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” Abstract

Specification of the timing properties of real-time systems is a
fundamental part of their requirements. Analyzing the timing properties of
the system’s design and implementation is an important issue for the system
developer. Timing analysis is necessary to determine the validity of a design
or implementation in respect to the real-time specification.

Using timing schema and PERT networks, Ada program timing behavior
can be analyzed. The use of PERT networks is simple but restricted to single
processor systems. Replacing the PERT networks with a communicating
real-time state machines model allows the analysis of Ada programs on
multi-processor systems.

The technique is developed with examples and applied to a Macintosh IIsi
programming environment. A foundation is laid for measuring how good a

timing analysis prediction fits the implementation.
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ChapterI

Introduction

Motivation

A gap often exists between stating the requirements for a real-time
system and determining if a design matches those requirements. Timing
requirements suffer much from lack of adequate attention during the design
process since techniques to analyze and abstract timing characteristics are
difficult to find or do not trace forward to the implementation. Since the
timing characteristics are among the most critical in real-time systems, the
ability to track these requirements throughout the development life-cycle is
crucial.

The simplest development life-cycle model is the waterfall model. In this
model, each activity — specification, design, implementation, and test —
occurs sequentially after the completion of the preceding phase. In practice,
the waterfall model creates artificial bottlenecks and places unrealistic
constraints on the project. More practical developments, however, still

conduct the same four basic activities [1], [2]. In them, however, the
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activities may occur in different order and repetitiously. Furthermore,
different pieces of the project may exist in different activity phases.

The model for software maintenance is quite similar. The fielded system
has completed all of the development stages. New parts and modified parts
may exist in various stages of completion, however. These additions and
modifications are certainly part of the system and cannot be developed
completely independent from the fielded system. The key difference between
software development and maintenance is that system design and
implementation decisions may not be available to the maintainers. While
doing the same type of thing, maintaincrs often have less information outside
that embedded in the system.

For an analysis technique to be applicable to the entire project, then, it
must be consistent across development activities. The technique must be
compatible with analyzing the system’s parts existing simultaneously in
different stages of development. This requires the technique to apply during
design as well as during and after implementation. The results must
combine into project-wide results, and these results must relate to the
requirements specified for the system.

Typically, real-time systems have finite worst-case response time and
workload requirements for specified scenarios. Therefore, a system timing
analysis tool must generate predicted response time and workload measures
for the system through the various activities of the development life-cycle.

Only with this type of support can system developers track and focus on

timing requirements during system development and maintenance.




Objectives

This thesis describes a technique for analyzing execution times of Ada
programs. The primary objective for development of the analysis technique is
that it can apply consistently throughout the development life cycle and
answer questions about response times and workload scenarios. Pyster
points out that the “hardest parts of developing software are specifying and
validating requirements and design” [3]. The primary objective of this thesis
focuses on validating the timing properties of the design as well as the
implementation. Secondary objectives include:

¢ Applicability of the technique to different development and target
environments with parametric differences only,

¢ Limited restrictions on design methodology or implementation
style, and

e Few, if any, restrictions on applicability to legitimate Ada
programs.

The technique is based on source code timing schema [4-6]. The results of
applying the schema is used to construct a dependency graph of events
connected by code segments where the code segments are represented by
their execition times. This graph can be manipulated to determine the
worst-case path between two events. The resulting length of the path is the
response time. Simultaneous solution for a scenario of events can determine
the worst-case processor utilization necessary in a specified period of time,

thus determining workload.




Organization

The thesis is organized as follows. Chapters II through IV develop the

schema-based execution time analysis algorithm and concurrency extensions.

Chapter V presents and summarizes experimental results.

Chapter II develops the background of execution time prediction and
scheduling analysis. Existing prediction techniques are evaluated with the
criteria described in the objective. Scheduling analysis relies on a priori
knowledge of task time behavior. The tasks used in the scheduling literature
are not necessarily the same as Ada tasks. Thus, a context is developed that
connects traditional scheduling analysis and Ada timing analysis. This
background sets the stage for development of the analysis technique.

The execution time prediction method develops in Chapter III. Timing
schema are defined for a DIANA [7] representation of Ada programs. The
schema is defined in terms of primitives that partition language primitive
constructs (declarations, statements and expressions) into shared and
branch-distinct portions. Furthermore, the schema defines where context
switches may occur; these points are defined as events. Ccmpiler analysis
generates execution time bounds for each primitive. These steps provide the
data for an algorithm to transform DIANA trees into the analysis graph.
This graph has events for nodes and code sequences weighted by their
execution time bounds for edges.

Chapter IV further develops the concurrency issues involved. It defines
the Ada concurrency model. Some limitations on real-time programs
naturally fall out of the application of the timing analysis technique to Ada.

The next step is to manipulate the analysis graph to generate response time




and worklcad values. Two techniques are described. One uses
Communicating Real-Time State Machines (CRSM) [8]. The other uses
PERT analysis techniques.

Experiments are designed to show that the calculated times do indeed
bound execution times. Furthermore, simple experiments are hand analyzed
for worst-case time and compared to the predicted time. Finally, the
predicted, actual and hand-analyzed times are compared to provide a

qualitative measure of the technique.




Chapter I1

Execution Time Prediction and Scheduling

Introduction

Execution time prediction and scheduling analysis are relatively old
problems. Yet, they are far from resolved problems. The standard
techniques for determining execution time are primitive. This information,
though, is critical to performing scheduling analysis. Only when the
execution time of a given task is known, then scheduling analysis may be able
to determine whether all deadlines can be satisfied. This chapter compares
existing time prediction techniques to the criteria of life-cycle applicability,
portability, and language limitations. It then discusses how the idea of a task
in scheduling analysis relates to system design and implementation.

Traditions 'y, the execution time of a program is measured using
instruction analysis of the underlying object code or through testing the
actual execution time of the implementation. More advanced techniques are
developed in [4, 9-14]. These are not used in practice, however, for one reason

or another. By comparing these methods to some criteria defining the needs
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of real-time Ada program development, motivation develops for a technique
derived from Shaw’s timing schema [4].

In scheduling analysis tasks (italicized for distinction) are commonly
defined as a tuple of an arrival time, a period or deadline, and a maximum
execution time. This is an abstract notion that relates well to the context of
many real-time systems — an event occurs, a task is generated to react to it
and must complete prior to a deadline; or, an activity must occur periodically
and complete prior to the end of the period. This notion of a task is very
different from the Ada notion of a task. An Ada task is a program construct
which exhibits concurrency. These distinct ideas of tasks are resolved by

relating a task to Ada programming constructs.

Traditional Execution Time Prediction Methods

Two sections in Knuth [15] discuss “Analysis of an Algorithm” and “O-
Notation.” While asymptotic analysis is useful in making wide distinctions in
efficiency, it does not relate directly to time. Deadlines are stated in
microseconds or milliseconds, not in O-Notation. Two practical methods are
widely used. Knuth also discusses the first of these, the hand analysis of
machine object code. He combines this with asymptotic analysis to generate
execution time predictions. In general, common sense and logic are used to
derive meaningful information from the object code. The other widely-used
method is benchmarking or test case monitoring.

The most obvious drawback of these techniques to life-cycle analysis of
execution time is that they require object code exist before operating. Thus,
they are of limited use during implementation and only fully useful after its

completion. Hand analysis is also prone to be highly complex. Knuth’s
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example [15, pp. 164 - 169] takes an 83 line assembly program and reduces it
to a linear equation with six independent variables. To accomplish this
required an application of Kirchoff’s law to an earlier set of 15 variables and
significant application knowledge. In large real-time programs, this
complexity is overwhelming. On the other hand, testing suffers from lack of
rigor. Unless careful analysis shows that the test cases generate a
relationship to the worst case execution time for the code, then these results
are not necessarily legitimate bounds. Possibly, the derived times may bound
the execution time most of the time. This qualification, though, is not
quantifiable and the consequences of failure may be too severe to rely on it.
Thus, we learn from these techniques a need for analytic simplicity and
logical rigor. Structured programming in higher-level languages was
developed to simplify the logical complexity of unstructured and assembler
code. Several researchers have turned toward analysis of the source code for
timing information to benefit from its reduced complexity.

Mok’s annotation technique [11] automates the hand analysis process
described by Knuth. Like Knuth’s technique it is limited to the
implementation and post-implementation phases. The developer annotates
the program. The annotated program is fed to a set of timing analysis tools
and to a special compiler. The compiler is modified only in that it adds labels
to various assembly instructions in the code generation phase. These labels
do not affect the final object code that the assembler stage generates. Besides
feeding the assembler stage, the annotated assembly code is also fed to the
timing analysis tool. Using the labels, the annotated source code and
assembly code are merged. The developer then works interactively with the

timing tools to generate timing information about the program.
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Many of the more advanced techniques, including Haase’s guarded
commands and PARCs [9], Halang’s extensions to the PEARL programming
language [10], Puschner and Koza’s MARS-C language [12], and Kenney and
Lin’s FLEX [13], are based on theoretical languages or language extensions
that are not used in practice. Thus, they are not portable as defined nor do
they use Ada. Many of these extensions could be translated to Ada; however,
Ada supersets are disallowed in Department of Defense projects and are
discouraged in general. This raises the restriction that the technique not
require language extensions or particular code generation behavior beyond
that stated in the language definition. It is important to note that
annotations like those used by Mok satisfy this restriction. Although they
require support in the compiler, they do not affect the language definition.

Glicker and Hosch describe a system that uses symbolic execution to
model the behavior of Ada programs [14]. It first determines the best and
worst case threads of execution through the Ada task system given a set of
preconditions. These threads are then measured directly using the target
architecture. This method shows some promise although it can only apply to
completed programs. Its success hinges on the adequacy of the symbolic
execution stage. Tracing all threads through a program is naturally an O(eX)
time activity. Good branch-and-bound heuristics must be applied to keep the
process tractable.

Several of these techniques share common features. The most prevalent
of these is analysis of the programming language constructs themselves to
reason about the timing behavior of the program. This concept is distilled by
Shaw in his timing schema approach. Shaw’s work is done in C. Ada has

several language constructs that make timing analysis easier and several
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more complex constructs than the simple statements and expressions allowed
by C.

In summary, existing techniques are generally not applicable to large real-
time Ada projects. Furthermore, they are not applicable throughout the
development process. Mok’s annotations could be extended to Ada’s
sequential language constructs. Its biggest short-coming is reliance on
compiler support. It also raises some configuration management hurdles in
ensuring that the data under analysis comes from the current code baseline.
Jumping these hurdles is straight-forward with careful process management.
Shaw’s timing schema grant the developer less flexibility than Mok’s for
timing analysis, but do not rely on compiler support. Both techniques must
be extended to handle Ada tasking constructs. This thesis' technique
develops Shaw’s timing schema, adding tasking support, while allowing some

compiler-independent annotations or assertions.

Schema Based Timing Analysis

Timing schema are based on Hoare logic [16]. Hoare logic uses the
notation {P}S{Q} to mean that given the conditions P immediately prior to
execution of S results in condition Q upon completion of execution. An
inherent assumption is that S does, in fact, complete. The change in time
from executing statement S can be described with Hoare logic as follows
{rt = x}S{rt = x + ¢(S)}, where rt represents the time, x represents the value of

rt immediately prior to execution of S and ¢ is a function which returns the

execution time of S. The first application of Hoare logic like this is in a paper

by Mary Shaw. [17]
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The function ¢ has as its domain the set of all possible programs and as its
range the non-negative real numbers. A definition of ¢ can consist of a set of
axioms {(S,t)} relating all programs to their execution time. Since there are
infinite programs, this approach cannot always work. However, ¢ can be
described with a finite set of rules for generating the infinite set of relations
above. This set of rules is a schema.

The above is flawed in that ¢ in the rule set must be a single value to
define a well-formed function. For a single execution of a program, it will
indeed take a specific time value to execute. In fact, the execution time of a
given program may vary from one execution to another. There exist many
reasons for this including differences in inputs, differences in machine state
at the start of execution, inconsistencies in the machine clocking mechanism
and differences in the machine-language instantiation of the program.
Further discussion of these variabilities will occur in the section on compiler
analysis in Chapter 3. Let £(S,x) be the function which returns the single
value for the execution time of S as indexed by x € {all possible execution
conditions}. A more correct model of t, then, may be a random variable; thus ¢
is a mapping from programs to random variables. It is adequate, however, to
model t as a closed interval T = [tmin, tmax] where P[£(S,x) € T = 1 for all x.
Therefore, timing analysis of a program S consists of computing #S). This is
done using a schema which generates a rule computing a closed time interval,
T, for S.

Arithmetic and logical operations on values of T use a form of interval
arithmetic. Additive operations are simply applied component-wise.
Multiplicative operations are distributed, T op x = [¢min OP x, tmax OP x].

Relational operations are applied to the t,q0x component first since the worst-
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case is the more important in real-time analysis. If the #,4, components are
equal, then comparison of the ¢,,;, components determines the result.
The schema are defined for the grammatical elements of a language. For

instance, the schema for an if-statement, 7fif-statement], might be:

T if-statement] = [10,15] + Z[boolean-exp] + [min(([4,6] + N then-part]),

(2,41 + Tlelse-part])), max(([4,6] + 7] then-part)), ([2,4] + T[else-part]))]
where if-statement ::= if boolean-exp then then-part else else-part;

The schema rule’s definition consists of constant parts like [10,15] and
recursive invocation of other schema rules. These constant parts represent
some basic computation to provide the language behavior for that construct.
The logical basis of the above rule is that the system computes the boolean
expression (boolean-exp) and spends time branching on the result ([10,15]).
The branch with the bigger execution time is the worst case choice and the
lesser execution time is the best case choice. The branch execution time
consists of the time spent executing the statements in the branch (then-part
or else-part) and time spent rejoining the main execution stream ([4,6] or
(2,4]).

Primitive times like the constant parts described above are dependent on
the underlying system consisting of the hardware, operating system, and
compiler. The exact value of the primitives will differ from one underlying
system to another, but it is always present in the schema since its existence
derives from some computational need in the language definition. It may be
possible for a particular system to compute a particular primitive in time
[0,€], for a very small ¢ >0, using special hardware or subsuming it in other
primitives.

Eventually, any given program will reduce through the schema rules to a
sum of primitive times. This is akin to parsing the language where non-

terminals in the grammar are similar to schema rules and terminals are
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similar to primitive times. Computing the sum gives the resulting execution
time of the code sequence. One inherent assumption throughout this
discussion has been that the program has a single thread of execution. With
multiple threads, timing schema analysis must be applied to each thread.
The relationship between the threads must be addressed with other

mechanisms. These mechanisms will be discussed in the next two chapters.

Scheduling Analysis

Scheduling is one of the main problems in the area of resl-time systems.
The problem is to determine if a given set of tasks can meet all of their
deadlines on a given set of processors. Tasks in the sense of scheduling are
described as a triple {a, ¢, d} where a is the arrival time, c is the execution
time required to complete the task, and d is the deadline for the task [18].
Knowing the execution time of a task, then, is critical to conducting
scheduling analysis.

This notion of a task, however, is abstract. An Ada task, on the other
hand, is a concrete programming construct. The two concepts do not
necessarily relate directly. Consider an event-driven system. The response of
the system to a certain input event is a task for scheduling purposes. Its
arrival time is the time of the event. Its deadline is the response time
specified for the system (derived from physical requirements or allocation of
other timing requirements). The final component is the execution time.
While the first two components are commonly defined in the system
requirements or description, the execution time results from design and
implementation. Timing analysis is the technique to determine the execution

time.
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During the requirements and early design phase, the software analyst
should determine the events, deadlines, and event arrival scenarios the
system will handle. Scheduling analysis is used to determine if the system
can satisfy its constraints. Thus, execution times must be predicted as early
in the design as possible. As design progresses and implementation begins,
the system model is refined. Scheduling analysis continues to determine if
the current model is viable. Thus, execution timing analysis must continue
and hopefully improve through the process. During validation, scheduling
analysis with inputs from timing analysis is used to determine whether or
not the system as implemented can satisfy its constraints in all cases.
Testing is not satisfactory in many cases since it may not test the worst case
conditions that may be encountered.

Scheduling analysis, however, depends on the scheduling strategy
implemented by the system. A rate monotonic system can be implemented
using Ada tasking and priorities. Ada, however, is currently prone to priority
inversion [19]. Many scheduling approaches are available in any
programming language by implementing a scheduler as part of the system.
Cyclic executives are also popular with real-time developers [20].

In summary, it is important to keep distinct the concept of scheduling
tasks and the Ada task constructs. While it is possible, Ada tasks do not map
well to current scheduling strategies. Scheduling strategies can be built into
a system, however, and Ada tasks used within the implementation of that

system separate from scheduling policies.
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Discussion

Timing Analysis using Shaw’s schema techniques and Ada satisfies the
stated objectives. When used with scheduling analysis, timing analysis can
be used to show that a system satisfies its real-time requirements.
Regardless, timing analysis can characterize program timing behavior to give
system developers information for design, implementation and verification
decisions.

Several existing timing analysis techniques only apply to completely
implemented systems. The timing schema approach outlined above can be
used with an Ada program design language (PDL) to provide timing analysis
throughout the development and with varying stages of system completion.

This lets the developer identify and track or correct problems early when they

are cheapest to fix.




Chapter II1

Timing Schema and Events

introduction

The first step in timing analysis is transforming the Ada programs into
timing graphs. The transformation is based on a DIANA representation of
these programs. A schema rule is defined for each type of DIANA node. The
resulting timing graph may be as simple as a single edge, representing a
simple sequential program. It may also be very complex containing several
nodes and branching alternatives. The generation of these graphs arz
discussed. The analy~t has some control over the graphs through the use of

assertions.
DIANA Representation of Ada Programs
DIANA is an abstract data type for representing Ada programs {7]. A
DIANA object is mathematically modelled as an attributed tree. The tree

represents a normalized form of a corresponding Ada program. It also

guarantees that a given Ada object has only one defining occurrence; and the

16
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defining occurrence is an attribute of the other occurrences. Using DIANA
takes care of the complicated Ada parsing and static semantic analysis. The
tree model is easily manipulated.

A given node of the DIANA tree is defined in terms of the attributes it has.
A node has a structural arity in the set {0,1,2,3,n} and has zero or more
lexical, semantic, and code attributes. Additional attributes may exist as
needed by an application; however, these are not standard and cannot be
relied on. The structural arity denotes the branching of each node to other
nodes. The other attributes may provide numeric or textual information or be
semantically related nodes. By sharing identical nodes, the tree becomes a
directed acyclic graph (DAG). The DAG model is identical to the tree model
except that it allows replication to be elimin: ‘ed.

For example, the simple program below simulates rolling x n-sided dice
where x and n are supplied by the caller. This converts to the DIANA DAG
described following it. The format for a DAG node is
namel : node_type [ attributes ]. Attributes are juxtaposed pairs of the form

attribute_name attribute_value. Multiple attributes are separated by semicolons.

function ROLL_DICE (NUM SIDES, NUM DICE : in INTEGER)
return INTEGER is
subtype DIE_RANGE is INTEGER 1 .. NUM_SIDES;
A DIE : DIE_RANGE;
TOTAL : INTEGER t= 0;
begin
for A_ROLL in 1 .. NUM_DICE loop
A DIE := INTEGER(RANDOM * NUM_SIDES) + 1;
TOTAL := TOTAL + A DIE;
end loop;
return TOTAL;
end ROLL DICE:

Figure 1: Sample Ada Program

1 Nodes with names like PDx are part of the Ada package “Standard” provided as part of
the compiler environment. These names are used consistently with the example in [7].
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Al : comp_unit

A2 : pragma_s

A3 : context

Aé : subprogram_body
A5 : function_id
A6 ¢ function

A7 : lock

A8 : param_s

AS : in

Al0 : id_s

All : in_id

Al2 : in_id

Al3 : used name id?
Al4 : item_s

Al5 : subtype

Al6é : var

Al7 : var

Al8 : subtype id

Al9 : constrained
A20 : range

A21 : numeric_literal
A22 : used _object_id

A23 : id s

as_pragma_s "“AZ;
as_context “A3;
as_unit _body "A4 ]
as_list < > ]

as_list < > ]
as_designator "~AS5;
as_header "A6;
as_block_stub ~A7 ]
1x_symrep “ROLL_DICE”;
sm_spec "“A6

sm_body ~A7
sm_location void ]
as_param_s “AS8

as_name "Al3 ]
as_item s "~Al4;
as_stm_s ~A29;
as_alternative s "“A54 ]
as _list < "a9 > ]
as_id_s ~Al0;

as_name "~Al3;

as_exp _void void ]
as_list < ~all ~alz > |
lx_symrep “NUM_SIDES”;
sm_init_exp void;
sm_obj_ type "“PDS ]
1x_symrep “NUM_DICE”;
sm_init_exp void;
sm_obj_ type "“PD9 ]
1x_symrep “INTEGER”;
sm_defn "“PD8 |

as_list < "~Al5 ~Al6 "Al7
as_id ~al8;
as_constrained “Al9 ]
as_id s "A23;

as_type spec "A25;
as_object_def void ]
as_id_s "A26;

as_type spec "Al3;
as_object_def ~A28 ]
1x_symrep “DIE_RANGE”;
sm_type spec "AlS ]
as_name "“Al3;
as_constraint ~A20;
sm_type struct ~Al9;
sm_base_type "“PD9;
sm_constraint "~A20 ]
as_expl "a2l;

as_exp2 "“A22 ]
1x_numrep “17;
sm_exp_type "“PD9;
sm_value 1 ]}

1x_symrep “NUM_SIDES”;
sm_exp_type “PD9;
sm_defn "~All ]

as list < "A24 > |

>

2

Note that this node is heavily reused in the structural DAG. This is not surprising since

it represents the type integer.
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A24

A25

A26
A27

az2s8

A29
A30

A3l

A32

A33

A34

A35

A36

A37

A38

A39

A40

A4l
A42

A43

A44

A45
A46

A47

A48

s

o e

e e .. o -

..

var_id

used_name_id

id_s
var_id

numeric_literal
stm_s

loop

for
iteration_id

constrained

range
used_object_id
stm_s

assign

used_object_id

function_call
used bltn_op

param_assoc_s
conversion

function_call
used_bltn_op

param_assoc_s
function_call

used _object_id

param assoc s

[ lx_symrep “A_DIE”;
sm_obj_ type ~Al9;
sm_address void;
sm_obj_def void ]

[ 1x_symrep “DIE_RANGE”;
sm_defn “~Al8 }

[ as_list < ~A27 > ]

[ lx_symrep “TOTAL”;
sm_obj_type "“PD3Y;
sm_address void;
sm_obj _def ~A28 ]

[ 1x_numrep “0~;
sm_exp_type "“PD9;
sm_value 0 ]

[ as_list < ~A30 “A53 > ]

[ as_iteration "A3l;
as_stm_s "~A36 ]

[ as_id ~A32;
as_dscrt_range “A33 ]

[ 1x_symrep “A_ROLL”;
sm_obj_type "PDSY ]

[ as_name “~Al3;
as_constraint "~A34;
sm_type struct "~A33;
sm_base_type "PD9;
sm_constraint "“A34 ]

[ as_expl "~A2l;
as_exp2 “A35 ]

[ lx_symrep “NUM_DICE”;
sm_exp type "“PD3;
sm_defn "~Al2 ]

[ as_list < ~A37 "R49 > ]

[ as_name ~A38;
as_exp "~A39 ]

[ 1lx_symrep “A DIE”;
sm_exp_type "Al9;
sm_defn "“A24 ]

[ as_name ~R40;
as_param_assoc_s "A4l }

[ 1x_symrep *“+”;
sm_operator BINARY_ PLUS ]

[ as_list < “A42 ~A21 > ]

[ as_name “Al3;
as_exp "“A43 ]

[ as_name “Ad4;
as_param_assoc_s “A45 |}

[ 1lx symrep “*”;
sm_operator MULTIPLY ]

[ as_list < “A46 "“A22 > ]

[ as_name “A47;
as_param_assoc_s "“A48 ]

[ lx_symrep “RANDOM”;
sm_exp_type ...;
sm defn ... ]38

[ as list < > ]

3

This is an external function with nodes outside the immediate program. These are

elided for conciseness.
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A49 : assign [ as_name “A50;
as_exp “A51 ]
A50 : used_object id [ 1x_symrep “TOTAL”;

sm_exp_type "“PD9;
sm_defn ~A27 ]}

A51 : function_call [ as_name "“A40;
as_param_assoc_s "A52 |}

A52 : param_assoc_s [ as_list < ~AS50 ~A38 > ]

A53 : return ( as_exp_void ~“AS50 ]

A54 : alternative s [ as list < > ]

Figure 2: DIANA Representation of the sample program

Figure 3: DAG of structural DIANA nodes for Sample Program

Timing Analysis Transformation Algorithm

The basic algorithm is to transform the DIANA object representing an
Ada program into a graph. The edges of the graph represent sequential

portions of the Ada program. The vertices represent potential context
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switches. The graph is built by traversing the tree depth-first or “bottom-up.”
As each node is traversed a subgraph is created based on the type of node and
the subgraphs of its children. A simple implementation is to apply the
schema function to the root node and using the recursive nature of the
schema to traverse the tree. The traversal of a node is dependent on its type
and structural attributes only. Its schema, however, may use semantic
information in computing bounds and values.

The timing graph created by this process consist of edges weighted with
execution times and vertices to connect edges. Multiple edges leaving a
single vertex represent branching dependent on task synchronization. When
constructed into a system network, only one branch in an instance will be
utilized; the others are discarded.

A delay edge denotes a constraint that a certain time must pass between
two vertices before execution can continue. A context switching node is so
marked where a context switch may occur. This is done solely for the
purposes of calculating the potential number of context switches in the

resulting system model.

Timing Schema for DIANA Objects

The 170 different DIANA node types are listed below. Each entry includes
the structural and key semantic attributes as well as the schema for
computing the worst and best case time bounds for that node type. Several
auxiliary functions are used to simplify the schema. These include:

o Store(Node): Determines the proper primitive time to store a value
in an object by examining the type of the object.

e Access(Node): Determines the proper primitive time to access a
value in an object by examining the type of the object.
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Init(Node): Determines the proper primitive time to initialize a
value in an object by examining the type of the object.

Save: This function updates the library of computed timing graphs
with the graph computed for some subprogram, task, package, or
generic declaration. These graphs are used by the Insert function
or by the analyst in constructing a system network as described in
the next chapter. Save “returns” the value [0,0]; that is, in storing
the graph designated, this graph is not included in the computed
time of the declaration block in which it occurs. This follows since it
is not executed at time of declaration. Some elaboration time may
be included in the schema in addition to the save, however. This
does, indeed, execute during elaboration of the execution block.

Stop: Halt computation within an enclosing stm_s type node. This
occurs when an unconditional change in control flow is encountered
in a sequence (i.e., return, goto, or unconditional exit).

