotvped ways. Chaotic attractors generate new variations
naturally in response to perturbations because their sensitivity to initial conditions
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always forces them to generate the behaviors in different ways, which is to say
that behaviors are always different in chaotic systems. (4) Mpitsos and Burtoni34
have shown that chaotic discrete processes, much as might occur in spike trains
communicating between networks. ailow simple networks to periorm compiicated
tasks that would require considerabiv more complex networks to perform if the
signals were generated by nonchaotic discrete processes or by continuous periodic
or continuous chaotic processes. (3) [t was also shown that the inherent variations
of chaotic discrete processes permits networks that receive such signals to opti-
mize their responses either in transmitting the signal one-for-one or in performing
computations on them. That is. the deterministic character of chaotic discrete pro-
cesses allows them to convey information. yet their long-term randomness provides
sufficient variation to allow the responding network to learn rapidly. As we shall
discuss below, random noise may be used advantageously to perform such opti-
mizations. But random noise has the disadvantage of being high dimensional. and
high-dimensional processes are difficult to generate because they must represent
many degrees of freedom. Chaotic processes are long-term equivalent to random
noise, yet the expression of chaos can be easily controlled using low-dimensional
systems and simple adjustments to a single control parameter, as in the logistic
equation. In multibehavioral systems such as Pleurobranchaea. the combined infor-
mational content and variation of chaos may be useful in accessing the different
response possibilities. 34

B. BIFURCATION-INDUCED VARIATIONS Another form of low-dimensional variation
arises when systems approach bifurcation points. An intuitive understanding for
this may de given by recailing the above discussion on the demonstration of attrac-
tors lying in three-dimensional space. and using this example to understand what
happens 1o Lyapunov exponents as the system approaches bifurcation points. In a
system governed by three variables. there are three exponents. (A useful discussion
of Lyapunov exponents and numericai methods for estimating them are presented in
Wolf199). A negative Lyapunov exponent indicates that there is contraction in a give
irection in phase space. If all three exponents were negative, the flow of points
n phase space would collapse in all directions into a singie point. For continuous.
bounded systems not at a fixed point. at which the system remains at equilibrium
at some non-changing parameter state (see definition in Thompson and Stewart, 3!
p. 194), Haken™ has shown that one of the exponents must be zero. In a simple
limit cycie governed by three variables. the remaining exponents must be negative.
The negativity in the sum of the exponents assures that there is an overall contrac-
tion in the flow of points in phase space to keep the system bounded. The summed
negativity also assures that the system will dissipate perturbations if they are not
so large as to push the state beyond the attractor’s basin of attraction. Bifurcations
into chaos introduce a positive exponent. but retain the criteria of one zero-valued
exponent and that the sum of the exponents be negative. The positive exponent
shows that the state of the system in the corresponding dimension of phase space
is always expanding. Having a zero-vaiued Lyapunov exponent indicates that the
growth in phase space is neither contracting nor expanding over time. Thus, the
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rate of growth of a three-variablelsl system in phase space is given by 2(*1¥+4s)¢
where Ay, A2, and A3 are the corresponding Lyapunov exponents for growth in each
direction of phase space. and t is time. Since the exponential change is given as base
2, the exponents express the rate of change of growth in phase space as information
in bits per second. Thus limit cycies iose information as they evolve with respect
to some initial state.whereas chaotic systems gain information.

As a system approaches bifurcation points. some of the Lyapunov exponents
approach zero values, as we show herein for the catalytic network model of An-
drade et al.>14¢ Setting the bifurcation parameter, g, to a value of .02, generates a
one-period limit cycle far from a bifurcation point. and A;, A2, and A2, have values.
respectiveiy, of 0, -2.8. and -43. Adjusting u to .0125. well past the bifurcation into
a two-period limit cycle, the exponents have values of 0, -3.6. and -43. However,
setting u to .0149, which is near the bifurcation point, the exponents are 0, -.05,
and -46: A, vanishes. Thus, as the system approaches bifurcation points, a greater
number of Lyapunov exponents approacn zero than when the system is farther
away from these points. Perturbations in directions of phase space governed by
exponents having small negative values would be dissipated siowly. Even in model
systems having no extraneous injected noise. transient variations are often difficult
to remove when attempting to locate bifurcation points.

Kelso. Schiuitz. and Schoner®® have given the term “critical fluctuations” to
the variations observed in human finger movements during phase transitions, or,
in our terminology, at critical bifurcation conditions. We have observed similar
fluctuations in our own studies using sinusoidal current to drive individual neurons
in Pleurooranchaea and Aplysia.6” Moreover. since the Pleurobranchaea buccal-oral
svstem appears to sit metastably near transitions into different patterns of activity
{as shown. for example. by frequent spontaneous transitions of activity in isolated
nervous systems: e.g., see Mpitsos-i?), we shouid expect to see variations in activity
simply because of the tendency of the system to pass through bifurcation conditions.
In model networks. it is possible to generate activity in the system long enough to
get rid of transients. But biological systems. which generally do not have such long-
term luxury, shouid exhibit considerable variation simply because of bifurcation
effects, uniess they lie far from critical points.

{31The need for three variables in continucus systems that can generate chaos may be viewed

intuitively by examining the Sow of trajectories in phase space and their ability to mix as they

course through the attractor surface: a typical trajectory will visit every vacinity. Evidence for

mixing can be obtained by cutting a Poincaré section through the phase portrait and noting the

interreiated positions of the crossings of the trajectory through the section.’! If one places a

string on a fiat surface defined by two vanables. it is possible to conform the shape of the string to

flow to a fixed point, to form a variety of self-similar spirals.!5%, or to connect the two ends of the q . /tl'\/-
string to form limit cycles. However, it is not possibie to have nearby lengths of the string diverge .

_~"Trom one another and eventually mix in their interrelated positions without causing the string to W l;v)__
la2tm M

cross on itself somewhere unless the trajectonies flow into a third dimension and then fold back
onto a thickened plane: i.c., however imperceptible, there must be a thickness to the surface of the
attractor composed of countless layers arising from continuous stretching and folding which brings
distant trajectories close together. Diecrete processes. on the other hand. can generate chaos in a

single dimension. as shown by the logistic equation.

: : i ; i
"\.aC,L\; Ly o L;(J(,;u‘_&'“w L;[ ,C/u _)L.‘"‘/kvy\ clirrt -?f'/(a-fzfz/m/t.

-

&~ t/vk /%4:"1&77’1 ‘% Pvévt»(d’t<,-- B‘.7\¢)¢;,7(071 e
tﬁ: f")() J’\bcux_&l, CL’V‘V,( S—/,,:}/nu,iﬂ_‘(j (/? {’73")_




20 George J. Mpitsos and Seppo Soinila

A rather interesting problem of bifurcation-induced variations occurs in regions
of the controlling parameter that cause chaos. Such regions are filled with sub-
regions that lead to periodic activity, as can easily be demonstrated by examining
the bifurcation parameter of the logistic equation at expanded scales.‘3! Therefore.
small changes in a control parameter may actually lead to rapid shifts between chaos
and periodicity, with each state being accompanied by transient variations. Cleariy,
there is a need to understand how bioiogical systems cope with the sensitivity 1n
the adjustment of bifurcation parameters and with the different forms of variations
that arise from such adjustments. One possibility may be that the large number of
converging and diverging connections among neurons may bufter unwanted bifur-
cation conditions by lifting the controiling effect from residing 1n singie neuron or
a few of them and distributing it over a large number of neurons. In this way, the
bifurcation conditions emerge from group action, though individual neurons may
exhibit near critical behavior. This may also be a reason for the observation of the
wide distribution and convergence of neurotransmitters and modulators.

C. RANDOM NOISE Other variability in Pleurobranchaea seems to be high-
dimensionai. or even random. as shown by the response of a single neuron in Fig-
ure 1 of Mpitsos-33 and by the analysis of electromyograms in Mpitsos.-3 It has
long been known that a little random noise may help systems to avoid local min-
ima which may be defined for the present purposes as non-optimal responses (see
Figure 3 in Burton and Mpitsos®? for a diagrammatic demonstration of locai min-
ima). The physicochemical properties of DNA provide an example of one use of
noise in biological studies.?® Heating soiutions of DNA (injecting noise into the
system) breaks the two complementary strands apart. If the solution is cooied too
rapidly, the original complementary bonds between base pairs is not compietely
restored: i.e.. the system has fallen into a local minimum. If the solution is cooled
slowly, the strands recombine optimaily, forming the absoiute mmmimum. Thus. the
terms “locai minima” and “absolute minimum” may be used to refer to number of
characteristics. such as information storage, reconstruction of an original tempiate.
and energy level. Such processes of noise control are time dependent, and usually
control noise by decreasing it exponentially. The method is referred to as simulated
annealing. Kirkpatrick. Gelatt. and Becchi®? discuss simulated annealing and apply
it to several optimization problems. inciuding the placement of computer chips on
a circuit board, in which the goal is to minimize wire length and bends. and the
traveling salesman problem. in which the goal is to minimize the distance traveied
between cities if each city is visited only once. Simulated annealing is time depen-
dent because it requires the noise in the system to have a decay rate, and once the
noise has died out. it is necessary to introduce noise into the system again in order
for it to be ready to respond to a new situation. Biological systems are generally
event dependent, not time dependent. [t may be difficult or impossible to determine
in advance when the next challenge to survival will occur or what it will be. and
when to re-inject noise into the system. Once a challenge has presented itseif. there
may not be enough time to adjust the rate of decay of noise.
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As a step in determining how random noise migh+ be used in adaptive sys-
tems, Burton and Mpitsos= devised time-independent noise algorithms (TINA)
that controt noise through the response of the system, as would occur in natu-
ral environments, rather than through predefined time schedules. To demonstrate
the algoritom. Burton and Mpitsos used simpie nonbiologicat neural networks that
were required to learn to transmit or manipulate chaotic input signals. much as
might occur if networks communicated with one another with chaotic spike trains.
Networks were trained using an error-backpropagation algorithm.*** Random noise
was added to the learning-induced changes in synaptic weights and thresholds, but
the levei of the injected noise was adjusted on the basis of the amount of error gen-
erated eacn time the network responded to an input event. By such adjustments
It was possidie to avoid locai minima and speed the process of reaching maximal
leveis of learning.

D. VARIATION-DEPENDENT OPTIMIZATION (N MULTIFUNCTIONAL SYSTEMS Thus,
random noise. chaos. and possibly variations arising from bifurcation conditions may
provide conaitions leading to two different methods of optimizations. The effect of
chaotic aiscrete processes was shown under conditions in which chaos wouid act
as a transmutter of information between networks. whereas the effect of noise was
shown when it was added to changes in synaptic weights and thresholds during
learning wnen the network had to respond to the chaocic signai. However, chaos is
only short-term deterministic. The long-term statistics of chaotic discrete processes.
as might occur in spike trains, are identicai to random noise. For systems such as
Pleurobrancnaea or the mammaiian oifactory buib*®® that are multifunctional or
contain muitiple information within the same set of connections. variations that
allow the svstem to searcn for one of many attractors or attracting states may be
essential.

The taree tvpes of variation mentioned above invoive different search strategies
and control methods. Chaos has a deterministic search strategy and can be con-
trolled through bifurcation parameters in membrane dynamics.”>?° synaptic reiease
(see the interesting suggestion in Kriebel et al.%%) and, as we shall discuss in section
IX. in synaptic strengths. Neural systems may be able to approximate randomness
simply by using weak synapses and by taking advantage of the large number of
connections oetween ceils. For example. connections between 10-100 neurons may
provide sumficient degrees of freedom to approximate the high dimensionality of
Gaussian noise. A number of activity-dependent changes in synaptic strengths or
in the prooability of transmitter release’” might provide methods to control noise
naturaily and in time-independent wavs. Some of the “noise” or variations that
occur near oifurcation points are deterministic and self-controlled because they are
transients that die out asvmptotically as the activity evolves over time. Decreases in
the value of Lyapunov exponents near bifurcation points wouid also allow random
effects to become amplified. but as the system passes through bifurcation. both the
transient erfects and random variations dirmnish.

Variauion, not chaos. The point. then, in thinking about adaptive mechanisms
is to understand the use of a spectrum of variational types. Owing to its interesting
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phase-space geometry and its long-term unpredictability, chaos has received much
press. The important issue, however. is not chaos. but variation and its control.
and the way variation affects the ability of the system to access different dynamical
states. The neural architectures that support the generation of these variabilities
and ones that lead to control are unexpiorea. We provide suggestions in section [X.

