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Control of Nonlinear Distributed Parameter Systems

with Application to Flow Control

The goal of this project was to put the intuitive idea of gain-scheduling on a

rigorous foundation for a class of nonlinear, distributed-parameter systems. This

involved a study of the existence and characterization of the ideal, infinite-dimensional,

feedback control. Since in most applications the feedback function cannot be computed

in closed form it was necessary to study the convergence of approximate feedback

functions, based on increasingly higher order finite-dimensional approximations of the

system, to the ideal functiun. Finally, our results were applied to Burgers' Equation,

which can be viewed as a low-order approximation to a wide variety of physical

phenomena, including viscous compressible flow.

The systems conside . A in this study were modeled by an abstract differential

equation of the form

= F(x, u)

where x E 9G, u E %., the state space 96 and the input space cU are Banach spaces with

°U finite dimensional. In many cases of interest, F will be an unbounded, nonlinear,

differential operator. For the purpose of computing equilibrium points and linearizing

this operator we are led to restrict F to a dense subspace of 9G with a norm that makes

F differentiable. By considering the set of equilibrium points

{(xO(a), u°(a)) I a E

we can compute the linearizations about these points to be

= D 1F(x°(a), u°(a))x + D 2F(x°(a), u(a))u.

For each fixed a, we can design a linear feedback of the form

u = G(a)x + H(a)w

which yields the desired closed loop linear system

x = [D1 F(x°(a), u(a)) + D.F(x°(a), u0(a))G(a)]x + D2 F(x°(a), u0 (a))H(a)w.

The objective of gain scheduling is to derive a nonlinear feedback
u = S(x, w)

such that the linearizations of the closed-loop nonlinear system are equal to the desired

closed-loop linear systems. This should produce desirable performance in a

neighborhood of the equilibrium set. For scheduling to be possible when the state

feedback G ;s arbitrary, the control transformation H must belong to a family of

operators that depend on G. We have shown that a feedback of the form



S(x, w) = u0 (P 2 (x, w)) + K(P 2 (X, w)) ((X, w) - P(x, w)),

where P = [P1 P2]: 9 x c-+% x 91 is a projection from the state-control space to the

equilibrium set and K = [G H], will produce the desired result.

Since we cannot generally compute S(x, w), finite-dimensional approximations of

order N of the original nonlinear system are considered on state spaces N %, and

finite-dimensional feedbacks SN(xN, w) are computed. These feedback functions have

the same structure as the infinite-dimensional functions and it is not hard to write down

the conditions under which SN(xN, w) -+ S(x, w) as N -+ oo. It is not enough, however,

that all of the individual functions in the feedback formula, e.g. K or u', converge. In

many cases we must require that these functions converge in a locally uniform manner.

Definition: Let (fn) be a sequence of functions defined on an open set A. We

say that (fn) converges locally uniformly (l.u.) to a function f if every a E A has a

neighborhood X(a) such that f n(x)-+f(x) uniformly for x in N(a).

The condition of most significance for controller design is that we must require that for

every E 9, GN(cr)IIN. -- G(a). in 91, L.u. in a, where I-N:..N-+° is a projection

operator.

To proceed further, we must specify how the state feedback gains will be

computed and show that the desired convergence does indeed occur. In this work, the

feedback gains were computed by solving a linear quadratic regulator (LQR) problem.

Relying heavily on the previous work of Gibson, Banks, and Kunisch, the following

result was proved.

Let 9N, N = 1,2,... be a sequence of finite-dimensional linear subspaces of 9

and I'IN: %..N be the canonical orthogonal projections. Assume that for every a E A,

TN(t; a) is a sequence of strongly continuous semigroups on GN with infinitesimal

generators AN(a) E L(9N). Given operators BN(a) E L(%, ;N) and DN(a) E £(%N),

we consider the family of regulator problems:

(%'N,a) Given a E A. minimize JN(xN(o),u;a) over u E L 2(Ooo;cL), where

iN(t) = AN(a)xN(t) + BN(a)u(t), t > 0, a E A,

xN(O) = x N 0 , (1)

and

JN(xN, U; a) = ' {(DN(a)xN(t),xN(t)) + (Q(a)u(t),u(t))}dt, (2)

0



Assumptions:

H1 For each xN E %Nand for each a E A, there exists an admissible control

UN E L2(0,oo;°l1) for (%.R N,a) and any admissible control for (1), (2) drives the state

of (1) to zero asymptotically.

H2 (i) Every a E .A has a neighborhood (a) such that for each z E 9, we have

TN(t; a)INz---T(t; a)z with the convergence uniform in (t, a) on I x X(.A), where

I is an arbitrary bounded subset of [0, c ).

(ii) Every a E .A has a neighborhood .K(a) such that for each z E 9, we have

TN(t; a)*IINz--+T(t; a)*z with the convergence uniform in (t, a) on I x (A),

where I is an arbitrary bounded subset of [0, oo).

(iii) For each v E %U, BN(a)v--+B(a)v locally uniformly in a.

(iv) For each z E 9, BN(a)*llNz---B(a)*z locally uniformly in a.

(v) For each z E 9, DN(a)lNz--,*D(a)z locally uniformly in a.