Abort: Ignore this path (stm_s node) since it contains a raise or
abort statement. Currently raise and abort are restricted to use
with error conditions. Error conditions are not analyzed by the
technique at this time.

Insert(Name): Insert the graph for a subprogram at this point in
the current graph. Look for a recursion assertion if it is the same
subprogram.

Node(Name): End the current edge. Create a vertex. Start a new
edge(s). With rendezvouses, the node will be linked to a
corresponding node in another task, so one edge will be missing.

Delay(Duration): Create a pair of nodes with a delay edge between
them of the duration given.

Activate(Task[s]): Create a context-switching node at this point
preceded by the timing primitive P(activation) and attach Task[s]
(as well as continuing the current thread).

Queue-Activate(Task[s]): Like Activate except that the node is
inserted after completing all processing of the current declarative
block.

ConstraintCheck(Node): Determine the proper primitive time for a
constraint check on the type of the given node.

Print(String): Print the given string on the analyzer’s error output
stream.

Range(DSCRT_RANGE): Determines the lowest and highest
possible values of the range.
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Node Type Arity Schema
abort 1 Abort -- abort statements are treated as errors at this point and are not
candidates for a min or max path.
accept 3 P(accept) + Node(“start “&as_name) ; Node(“Begin”"&as_name) +
P(rendezvous) + T(as_stm_s) + P(accept_end) + Node(“end “&as_name)
access 1 T(as_constrained)
address 2 [0,0] -- representation clause affects compilation only
aggregate n a
( S 'I‘(as_list[i])) + Store(sm_exp_type)
i=1
| alignment 2 [0,0] -- representation clause affects compilation only
all 1 [0,0];
allocator 1 T(as_exp_constrained) +
if sm_exp_type = task_spec
then Activate(task)
else Store(sm_exp_type) + P(allocate_mem(Size(sm_exp_type))
Note: Records and arrays with task components need a hybrid of the if-
statement above to apply.
alternative 2 -- subsumed in schema for case node
-- ignored as attribute of exception part of blocks
alternative_s n -- subsumed in schema for case node
-- ignored as attribute of exception part of biocks
and_then 0 P(and_then)
| argument_id 0 [0,0] -- identifier “symbol table” entry
array 2 T(as_dscrt_range_s) + T(as_constrained)
assign 2 T(as_name) + T(as_exp) + Store(as_name) + ConstraintCheck(as_name)
+ if as_exp = used_object_id then Access(as_exp.sm_exp_type) else [0,0]
assoc 2 T(as_actual)
attr_id 0 [0,0] -- identifier “symbol table” entry
attribute 2 T(as_name) + P(“attr_” & as_id.sm_defn Ix_symrep)
-- attribute execution times are pre-defined
attribute_call 2 T(as_exp) + T(as_name) -- as_name is a node of type attribute
binary 3 [T(as_expl), T(as_expl) + T(as_exp2)] + T(as_binary op)
block 3 T(as_item_s) + T(as_stm_s)
-- as_alternative_s represents exception handlers
box 0 {0,0] -- generic subprogram formal option
case 2 T(as_exp) + P(case) + [min(choices),max(choices)]
choices = {T(as_alternative_s.as_list{n).as_stm_s): 1 <n < las_list|}
-- ag_alternative_s.as_list[n].as_choice_s must be static and is ignored
choice_s n n
2 T(as_list{i])
i=1
code 2 T(as_exp) -- machine dependent code insertion
-- execution time bounds must be specified with a time assertion
comp._id 0 [0,0] -- identifier “symbol table” entry
comp_rep 3 [0,0] -- representation clause affects compilation only
comp_rep_s n [0,0] -- representation clause affects compilation only
comp_unit 3 T(as_unit_body)
-- ag_context and as_pragma_s set up environment only
compilation n (map T as_list) = T(hd(as_list)),(map T tl(as_list))
-- ligt of all compilation units in the system
cond_clause 2 -- subsumed in schema for “if” node
cond_entry 2 P(cond_entry) + Nodel + Delay(e) + T(as_stm_s2) + Node2,
-- Delay(e) prejudices choice
Nodel + T(as_stm_sl) + Node2; -- first stm is entry_call
const_id 0 [0,0] -- identifier “symbol table” entry
constant 3 T(as_type_spec) + T(as_object_def)
constrained . 2 T(as_constraint)
context ] n (0,0] -- set’s up environment, no cost
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conversion 2 case as_name.sm_defn.sm_type_spec, as_exp.sm_type_spec
real to int: P(convert_float2int) or P(convert_fixed2int)

int to real: P(convert_int2float or P(convert_int2fixed)

real to real: P(convert_fixed2float) or P(convert_float2fixed)
derived : P(convert_derived)

array: P(convert_array)

others: [0,0] -- not changing base type

+

if subtype

then Constraint_Check(sm_exp_type) else [0,0]
+ T(as_exp)

decl_s n

n
zl’lYas_list[i]) + Init(as_list{i])
is

def_char 0 [0,0]; -- never called since enum_literal_s is always [0,0]
Access = P(num_access)

def op [0,0] -- operator “symbol table” entry

0
deferred_constant 2 [0,0] -- any cost will be incurred with full declaration
1

delay T(as_exp) + P(delay)
+ Delay((sm_value or max(subtype range)) + P(delay_cap))

derived 1 T(as_constrained)

dscrmt_aggregate n n
2 T(as_list[i])

i=1

dscrmt_id 0 {0,0] -- identifier “symbol table” entry
dscrmt_var 3 T(as_object_def)
dscrmt_var_s n n
Y. TNas_listfi])
i=1
dscrt_range_s n n
EI'D(as_list[i])
1=
entry 2 T(as_dscrt_range_void) + T(as_param _s)
entry_call 2 T(as_name) + T(sm_normalized_param_s) + P(queue_entry)
+ Node(“start “&as_name) ; Node(“end “&as_name) + [0,0]
entry_id 0 [0,0] -- identifier “symbol table” entry
enum_id 0 0,0]; -- never called since enum_literal_s is always [0,0]
enum literal s n [0,0] -- list of def char and enum_id; each static so [0,0] elaboration time
exception 2 [0,0] -- declares exception names
exception_id 0 [0,0] -- identifier “symbol table” entry
exit 2 if as_exp_void = void then Stop* else T(as_exp_void)
-- computes condition, but doesn’t affect number of loop iterations
-- *a branch containing unconditional exit can only be executed once,
-- 8o normally cannot be worst case branch4
exp_s n n
zl'ﬂas_list{i])
1=
fixed 2 T(as_range_void) -- as_exp is static
float 2 T(as_range void) -- as_exp is static
for 2 T as_dscrt_range)
formal_dscrt 0 0,0] -- place holder for generic type parameters
formal_fixed 0 [0,0] -- place holder for generic type parameters
formal_float 0 0,0] -- place holder for generic type parameters
formal_integer 0 0,0] -- place holder for generic type parameters
function 2 T(as_param_s)

4 Can be best case, however. Furthermore, unusual conditions such as an exit branch
which is much more computationally intensive than other branches through the loop or
a loop which only executes a small number of times may be a worst case. A more
thorough analysis may determine this.
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function_call 2 if as_name is used_bltn_id or used_bltn_op then
check sm_value for static expression and treat as folded constant
if one exists, otherwise P(bltn) + T(sm_normalized_param_s)
else
P(function_call) + T(sm_normalized_param_s) + Insert(as_name)
+ P(function_end)
-- sm_normalized_param_s includes default params
function_id 0 [0,0] -- identifier “symbol table” entry
generic 3 save id(as_id) = T{as_generic_header)
-- ag_generic_param_g is used to define quasi-primitives to be replaced
with actual times when instantiated.
generic_assoc_s n n
21 T(as_list{i])
1=
| generic_id 0 [0,0] -- identifier “symbol table” entry
generic_param_s n n
2 T(as_list[i])
i=1
goto 1 Print(“Warning: Unstructured statement <goto> cannot be analyzed™)
+ Sto]
- if apforward goto, this will compute correctly; if it causes a loop, then
the analysis is bad.
id_s n {0,0];
choices = { ( Y, T(as_list{i).as_exp_void) + P(else)) +
i=1
T(as_list{n).as_stm_s) : 1<n<|as_list! }
P(if) + [min(choices),max(choices)]
in 3 if as_exp_void = void
then T(as_exp_void) + P(default_param)
in_id 0 {0,0] -- identifier “symbol table” entry
in_op 0 P(in)
in_out 3 [0,0] -- cannot have default parameters
in_out_id 0 [0,0] -- identifier “symbol table” entry
index 1 [0,0] -- as_name is an uconstrained type.
indexed 2 T(as_name) + T(as_exp_s);
inner_record n n
21 T as_list{i])
1=
instantiation 2 T(as_generic_assoc_s)
integer 1 T(as_range);
item_s n n
Zlﬂas_list(i))
1=
iteration_id 0 [0,0] -- identifier “symbol table” entry
label id 0 [0,0] -- identifier “symbol table” entry
labeled 2 T(as_stm)
loop 2 if as_iteration = void or as_iteration = while
then T(as_iteration) + P(loop) +
LOOP_ASSERTION * (T(as_stm_s) + T(as_iteration) + P(iter))
- P(iter) + P(loop_end)
-- if no loop assertion then if no nodes in as_stm_s
- then print “Unbounded Loop” + Stop
- else unroll as far as necessary
else T(as_iteration) + P(for_loop) +
Range(as_iteration.as_dscrt_range) * (T(as_stm_s) + P(for_iter))
- P(for_iter) + P(for_end)
1_private 0 0,0]
1_private_type_id 0 0,0] -- identifier “symbol table” entry
membership 3 T(as_exp) + T(as_type_range) + T{as_membership_op)
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name_s n n
z T(as_list(i))
i=1 _
named 2 T(as_choice_s) + T{as_exp)
named_stm 2 T(as_stm)
named_stm _id 0 [0,0] -- identifier “symbol table” entry
no_default 0 [0,0] -- generic subprogram formal option
not_in 0 P(not_in)
null_accesas 0 [0,0]
null_comp 0 [0,0]
null_stm 0 P(null)
number 2 0,0] -- static numeric constant
number_id 0 0,0] -- identifier “symbol table” entry
numeric_literal 0 if sm_value < SMALL_VAL then P(small num _literal_access)
else P(num_literal_access) -- where num is int, float or fixed
or_else 0 P(or_else)
others 0 [0,0]
out 3 [0,0] -- cannot have default parameters
out_id 0 [0,0] -- identifier “symbol table” entry
package_body 2 save id(as_id & “body”) = P(package_elaboration) + T(as_block_stub)
package_decl 2 save id(as_id) = T(as_package_def) + P(package_elaboration)
- if as_package_def is rename or instantiation then use other values
| package_id 0 [0,0] -- identifier “symbol table” entry
package spec 2 T as_decl_sl) + T(as_decl_s2)
param_assoc_s n n
zl’l’(as_lisﬁi]) -- actual parameter lists
1=
param_s n n
zl’ﬂas_list.[i])
1=
parenthesized 1 T(as_exp)
pragma 2 [0,0] -- compiler directive may change global params, but no code gen
Timing Assertion pragmas are handled, of course.
| pragma_id 0 0,0] -- identifier “symbol table” entry
| pragma_s n 0,0] -- compiler directive may change global params, but no code gen
private 0 0,0]
private_type_id 0 0,0] -- identifier “symbol table” entry
proc_id 0 [0,0] -- identifier “symbol table” entry
procedure 1 TNas_param_s)
procedure_call 2 T(sm_normalized_param_s) + P(procedure_call) + Insert(as_name)
+ P(procedure_end)
-- sm_normalized_param_s includes default params
qualified 2 T(as_exp) -- as_name only used by compiler
raise 1 Abort -- exceptions are treated as errors at this point and are not
_ candidates for a min or max path.
range 2 T(as_expl) + T{as_exp2)
record n n
2 T(as_listi])
i=1 .
record_rep 3 [0,0] -- representation clause affects compilation only
rename 1 [0,0]
return 1 T(as_exp_void) + Store(function_call) + Stop
reverse 2 | T(as_dscrt_range)
select 2 P(select)
| as_select_clauses_s|
+ 2 T(as_select_clauses_s.as_list[i).as_exp_void) -- comp guards
i=1
+ {map (Ax.Nodel + T(x.as_stm_s) + Node2 , as_select_clauses_s.as_list)
and if las stm_s| > 0 then Nodel + T(as_stm_s) + Node2}
select_clause 2 -- subsumed in schema for select node
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select_clause_s n -- subsumed in schema for select node
selected 2 if as_name.sm_obj_type is a record then
if it has a variant then
T(as_name) + P(variant_tag_check) + T(as_designator_char)
else
T(as_name) + T{as_designator char),
else -- it is an expanded name
T(as_name) + T(as_designator_char);
simple_rep 2 [0,0] -- representation clause affects compilation only
slice 2 T as_name) + T(as_dscrt_range);
size = | as_dscrt_range| * sm_exp_type.as_constrained.cd_impl_size
stm s n n
Y. Tas_list{i])
i=1
string_literal 0 [0,0];
stub 0 [0,0] -- Used for separate compilation purposes only
subprogram_body 3 save id(as_designator) = T(as_block_stub) + T(as_header)
subprogram_decl 3 if as_subprogram_def # void
then save id(as_designator) = T(as_subprogram_def) + T(as_header)
subtype 2 T(as_constrained)
subtype_id 0 {0,0] -- identifier “symbol table” entry
subunit 2 save id(as_name) = T(as_subunit_body)
task_body 2 P(task_body_elab) + {save id(as_id & “body”) = T(as_block stub)}
task_body_id 0 [0,0] -- identifier “symbol table” entry
task_decl 2 P(task_spec_elab) + {save id(as_id) = T(as_task_def)} +
Queue_Activate(as_id)
task_spec 1 T(as_decl_s)
-- Activated by allocators or declarations (if declaration, queue activate it)
terminate 0 P(terminate)
timed_entry 2 P(timed_entry) +
Nodel + T(as_stmn_s2) + Node2; -- first stm is a delay stm
Nodel + T(as_stm_sl) + NodeZ2; -- first stm is entry_call
type 3 T(as_type_spec) + T(as_dscrmt_var_s)
-- if task type need to save it as well
id 0 [0,0] -- identifier “symbol table” entry
universal_fixed 0 [0,0];
universal_integer 0 [0,0];
universal_real 0 {0,0];
use n [0,0] -- controls visibility of ids; no code generated
used_bltn_id 0 0,0]
used_bltn_op 0 {0,0]
used_char 0 [0,0];
used_name_id 0 [0,0]
used_object_id 0 0,0];
used_op 0 [0,0] _
var 3 lid_s| * [T{as_type_spec) + T(as_object_def) +
if as_object_def = void then init(as_name) else store(as_name) +
if as_type_spec = task_spec then Queue_Activate(as_id)]
-- similarly for components of as_type_spec...
var_id 0 [0,0] -- identifier “symbol table” entry
variant 2 Tas_choice_s) + T(as_record)
variant_part 2 Tas_variant_s)
variant_s n n
T as_list{i])
&
void 0 [0,0] -- voicl attribute; no code or semantic value
while 1 TNas_exp)
with n [0,0] -- centrols visibility of ids; no code generated

Figure 4. Timing Schema for DIANA Nodes by Node Type
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Schema with nodes are also described graphically in the next
section.

Expressions may be static. In this case they are evaluated during
compilation and a value for the attribute sm_value is added in the
DIANA representation. In this case the expression is handled as a
constant object of the appropriate type. In other words, all nodes
which can be expressions are first checked for the existence of an
sm_value attribute before proceeding with application of the normal
schema. These nodes include conversion, qualified, parenthesized,
aggregate, binary, membership, indexed, slice, selected, all,
attribute, attribute_call, and function_call.

In loops the phrase n * T(x) is equivalent to unrolling the loop. This
is only significant in cases where T(x) introduces nodes. If T(x) is
simply additional edge weight, then n*T(x) can be directly
computed using multiplication.

Similarly, branching statements like if and case must be
graphically represented if they contain nodes. This is illustrated in
the next section.

The abort statement non-cooperatively cuts off a task from further
rendezvous and “marks” it for termination. This is normally used
to recover from an error state. In any case, analysis stops on
encountering an abort statement (like it does on raise statements)
and chooses another parallel path as the worst or best case.

Some schema of the form [0,0] are actually unreachable in
computing the schema formula as defined. In general these are “ID
nodes” which represent an identifier or operator of some sort.
These nodes are very important in the computation of the auxiliary
functions like store, access and init. ID nodes contain the semantic
type information these auxiliary functions need. ID nodes are
always leaves (i.e., they are never internal nodes) and are
meaningful only within the context they appear. Therefore, the
schema of their parent node normally include any primitives that
context may induce as well as generating any auxiliary function
computations necessary.

Event Structure for DIANA Objects

The potential context switches, or events, are introduced by certain Ada

program constructs. The corresponding DIANA node types are listed below
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with a graphic description of the transformation involved. Figure 7 in the
next chapter illustrates the transformation with some examples.
represents a vertex where a context switch may occur. Other vertices are
used to connect edges and to gather alternative choices. Loops containing the
following structures are unrolled completely if bounded and as far as

necessary if unbounded.

Task_Body Plactiv) + T(Gs-item_s©T(as_stm_s) + P(terminate)@

T(as_item_s) T(as_stm_s)
Enclosing Block Oﬁ @ = O

* Task Activations
° from declarative
. block

P(accept) (rendezvous) + T(as_stm_s
Accept @ (j }’O[m:
A\ A

ENTRY_NAME

P(queue_entry) e
Entry_CaH +T(sm_normalized_param_s) O ENTRY.NAME O__io’]—
Delay LEL (@ R H B2 N (@)l

T(as_stm_s2)

Cond_Entry Delay(e)

P(cond_entry)

OR

entry_coll) + T(as_stm_s

’I‘imed_Entry T(entry_call) + T(as_stm.sl)
P(timed_entry

T(delay) + T(as_stm_s2)

< ** > + T(as_stm_sl)

Select

T(comp_guards)
+ P(select{n])

[e,@]

< ** > + T(as_stm_sN)

< ** » = T(accept), T(delay), T(terminate)
or, for branch n, delay(e) = else branch.
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T(as_stm_s1’,

If or Case
containing one of . [e,e]
the above OR :

T(as_stm_sK)

branch 1 through n-1 have some sort of node structure, branch n is
computed from all of the sequential branches as is normally done.
If no branch is purely sequential, all n branches have nodes.

In combining the timing graphs into a system network, entry_calls and
accepts are stitched together like shown in the diagram below. Constructs
which have alternative edges are instantiated with exactly one of those edges.
Where the choice matters, careful selection must be made based on the
analysis being performed. For instance, the worst case for a cond_entry in an
unbounded loop is to always choose the else part. This results in an infinite
chain of else’s. (This also illustrates why it is generally bad programming
practice to use a conditional entry in an unbounded loop). Most of the time,

however, the choices are evident.

P(rendezvous)
+ T(as_stm_s)@ [e,el

ENTRY_NAME
[e,e] 0,0)

P(accept)

(e,e]

P(queue_entry)

[o,0]
+T(sm_normalized_param_s)

ENTRY_NAME

Figure 5: Stitching Together an Accept Statement and Entry Call

Assertions

An assertion is simply a statement. Classically, a software developer uses
assertions to make claims about the state or nature of the program at a
particular point in the code. Often these assertions are embedded as
comments in the code itself. A small number of programming languages like

Eiffel include certain assertions as part of their syntax [21]. In some cases,
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an automated tool may process these assertions to generate more powerful
claims. This basic idea is applicable to timing analysis. In fact, it grants
much of the power for analyzing designs or incomplete code segments.
Assertions may le used to bound unbounded loops or recursion, to specify the
length of time some code will take without specifying the code itself, and to
mark relevant points in the analysis.

A few existing timing analysis techniques use assertions of some sort.
Flex [22], like Eiffel, is a program with built-in assertions. As a real-time
language, these assertions allow run-time checking of timing behavior. The
Flex approach is part of the language definition, however, and this does not
help with the analysis of Ada.

Ada provides a handy construct for implementing assertions, as well.
They are not checked at run-time, however. The pragma statement does not
generate code per se. Instead it passes a directive or a suggestion to the
compiler on how to compile the code around it. Except for some standard
pragmas, pragmas are considered to be implerentation defined. Since they
may only change the way code is compiled and not its correctness, a compiler
must ignore any pragma it does not recognize (although it may print a
warning) [23].

The seven assertions defined for this timing analysis are therefore
implemented as pragmas. Each is prefixed with “TA_” to help ensure no
conflict with any compiler’s own pragma set. Pragma statements are very
similar to procedure calls. Like procedure calls, arguments to the pragma
may be positionally associated or name associated. Either style may be used
except with the TA_Time_By Primitives assertion which must be name

associated.




TA_Loop_Bound
(Low, High : natural)

TA Recursion_Bound
(Low, High : natural)

TA_Measure_Start

TA_Measure_Stop

TA_Time_ Absolute
(Low, High : Natural)

TA Time_Mix
(Instruction Number : Natural;
Mix : Mix_Type)

TA Time By Primitives
(<prim_name> => Natural, ..)
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This assertion may appear as the first
statement in a loop body. If it does, it
defines the range of times that the loop
will execute. It overrides the bounds
derived by analysis of a for-loop
specification.

Similar to a loop bound. It may occur
as the statement immediately following
a self-recursive procedure or function
call. Mutual recursion and recursive
call chains are not supported.

Ignore previous code in this compilation
unit for timing analysis purposes. Use
this point as an analysis start point.
This assertion is intended for use in
main programs.

Ignore following cude in this
compilation unit for timing analysis
purposes. This assertion is intended to
mark where the end event should be
inserted.

This assertion is treated exactly like a
code sequence which reduces to an edge
with time bounds [low, high] (in cycles).

This assertion is similar to
TA_Time_Absolute but uses an
instruction count and average
instruction time range (mix) to compute
the time bounds.

Like TA_Time_Mizx, this assertion takes
instruction counts as its arguments.
Instead of counting “average”
instructions; however, the developer
can specify t* number of primitive
times. Since .;amed association is used,
only the primitives of interest need be
listed.
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Compiler Analysis

In order to determine the values of primitive times, careful analyses of the
compiler and the target hardware architecture are required. The compiler
analysis must determine the code generated corresponding to each primitive.
The hardware architecture analysis must calculate the execution time of this
code. Vendor input greatly simplifies the process. However, direct
observation of the compiler and hardware may be needed.

The implementation done in conjunction with this thesis uses the
Meridian® Macintosh Ada compiler operating on a Macintosh IIsi. Neither
the compiler nor the hardware were developed with real-time criteria in
mind. This means that predictability is not directly supported and that
worst-case times may be significantly worse than average case times.

Hardware analysis must consider the instruction timing of the processor
along with system interrupt handlers and bus/processor contention for other
system maintenance activities. Vendor timing data is crucial for instruction
timing. In the case of the Macintosh, its Motorola 68030 processor is
described in [24]. Without timing data, extensive testing with logic analyzers
would be necessary to measure either instruction timing or primitive routine
timing. These tests could not guarantee bounds on these times unless they
can guarantee testing all possible conditions for execution. Adequate vendor
data utilizes design knowledge to ensure that time bounds given are true
bounds or at least bounds under specified conditions. The Motorola data

specifies the worst case execution time under assumptions on the length of

5  Meridian Ada™ 4.1, Meridian Software Systems Inc., 10 Paseur St., Irvine, CA, 92718.
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bus cycles and averaging instruction alignment cases. It does not, however,
specify best case execution time.

Code generation analysis is also simplified with access to vendor design
data. Particularly, a compiler which uses DIANA as an intermediate
representation is relatively easy to trace through the code generation phase
relative to the schema. The Meridian compiler, however, does not use DIANA
and does not supply insight on code generation. Under these circumstances,
analysis may be accomplished by disassembly of the compiler libraries and
test programs. These test program listings are compared to the source listing
and corresponding DIANA structure to associate primitives with measurable
code segments. While this approach lacks the same fundamental guarantees
as hardware testing, compiler activity is very likely to follow the constraints
of the language definition and common compilation practice. Some of these
constraints are embedded in the DIANA construction. This helps make the
relevant cases more obvious. In the event of a prediction anomaly, however, a
new set of code generation circumstances is one of the first things to look for.
The primitive times used in this implementation are developed using the
disassembly method described here.

Primitive times disassociate the uniqueness of each compiler/hardware
/system grouping, but require analysis of each grouping to determine the
values of these primitives. Vendor data greatly simplifies the analysis. A
production system would need high quality, high reliability predictions.
Vendor data is a fundamental necessity to achieve that level. In the
experimental implementation developed with this thesis, vendor data is
available on the instruction set timing, but experimentation is used to

determine system interference and code generation patterns.
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Execution Time Prediction Algorithm

Generate the timing graph as described earlier. Choose start events
(nodes) of interest. Select the end event of interest. Sum all edges which
“precede” the end event in the graph. An edge “follows” an event when no
path can be found beginning with a start event and not including the event.
An edge that does not follow an event, precedes it.

Note that without priorities, unbounded loops containing conditional
entries and select statements with else clauses create busy tasks.
Theoretically, these tasks may run indefinitely without relinquishing the
processor. Graphically, unrolling these loops create an indefinite number of
edges that have no dependencies on other paths (like a rendezvous does).
Thus, if the first of these edges precedes the end event, then the entire
unrolled loop can precede the end loop. Thus, these constructs must be used
carefully, or else, a method other than the simple graph analysis above must

be used (such as the CRSM approach defined in the next chapter).

Discussion

If done by hand, applying this graph construction technique is tedious. It
needs to be automated. Non-trivial problems generate extremely large
DIANA trees. Automating this turned out to be a difficult problem, however.
The difficulties were not in the technique; but instead, in the development
environment. The task was larger than the system could handle.

On the other hand, this drove home the need for an automated timing

analysis technique. Being forced to use this, relatively abstract, method by
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hand made me realize the extreme difficulty in evaluating the timing
characteristics of the program. It also seemed to show why timing analysis is
not done as often as it should.

The other issue with developing this approach is the need for compilers
and systems which make some effort to be predictable. The Meridian system
used unbounded recursion or iteration in several areas. Unless it was clear
that some natural bound applied to the value, this created great difficulty.
Alarms, in particular, used several cases of recursion and endless loops —
mostly in searching and deleting. For this reason, they could not be
adequately characterized so I deferred investigating things like
timed_entries.

The combination of assertions, source code analysis and the concurrency
analysis upcoming, provides a broad toolkit to the programmer/analyst who

needs to track, verify, or bound the performance of his or her system.




Chapter IV

Concurrency Model

Introduction

The amount of concurrency (both real and perceived) completely changes
the timing behavior from one concurrency model to the next. Two common
models are the fully concurrent model and the interleaved model. The
applicable model is closely tied to system scheduling decisions as discussed
earlier. Ada does not specifically require some degree of concurrency or
another. Its model is compatible with either a fully concurrent architecture
or an interleaved system, as well as combinations of the two.