6. ERROR AS AN INTEGRATIVE PRINCIPLE

A system that has evolved to meet oniy one adaptive need can be highly tuned to
perform that task well, but when confronted with new adaptive needs, such systems
may prove extremely fragile. Alternativeiv. if the system is naturaily variable the
output may never be exactly “right” for a given task. but it may be right enough for
the system to adapt successfully to different situations. Moreover, given a limited
number of neurons. a greater range of outputs may be possible when the system
has variabie and blendable outputs than when the system contains a rigidly fixed
number of output patterns.

Error may not only be a product of svstem dvnamics, it may also be influential
in the establishing the dynamics. The first indication of this was in studies of hy-
percycle catalytic networks originaily devised to account for the first steps in chem-
ical or prebiotic evolution.331% Schnabl. Stadler. Frost, and Schuster!®® recently
showed that error, expressed as mutual intermutation between reactive moiecuiar
species significantly affects the ability of a system to bifurcate into complex. chaotic
oscillations. Andrade et al.® provide a more biologically plausible model of error uti-
lization in catalviic networks that may be modifiable for application to studies of
neural networks. In this model. error arises from faulty repiication; i.e., in mutual
intermutation the error is transformed into information contained in another re-
actant species, whereas in faulty repucation. information is simply removed from
the system. Although the generation of compiex tchaotic) behavior in this latter
mode] is jess sensitive to changes 1n error than the mutual intermutation model.
analysis of both models using the level of error as the bifurcation parameter shows
that error plays a role in the dynamucs occurring among the catalytic interaction.

7. DEFINITIONS: DYNAMICS, BEHAVIOR, AND MULTIFUNCTIONALITY

The above discussions provide the background for us to present several working
definitions. In the most general terms. we take the term “dynamics” to imply the
generation of ccoperative activity among a group of interacting components of a
system. There may be many different dynamical mechanisms: linear shifts in the
aggregates of coactive components. bifurcations. iimit-cycle and chaotic attractors.
attracting states. turbulence. and seif-organizing criticalities are just a few exam-
ples that we mentioned. As we shall attempt to illustrate further in section IX.
our defipition of “neurocircuits’ relies heavily on dvnamics rather than network
architecture.
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In much of the preceding discussion. we have used the term “behavior” in the
sense that the behaviors are/ rdentfiable. as if feeding, regurgitation. righting, and
other behaviors in the animal’s reperioire. are definable. Indeed. the notion of a
repertoire, seems to indicate that they are definable. However. our above discussion
of “contexts® and “consensuses’ shows that we do not believe that behaviors need
be repeatedly the same. For exampie. the animai ingests food. it may regurgitaie
it. and it may right when inverted. Yet the animai may perform these behavioral
effects in many different ways. If we are correct in our assessment of variations in
neural activity and contexts. it is possible that the kinematics of the behavioral
effect are always changing. Given this blurring of what the term “behavior’ may
mean, it is obvious that systems capable of generating many different behaviors
using the same neurons must be defined in ways that inciude variation. Therefore,
multifunctional networks to us implies patterns of activity and behavioral effects
thatflead variably from one effect to another as weil as the generation of distinctly
different benaviors.

8. DEFINITION OF CONTEXTS IN GROUP ACTION: LINEAR AND
NONLINEAR ORGANIZATION

To gain some perspective on our definition of contexts in gr« .p function, the above
subsections provide some of the necessary background on what we mean by behav-
ior and what we mean by nonlinear dynamics and attractors, different modes of
cooperative action, and optimization and its relationship to different forms of vari-
ation as these factors play on atiractors and on turbulence-like phenomena. The
discussion nas introduced the importance of local minima and error. The heart of
all of these response phenomena lies in the anatomy of convergence and divergence.
It is easy to refer to behavior. but once ciosely examined. we have realized that be-
havior may not be as definable as presumed. though we do not deny that definable
behaviors do exist.

We began this section using references to studies that have considered how
distributed interactions among neurons iead to behavior. and which have proposed
that the appropriate behavior arises when a large number of neurons, or perhaps
all or most of them. become active.!:39.90.91.137 This i part of what we mean by
“contexts” and “consensuses.” Linear summations such as implied by “large num-
ber” do not address two important problems. First. if attractors or other noniinear
phenomena arise, it is not necessary for the majority. or a large number of neurons.
to become active. That is. coherent activity may take place among a minority of
neurons. but if the coherence is strong enough, we believe that its effect may over-
ride activity that is less strongly organized. though both coherent and noncoherent
activity probably affect the actual expression of the resuitant behavior. The ques-
tion, then. is not how many neurons become active but how strong the coherent
activity is above a “noise” level. Second. even if the interactions are linearly reiated.
or if robust. stable attractors have not organized. adaptive responses may still take
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place, though the effect may not be as strong as in cases when the majornty of
neurons act together or when there are strong attractors.

V. BEHAVIORAL AND NEUROPHYSIOLOGICAL FINDINGS IN
OTHER ANIMALS
1. INVERTEBRATES

A. OVERVIEW OF MULTIFUNCTIONALITY AND VARIABILITY Taking advantage of
well-defined connections between four identifiable ceils in the buccal ganghon of
Aplysia. Gardner®® has shown that synaptic effects between identified neurons vary
widely from animal to animal. Drawing an analogy to connectionist neural networks,
Gardner poiwnts out that the importance of a network is not so much in what its
synaptic strengths are but rather in what the set of synapses together can do
in expressing the information in an algorsthmic process. The difference between
biological networks and neural networks is that the temporal interrelationships in
the firing of neurons may shift. and that the same neiwork may be able to generate
different patterns of activity.*3%237 Thus, in Gardner's terms. a set of connections
may contain the information for many different algorithms. Our modification to
this is that one must not consider the algorithm as being repeatedly the same: 1.e..
the algorithm is itself variably expressed.

Rerent findings in the sea slug Aplys1a*°®1%3 and in lobsters®
are consistent with the notion that the same network can produce activity reiating
to different behaviors (i.e.. they are muitifunctionai), as is the work on vet an-
other sea siug Tritonia.>>%3 aithough oniy the work on Aplysie has taken notice
of variation.-?2 An important paper describes ieecn locomotion. and asks what it
is that the “central pattern generator” reailyv mediates since a variety of variable
behaviors were observed.? Kien3%%99-%! has published a series of insightful papers
on locust waiking, and has addressed the notion of variation through observations
indicating that different groups of neurons become active to produce a bebavior.
Variability has also been reported in walking motor patterns in cockroaches.’

By the late 1970s the notion that “hard wired” networks can explain behavior
had received strong support forin siudies on geneticaily inherited ability to gener-
ate patterned activity in a many animais.!® Nonetheiess. ten years later. Getting®?
voiced the following interesting conclusion from his work in Tritonta. “Networks
with_sumiiar connections can produce dramatically different motor patterns, and.
converseiv, sunilar motor patterns can be produced by dramatically different net-
works,” just as one can read from the work in Pleurobranchaea® that. “Organized
activily emerges or self-organizes such that different contezts of the same coactive
neurons become involved 1n generating the same or different motor pattern.” Much
evidence in neurobiology has shown that it is possible to ascribe particular func-
tion to identified neurons. and criteria of how to do that have been extensively

6,75,76.77.106.107
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discussed.6:102.103.138 Gome of the same researchers have also put forth the con-
trasting notion recently that conditions might exist under which it may not be
possible to ascribe function to particular neurons.-%°

Thus. aithough the ciassical perspective still seems to hold. and much evidence
exists to support it. there is a growing awareness of alternative possibilities. Qur
feeling 1s that it may be difficuit to make direct comparisons between animals.
even if there seem to be many simiiarities. as there are, for exampie, in the general
neuroanatomical features of the nervous systems in snails and slugs indicating that
their nervous systems contain neurons such as the BCNs in Pleurobranchaea. It may
be, for exampie. that feeding systems in animais that evolved to utilize relatively
stable ana predictable food sources may be less variable than ones having to cope
with unpredictable ones. One migh' =nvision such a comparison between certain
herbivores and carnivores. though the defining experiments have not been done.
What is most important in all of this is that people have begun to address the issues,
and quite iikely the most illuminating comparisons will be ones that invoive different
respounse dynamics. Our bias is that variation should be a common observation. In
cases not exhibiting variation. the question then has to do with the mechanisms
that controi variation.

B. BIFURCATION AND RESPONSE MODALITY IN THE LOBSTER STOMATOGASTRIC
SYSTEM The recent discovery of the ability of the stomatogastric ganglion in lob-
sters to generate different behaviors 7877 shows clearly that one must not assume
that even the sumplest networks produce only single responses. The findings of Cardi
et al.?® are worth casting in our frame of reference relating to bifurcation. The stom-
atogastric gangiion in lobsters contains a subset of 14 neurons that comprise the
pyloric network which acts as a central pattern generator. Of particular interest in
this network is a further subset of three pacemaker neurons that form the oscillator.
Another osciilator lying in the commissurai gangiion sends projections to the stom-
atogastric gangiion. By using sucrose-block techniques on the nerve interconnecting
the two gangiia, it was possible to reversibly interrupt the connections between the
two osciiiators. When the projections were blocked. systematic injection of depolar-
izing and byperpolarizing current into one of the three pyloric pacemaker neurons
resuited in continuous variation in the period of oscillatory bursts of activity in the
pyloric rhythm. But when these projections were not interrupted, the period varied
discontinuously, and. for some ranges of the injected current. two modes of oscilla-
tion emerged at a particular levei of injected current. Overall the results show that
the timing between the two oscillators arfected the modes of integration in the py-
loric network. and that the commussurai projections also exerted neuromodulatory
control over the pyloric network.

There are two ways to look at this data. The first is that there is some reflex
circuit change that alters the oscillations in the pyloric network when the connection
between the two pattern generators is intact. This seems reasonable if one considers
that neuromodulation may be capable of adjusting which neurons participate in the
oscillatory interactions or their interrelated timung (e.g., Marderi7118.119) {ging
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John’s®! terminology, the network may use “switchboard” factors to control whether
the network produces unimodal or bimodal firing in its burst patterns.

A broader perspective holds that the role of transmitters and modulator is to
raise the network closer to a criticali point for bifurcation. Small. systematic adjust-
ments in the current injected into one of the three pattern-generating neurons push
the system beyond the critical point allowing the network as a whole to oscillate
in two modes, or to jump discontinuousiy from one period to another. When that
transmitter {or transmuitters) is not present. as wnen the connections between the
oscillators are interrupted, the system settles into a state that is far from the bi-
furcation point. In this case. no amount of injected current will push the network
close enough to the critical point to permit bifurcation to take place. What does
happen is that the period varies continuousiy as a function in the strength of the
injected current. This is precisely what happens when one varies the bifurcation
parameter in a system that is far from a critical point (e.g., see Thompson*3! and
Andrade®). There are two potential bifurcation parameters in the study of Cardi et
al.?® The way the experiments were conducted uses the polarization state (amount
of injected current) of one of the pattern-generating neurons as the bifurcation pa-
rameter. However, if there were sufficient knowledge of the cells in the commussural
gangiion that project to the pyloric gangiion, their level of firing could be used
as the bifurcation parameter for each level of appiied polarization in the pattern-
generating neuron.

