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Abstract _

The structure of the interphase at the gold/aqueous solution interface with adsorbed
acetonitrile was studied by subtractively normalized FTIR spectroscopy (SNIFTIRS). Two types
of acetonitrile and water molecules were observed in the interphasal region. The first involved
chemisorbed molecules in which important vibrational modes are strongly shifted in frequency
with respect to that observed in the bulk of the solution. In the case of acetonitrile, adsorption
resulted in a C = N stretching band at 2342 cmr!, and for water, a bending mode ai 1688 cm™! .
The second type of molecule in the double layer with a band at 2261 cm! in the case of
acetonitrile, and at 1628 cm! in the case of water was assumed to be hydrogen bonded to
chemisorbed water molecules, and thus located further away from the geometrical interface. A
band due to perchlorate ion at 1107 cm! is attributed to anions attracted into the double layer by the
positive charge on the electrode. No evidence was obtained for contact adsorption of this anion.
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Introduction

Infrared reflectance spectroscopy has proven to be a powerful tool for investigating the
structure of the electrode/solution interface [1-3]. Early work included studies of molecular and
ionic adsorption, and investigations of species in the double layer [1,2]). In a study carried out in
pure acetonitrile, Pons et al [4,5] showed that when acetonitrile is adsorbed on platinum, there is a
strong shift in the C = N stretch frequency to higher wave numbers. This can be interpreted as
evidence that the acetonitrile molecule is adsorbed through the nitrogen atom so that the non-
bonding electrons interact strongly with the atoms of the metal. It is well known that bonding of
acetonitrile to metal cations [6,7] also results in a blue shift in the C = N stretch frequency, but to a
much smaller extent.

The purpose of the present experiments was to examine the adsorption of acetonitrile from
aqueous solutions at a gold electrode. Gold behaves as a polarizable electrode over a wider
potential range than platinum, and well established techniques have been developed to determine
the extent of organic adsorption at both polycrystalline and single crystal electrodes [8,9]. By
observing the characteristics of acetonitrile molecules adsorbed from aqueous solution, one has a
means ofdistinguishingadsorbedmoleculesfmmﬂ:oseinthe&iffusepmofthedmblelaya‘orin
the bulk of the solution. In this way, one can gather the necessary information for interpreting
vibrational reflection spectra obtained in pure acetonitrile. The electrolyte used in the experiments
was KClOy, it having been shown elsewhere that the K+ cation has a very small effect on the
spectrum of acetonitrile [7]. The spectroscopic technique used was subtractively normalized
interfacial FTIR spectroscopy (SNIFTIRS) as developed by Pons and colleagues [1,2).




Experimental
Spectroejectrochemical Cell

The configuration of the electrodes mounted in a teflon holder is shown on Fig. 1a. The
working electrode was a gold disc with a diameter of ~1 cm. It was surrounded by a concentric
loop of gold wire with a diameter of ~3 cm, which served as counter electrode. A saturated
calomel reference electrode was connected to the body of the cell by a hole drilled in the weflon
holder between the working and counter electrodes. Other holes in the teflon holder provided a
means of flushing the solution being investigated into and out of the small space between the g.id
working electrode and the ZnSe window. The cell arrangement shown provides a good through
put of infrared energy but results in high cell resistance and asymmetric current distribution. In
the case of the present double layer studies, these drawbacks are not important. A side view of the
cell showing the path of the infrared light with respect to the ZnSe window and gold electrode is
shown in Fig. 1b. The light exiting the interferometer is reflected by a mirror, and then passes
through the ZnSe window and a thin layer of solution to the gold electrode. On reflection at the
 gold it is sent back through the solution and window to the detector via a second reflecting mirror.
The Experiment

The spectra were obtained with a Bruker FTIR spectrometer (IFS 113 V) using a HgCdTe
detector cooled with liquid nitrogen. The electrolyte solution, which was purged well with
nitrogen, flowed through the cell continuously while spectroscopic data were collected. The
spectra were recorded with the optical bench evacuated in the wavelength range from 1000 to 3000
cm! with a resolution of 8 cm!, and were obtained with no less than 500 scans at each potential.
The gold electrode potential was controlled using the sample switching device described earlier
[10], using two different cycling patterns as described below. This device consisted of a sample
number decoder, a voltage range selector and a potentiostat. The decoder responds to commands
from the Aspect 2000 computer built into the spectrometer and activates the potentiostat according
to a pre-programmed scheme. Spectra Calc software (Galactic Industries) was used to subtract




spectra obtained at a given potential from that at the reference potential and to plot the resulting
SNIFTIR spectra.
The Gold Elecirode

The gold disc embedded in KelF holder was polished with successively finer grades of
alumina powder down to 0.05 um. It was thoroughly washed in an ultrasonic bath and with
nanopure water. It was chemically treated in a series of solutions involving HF, NaOH, HNO»
and HSOy in sequence as described earlier {11,12].
Chemicals

Acetonitrile (Aldrich, Gold Label) was used without further treatment. Potassium
perchlorate (Fluka) was recrystallized from nanopure water and dried at 170 °C in an evacuated
oven. Perchloric acid (Aldrich, 99.999%) was used as received. All solutions were made in

nanopure water.