This thesis applies to the simple case of interleaved concurrency on a
single processor. Currently, most Ada compilers are limited to direct
exploitation of a single processor using the Ada language constructs.
Multiple processors are sometimes made available through usage of
underlying operating system capabilities. Besides wishing to avoid
incorporating arbitrary operating system characteristics, multiple processors
introduce interprocessor communication contention which greatly complicates

timing analysis. Some on-going research is directed at the topic of
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predictable interprocessor scheduling and communication [9, 25-27].
Certainly, the trend is toward multiprocessor systems and direct Ada support
of these systems. Extending the approach here to support multiprocessors
and resource contention is the logical next step in research.

This chapter discusses Ada’s rules on concurrency as well as techniques
for modelling Ada concurrency. The two techniques presented are a simple
PERT technique and Shaw’s Communicating Real-Time State Machines
(CRSM) [8]. The PERT technique is the one developed in the current schema
definitions. It is usable in single-processor systems with no task priorities.
CRSM accounts for prioritization and may be extendable to multiprocessing
systems. It is more complex to generate and requires automated support to
execute, however. This chapter also outlines an approach for incorporating

CRSM into the schema developed here.

Ada Concurrency Model

The Ada Concurrency Model is straightforward. It follows closely Hoare’s
Communicating Sequential Processes [28, 29]. Tasks embody control flows
that may execute in parallel. The Ada main program may be considered as a
task for this purpose. At no time may a task with a lower priority run if a
task with a higher priority is runable on a given processor. Scheduling
decisions between tasks of the same priority is left implementation
dependent.

This model implies that a context switch between tasks will only occur
when a task blocks or a higher or equal priority task becomes runable. A
task may block at any of its synchronization points. These include the end of

its activation, the activation point of another task, an entry call, the start or
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the end of an accept statement, a select statement, a delay statement, an
exception handler, or an abort statement. It may also block if it uses a
blocking system call.é In the worst case, a task blocks in all of these
situations and a context switch occurs. A task may become runable as a
result of an interrupt or expiration of a delay statement. Again, the worst
case is that each of these results in a context switch.

For the purposes of this thesis, the model is simplified. Exception
handlers and abort statements are ignored as error control statements.
While performance under error conditions may also be critical to real-time
behavior, the additional complexity which exception handling and aborts
introduce requires further work. Furthermore, blocking system calls are not
supported since their behavior is implementation dependent. A more general
implementation which accounts for resource contention could add this
capability. Finally, interrupts are modelled as one class of starting events;
that is, as user specified nodes in the timing graph. The time (or relative
time) of a series of interrupts must be supplied and the proper entries graph
chosen by the user. Interrupts may also be handled solely by the operating
system (i.e., clock tick interrupts). In this case the interrupts are not handled
by the Ada program. They are ignored in the timing analysis except as they

contribute to system interference.

PERT Networks

PERT networks are analyzed by computing the critical path to reach an
end event. Parallel tasks are allowed to execute in parallel. That is, PERT

6 In some implementations a blocking system call will block the entire Ada program. This
is quite common behavior in Unix where Ada tasks execute as light-weight processes
within a Unix process. A system call blocks the entire Unix process.
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models full parallelism. Resource levelling is added to PERT analysis to force
it not to schedule more parallel activities than resources allow. By specifying
that all events use the same resource (CPU) and that there is only one, the
PERT analysis begins to model an interleaved system.

The graph supplied for PERT analysis is simply the timing graph with the
following modifications. A dummy edge (of zero duration) is added between
all dangling activities and the end event. This forces the worst case situation
that all events which may possibly precede the end event will do so. Start
events must be supplied a time of occurrence. The worst case execution time
is then the computed completion time for the end event in whatever time
reference was used for specifying the start events. The number of context
switching nodes must be counted and multiplied by the worst-case context
switch time. This quantity is added to the computed end event time.

This model is limited, however. For instance, PERT cannot handle OR-
branching.. OR-branching is when only one graph edge leaving a node is
executed in a given instance. This occurs in select and expanded "if or" case
statements. With select statements, the choice is driven by the existence of
an entry call (or the lack of any). This situation is evident within the
structure of the graph. An analyst (or perhaps an automated means) can
instantiate the select statements necessary.

There are several nuances with writing rendezvous code. Code can
introduce "race" conditions when two tasks call a third which selects between
the two call just once. Other difficulties are introduced by rendezvous in a
"dependent” context. An independent context is where a select statement can
be called an indefinite number of times; or more generally, when the code
executed by an entry call is independent of any entry calls by other tasks. If

the dependencies in the rendezvous sequence are deterministic, then an
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analyst may construct the graph in that sequence. When a choice must be
made in selecting the caller of particular entry, it may not be evident which
choice results in the best or worst time bound. Some choices may not
terminate. In the dependent context case, a choice may affect the availability
of calls for other choices. In the worst case, all combinations of rendezvous
sequences would be tried. Trying all such combinations requires a number of
network analyses exponential to the minimum of the number of entry calls
and the number of accept points. In almost all cases, programs which may
not terminate or which deadlock based on race conditions or which deadlock
based on the order of task execution are erroneous.

A simple tasking program illustrates how the PERT technique is used in
analyzing timing behavior. The program results in four graphs which must
be constructed into a single PERT network. The program is followed by the
individual graphs and the resulting network.

procedure DOIT is task body TASK B is
begin
COUNT A, COUNT B : INTEGER := 0; for I in 1 .. 100 loop
RESULT C + INTEGER := 6; COUNT B := COUNT B + I;
end loop;
task TASK A is TASK_C.ENTRY B;
end TASK A; COUNT B := COUNT B + COUNT B;
end TASK_B;
task TASK B is
end TASK B; task body TASK _C is
begin
task TASK C is for T in 1 .. 2 loop
entry ENTRY_A; select
entry ENTRY_B; accept ENTRY_A do
entry DONE; RESULT C := RESULT C / 2;
end TASK C; ‘ end ENTRY A;
or
task body TASK A is accept ENTRY B do
begin RESULT C 1= RESULT C + 4;
for I in 1 .. 1000 loop end ENTRY B;
COUNT_A := COUNT A + 1; end select;
end loop; end loop;
TASK_C.ENTRY_A; accept DONE;
COUNT A := COUNT_A + COUNT A; end TASK C;
end TASK A;
begin -- DOIT
TASK_C.DONE;
end DOIT;

Figure 6: Simple Tasking Program
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P(for_loop) + 1@00*(P(integer_store) +
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OP(activation) ¢ O

Activate TaskA,B8, and C

Figure 7: Timing Graphs for Simple Tasking Program

Figure 8: PERT Network for Simple Tasking Program
In figure 8, the PERT network is simply constructed by matching together
the timing graphs for the various tasks and subprograms. The boldface edges

are the ones added to construct the network. In this case, they are added at
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entry calls and task activations. The triangular node represents the end
event. Zero-weighted edges tie the completion of all relevant threads to this
event. Note that the entry calls in Task A and B are independent. The
network could be constructed with the accepts in Task C reversed. The same

edges and nodes would still precede the end event; the order does not matter.

Communicating Real-Time State Machines

Communicating Real-Time State Machines (CRSM) are an executable
specification technique [8]. Their key feature is the capability for describing
timing properties. They are described by a system model and operational
semantics. Each concurrent task is represented by a state machine with
synchronous intertask communication. The following paragraphs briefly
describe what is developed in the above citation.

The system model is a set of state machines and communication channels .
The state machines are described by a set of states and transitions. The
transitions have labels of the form guard - command. Guards are conditions
that must be satisfied before execution of the associated command. Omitting
the guard is equivalent to a guard of true. The commands may change local
variables and/or communicate with other machines. Channels abstractly
represent communication between two machines. They are identified by an
event name. The event may have parameters associated with it; these are set
during the communication.

The operational semantics describe how to transform an input of CRSM's
and their channels into a time-sequenced event trace. The basic approach is

to construct next event lists for each machine. This is followed by selecting
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the earliest event(s) from the various lists. These are ¢xecuted, time updated,
and the process repeated.
Time is represented as a range [min, max] associated with each transition.
This is the time it takes for the transition to execute. Communication occurs
instantaneously. Also each machine has an associated real-time machine

which can be used to model delays as well as get time stamps.

CRSM and Ada Tasking Structures

The basic mapping between Ada and CRSM is to model each Ada task
(and master subprogram) as a machine. Transitions represent execution of
some statement or sequence of statements. Communication between tasks
(entries) are modelled using communication channels. The main change is
that channels can have out variables passed as actual parameters. The event
synchronization does not map exactly to an Ada rendezvous which
synchronizes the sender and receiver for some bounded but significant
amount of time. Thus, events are used to synchronize both the start and the
end of the rendezvous. Furthermore, the calling machine is not allowed any
other transitions between the events starting and ending the rendezvous.

Operationally, the timing analysis technique inodels programs on a single
processor. Therefore, CRSMs are executed as described, hut instead of
running all machines in parallel, only one machine is selected to run at at
time. A trace begins with the eveni of interest and an arbitrary runable
machine is selected to run at each "blocking" point. Because of Ada
interleave semantics, the order transitions are executed is not important (for
independent calling contexts). Priorities can be introduced by making

scheduling decisions based on the Ada priority scheme.
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Because CRSM and Ada both have roots in Hoare’s CSP, it is not
surprising that the mapping between them is straightforward. By
reintroducing parallelism to the operational semantics, CRSM can simulate
multi-processing of Ada programs. This and the ability to make scheduling
decisions give CRSM a great deal more power than a simple PERT

representation of the program.
Integrating Schema Analysis and CRSM Construction

Constructing timing models using CRSM is not much different than using
PERT. Both techniques use graphs. The difference is in the forms of the
graph; and, of course, what they mean and how they are analyzed. Thus, the
same schema apply except for some of those which construct graph elements.
These schema are replaced by the constructs in the following table. Input
events are marked with question marks. These correspond to output events
with the same name and marked with exclamation points. The input RT?[x]
is an input from the real-time machine associated with the task to occur at

least x seconds in the future.

P(activ) +

Task_Body C Acnvate7; G(as_item_ég CT(as_sxm_s)+P(terminate)\O
~

Not_activated := False

Enclosing Block

T(as_stm_s)

P(rendezvous) +
Accept P(acce Start _Name TCas_stm_ End_Name?2

P(queue_entry) +

Ent;ry_Cal] T(sm_normalized_param_s Start_Name] End_Name |
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P(delay) +

Delay T(as_exp) O RT?{delay + P(delay_cap) C :

T(as_stm_s2)
RT?[e
Cond_Entry PCcond_entcy)
T(entry_call) + T(as_stm_si

P d_ent /-————
’I‘imed_Entry (timed_entry) T(entry_all) + T(as_stm_s1)

T(delay) + T(as._stm_s2)

Select T(comp_guards) +
P(select[n]):
. e
*
L ]

T(<**>) + T(as.stm_sn)
<**> == accept, delay, terminate or else

For the worst case analysis, the max time is used for each transition. For
the best case analysis, the min time is used. The completion of the analysis
occurs when the activities triggered by the starting events subside. Note that
this model does not require assembly of the generated timing graphs. They
are input to the operational CRSM model as is.

Dependent tasking contexts introduce similar problems in this model
since the calling order may change based on the length of execution at some
point. This change in calling order may result in an overall faster or slower
time. Thus, always choosing the max or min time may not generate the worst

or best case respectively.

Discussion

The concurrent constructs of Ada require special consideration for timing
analysis. On a single processor, only one task can use the processor at a time.
This interleaved model means that the execution time of a program is the
sum of the time spent in each task with vne exception. If any tasks use

delays, then it may be possible that no task is runable at some point. This
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idle time must also be added to the program execution time. PERT analysis
can help make this determination.

CRSM provides a more powerful model. Although developed as a
specification method, it serves well as a descriptive technique. It can model
multiple processors as well as more complex scheduling decisions. Its
drawback is the requirement for a specific tool to run the model.

Dependent tasking contexts are system designs where the timing
properties are dependent on the order that entry calls occur. Neither PERT
nor CRSM can simply determine the bounded execution time of such
programs. Trying all possible orders of entry calls is the sure way of finding
the bounded execution time; however, this is an exponential growth
approach. Further understanding and characterizing the conditions which
cause dependent tasking contexts is necessary to determine if a better

approach can be developed or if the class of programs can be ruled out.




Chapter V

Experiments

Introduction

Experiments consist of benchmark tests. These tests are compiled and
run in a dedicated system environment. They are also converted to a DIANA
representation which is fed to an automating timing graph generator. The
resulting timing graphs are combined into a network and analyzed by hand.
The results are adjusted for system interference are compared to the
experimentally observed times. In a few cases, both the results and
experimental times are compared to worst case times computed using hand

analysis techniques like Knuth’s.
Setup of the Experiments
As stated in the introduction, the experiments consist of Ada programs
which undergo timing analysis, which are timed while executed, and whose

prediction and execution results are compared. The benchmark programs

come from two sources. The first is the Special Interest Group for Ada of the
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Association for Computing Machinery (ACM SIGAda) Performance Issues
Working Group (PIWG). The second are programs specifically constructed to
include a wider selection of language features and exercise some of the
capabilities of the analyzer.

The PIWG has constructed a series of benchmarks that measure and
compare various features of the Ada language. The benchmarks measure
both compilation and execution performance. For these experiments, the best
choices are execution benchmarks which test basic sequential language
constructs and which test simple tasking situations. Many of these
benchmarks are relatively simple, so their object code modules may also be
hand analyzed for timing behavior.

The other set of programs are somewhat more complex, but still relatively
small (less than 100 SLOC). In both cases the programs are enclosed within
an iteration loop. The computer clock is read immediately before the
iteration loop and immediately after it completes. The iteration loop may be
run several times. In the case of the PIWG benchmarks, the number of
iterations varies from one run to the next.

Each program is compiled on a Rational R1000.7 The Rational creates a
DIANA tree for the program. The DIANA tree is copied into a text file and
transferred back to the Macintosh. The Rational represents node identifiers
with a long hexadecimal value; pointers in semantic attributes are marked
with a caret (). These values are replaced with a simple integer from the set
1 to n where n is the number of nodes in the file. Semantic pointers are
replaced with a similar value with a package id extension (e.g., *standard.9).

If it had been available, this file would be loaded into the timing analysis

7 Rational and R1000 are registered trademarks of Rational, 1501 Salado Drive,
Mountain View, California, 94043
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program which generates timing graphs for its various program units (i.e.,
subprograms, tasks, package elaborations). Note that compilation units upon
which it depends must be loaded before it; particularly the standard package.
The timing graphs which result are printed. Without the analysis program,
the timing graphs are generated by hand application of the schema to the
DIANA representations. Building networks from these graphs and analyzing
them generate the bounded execution time predictions of interest.

The expected execution time is then compared to actual executions. The
program is compiled and run on the Macintosh system. No other application
programs are run including system extensions like screen savers or virus
protection software. Furthermore, keys are not pressed after beginning the
test execution and the mouse is not moved. Other programs, particularly
system extensions, and input device activity all add to system interference.
The programs do not require disk or screen I/0 within the critical timing
section. The benchmark programs complete by printing out the timing
measurements it made.

The execution time of the program (T¢y) is represented in the equation:

Tmeasured = Tclock + Tloop-overhead + I % Tex
where I is the number of iterations in the loop. Solving this for Tex results in
Tex = [Tmeasured - (Tclock + Tloop-overhead)l / I = Tmeasured / I
if I is large enough. Before comparison, the predicted times must be adjusted
for the estimated system interference experienced by the test.

System interference is the amount of time the system spends handling
interrupts rather than running the program of interest. A simple benchmark
measures the amount of time in a simple loop. Running this benchmark
under the system configuration described above gives the data necessary to

derive a range of nominal system interference. The benchmark was
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disassembled and hand analyzed. The result was compared to the timed
execution result and a range for system interference determined.

A better experiment was attempted. This would measure the execution
time with interrupts disabled and compare it to the normally measured time.
The relative difference would represent system interference. The experiment
failed because the system routine for reading the hardware clock directly did
not work and the other clocks were interrupt driven. Note that disabling
interrupts for any significant period of time, in general, would break the Ada
run-time system and thus is not feasible for application experiments .
However, until the problems mentioned above can be fixed, disabling
interrupts is not viable for characterizing system interference, either.

The expected execution time of the system interference benchmark was
computed as requiring 228,030,018 - 250,035,023 cycles which at 25 MHz
equals 9.12 - 10.00 seconds. The measurement was repeated 100 times. Each
measurement was either 14 or 15 seconds. The first time was observed 45
times; thus the weighted average is 14.55 seconds. This means the time
spent in interrupt handlers is 4.55 - 5.43 seconds distributed across 60 ticks
per second. From this data the average time spent in the tick interrupt
handler is 5.21 - 6.22 ms. The nominal system interference, the percentage of
each tick spent handling interrupts, is then 31.3 - 37.3%.8 Thus, 62.7 - 68.7%
of the processor is available for the experiment and the predicted times
should be divided by these amounts to give the comparable predictions with

system interference accounted for.

8  With five system extensions installed, the system interference rises to 60-65%.
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Experimental Results

The following table summarizes the results collected. All results are

tabulated in Appendix D. Without the automation to generate timing graphs,

very few predictions were completed. The predicted times are corrected for

system interference.

Table 2: Single result experiments

Interpretation

PIWG 1024 8192 256 1024 8192
Experiment Iterations Iterations Iterations Iterations Iterations Iterations
Measured Measured Measured Predicted Predicted  Predicted
C000001 T 27 - 27 108 - 108 n/m
C000002 T 28 - 29 113-113 n/m
HO000004 T 13-13 52 .52 n/m
P000001 C 1-2 5-6 41-48 117-158 467-631 374-505
P000001 T 1-2 5-6 48-52 127-201 508-802 406-642
P000010 T 2-3 8-8 69-70
T000001 T 13-13 51 -52 n/m
T000004 T 30 - 30 119-121 n/m
Table 1: Iterated Experiment Results
Experiment Measured Predicted
Time Time

A000091 1.10-1.20 ms

A000092 2.78 - 2.84 ms

SimpleTasks 11.8-14.6

For the experiments completed, the predictions bound the measurements

(as shown in figures 9 and 10). This is hardly surprising if the primitives and

schema are defined and calculated correctly. The question is then how good

the bounds are. The limiting condition on the tightness of the bounds is the

tightness of the primitives involved in the prediction.
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Experiment P0O0O0001 Control Loop
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Figure 9: A Plot of Experiment P000001 Control Loop Results and Expectations.

The upper bound of each primitive can be expressed as the lower bound
multiplied by a factor. The lower bound prediction is the sum of the primitive
lower bounds. The upper bound prediction can be expressed as the lower
bound multiplied by a weighted average of the primitive upper bound factc:'s.
The average is weighted by the frequency of occurrence for a given primitive
in the prediction and by the amount of time represented by the primitive.

Some interesting limits arise from this view. Foremost is the observation
that the difference between the actual program execution time and the upper
bound must be less than the factor between the lower and upper bounds. In
the P0O00001 experiments above, the factor between the bounds are 1.35 for
the control loop and 1.58 for the test loop.
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Experiment PO0O0O001 Test Loop
Measured vs. Expected
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Figure 10: A Plot of Experiment P000001 Test Loop Results and Expectations.

The second observation is that the factor for the code in a loop body is
invariant, i.e., it does not change if the number of loop iterations change.
Plotting the upper and lower bounds against iterations of the loop on log-log
charts would generate parallel lines. This is the case, in fact, for the graphs
above when plotted on a log-log rather than semi-log scale.

The final observation applies when branching and variable loop bounds
are ignored. The factor between the bounds of the prediction cannot exceed
the largest factor between the bounds of any primitive used in the
calculation. This follows from the way a weighted average works. An
average cannot exceed the largest of its input data. On the a~chitecture
studied, many primitives only vary by 30 - 50%, others vary by factors of four

or more. Tight primitive bounds result in tight prediction bounds.
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In the experiments above, the worst case bound exceeded the worst case
measurement by factors of 5.2% and 33.7% for the control loop and test loop
respectively. However, testing may not execute the worst case. With the low
number of runs conducted so far these numbers, particularly the second, are
probably high. The observation in the previous paragraph, however,
indicates that the PO00001 code is relatively tight compared to the primitives
that may be encountered in other code. Examples involving tasking, delays,
or floating point arithmetic have much larger factors between their bounds.

Coverage of the execution results offer another perspective on how good
the predicted bounds are. Coverage is the range of test results from the
lowest time to the highest time compared to the range of the bounds. For
instance, the measurement runs for the P000001 control loop cover iterated
8192 times cover the range 41 - 48 seconds. The bounds are 37.4 and 50.5
seconds. So, the results cover seven seconds of the 13.1 seconds between the
bounds or 53%.

Without more testing and study of the implications of these metrics, it is
imprudent to draw any conclusions. The metrics of difference factors and
coverage help visualize how the predictions stack up to the actual executions.
Predictions that generate a factor of 1 between worst case execution and the
worst case bound and 100% coverage are obviously ideal. They may be

unrealistic; but may also, in fact, be achievable by applying the technique to

systems with hardware and compilers developed to generate predictable code.




Chapter VI

Discussion and Future Research

The proposed approach to timing analysis is promising. It satisfies the
objectives outlined in Chapter I, but can certainly be improved. Specifically,
it does not take advantage of all the context information available to it; it
does not handle exception processing or I/O; and it is limited to single
processor systems. These are all areas that should be pursued further.
Additionally, continuing improvement can be made to tighten the bounds by
tightening the primitive time bounds and manipulating the schema to fit
better.

In extending this approach it is important to keep the objectives in mind.
A particularly difficult one is portability, the applicability of the technique to
different hardware and compiler systems. By manipulating the schema to fit
more closely what a particular compiler does, the performance with that
compiler will improve. It may be incompatible, however, with another
compiler. Thus, the schema must continue to conform closely with the
language definition.

Park and Shaw has already somewhat considered the tradeoff between
tightness of the execution time bounds and portability (30]. They look at
large and small atomic blocks represented by their primitive times. This is

another way of factoring context into the picture. By defining primitives in
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larger terms (such as an entire assignment statement), one can better
characterize the compilers behavior. The disadvantage is that many more
primitives are needed (a single assignment primitive is not sufficient; one will
be needed for each major type and for significant optimization patterns). The
goal is to determine a balanced set of primitives and the method for
identifying the proper context for using them.

The most difficult part of the language and most implementations is the
tasking model and constructs. Better characterization and understanding of
tasking activity is a high priority. Here more than any place else, support by
the compiler vendor is crucial to understanding the system. Tasking
implementations are 10,000’s of lines of code. The exercise of characterizing
the tasking behavior of the compiler may also benefit the compiler vendor
who should discover what parts of the implementation are least predictable
and most difficult to characterize.

Another way to distinguish characterizations is using modes and
variability. 1 use these terms to describe the things which vary execution
times from one system or instance to the next. Modes are those things that
are fixed at some point in instantiation of the system (e.g., instruction word
alignment in the object code image). Variability refers to environmental
factors which may continue to vary (e.g., input values, competing workloads,
and operator controls). By so categorizing these things, further
characterization of the syst-.a may become available as modes are fixed for a
particular instance.

Modes and variability can be modelled to some degree with random
processes and variables. A more general understanding of the system is
potentially available using probabilistic models like those in [31] and [32].

Characterizing primitive times as random variables may allow further a
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priori characterization of a prediction’s factors and ranges. An important
distinction that may be provided by studying modes and variability is
separation of dependent and independent random variables. These models
may allow for reasonable specification and verification of a non-perfect
system, e.g., the system that requires 98% availability.

The trickiest problem that must be addressed is multi-processing and
shared resources. Gerber and others have started looking at timing analysis
in light of resource contention [33]. Tying resource sharing into a general
abstract timing analysis model would provide a critical tool to the developers
of real-time systems.

I intend to continue exploring this subject as my research area at the US
Air Force Acaa- uy. Based on personal experience and the literature,
systems developers need timing analysis techniques that can apply to the
systems they’re building today and will be building tomorrow. These
techniques must span the entire development cycle, be general enough to use

on several projects, and provide reliable performance.
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Appendix A

Timing Primitives for Mac IIsi and Meridian Ada

The following lists the timing primitives as identified by analysis of the

Ada language, DIANA representation and Meridian Ada code generation.