The advantage of using bifurcation analysis may not be appreciated in studies
of most experimental biological systems because of their compiexity and of the dif-
ficulties they pose in permitting selective controi of a single parameter. The utility
of the analysis becomes more obvious. however. in computer simulations. Not the
least utility of bifurcation analysis is that it may provide some predictability. For
example. Feigenbaum®’ observed that the succession of period-doubling bifurca-
tions occurs in a universally predictable way. The ratio of differences in successive
bifurcations is given by F; = (p; = pi41)/(Mis1 — Hi+2), Where g is the value of the
bifurcation parameter in the sequence of bifurcauions from i = 1,..., co. For many
bifurcation maps, F; quickly converges to 4.6692 to the fourth decimal piace. The
pyloric network may be smail enough to permit the use of computational methods.
The major task will be to determine what parameter to control, though information
from peuronumoral experiments may point to candidate factors. Different bifurca-
tion states may use the underlying network architecture in different ways. The way
the network expresses the various firing patterns among its constituent neurons
is not predictable from knowledge of the bifurcation parameter itseif nor of the
anatomy of the neuronai connections. Predictability of these functional or emer-
gent networks is even more difficult in large networks or if variability is a factor. If
there are many weak synapses, there may be insuificient synaptic power to control
how the activity traverses the connections among the neurons. Previous activity in
the network may aiter how the neurons participate in the future to produce similar
overall patterns of activity. Both factors have been observed in Pleurobranchaea.i?
and may affect how the network responds during bifurcation.
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2. MAMMALS

The importance of variation in brain function was. to our knowledge, noted first in
mammalian studies. The work of Adey and coworkers (see summary in Adey?), done
over twenty years ago, on the chimpanzee and human electroencephalogram {EEG),
and on firing of cortical neurons in cats. clearly expressed the need to consider that
noise may have a cruciai roie in the organization of brain function. Adey noted
that while information must be contained in structure, the way the information is
expressed quite likely is not obtainable from knowing the connections of structure
itseif. At about the same time, John®! discussed the problem of considering cortical
structure as statistical rather than as “switchboard” circuits that can be deciphered
simply by examining the connections. The ideas expressed by Adey and John were
seminal in soiidifying reservations in our own laboratory about the viability of as-
cribing whole-animal behavioral phenomena to simple neurocircuits.}4! Wetzel and
Stuart*37 ciearly favored a variable neuronal group hypothesis to account for ver-
tebrate waiking. More recently, Braitenberg”* examined-thetconnectivity of visual
cortex and suggested that activity flowing through it may resemble a random walk.
Rapp et ai.-% anaiyzed spontaneous firing in cortical neurons and suggested that
the variations observed in cortical may not be random. but rather may arise from
deterministic low-dimensionai mechanisms such as chaos. Variation appears to be
an important avenue for seif-organization of cooperative activity occurring simul-
taneously over the entire surface of olfactory bulbs 36 Freeman and Skarda’™ have

proposed/ﬁe dynamical state of the bulb shifts ffom chaotic baseline variations A*

into memory-specific limit cycles that are evoked when the animai inhales odors.
All of these findings are consistent with our own findings in Pleurobranchaea.
and. in turn. our findings suggest that the different variationai types may provide for
response optimization into different attractors. Although the work in Pleurobran-
chaea represents the first demonstration that chaotic activity underlies adaptive
responses in animals. it is necessary to take the evidence extremely cautiousiy, as

has been pointed out. i31.135.142 To-be-surerihe-resnonses are often-—variable—ad—
: f. However. to the extent that chaos
does hold to be the case in Pleurosranchaea. and in the various observations de-
scribed above in mammais. then it may prove a general principie to pursue further
that the variations may not only convey ntormation for a behavior but also may
provide for one of the methods for response optimization discussed in section IV.

3. DIVISIONS OF THE MAMMALIAN MOTOR SYSTEM: RELATIONSHIP TO
DIVERGENCE AND CONVERGENCE

Mammalian motor behavior may be classified as involving the pyramidal system
(PS) or the extrapyramidal system (EPS). According to the classical view, execution
of all voluntary movement in mammais is initiated by motor cortex acting through
the PS, which constitutes a two-neuron chain. The upper motor neuron descends
from the cortex and synapses in the spinal cord with the lower motor neuron,
which innervates the muscie. Going backwards. eacn muscle fiber is innervated by a
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single lower motor neuron, which is contacted by oniy a few, perhaps a single upper
motor neuron. So, each skeletal muscle of the body has a topical representation
in a specific zone of the motor cortex. Stimulation of a specific region resuits in a
stereotype response, which. if the stimulus is focal. includes one muscle fiber only.
A given cortical neuron can act in two different states depending on the context
defined by preceding impulses from the associative cortex.'”d This seems much like
a switchboard, showing a precise structure-function correspondence. It can function
as such. but the result is not the kind of movement we'dlike to perform. We get an
idea of what kind of movements the PS can produce by itself by watching patients
with dysfunction of the cerebellum or the basai gangiia, as in the case of Parkinson’s
disease. Their movements are coarse, as if the limb-moving is not quite sure of the
goal. They have often heavy tremor, suggesting an imbalance of muscular tone
at rest. Similar imbalance during movement is indicated by rigidity, suggesting
that processing of the sensory information about continuously altered position is
not occurring fast enough or precisely enough. We might say that the PS does not
tolerate nearly as much error as the EPS. It is interesting to emphasize that in cases
of cerebellar infarcts or in Parkinson’s disease. the spinal cord with all its reflexes
is supposed to be intact and functioning the best it can perform. Therefore. the
PS may exaibit considerably less convergence of overiapping information and less
distributed action. The one-to-one mapping allows the PS to execute precise control
of movement but may make it extremely error prone should a particular line fail.
whereas the EPS may exhibit less precise control vet may be less error prone when
its components fail. P . ( .
Although the physiological showing that given muscular responses can only +i« rigte st
be obtained by stimulation of certain cortical neurons indicates that there is little
convergence. histochemical data suggest that muitiple transmitter systems. pre-
sumably from the EPS and spinal cord, converge onto the lower motor neuron. The
substances involved inciude dopamine. noradrenaiine. serotonin. histamine. sub- . / .
stance P and(PRE.” The upper motor neuron siows some degree of divergence. / [/"v‘}z'lu‘a cpe ! 'ﬂ"ia“f‘ )
since its coilaterais contact with EPS neurons and spinal cord interneurons before Fun T RH).
synapsing with the lower motor neuron.
Classicaily, anything regulating motor functions other than the PS is defined
collectively as the EPS. It includes the basal gangiia. the vestibular system, and the
cerebellum. and it is thought to be responsible for coordination of movements. Its
components connect indirectly with the PS both at cortical and spinal cord levels.
The components of EPS are highly interconnected. aithough the precise circuitry is
incompieteiy known, a high degree of convergence and divergence are likely to occur
in the EPS, as suggested by the morphology of. e.g., the cerebellar Purkinje cells
and basket cells. By contrast, the PS has significantly fewer connections among its
constituent neurons.
This distinction between PS and EPS, however. may not be immutable. as
indicated by motor learning. Consider a musician learning a new piece or a jongieur
learning a new number. Initially, the motor pattern is established under cortical
control. This always happens relatively slowly and. once it gets fast enough, the
cortex cannot handle it and may even inhibit the pattern. Where is the pattern
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transferred to? It must be some subcortical level that takes over the pattern. All
we know is that the control levels must be above the lower motor neuron, which
is the finai common pathway and that the pattern must be processed by the EPS.
Control can be switched back and forth between the different levels. but the PS
and EPS seem almost to have switched their functional categorization. To be sure.
learning may model EPS to conform to convergence architectures that exhibit less
convergence and variation. as discussed below in reiation to Figure 4.

The diffuse reticular activating system (RAS) is perhaps most apropos to dis-
cussions of convergence and divergence. and adds a control factor that must be
considered with all somatic motor functions. We know from everyday experience
that rather sophisticated motor activity can take piace at the lowest states of ac-
tivation isieepwalking) or rather gross errors may occur, if the state of activation
is overly high. The structure classically thought to be related to the state of acti-
vation is the RAS of the brain stem. Interestingly, this is not reaily a structure in
the sense of the nuclei or the cortex. Rather, its neurons are diffusely spread over
a large proportion of the brain stem. Considering the anatomical fact that most of
the vital regulation centers are located in that region over a very smail space. RAS
must be in contact with just about everything. It has been thought that RAS con-
trols mainiv autonomic vital functions. However. it has turned out that a reticular
system is found all over the spinal cord as well. So it is reasonable to expect that
RAS is inumately involved with motor functions too. (Our guess is that the RAS
extends over all the cortex as welil, if we only had markers to identify the cell types.)
Thus. a petter understanding of differences in the connectivity and function of the
PS. EPS. and RAS. and their interactions, may shed some light on the functional
significance of convergence and divergence.

VI. NEUROMODULATION

1. CONVERGENCE AND DIVERGENCE OF NEUROTRANSMITTER
SYSTEMS

A. INVERTEBRATES In the classic view. experimental manipulation of individual
neuromodulators often generates predictable effects, as has long been demonstrated
in other animals.!14-116.117147 Qyr own work began with a similar intention: to
identify behavior-specific neurotransmitter evidence relating to associative iearning.
There is good pharmacoiogical evidence for the classically defined type of cholin-
ergic muscarinic receptors {and of a new form) in Pleurobranchaea.!*3 Bebavioral
evidence snows that muscarinic receptors have a role in associative learning.'5 De-
velopment of immunofiuorescence methods for detecting the transmitter for these
receptors. acetylcholine ( ACH), has allowed us to identify the location of presynap-
tic cholinergic neurons.-"**™3 Using complete serial histological sections to examine
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FIGURE 2 A-F: Photomicrographs of the neuropii region of Aplysia buccal ganglion
showing immunoreactivity for (A) histamine, (B) serotonin, (C) ACH, (D) GABA (gamma-
aminobutyric acid), (E) VIP (vasoactive intestinal peoude), (F) FMRFamide (Phe-Met-
Arg-Phe-NHa), cross in (C) indicates immunoreactive neuropil, and the arrowhead
shows immunoreactive terminals around nonreactive neurons. Bar = 100 um (A,D.E.F)
or 50 um (B.C). (G)<(l) (now iabeled (A)-(C); will be cnanged): Photomicrographs of
the neurood region of Pleurobranchaea buccal gangnon showing immunoreactivity

for (G) histamine, (H) GABA, (I) FMRFamide. Bar = 100um. Note the extensiveness

of the immunoreactive coverage throughout the neurooii in ail tissues from both
animals. Positive immunoreactivity is indicated by the white profiles that are extensively
distributed over the black nonreactive areas. For reference, in Figure 2(1), FMRF-amide
covers the entire neuropil of the buccal ganglion. The large ceil at the right is the
buccai giat, and the commissure leading to the ieft haif of the buccal gangiion
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FIGURE 2 (cont'd.) is at the left margin. The anterior margin of the ganglion is
delineatea by the row of dimly stained celis at the top of the micrograph, and the
posterior margin is shown at the bottom ecge of the neuropil. The area between the
neuropil ana the row of dimly stained csiis contains cell bodies which are not seen
because they contain no immuncreactvity. (Modified from Soinila and Mpitsos.*"2)

the full extent of the projections led us 1o the finding that we should have expected
from our physiological work. but. interestingly, we did not. The histology showed
that a relatively few cells diverge perfusely throughout the nervous system. hardly
leaving any portion of the neuropil untouched.

This ied us to examine the distribution of over a dozen putative neurotrans-
mitters in compiete serial sections of all ganglia in both Aplysta and Pleuro-
branchaea.-%-173174 Exampies of these findings are shown in Figure 2 (A-F) for
Aplysia and in Figure 2 (G-I) for Plesrobranchaea. Each transmitter we examined
involved a few neurons that diverged and converged extensively over the same tar-
get areas of the neuropil. and on individual neurons. The alternative possibility
that neurotransmitters projected selectively onto different areas was seldom seen.
Qur present working hypothesis. whict :s being examined physiologicallv, is that
there may be little motor specificity in the projection of neuromodulators. though
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there may be differences in their actions. Recent physiological findings in Aplysia*?3
support this hypothesis since individual bath-appiied transmitters and neuromod-
ulators appear to affect all motor systems examined.

Given tie physiologicai finding of the extensive convergence and divergence in
Pleurobranchaea.'3” and the corollary finding in Aplysia that sensory stimulation
activates pernaps the majority of neurons in a gangiion.*%3 the interesting possibility
arises that conditions may often arise when many or possibly all neurotransmitters
may become active at the same time. In this case. the classic view of neuromod-
ulation that has been generated using selective applications of single transmitters
may not provide adequate insight into the physiological effects produced under nor-
mal behavioral conditions. The classic view comes. we believe, dangerously close
to making an unstated assurnption that the effects of the individual transmitters
on common target neurons sum linearly. But if conditions arise when the interac-
tions are nonlinear, the classic experimental approach provides us with little insight
into how neuromodulation acts to control network function in normally behaving

animals.

B. VERTEBRATES As in the above discussion. we provide only selected examples
here. Extensive innervation by nerve fibers staining for a large number of trans-
mitters. such as ACH, dopamine, serotonin, histamine. GABA. taurine, glutamate,
enkephalin. angiotensin, cholecystokinin, TRH, and vasoactive intestinal polypep-
tide, has peen described in the mammalian striatum.’® Likewise. multiple trans-
mitters { ACH, serotonin. noradrenaline, giutamate. GABA) have been localized
throughout the cerebellar cortex.*6” The wuist ( “buige”) is a structure in the avian
brain that resembles the mammalian neocortex. It is bipartite and runs the length
of the dorsomedial portion of the hemisphere. A medial portion is similar to the
mamimaiian nippocampus (wuist regio hippcampaus. Wrh), and a lateral portion
1s simiuar to regions of the somatosensory neocortex (wulst regio hyperstriatica.
Whs). Both structures are laminated. permitting experiments that can determine
whether neurotransmitters are differentially distributed between and within lam-
inae. Shimizu ard Karten*®® examined the immunonistochemical Jocation of cell
bodies ana fibers containing serotonin. ACH (through localization of choline acetyl-
transferase. ChAT. and nicotinic ACH receptors. nACkR), catecholamine (through
localization of the enzyme tyrosine hydroxyiase;. GABA (through localization of
the enzyme glutamic acid decarboxylase, GAD. ana the GABA, receptor), and
the neuropeptides substance-P (SP), leucine-enkepnalin (L-ENK), neuropeptide Y
(NPY), neurotensin (NT), somatostatin releasing-inhibiting factor (SRIF), corti-
cotropin reieasing-factor (CRF), vasoactive intestinal polypeptide (VIP), and chole-
cystokinin (CCK). Although these substances exhnibited laminar specificity, evi-
dence was obtained showing that many regions of the Whs contained overlapping
transmitters and neuromodulators. For example. in some portions of a large region,
the hyperstriaticum accessorium. evidence was obtained for all substances except
CCK. though the density of distribution for each substance was different.