Theorem. Suppose (H), (H2) hold, Q(a) > 0, D(a) > 0 and DN(a) > 0 and let RN(a)

denote the unique nonnegative selfadjoint Riccati operators on %N for the problems

(%N; a). Further assume that for each a E .A, a unique nonnegative selfadjoint Riccati

operator on 9 for the problem (%; a) exists and is a strongly continuous function of a.

Let S(t; a) and SN(t; ) be the semigroups generated by A(a) - B(a)Q-1 (a)B*(a)R(a)

and AN(a) - BN(a)Q-l(a)BN*(a)RN(a) on 9 and %N, respectively and suppose

II s(t;a)z II--+o as t--+oo, for all zE E and a E A. If for every & E A there is a

neighborhood X(&) and positive constants M 1 , M 2 and w independent of N and t such

that

11SN(t;a) 11 N<Mle- wi fort >0, N = 1,2,..., a EX()

and

RN(a) II %N <- M 2  for N = 1,2,..., a E X(&)

then

RN(a)IINz--R(a)z for every z E %, locally uniformly in a.

This result replaces the conditions on the LQR feedback gains with conditions on

the open-loop system. To verify that these conditions can indeed be satisfied, we



restrict attention to systeims whose families of linearizations consist of parabolic

differential equations of the form

= a(s, a) 2 + b(s, )-, + c(s,,a)x + f (s,)u t > 0, 0 < s < 1, a E A,

with initial condition x(O,s)=xo(s), boundary conditions x(t,O)=x(t,1)=O, and

solutions in the space 9 = L2(0, 1). Define the operator Ak(a) through the sesquilinear

form

0-(yZ;o a f I[a(s, Ns - (b(s, a) y+ (c(s, a) - k)y)-z ]ds: ( Ak(a~y, z)
'&&, z;S a))Y z)J'

0

where k is a constant chosen to make the form coercive. Defining
w(a) = (I - Ak(a))-z,

w*(a) = (I- A(c))-1z,

it can be shown that H2 (i-ii) is satisfied for the systems being considered if the

following condition is met:

(CI): For every z E L2(0,1), there are functions "WN:.A-*%N and "i*N:.A-*.BN,

N = 1,2,..., such that J1w(a)- N(a) 11-10 and It *(a) - W*(a)It =-#0 localy
uniformly in a.

H2 (iii-v) are easily satisfied by appropriate selection of the approximating problems.

The remaining hypotheses of the theorem, save the strong continuity of the Riccati

operator, can be shown to follow from C1 and the condition:

(C2): The pair (A(a),B(a)) is exponentially stabilizable, locally uniformly in a. This

means that for every & E A, there is a neighborhood J{(6) and a bounded linear operator

K,: H°(O, 1)-+cU., itidependent of a, such that for every a E X{(&), the semigroup Ts(t; a),

generated by A(a) + B(a)Ks, satisfies 11T,(t;a) 1 Mi e - W1t for some positive

constants M 1 and w1 .

To show that the above theory can be applied to a relevant example, we consider

a modified form of Burgers' equation given by

xt = fXss - xx s + cx + uf
and subject to the conditions



x(s,0) = xo(.S), x(Ot) =x(1,t) = 0, 0<S<1, t >_0.

The constant c is used to make the equilibrium point at the origin unstable, u is the
control input and f is the control influence function. The linearization of this system is

given by

xt = xSS - x0(a)x, + (c - x'(a))x + af
where x0(a) is the equilibrium state. In the state space formalism, we identify the state
operator as

A(a)x = Ex., - xO(a)xs + (c - xOs(a))x.

The linearizations are parabolic partial differential equations, as required by our results.
Moreover, {A(a):ca E A} constitute an analytic family of operators and therefore
generates a family of bounded operators T(t; a) that are analytic in t and a.

The finite-element technique is used to obtain finite-order approximations to the
original system, and x(s) is approximated as a piecewise-linear continuous function.
Relying heavily on the analyticity of T(t; a) and using elementary facts concerning
finite-element approximations we have shown that conditions C1 and C2 are satisfied by
our example. In addition, using some recent results of Duncan on continuity of Riccati
operators depending on a parameter we are able to show that R(a) is indeed strongly

continuous. Thus, we can be assured of convergence of the approximate controllers to
the ideal controller. A number of computations were performed to illustrate the

convergence numerically.

In summary, we have placed the intuitive idea of gain-scheduling on a rigorous
mathematical foundation for a class of nonlinear distributed-parameter systems. We
have considered the problem of approximating the ideal controller by finite-dimensional

controllers and have given conditions for the appropriate convergence to take place. By
specializing to the case of parabolic linearizations, these conditions can be replaced by a

much simpler set of conditions which we have shown to be satisfied by a modified form

of Burgers' equation.

We have also explored several interesting problems for finite-dimensional
nonlinear systems. Several schemes for incorporating global information into a gain-
scheduled controller were investigated. As discussed above, our current controllers can

not be guaranteed to produce desired performance outside a neighborhood of the
equilibrium manifold. To modify undesirable performance far from equilibrium, it is

necessary to incorporate the desired control action into the local nonlinear controller. It
was found that our gain-scheduled controller provides a useful structure for

incorporating this information. Unstructured, spline-based methods did not perform as



well. We have also explored the efficacy of a nonlinear PID controller applied to a

highly nonlinear model of a chemical process. The performance was comparable to that

achieved by much more sophisticated nonlinear controllers that required more

information for design and more complex on-line computation.
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