Where a high or low execution timing bound has been determined for the

primitive, the value is shown in cycles.

accept

access

activ

activation
allocate_main
and_then
array_access
array_aggr_comp_access
array_aggr_setup
array_cat
array_comp_access
array_comp_store
array_ge
array_greater
array_in
array_le
array_lesser
array_not_in
array_store
attr_address
attr_aft
attr_base
attr_callable
attr_constrained

184

618

The Mac IIsi executes at 25 MHz.

attr_count

attr_delta

attr_digits

attr_emax
attr_epsilon
attr_first

attr_first
attr_first(N)
attr_first bit
attr_fore

attr_image

attr_large

attr_last

attr_last(N)
attr_last_bit
attr_length
attr_length(N)
attr_machine_emax
attr_machine_emin
attr_machine_mantissa
attr_machine_overflows
attr_machine_radix
attr_machine_rounds
attr_mantissa
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attr_pos
attr_position
attr_pred
attr_range
attr_range(N)
attr_safe_emax
attr_safe_large
attr_safe_small
attr_size
attr_small
attr_storage_size
attr_succ
attr_terminated
attr_val
attr_value
attr_width
ba_and

ba_not

ba_or

ba_xor
bool_access
bool_and
bool_eq
bool_neg
bool_not

bool _or
bool_store
bool_xor
cond_entry

case

context switch
convert_array
convert_derived
convert_fixed2float
convert_fixed2int
convert_float2fixed
convert_float2int
convert_int2fixed
convert_int2float
default_param
delay

else

fixed_abs

fixed access
fixed_div
fixed_eq

fixed_ge
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fixed_greater

fixed_identity

fixed_in

fixed_le

fixed_lesser

fixed_minus

fixed_mul

fixed_neq

fixed_negation

fixed_not_in

fixed_plus

fixed_store

float_access

float_abs

float_div

float_eq

float_exp

float_identity

float_in

float_minus

float_mul

float_neq

float_negation

float_not_in

float_plus

float_store

for_end 14
for_iter 34
for_loop 6
function_access 0
function_call

function_end

if

int_abs

int_div

int_eq

int_exp

int_ge

int_greater

int_identity

int_in

int _le

int_lesser

int_literal access 0
int_minus

int_mod

int_neq

22
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int_negation

int_not_in

int_plus 8
int_rem

int_times

integer_access 4
integer_store 5
iter

loop

loop_end

null

or_else

package_elaboration
procedure_call 9 40
procedure_end 28
queue_entry 992
range_check

real_literal_access

record

record_aggr_comp_acces
record_aggr_setup
record_comp_access
record_comp_store

rendevous

select

glice_access

slice_store

string literal_access
task_body_elab 92
task_spec_elab 2202
terminate 24
timed_entry

variant_tag_check

12

16
18

858
100
2082

158
4166
94

9 Worst case ume is only 301 when the

procedure contains no tasks.
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Appendix B

Test Program Source Code

A000001
with TEXT_IO ; use TEXT_IO ;

package DURATION_IO is new FIXED_IO ( DURATION ) ;

A000018

-- This is a universal Ada function to get (PU time in seconds
-- of type DURATION on non time_sharring systems where a

-- tailored CPU_TIME_CLOCK is not reasonable

-~ Do not cross a midnight boundry

-- It is modified to read the clock using the Mac 0S clock routine rather
-~ than the calendar package. This gives 1/60th second rather than 1 sec
-- resolution.

with EVENTS;
with MAC_TYPES;

function C(PU_TIME_CLOCK return DURATION is
MaxTicks : Constant := 6@ * 86400; -- Duration'last
NOW : MAC_TYPES.LONGINT := EVENTS.TICKCOUNT ;
begin
return DURATION ( FLOAT (NOW mod maxTicks) / 60.0 ) ;

end CPU_TIME_CLOCK ;

AQ00021
package REMOTE_GLOBAL is -- for explicit control of optimization
A_ONE : INTEGER; -- a constant 1 that can not be optimized away

-- A_ONE is intentionally visible. DO NOT CHANGE IT

GLOBAL : INTEGER := 1 ; -- global object can not be optimized away
-- GLOBAL is changed by measurement programs
-- the initialization to 1 is used in the body
-~ but could be changed by elaboration order
procedure REMOTE; -- do to calls to this procedure, no compiler

-- can optimize away the computation an GLOBAL

procedure (HECK_TIME ( TEST_DURATION : in DURATION ) ;
-~ Just print message if TEST_DURATION less then
.- 100 * SYSTEM.TICK or DURATION'SMALL

end REMOTE _GLOBAL;
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A0000Q22
with SYSTEM, TEXT_IO ;

package body REMOTE_GLOBAL is -- must be compiled last
-- for explicit control of optimization
LOCAL : INTEGER;

procedure REMOTE is -- this is an optimization control procedure

begin
GLOBAL := GLOBAL + LOCAL; -- be sure procedure is not optimized away
exception
when NUMERIC_ERROR =>
REMOTE ; -- can not happen if test is working ( prevents inlining )
end REMOTE;

procedure CHECK_TIME ( TEST_DURATION : in DURATION ) is
begin
if TEST_DURATION < 100 * DURATION'SMALL or
TEST_DURATION < 100 * SYSTEM.TICK then
TEXT_IO.PUT_LINE ( " ***** TEST_DURATION not large compared to "
& "DURATION'SMALL or SYSTEM.TICK " ) ;
end if ;
end CHECK_TIME ;

begin

A_ONE := 1 ; -- must not be changed by measurement programs
LOCAL := GLOBAL - A_ONE; -- really a zero but compiler doesn't know

end REMOTE_GLOBAL ;

-- This is the ITERATION_COUNT control package for feature measurements
-- The set of procedures provide the automatic stabilizing of the

-- timing measurement. The measurement (PU time must be greater than:

-- 1.0 second, DURATION'SMALL * 100 , SYSTEM.TICK * 100

-- Note: If there is no control loop, the START_CONTROL and STOP_CONTROL
-- do not need to be called.

package ITERATION is -- AQGGQO31.ADA
subtype ITERATION_COUNTS is INTEGER range 1 .. 32768;
procedure START_CONTROL ;

procedure STOP_CONTROL ( GLOBAL : INTEGER ;
CHECK : INTEGER ) ;

procedure START_TEST ;

procedure STOP_TEST ( GLOBAL : INTEGER ;
CHECK : INTEGER ) ;

procedure FEATURE_TIMES ( CPU_TIME : out DURATION ;
WALL_TIME : out DURATION ) ;

procedure INITIALIZE ( ITERATION_COUNT : out INTEGER ) ;
procedure TEST_STABLE ( ITERATION_COUNT : in out INTEGER ;

STABLE : out BOOLEAN ) ;
end ITERATION ;
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AQ00033

-- Iteration control package body ( for test development )
--  This version is instrumented and may interefere with some
-~ types of tests

with CPU_TIME_CLOCK ; -- various choices on tape
with CALENDAR ; -- used for WALL clock times
with SYSTEM ; -- used to get value of TICK

with TEXT_I0 ; -- only for diagnostics

with DURATION_IO ;

package body ITERATION is -- AQ00@32.ADA

-- CPU time variables

CONTROL_TIME_INITIAL : DURATION ; -- sampled from CPU_TIME_CLOCK at beginning
CONTROL_TIME_FINAL : DURATION ; -- sampled from CPU_TIME_CLOCK at end
CONTROL_DURATION : DURATION ; -- (FINAL-INITIAL) the measured time in seconds
TEST_TIME_INITIAL : DURATION ; -- ditto for TEST

TEST_TIME_FINAL : DURATION ;
TEST_DURATION : DURATION ;

-- WALL time variables

WALL_CONTROL_TIME_INITIAL : DURATION ; -- sampled from CLOCK at beginning

WALL_CONTROL_TIME_FINAL : DURATION ; -- sampled from CLOCK at end
WALL_CONTROL_DURAY{ON : DURATION ; -- (FINAL-INITIAL) measured time in seconds
WALL_TEST_TIME_INITIAL : DURATION ; -- ditto for TEST

WALL_TEST_TIME_FINAL : DURATION ;

WALL_TEST_DURATION : DURATION ;

MINIMUM_TIME : DURATION := 1.@ ; -- required minimum value of test time
TEMP_TIME : FLOAT ; -- for scaling to microseconds

ITERATION_COUNT : ITERATION_COUNTS ; -- change to make timing stable
CHECK : INTEGER ; -- saved from STOP_TEST call for scaling

procedure START_CONTROL is
begin
CONTROL_TIME_INITIAL := CPU_TIME_CLOCK ;
WALL_CONTROL_TIME_INITIAL := CALENDAR.SECONDSCCALENDAR.CLOCK) ;
end START_CONTROL ;

procedure STOP_CONTROL ( GLOBAL : INTEGER ;
CHECK : INTEGER ) is
begin
CONTROL_TIME_FINAL := CPU_TIME_CLOCK ;
CONTROL_DURATION := CONTROL_TIME_FINAL - CONTROL_TIME_INITIAL ;
WALL_CONTROL_TIME_FINAL := CALENDAR.SECONDSCCALENDAR.CLOCK) ;
WALL_CONTROL_DURATION := WALL_CONTROL_TIME_FINAL -
WALL_CONTROL _TIME_INITIAL ;

if CHECK /= GLOBAL then
TEXT_IO.PUT_LINE ( " Fix control loop before making measurements.” ) ;
TEXT_IO.PUT_LINE ( INTEGER'IMAGE ( GLOBAL ) & " = GLOBAL " ) ;
raise PROGRAM_ERROR ;

end if ;

TEXT_IO.PUT_LINE ( "Iteration " & INTEGER'IMAGE ( ITERATION_COUNT ) ) ;

DURATION_IO.PUT ( CONTROL_TIME_INITIAL );

DURATION_X0.PUT ( CONTROL_TIME_FINAL );

DURATION_IO.PUT ( CONTROL_DURATION );

TEXT_IO.NEW_LINE ;

end STOP_CONTROL ;

procedure START_TEST is
begin
TEST_TIME_INITIAL := CPU_TIME_CLOCK ;
WALL_TEST_TIME_INITIAL := CALENDAR.SECONDSCCALENDAR.CLOCK) ;
end START_TEST ;

procedure STOP_TEST ( GLOBAL : INTEGER ;
CHECK : INTEGER ) is
begin
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TEST_TIME_FINAL := CPU_TIME_CLOCK ;
TEST_DURATION := TEST_TIME_FINAL - TEST_TIME_INITIAL ;
WALL_TEST_TIME_FINAL := CALENDAR.SECONDS(CCALENDAR.CLOCK) ;
WALL_TEST_DURATION := WALL_TEST_TIME_FINAL - WALL_TEST_TIME_INITIAL ;

ITERATION.CHECK := CHECK ;
if CHECK /= GLOBAL then
TEXT_TO.PUT_LINE ( " Fix test loop before making measurements.” ) ;
TEXT_IO.PUT_LINE ( INTEGER'IMAGE ( GLOBAL ) & " = GLOBAL " ) ;
raise PROGRAM_ERROR ;
end if ;
end STOP_TEST ;

procedure FEATURE_TIMES ( CPU_TIME : out DURATION ;
WALL_TIME : out DURATION ) is
begin
-- compute scaled results
begin
TEMP_TIME := FLOAT ( TEST_DURATION - CONTROL_DURATION ) ;
TEMP_TIME := (1_000_000.0 * TEMP_TIME) /
( FLOAT ( ITERATION_CQUNT ) * FLOAT (CHECK) );

CPU_TIME := DURATION ( TEMP_TIME ) ;

exception
when others => -- bail out if trouble in conversion
CPU_TIME := 0.0 ;
end ;
begin
TEMP_TIME := FLOAT ( WALL_TEST_DURATION - WALL_CONTROL_DURATION ) ;
TEMP_TIME := (1_000_000.0 * TEMP_TIME) /
( FLOAT ( ITERATION_COUNT ) * FLOAT (CHECK) );
WALL_TIME := DURATION ( TEMP_TIME ) ;
exception

when others =>
WALL_TIME := 0.0 ;
end ;

end FEATURE_TIMES ;

procedure INITIALIZE ( ITERATION_COUNT : out INTEGER ) is
begin

ITERATION_COUNT := 1 ;

ITERATION.ITERATION_COUNT := 1 ;
end INITIALIZE ;

procedure TEST_STABLE ( ITERATION_COUNT : in out INTEGER
STABLE : out BOOLEAN ) is

begin
if TEST_DURATION > MINIMUM_TIME then
STABLE := TRUE ;
elsif ITERATION_COUNT >= 16384 then
TEXT_IO.PUT_LINE ( "***** INCOMPLETE MEASUREMENT ****+" 3 .
STABLE := TRUE ;
else
ITERATION_COUNT := ITERATION_COUNT + ITERATION_COUNT ;
ITERATION. ITERATION_COUNT := ITERATION_COUNT ;
STABLE := FALSE ;
END IF;
end TEST_STABLE ;

begin

if SYSTEM.TICK * 100 > MINIMUM_TIME then
MINIMUM_TIME := SYSTEM.TICK * 100 ;
end if;

1f DURATION'SMALL * 108 > MINIMUM_TIME then
MINIMUM_TIME := DURATION'SMALL * 100 ;
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end if;
-- MINIMUM_TIME is now the larger of 1.@ second,
-- 100*SYSTEM.TICK,
-~ 100*DURATION' SMALL

CONTROL_DURATION := 0.0 ;
WALL_CONTROL _DURATION := 0.0 ;

end ITERATION ;




A000091

-- Version ADA/1 --
-- Date: 04/15/84 --

-~ Author: Reinhold P. Weicker --

-- The following program contains statements of a high-level programming --
-- language (Ada) in a distribution considered representative: --

-- assignments 53% --
--  control statements 32% --
--  procedures, function call 15% --

-- 100 statements are dynamically executed. The program is balanced with --
-- respect to the three aspects: --

-- - statement type -
-- - operand type (for simple data types) --
-- - operand access --
-- operand g'obol, local, parameter, or constant. --
-- The combination of these three aspects is balanced only approximately. --
-- The program does not compute gnything meaningful, but it is syntactically --

-- and semantically correct. All variables have a value assigned to them -~
-- before they are used as a source operand --

-- global definintions

type Enumeration is (ident_1,ident_2,ident_3,ident_4,ident_5);
subtype one_to_thirty is integer range 1..30;

subtype one_to_fifty is integer range 1..50;

subtype capital_letter is character range 'A'..'7";

type String_3@ is array(one_to_thirty) of character;
pragma pack(string_30);

type array_1_dim_integer is array (one_to_fifty) of integer;
type array_2_dim_integer is array (one_to_fifty,

one_to_fifty) of integer;
type record_type(discr:enumeration:=ident_1);

type record_pointer is access record_type;

type record_type(discr:enumeration:=ident_1) is

record
pointer_comp: record_pointer;
case discr is
when ident_1 =. -- only this variant is used,
-- but in some cases discriminant
-- checks are necessary
enum_comp: enumeration;
int_comp: one_to_fifty;
string_comp: string_30;
when ident_2 =>
enum_comp_2: enumeration;

string_comp_2: string_30;
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when others =>
char_comp_1,
char_comp_2: character;
end case;
end record;

end global_def;

with global_def;
use global_def;

package pack_1 is

procedure proc_90;

procedure proc_l(pointer_par_in: in record_pointer);
procedure proc_2(int_par_in_out: 1in out one_to_fifty);
procedure proc_3(pointer_par_out: out record_pointer);

int_glob: integer;
end pack_1;

with global_def;
use global _def;

package pack_2 is

procedure proc_6 (enum_par_in: in enumeration;
enum_par_out: out enumeration);

| procedure proc_7 (int_par_in_1,
int_par_in_2: in one_to_fifty;
int_par_out: out one_to_fifty);

procedure proc_8 (array_par_in_out_1: in out array_1_dim_integer;
array_par_in_out_2: in out array_2_dim_integer;
int_par_in_1,
int_par_in_2: in integer);

function func_l1 (char_par_in_1,
char_par_in_2: in capital_letter)
return enumeration;

function func_2 (string_par_in_1,
string_par_in_2: in string_30)
return boolean;

end pack_2;

with global_def, pack_1;
use global_def;

procedure AQ@0Q91 is -- Dhrystone

begin
pack_1.proc_9; -- proc_@ is actually the main program, but it is
-- part of a package, and a program within a
-- package can not be designated as the main
-- program for execution. Therefore proc_0 is
-- activated by a call from "main”.
end AGOOQ91 ;

with global _def,pack._2;
use global_def;

with cpu_time_clock;
with text_io;

with duration_io;

package body pack_1 is
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bool _glob: boolean;
char_glob_1,

char_glob_2: character;
array_glob_1: array_l_dim_integer;
array_glob_2: array_2_dim_integer;

pointer_glob,
pointer_glob_next: record_pointer;

start_time : duration ;
stop_time : duration ;
iteration_count : constant := 10_000 ;

procedure proc_4;
procedure proc_5;

procedure proc_©0

is
int_loc_1,
int_loc_2,
int_loc_3: one_to_fifty;
char_loc: character;
enum_loc: enumeration;
string_loc_1,
string_loc_2: string_30;
begin
-- inttializations
pack_1l.pointer_glob_next := new record_type;

pack_l.pointer_glob := new record_type

'(

pointer_comp => pack_l.pointer_glob_next,
discr => ident_1,

enum_comp => ident_3,

int_comp => 40,

string_comp => “DHRYSTONE PROGRAM, SOME STRING"

)
string_loc_1 := "DHRYSTONE PROGRAM, 1'ST STRING";

start_time := cpu_time_clock ;

for i in 1 .. tteration_count loop
proc_S;
proc_4;

-- char_glob_1 = 'A', char_glob_2 = 'B', bool_glob = false

int_loc_1 := 2
int_loc_2 := 3
string_loc_2 := "DHRYSTONE PROGRAM, 2'ND STRING";
enum_loc := ident_2 ;
bool _glob := not pack_2.func_2( string_loc_1,string_loc_2);
-- bool_glob = true
while int_loc_1 < int_loc_2 loop --loop body executed once
pragma TA_LOOP_BOUNDS(1,1);

int_loc_3 := 5 * int_toc_1 - int_loc_2;

-~ int_loc 3 =7

pack_2.proc_7(int_loc_1,int_loc_2,int_loc_3);

-- int_loc_ 3 = 7

int_loc_1 := int_loc_1 + 1;
end loop;

-- int_loc_1 = 3
pack_2.proc_8(Carray_glob_1,array_glob_2,int_loc_1,int_loc_3);

-- int_glob = 5
proc_l(pointer_glob);
for char_index in 'A'..Char_glob_2 loop --loop body executed twice

if enum_loc = pack_2.func_i(char_index,'C’)
then -- not executed

3
’
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pack_2.proc_6(ident_1,enum_loc);
end if;

end loop;

-- enum_loc = ident_1

-- int_loc = 3, int_loc_2 = 3, int_loc.3 =7
int_loc_3 := int_loc_2 * int_loc_1;
tnt_loc_2 := int_loc_3 / int_loc_1;
int_loc_2 := 7 * ( int_loc_3 - int_loc_2 ) - int_loc_1;
proc_2(int_loc_1);

end loop ;

stop_time := cpu_time_clock ;

text_io.new_line;

text_io.new_line;

text_io.put_line("Test Name: A®Q0091 Class Name: Composite™);
text_io.put(” ")
duration_io.put((stop_time-start_time)*1000/iteration_count);
text_io.put_line(" is time in milliseconds for one Dhrystone");
text_io.put_line("Test Description:");

text_io.put_line(” Reinhold P. Weicker's DHRYSTONE composite benchmark");
text_io.new_line;

end proc_0;
procedure proc_l(pointer_par_in: in record_pointer) is -- executed once

next_record: record_type

renames pointer_par_in.pointer_comp.all; -- pointer_glob_next.all

begin

next_record :=pointer_glob.all;
pointer_par_in.int_comp := 5;
next_record.int_comp := pointer_par_in.int_comp;
next_record.pointer_comp:= pointer_par_in.pointer_comp;
proc_3(next_record.pointer_comp);

-- next_record.pointer_glob.pointer_comp = pointer_comp.next
if next_record.discr = ident_1
then -- executed

next_record.int_comp := 6;

pack_2.proc_6(pointer_par_in.enum_comp,next_record.enum_comp);

next_record.pointer_comp := pointer_glob.pointer_comp;
pack_.2.proc_7(next_record.int_comp,19,next_record.int_comp);
else
pointer_par_in.all := next_record;
end if;

end proc_1;

procedure proc_2 ( int_par_in_out: in out one_to_fifty)
is -- executed once

-- in_par_in_out = 3 becomes 7

int_loc : one_to_fifty;

enum_loc : enumeration;

begin
int_loc := int_par_in_out + 10;
loop
pragma TA_LOOP_BOUNDS(1,2);
if char_glob_1 = 'A’
then
int_loc := int_loc - 1;
int_par_in_out := int_loc - int_glob;
enum_loc := ident_1; -- true
end if;
exit when enum_loc = ident_1; -- true
end loop;
end proc_2;

procedure proc_3(pointer_par_out: out record_pointer)
is -- executed once
-- pointer_par_out becomes pointer_glob
begin
i1f pointer_glob /= null




72
then  -- executed
pointer_par_out := pointer_glob.pointer_comp;
else
int_glob := 100;
end if;
pack_2.proc_7(10,int_glob,pointer_glob.int_comp);
end proc_3;

procedure proc_4

is
bool_loc : boolean;

begin
bool_loc := char_glob_1 = 'A";
bool_loc := bool_loc or bool_glob;
char_glob_2 := 'B';

end proc_4;

procedure proc_5
is
begin
char_glob_1 := 'A';
bool_glob := false;
end proc_S;

end pack_1;

with global_def,pack_1; use global_def;
package body pack_2 is

function func_3(enum_par_in: in enumeration) return boolean;
-- forward declaration
procedure proc_6(enum_par_in: in enumeration;
enum_par_out: out enumeration) is
begin
enum_par_out := enum_par_in;
if not func_3Cenum_par_in) then
enum_par_out := 1dent_4;
end if;
case enum_par_in is
when ident_1 =>enum_par_out := ident_1;
when ident_2 =>if pack_l.int_glob>100

then enum_par_out := ident_1;

else enum_par_out := ident_4;

end if;
when ident_3 =>enum_par_out := ident_2; -- executed
when ident_4 =>null;
when ident_S =>enum_par_out := ident_3;

end case;
end proc_6;

procedure proc_7(int_par_in_1,
int_par_in_2: in one_to_fifty;
int_par_out: out one_to_fifty) is

int_loc : one_to_fifty;

begin
int_loc := int_par_in_1 + 2;
int_par_out := int_par_in_2 + int_loc;

end proc_7;

procedure proc_8 (array_par_in_out_1: in out array_l_dim_integer;
array_par_in_out_2: in out array_Z_dim_integer;
int_par_in_1,
int_par_in_2: in integer)

is

int_loc: one_to_fifty;

begin
int_loc := int_par_in_1 + 5;
array_par_in_out_1(int_loc) := int_par_in_¢Z;

array_par_in_out_l(int_loc + 1) :=
array_par_in_out_1(int_loc);
array_par_in_out_1(int_loc + 38) := int_loc;
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for int_iadex in int_loc..int_loc + 1 loop -- loop body executed twice
pragma TA_LOOP_BOUNDS(2,2);
array_par_in_out_2(int_loc,int_index) := int_loc ;
end loop;

array_par_in_out_2(int_loc,int_loc-1) :=
array_par_in_out_2(int_loc,int_loc-1) + 1;
array_par_in_out_2(int_loc + 2@,int_loc) :=
array_par_in_out_1(int_loc);
pack_1l.int_glob := 5;

end proc_8;
function func_1 (char_par_in_1,

char_par_in_2: in capital_letter) return enumeration
is

char_loc_1, char_loc_2 : capital_letter;

begin
char_loc_1 := char_par_in_1;
char_19c_2 := char_loc_1;

if Lhar_.oc_2 /= char_par_in_2 then
return ident_1,;
else
return ident_2;
end if;
end func_1;

frnction func_2(string_par_in_1,
string_par_in_2: in string_30) return boolean
1s

int_loc: one_to_thirty;
char_loc: capital _letter;

~egin
int_loc := 2;
while int_loc <= 2 loop
pragma TA_LOOP_BOUNDS(1,1);
1f func_1(string_par_in_1(int_loc),
string_par_in 2(int_loc+1)) = ident_1 then

char_loc := 'A";
int_loc := int_loc + 1;
end \f;
end loop;
1f char_loc >="W' and char_loc < 'Z' then
int_lo. := 7;

end if;
if char_loc = 'X' then
return true;
else
if string_par_in_1 > st -ing_par_in_2 then
int_loc := int_loc + 7;
return true;
els.
return false;
end if;
end if;
end func_2;

function func_3(enum_par_in: in enumeration) return boolean
1s

enum_locC: cnu 2ration;
begin
enum_loc "= enum par_in;
1f enum_lo¢ = ident_3 then
return true;
end if;
end func_3;

end pack_c;
-- Ada version of Whetstone Be .~hmar! Program
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-- This must be edited to "with" the compiler suppliers math routines
-- SIN, CO0S, ATAN, SQRT, EXP and LOG
-- These results may be interesting to compare to 7000093 that uses
-- a physically included, all Ada set of math routines




-~ WHETADA . ADA distributed as AQ0@Q92.ADA --

--  Ada version of the Whetstone Benchmark Program. --
--  Reference: "Computer Journal" February 1976, pages 43-49 --
-- for description of benchmark and ALGOL6Q version. --
-- Note: Procedure POUT is omitted. --
-- From Timing Studies using a synthetic Whetstone Benchmark --
-- by Sam Harbaugh and John A. Forakis --

-- Authors Disclaimer --
-- " The Whetstone measure deals only with the most basic scientific/ --
-- computational aspects of the languages and computers and no general --
-- conclusions should be drawn from this work. Application specific --
-- benchmarks should be written and run by anyone needing to draw --
-- conclusions reguarding suitability of languages, compilers and --
-- hardware. This data is reported to stimulate interest and work in  --
-- run time benchmarking and in no way is meant to influence anyone's --

"

-- cholce of languages or software in any situation --

with C(PU_TIME_CLOCK ;

with TEXT_IO; use TEXT_IO;

-- Change the following line to use the compiler vendors or manufacturers
-- math library.

with MATH_LIB; use MATH_LIB; -- manufacturers routines ( Meridian for Mac )

procedure AQOQQI2A is
--pragma SUPPRESS(ACCESS_CHECK); DO NOT USE PRAGMA SUPPRESS for PIWG
--pragma SUPPRESS(DISCRIMINANT_CHECK);
--pragma SUPPRESSCINDEX_CHECK);
--pragma SUPPRESS(LENGTH_CHECK);
--pragma SUPPRESS(RANGE _CHECK);
--pragma SUPPRESS(DIVISION_CHECK);
--pragma SUPPRESS(OVERFLOW_CHECK);
--pragma SUPPRESS(STORAGE_CHE(K);
--pragma SUPPRESSCELABORATION_CHECK);

package REAL_IO is new FLOAT_IO(CFLOAT); wuse REAL_IO;
subtype CYCLES is INTEGER range 10..50;

procedure WHETSTONE(NO_OF_CYCLES : in (YCLES;
START_TIME,STOP_TIME: out FLOAT) is

-- Calling procedure provides
-- the encompassing loop count, NO_OF_CYCLES.

type VECTOR is array (INTEGER range <>) of FLOAT;
X1,X2,%X3,X4,%,Y,Z : FLOAT;

E1 : VECTOR(1..4);

J,K,L : INTEGER;

-- Set constants

T : constant := 0.49997S;

T1 : constant := 0.50025;

T2 : constant := 2.0;

-- Compute the execution frequency for the benchmark modules

N1 : constant := Q; --Module 1 not executed
N2 : constant := 129;

N3 : constant := 140;

N4 : constant := 3450,

NS : constant := Q; -- Module S not executed
N6 : constant := 2100;

N7 : constant ;= 320;

N8 : constant := 8999;

N9 : constant := 6160;

N1@: constant := @; -- Module 10 not executed
N11: constant := 930;
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procedure PACE: in out VECTOR) is
-- tests computations with an array as a parameter

J : INTEGER;
-- T,T2 : FLOAT are global variables
begin
J:=0;
loop
pragma TA_LOOP_BOUNDS(6,6);
ECL) := CEQD) + E(2) + E(3) - E@) * T;
EQ) = (EQY) + EC2) - €E(3) + E4)) * T;
E(3) := (E(D) - EQ) + EG) + E()) * T;
EC4) := (-ECL) + EQ2) + E(3) + E(4)) /7 T2;
J =)+ 1;
exit when j >= 6;
end loop;
end PA;

procedure PO is

-- tests computations with no parameters
-- T1,T2 : FLOAT are global

-- E1 : VECTOR(1..4) is global

-- J,K,L : INTEGER are global

begin
E1()> = E1(K);
E1(0 = E1(L);
E1(L) := E1(D);
end PO;

procedure P3(X,Y: in out FLOAT; Z : out FLOAT) is
-- tests computations with simple identifiers as parameters
-- T,T2 : FLOAT are global
begin
x .
Y :
z:
end P3;