An ideai structure to use for such purposes in vertebrate animals is the retina
because of its well-known function and neuroarchitecture, and the ease with which
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its various cell types can be identified.3%!%¢ Present findings indicate that many neu-
rotransmutters and neuromodulators are located in the various cells of the rezina.,s“&"
the methods do not show clearly enough how much divergence and convergence
among the cells in the retina or wuist. and how much occurs from the retinal gan-
glion ceils onto other brain areas. A better method of analysis is to use evidence
from the iocation and distribution of transmitter receptors. Progress in the labora-
tory of Professor Harvev J. Karten®’ at the Department of Neuroscience. University
of Califorma at San Diego, indicates that individual retinal cells contain receptors
for many different neurohumoral factors. and that many celis stain for the same
receptors. indicating that there is extensive convergence and divergence of neu-
rotransmussion and neuromodulation. Because of its experimental approachability
and weil-knowr. function. the retina may provide a rich experimental source for un-
derstanding how multipie converging factors interact to control neuronal function.

In human physiology, Parkinson’s disease is probably the besi-known example
of a transmutter-specific defect in human motor function. Its cause is considered
to be a decrease in the activity of the dopaminergic nigrostriatal tract. Clinical
neurology has established that when the amount of dopamine is too low, the action
of the dopamine antagonist, the cholinergic system of the basal ganglia. becomes
too strong. The treatment. I-dopa. increases dopamine leveis to retain the balance
between tne two systems. However, there is nothing in here to prove that the action
of the dopamine-ACH system is necessariiy based on fixed circuits and that it acts
individuaiiv in normal brain function. Aithough dopamine is found in a specific
tract, we do not know how much divergence or convergence is involved in that
system. and what the effects may be when many neurons and transmitters act
together.

Althouen the pituitary is not a classically definable motor organ. it provides an
exceilent exampie of muiti-humorai control. The intermediate lobe is a morpholog-
icallv homogeneous group of cells that all contain the same hormones. meianocyte
stimuiating hormone and beta-endorphin. The question is why are so many different
transmmitters needed for the simple reguiation of inhibition-excitation. Stimulatory
(serotonin. ACH) and inhibitory (dopamine, opioids, probably GABA) actions have
been described for one substance at a time. but we have no idea how these sub-
stances act together. Since the output is so simple and easily measurable (hormone
secretion|. this tissue may provide a model to study the impiications of divergence
and convergence of muitiple neurotransmitter inputs.

Figure 3 summarizes some of our findings in rat pituitary. The data clearly
support the possibility of high convergence onto the same target areas. but since
there is presently no morphometric evidence of how many neurons provide the
innervation. we cannot presently provide an estimate of the ratios of convergence
and divergence. The pituitary is particularly interesting since the output of the
system 1o response Lo converging actions is neurobumoral rather than electrical.
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FIGURE 3 Photomicrograph of rat pituitary. al: Anterior lobe. il: intermediate lobe.

pl: postenor lobe. (A) Acstyicholine. (B) MEAGL ( Met3-enkephalin-ARGS-GLY7-LEU3.
(C) Serotonin. (D) GABA. (E) Tyrosine hydroxyiase. the dopamine-synthesizine enzyme.
Note convergence of these substances onto similar areas of the intermediate and
posterior iobes, as shown abewessa neural tissues of Apiysia and Pleurobranchaea.
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In conciuston. we suggest that the properties of noniinearity, distributed func-
tion, variabiiity, muitifunctionality. convergence/divergence, and the likelihood that
the system 1is error-prone. all of which we have attributed to the electrical neuro-
circuit, may also be ascribable to neuromodulation. It may be possible to obtain
repeatable effects when controlling certain transmitters, but what the effects may
be or how to conceptualize the interaction of many transmitters (acting at very
low concentrations) is presently unclear. If the dynamics of target processes (elec-
trical or chemical) are far from bifurcation points. the nonlinearities (or any effect)
may not be observable. But given that the bifurcation points are accessible. the
number of possible effects arising from electrical noniinearities and from the effects
of transmitters. cotransmitters, and neurchormones become enormous. If we are
to believe that neurohumoral agents act variably and in concert. then we must
envision further that the subcellular mechanisms that each of these receptors and
channels activates. may lead to converging and diverging nonlinear actions within
the cell itseif. Thus. it is conceivable that the ciarity of the mechanisms presented
for a singie neurotransmitter or a single second-messenger system may be some-
what misleading. The point that needs to be examined further is that there may be
many different sites of converging interactions in biological systems that process the
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same information in parallel, and perhaps in different ways, but may be capable of
sharing the results of such processing. Thus, systems may exist in which it may not
be possible to ascribe unique function to any motor, cellular, or subcellular process.

Vii. REDUCTION AND EMERGENCE IN CONTROL
MECHANISMS

How are these widely distributed physiological and neurohumoral processes con-
trolled? We suggest that many are not, at least not explicitly. It would be too
costly, for the same reasons that it would be too costly to devise neurocircuits for
each behavior. It seems better to allow the system to be error-prone. As discussed
in studies on Pleurobranchaea,'3':136:137 some looseness may actually be beneficial
since systems needing to be highly tuned to specific tasks may prove to be brittle in
variable, unpredictable environments. Put differently, it seems better to allow the
interaction between the organism and the environment to determine the behavior
than to “hard-wire” encode all of the behaviors that an animal can perform.

1. TRANSMITTERS CONTROL NETWORK FUNCTION AND ARCHITECTURE

There are. of course, demonstrable control mechanisms that we need to remember
that show hard-wiring. For example, as we have mentioned previously, it has been
shown that selective application of neurotransmitters evokes different patterns of
activity in simple ganglia, *3199:117 jyst as there is a vast textbook literature showing
evidence of the classical “neurocircuit.”32 Most published evidence weighs heavily
in this direction. Thus, good evidence exists to show that “Each neurotransmitier
or neurotransmilier system may. . .be able to elicit, from the same newronal circuit,
a characteristic and different ‘operational state.’ In this way il would be possible to
obtain a wide range of stable neuronal outputs from a single circust.”119

A remarkable series of experiments by Kater and coworkers (e.g., Kater and
Mills®*® and Lipton and Kater!%?), begun initially in the fresh water snail Helisoma
and now extended to mammalian neural tissues, shows the ability of transmitter
receptors to control neuronal growth, plasticity, and even survival of neurons. The
work has examined a spectrum of neurotransmitters and neuromodulators, includ-
ing ACH., GABA, dopamine, glutamate, norepinepherin, serotonin, somatostatin,
and VIP. Taking advantage of cell culture of identified neurons, the work has been
able to provide a strong basis of control_experiments. As one example in Hel;-
soma, serotoninyretards neunte outgrowth whereas the addition of ACH,prevents
the serotonin-induced inhibition. The transmitters work through the depolariza-
tion state of the cell. For example, presenting an excitatory transmitter alone re-
tards the normal neurite outgrowth, but superimposing hyperpolarizing current on
transmitter-induced excitation allows the neurite to resume its normal growth rate.
The transmitters may act either through voltage- ?d receptor-activated channels
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on a common intracellular messenger, calcium. As Lipton and Kater‘%® summa-
rize, neuronai architectures (and therefore neurocircuits) are determined by a fine
balance 1n the activation of these two types of channels through an interplay of
excitatory and inhibitory transmitters (thougn different mechanisms may be used
in other neurai systems: see Garyantes®!).

The term ~balance” cleariy indicates that Lipton ana Kater are aware that con-
trol in naturai biological systems may be nigh-dimensionai since neural tissues are
known to contain many transmitters. The problem. then. is to determine how the
high dimensionality is expressed. One possibility is that there is simple linear sum-
mation of the effects produced by the various transmitter. However. it is well known
that the eiectrogenic properties of the postsynaptic ceil can easiiy change a simple
synaptic input into a noniinear response. Twenty vears ago, Wilson and Cowan*#?
conducted computer simulations on a population model to illustrate that groups
of cells intercommunicating through excitatory and inhibitory connections exhibit
damped osciiiations, muitiple stable states. and. under certain constraints, stable
limit-cycie oscillations in the number of excitatory and inhibitory neurons firing per
unit time. A rather interesting feature of the model is that local interactions were
essentially random, yet the long-range effects were quite organized. Another inter-
esting feature of the modei that is pertinent to the present discussion is that the
population of excitatory and inhibitory cells were homogeneous: differences arose
statisticaily through use and refractory period. In even simpier networks involving
one-snot activation between converging inputs to a common neuron can lead to
linear and nonlinear effects in the postsynaptic ceil.>*¢ In singie neurons. it may be
possible to generate many different periodic and aperiodic firing patterns by means
of fine adjustments to a single ion channei.”® This atter study also showed that
intraceiiular caicium concentration may tuctuate differentiallv and nonlinearly in
eacn dvnamical state. Therefore. the controiling balance between converging trans-
mitters and neuromodulators that affect neuronai structure need not be a simple
linear arfair. What may seem a linear balance. under some parameter ranges of the
neuronurmorai state. can easily switch to drasticaily different conditions at critical
bifurcation conditions.

The dynamics of interactions arising in population of cells need not employ the
full high-dimensional space. Going back to our notion of attractors, the different
dynamucs that a network wiil allow determine the characteristics of temporal visjta-
tion of activity at any given neuron in the coactive group; 1.e.. a set of connections
will be activated differently by the types of attractors that it can sustain. Although
a deveioping network at some primitive state may exhibit different dynamical capa-
bilities than a finely tuned. mature one. the same questions of nonlinear conditions
arise in both. Finally, if attractors arise either in the responses of single neurons or
in networks of them. the high-dimensionality we see in the number of transmitters
present may not necessaniy be expressed as a high-dimensional process. It is an in-
teresting possibility, raised by numerical studies. that coordinated activity in poten-
tially high-dimensional systems often resuits in low-dimensional attractors.}42:170
From a simple listing of the number of transmitter resulting from experiments in
which transmitters are appiied one at time or in pairs. it is not evident how the
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system dynamically collapses into jow-dimensional control, and which of the trans-
mitters become involved. Even in smail model networks in which all of the driving
differentiai equations are known. it is not obvious from the equations themseijves,
nor presentiv from the connectivity, how it is that a lower dimensionality arises
from a larger possible set of available variables uniess the system is examined after
activating it.°

Given 2 ilnear system. it may be possible to say that neurotransmitters are
architects of neural structute. But. as we shall discuss later in section IX when
dealing witn bifurcation in minimail networks. conditions may arise when the activ-
ity iuseif is wnat fine tunes a network. and tn turn. the network redefines the type
of activity tnat can emerge. There is a dialectical interpiay between the two ele-
ments, ana this dialect. we believe. can act as an architect of neurons and circuits.
The chain of events that we might envision of the events that control cell struc-
ture is as foilows: The dynamics of firing in individual neurons and in networks
of them acts on structure through transmitters: the transmutters act on the cell
through caicium. The dynamics of changes in intracellular caicium sets up a chain
of events tnat affect ceil growth. But cell growth redetermines what the dynamics
will be, ana so forth recursively. Other factors may contribute. such as symaptic
competition. If the notion that many neurous act in close temporal association, or
in coordinauion. is correct. we must then add the complication that the system as
a whole is extremely high-dimensional and that many types of noniinearities may
occur. As we shall speak below of the locus of learning, there may be no sine qua
non balance of neuronhumoral agents for a given architecture to appear. Although
there may oe many systems in which there is aiways a precise connection between a
balance petween a particuiar set of chemicai elements and structure. understanding
these systems gives iittle insight into others in whaich variability is an issue.

Thus. =nile the scientific method at our disposal provides eiegant connections
between cause and effect. much as Descartes and Euclid wouid like us to believe,
the possiotity of high-dimensionai space. of nonlinearities. ana of the dialectic be-
tween structure and dynamics indicate that our view of compiex systems may be
too sunpie. However, the scientific methods, as they arz, are nonetheless the only
ones we have. Therefore. our concern is not that the methods and conciusions are
simplistic put rather 1t is that they do not address fundamental questions that need
to be asked. Moreover, the clarity of some of these reductionistic methods and the
importance of the resuiting findings have overshadowed the need to go beyond them
and to deveiop methods »f data coilection that may be useful in taking that step.