Results

Cyclic voltammograms obtained in the cell described above containing aqueous solutions of
(a) 0.2 M HCIO4 and (b) 0.1 M CH3CN and 0.05 M KCIO;4 at a scan rate of 10 mV s-1 are shown
in Fig. 2. The data obtained in the acid solution are similar to those reported earlier [13] and
indicate that oxidation of the gold electrode commences at 1.08 V. The cyclic voltammogram
recorded in the KCl1O;4 solution containing acetonitrile demonstrates that oxidation commences at a
less positive potential. An anodic peak just positive of 1.0 V is barely visible and two cathodic
peaks are found at potentials more negative than the single peak observed in the acidic solution.
This behaviour is similar to that found by Iannelli et al. [14] when pyrazine is adsorbed on a
polycrystalline gold electrode from aqueous solution. It is clear that the presence of acetonitrile
affects the reduction of the gold oxide formed in the positive going sweep.

The SNIFTIRS data were obtained using two different potential stép schemes, the first of
which is illustrated in Fig. 3. The reference potential E; was -0.80 V with respect to a SCE, that is,
close to the potential at which deposition of hydrogen begins. The spectrum was recorded at the
reference potential and then at a more positive potential, and the difference spectrum calculated.
After each positive excursion the electrode potential was returned to the reference value for
approximately 30 s. The electrode potential was then stepped to a potential more positive than the
previous one by 150 mV and the process repeated. SNIFTIR spectra obtained in the C = N stretch
region are shown in Fig. 4. Two potential dependent bands are observed at 2261 cor! and
2342 cml. The higher frequency band is more intense and varies more with potential than the
band at 2261 cm-l. Keeping in mind that the C = N stretch in pure acetonitrile occurs at 2253 cm'!
[15], and that this band is strongly shifted in the blue direction when acetonitrile is adsorbed on
platinum [4,5], it is reasonable to conclude that the band at 2342 cm"! is due to acetonitrile adsorbed
on the gold electrode. The band at 2261 cm-! occurs at the same frequency as that for an
acetonitrile molecule which is hydrogen bonded to a water molecule in the bulk of the solution [16].
Thus, this band in the interfacial spectrum is attributed to an acetonitrile molecule bonded through
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the nitrogen atom to a water molecule which is itself adsorbed on the electrode. Further evidence

relevant to this conclusion is presented below.

Spectra obtained in the region from 1450 to 1850 cm-! are shown in Fig. S5a. The spectral
features centered at 1660 cm! are attributed to water and suggest that this molecule is strongly
chemisorbed to an extent which increases as the electrode potential is made more negative. It
should be noted that the water bending mode is observed at 1600 cm-! in the vapor phase so that the
bands found in the differential interfacial spectra arc blue shifted with respect to the vapor phase
band. The broad band centered at 1660 cm-! can be resolved in to two bands with Lorentzian
shapes with maxima at 1688 and 1628 cm™l. As can be seen from Fig. 5b, the fitted spectrum on
the basis of two Lorentzian bands provides an excellent description of the broad band centered at
1660 cm-!. The origin of these two bands with respect to the molecular description of the interface
is discussed in more detail below. Finally, the adsorption of perchlorate into the double layer is
seen from the band at 1107 cm-! which increases in intensity with excursion of the electrode
potential in the negative direction. The simple nature of this band indicates that the perchlorate ion
is not ion paired [15] and that it is not contact adsorbed at the electrode. The latter would require
that it displaces either water or acetonitrile molecules which are themselves strongly chemisorbed at
positive potentials. It would also result in a change in the vibrational features of perchlorate ion
from those seen in the bulk of the solution, |

The other potential modulation scheme involved driving the electrode to a far positive potential
(+l.50V)forashonperiodofﬁmebeforebﬁngingitbacktod\evalneatwhichdnspecmnnwas
recorded (see Fig. 6). As a result, an oxidation process occurs at the electrode, the products of this
reaction be reduced or partially reduced before the spectrum is recorded. Otherwise, the potential-
time program is similar to that described above. Difference spectra in the region from 1000 to
2500 cm! are shown as a function of electrode potential in Fig. 7. There are two positive going
bands at 2342 and 1107 cm’], and two negative going bands at 2261 and 1689 cm-1. The latter
two bands occur at the same frequencies where positive going bands were observed in the
experiments carried out using the first potential modulation scheme. In addition, there is a bipolar




band with its zero crossing at 1632 cm! and positive lobe at 1596 cm™l. The bipolar band is
probably associated with the band at 1628 cm-! observed in the previous experiments.