T*X+Y);
T* X +Y);
X +Y)/ 12

noH

begin
START_TIME := FLOAT(CPU_TIME_CLOCK); --Get Whetstone start time
CYCLE_LOOP:

for CYCLE_NO in 1..NO_OF_CYCLES loop
-- Module 1 : computations with simple identifiers

X1 :=1.0;
X2 = -1.9;
X3 := -1.0;
X4 := -1.9;

for I in 1..N1 loop

X1 := (X1 + X2 + X3 - x4) * T;
X2 1= (X1 + X2 - X3 + X4) * T,
X3 = (X1 + X2 + X3 + X4) * T;

X4 = (-X1 + X2 + X3 + X4) * T;
end loop;
-- end Module 1

-- Module 2: computations with array elements

E1(1) := 1.0;

£1(2) := -1.9;
£1(3) := -1.0;
E1(4) := -1.0;

for I in 1..N2 loop

E1(1) := (E1C1) + E1(2) + E1(3) - E1(4)) * T;
E1(2) := (E1(1) + E1(2) - E1(3) + E1(8)) * T;
E1(3) := (E1(1) - E1(2) + E1(3) + E1(&)) * T;

E1(4) := (-E1(1) + E1(2) + E1(3) + E1(A)) * T;
end loop;
-- end Module 2
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-- Module 3 : passing an array as a parmeter
for I in 1..N3 loop
PACEL);
end loop;
-- end Module 3

-- Module 4 : performing conditional jumps
)= 1;

’
for I in 1..N4 loop
if J=1 then
) 1= 2;
else
J = 3
end if;
if J>2 then
) = 0;
else
J = 1;
end if;
if J<1 then
J = 1;
else
) = 0;
end if;
end loop;
--end Module 4

-~ Module S5 : omitted

-- Module 6 : performing integer arithmetic
) = 1;
K := 2;
L = 3;
for T in 1..N6 loop
=) * (K-1) * (L-K);
t= L*K - (L-D) * K;
L o= (L-K) * (K+));
ELICL-1) := FLOAT(I+K4L);
E1(K-1) := FLOAT(J*K*L);
end loop;
-- end Module 6

[}

™
L}

-- Module 7 : performing computations using trigonometric
-- functions

X = T*ATANCTZ2*SIN(XD*COS(X)/ (COS(X+Y)+COS{X-Y)-1.0));
Y := T*ATANCT2*SINCYD*COSCY)/ (COSCX+Y)+COS(X-Y)-1.0));
end loop;
-- end Module 7

-- Module 8 : procedure calls with simple identifiers as

-- parameters
X := 1.0,
Y :=1.9;
Z = 1.9;
for I in 1..N8 loop
P3(X,Y,Z);
end loop;

-- end Module 8

-- Moduie 9 : array reference and procedure calls with no
-- parameters

*
o
14
-
-
s

Po;
end loop;
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-- end Module 9

-- Module 10 : integer arithmetic
) 1= 2;
K := 3;
for I in 1..N1@ loop
J + K;
K+ );
K- 1
K-1-13;
end loop;
-- end Module 10

R X
W

-- Module 11 : performing computations using standard
-- mathematical functions
X := 0.75;
for I in 1..N11 loop
X := SQRTCEXPCLN(X)/T1));
end loop;
-- end Moudle 11

end loop CYCLE_LOOP;

STOP_TIME := FLOAT(CPU_TIME_CLOCK); --Get Whetstone stop time
end WHETSTONE;

procedure COMPUTE_WHETSTONE_KIPS is
-- Variables used to control execution of benchmark and to
-- compute the Whetstone rating :

NO_OF _RUNS : constant := 5; -- Number of times the benchmark is executed
‘ NO_OF _CYCLES : INTEGER; -- Number of times the group of benchmark
-- modules is executed
-- I : INTEGER;

-- Embedded (as 1) in "N" constants at beginning of WHETSTONE proc

-- Factor weighting number of times each module loops
-- A value of ten gives a total weight for modules of
-- approximately one miliion Whetstone instructions
START_TIME : FLOAT;
-- Time at which execution of benchmark modules begins
STOP_TIME : FLOAT;
-- Time at which execution of benchmark modules ends
-- (time for NO_OF_CYCLES)
ELAPSED_TIME : FLOAT;
-- Time between START_TIME and STOP_TIME

MEAN_TIME : FLOAT; -- Average time per cycle
RATING : FLOAT; -- Thousands of Whetstone instructions per sec
MEAN_RATING : FLOAT; -- Average Whetstone rating
INT_RATING : INTEGER; -- Integer value of KWIPS
begin
NEW_LINE;
PUT_LINE
("Test Name: A000092 (lass Name: composite™);

MEAN_TIME := 0.9;
MEAN_RATING := 0.0;
NO_OF_CYCLES := 10;
RUN_LOOP:
for RUN_NO 1n 1..NO_OF_RUNS loop
-~ Call the Whetstone benchmark parocedure
WHETSTONE(NO_OF _CYCLES,START_TIME,STOP_TIME);

-- Compute and write elapsed time
ELAPSED_TIME := STOP_TIME - START_TIME;

1
-- Sum time in milliseconds per cycle
MEAN_TIME := MEAN_TIME + (ELAPSED_TIME*1000.0),
FLOAT(NO_OF _CYCLES);
| -- Calculate the Whetstone rating based on the time for
-- the number of cycles just executed and write
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RATING := (1000.0 * FLOAT(NO_OF_CYCLES))/ELAPSED_TIME;

-- Sum Whetstone rating
MEAN_RATING := MEAN_RATING + RATING;
INT_RATING := INTEGER(RATING);

-- Reset NO_OF_CYCLES for next run using ten cycles more
NO_OF _CYCLES := NO_OF_CYCLES + 10;
end loop RUN_LOOP;

-- Compute average time in millieseconds per cycle and write
MEAN_TIME := MEAN_TIME/FLOAT(NO_OF_RUNS);

NEW_LINE; PUT("Average time per cycle : ");
PUT(MEAN_TIME,S5,2,0); PUT_LINE(" milliseconds");

-- Calculate average Whetstone rating and write
MEAN_RATING := MEAN_RATING/FLOAT(NO_OF_RUNS);
INT_RATING := INTEGER(MEAN_RATING);

NEW_LINE; PUT("Average Whetstone rating : ");
PUT_LINECINTEGER ' IMAGECINT_RATING) & " KWIPS™);
NEW_LINE;
NEW_LINE;

end COMPUTE_WHETSTONE_KIPS;
begin

COMPUTE _WHETSTONE_KIPS;
end AQ0OOI2A;
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-~ PERFORMANCE MEASUREMENT : task creation and termination time
-~ 1 task no entry
-- task type in package, no select

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ;
package CREATE_PACK_1 is

task type T1 is

end T1 ;

procedure Pl ; -- will create task, run task, and terminate task
end CREATE_PACK_1 ;

with (REATE_PACK_1 ; use C(REATE_PACK_1 ;

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement

with PING_IO ; -- output results

procedure (OOOOAL is -- main procedure to execute

CPU_TIME : DURATION ; -- CPU time for one feature execution

WALL_TIME : DURATION ; -- WALL time for one feature execution

CHECK_TIMES : constant := 100 ; -- inside loop count and check

ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

begin
ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines
delay 5.9 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;
loop -- until stable measurement, ITERATION_COUNT increases each time

-- Control loop
ITERATION.START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES D ;

- Test loop

-- establish task create and terminate time

ITERATION.START_TEST ;
for J in 1 .. ITERATION_COUNT loop

GLOBAL := @ ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
Pl ; -- this has task that has global increment and call inside
end loop ;
end loop ;

ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;
ITERATION.TEST_STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;

end loop ;

TITERATION.FEATURE _TIMES ( CPU_TIME , WALL_TIME D ;
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-- Printout
PIWG_IO.PIWG_OUTPUT ( "(Q00001" , "Tasking” ,
CPU_TIME , WALL_TIME , ITERATION_COUNT ,
" Task create and terminate measurement " ,
" with one task, no entries, when task is in a procedure” ,
" using a task type in a package, no select statement, no loop, " ) ;

end (0QQ0Q1 ;

package body CREATE_PACK_.1 is
task body T1 is
begin
GLO3AL := GLOBAL + A_ONE ;
REMOTE ;
end T1 ;

procedure Pl 1s

T : T1; -- this creates the task, runs task to completion and terminates
begin

null ;
end P1 ;

end CREATE_PACK_1 ;
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-- PERFORMANCE MEASUREMENT : task creation and termination time
-- 1 task no entry
-- task defined and used in procedure, no select

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ;
package CREATE_PACK. 2 is

procedure Pl ; -- will create task, run task, and terminate task
end (REATE_PACK_Z ;

with CREATE_PACK_2 ; use CREATE_PACK_2 ;
with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement

with PIWG_IO ; -- output results
procedure (OQQAA2 is -- main procedure to execute
CPU_TIME : DURATION ; -- CPU time for one feature execution
WALL_TIME : DURATION ; -- WALL time for one feature execution
CHECK_TIMES : constant := 100 ; -- inside loop count and check
ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable
begin
ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines
delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;
loop -- until stable measurement, ITERATION_COUNT increases each time

-- Control loop
ITERATION.START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES D ;

-- Test loop

ITERATION.START_TEST ;
for J in 1 .. ITERATION_COUNT loop

GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
P1 ; -- this has task that has global increment and call inside
end loop ;
end loop ;

ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;
ITERATION.TEST_STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;

end loop ;

ITERATION. FEATURE_TIMES ( CPU_TIME , WALL_TIME D ;

-- Printout
PIWG_IO.PIWG_OUTPUT ( “(000002" , "Tasking" ,
C(PU_TIME , WALL_TIME , ITERATION_COUNT ,
" Task create and terminate time measurement. " ,
" with one task, no entries when task is in a procedure,” ,
" task defined and used in procedure, no select statement, no loop " ) ;

end (000002 ;




package body (REATE_PACK_Z2 is

procedure P1 is
-- this creates the task, runs task to completion and terminates
-~ execution time for task taken out by control loop
task T1 is
end T1 ;

task body T1 is

begin
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;

end T1 ;

begin
null ;
end P1 ;

end CREATE_PACK_2 ;
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-- PERFORMANCE MEASUREMENT : operations on boolean arrays
-~ arrays are NOT packed
-- operations on components in loop

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control uptimization

with ITERATION ; -- obtain stable measurement
with PING_IO ; -- output results
procedure HO000P4 is -- main procedure to execute
CPU_TIME : DURATION ; -- CPU time for one feature execution
WALL_TIME : DURATION ; -- WALL time for one feature execution
CHECK_TIMES : constant := 100 ; -- inside loop count and check
ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

-- Boolean array declarations

type UNPACKED_BIT_ARRAY is array ( NATURAL range < ) of BOOLEAN;

BIT_VALUE_1 : BOOLEAN GLOBAL > 0;
BIT_VALUE_Z2 : BOOLEAN := GLOBAL rem 2 = 9;
BIT_VALUE_3 : BOOLEAN := GLOBAL <= 1;

subtype UNPACKED_16 is UNPACKED_BIT_ARRAY ( @ .. 15 );

UNPACKED_1 : UNPACKED_16 := UNPACKED_16'( @I131619112115 => BIT_VALUE_1,
11517111113 => BIT_VALUE_2,
others => BIT_VALUE_3 );

UNPACKED_2 : UNPACKED_16 := UNPACKED_16'( ©..3 => BIT_VALUE_1,

4..12 => BIT_VALUE_2Z,
others => BIT_VALUE_3 );

begin -- procedure HOQ0004
ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines
delay 0.5 ; -- wait for stable enviornment on some machines
ITERATION.INITIALTZE ( ITERATION_COUNT ) ;
loop -- until stable measurement, ITERATION_COUNT increases each time

-- Control loop
ITERATION.START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := @ ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES )

-- Test loop
ITERATION.START_TEST ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL = 9 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE;
for I in UNPACKED_16'RANGE loop
UNPACKED_1( T ) := UNPACKED_2( I ) xor not UNPACKED_1( I );
end loop;
for I in UNPACKED_16'RANGE loop
UNPACKED_2C I ) := UNPACKED_1( I ) or UNPACKED_2( I );
end loop;
for I in UNPACKED_16'RANGE loop
UNPACKED_1( I ) := not( UNPACKED_1( I ) and UNPACKED 2( I ) );
end loop;
REMOTE;
end loop ;
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end loop ;
ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;

-~ Be sure UNPACKED_1 has been computed
if UNPACKED_1( GLOBAL rem 16 ) then
GLOBAL := A_ONE;
REMOTE;
end if;

ITERATION.TEST_STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;
end loop ;

ITERATION.FEATURE_TIMES ( CPU_TIME , WALL_TIME ) ;

-- Printout
PIWG_TO0.PING_OUTPUT ( "HOOQ004" , "Chapter 13" ,
CPU_TIME , WALL_TIME , ITERATION_COUNT ,
" Time to perform standard boolean operations on arrays of booleans."” ,
" For this test the arrays are NOT PACKED with the pragma 'PACK.'" ,
" For this test the operations are performed on components in a loop." ) ;

end HOV0004 ;
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-- PERFORMANCE MEASUREMENT : Minimum procedure call and return time
-- procedure local
-- no parameters

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ;
with ITERATION ;
with PIWG_IO ;

procedure PQOOAAL is -- main procedure to execute

CPU_TIME : DURATION ;

WALL_TIME : DURATION ;

CHECK_TIMES : constant := 100 ;
ITERATION_COUNT : ITERATION.ITERATION_COUNTS ;
ITS_OK : BOOLEAN ;

procedure PROC_@ is -- may be inlined thus zero time
begin
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end ;
begin
ITERATION.START_CONTROL ; -~ dummy to bring in pages on some machines
delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;

loop -- until stable measurement, ITERATION_COUNT increases each time

-- Control loop

ITERATION.START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := @ ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES ) ;

-- Test loop

ITERATION.START_TEST ;
for J in 1 .. ITERATION_COUNT loop

GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
PROC_Q ; -- this has control global increment and call inside
end loop ;
end loop ;

ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;
ITERATION.TEST_STABLE ( ITERATION_COUNT , ITS_OK ) ;
exit when ITS_OK ;

end loop ;

ITERATION.FEATURE_TIMES ( CPU_TIME , WALL_TIME ) ;

-- Printout

PIWG_10.PING_QUTPUT ( "POQOQYRL1" , "Procedure” ,
CPU_TIME “5" WALL_TIME , ITERATION_COUNT ,
" Procedure call and return time ( may be zero if automatic inlining ) " ,
" procedure is local " ,
" no parameters " )
end POGOOQ1 ;
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-~ PERFORMANCE MEASUREMENT : procedure call and return time
-- procedure in package
-- ten discrete "in" parameters

package PROC_PACKAGE_10 is
procedure PROC_@ ( Al, A2, A3, A4, AS, A6, A7, A8, A9, Al0 : in INTEGER ) ;
end PROC_PACKAGE_10 ;

with PROC_PACKAGE_10 ; use PROC_PACKAGE_10 ;

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control optimization
with 1TERATION : obtain stable measurement
with PING_IO ; -- output results
procedure POOPA1Q is -- main procedure to execute
CPU_TIME : DURATION ; -- C(PU time for one feature execution
WALL_TIME : DURATION ; -- WALL time for one feature execution
CHECK_TIMES : constant := 100 ; -- inside loop count and check
ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

Al : INTEGER := A_ONE ;

A2 : INTEGER := Al + A_ONE
A3 : INTEGER := A2 + A_ONE
A4 : INTEGER := A3 + A_ONE
A5 : INTEGER := A4 + A_ONE
A6 : INTEGER := AS + A_ONE
A7 : INTEGER := A6 + A_ONE
A8 : INTEGER := A7 + A_ONE
A9 : INTEGER := A8 + A_ONE
A10 : INTEGER := A9 + A_ONE ;

begin
ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines
delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;

loop -- until stable measurement, .:cRATION_COUNT increases each time

-- Control loop
ITERATION. START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := @ ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + Al1+A2+A3+A44+AS5+A6+A7-AB-A9-A10 ;
REMOTE
end loop ;
end toop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES ) ;

- Test loop

ITERATION . START_TEST ;
for ) ain 1 .. ITERATION_COUNT loup
GLOBAL := @ ;
for INSIDE _LOOP wnt 1 .. CHECK_TIMES loop
PROC.® ( Al, A2, A3, A4, A5, A6, A7, A8, A9, AlQ ) ;
-- this has control global increm~nt and call inside
end loop ;
end loop ;
ITERATION.STOP_TEST ( GLOBAL , CHECK_TTMES ) ;
TTERATTION.TEST _STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;
end loop ;

TTERATION.FEATURE _TIMES ( CPU_TIME , WALL_TIME ) ;



-- Printout
PIWG_IO.PIWG_OUTPUT ( "P0OO0010" , "Procedure" ,
CPU_TIME , WALL_TIME , ITERATION_COLNT ,
" Procedure call and return time measurement™ ,
" Compare to POOAOOS " ,
" 10 parameters, in INTEGER " ) ;

end P000Q10 ;

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ;
package body PROC_PACKAGE_10 is -- compare to P0d0005
procedure PROC_@ ( Al, A2, A3, A4, A5, A6, A7, A8, A9, A10 : in INTEGER ) is
begin
GLOBA!L := GLOBAL + A1+AZ2+A3+A4+AS+A6+A7-A8-A9-A10 ;
REMOTE ;
end ;
end PROC_PACKAGE_190 ;
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-- PERFORMANCE MEASUREMENT : Minimum entry call and return time
-- task inside procedure
-- 1 task 1 entry
- no select, do..end

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement
with PIWG_IO0 ; -- output results

procedure TOOOOAL1 is -- main procedure to execute

CPU_TIME : DURATION ; -- CPU time for one feature execution

WALL_TIME : DURATION ; -- WALL time for one feature execution

CHECK_TIMES : constant := 100 ; -- inside loop count and check

ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

task T1 is
entry E1 ;
end T1 ;

task body T1 is
begin
loop
accept E1 do
GLOBAL := GLOBAL + A_ONE ;

REMOTE ;
end E1 ;
end loop ;
end ;
begin
ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines
delay 00.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;

loop -- until stable measurement, ITERATION_COUNT increases each time

-- Control loop
ITERATION.START_CONTROL ;
for ) in 1 .. ITERATION_COUNT loop
GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES ) ;

-- Test loop

ITERATION.START_TEST ;
for ) in 1 .. ITERATION_COUNT loop

GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
T1.€1 ; -- this has control global increment and call inside
end loop ;
end loop ;

ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;
ITERATION.TEST_STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;

end loop ;

ITERATION.FEATURE_TIMES ( CPU_TIME , WALL_TIME ) ;
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-~ Printout
PIWG_IO.PIWG_OUTPUT ( "Teeeeel" , *Tasking" ,
CPU_TIME , WALL_TIME , ITERATION_COUNT ,
" Minimum rendezvous, entry call and return time " ,
" 1 task 1 entry , task inside procedure " ,

" no select " ) ;
abort T1 ;

end TEO0QA1 ;
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-- PERFORMANCE MEASUREMENT : tasks entry call and return time
-- 1 task 2 entries
-- one select statement

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ;
package TASK_PACK_4 is
task T1 is
entry E1 ;
entry E2 ;
end T1 ;
end TASK_PACK_4 ;

with TASK_PACK_ 4 ; use TASK_PACK_4 ;

with REMOTE_GLOBAL ; use REMOTE_GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement

with PIWG_IO ; -- output results

proccdure TOOO0O4 is -- main procedure to execute
CPU_TIME : DURATION ; -- CPU time for one feature execution
WALL_TIME : DURATION ; -- WALL time for one feature execution
CHECK_TIMES : constant := 100 ; -- inside loop count and check

ITERATION_COUNT : ITERATION.ITERATION_COUNTS ; -- set and varied by ITERATION

STABLE : BOOLEAN ; -- true when measurement stable
CASE_COUNT : constant := 2 ;

begin

ITERATION.START_CONTROL ; -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION_COUNT ) ;

loop -- until stable measurement, ITERATION_COUNT increases each time

-~ Control loop
ITERATION.START_CONTROL ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end loop ;
end loop ;
ITERATION.STOP_CONTROL ( GLOBAL , CHECK_TIMES ) ;

-- Test loop
ITERATION.START_TEST ;
for J in 1 .. ITERATION_COUNT loop
GLOBAL := 0 ;
for INSIDE_LOOP in 1 .. CHECK_TIMES loop

T1.€1 ; -- this has control global increment and call inside
T1.E2 ; -- this has control global increment and call inside
end loop ;
end loop ;

GLOBAL := GLOBAL / CASE_COUNT ;
ITERATION.STOP_TEST ( GLOBAL , CHECK_TIMES ) ;
ITERATION.TEST_STABLE ( ITERATION_COUNT , STABLE ) ;
exit when STABLE ;
end loop ;
ITERATION. FEATURE_TIMES ( CPU_TIME , WALL_TIME ) ;
CPU_TIME := DURATION ( CPU_TIME / CASE_COUNT ) ;
WALL_TIME := DURATION ( WALL_TIME / CASE_COUNT ) ;

package
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-- Printout
PIWG_IO0.PIWG_OUTPUT ( "T@00ee4" , "Tasking" ,
CPU_TIME , WALL_TIME , ITERATION_COUNT ,
" Task entry call and return time measured” ,
" One tasks active, two entries, tasks in a package " ,
" using select statement " ) ;

abort T1 ;
end TO00024 ;

package body TASK_PACK_4 is
task body T1 is
begin
loop
select
accept E1 do
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end E1 ;
or
accept E2 do
GLOBAL := GLOBAL + A_ONE ;
REMOTE ;
end E2 ;
end select ;
end loop ;
end T1 ;

end TASK_PACK_4 ;



Appendix C

Selected DIANA Representations of Test Programs

The timed fragment from P000001 and the entirety of SimpleTasks is
included here in DIANA form. This DIANA form is that used on the Rational
machine. It represents as a bracketed list with a node type tag, non-
structural attributes, and child nodes (structural attributes) in that order,
e.g., [dn_type attrl attr2 [child1] [child2]]. The hexadecimal numbers to the
left are memory addresses for the nodes and can be ignored. Semantic
attributes of the form sm_attr = [dn_tag *] represent a pointer to a specific

existing node of the type indicated.

POOOOO1:
1FC910A_10C78: (ON_LOOP
1x_line_count = 7
1FC910A_10E82: [DON_FOR
1FC910A_10EFB: [DN_ITERATION_ID
SM_SEQNUM = 1
SM_PARENT = [DN_PROC_ID A]
lx_symrep = "J1"
sm_obj_type = [DN_RANGE A]
]
1FC91@A_1101B: [DN_RANGE
sm_base_type = [ON_INTEGER A]
1FC910A_11087: [DN_NUMERIC_LITERAL
1x_numrep = "1"
sm_exp_type = [DN_INTEGER A]
sm_value = 1
]
1F(910A_11136: [DN_USED_OBJECT_ID
Ix_symrep = "ITERATION_COUNT"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [ON_CONSTRAINED A}
sm_value = No value
]
]
]
1FC910A_11FE1: [ON_STM_S

1x_line_count = S
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1FC910A_111F3:

1FC910A_1127D:

1FC910A_1131F:

1FC910A_1138B9:

1F(910A_115C0:
1FC910A_11639:

1FC910A_11759:

1FC910A_117F5:

1FC910A_11874:

1FC916A_11F71:

1FC910A_11931:

1FC910A_119BB:

1FC910A_11A5D:

1FC910A_11B1C:

1FC910A_11D7D:
1F(910A_11BCF:

1FC910A_11CA6:
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[ON_ASSIGN

1x_line_count = 1

[DN_USED_OBJECT_ID
Ix_symrep = "GLOBAL"
sm_defn = [DN_VAR_ID A}
sm_exp_type = [DN_CONSTRAINED A}
sm_value = Uninitialized

]

[ON_NUMERIC_LITERAL
Ix_numrep = "@"
sm_exp_type = [DN_INTEGER A]
sm_value = @

1

1
[ON_LOOP

1x_line_count = 4

[DN_FOR

[DN_ITERATION_ID
SM_SEQNUM = 1
SM_PARENT = [DN_PROC_ID A]
Ix_symrep = "INSIDE_LOOP"
sm_obj_type = [DN_RANGE 7]

]

[DN_RANGE
sm_base_type = [DN_INTEGER A]
{DN_NUMERIC_LITERAL

Ix_numrep = "1"
sm_exp_type = [DN_INTEGER A]
sm_value = 1

]
[DN_USED_OBJECT_ID

]

]
[DN_STM_S

Ix_symrep = "CHECK_TIMES"
sm_defn = [DN_NUMBER_ID A]
sm_exp_type = [DN_INTEGER A]
sm_value = 100

Ix_line_count = 2

[DN_ASSIGN
Ix_line_count = 1
[DN_USED_OBJECT_ID

]

lx_symrep = "GLOBAL™

sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

[DN_FUNCTION_CALL

sm_exp_type = [DN_INTEGER A]
sm_value = Uninitialized
sm_normalized_param_s = [ON_EXP_S A])
Ix_prefix = FALSE
[ON_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A]
1x_symrep = "+"
sm_operator = INTEGER_ADD
]
[DN_PARAM_ASSOC_S
[DON_USED_OBJECT_ID
Ix_symrep = "GLOBAL"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]

[DN_USED_OBJECT_ID
ix_symrep = “A_ONE™
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized




1F(910A_11DF7:

1FC910A_11E9B:

1FC910A_11F12:
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1
[DN_PROCEDURE _CALL
Ix_line_count = 1

sm_normalized_param_s = [DN_EXP_S A]
[DN_USED_NAME_ID

1x_symrep = "REMOTE"
sm_defn = [DN_PROC_ID A]

]
[DN_PARAM_ASSOC_S]



SimpleTasks:

1F77DOA_AD12:

1F77DOA_CES6:

1F7700A_CEC6:

1F77D0A_CFBA:

1F7700A_DRAC:
1F7700A_D108B:

1F770RA_D198B:

1F77D00A_13074:
1F77D@A_D25A:

1F77D@A_D554:
1F7700A_D2FE :

1F77D@A_D429:

1F770@A_DSEB3:

1F7700A_D695:

1F77D0A_D70C:

1F77D@A_D7A6:

1F77D@A_DI75:
1F77D@A_D84A:

1F77D0A_DOD4:

1F77D@A_DABG6:

1F770@A_DB2D:

1F7700A_DCOA:

[ON_COMP_UNIT
Ix_line_count = 55
SM_ID_TABLE =
[ON_CONTEXT

Ix_line_count = @

]

[DN_SUBPROGRAM_BODY
SM_FORWARD = [DN_SUBPROGRAM_DECL A]
1x_line_count = 55

sm_spec = [DN_PROCEDURE A]
sm_body = [DN_BLOCK A]
sm_stub = null

sm_first = [DN_PROC_ID A]