T IRUE COF e/
2. CONTROL OF WHOLE-ANIMAL BEHAVIOR-/REDUCTIONIST .
EXPLANATION OF LEARNING INAPLYSIA, A lvtne

A. SYNAPSE-SPECIFIC CONTROL OF BEHAVIOR A tradition in invertebrate neuro-
biology hoids that an advantage of using invertebrate animais is that once a behavior
is 1dentified with a particular motor pattern, the same behavior can then be studied
neurophysioiogically in the motor patterns of isolated nervous svstems. As discussed
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briefly in section IV.3. this is quite difficult to do in Pleurobranchaea.*3¢ However,

the most eiegant exampie of such reductionist approaches has been the identifica-
tion of site-specific learning in the gill-withdrawai response in Aplysia.>7:38:83.144 A
long sertes of studies have attempted to sDOW DOwW changes at monosynaptic sites
between sensory neurons and motor neurons can explain wnoie-animal phenom-
ena such as sensitization. dishabituation. and associative learning. The mechanism
iavoives serotonin as a neutotransmutter 1n the reinforcing pathwayv. The originai se-
ries of experiments showed that activation of serotonin receptors on sensory neurons
leads to a cnain of events invoiving adenosin 3'.5'-monovhosphate (cyclic AMP) that
depress a potassium current when the ceil fires. This exposes an inward calcium
current that proadens the action potential. and. owing to the increase in intraceilu-
lar calcium. jeads tc increased transmutter release onto the foilower motor neuron.
A group of sensory ceils, referred to as the LE-neurons. which are usually acti-
vated electricaily in isolated gangiia. provides the input to identified motor neurons
of which neuron L is perhaps the most important in terms of its effect on the
movement of the giil. A group of ceils. referred to as L9, provides the serotonergic
input.

B. COMPLICATIONS A number of important extenslons and proplems have arisen
that both greatly iluminate and compiicate this simple modei system. We cite oniy

a few exampies:

1. Penpaerai nervous system. From the beginning of work in the late 1960s. ev-
idence 2as existed indicating that emergent effects may invoive the peripheral
nervous system which is distributed within the giil itseif. Indeed. in many cases
the acdominai gangiion seems not to be necessary for generating robust giil
withdrawai responses and simpie forms of learning.-*

2. Compiez behavior. The once-presumed simpie withdrawai refiex has turned out

not tc be so sumple. and consists of several different types of movements.:%

Neuronai function. Some of the major i1dentifiable motor neurons have variabie

function within the same experimental preparation within the same behavior.:%7

This raises strong questions in Aplysta as to the veracity of assuming that iden-

tified neurons have consistently the same roie in a given bebavior, much as

Mpitsos and Cohan-3? have raised regarding the function of neurons in Pleu-

robranchaea.

1. Compiez network. Small. weil-locaiized sensory taps activate perhaps half of
the ceiis in the abdomunal gangiion. showing that there is extensive divergence
of sensory and possibly other effects.*?3

5. Non-constant activity. Cells pariaking in successive taps are variable.!*? sug-
gesuing that localization of the network may be difficul* or impossible.

6. Source of serotonergic control 1s unidentsfied. Activatir - produces enhanced
transmitter release. Serotonin applied experimentally . _uuces same effect. But
Ljg, wnich was thought to provide the serotonergic enhancement, apparently
does not contain serotonin. 3131

(5]
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7. Multipie neurohumorai factors ennance synapisc release. We now know chat
at least two other transmitters. smail cardicactive peptide A and B (SCP,,
SCPg), broaden action potentiais in LE cells and produce synaptic facilitation
on their follower motor neurons.” but apparently they are not located in Ljg.*!
Interestingly, SCPB produces spixe broadening but not faciiitation of transmut-
ter reiease in depressed sensory neurons.->* which may reiate to mobilization
of transmutter.

8. Multivie subcellular processes. There may be diverging cyciic AMP-dependent
processes in different forms of synaptic facilitation.®® Conversely, in both the
gill-withdrawal system and the anaiogous tail-withdrawai system. cyciic AMP-
depenaent and cyclic AMP-independent subcetlular processes may converge
onto the same spike-broadening mechanisms in both the giil->* and tail-sensory
neurons.-™?

9. More than one group of sensory tnputs. The possibility has been raised that un-
der some conditions. novei sensory neurons may be invoived in modification of
a siphon withdrawal response whose behaviorai modification has been thought
to be controlled by changes in the LE sensory neurons.*%

10. LE ceii activity lacks ttming to be primary site of learning. Most importantly,
it now appears that there is a second group of sensory cells that have iower
thresnoids than the LE cells.® and are probably more likely to activate than the
LE ceils during training of the giil withdrawal response itseif. It has now been
reportea>® that the iatency of responses in mecnanoactivated LE cells in all of
the 32 preparations that were testeq alwavs occurred afier the initiation of the
discharge in the motor peurons. Their timing in the behaviorai reflex nas been

difficuit to determine.-%,

The problem, then. is if the ceilular basts of behavior relies on the LE celis as
the site of facilitated transmitter reiease. the responses of the LE ceils must
occur before the initiation of motor output for that behavior. but the recent

findings show cleariy that they do not.

3. EMERGENT CONTROL OF APLYSI4A BEHAVIOR: PARALLEL
DISTRIBUTED PROCESSING

A. DONT WORRY, BE HAPPY: NEW SYNTHESIS [t might be tempting to some in-
terpreters of the above-mentioned compiications in Apiysia to disparage the original
conclusions about site-specific learning. We believe. however. that that wouid be
a mustake. To dismiss the originai conciusions wouid be to fall to the temptation




40 George J. Mpitsos and Seppo Sainila

that has faced previous work on learning in Aplysia. and of most such attempts in
oth~~ animais, thas there is. iu fact. some other reaucible locus of learning, or some
reaucibly identifiable neurocircuit as the generator of behavior. But by making the
dismissal. one would miss the more important issue that emerges from the findings,
nameily, that the data may be influential in redirecting the focus from reductionism
to a higher ievel of analysis. It is not just that behavior may be different on different
occasions. A general scheme appears to have emerged in ail of the work on Aplysia
that is not inconsistent with the findings we have obtained in our atternpts to un-
derstand the integrative processes that generate behaviors in Pleurobranchaea. This
scheme rejates to our discussion above of parallel processing arising from the exten-
sive distribution and sharing of information. as we summarize below in subsections

B and C.

B. THE LOCUS OF LEARNING MAY NOT BE AT A UNIQUE CELLULAR SITE The evi-
dence cited in the above list of compiications may be reinterpreted as in the follow-
ing generai scheme: Different sites in the nervous system are capable of generating
similar components of the same behavior. and each site is capable of affecting the
other: 1.e.. there is apparently extensive convergence and divergence between dif-
ferent sensory and motor centers. Within a given sensory-motor system, divergence
is an inherent effect of even small, highly localized stimulation. At the same time,
different sensory pathwayvs converge on the same motor neurons. Similar conver-
gence occurs among neurohumorai systems and their subcellular effects.!” Thus,
mounting evidence indicates a cascade of diverging and converging chemical inter-

actions that distribute sensory and motor effects widely, in-innate—response—andm—

respanses-azsing {rom-different—forms-oi-learning.—-

Evidence exists that supports these possibilities. For example. we know that
weak. highly localized tactile stimulations. as used in training experiments to show
learning, activates large numbers of neurons.*%3 i.e.. that divergence distributes in-
formation over many cellular loci. We also know that learning occurs in both the
peripherai and central components of the nervous system of Aplysia (see review
in Mpitsos and Lukowiak'**). We also know from studies in isolated nervous sys-
tems and from more intact preparations that conditioning-reiated changes occur on
LE sensory neurons that synapse on different gill motor neurons. Training-induced
changes may occur at the neuromuscular junction.®® Additionally, changes may oc-
cur during training that follow all of the criteria established for associative learning
but which do not take piace between the sensory neurons and their follower neurons.
For exampie, Lukowiak and Colebrook!!? have obtained evidence of associative
conditioning that excludes the major gill motor neurons. The conditioned stimuius
(CS) consisted of weak tactile stimuiation of the siphon skin. The unconditioned
stimulus (UCS), in one set of experiments, consisted of strong electrical stimulation
of the pedal nerve which connects the brain with the foot. and in another set of
experiments, it consisted of strong tactile stimuli to the gill itself. During training,
dual intracellular recordings were made from sensory neurons and major identifiable
gill motor neurons (L7, LDG1, LDG,, Lg). The movement of the gill itself was also
monitored. In the course of training, the CS produced gill-withdrawal movements

.
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that increased as a function of the number of training trials. and the efficiency of
the sensory-to-motor neuron synapses increased. Appropriate control experiments
showed that the effects were consistent with associative conditioning. However, the
number of action potentials produced in the motor neuron in response to the CS
correlated weil with the actual movement of the gill only during the initial stages
of training. But most of the amplitude changes in the gill-withdrawal response was
not correiated with any changes in the number of action potentials generated in the
motor neurons. In another set of experiments. designed to mimic associative learn-
ing observed whole-animal studies. evidence was obtained for associative learning
in a significant aumber of reduced preparations in which there was an increase in
the number of action potentials produced in the motor neurons. but there was no
change in the amplitude of the gill-withdrawal response.

Findings such as these show that associative learning, and simpler forms of
learning such as sensitization and habituation. may take place at many different
loci. Thus. as regards sfe complication 10 noted above. it is not too big a jump to
realize that learning could also happen in classes of sensory neurons other than the
LE cells. and eventually to discover that learning-related physiological changes may
also be shown postsynaptically in the motor neurons themseives. not just presy-
naptically in the sensory neurons. Additionally, as Mpitsos et al.!4! Liave pointed
out in detaiied control studies of associative learning in Pleurobéranchaea, iet us not
be wedded dogmatically to a definition of associative learning that forces physiol-
ogy to compiy with a particular protocol of stimulus presentations applied by the
experimenter to whole animals. Single-trial training in this study showed tkat. for
short intervais between CS and the UCS. /backward conditioning produced almost
as strong conditioning as forward conditioning. Mpitsos et al. pointed out that what
may be temporally controllable expertmentally in the application of sensory inputs
may not hoid physiologically. The same set of subceilular mechanisms producing
learning-reiated changes in forward between the CS and UCS (which is required by
the definition of associative learning) may exist to some extent when the stimuli
are presented in close temporal paring but in reverse order. To us. changes arising
from both the forward and backward temporal relationships between the CS and
UCS can represent associative learning (though this does not exclude arguments
for different mechanisms. should they occur. to account for backward conditioning).
For these reasons, it also may not be too big a jump to accept the fact that learning
may still take place in the LE neurons of Aplysia. even if their responses arising
from stimuiation of sensory skin do not occur until after the motor neurons are
activated by other sensory neurons.

Thus. while it is possible that a unique “locus of learning,” the engram in
Aplysia. might still be found, the data indicate strongly that the system seems to
consist of many parallel, redundant. and possibly interacting components, none of
which may be the sine qua non element in the learning process or in the generation
of the motor responses, irrespective of whether or not they involves learning.

J i
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C. THE NEUROCIRCUIT MAY NOT BE DEFINABLE Another tradition of reduction-
ism in neurobiology, particularly in studies of invertebrate studies, has been the
aotion that cells and their function are repeatedly identifiable. We have already
mentioned some of the problems in identifying function in Aplyssa.>%197 The recent
computer simulations of simpie neural networks relating to the feeding system of
Aplysia bave led to a simiiar conclusion that, .. .tests done on individual neurons
can provide misleading information on the actual roie of thesneuron in generaiing
behavior.”**® Compare this quote with one from Mpitsos and Cohan.*37 p. 538:
“...these findings indicate that the classic technique of driving a particular neuron
in order 1o assess its effect tn evoking activity or ¢ behavior may be an insufficient
criterton for identifying its functionai role.” That is. a given neuron's function de-
pends on tne context of activity in which it takes part. But, given variability in the
activity in the firing patterns within such contexts or “mobile consensuses.” even
this might be an insufficient definition.3%131.137

The neurocircuit for a behavior is misrepresented by even the most complete
mappings of identified neurons that we see in publications. Studies using voltage-
sensitive dyes show that weak, localized stimulation of sensory skin of the siphon
produces massive and variable activation of neurons in the abdominal ganglion of
Aplysia.~72193 As we have discussed of the simplified networks shown in Figure 1 for
Pleurobrancnaea. the connectivity the actual circuit of interacting neurons is quite
large. The iarger the overail pool, and the greater the number of weak synapses
that exist. the greater will be the possibility that the actual network generating a
behavior wiil be variable and undefinable.