Intensity data for the C-N stretching bands based on integrated band areas are presented in
Fig. 8. The intensity of the band at 2342 cm"! rises quickly as the potential is made more positive,
reaches a plateau and then falls somewhat at the most positive potentials. The intensity against
potential profile is somewhat different when the potential modulation scheme involving preliminary
oxidation is used. In this case, the sharp rise in intensity occurs at a more positive potential and the
maximum value on the plateau is somewhat less. For the bands at 2261 cm-1, the intensity
variation with potential is much less, a small increase being observed for the experiments carried out
with the positive going pulse. On the other hand, when the electrode is pre-oxidized the intensity
of the band at 2261 cm-! slowly decreases as the electrode potential becomes more positive. The
potential dependence of the water bands observed in the spectra obtained with the positive going
pulse are shown in Fig. 9. The band at 1628 cm-! is more intense than that at 1688 cm-!, and both
bands increase in intensity as the potential becomes more positive. The fact that the slope of the
intensity against potential plot is decreasing suggests that the adsorption of water would approach a
limiting value if it were not oxidized. Finally, intensity against electrode potential plots for the
asymmetric stretch mode of the perchlorate anion is shown in Fig. 10. In this case, the data
obtained from experiments using the two potential modulation schemes are the same within
experimental error.  As one would expect, adsorption of ClO4” on the electrode surface increases as
the electrode potential becomes more negative.




Discussion

The spectra obtained in the present SNIFTIRS experiments show interesting features in the
double layer region on gold. These features relate not only to the absorption of acetonitrile, but
also to the adsorption of water and perchlorate ions. The significance of the spectral details with
respect to the change in composition of the interfacial region at the gold electrode is now considered
in more detail.

The band a1 2342 cm-!

Coordination of acetonitrile to a cation usually results in a shift in the C = N stretch frequency
in the blue direction, the extent of which depends on the charge to radius ratio for the cation. The
largest shift for a cation is observed for Mg2+ (36 cmr!) [15], which also has the largest z/r ratio for
the cations which have been studied [7]. The present shift of 89 cm-! for acetonitrile adsorbed on
gold is much larger, and comparabie to that found for the adsorption of acetonitrile on platinum
(98 cm-1) (4]. Itis also similar to the blue shift of 100 cm-! observed when acetonitrile forms an
adduct with BF;, a strong Lewis acid [17]. The fact that the C = N stretch frequency is shifted to
higher values is attributed to the removal of electron density from antibonding orbitals so that the net
bond order increases [18]. These ouservations provide strong evidence that the acetonitrile
molecule is adsorbed so that the central axis of symmetry is perpendicular to the surface with the
nitrogen atom coordinated to a metal atom of the electrode. On the basis of the harmonic oscillator
model 16}, it is estimated that the force constant of this bond increases by 7 percent on coodination
with the gold surface. Comparing the present results with those for formation of an adduct with
BF;, it is clear that the metal electrode behaves very much like an electron deficient entity. It is also
interesting to compare the interaction of the C = N group and the metal electrode with that observed
carlier for carbon monoxide adsorbed on platinum [18-20). The frequency of the C = O stretch for
the adsorbed molecule depends on electrode potential [18-20], whereas that for the C = N stretch in
adsorbed acetonitrile does not. This is taken as evidence that donation of electron density from the
non-bonding electrons on nitrogen dominates the adsorption process in the case of acetonitrile, and
that back bonding from d orbitals of the metal to the x* orbitals of the molecule does not play a role.
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In the case of the adsorption of carbon monoxide, the latter process is assumed to be important [19- }
21). As aresult, the adsorption of acetonitrile on metal electrodes leads to a strengthening of the |
C = N bonds, whereas the adsorption of carbon monoxide resuits in a weakening of the C= O
bond.
The band a1 2261 cm!