]
[DN_PROCEDURE
[DN_PARAM_S
Ix_line_count = @
SM_ID_TABLE =

]
[DN_BLOCK
POST_COMMENT_HEIGHT » -2
PRE_COMMENT _HEIGHT = -2
1x_line_count = 53
[ON_ITEM_S
Ix_line_count = 49
[DN_VAR
Ix_line_count = 1
{ON_ID_S
[DN_VAR_ID
SM_PARENT » [ON_PROC_ID A]
1x_symrep » “"COUNT_A"
sm_obj_type = [DN_CONSTRAINED A]
sm_obj_def = [DN_NUMERIC_LITERAL A]

[DN_VAR_ID
SM_PARENT = [DN_PROC_ID A]
Ix_symrep « "COUNT_B"
sm_obj_type = [DN_CONSTRAINED A]
sm_obj_def = [DN_NUMERIC_LITERAL A]

]
[DN_CONSTRAINED
sm_type_struct = [ON_INTEGER A]
sm_base_type = [DN_INTEGER #]
sm_constrawnt = [DN_RANGE ~]
[ON_USED_NAME _ID
Ix_symrep = "INTEGER"
sm_defn = [DN_TYPE_ID A]

LON_VOID]

]

[ON_NUMERIC_LITERAL
1x_numrep = "0
sm_exp_type = [DN_INTEGER A]
sm_value = @

]
[ON_VAR
POST_COMMENT_HEIGHT = -2
Ix_line_count = 2
{DN_ID_S
[DN_VAR_ID
SM_PARENT = [DN_PROC_ID A]
1x_symrep = "RESULT_C”
sm_obj._type = [DN_CONSTRAINED A}
sm_obj_def « [DN_NUMERIC_LITERAL A]
]

[ON_CONSTRAINED
sm_type_struct = [DON_INTEGER A]
sm_base_type « [ON_INTEGER A]
sm_constraint = [DN_RANGE A]
[ON_USED_NAME_ID
Ix_symrep « "INTEGER™
sm_defn = [DN_TYPE_ID A]

{ON_v0ID]

[ON_NUMERIC_LITERAL
Ix_numrep = "6~
sm_exp_type = [DN_INTEGER A}
sm_value = 6

]
[DN_TASK_DECL
POST_COMMENT _HEIGHT = -2




1F77D0A_DC94:

1F77D@A_DODBA:

1F77D@A_DE1D:

1F77DRA_DF 3F :

1F7700A_DF(9:

1F77D0A_EOBF :

1F7700A_E152:

1F7700A_E274:

1F77D@A_E2FE:

1F7700A_E3F4:

1F7700A_EDCO:
1F77D0A_E487:
1F77DQA_ES2B:

1F77D@A_E648:

1F77DQA_E6D5:

1F77DGA_E79A:
1F7700A_ER3E:

1F770@A_E9ISE:

1F77DRA_E9ES:

1F7700A_EAAD:
1F77D0A_EBS1:
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Ix_line_count = 3

{ON_VAR_ID
SM_PARENT « [DM_PROC_ID A]
1x_symrep =« "TASK_A"
sm_obj_type = [DN_TASK_SPEC A]
sm_obj_def = [DN_TASK_SPEC A]

]

[DN_TASK_SPEC
Ix_line_count = @
sm_body = [DN_BLOCK A]
[ON_DECL_S

LX_VERBOSE = TRUE
Ix_line_count = @
SM_ID_TABLE =
]
]

[DN_TASK_DECL

POST_COMMENT _HEIGHT = -2

Ix_line_count = 3

[DN_VAR_ID
SM_PARENT = [DN_PROC_ID A]
Ix_symrep = "TASK_B"
sm_obj_type « [DN_TASK_SPEC A]
sm_obj_def = [DN_TASK_SPEC A]

[ON_TASK_SPEC
Ix_line_count = @
sm_body = [DN_BLOCK A]
[ON_DECL_S

LX_VERBOSE = TRUE
Ix_line_count = 9
SM_ID_TABLE =
]
]

[DN_TASK_DECL

POST_COMMENT _HEIGHT = -2

Ix_line_count = 6

[ON_VAR_ID
SM_PARENT = [ON_PROC_ID A]
1x_symrep = "TASK_C"
sm_obj_type = [DN_TASK_SPEC A]
sm_obj_def = [DN_TASK_SPEC A]

[ON_TASK_SPEC
Ix_line_count = @
sm_body = [ON_BLOCK A)
{ON_DECL_S
Ix_line_count = 3
{DN_SUBPROGRAM_DE CL
Ix_line_count = 1
[ON_ENTRY_ID
SM_SEQNUM = 1
SM_PARENT = [DN_VAR_ID 7]
1x_symrep = "ENTRY_A"
sm_spec = [DN_ENTRY A]

]
[ON_ENTRY
Ix_line_count = @
[ON_VOID]
[ON_PARAM_S
Ix_lire rount = @
SM_ID_TABLE =
]

]
{ON_VOID]

{ON_SUBPROGRAM_DECL
Ix_line_count = 1
[DN_ENTRY_ID
SM_SEQNUM = 2
SM_PARENT = [DN_VAR_ID A}
Ix_symrep = “ENTRY_B"
sm_spec = [DN_ENTRY 2]

[DN_ENTRY

Ix_line_count = @

[ON_VOID]

[ON_PARAM_S
1x_line_count = @
SM_ID_TABLE =

]

[ON_VOID]

{ON_SUBPROGRAM_DECL
1x_line_count = 1
[DN_ENTRY_ID
SM_SEQNUM = 3
SM_PARENT = [DN_VAR_ID 4]
1x_symrep = “DONE™
sm_spec = [ON_ENTRY A]
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1F7700A_EC71: [DN_ENTRY
Ix_line_count « @
[DN_VO1D]

1F7700A_F (FB: [DN_PARAM_S

Ix_line_count = @
SM_ID_TABLE =
]

-
4
[DN_vOID]

3
]

]
1F7700A _F14A: [ON_TASK_BODY
SM_FORWARD = [ON_TASK_DECL 4]
Ix_line_count = 9
1F7700A_F1D4: [DN_TASK_BODY_ID
ix_symrep « "TASK_A"
sm_spec = [DN_TASK_SPEC 4]
sm_body = [DN_BLOCK 4]
sm_stub = null
sm_first = [DN_VAR_ID A]

]
1F77D@A_F2(3: [ON_BLOCK
POST_COMMENT _HEIGHT = -2
Ix_line_count = 8
1F77D0A_F367: [ON_ITEM_S
Ix_line_count = @
SM_ID_TABLE =

]
1F77D@A_106E3: {ON_STM_S
Ix_line_count = 6
1F7700A_F412: [DN_LOOP
Ix_line_count = 3
1F7700A_F619: [DON_FOR
1F7700A_F692: [ON_ITERATION_ID
SM_SEQNUM = 1
SM_PARENT = [DN_VAR_ID A]
Ix_symrep = "I
sm_obj_type = [DN_RANGE A)

1F77DOA_F7B2: %DN_RANGE
sm_base_type = [DN_INTEGER A]
1F77DOA_FB4E : {ON_NUMERIC_LITERAL
1x_numrep = "1°
sm_exp_type = [ON_INTEGER 7]
sm_value = 1

1F7700A_F8CD: [ON_NUMERIC_LITERAL
SM_INT_VALUE = 1000
lx_numrep = "1000"
sm_exp. type = [DN_INTEGER A]
sm_value = 1000

]

1F77D0A_FE62: [ON_STM_S
Ix_line_count = 1
1F7700A_F9DA : [ON_ASSIGN
Ix_line_count = 1
1F7700A _FAGA: {DN_USED_OBJIECT_ID
Ix_symrep = “COUNT_A"
sm_defn = [DN_VAR_ID 4]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

1F7/D@A_FBO6: [ON_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A]
sm_value = Uninmtialized
sm_normalized_param_s = [DN_EXP_S A]
Ix_prefix = FALSE
1F77D0A_FBCS: [DN_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A}
Ix_symrep = "4+~
sm_operator = INTEGER_ADD

]
1F77D0A_FEQ3: [ON_PARAM_ASSOC_S
1F7700A_FC78: {DN_USED_OBIECT_ID
Ix_symrep = "COUNT_A~
sm_defn = [ON_VAR_ID A}
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]
1F77D@A_FD4F : [ON_NUMERIC_LITERAL
Ix_numrep = "1
sm_exp_type = [DN_INTEGER ~]
sm_volue = 1

]
B

]
1F7700A_FED2: [DN_ENTRY_CALL



1F7700A_FF76:

1F77D0A__1001A:

1F77D0A_1008C:

1F7700A_10133:
1F77D0A_10238:
IF77DOA_102¢2:

1F77D0A_10364:

1F7700A_10423:

1F77D0A_10684:
1F7700A 10406

1F77DGA_105AD:

1F77D@A_10753:

1F7700A_10891:

1F770QA_1091B:

1F77D0A_10A0A:

1F77D0A_10AAE :

1F7700A _110DA:
1F7700A_10859:

1F77D@A 10060
1F7700A _10009:

1F77D0A_1QEF9:
1F7700A_1@F95:

]
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SM_ORIGINAL_NODE = [DN_PROCEDURE_CALL A)
Ix_line_count = 1
sm_normalized_param_s = [DN_EXP_S 4]
[ON_SELECTED
sm_exp_type = null
sm_value = Uninitialized
[ON_USED_OBJECT_ID
1x_symrep = "TASK_C"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_TASK_SPEC A]
sm_value = Uninitialized

]

[DN._USED_NAME _ID
Ix_symrep = "ENTRY_A"
sm_defn = [DN_ENTRY_ID A]

]
[DN_PARAM_ASSOC_S]

]
[DN_ASSIGN
Ix_line_count = 1
[DN_USED_OBJECT_ID
Ix_symrep = “"COUNT_A"
sm_defn = [DN_VAR_ID A]
sm_exp_type = DN_CONSTRAINED A]
sm_value = Uninitialized

][DN_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A]
sm_volue = Uninitialized
sm_normalized_param_s = [DN_EXP_S A]
Ix_prefix = FALSE
[DN_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A]
Ix_symrep = "+"
sm_operator = INTEGER_ADD

]
[DN_PARAM_ASSOC_S
[DN_USED_OBJECT_ 1D
Ix_symrep = "COUNT_A"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

[ON_USED_OBJECT_ID
Ix_symrep = "COUNT_A"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [ON_CONSTRAINED A]
sm_value = Uninitialized

]
]
]

]
[DN_ALTERNATIVE_S
Ix_line_count = @

]
[DN_TASK_BODY

SM_FORWARD = [DN_TASK_DECL 2]
Ix_line_count = 9

[DN_

TASK_BODY_ID

Ix_symrep = "TASK_B"
sm_spec = [DN_TASK_SPEC A]
sm_body = [DN_BLOCK A]
sm_stub = null

sm_first = [DN_VAR_ID 7]

_BLOCK

POST_COMMENT _HEIGHT = -2
1x_line_count = 8
{ON_ITEM_S
Ix_line_count = @
SM_ID_TABLE =

J(on_sm.s

Ix_line_count = 6
[ON_LOOP
Ix_line_count = 3
{ON_FOR
[DON_ITERATION_ID
SM_SEQNUM « 1
SM_PARENT = [DN_VAR_ID ~]
Ix_symrep « "I"
sm_obj_type « [DN_RANGE '

]
[DN_RANGE
sm_bose_type = [DN_INTEGER A]
[DN_NUMERIC_LITERAL
Ix_numrep = "1"
sm_exp_type = [DN_INTEGER A]
sm value = 1




1F7700A_11014:

1F7700A_11559:
1F77D0A_110AE:
1F77D@A_11138:

1F77D0A_111DA:

1F77D0A_11299:

1F77DGA_114FA:
1F77DQA_1134C:

1F77D0A_11423:

1F77DQA_115(9:

1F77DOA_11660:

1F77D0A_11711:

1F77DOA_117B3:

1F77D0A_1182A:
1F77DOA_1192F :
1F77D@A_11989:

1F770@A_11A5B:

1F77D00A_11B1A:

1F7700A_11078:
1F7700QA_11BCD:

1F77DRA_11CA4:
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[DN_NUMERIC_LITERAL
Ix_numrep = "100"
sm_exp_type = [DN_INTEGER A]
sm_value = 100

]

]
[ON_STM_>
Ix_line_count = 1
[ON_ASSIGN
Ix_ltine_count = 1
[ON_USED_OBJECT_ID
Ix_symrep = "COUNT_B"
sm_defn = [DON_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]
[DN_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A}
sm_value = Uninitialized
sm_normalized_param_s = [DN_EXP_S A]
Ix_prefix = FALSE
[DN_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A]
Ix_symrep = "+"
sm_operator = INTEGER_ADD

]
[ON_PARAM_ASSOC_S
[ON_USED_OBJECT_ID
Ix_symrep = "COUNT_B"
sm_defn = [ON_VAR_ID AJ
sm_exp_type = [DN_CONSTRAINED A]J
sm_value = Uninitialized

[DN_USED_OBIECT_ID
tx_symrep = "I"
sm_defn = [DN_ITERATION_ID A]
sm_exp_type = [DN_RANGE A]
sm_value = Uninitialized

]
]

]
[DN_ENTRY_CALL
SM_ORIGINAL_NODE = [DN_PROCEDURE_CALL A]
Ix_line_count = 1
sm_normalized_param_s = [DN_EXP_S A]
[ON_SELECTED
sm_exp_type = null
sm_value = Uninitialized
[DN._USED_OBJECT_ID
Ix_symrep = "TASK_C™
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_TASK_SPEC A]
sm_value = Uninitialized

]
{DN_USED_NAME_ID
Ix_symrep = "ENTRY_B"
sm_defn = [DN_ENTRY_ID A}
]

1
[ON_PARAM_ASSOC_S]

]
[ON_ASSIGN
Ix_line_count = 1
[DN_USED_OBJECT_ID
Ix_symrep = "COUNT_B"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A)
sm_value = Uninitialized

]
[ON_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A}
sm_value = Uninitialized
sm_normalized_param_s = [DN_EXP_S 2]
1x_prefix = FALSE
[DN_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP 2]
ix_symrep = "+"
sm_operator = INTEGER_ADD

]
TDN_PARAM_ASSOC_S
[DN_USED_OBJECT_ID
Ix_symrep « "COUNT_B"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]

[ON_USED_OBJECT_ID
Ix_symrep = "COUNT_B"
sm_defn =« [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]




1F77D0A_11E4A:

1F77D0A_11F88:

1F77D0A_12012:

1F77D0A_12101:

1F77D@A_121A5:

1F77D@A_13B(6:
1F77DRA_12250:

1F7700A_12457:
1F7700A_124D0:

1F77DQA_125F0:
1F77D@A_1268C:

1F7700A_12708:

1F77D@A_13920:
1F77D@A_1278A:
1F77D@A_13808:
1F77D@A_1282F:

1F77DOA_12F92:

1F77D0A_128D4:

1F77D0A_12978:

1F77DQA_129€F :

1F77D0A_12F22:

1F77DOA_12A9A:
1F77D0A_12824:

1F77DOA_128(6:

1F7700A_12C85S:
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sm_value = Uninitialized

]
]
]

]

[DN_ALTERNATIVE_S
Ix_line_count = @

]

]

]
[DN_TASK_BODY

SM_FORWARD = [DN_TASK_DECL A]
Ix_line_count = 16
[ON_TASK_BODY_ID
Ix_symrep = "TASK_C"
sm_spec = [DN_TASK_SPEC A]
sm_body = [DN_BLOCK A]
sm_stub = null
sm_first = [ON_VAR_ID A]

]

[ON_BLOCK
POST_COMMENT_HEIGHT = -2
ix_line_count = 15
[DN_ITEM_S

I1x_line_count = 0
SM_ID_TABLE =

]
[ON_STM_S
Ix_line_count = 13
[ON_LOOP
Ix_line_count = 11
[ON_FOR
[ON_ITERATION_ID
SM_SEQNUM = 1
SM_PARENT = [DN_VAR_ID A]
1x_symrep = "I"
sm_obj_type = [DN_RANGE A]
%DN_RANGE
sm_base_type = [DN_INTEGER A]
[ON_NUMERIC_LITERAL
Ix_numrep = "1"
sm_exp_type = [DN_INTEGER A]
] sm_value = 1
[DN_NUMERIC_LITERAL
Ix_numrep = "2"
sm_exp_type = [DN_INTEGER A]
sm_value = 2
]
]
[ON_STM_S
Wx_line_count = 9
[DN_SELECT

Ix_line_count = 9
[ON_SELECT_CLAUSE_S
Ix_line_count = 8
[DN_SELECT_CLAUSE
Ix_tine_count = 3
[DN_VOID]
[DN_STM_S
Ix._line_count = 3
[DN_ACCEPT
Ix_line_count = 3
[DN_USED_NAME_ID
1x_symrep = "ENTRY_A"
sm_defn = [DN_ENTRY_ID A]

]

[ON_PARAM_S
Ix_line_count = @
SM_ID_TABLE =

]
[DN_STM_S
Ix_line_count = 1
[ON_ASSIGN
Ix_line_count = 1
[ON_USED_OBJECT_ID
1x_symrep = "RESULT_C"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]
[DN_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A]
sm_value = Uninitialized
sm_normalized_param_s = [DN_EXP_S A]
Ix_prefix = FALSE
[ON_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A]
Ix_symrep = °/"
sm_operator = INTEGER_DIV




1F7700A_12E(3:
1F770@A_12D38:

1F77D@A_12E0QF :

1F77DRA_1301D:

1F77DRA_13780:

1F77D@A_130C2:

1F77D0A_13166:

1F77D@A_131DD:

1F77DQA_13710:

1F77DOA_13288:
1F77DQA_13312:

1F77D@A_133B4:

1F77DRA_13473:

1F77D@A_136B1:
1F77DQA_13526:

1F7700A_135FD:

1F77D0A_13878:

1F77DOA_1394A8:

1F77D0A_13A4F :

1F77D0A_13A(6:

1F77D0A_13856:
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[DN_PARAM_ASSOC_S
{DN_USED_OBJECT_ID
Ix_symrep = "RESULT_C"
sm_defn = [DON_VAR_ID A]
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitiglized

]

[DN_NUMERIC_LITERAL
Ix_numrep = "2"
sm_exp_type = [DN_INTEGER A]
sm_value = 2

]
]

]
[ON_SELECT_CLAUSE
1x_line_count = 3
{ON_vO1D]
[DN_STM_S
Ix_line_count = 3
[DN_ACCEPT
Ix_line_count = 3
[ON_USED_NAME_ID
Ix_symrep = "ENTRY_B"
sm_defn = [DN_ENTRY_ID A]

[ON_PARAM_S
1x_line_count = @
SM_ID_TABLE =

]
[ON_STM_S
Ix_line_count = 1
[DN_ASSIGN
Ix_line_count = 1
[DN_USED_OBJIECT_ID
Ix_symrep = "RESULT_C"
sm_defn = [DN_VAR_ID A]
sm_exp_type = [DON_CONSTRAINED A]
sm_value « Uninitialized

[DON_FUNCTION_CALL
sm_exp_type = [DN_INTEGER A]
sm_value = Uninitialized
sm_normalized_param_s = [DN_EXP_S A}
1x_prefix = FALSE
[DN_USED_BLTN_OP
SM_ORIGINAL_NODE = [DN_USED_OP A]
Ix_symrep = "4"
sm_operator = INTEGER_ADD

]
[ON_PARAM_ASSOC_S
[DN_USED_OBJECT_ID
1x_symrep = "RESULT_C"
sm_defn = [DN_VAR_ID ~)
sm_exp_type = [DN_CONSTRAINED A]
sm_value = Uninitialized

]

[ON_NUMERIC_LITERAL
Ix_numrep = "4"
sm_exp_type = [DN_INTEGER A]
sm_value = 4

]
]
]
]
]
]
]
]
[DN_STM_S
Ix_line_count = @
]
]
1 ]
[DN_ACCEPT

1x_line_count = 1
[DN_USED_NAME_ID
1x_symrep = "DONE™
sm_defn « [DN_ENTRY_ID A)
]
[ON_PARAM_S
tx_line_count = @
SM_ID_TABLE =

]

[ON_STM_S
1x_line_count = @

]

]




1F7700A_13C36:

1F7700A_1463D:

1F77D0A_142F2:

1F77DRA_14396:

1F77D0A_1443A:

1F77D@A_1440C:

1F77D@A_14553:

1F77DRA_146F0:

1F77D@A_1483C:
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]

[DN_ALTERNATIVE_S
1x_line_count = @

]

]
]

]
[DN_STM_S
PRE_COMMENT _HEIGHT = 1
Ix_line_count = 2
[ON_ENTRY_CALL
SM_ORIGINAL_NODE = [DN_PROCEDURE_CALL A)
Ix_line_count = 1
sm_normalized_paran_s = [DN_EXP_S 4]
[ON_SELECTED
sm_exp_type = nutl
sm_value = Uninitialized
[DN_USED_OBJECT_ID
Ix_symrep = "TASK_C"
sm_defn = [DN_VAR_ID A}
sm_exp_type = [DN_TASK_SPEC A]
sm_value = Uninitialized

]
[ON_USED_NAME_ID

Ix_symrep = "DONE"
sm_defn = [DN_ENTRY_ID A]

]
[DN_PARAM_ASS0C_S]
]
[ON_ALTERNATIVE_S

I1x_.line_count = @
]

]

]
[DN_PRAGMA_S

1x_line_count = @




Appendix D

Experiment Output

];::)a(;(r)l Iterations of simple tasking system takes
III:)E:)I(I)l Iterations of simple tasking system takes
l112)%1(1)1 Iterations of simple tasking system takes
111:)%161 Iterations of simple tasking system takes
Ilr:)%:‘)l(l)1 Iterations of simple tasking system takes
III:)&:)I(I)l Iterations of simple tasking system takes
lez)a&r)l Iterations of simple tasking system takes
ﬁ)?)lg Iterations of simple tasking system takes
llnoa(;(r)l Iterations of simple tasking system takes
Illz)a(;(r)1 Iterations of simple tasking system takes
llnoag(r)x Iterations of simple tasking system takes
Ilr;)%l(r)l Iterations of simple tasking system takes
rlnoag(r)l Iterations of simple tasking system takes
rlr:)abl(r)l Iterations of simple tasking system takes
IIHOQ(;(? Iterations of simple tasking system takes
lllt)a:)l(r)1 Iterations of simple tasking system takes
111:)23(1)1 Iterations of simple tasking system takes
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11.8167 seconds.
11.9333 seconds.
11.9833 seconds.
12.0500 seconds.
14.3834 seconds.
14.3833 seconds.
14.4000 seconds.
14.3833 seconds.
14.3834 seconds.
14.3833 seconds.
14.3834 seconds.
11.7333 seconds.
14.5667 seconds.
14.5667 seconds.
14.5667 seconds.
14.5667 seconds.
14.5667 seconds.




Teat Name: A000090

Clock resclution measuremsent running

Teat Description:

Detersine clock resclotion using second differences
of values returmed by the function CPU_Time_Clock.

Musber of sample values is

Cloch Resolution

Clock Resolution (average} =
Clock Resolution (variance) =

Test Wams: AG00091

Test Descriptiom:

7000
1.000000000000000 seconds.
1.000000000000000 seconds.
0.000000000000000 seconda.

Clase Mame: Composite
1.2000 ie time in milliseconds for one Dhrystone

Reinhold P. Weicker's DHRYSTONE composite benchmark

Teat Name: A000092

Average time per cycle 1

Class Mame: composite

2784.33 milliseconds

Average Whetstone rating : 359 KWIPS
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Iteration

74557.0000 7‘557 0000 0.0000
Test Itexation 1

74558.0000 74558.0000 0.0000
Iteration 2

74538.0000 74558,0000 0.0000
Test Iteration 2

74559, 0000 74559.0000 0.0000
Iteration 4

74559.0000 74559.0000 0.0000
Test Iteration 4

74559, 0000 74559.0000 0.0000
Iteration

74560, 0000 74560 0000 0.0000
Test Iteration

74560, 0000 74560 0000 0.0000
Iteration 16

74560.0000 11561 0000 1.0000
Test Itexation

74561.0000 70562 0000 1.0000
Itexation 32

74562.0000 74562.0000 ¢.0000
Test Iteration 32

T4562.0000 74564.0000 2.0000
Iteration 4

74564.0000 74565.0000 1.0000
Test Iteration 64

74565,0000 74568.0000 3.0000
Iteration 1.

74569.0000 74569. 0000 0.0000
Test Iteration 12

74570.0000 74576 0000 6.0000
Iteration

74576.0000 7‘578 0000 2.0000

Test Itaration 256

74578.0000 7459) 0000 13.0000
Iteration 51

74591.0000 71594 0000 3.0000
Test Iteration 512

74594.0000 74620.0000 26.0000
Iteration 1

74620.0000 74626.0000 6.0000
Teat Iteration 1024

74626.0000 74678.0000 52.0000
Iteration 2048

T4678.0000 74689.0000 11.0000
Test Iteration 2048

74690.0000 74793.0000 103.0000

Test Name: HO00004 Class Name:s Chapter 13
CPU Time: 449.2 microseconds
Wall Tima: 449.2 microseconda. Iterxation Counti 2048

Test Description:

Time to perform standard boolean operations on arrays of booleans.
For this test the arrays are NOT PAMKED with the pragms 'PACK.*

For this test the operations are parformed on compoments in a loop.