D. DIFFERENT LEVELS OF LEARNING WITHIN DEFINABLE SETS OF SYNAPSES.
Let us assume for the moment that a small group of neurons can be isolated func-
tionaily from the effects of other groups of cells. Can we then obtain sufficient
information about the network to define it compietely by iooking at the network
and knowing all of the connection parameters? We think not. Consider just one
example reiating oniy to the strength of synapses. In our own neural network simu-
lations. the data indicate that synapses contain different forms of information.>3:132
One form of information { “knowledge”) is task-specific relating to the computations
of one or more functions that network must perform. Another form (“metaknowl-
edge”) has to do with the process by which that task was learned: it does not affect
the network performance on the specific tasks, but only becomes evident when the
network is confronted with new tasks. These conciusions were drawn from exper-
iments that compared learning performance in networks that used random noise
to optimuze changes in synaptic weights against networks that were not exposed
to noise. Both types of neiworks were allowed to reach the same level of learning
on a given task. but the noise-exposed networks learned a subsequent task faster,
even when noise was pot included during training of the second task, than networks
that did not use noise. Starting networks at different initial synaptic strengths at
the beginning of a training session yields different final synaptic settings, but all
final networks perform the same learned task equaily well. Because of this. Burton
and Mpitsos initialized networks using different synaptic strengths and thresholds.
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Theén/ examination of a large number of networks at the end of the first training
session revealed that the two types of training methods did not generate statisti-
cally significant differences in the means and standard deviations of the synaptic
weight settings. Both types of networks contained the same information for generat-
ing equaily accurate computations reiating to the first task. but networks that were
exposed to noise contained further information that permitted them to perform
well on a second task. Fach task has a pa.rticular error landscape associated with
it (see Figure 8 in Burton and Mpitsos™ and Figure 13 in Mpitsos*3* for examples
of error landscapes and volumes). Burton and Mpitsos suggest that noise-exposed
networks sample these error-structures more completely than networks that were
not exposed to noise. Thus, when confronted with new tasks having any similarity
in their error structures as the first task. the synaptic settings of networks exposed
to noise aiready contain information about the new task and are able to navigate
its error fields rapidly. By contrast. since networks that are not exposed to noise
contain less of such information they are not able to navigate as rapidly through
the new error structure.

The implication of these findings for the present discussions is that one may
look for changes relating to a given task. but depending on the conditions un-
der which that task has been learned. the aggregate of synapses within a pool of
neurons may contain different types of information, where one type pertains specif-
ically to one or more tasks that have been learned, and the second type pertains to
more general conditions that do not affect the accuracy of the first, but nonethe-
less may camouflage the resuits that the experimenter is seeking to identify. The
rabbit olfactory bulb!’® may be a useful example to contrast our findings. In this
structure. odor-specific information is stored spatio-temporally, but apparently all
neurons take part in expressing the code for eacn odor. Our simulation networks
can also be constructed to encode information relating to muitiple tasks.*3* but the
noise-induced changes in the network represent an informational abstraction that
goes beyond the information need specifically to perform well on previousiy learned
tasks. Therefore, if our computer simuiations of connectionist neural networks have
analogs in biological systems, the understanding of synaptic modification and the
information that the synapses contain cannot be deciphered simply by examining
the synape2s themselves as they relate to only one task. In their studies of Mau-
thner neurons, Faber. Korn, and Lin.*? raise the related caveat, but for different
reasons, that “...although it is possible to derive generalized rules of the opera-
tion of synapses, their variants may exert a major role in shaping the behavior of
complex circuits.”

Analogous problems as those described above and in the preceding two sub-
sections may have beset Lashley!%® whose unsuccessful attempts to identify the
locus of stored memories (engrams) in the cortex have been more inspiring and
illuminacing, at least to us, than were he to have found them. It is interesting that

much of neuroscience has followed the same course as Lashley, bn(on the cellular £ i3
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level in attempting to identify behavioral phenomena in terms of smgle synapsa
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possibility that learning couid be localized to particular areas of the cortex since
learning persisted in his animals even after they had suffered brain damage (see

Boakes,?° pp. 127-128).

4. “FUZZY" CONTROL

Thus, the “control” we seek to define for the physiological and neurohumoral as-
pects of the nervous system is oblique and emergent rather than being crisply
Euclidean in postulating particular causes and effects as would be expected of re-
flexes. One ifeature of such emergence is that there may be many ways to do the
same thing, and even gradations between these ways. We know. for example, that
under some conditions, removai of a neuron from acting in a motor pattern can be
compensated by shifts in the activity of other neurons.!3?” Redundancy, arising from
information sharing among convergent pathways, compensates for error or failure
in some of its components. even if these components originally generated strong
control over the other members of the coactive group. Are neurohumoral systems
equally redundant, or does each of the ever-growing number neurotransmitters be-
ing identified daily have a unique task? Our own work leans heavily toward the
first of these possibilities.’”? In the same sense that there may be “lazy” synapses
in neural networks,'3* whose presence is required only under some conditions, are
there “lazy” or even unnecessary transmitters? Some of what we see in a given
system may represent baggage of evolutionary or developmental processes. This,
however, provides for yet another form of variation that permits possible adventi-
tious incorporation into further evoiution or behavior.

5. 1S OUR VIEW HOLISTIC?

No. Being concerned with mechanisms that generate global behavior is not nec-
essarily being holistic. In our approach. global behavior depends on local rules
followed by individuals acting within a large group. It is these rules that we seek
to identify, though there may be different rules that relate to global behavior di-
rectly. Even in simple processes such as building of sand-grain mounds!? and affine
transformations,'® the global consequences of local behavior are not predictable.
Nevertheless, emergent function need not be a property of large groups of neurons.

It is interesting, however, that one of the best examples of work in artificial
intelligence in many decades employed a top-down analysis in which a principle
obtained from studies on the behavior of whole animais was used to gain insight into
how that behavior might have emerged from individual neuronal units. The work we
refer to is Klopf’s®® drive-reinforcement model of associative learning, which extends
Hebb’s?* rule to account for Paviovian conditioning. Hebb’s rule states that, “When
an azon of cell A is near enough 1o excite cell B and repeatedly and persistently
takes part in firing it, some growth or metabolic change takes place in one or both
cells such that A’s efficiency as one of the cells fining B is increased.” Before Klopf’s
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model, computer simulations of Hebb’s rule in simple networks were not successful
in demonstrating learning that mimicked findings in biological systems.

Hebb’s rule may be interpreted as a three-cell network,!4! one input cell for the
CS and one input cell for the UCS, both of which synapse on a common follower cell
(cell B). Klopf{made the following crucial modifications to the rule to make it work
in such a simple system: (1) Temporal delay was added between the onset of the CS
and UCS. (2) Synaptic modification was made proportional to the rate of change
in the CS and UCS. (3) The follower celi (B) itseif expressed a form of behavior
anajogous to tendencies that may be observed in whole animals: Whole animals
seek to optimize some quality of their environment, such as avoiding pain and
enhancing pieasure. Klop{(\ma.de the simple, but crucial analogous assumption that
cells tend to optimize excitation and reduce inhibition. Additionally, to account
for excitation and inhibition, the follower cell received excitatory and inhibitory
terminals in its CS input pathway.

The methodology for training the network is the same as for training the whole
animal. In each training trial, a pulse is presented to the CS input. which initially
produces little effect, and after a short delay, a pulse is presented to the UCS input.
The only parameter that is arbitrarily set in the model is the constant for the
rate of learning. Amazingly, training-induced changes in the synaptic effect of the
CS input on the follower cell reproduced all of the known Paviovian conditioning
phenomena in experimental animais and in humans (e.g., backward conditioning,
CS alone. UCS alone, trace conditioning, second-order conditioning, foreshadowing,
blocking, conditioned inhibition. etc.).

The model has now been extended to account for instrumental conditioning,.
The work aiso made progress in resolving the long-standing debate reiating to the
theoreticai reiationship between Paviovian and instrumental conditioning since the
instrumentai conditioning effects in the model emerge from Paviovian condition-
ing. Thus. computational methods may have resoived what psychological debate
and experimentation in biological systems have not been able to do. The studies
discussed in section IX pursue the same rationale of using simpie rules to lead to
understanding of global effects.

129

VHI. DOES A THEORY EXIST?

At least three important principles have emerged from dynamical systems studies
that are important to biologists: (1) The notion p@mact.ors. {2) A considerable

amount of information about a system can be gained from bifurcation anaiysis.
And (3) an understanding of the dynamics of a system can be obtained from the
phase-space geometry of such attractors. By these methods, it is possible to discover
much about a system without having to resort to the difficult if not impossible task
of uncovering the sets of equations that actually run the system.
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A long history of work has developed these ideas, from Poincaré to Lorenz,
Crutchfield. Farmer, Packard, Rossler. Ruelle, Takens, Swinney, Shaw, Yorke, and
others of the many recent contributors to the knowiedge of nonlinear dynamics.!:18!
There are many theorems in the field of nonlinear dynamics and there are many
discussions of how to handle the nonlinearities.”*7%158 beautiful demonstrations
of attractor topologies. bifurcations. and stability analyses. when these are in fact
available. As important as these are. they do not constitute a unified theory, at
least not as it might appiy to brain function. though Bak and coworkers suggest
that their mathematics or models of self-organizing criticalities,-%:11.12,13,15,31,185
which apparently account well for many physicai and biological phenomena. may
provide an encompassing dynamical theory.

One way to get around the theoretical problems, as is often suggested by physi-
ologists and non-physiologists alike. is to perform computer simuiations on systems
whose state space is compietely defined and parameterized, that is. to determine all
of the connections between neurons, membrane properties, neurotransmitters, firing
thresholds. and the like. However, one look at the complexity of the connections and
at the wide divergence and convergence occurring in even “simple’ systems should
provide convincing evidence that this approach is hopeless.?137:172.193 Moreover,
as discussed above, the reductionist neurocircuits that have been developed over
the years to account for behaviors are but a caricature of the actual “network” that
generate the behaviors in intact animals.

The possibility might also be suggested that insight into the integrative prin-
ciples might be obtained from the mathematics describing the biological systems.
This also seems an unlikely possibility at present. even in reiativeiy small systems.
Even in weil-defined experimental systems. the first evidence of dynamical states
and their vifurcations came from direct observations. One such example is the
Belousov-Zhabotinsky reaction which consists of about 30 chemical constituents in
which maionic acid is oxidized in an acidic bromate soiution.*51-162 While it may
be possibie to define the various reactant species and list the reactions. it has not
been possible. to our knowiedge, to predict the dynamics of the system using the
mathematics of the reactions. Another example is the demonstration of different
dynamical states in veast glycolysis.!?® As yet another example, near the turn of
the century, Duffing extensively studied damped-driven oscillators. yet the full force
of the dynamics in his simpie model system was not uncovered until recently using
computer simulations.!3!:182 Lorenz’s landmark paper:!? showing the first instance
of persistent chaos in a simple mathematical model of fluid convection was found
accidentally in computer symulations. not theory.

Finaily, even the application of extant dynamical systems toois to time series
of experimental data provides little recourse.’3! These tools have largely been de-
veloped using simple models whose responses can be generated sufficiently long to
obtain an indication of their dynamics. Biological responses. by contrast, are often
extremely short lived. For example, chewing and swallowing behaviors in humans
as in Plearobranchaea may be generated by robust attractors. but so few cycles
are generated that characterization of their dynamics. whether they be limit-cycle
or chaotic attractors. is not possible. Even in ideal systems. a certain amount of
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guess-work needs to be done. For example, werk—m—wﬂabe:ao:-y—bm

_ Ihet the Grassberger-Procaccia algonthnysxgmﬁcantly overestimates the attractor
dimension of limit cycies and seuessiy un&erest.unat.d it for chaotic systems, par-
ticularly as the dimension increases, even for model systems such as the Radssler
hyperchaos.!3®

The positive side of all of these problems is that biology stands on an exciting
albeit difficult threshold of growth in theories and concepts. And it is biology that
will force further development of dynamical tools. The work of Ellner and coworkers
on nonparametric methods to calculate Lyapunov exponents is an example.34:55:56

IX. COMPUTER SIMULATIONS: MINIMAL MULTIFUNCTIONAL
NETWORKS

Computational analogies may provide insight where theory is lacking. Lorenz’s
work on convection provides an excellent example of how computer simulations
may spark insight into new methods for handling complex systems. The work of
Klopf and coworkers,?129 which was discussed above under Reductionism, is an-
other example in which computational methods have proved decisive in addressing
an important problem in the theory of learning. In Lorenz’s case, the outcome was
unexpected. In Klopf’s case, the outcome was planned because of the equivalence
of the statement of drive reinforcement at both the unit and global levels. Both
of these examples show that certain statements or assumptions about interacting
systems can be used to address compiex behavior through computational methods
without having first to develop a proved theory about the global system. Put dif-
ferently, given certain assumptions about local events, it may be possible to allow
the system to generate itself. In the same way, we discuss here four topics that
may be addressable computationally and which may eventually prove beneficial in
understanding some of the complexities of biological organization.