This band occurs at the same frequency as that for the C = N stretch when acetonitrile is
coordinated to water via hydrogen bonding [16], and therefore is assigned to a surface species
involving these molecules. The band is positive going in the experiments involving the direct
positive pulse, but negative going in the experiments in which the electrode is preoxidized. These
results provide clear evidence that the signal originates with a surface species. It is interesting to
speculate on the orientation of the adsorbed species with respect to the electrode. One possibility is
that the two molecules interact while adsorbed with their dipole vectors parallel to the interface.
This orientation would allow maximum interaction of the & electron density of the C = N bond with
the electrode. However, in this case the frequency of the C = N saretch would shift strongly to
lower frequencies (ca. 1700 cm-!) {22]. Another possibility is that the acetonitrile molecule is
adsorbed with the positive end of its dipole (CH3 group) directed to the metal surface and the
negative end interacting with a water molecule further away from the electrode in the double layer.
However, in this orientation the acetonitrile dipole is in the orientation of high energy with respect
to the electrode field so that it is difficult to accept that the coverage of the electrode by such a
species increases as the electrode potential is made more positive (Fig. 4). The final possibility and
that considered most probable involves interaction of acetonitrile in the double layer with an
adsorbed water molecule. In this case, the orientation of both the water and acetonitrile dipoles are
in the lowest energy configuration with respect to the electrode field when it is positive.
Furthermore, the changes in the intensity of this band with potential follow those for the band at
1688 cm! which is attributed to chemisorbed water molecules. These interesting observations
provide strong evidence that there are two mechanisms by which acetonitrile is adsorbed in the
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double layer, namely, directly on the electrode through the nitrogen end of the molecule, and

indirectly, by hydrogen bonding through the nitrogen atom with chemisorbed water.
The bands at 1688 and 1628 cm!

The water bending frequency, v», is reported to be 1595 cm"! in the gas phase [23],
1640 cm-! in liquid water [24] and 1620 cm! in ice [25]. It is clear that hydrogen bonding present
in the liquid and solid phases results in a blue shift from 25 to 45 cml. It is reasonable to expect
that interaction of the oxygen end of the water dipole with the atoms of the metal electrode results in
an even larger increase in the v, frequency so that the band at 1688 cm-! is assigned to the v, mode
in the chemisorbed water. It also follows that the band at 1628 cm-! is due to water molecules
which are further away in the double layer and hydrogen bonded to the chemisorbed molecules on
the surface. Although these assignments are based solely on band frequencies, they are supported
by other observations. Firstly, the intensity of the bands is potential dependent, becoming stronger
as the electrode potential is made more positive in a direct positive going potential jump. This
suggests that the chemisorption of water on the gold electrode incr\ ~ses with the same potential
change. This conclusion is completely compatible with impedance data obtained under the same
conditions [11] and would be an understandable precursor to electrode oxidation. The second
observation relevant to the present interpretation is the fact that these bands appear differently when
the different potential modulation schemes are used. Especially important is the appearance of the
bipolar band in the experiments in whick the electrode is preoxidized. When the electrode is
oxidized, the chemisorbed water is undoubtedly converted to oxide with a resulting drop in pH near
the electrode [26]). This step is also accompanied by surface reconstruction [26]. The fact that
there is a negative going band at 1688 cmx’! in these experiments suggests that the surface
concentration of chemisorbed water is less on the preoxidized electrode surface than at the negative
reference potential. This observation is attributed to the fact that all of the oxide on the surface has
not been reduced back to the metal and water molecules. It is also partially due to the fact that the
experiments are carried out under flow conditions so that the protons produced on oxidation are
flushed away from the electrode before reduction takes place. Under these circumstances,
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hydroxyl ions would be produced near the electrode. Since the smal: volume between the electrode

and window may not be efficiently exchanged during the time of the oxidizing pulse, that latter
process probably does not contribute significantly to the magnitude of the negative going band.
Because of the complex nature of the spectra in this region for the preoxidized electrode, further
analysis is not possible.

It should also be noted that acetonitrile molecules adsorbed with their dipole vectors parallel to
the electrode surface should have a C = N stretching vibration in this region. However, according
to surface selection rules, this band should be weak in the infrared. If weak absorption occurs, it is
masked by the water bands discussed above.

The band at 1107 cm?

Perchlorate anion has an asymmetric stretching mode, v3, which is observed in solution at
1107 cm'! [7]. If the anion is adsorbed on the electrode, its symmetry is reduced, and splitting of
the band at 1107 cm! would occur. The fact that a well defined single band is observed in the
spectra obtained suggests that perchlorate is not adsorbed on the electrode, but instead remains in
the diffuse layer. As the electrode potential is made more positive, the electrode field attracts
anions into the double layer and repels cations. As a result the surface signal for perchlorate
increases. No other bands due to splitting of the band at 1107 cm-! were observed. Thus, it i:
concluded that C1O4- anion does not specifically adsorb on gold for the present experimental
conditions. These conclusions do not eliminate the possibility that the anion is adsorbed via
hydrogen bonding to chemisorbed water molecules as is the case for some acetonitrile molecules in
the double layer. Thus, our observations do not exclude the presence of perchlorate anions in the
double layer for other than electrostatic reasons.