Iteration

73717.0000 71717 0000 ¢.0000
Test Iteration 1

73717.0000 73717.0000 0.0000
Iteration 2

73718.0000 7371. 0000 0.0000
Test Iteration

173718.0000 73713 0000 0.0000
Iteration

73718.0000 73718.0000 0.0000
Test Iteration

73719, 0000 73719.0000 0.0000
Iteration

73720.0000 73720 0000 0.0000
Test Iteration

73720.0000 73721 0000 1.0000
Iteration 16

73721.0000 73721.0000 0.0000
Test Iteration 16

73721.0000 73723.0000 2.0000
Iteration 32

73723.0000 73723.0000 0.0000
Test Iteration 32

13723.0000 73727 0000 4.0000
Iteration 64

73727.0000 73727.0000 0.0000
Teat Iteration 64

73727.0000 73734.0000 7.0000
Iteration 1

73734.0000 73735. 0000 1.0000
Test Iteration 12

73735.0000 737‘9 0000 14.0000
Iteration

73749.0000 73750 0000 1.0000
Test Itaration 256

73750.0000 73777.0000 27.0000
Iteration 3512

73777.0000 73780.0000 3.0000
Test Iteration 512

73780.0000 73834.0000 54.0000
Iteration

73834.0000 73839.0000 5.0000
Test Iteration 1024

73839.0000 73947.0000 108,0000
Test Wame) €000001 Class Nawe: Tasking
CPU Time: 1005.9 microseconds
Wall Time: 1005.9 microseconds. Iteration Count: 1024

Test Description:

Task create and terminate measurement
with one task, no entries, when task is in a procedure
using a task type in a package, no select statement, no loop,

Iteration

73949.0000 739‘9 0000 0.0000
Test Iteration

73949. 0000 73950.0000 1.0000
Iteration

73950. 0000 73950.0000 0.0000
Test Iteration 2

73950.0000 73950.0000 0.0000
Iteration 4

7395¢.0000 73951.0000 1.0000
Test "taration

73951.0000 73951.0000 6.0000
Iteration

73951.0000 7]951.0000 0.0000
Test Iteratio

73952.0000 7]95] 0000 1.0900
Iteration

73953.0000 7]953 0000 0.0000
Test Iteration 16

73953.0000 73955.0000 2.0000
Iteration 12

73955.0000 73955.0000 0.0000
Test Iteration 3

73955. 0000 73959 0000 4.0000
Iteration

73959. 0000 73960 0000 1.0000
Test Iteration

73960.0000 73967 0000 7.0000
Iteration 12

73967.0000 7]96. 0000 1.0000
Test Iteration 12

73968.0000 73982. 0000 14.0000
Iteration

73982.0000 73984. 0000 2.0000
Teat Iteration 25

73984.0000 74012. 0000 28.0000
Iteration 512

74012.0000 74013.0000 3.0000
Test Iteration 3512

74015.0000 74071.0000 56.0000
Tteration

74072.0000 74077.0000 5.0000
Test Iteration 1024

T74077.0000 74190.0000 113.0000
Teut Name: €000002

CPU Time: 1054.7 wicroseconds
Wall Time: 1054.7 wmicroseconda.

Test Description:

Clans Wama: Tasking

Iteration Count: 1024

Tash create and terminate tims measurement.
with one task, no entries when task is in a procedure

task defined and vsed in procedure, no select ltuta-nt, no loop

Iteration 1

75295.0000 75295.0000 0.0000
Test Iteration 1

75296.0000 75296.0000 0.0000
Iteration 2

75296.0000 75296.0000 0.0000
Test Iteration

75296.0000 75296.0000 0.0000
Iteration 4

75297.0000 75297.0000 0.0000
Test Iteration 4

75297.0000 75297.0000 0.0000
Iteration

75297.0000 75297.0000 0.0000
Test Iteration 8

75297.0000 75297.0000 0.0000
Iteration 16

75299.0000 75298.0000 0.0000
Test Iteration 16

75299.0000 75298.0000 0.0000
Iteration 32

75298.0000 75298.0000 0.0000
Test Iteration 32

75299.0000 75299.0000 0.0000
Iteration 64

75299.0000 75299.0000 0.0000
Test Iteration 64

15300.0000 75]00.0000 ¢.0000
Iteration

75300.0000 75301. 0000 1.0000
Test Iteration 12

75301. 0000 75302 0000 1.0000
Iteration 25

753062.c000 75303 0000 1.0000
Test Iteration 256

75304.0000 75305 0000 1.0000
Iteration

75305.0000 75300 0000 3.0000
Test Iteration 512

75308.0000 75311 0000 3.0000
Iteration 1

75311.0000 75316 0000 5.0000
Test Iteration 1024

75317.0000 75322.0000 5.0000

Tterstion 2048

75323.0000 75333.0000 10.0000
Test Iteration 2048

75333.0000 75345.0000 12.0000
Iteration 4096

75345.0000 75366.0000 21,0000
Test Iteration 4096

75366.0000 75390.0000 24.0000
Iteration 8192

75390.0000 75431.0000 41.0000
Tost Iteration 8192

75431.0000 75479.0000 48.0000
Iteration 16384

75479.0000 75561.0000 82.0000
Tewt Iteratjion 16384

75561.0000 75657.0000 96.0000
sesee INCOMPLETE MEASUREMENT ®eees

Test Rams 000001 Class ¥ame: Procadure
CPU Time: 8.5 microseconds
Wall Time: 8.5 wicroseconds. Iteration Count: 16384

Test Description:

Procedure call and return time ( may be zero if automatic inlining )
procedure is local

no parameters

Iteration
75659. 0000 7565%%.0000 0.0000




Test Iteration 1
75659.0000 75659.0000

0.0000

Iteration

75660.0000 75680.0000 0.0000
Teat Iteration 2

75660.0000 75660.0000 0.0000
Iteration 4

75660.0000 15660 0000 0.06600
Teat Iterat

15660.0000 75660 0000 @.0000
Iteration §

75661.0000 75661.0000 0.0000
Test Iteration

75661.0000 75661.0000 0.0000
Iteration 6

75661.0000 75661.0000 9.0000
Test Iteration 16

75662.0000 75662.0000 0.0000
Iteration 32

75662.0000 75662.0000 0.0000
Test Iteration 32

75663, 0000 75663 0000 0.0000
Iteration

15663, 0000 75663 0000 0.0000
Test Iteration 64

75664.0000 75664 0000 0.0000
Iteration

75565 0000 75666 0000 1.0000
75666 0000 75667 0000 1.0000
Iteration 25

15667.0000 75669 0000 2.0000
Test Iteration 256

75669.0000 75671 0000 2.0000
Iteration

15671, 0000 75675 0000 4.0000
Test Iteration 512

75675.0000 75679.0000 4.0000
Iteration 4

75679.0000 75685.0000 6.0000
Test Iteration 1024

75686.0000 75694.0000 8.0000
Iteration 204

75694.0000 75707.0000 13.0000
Test Iteration 2048

75707.0000 75724.0000 17.0000
Iteration 4096

75724.0000 75749.0000 25.0000
Test Iteration 4096

75749.0000 75783.0000 34.0000
Iteration

15784.0000 75833.0000 49.0000
Test Iteration 8192

75833.0000 75902.0000 69.0000
Iteration 16384

75902.0000 76001.0000 99.0000
Test Iteration 16384

76001.0000 76138.0000 137.0000
Test Name: P000010

CPU Timer 23.2 wicroseconds
Wall Time: 23.2 wmicroseconds.

Test Description:

Procedure call and return time measurement

Compare to P000005

10 parameters, in INTEGER

Iteration 1

76140.0000 76140.0000 0.0000
Test Iteration

76140.0000 76140.0000 0.0000
Iteration

76140.0000 76141.0000 1.0000
Test Iteration

76141, 0000 76141.0000 6.0800
Iterati

76141, 0000 76101 0000 0.0000
Test Iteration 4

76141.0000 7614\.0000 0.0000
Iteration

76142.0000 161]2 0000 0.0000
Test Iteration

76142.0000 76143 0000 1.0000
Iteration

76143.0000 761|J 0000 0.0000
Test Iteration 1

76143.0000 76]4‘ 6000 1.0000
Iteration 32

76144.0000 76144.0000 2.0000
Test Iteration 32

76145.0000 76146.0000 1.0000
Iteration 64

76146.0000 76147.0000 1.0000
Teat Iteration 64

76147.0000 76150 0000 3.0000
Iteration 12

76150.0000 76151 0000 1.0000
Test Itaeration 128

76151.0000 7615. 0000 7.0000
Iteration

76158, 0000 76159 0000 1.0000
Test Iteration 25

76160.0000 76173 0000 13.0000
Iteration

76173.0000 76175 0000 2.0000
Test Iteration 512

76176.0000 76202.0000 26.0000
Iteration

76202.0000 76207.0000 5.0000
Test Iteration 1024

716207.0000 76259.0000 52.0000
Tteration 2

76259.0000 76270.0000 11.0000
Test Iteration 2048

76270.0000 76374.0000 104.0000
Test Rame:  T000001

CPU Time: 454.1 wicroseconds
Wall Times 454.1 wicroseconds.

Test Description:

Minima rendezvous, entry call and return time
1 task 1 entry , task inside procedure

no lect

Iteration
76376.0000 7‘376 0000
Tesat Iteration
76376.0000 76376.0000
Iteration 2
76377.0000 76377.0000

0.0000
0.0000
0.0000
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Test Iteration

76317.0000 76377 0000 0.0000
Iteration 4
76377.0000 76377 0000 0.0000
Test Iteration
16378.0000 7637'.0000 0.0000
Iteration

379.0000 76379.0000 0.0000
Test Iteration
76379.0000 76380.0000 1.0000
Iteration 16
76380,0000 76380.0000 0.0000
Test Itaration 1§
76380.0000 76382.0000 2.0000
Iteration 32
76382.0000 76383.0000 1.0000
Test Iteration 32
76383.0000 763.7 0000 4.0000
Iteration 64
76387.0000 763'7 0000 0.0000
Test Iteration
76387.0000 76395 0000 8.0000
Iteration 128
76395, 0000 76396 0000 1.0000

Test Itaration
76396.0000 76‘11 0000 15.0000

Iteration 256

76411.0000 76413. 0000 2,0000
Test Iteration 25

764123.0000 76443 0000 30.0000
Iteration

76443.0000 76‘46 0000 3.0000

Test Iteration 512

76446.0000 76507 0000 61.0000
Iteration 1

76507.0000 76512 ao0o 5.0000
Taest Iteration 1024

76513.0000 76634.0000 121.0000

Test Name: T000004 Class Mame: Tasking
CPU Time: 566.4 microseconds
Wall Time: 566.4 wmicroseconds. Iteration Counts 1024

Test Description:

Task entry call and return time measured

One tasks active, two entries, tasks in a package
using select statement

Test MName: AD00090

Clock resolution measurement running

Test Description:

Determine clock resolution using second differences
of values returnad by the function CPU_Time_Clock.

Mumber of sample values isg 7000

Clock Resolution L] 1.000000000000000 seconds.
Clock Resolution (average) = 1.000000000000000 seconds.
Clock Resolution (variance) = 0.000000000000000 seconds.
Test Names AD00091 Class Name: Composite

1.2000 is time in milliseconds for one Dhrystone
Test Descriptions
Reinhold P. Weicker's DHRYSTONE composite benchmark
Test Namm: A000092 Class Bame: composite
Average time per cycle : 2834.67 milliseconds

Average Whetatone rating : 353 KWIPS

Iteration

771938.0000 77938 0000 0.0000
Teat Iteration

77938.0000 77939 0000 1.0000
Iteration

77939.0000 77939 0000 0.0000
Test Iteration

71939.0000 77939 0000 0.0000
Itexation 4

7793%.0000 77939 0000 0.0000
Test Iteration

771940.0000 779(0 0000 0.0000
Iteration 8

77941.0000 7794! 0000 0.0000
Test Iteration

77941.0000 77942 0000 1.0000
Iteration

77942.0000 77942 0000 0.0000
Test Iteration 16

77942.0000 77944.0000 2.0000
Iteration

77944.0000 77900 0000 0.0000
Test Iteration 32

77945.0000 27948.0000 3.0000
Iteration 64

T7948.0000 77949, 0000 0.0000
Test Iteration

77949.0000 71955 0000 6.0000
Iteration 12

77956.0000 77956 0000 0.0000

Test Iteration 128

77957.0000 77970.0000 13.0000
Iteration 256

77970.0000 77972.0000 2.0000
Test Itaration

77972.0000 77999.0000 27.0000

Iteration 512

77999.0000 78002.0000 3.0000
Test Iteration 512

78002.0000 7.056 0000 54.0000
Iteration

78056.0000 7!062 0000 6.0000

Test Iteration 1024
78062.0000 7817¢.0000 108.0000

Test Name: €000001 Clase Wame: Tasking
CPU Time: 996.1 microseconds
Wall Times 996.1 microseconds. Iteration Count1 1024

Test Description:

Task create and terminate seasurement

with one task, no entrias, when task ia in a procedure

asing a task type in a package, no select statement, no loop,

Tteration 1

78173.0000 79173.0000 0.0000
Test Itaration

78173.0000 70173.0000 0.0000
Iteration 2




78173.0000 7.)73 0000 0.0000
Test Iteration

78173.0000 7!174 0000 1.0000
Itexation

78174.0000 78174.0000 0.0000
Test Iteration

78174.0000 78175.0000 1.0000
Iteration 8

78175.0000 78175.0000 0.0000
Test Iteration

79175,0000 78176.0000 1.0000
Iteration

78176.0000 70176 0000 0.0000
Test Iteration

78176.0000 7.17' 0000 2.0000
Iteration 32

78179.0000 78179.0000 0.0000
Test Iteration 3

79.0000 7'102 0000 3.0000

Iteration

78183.0000 7.1.3 0000 0.0000
Test Iteration 64

78183.0000 7'190 0000 7.0000
Iteration 28

78191.0000 78191, 0000 0.0000
Test Iteration 12

78191.0000 7I206 0000 15,0000
Iteration 25

78206.0000 70207 0000 1.0000
Test Iteration 256

78207.0000 78236 0000 29.0000
Iteration S1

78236.0000 70219 0000 3.0000
Test Ytaration 512

78239.0000 70296 0000 57.0000
Iteration

78296.0000 78302 0000 6.0000
Test Itaeration 1024

78302.0000 78415.0000 113.0000

Teat Hamet €000002 Class Name: Tasking
CPU Time:s 1044.9 microseconds
Wall Times 1044.9 microseconds. Iteration Counti 1024

Test Dascription)

Task create and terminate time measurement.

with one task, no entries when task is in a procedure,

task defined and used in procedure, no select statement, no loop

Iteration 1

78783.0000 78783.0000 0.0000
T Iteration 1

78783.0000 78783.0000 0.0000
Iteration 2

78784.0000 78784.0000 0.0000
Test Iteration 2

78784.0000 78784.0000 0.0000
Iteration

78784.0000 7l7ll 0000 ¢.0000
Test Iteration

78784.0080 78785 0000 1.0000
Iteration 8

78785.0000 78785.0000 0.0000
Test Iteration

7 7 6.0000

ation 16

7l7l6 0000 78786.0000 0.0000
Test Iteration 16

78786.0000 7l787 0000 1.0000
Iteration 32

78787.0000 18787.0000 0.0000
Test Iteration 3

78787, 0000 7.7.9 0000 2.0000
Iteration

18789, 0000 70790 0000 1.0000
Test Iteration 64

78790.0000 7l79] 0000 3.0000
Itaration

78794.0000 7l795 0000 1.0000
Test Iteration 128

78795.0000 78801.0000 6.0000
Iteration 256

78802.0000 70803.0000 1.0000
Teat Iteration 256

78801.0000 7!!16 aoeo 13.0000
Iteration 51

78816.0000 7!'19 0000 3.0000
Test Iteration 512

78819.0000 78845.0000 26.0000
Iteration 1024

79845.0060 78851.0000 6.0000
Test Itaeration 1024

18831.0000 78903.0000 52.0000
Iteration 2048

78903.0000 78914.0000 11.0000
Test Iteration 2

78915.0000 75018.0000 103.0000
Tast Rame: H000004 Class Name: Chapter 13
CPY Time: 449.2 microsaconds
Wall Time: 449.2 microseconds. Iteration Count: 2048

Test Description:
Time to psrform standard boclaan operations on arrays of booleans.
For this test the arrays are NOT PACKED with the pragma 'PACK.'

Por this test the operations are performed on components in a loop.

Tteration 1

795! 0000 795.0 ageo 0.0000

erat ion
0000 795!‘ 0000 2.0000

Iteration 2

79584.0000 79584.0000 0.0000
Test Iteration

79524.0000 79584.0000 0.0000
Iteration 4

19585.0000 795.5.0000 0.0000
Test Iteration

79583. 0000 195!5.0000 0.0000
Iteration

79583.0000 79585.0000 0.0000
Test Iteration

79586.0000 79586.0000 0.0000
Iteration 16

79586.0000 79586.0000 0.0000
Test Iteration 16

79586.0000 79586.0000 9.0000
Iteration 32

79587.0000 79387.0000 o0.0000
Test Iteration 32

19587.0000 79587.0000 0.0000
Iteration 64
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79587.0000 7950. 0000 1.0000
Test Iteration

79588.0000 795.' 0000 0.0000
Iteration 120

79589.0000 795'9 0000 0.0000
Teet Iteration

79589,0000 79590 0000 1.0000
Iteration 256

79591.0000 79592. 0000 1.0000
Test Iteration 256

19592.0000 7!59‘ 0000 2.0000
Iteration

79594.0000 79597 0000 3.0000
Test Iteration 512

79597.0000 79600.0000 3.0000
Iteration 1024

79601.0000 79606.0000 5.0000
Test Iteration 1024

79607.06000 79613.0000 6.0000
Iteration 2048

79613.0000 79625.0000 12,0000
Test Iteration 2048

79625.0000 7963' 0000 13.0000
Iteration

79638.0000 79661 o000 23.0000
Test Iteration 4096

79662.0000 796'. 0000 26.0000
Iteration

79698.0000 7973‘ 0000 46.0000
Test Iteration 8192

79735.0000 79787.0000 52.0000
Iteration 16384

79787.0000 79879.0000 92.0000
Test Iteration 16384

79880.0000 79984.0000 1£4.0000
Test Mamet 000001

CPU Times 7.3 wmicroseconds
V¥all Time: 7.3 wicroseconds.

Test Description:

Procedure call and return time ( may be zero if sutomatic inlining )

procedure fs local
no parameters

Iteration
79986.0000 799'6 0060
Test Iteration
79986, 0000 199.6 0000
Iteration
79986.0000 79986.0000
Test Iteration
79987.0000 79987.0000
Iteration ¢
79987.0000 79987.0000
Test Iteration
19987, 0000 79987.0000
Iteration
19987. 0000 79968.0000
Teat Iteration 8
79988.0000 19930.0000
Iteration 16
79988.0000 79998 0000
Test Iteration
79988.0000 799'0 0000
Iteration 2
79989.0000 79989.0000
Test Iteration 32
79990.0000 79990.0000
Iteration &4
799%90.0000 79991.0000
Test Iteration 6
79991.0000 79991 0000
Iteration 12
79992.0000 7999] 0000
Test Iteration 128
79993.0000 7999‘ 0000
Iteration 25
719994.0000 799!5 0000
Test Iteration 25
79996.0000 79999 0000
Iteration 51
79999.0000 30002 0000
Test Iteration
80002.0000 90007.0000
Iteration 1
§0007.0000 80013.0000
Test Tteration 1024
$0014.0000 £0022.0000
Iteration 2048
§0023.0000 80036.0000
Test Iteration 2048
80036.0000 80053.0000
Iteration 4096
90054.0000 80080.0000
Test Iteration 4096
$0080.0000 80115.0000
Iteration 8192
80115.0000 80168.0000
Test Iteration #8192
80168.0000 80238.0000
Itexration 1638
80238.0000 80343.0000
Test Iteration 16384
80343.0000 £80482.0000

Teat Kamos
CPU Time:
Wwall Time:
Test Description:

P000010

Procedure call and return time measuremsent

Compare to P0000OS

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
¢.0000
0.0000
04,0000
0.0000
0.0000
1.0000
0.0000
1.0000
1.0000
2.0000
3.0000
3.0000
5.0000
6.0000
8.0000
13.0000
17.0000
26.0000
35.0000
53.0000
70.0000
105.0000
139.0000

20.8 microseconds
20.8 wmicrosecaonds.

10 parameters, in INTEGER

Iteration 1

80485. 0000 ﬁ0|l5 0000

Test Iteration

20485.0000 '0(.5 0000

Iteration

80485.0000 .00.5 0000

Tast Iteration 2

$0486.0000 000.6.0000
i

It on

80486.0000 80486.0000
Test Iteratijon
#0486.0000 80486.0000
Iteration

80486.0000 $0487.0000
Test Itaration
80487.0000 80487.0000
Tteration 16

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000

Class Name: Procedure

Iteration Count:

Class Name: Procedure

Iteration Count1

16384

16384
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$0487.0000 80488.0000 1.0000 Iteration 64
Test Iteration 16 37491.0000 37492.0000 1.0000
80408.0000 80485.0000 1.0000 Iteration 1
32 37499.0000 37500.0000 1.0000
9.0000 80489.0000 0.00C0 Iteration 256
Test Iteration 32 37514.0000 37515.0000 1.0000
90489.0000 90491.0000 2.0000 Iteration 512
Iteration 64 37543.0000 37546.0000 3.0000
80491.0000 30491.0000 0.0000 Iteration 1024
Test Iteration 64 37600.0000 37606.0000 6.0000

492.0000 80495.0000 3.0000
ation 128 Test Mame:  C000001 Class Name: Tasking
495.0000 '0496 0000 1.0000 CPU Time: 1005.9 microseconds

t Iteration Mall Timen 1005.9 microseconds. Iteration Count1 1024
IINQG 0000 l0502 0000 6.0000 Test Description:
Iteration 256 Task create and terminate measurement
90502.0000 80504. 0000 2.0000 with one task, no entries, when task is in a procedure
Test Iteration 256 using a task type in a package, no select statement, no loop,
90504.0000 l0517 0000 13.0000
Iteration 351
90517.0000 .0520 0000 3.0000 Iteration 1
Test Iteration 512 37718.0000 37718.0000 0.0000
80520.0000 80545.0000 25.0000 Iteration 2
Itari*ion 1024 37718,0000 37718.0000 0.0000
00546.0000 90551.0000 5.0000 Iteration 4
Teat Iteration 1024 37719.0000 37719.0000 0.0000
90531.0000 00602.0000 51.0000 Iteration
Iteration 2048 37719.0000 J7719 o000 0.0000
80602.0000 80613.0000 11.0000 Iteration
Teat Itaration 2048 37720.0000 37720 oaco 0.0000
80614.0000 80715.0000 101.0000 Iteration
37723.0000 37723.0000 0.0000
Teost Nams: T000001 Class Name: Tasking Iteration
CPU Time: 439.5 microseconds 37726.0000 37727.0000 1.0000
¥Wall Times 439.5 wicroseconds. Iteration Count: 2048 Iteration 128
Teat Description: 37734.0000 37735.0000 1.0000
Minimum rendezvous, entry call and return time Iteration 2
1 task ! entry , task inside procedure 37748.0000 37751.0000 2,0000
no ect Iteration 12
37779.0000 37732 0000 3.0000
Iteration
Iteration 37839, 0000 37845.0000 6.0000
30718.0000 l07ll 0000 0.0000
Test Iteration 1 Test Mame: €000002 Class Namet Taeking
$0710.0000 80719.0000 0.0000 CPU Time: 1054.7 wmicroseconds
Iteration Wall Time: 1054.7 wmicroseconds. Iteration Count: 1024
$0719.0000 80718.0000 ¢.0000 Test Description:
Test Itaration 2 Task create and terminate time measurement.
AnTTa PAann -“"!" onnn et L] with one task, no entries when task is in a procedure,
Tteration task defined and used in procedure, no select statement, no loop
20719.0000 '0719 0000 ¢.0000
Test Iteration 4
719.0000 00720 0000 1.0000
Iteras ion Iteration
40720°.0000 .0720 0000 9.0000 38327.0000 J!JZ'I 0000 0.0000
Test Iteration 9 Iteration
00720.0000 $0721.0000 1.0000 38328. 0000 3'32' 0000 0.0000
Iteration 16 Iterat 4
22.0000 $0722.0000 0.0000 JIJII 0000 38328.0000 0.0000
Test Iteration 16 It
00722.0000 $0724.0000 2.0000 3.32' 0000 38329.0000 1.0000
Iteration 32 Iteration 1
90724.0000 90724.0000 0.0000 38329.0000 38329.0000 0.0000
Test Iteration 32 Iteration 3
724 0000 80728.0000 4.0000 38330.0000 38330.0000 0.0000
Iteration 64 Iteration 6
'072..0000 90729.0000 1.0000 38332.0000 38333.0000 1.0000
Test Iteration 64 Iteration 1
00729.0000 IQTJC o0u0 7.0000 38336.0000 3‘337 0000 1.0000
Iteration 28 Iteration 25
80737.0000 l0711 0000 0.0000 38343.0000 JleS 0000 2.0000
Teet Iteration Iteration 12
$3730.0000 I0752 0000 14.0000 39358.0000 3.361 0000 3.0000
Iteration 256 ation
#0753.0000 €0754.0000 1.0000 39387.0000 JCJQZ 0000 5.0000
Test Iteration 256 Iteration 20
$£0754.0000 €0784.0000 30.0000 38444.0000 JllSS 0000 11.0000
Iteration 512
$0784.0000 00707.00060 3.0000 Test Namn H000004 Clase Rame: Chapter 13
Test Iteration 512 CPU Times 449.2 microseconds
80787.0000 80847.0000 60.0000 Wall Times 449.2 microseconds. Iteration Counts 2048
Iteration 1024 Test Description:
00847.0000 00833.0000 $.0000 Time to perforw standard boolean operations on arrays of booleans.
Test [teration 1024 Por this test the arrays are NOT PACKED with the pragma ‘PACK.*®
90852.0000 80972.0000 119.0000 Yor this test the operations are perforsed on componaents in a loop.
Test Rame! T000004 Class Wame: Tasking
CPU Time: 551.8 microseconds Iteration 1
Wall Tiwe: 551.8 wmicroseconds. Itaration Count: 1024 39119.0000 39118.0000 0.%000
Test Descript tom Iteration
Task entry call and retumn time measured 39118.0000 39119.0000 0.0000
One tasks active, two entries, tasks in a package Iteration
using salect statement 39119.0000 39119.0000 0.0000
1teration 3
39119.0000 39119.0000 0.0000
Test Name A000090 Iteration
Clock resolution measurement running 39119.0000 39120.0000 1.0000
Teet Description: Iteration
Determine clock resolution using second differences 39120.0000 39120.0000 0.0000
of values returned by the function CPU_Time_Clock. Iteration 6
39120.0000 39121.0000 1.0000
Wumber of sample values is 7000 Iteration 28
Clock Resoletion - 1.000000000000000 seconds. 39121.0000 J9l22 0000 1.0000
Clock Resolution (average) = 1.000000000000000 seconds. Iteration
Clock Resolution (variance) = 0.000000000000000 seconds. 39123.0000 39125 0000 2.0000
Iteration 512
39126.0000 39129 0000 3.0000
Test Mame: A000091 Class WName: Composite Iteration
1.2000 fu time in milliseconds for one Dhrystone 39133.0000 3913' 0000 5.0000
Teat Descriptioar Iteration 20
Reinhold P, Weicker's DHRYSTONE composite benchmark 39145.0000 39156 0000 11.0000
Iteration 40
39169.0000 39192 0000 23.0000
Teat Rame: A000092 Class Rame: cowmposite Iteration
39217.0000 19262 0000 45.0000
Average time par cycle t+ 2845.33 millisaconds Tteration

1639
39313.0000 39403.0000 90.0000
Average Whetatone rating 3 351 KWIPS

Tent Rame: $000001 Class Namer Procedure
CR Times 7.9 wmicroseconds

Iteration 1 Wall Times 7.9 wmicroseconds. Iteration Count: 16384

37482, 0000 37"2 0000 0.0000 Test Descriptiont

Tterati Procedure call and return time ( may be zero if automatic inlining )

17“3 0000 37"3 0000 6.0000 procedure is local

erat 4 no paraneters

176.3.0000 37483.0000 0.0000

Iteration

37494.0000 17484.0000 0.0000 Iterati

Iteration 16 39509, 0000 3950' 0000 0.0000

37485.0000 17485.0000 0.0000 Tteration

2
Iteration 32 39%09.0000 39509 0000 0.0000
37487.0000 37488.0000 1.0000 Iteration



39509.0000 39509.0000 0.0000
Itaration

39509. 0000 39509 0000 0.0000
Iteration

39510.0000 39510 0000 0.0000
Iteration 32

39510. 0000 3!510 0000 0.0000
Iteration

39511.0000 39511 0000 0.0000
Iteration 128

39512.0000 39513.0000 1.0000
Iteration 256

39514.0000 39515.0000 1.0000
Iteration 12

39518.0000 39521.0000 3.0000
Iteration 102

39525.0000 39532.0000 7.0000
Iteration 2048

39540.0000 39553.0000 13.0000
Iterstion 4096

39569.0000 3959( 0000 25.0000
Iteration 8

39627.0000 3967. 0000 51.0000
Iteration 34

39742.0000 39“4-0000 102.0000
Test Name: P000O10 Class Names Procedure
CPU Times 15.9 microseconds

Wall Time: 16.5 microseconde. Iteration Counti 16384
Test Deacription:

Procedure call and return time measurement
Compare to P000005

10 paraseters, in INTEGER

Iteration 1

39976.0000 39376.0000 0.0000
Iteration 2

39976.0000 39976.0000 0.0000
Ttaration 4

33976.0000 39976.0000 0.0000
Itoration

39977.0000 19977.0000 0.0000
Iteration 16

39978.0000 39978.0000 0.0000
Iteration 32

39979.0000 39979.0000 0.0000
Iteration 4

39991.0000 39981.0000 0.0000
Iteration 128

39985.0000 39985.0000 0.0000
Iteration 256

39992.0000 39993.0000 1.0000
Iteration 512

40007.0000 40009.0000 2.0000
Iteration 102

40035.0000 40041.0000 6.0000
Iteration 2048

40093.0000 40104.0000 11.0000
Test Kame: T000001 Class Mame: Tasking
CPU Timan 454.1 wizcoseconds
Wall Time: 454.1 wmicroseconds. Iteration Count: 2048
Test Description:

Miniwum rendezvous, entry call and retam time
1 task 1 entry , task inside procedure
no select

Lteration

40210.0000 40210 0000 0.0000
Iteration

40210.0000 40210.0000 0.0000
Iteration 4

40211.08000 40211.0000 0.0000
Iteration

40212.0000 40212.0000 0.0000
Iteration 16

40213.0000 40213.0000 0.0000
Iteration 32

40215.0000 40215.0000 0.0000
Iteratjon 64

40219.0000 AOZZO 0000 1.0000
Iteration 12

40228.0000 lole 0000 0.0000
Iteration

40244.0000 ‘02‘5 0000 1.0000
Iteration

40276.0000 l0179 0000 3.0000
Iteration 1024

40340.0000 40346.0000 6.0000
Test Rames TO00004 Class Name: Tasking
CPU Times 571.3 microseconds

Wall Times 571.2 wmicroseconds. Iteration Count: 1024

Tewt Description:

Task entry call and return time measured

One tasks active, two entries, tasks in a packsge
ueing select statement

Teat Name: ADD0090

Clock resolution measurement running

Test Description:

Determine clock resolution using second differences
of values returned by tha function CPU_Time Clock.