110

1. NONLINEARITIES AND BIFURCATIONS IN SIMPLE NETWORK
ARCHITECTURES

As we have referred to repeatedly above, we do not yet understand the functional
meaning of convergence and divergence beyond the notion of refiexes,!34:137:172

as Sperry put it,}7® of the “three-bodies problem.” Mstu&a of assocmtxve
learning and motor pattern generator, there is as much need now for a new language
to handle the emergent properties arising from convergence as there was fifteen
years ago.!4! But we can point at least to two small interrelated advancements:
identification of the nonlinear interactions that arise from network architectures,
and the identification of architectures that permit bifurcations to arise from such
interactions. The discussion below uses several model systems to clarify what we

s
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mean, and to inquire into the problem of continuous versus discrete processes in
neuronal activity.

A. NONLINEARITY AND BIFURCATION IN MODEL SYSTEMS
Rassier and logistic. Nonlinearities are easy to see in simple models such as the
Réesler system*®? of coupied ordinary differential equations that generate complex

chaotic dynamics:

< _ z dy—z+a E—bz—cz
at ? @ T = ’

where a. b, and ¢ are constants. Here X is a function of Y and Z.Y is a function of
X and itself, and Z is a nonlinear function of itself and X. Each of these variables
is expressed nonlinearly through the others. The logistic equation. Xp4; = R(1 -
Xn)Xhn, is an even simpler exampie. where the new value on the left is generated by
the nonlinear drive of the previous vaiue on the right (initialized between 0 and 1),
and is then reintroduced into the system to generate the subsequent number. For
values of the constant R between 0 and about 3.55, the process of nonlinear action
followed by recursive folding back into the equation produces periodic sequences of
numbers, but for R greater than 3.55, the system generates chaotic sequences.i2!
Successive, linear adjustments to a constant such as R may produce only minor
changes in the system over a large portion of R’s allowable range. But at critical
points, very small aiterations in R produce nonlinear shifts (bifurcations) in the
sequence of numbers. At low R-scale resolutions. regions are observed at which
only chaos appears to occur. By expanding the R-scale. one observes that chaotic
regions contain periodic regimes.

Bifurcation n Hodgkin- Huziey memobrane. Teresa Chay's-® seminal paper ex-
amined a three-variable Hodgkin-Huxley membrane preciseiy in this way. The time
variation of voltage in the model is given by

dV - 4 - 4 Id - C -
== 9imhea(Vi-V) + gic yn* (V- V) + yx,cm‘\vx- V)+gr(Vi-V).

I: mixed inward currents (sodium. calcium). K,V: voitage-sensitive potassium chan-
nel. C: internai calcium concentration. K,C: calcium-sensitive potassium current. L:
leakage. n: probability of opening K,V. m.h: probabilities of activation, inhibition.
g": maximal conductance divided by capacitance.

The three variables in the system are (1) membrane potential (V); (2) n. the
probability of opening the voltage-dependent potassium channei: and (3) intracel-
lular concentration of calcium (C). Intraceilular calcium is voitage-dependent. as
are sodium. one of the potassium channels, n, m. and A. It can be easily seen
mathematically that all of these variables affect one another through voltage (as a
consequence of their effects on currents), and that the system of such interactions
1s highly nonlinear, although examination of the equations would not pecessariiy
give immediate insight into which parameters to use to control bifurcations. The
bifurcation parameter is the calcium-dependent potassium conductance gk ¢, and.
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as described above for the logistic equation. the membrane produces many different
firing patterns when this conductance was systematically changed.

B. RELATIONSHIP BETWEEN BIFURCATION DYNAMICS AND NETWORK ARCHITEC-
TURES. To illustrate the difficuities encountered in attempting to understand the
dynamicai capabilities of network architectures. and the direction we have taken
in some of our computer studies. consider the (overiy) simpiified cartoons in Fig-
ure 4 that transpose the Rossier system and the Chay membrane into “reaiistic”
analogs of neuronal networks. “Realistic” might include voltage-sensitive ion chan-
nels, calcium-dependent ones. transmitter release dynamics. transmitter re-uptake,
and second messenger systems, and other processes one might want to inciude in
an experimental system.

Given tonic excitatory input to X in Figure 4(a), and making X capable of
post-inhibitory rebound. it may be possible for X——’Mﬁ
there is sutficient accommodation in the firing of Z and/or Y. Figure 4(b) shows a
network cartoon of a subset of the variables in the Chay membrane. Given Chay’s
simulations. it might be predicted that the synapse of K¢, onto V' would provide
access to bifurcation dynamics. The noniinearities in the Réssler and Chay systems
are easily identifiable in the differential equations that compose them. And it is
possible to see how the calcium-dependent potassium conductance can influence
the dynamics of the Chay model. But it is considerably more difficult to identify
analogous nonlinearities and bifurcation conditions in neuronal networks. It has
long been established that synaptic activation of neurons leads to nonlinear re-
sponses because of the firing threshold in the driven neuron. It is also known how
to simulate individual synapses using digital integration. by describing the kinetics

FIGURE 4 Cartoon of “minimal® neurocircuit transpositions of the three-variable
Rdssler system of coupled differential equations (A) and of the Chay’s three-vanabie
Hodgkin-Huxley membrane (B). See text.
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mathematicaily, or by examining nonlinear interactions between different types of
synapses.’® But the dynamical implications of different network architectures and
of the synapse characteristics that affect the dynamics of regenerative electrical
activity of neurons in these networks are problems that remain iargely untapped.

Along this line, present efforts in our laboratory are aimed at understanding
what types of converging and diverging centers in minimal networks are required
for bifurcations to occur. In the same way as Chay used the caicium-dependent
potassium conductance to control the bifurcations. our efforts are to determine
whether synaptic strengths can aiso be used as bifurcation parameters. The problem
facing us in dealing with the biologicai system is much more difficuit than that which
faced Chay because: (1) our system has many more degrees of freedom. (2) Our
system is not as smoothly continuous as the Hodgkin-Huxiey mermbrane: i.e., the
membrane responses may seem continuous, but cells usuaily receive information
in short pulses or bursts. (3) There are no previous network examples for us to
follow in which bifurcation have been demonstrated. Interestingly, the types of
convergence centers that have proved capable of bifurcating into variable activity
in our preiiminary computer simulations, are ones having similar structures as the
one shown in Figure 4(b).

As our knowledge grows of the connectivity among the BCNs and of their con-
nections with other neuronal groups. we shall construct computer simulations of net-
works having increasing sizes. We shall then progressively introduce the effects of the
many converging neurotransmitter systems. Additionally, by implementing early
behavioral evidence of synaptic competition during learning in Plesrobranchaea,**!
and the evidence for synaptic competition in mammalian cortex.*2” we expect to
see our networks remodel their connections overtime. Interactive groups may ac-
tually grow or shrink in time; large popuiations may split into subsets: the spatial
boundaries between coactive groups may move in time: and network architectures
may emerge that affect the amount of variation occurring in the network.

C. CONTINUOUS VS. DISCRETE PROCESSES. The Rossier and Chay modei are
both three-variable systems. as required of any continuous bounded system that
is capable of generating chace.”> We summarized the reasons behind the need for
three variables using mixing of trajectories in three-space and an examination of
Lyapunov exponents in section [V.5.B. By contrast. discrete processes can generate
chaos in one dimension. as in the case of the logistic equation. and coupled discrete
processes can generate chaos in two-space. as shown by the Hénon system. where
Xns1 = 16X2 + Y, and Y., = bX,.™ Recall also that the issue is not whether
a systemn generates chaos. but it ability to exhibit both simple and compiex be-
haviors. depending on 1ts bi{urcations conditions arising from simple quantitative
alterations rather than from qualitative changes in network structure. Moreover. if
the bifurcation parameter is the driving frequency of an input signal, it is not nec-
essary even for quantitative changes to occur in the network for simple and complex
dynamucs to appear.

The difference between continuous and discrete processes 1s of significance to
neurobiologists. The neural networks studies of Mpitsos and Burton*34 indicate that
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when signais between networks are chaotic discrete processes. simple networks are
able to perform difficuit tasks on these signals that would otherwise require more
complex networks to perform if the mode of transmission used continuous periodic
or ewemjchaotic processes. Continuous processes are used in neural integration.*36
but the usual mode of information transfer is through trains of action potentiais.
Trains of action potentials in pacemaker firing cells are generated by continuous
fluctuations in membrane potentials and in the dynarmics of ionic species. Examples
may be found in computer simulations of the parabolic burster neuron Rs in
Aplysia.*® and in the Chay model described above. The information in these spike
trains, though generated by continuous processes. is in a puise code. Therefore.
there are a number of questions that need examunation. For examplie, is there an
informational difference between the dvnamics of spike trains by comparison to the
information contained in the continuous membrane processes that generate them?
What happens in postsynaptic cells when they receive such spike trains, and when
are we to consider the dynamics in the postsynaptic celis as continuous processes
or analogs of discrete processes? The membrane potentials of these follower cells
may appear continuous. but they are driven by discontinuous input events.

The differences between discrete and continuous processes pose problems in
numerical analyses. Experimental data usuaily consists of the time series of one
or several dependent variables. but the methods provide little knowledge of the
number of dependent vanables that actually drive the system. Numerical methods
provide some help. For example. it is possible to conduct phase-space analyses that
give information about the topological dimension of attractors and about the num-
ber of dependent variables (embedding space) that may be invoived in generating
the attractors.’33:142 The evidence provides some justification supporting chaotic
attractors and low-dimensional embedding space.

However. some of the calculated attractor dimensions were jower than two.
posing some difficuities in interpretation of what the dynamics is. Continuous sys-
tems must have at least three Lyapunov exponents: there must be at least two
non-negative ones. ane being positive. as required for chaos. and one having zero
value, as required by Haken’s theorem (section [V.3.B). Given two non-negative
exponents, caicuiations using the Kapian-Yorke conjecture should be expected that
the lowest attractor dimension for continuous chaotic systems be greater than two
(examples are given in Andrade et al.5: Wolf'%?). QOne-variable discrete processes,
such as the logistic equation, have dimensions less than 1. Two-variable discrete
processes have dimensions between one and two: our own estimate of the Henn sys-
tem gives dimension of about 1.36. Knowing the macthematical representation of a
system allows one to place such numbers in appropriate context, but experimental
data leaves numerical resuits ambiguous. Do we assume that attractor dimensions
less then two are coupied discrete processes or is it a problem with the anaivtical
methods? Of the latter possibility, the available tools, whether using time series
of a single variable or all variables, calculation of attractor dimensions are diffi-
cult to obtain even for model systems® For-exampleArndrade—et-aiffound—thet

= e . R ar O

t % el sty O b - 1 a 0 o

4

A

‘-L,)La—-'.‘.‘;"; ver




52 George J. Mpitsos and Seppo Soinila

Answers to questions as the one given above are necessary because they provide
an indication about how information is processed and encoded. We are presently
addressing them using numerical analyses of data from computer simulations of
membrane patches and of responses of ceils in networks where we have access to all
parameters and variables of the system. Comparison of anaiyses on the data from
measurements of continuous variables and from spike trains may yield some insight
1nto 1mpilcations relating to continuous and discrete processes.