The Model of the Double Layer

The spectra obtained in the present study allow one to develop a more detailed model for the
interfacial region at the gold electrode. Such a model is shown schematically in Fig. 11. The
important result of the present experiments is that there are two types of acetonitrile adsorbed in the
interphase. The first involves molecules which interact directly with the surface. Only one
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orientation is observed, namely, that for molecules with their dipole vectors perpendicular to the

interface and the negative end on the surface. The second type involves acetonitrile molecules
hydrogen bonded to chemisorbed water molecules. The same conclusion is reached regarding
water in the double layer. The chemisorbed layer absorbs at 1688 cm-! and a second layer present
through hydrogen bonding with the first absorbs at 1628 cm-1. It should be noted that the dipoles
chemisorbed and present further away from the interface due to hydrogen bonding can all be present
in the orientation of lowest energy when the electrode field is positive. Finally, there is no
evidence for contact adsorption of perchlorate in the present results. However, perchlorate is
clearly attracted into the double layer for electrostatic reasons. Some of the surface excess of this
anion may result from hydrogen bonding with chemisorbed water molecules.

The above details clearly provide more information about the adsorption of acetonitrile than
would be available on the basis of thermodynamic data alone. They also provide the basis for
studying the adsorption of cations in the double layer from solutions of pure acetonitrile in the study
of underpotential deposition. In such a system, one should be able to distinguish three types of
acetonitrile molecules in a SNIFTIRS study, namely those adsorbed on the electrode, those
associated with metal cations, and those whose C = N stretching frequencies are essentially the
same as the unperturbed molecule in the bulk of the solution. Experimental results dealing with
such a study will be presented in a future paper.
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Legends for Figures

Figure 1.  Schematic diagram of the electrochemical cell (a) from the top, and (b) from the side.

Figure 2.  Cyclic voltammograms obtained at a gold electrode with a scan rate of 10 mV s!
with (a) an aqueous solution containing 0.20 M HCIO4, and (b) an aqueous solution
containing 0.05 M KClO4 and 0.10 M acetonitrile.

Figure 3.  Potential against time plot for the modulation scheme in which the electrode potential
is stepped from the reference potential (-0.80 V) to a more positive poteatial at which
the FTIR spectrum is recorded. The potential step increases by +150 mV in
successive excursions as illustrated.

Figure 4.  SNIFTIR spectra obtained in the C = N stretching region as a function of electrode
potential. The spectra have been shifted vertically for clarity.

Figure S.  SNIFTIR spectra obtained in (a) the 1850 to 1450 cm!, and (c) 1350 t0 950 cmr?
regions as a function of electrode potential. The spectra have been shifted vertically
for clarity. The spectrum obtained at 1.00 V in the 1850 to 1450 cm'! region has
been fitted in (b) to two Lorentzian bands at 1688 and 1628 cm-! and the resulting
residual shown.

Figure 6.  Potential against time plot for the modulation scheme in which the electrode potential
is stepped first to + 1.5 V for and then quickly back to a less positive potential where
the FTIR spectrum is recorded. The final potential step increases by +150 mV in
successive excursions as indicated.

Figure 7.  SNIFTIR spectra obtained in the 2500 to 1000 cm! region as a function of
electrode potential using the potential modulation scheme in which the electrode is
preoxidized. The spectra have been shifted vertically for clarity.

Figure 8. Dependence of the intensity change for the C = N stretching bands on electrode
potential. The solid symbols refer to the bands at 2342 cm-! and the open symbols
to those at 2261 cm-l. The circles refer to data obtained in the simple modulation




Figure 9.

Figure 10.

Figure 11.

17
experiment and the triangles to data obtained in the modulation scheme in which the

electrode is preoxidized.

Dependence of the intensity change for the water bending bands on electrode
potential at 1688 cm™! (0) and 1628 cm! (e). The data were obtained in the
experiment with the direct positive going pulse.

Dependence of the intensity change for the perchlorate band at 1107 co! on
electrode potential. The data (o) were obtained in the experiment in which the
electrode was preoxidized and the data (@) in the experiment without preoxidation.
Schematic diagram of the double layer indicating the location and orientation of
chemisorbed acetonitrile and water, and the presence of ClO4", acetonitrile and water
further from the electrode in the diffuse layer.
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