NMumber of eample values is 7000

Clock Resolution - 1.000000000000000 seconds.
Clock Resclution (average) = 1.008000000000000 seconds.
Clock Resolution (variance) = 0.000000000000000 seconds.

Teat Namet A000091 Class Samer Composite
1.2000 is time in milliseconds for one Dhrystons
Test Description:

Reinhold P. Weicker's DHRYSTONE composite benchmark

Teat Nawe: A000092 Class Wawm: composite

Average time psr cycle : 2804.00 milliseconds

Avarsge ¥hetstone rating : 357 XWIPS
Tteration 1

77817, 0000 77817.0000 9.0000
Tterat 2

77818, 0000 17818.0000 0.0000
Iterstion ¢

77812.0000 77818.0000 0.0000
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Iterati

77819. 0000 77819.0000 0.0000

Iteration 1

77820.0000 77820.0000 0.0000

Iteration 32

77822.0000 77822.0000 0.0000

1teration

17826, 0000 77826.0000 0.0000

Iteration 1

77833.0000 77833.0000 0.0000
Iteration 256

71847.0000 77848.0000 1.0000
Iteration 512

77875.0000 1737! 0000 3.0000
Iteration 10

77932.0000 77937 0000 5.0000
Test Hame: €000001 Class Name:) Tasking
CPU Times 996.1 microseconds
Wall Time: 996.1 microseconds. Iteration Count: 1024
Teat Description:

Task create and terminate measuresent

with one task, no entries, when task is in a procedure

using a task type in a package, no select statement, no loop,
Iteration

78046.0000 nou 0000 0.0000

Iteretion 2

78047. 0000 70047.0000 0.0000

Iterati

18047. 0000 78047.2000 0.0000

Itaration 9

79048.0000 78048.0000 0.0000

Iteratjon 16

78049.0000 78049.0000 0.0000

Iteration 3

78051.0000 78051.0000 0.0000

Iteration 6

78035. 0000 1'0.’:6 0000 1.0000

Iterat 128

78063. 0000 78064.0000 1.0000

Iteration 256

78078.0000 78080.0000 2.0000

Iteration 512

78108.0000 78111 0000 3.0000

. eration

“8167.0000 7ll72 0000 5.0000
Teat #awar  C000002 Class Wame: Tasking
CPU Time: 1054.7 microseconds

Wall Time: 1054.7 microseconds. Iteration Count: 1024

Test Description

Task create and terminate time measurement.

with one task, no antries when task is in a procedure

task defined and used in procedure, no select -tatennt, no loop

Iteration

78651.0000 7l551 0000 0.0000
Iteration 2

79651.0000 78651.0000 0.0000
Iteration

78652.0000 78652.0000 0.0000
Iteration 8

78653.0000 78653.0000 0.0000
Iteration 16

78633.0000 78654.0000 1.0000
Iteration 32

18655, 0000 78655.0000 0.0000
Iteration

78657.0000 78657 [ 0.0000
Iteration 12

78660.0000 78661 0000 1.0000
Iteration 25

78668.0000 7l669 0000 1.0000
Iteration 512

78683, 0000 70655 0000 2.0000
Iteration 02

78712.0000 7'71. 0000 6.0000
Iteration 204

78770.0000 78781.0000 11.0000
Test Name: HO00004 Class Namet Chapter 13
CPU Time: 449.2 smicroseconds
Wall Times 449.2 microseconds. Itexation Count: 2048

Test Descriptions

Time to perform standard boolean operationa on arrays of booleans.
Por this test the arrays are WOT PACKED with the pragma °‘PACK.
For this test the operations are perforsed on components in a loop.

Iteration 1

79400.0000 79400.0000 0.0000
Iteration 2

79400. ODOD 79400.0000 0.0000
Iter: 4

79401, 0000 79401 0000 0.0000
Iteration

79401. 0000 79401.0000 0.0000
Iteration 16

79401.0000 79401.0000 0.0000
Iteration 32

79402.0000 79402.0000 0.0000
Iteration 64

79402.0000 79402.0000 0.0000
Iteration 128

79403.0000 79404.0000 1.0000
Iteration 2

79405.0000 79406.0000 1.0000
Iteration

79400.0000 79‘10 0000 2.0000
Tteration 24

79414.0000 79!19 0000 5.0000
ITteration

79425.0000 79‘36 0000 11.0000
Iteration 409

79448.0000 79469.0000 21.0000
Iteration 8192

79494.0000 79536 6000 42.0000
Iteration I

79585. 0000 79670 00600 85,0000

s*see INCOMPLETE MEASURSHERNT eeees

Tent Name: PO000OL Class Wame: Procedurse
CPU Time: 7.9 wmicroseconds
Wall Time:s 7.9 microseconds. Iteration Count: 16394

Test Description:

Procedure call and return time ( may be zero if automatic inlining )
procedure is local

no parameters




Itaration
Iteration 823135.0000 82935 0000 0.0000
79770 0000 79770 0000 0.0000 Iteration 2
ation 2 82936.0000 82936.0000 0.0000
79 70 0000 79770.0000 0.0000 Iteration 4
Iteration 82936.,0000 82936.0000 0.0000
79770.0000 79771.0000 1.0000 Iteration 8
Iteration 8 82937.0000 82937.0000 0.0000
79771.6000 79771.0000 0.0000 Iteration
Iteration 16 82938.0000 0293! 0000 0.0000
79771.0000 79771.0000 2.0000 Iteration
Iteration 3 82940.0000 .2940 0000 2.0000
19772.0000 79772.0000 0.0000 Iteration
Iteration 82944.0000 |29ll 0000 0.0000
19773.0000 7977] 0000 0.0000 Iteration
Iteration 82951.0000 t2952 0000 1.0000
79774.0000 79775 0000 1.0000 Iteration 256
Iteration 82965.0000 82967.0000 2.0000
79776.0000 79778.0000 2.0000 Iteration
Ite on 82994.0000 82996.0000 2.0000
79780.0000 797.3 0000 3.0000 Iteration
Iteration 10 83051.0000 83056.0000 5.0000
19788.0000 79794 0000 6.0000
Iteration Test Name: €000001 Claas Name: Tasking
79803.0000 79316 0000 13.0000 CPU Times 996.1 microseconds
Iteration 4096 Wall Time: 996.1 microseconds. Itaration Counts 1024
79833.0000 79.60 0000 27.0000 Test Deacription:
Iteration Task create and terminate measuresent
79894.0000 79947 0000 53.0000 with one task, no entriea, when task is in a procedure
Iteration 638 using a task type in a package, no select statement, no loop,
80014.0000 80120.0000 106.0000
Test Name: 2000010 Claas Name: Procedure Iteration
CPU Times 17.7 microseconds 93167, 0000 83167 0000 0.0000
Wall Time: 17.7 microseconds. Iteration Count: 16384 Iterati. 2
Test Description: 83167. 0000 83167 0000 0.0000
Procedure call and return tise measurement Iteration
Cospare to P000005 83168.0000 !316' 0000 0.0000
10 parameters, in INTEGER Iteration 8
83168.0000 83168.0000 0.0000
Iteration 16
Iterati 83169.0000 83176.0000 1.0000
90257, 0000 l0257 0000 0.0000 Iteration
Iteration 2 83172,0000 83172.0000 0.0000
80258.0000 80258.0000 0.0000 Iteration
It tion 83176.0000 l3176 0000 0.0000
80258.0000 80258.0000 0.0000 Iteration 28
Iteration 83184.0000 03105 0000 1.0000
80258.0000 80258.0000 0.0000 Iteration 6
Iteration 16 83199.0000 83200.0000 1.0000
80259,0000 80259.0000 0.0000 Iteration 5
Iteration 32 83229.0000 83232.0000 3.0000
l0250 0000 80260.0000 0.0000 Iteration 1024
a 83289.0000 83294.0000 5.0000
l0262 0000 30262 0000 0.0000
Itexation 12 Test Mamer €000002 Class Namer Tasking
80266,0000 50267 0000 1.0000 CPU Timet 1064.5 wmicroseconds
Iteration Wall Time: 1064.5 wmicromeconds. Iteration Count: 1024
90273, 0000 t0275 Qo000 2.0000 Test Description:
Taek create and terminate time measurement.
0000 90290.0000 2.0000 with one task, no entries when task is in a procedure,
Iteration 102 task defined and used in procedure, no select statement, no loop
80317.0000 80322.0000 5.0000
Iteration 204
80374.0000 80385.0000 11.0000 Itaration
83774.0000 l3774 0000 9.0000
Test Name: T000001 Clase Name: Tasking Iteration 2
CPU Timet 449.2 smicroseconds 83774.0000 83774.0000 0.0000
Wall Times 449.2 wmicroseconds. Iteration Counts 2048 Iteration 4
Test Description: $3775.0000 83775.0000 0.0000
Minimue rendezvous, entry call and return time Iteration §
1t 1 entry , task inside procedure 83775.0000 IJTIS 0000 0.0000
no act Iteration
83776.0000 l3776 0000 0.0000
Iteration 32
Iteration 83711, 0000 l3779 0000 1.0000
80491.0000 l0491 0000 0.0000 Iteration
Tteration 83779. 0000 l37lﬂ 0000 1.0000
#0491.0000 50491 0000 0.0000 Iteration 128
Iteration ¢ 93783,0000 83784.0000 1.0000
80491. 0000 80491.0000 o.0000 Iteration 256
Itaration 83791. 0000 03792 0000 1.0000
20492, 0000 80492.0000 0.0000 Iteration
Iteration 16 83805. 0000 IJGO. 0000 3.0000
90494.0000 80494.0000 6.0000 Iteration
Iteration 132 83834.0000 B83840.0000 6.0000
#0496.0000 80496.0000 0.0000 Iteration 2
fteration 64 83892.0000 83904.0000 12.0000
90500.0000 80501.0000 1.0000
Iteration Test Kame: H000004 Class Names Chapter 13
lﬂSOl 0000 80509.0000 1.0000 CPU Time: 449.2 wmicroseconds
Wall Time: 449.2 wmicroseconda. Iteration Count: 2048
l052‘-0000 80525.0000 1.0000 Test Description:
Iteration 512 Time to perform atandard boolean operations on arrays of booleans.
80555.0000 '055. 0000 3.0000 For this test the arrays are WOT PACKED with the pragma ‘PACK.'
Iteration 10 For this test the operations are performed on components in a loop.
80618.0000 IDSIJ 0000 5.0000
Teut Kame: T000004 Class Name: Tasking Iteration 1
CPU Time: 561.5 wmicroseconds 04523.0000 84523.0000 0.0000
Wall Time: 561.5 wsicroseconds. Iteration Count1 1024 Iteration 2
Test Descriptions 84523, 0000 94523.0000 0.0000
Task entry call and return time seasured Iterati.
One tasks active, two entries, tasks in a package 24523, 0000 84523.0000 0.0000
uning select statesent Iteration 8
24524.0000 OASIC L1410 0.0000
Iteration
Test Name: A0000%0 94524.0000 ll524 0000 0.0000
Clock resolution measuremsent running Tteration
Test Description: 04521 0000 llSZl 0000 0.0000
Detarmine clock resclution using second differences Iterat
of valuves returned by the function CPU_Time Clock. NSZS 0000 uszs o0go00 0.0000
Iteration 12
Busber of sample valves is 7000 84526.0000 $4526.0000 0.0000
Clock Resolution - 1.000000000000000 seconds. Iteration
Clock Resolution (average) = 1.000000000000000 saconds. $4527.0000 $4529.0000 2.0000
Clock Resolution {variance) = 0.000000000000000 seconds. Iteration
84531.0000 005]3 0000 2.0000
Iteration 10
Test Bame: A000091 Class Name: Composite 84536.0000 . IZ 0000 6.0000
1.1000 ie time in milliseconds for one Dhrystone Iterstion 20
Test Descriptions 84549.0000 84559.0000 11.0000
Reinhold P. Welcker's DHRYSTOWE composits benchmark Iteration 4096
84571, 0000 ll5!2 0000 21.0000
Iterati
Teat Rame: A000092 Class Mame: composite #4617, 0000 ll659 0000 42.0000
Iteration 16384
Average time per cycle : 2824.67 milliseconds $4708.0000 84793.0000 95.0000
teeee THCOMPLETE MEASIMEMENT ¢esee
Aversge Whetstone rating : 354 KWIPS
Test Namm PO0O000L Class Name: Procedure
CPY Time: 7.9 microseconds




Hall Time: 7.9 wmicroseconds. Tteration Count: 16394
Test Description:

Procedure call and return time { may be zero if automatic inlining )
procadure is local

no parameters

Iterati

84893, 0000 Itl93 0000 0.0000

Iteration 2

34 93. 0000 04893.0000 0.0000

l 893, 0000 .4.,] ooo0 0.0000

Iteration

$4893.0000 .Il’l Q000 1.0000

Iteration

$4894.0000 l‘l?t 0000 @.0000

Iteration 32

I 94.0000 I 894.0000 0.0000
tion

ll.!S 0000 04.96 0000 1.0000

Iteration

24897.0000 lll’7 L1110 e.0000

Iteration

84895.0000 00900 o000 1.0000

Iteration 512

$4903.0000 $4906.0000 3.0000

Iteration 102

$4911.0000 $4917.0000 6.0000

Iteration 2048

24926.0000 ll’)! 0000 13.0000

Itezation 96

94956.0000 .l9.3 0000 27.0000

Iteration 8192

$5016.0000 l5069 0000 53.0000

Iteration 16

43137.0000 ISZII q9a0aQ 106.0000

Test Name; PO00O10 Class Name: Procedure

CPY Time: 17.7 microseconds

Wall Times 1.7 microseconds. Iteration Count) 16394

Test Descript {un:

Procedure call and return time msasurement
Compare to P000005

10 paramaters, in INTEGER

Iteration

$5180. 0000 IS!'O o000 0.0000
Iterati

95380. 0000 95380.0000 0.0000
It

9 0000 45181.0000 0.0000
It l ]

95381.0000 .53.1 0000 0.0000
Iteration

85302, 0000 lSJ.I 0000 0.0000
It

[ .0000 ISJIJ.OOOO 0.0000
It. ion

83385.0000 05)85.0000 0.0000
Iteration

95389.0000 €5309.0000 0.0000
Iteration 256

15396 0000 l5397 0000 1.0000
Itaratjion

$5411.0000 '5‘11 0000 2.0000
Iteration 1024

25440.0000 85445.0000 5.0000

Iteration 2048

05497.0000 95508.0000 11.0000

Test Mame: T000001 Class Name: Tasking
CPU Timer 454.1 wmicroseconds

Wall Time: 454.1 aicrossconds. Iteration Count: 2048

Test Description:
Minima rendezvous, entry call and return time

1t 1 entry , task inside procedure
no lect

ITteration

23614, 0000 0561‘ 00690 0.0000
Ttarati

95615, 0000 #5615.0000 0.0000
Iteration

95615.0000 85615.0000 0.0000
Iteration

83616.0000 l56l6 0000 0.0000
Tteration

85617,.0000 l5617 0000 0.0000
Iterstion 32

85620.0000 l5610 0000 0.0000
Iteration

85624.0000 l5610 000y 0.0000
Iteration 129

85632.0000 35631.0000 1.0000
Iteration 256

#5648.0000 85649.0000 1.0000
Iteration 3512

$9679.0000 #5682.0000 3.0000
Iteration 102

83741.0000 85746,0000 3.0000
Tost Rame: T000004 Class Name: Tasking
CPU Timw: 536.6 microseconds
wall Timms 536.6 microseconds. Iteration Counti 1024

Test Descriptiont

Task entry call and return time measared

One tasks active, two entries, tasks in a package
using select statament

Teat Rame: ADQO0S0

Clock resolution measuressnt rvaning

Tewt Description:t

Deterwine clock resclution using second diffaerences
of values returmed by the function CPU Time Clock.

Wumber of sample vatves is 1000

Clock Resolution - 1.000000000000000 saconds.
Clock Resolution (average) = 1.0000060000000000 seconds.
Clock Resolution (variance) = 0.000000000000000 seconda.

Test Name: A000091 Class Names Composite
1.2000 iw tism in williseconds for one Dhrystone
Teat Description:

Reinhold P, Weicker's DARYSTOWR composite benchmark

Teat Rams A000092 Class Rase: composite
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Average time per cycle : -342758,67 milliseconds

Average Whatstons rating : 291 KWIPS

Iteration 1

142.0000 142.0000 0.0000 !
Iteration 2
142.0000 142.0000 0.0000
Iteration ¢
143.0000 143.0000 0.0000
Iteration 8§
144.0000 144.0000 0.0000
Iteration 16
145.0000 145.0000 0.8000
Iteration 32
147.0000 147.0000 0.0000
Iteration 64
150.0000 151.0000 1.0000
Iteration 12
158.0000 158.0000 0.0000
Iteration 256
172.0000 1731.0000 1.0000
Iteration
201.0000 203.0000 2.0000
Iteration 1024
257.0000 26),0000 6.0000
Teat Baee: C000001 Class Name: Tashing
CPU Times 996.1 wmicroseconds
Hall Time: 996.1 wmicroseconds. Iteration Count: 1024

Tast Dascription:

Task cresate and terminate msasurement

with one task, no entries, when task is in a procedure

using a task type in a package, no select statament, no loop,

Iteration 1

373.0000 373.0000 0.0000
Iteration 2

373.0000 373.6000 ¢.0000
Iteration 4

374.0000 374.0000 0.0000
Iteration

374.0000 374.0000 0.0000
Iteration 1

376.0000 376.0000 0.0000
Itaration 32

378.0000 378.0000 0.0000
Iteration 64

381.0000 382.0000 1.0000
Iteration 12

389.0000 31%0.0000 1.0000
Iteration

104.0000 405.0000 1.0000
Iterstion

434, 0000 437.0000 3.0000
Iteration

493.0000 499.0000 6.0000
Test Mame: €000002 Class Mame: Tasking
CPU Timer 1035.2 wmicroseconds
¥all Times 1035.2 microseconds. Iteration Count: 1024

Test Description:

Task create and terminate time measuresent.

with one tash, no entries when task is in a p re

task defined and used in procedure, no select -(-tannl, no loop

Iteration 1

978.0000 978.0000 0.0000
Iteration 2
978.0000 $78.0000 8.0000
Iteration 4
979.0000 979.0000 0.0000
Iteration
979.0000 979.0000 0.0000
Iteration 16
980.0000 $80.0000 0.0000
Tterastion 32
991.0000 982.0000 1.0000
Iteration 64
903.0000 984.0000 1.0000
ion 12
0000 968.0000 1.0000
Iteration 236
99%.0000 996.0000 1.0000
Iteration 512
1009.0000 1012.0000 3.0000
Iteration 1024
1038.0000 1044.0000 6.0000
Iteration

204
1096.0000 1109.0000 12.0000
Test Nawe:
CPU Time: 444.3 microseconds
Wall Timm: 444.3 aicroseconds.
Test Description:

Time to perform standard boolean operations on arrays of booleans.
For this test the arrays are MOT PACKED with the pragma 'PXK.*
For this test the operations are parformed on components in a loop.

HO00004 Class Mame: Chapter 1)

1teration Count) 2048

Itexation

1798, 0000 1798.0000 0.0000
Iteration 2

1798. 0000 1798.0000 0.0000
Iteration

1799.0000 1798.0000 0.0000
Iteration &

1799, 0000 1798.0000 0.0000
Tterati 16

1799. nnnn 1799.0000 0.0000
Iteration 32

1799.0000 1799.0000 0.0000
Iteration 64

1800.0000 1800.0000 @.0000
Iteration 128

1801.000C 1802.0000 1.0000
Iteration

1803.0000 1804.0006 1.0000
Iteration

1806.0000 1809.0000 3.0000
Iteration 10

1812.0000 l' 4.0000 6.0000
Iteration 20

1825. 0000 IlJ7.0000 12.0000
Iteration 409

1850.0000 1874.0000 24.0000
Iteration ¢

1999.0000 1947.0000 49.0000
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Iteration 16384
1998.0000 2093.0000 35.0000

Teat Hame: »000001 Clasa Mame: Procedure
CPMU Times 4.3 microsaconds
Wall Times 4.3 wmicroseconds. Iteration Count: 16384

Test Dascriptiont
Procedure call and return time ( amsy be zero if autosatic inlining )
procedure is local

no paraseters
Iteration 1

2197. 0000 2197.0000 0.0000
Iterati

2198, 0000 2198.0000 0.0000
fteration 4

2198. 0000 2196.0000 0.0000
Iterati, L]

2198, 0000 2198.0000 0.0000
Iteration 16

1198, 0000 2199.0000 1.6000
Itarati 32

21998, 0000 2199.0000 0.0000
Iteration 64

2200.0000 2200.0000 0.0000
Iteration 129

2201.0000 2202.0000 1.0000
Iteration

2203.0000 2.04.0000 1.0000
Iteration 1

2207.0000 2210.0000 3.0000
Itaration 1

2214.0000 2221.0000 7.0000
Iteration 2048

2229.0000 2242.0000 13.0000

Iteration 409&

225%9.0000 2285.0000 26.0000
Iteration 8192

3. 0000 2370.0000 $2.0000
Iteration 16184

2436, 0000 2539.0000 101.0000

Test Name: #000010 [
CPU Times 18.3 microseconds
wall Timws 18.3 microseconds. Iteration Count: 16394
Test Descript ion:

Procedure call and return time mnasurement

Compare to P80000S

10 parsmstaers, in INTRGRR

s Mame: Procedure

Iteration

2674. 0000 2674.0000 0.0000
Itermtion

2673, 0000 2675.0000 9.0000
lteration

2673, 0000 2675 .0000 0.0000
Iteration §

2675%.0000 2675.0000 a.0000
lteration s

2876, 000’\ 2616‘0000 0.0000
ltaration

2677, 0000 2‘77.0000 0.0000
Iteration &

2679.0000 2679.0089 0.0000
tteration 128

2683.0000 2684.0000 1.0000
Itaration 2%

2690.0000 269%2.0000 2.0000
Iterstion 512

2105.0000 270..0000 1.0000
Iteration 10

2734.0000 271’.0000 9.0000
Iterstion 204

2191.0000 2802.0000 11.0000
Test Namm: T000001 Class Wamn: Tasking
CPU Timm 454.1 eicroseconds
Wall Time: 434.1 microseconds. Iteration Count: 2048

Tmet Descript ion)
Winimue rendezvous, entry call and retorn time
1 task | entcy , task inside procedure

no selact
Iteration 1

2908.0000 2908.0000 9.0000
Iterstion 2

2908.0000 2909.0000 0.0000
fteration ¢

2909.0000 2909.0000 0.0000
Iteration §

2910. 0000 2'!0.0000 0.0000
Iterat lon

2911, 0000 2'\1.0000 0.000°
Iteration

2911, 0000 nn.oooo 0.0000
Itaryation

2917, 0000 19['.0000 1.0000
Iteration

2925. 0000 19}9‘0000 1.0000
Itaration 25

2%42. 0000 19‘).0000 1.0000
Iterat ion

2974, 0000 2.77.0000 3.0000
Tteration 10824

3038.0000 )044.0600 6.0000
Toat Wame: 1006004 Class Name: Tasking
CPU Time 366.4 microseconds
Wall Timws 356. 4 sicroseconds. Iteration Count: 1024

Tewt Descript ion:

Task entry call and retamn time measured

One tashs sctive, two entriee, tashs in a pachage
using lsct statemsnt
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