2. RESPONSE OPTIMIZATION, ENERGY GRADIENTS, AND ATTRACTORS
IN BIOLOGICAL NETWORKS

A. ATTRACTORS, FROM SEA SLUGS TO BEES Real'®? has shown recently that
bees are able to adjust their behavior so as to optimize the use of food resources.
Whether or not this involves gradients and attractors has not been addressed. The
idea is consistent with the possibility that biological networks (and biological sys-
termns generaily) may exhibit behavior that tends to minimize some gradient factor
(as error or energy) through the ability of attractors to dissipate energy.*32:133 A¢.
tractors (see section IV.4) pull in any phase-space trajectory that falls within their
basin of attraction. Thus. for exampie, in limit cycles. externally applied perturba-
tions move the trajectory of the system away from the limit set. but if the state
of the trajectory remains within the attractor’s basin of insets. the trajectory will
fall asymptotically back into the limit ser. Chaotic attractors also attract nearby
states but dissipate perturbations over their entire surface. We might say that at-
tractors minimize energy or error.-33 Put differently, attractors optimize the match
between their attracting set and activity that falls pear it. In either case, the action
may be consider a minirmization process. On the behavioral level. bees are able to
control their foraging techniques so as to optimize the use of food resources.*3? (
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B. COMPARISON THROUGH ANALOGY IN PRINCIPLES, NOT IN IDENTITY OF MECH-
ANISMS The potential consequences of the identity between attractors and opti-
mization are rather interesting. Consider the following situations. In attempting to
simplify computer simuliations, it is often difficult to determine exactly where to
limit the characterization of the biology. For example, the connectionist methods
of error-backpropagation are usually faulted because of their obvious non-biological
nature. But the answers that come from the use of such networks depends on the
principles that are actually being simulated. The major driving element of error-
backpropagation is that the system must follow a negative error gradient between
a teacher function and the output of the system.'3 If the question being addressed
has to do with the principle of error reduction, rather than, say, what second mes-
sengers might be involved in a cellular process. or how feedback actually occurs in
a real nervous system. the backpropagation method might give some insight into
how gradient-seeking systems store information in their distributed elements.
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Response thresholds. Following this rationale. Mpitsos and Burton'3* obtained
a number of resuits that might have relevance to biological systems. They found, for
example. that the computational capabilities of networks are severely limited when
only trainable synaptic strengths are used. Adding trainable thresholds significantly
expands the computational power of the networks. In invertebrate learning studies,
thresholds (as might be inferred from membrane changes in postsynaptic cells) have
either not been observed at the cellular level or have not been generally attended
to.!** Studies on long-term potentiation {LTP) in rats have. however, provided
evidence implicating response thresholds through changes in synaptically induced
changes in the ratio of excitation and inhibition rather than changes in membrane
impedance.- %% Heretofore, the methods used to test LTP have not focused on
assessing tne computational implications of threshoid adjustments. nor the technical
conditions to extend the findings, but it would be extremely interesting to determine
whether adjustments in the ratio of excitation to inhibition were set differently
for each ceil. as might occur in gradient descent adjustments in thresholds during
learning in neural networks.

Network size may be seif-limiting. An unexpected finding in the studies of Mpit-
sos and Burton'3* was that increasing the number of neurons in a hidden layer or
interneuronal layer beyond a certain point slows and eventually causes the system
to cease learning; i.e., group size may be self-limiting. Limitation of group size has
been enforced algorithmically in simuiations of mammalian cortex through synap-
tic competition and inhibitory synapses.5%1%3 It is also conceivable, however. that
group size may be additionally limited by the gradient tendencies of attractors. If
the findings of Mpitsos and Burton hold biologically, the siower organizational times
of large networks may be superseded. by smaller subsets of neurons as they form
attractors. Once sufficiently formed. the attractors themselves may restrict group
size. partiy by their gradient processes, and partiy by learning-related synaptic
competition. To our knowiedge, the network-forming aspects of synaptic competi-
tion have peen viewed only at the level of neuronal trophic factors and whether or
not activity occurs. What we are attempting to point out here is that the network
not only generates activity, but that the dynamics of this activity may affect the
characteristics of the network architecture.

A simuiar distinction between activity and dynamics may be raised in studies
of motor pattern switching. In a traditional sense. switching between patterns of
activity require some network change or the introduction of activity in a controlling
neuron.® We do not deny this possibility, but add that the notion of bifurcation
raises the discussion from the level of activity alone to a levei involving dynamical
processes. Using John’s terminology,3! the former is a “switchboard” effect relating
to particuar neuron(s), whereas the latter is an abstraction of the seif-organizing
activity in neurons, and quite likely may not be identifiable in network structure,!3?
although some identifiable structural indices may be obtainable as discussed for the
studies of Figure 4.

Metaknowliedge and lazy synapses. Metaknowledge represents that ability of
networks to store different forms of information.?® We discussed it above in dealing
with reductionism (section VI1.3.D), and we believe that it may be a consequence of
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gradient tendencies. Our computational studies also found that although networks
set their synaptic weights and thresholds at optimum levels, many of the synaptic
weights produce little effect when removed from the network; i.e., they are -lazy.”
Mpitsos and Burton*3* discuss a number of uses for such synapses. One of the most
interesting possibilities comes from somewhat different studies by Warren*** who
showed that certain synapses may be deleted after training without significantly
affecting network performance on a previously learned task. but networks were
unable to learn the task if they started with the reduced number of synapses in the
first place. This poses interesting problems to biologists since weak connections are
often observed between the interactive components of their experimental systems.
The tendency in the past has been to dismiss such connections. or to presume
that they would be “pruned” away if not used. Our findings along with Warren's
indicate that these synapses may be crucial for learning new tasks. By analogy to
computers. they might be considered as temporary registers that permit gradient
descent. but once gradient descent has been reached, they are no ionger needed for
that task.

3. LOCAL ERROR MINIMA IN BIOLOGICAL ADAPTATION

The idea that a system tends to optimize its behavior has a somewhat different ex-
pression in biological systems than it might have in computer simulations of connec-
tionist neural networks. With enough time and stable environmental conditions. we
can envision that evolutionary competition between organisms will produce changes
that best adapt the species to the environment. One might think of the process as
reaching an absolute error minimum between the response of the organism and
the best possible response under the imposed conditions. Any response that is not
optimal represents a locai minimum. In neural networks, methods have been de-
veloped (see section [V.5.C) to avoid local minima using, for example. simulated
annealing?? and time-invariant noise algorithms (TINA).Z Simulated annealing
usually invoives exponential decay of noise over time. TINA adjusts noise as a
function of the amount of error that is produced when a system responds to its
input stimuli. This method, however, was chosen only as a vehicle to demonstrate
the idea of TINA. Other methods, not necessarily directly related to error feedback,
may also be used that retain time invariance. For example, our present attempts
to implement TINA in networks consisting of neurons having biologically realis-
tic characteristics is to adjust the probabilistic reiease of transmitter®? or to use
short-term activity-dependent learning rules such as sensitization*** to maintain
the flow in a given part of the network. Our goal is to assign certain facilitatory
responses to classes of neurons, and then to allow the actual pathway to emerge
dynamicaily. Low-error wouid be represented by activity recurnng through a partic-
ular part of the network. As error increases. diffusely distributed feedback onto the
network would disrupt such preferentially frequented pathways, permitting others
to emerge. If these new pathways lead to low error. feedback decreases, allowing the
flow through the pathway to continue. If attractors self-organize. the preferential
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pathways would then be further entrenched, because, as discussed above, the basin
of insets to the attractor itseif may represent an energy or error-minumizing process.

This process does not require that the tendency to follow a gradient actually
reach an optimal minimum, or, equivalently, that the attractor be spatio-temporally
a robust. stable structure. Biologically, in both the daily behavior of organisms and
in their evoiutionary succession, local minima are extremely important in generating
adaptive responses. Whatever works is sufficient, whether the response 1s optimal
or not. Thus, our notion of an adaptive system is one that can generate different
minima that can be addressed rapidly, and exited rapidly if they do not meet the
need. Indeed. we believe that it is from the ability to generate many local minima
that muiti-behavioral networks may have evolved.

Part of the understanding about the gemeration of local minima will be to see
how mulitibehavioral networks generate different attractors in computer simulations.
Transitions between different attractors may yield labile intermediate forms that
only partiaily resemble more stable ones. The most difficuit problem that we face
here is to determine how best to visualize temporal activity graphically for spike
trains.!3%? Continuous non-spiking processes pose less of a problem.® Part of the
answer may also come from an understanding of spatio-temporal dynamics.

4. VISUALIZATION OF SPATIO-TEMPORAL DYNAMICS

. Q ~At-this-poilat.,-we.are in a sense.bask-to-the-Iatroduction. The more we study the™ 7

biology, the more it seems that we must somehow leave it to gain a feel for what
may be happening there. Put simply, biological systems are too complex and uncon-
trollable even to perform experiments as those represented by Figure 4. We must
imbue these simulation networks with as much biological information as needed to
obtain activity that somehow resembles the activity of the biological system. But
complete state-space parameterization of the biological system is beyond hope, as
one glimpse of the compiexity in Figures 2 and 3 wiil show. At the level at which
we can attribute realistic biological characteristics to a network. the system be-
comes intractable even for simple analyses of steady states (see example anaiysis of
a simple model system in Andrade et al.%).

Given the growing power of computer graphics and the increasingly easier ac-
cess to supercomputers, the recourse for biologists interested in the emergence of
group dynamics is to conduct the type of experiments shown in Figure 4. and, es-
pecially, to visualize the spatio-temporal flow of activity in large-scale simuiations
involving many interacting units. An understanding of such spatio-temporai flows
is, we believe, one of the central questions facing neuroscience. Walter Freeman and
coworkers were perhaps the first to begin a detailed account of spatially distributed
recordings in their studies of rabbit oifactory buib (e.g., see review in Skarda and
Freeman:™®). But even in these studies. the analysis of the temporal flow is of the
time series of single recording sites. Perhaps the major lesson in dynamical svstems
work over the decade has been the fact that much can be learned about the activ-
ity of a system by the analvsis of its phase-space geometry. Up to four variables
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can be analyzed simuitaneously using time series analysis (e.g., see Figures 8-11 in
Andrade et al.,® and Figure 13 in Mpitsos and Burton'3*). We need to do the same
for many variables, both spatially and temporally.

By such methods it may be possible to examine the possibility of limit cycies,
chaotic attractors, SOCs and turbulence. the coexistence of muitiple attractors,
movement of these attractors spatially, and possibly even their blending into one
another. Frem-such studies fi may also be possible to determine how particular
circuit structures emerge, how variability appears controlled by particular circuit
characteristics. In the iong term it wiil be important to ask how such structures are
affected by system-wide factors. If we are to believe our neurochemical findings, it
is quite likely that bifurcation parameters may be more accurately defined as being
distributed over a large number of ceils rather than. for example, in the conductance
modification of a single cell. The first possibility may explain the fact that some
systems are relatively insensitive to changes in only a few of their components.

X. CONCLUSION

In answer to the title of this paper, we have actually said little about what sea slugs
can tell us explicitly about the neurointegration of specific human movement. But
we believe that the findings tell us considerably about what must be addressed in
order to gain a unified perspective of biological integration that might eventually
affect how we view human movement. We understand that much has been said ap-
propriately by others about coordination of limbs in invertebrates and vertebrates,
the rightful importance of FAPs. and selective control of individual neurotransmit-
ters on pattern generation and in the formation of network structure. and that such
findings may be applicable to human motor behavior. Perhaps most of the time all
of these studies provide the best answers. as most of the time Newtonian physics
provides the right answers in daily engineering problems. Perhaps also, the neuroin-
tegrative processes in Pleurobranchaea and Aplysia follow the same predictabilities
most of the time.

The instances that are not expiainable by traditional neurocircuit perspectives
might be dismissed as biological aberrance. Alternatively, owing to the fact that the
animal seems to function well enough with them. they may be pursued as being of
adaptive significance. We have followed the latter route, and have been forced into
a perspective that is more statistical mechanical and dynamical than ciassically
“switchboard.” Lorenz!}! voiced the long-held view that all biological information
is stored in structure. We hardly disagree with that. But the question is. how
do we read that information, and is much of it redundant and even of nonsense
or accidental value? The latter possibilities may actually provide certain adaptive
value adventitiously in ever changing and unpredictable environments. In reaching
a new theoretical perspective that addresses these issues, our view is that there are
two levels of solution: the special case, relating to the switchboard meurocircuit,
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and the general solution, that must be reducible to the special case but must also
provide a general theoretical foundation that is extensible to many other cases.
The shift to dynamics, or at least away from answering all questions by using
reflexes, marks a shift away from mechanism to organization. Although each bi-
ological level of organization may express the dynamics in its own processes, the
dynamical principles may be applicable to all levels of organization. The central
question in all of these systems is “How does the individual influence the group,
and, in turn, how does the group influence the actions of the individual?” We have
tried as much as possible to couch our ideas on biological findings, though much
more data needs to be gathered (and re-gathered) before we feel more comfortable.
If we are wrong, we have $s because our view holds that error
Mis an ad»vantage in adaptive sysbems Is it toaextreme to assert that the practice | :
l p( seiénce.ifself is as much an indication of the biology of the human brain as the A“; 5
} more academic notion of orgamzed activity among neurons, or are we.to presume’

thag/science is th€ practice-of absolutes? There is too much evidence'showing ,error ;
, }{long-heldxﬁgmas to answer maught but.#No,” and “Na” respectively; to the” -
\“two partaof Wgwlf what we have discussed is accurate, then, as Barbara

McClintock envisioned e are going to have a new realization of the relationship

of things to each other.”%7

'
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