
A8PAGE Form ApprovedIAD-A250 183 ro_ PAGE omB No o74-o 88

1. AGENCY USE ONLY ea've blanit) 2. REPORT DATE 3. REPORT TYPE AND DATES '_OVERED

1991 I THE S I S 1A[X _____3RT= __

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Execution Time Prediction of AN Programs

6. AUTHOR(S)

Christopher A. Warack, Captain

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: University of Michigan AFIT/CI/CIA-91-134

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) .I SPONSORING! MONITORING
. ,,S ! AGENCY REPORT NUMBER

AFITOI ELECT
Wright-Patterson AFB OH 45433-6583 AY 7 92

11. SUPPLEMENTARY NOTES W

12a. DISTRIBU'iiN AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release lAW 190-I
Distributed Unlimited
ERNEST A. HAYGOOD, Captain, USAF
Executive Officer

13. ABSTRACT (Maximum 200 worcds)

14, SUBJECT TERMS 15. NUMBER OF PAGES
121

16 F.,2_E CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION ". SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-0"-280-5500 S%,r'da'd !:o- 29? (;ev 1-99

r _ b,--% "C



QUAAOqoB4 0o For

C4 "N--TIS-A&
'YQ

Execution Time Prediction of Ada Programs ___ribt i .a!_

Christopher A. Warack ±ilbiii, Codes

Captain, US Air Force 'Dist . an/

1991

121 pages

Master of Science
University of Michigan

Specification of the timing properties of real-time systems is a fundamental part of their
requirements. Analyzing the timing properties of the system's design and
implementation is an important issue for the system developer. Timing analysis is
necessary to determine the validity of a design or implementation in respect to the real-
time specification.

Using timing schema and PERT networks, Ada program timing behavior can be
analyzed. The use of PERT networks is simple but restricted to single processor
systems. Replacing the PERT networks with a communicating real-time state machines
model allows the analysis of Ada programs on multi-processor systems.

The technique is developed with examples and applied to a Macintosh Ilsi programming
environment. A foundation is laid for measuring how good a timing analysis prediction
fits the implementation.

92-11975
5 01l 01 18lf ini



Bibliography

1. Shaw, AC., Reasoning About Time in Higher-Level Language Software. IEEE
Transactions on Software Engineering, 1989. 15(7): p. 875 - 889.

2. Park, C.Y. and AC. Shaw. A Source-Level Tool for Predicting Deterministic
Execution Times ofPrograms . Department of Computer Science, University of
Washington, (Technical Report 89-09-12). September 13, 1989.

3. Shaw, A.C. Towards a Timing Semantics For Programming Languages. in
Third Annual Workshop, Foundations of Real-Time Computing. 1990.
Washington, DC: Office of Naval Re, irch.

4. Goos, G., WA Wulf, A. Evans Jr., and K.J. Butler, ed. DIANA- An Intermediate
Language for Ada. Lecture Notes in Computer Science, ed. G. Goos and J.
Hartmanis. 1983, Springer-Verlag Berlin. 201 pages.

5. Shaw, A.C. Communiating Real-Time State Machines . Department of
Computer Science and Engineering, University of Washington, (Technical
Report 91-08-09). August 1991.

6. Hoare, CAR, An Axiomatic Basis for Computer Programming.
Communications of the ACM, 1969. 12 (10): p. 576-580.

7. Shaw, M. A formal System for Specifying and Verifying Program Performance
Department of Computer Science, Carnegie-Mellon University, (Technical
Report CMU-CS-79-129). 21 June 1979.

8. Walden, E. and C.V. Ravishankar, A Survey of Hard Real-Time Scheduling
Algorithms. unpublished draft, 1990..

9. Cornhill, D., et al. Limitations of Ada for Real-Time Scheduling. in Proceedings
of the International Workshop of Real-Time Ada Issues. 1987.
Moretonhampstead, Devon, UK: ACM SIGAda.

10. Military Standard Ada Programming Language , ANSI/MIL-STD-1815A, U.S.
Department of Defense, Ada Joint Program Office, (January 1983).

11. Motorola, MC68030 Enhanced 32-Bit Microprocessor User's Manual .'Third ed.
1990, Englewood Cliffs, New Jersey. Prentice-Hall, Inc.

12. Park, C.Y. and A.C. Shaw. Experiments With a Program Timing Toul Based on
Source-Levol ThY-ing Schema. in IEEE Real-Time Systems Symposium .1990.

Lake Buena Vista, Florida: IEEE Computer Society Press.



Execution Time Prediction of Ada Programs

by

Christopher Allen Warack

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

(Computer Science and Engineering)
in The University of Michigan

1991

Thesis Committee:

Professor Kang G. Shin, Chairman
Professor C.V. Ravishankar
Professor Stuart Sechrest



© 1991 Christopher A. Warack

All Rights Reserved.



Abstract

Specification of the timing properties of real-time systems is a

fundamental part of their requirements. Analyzing the timing properties of

the system's design and implementation is an important issue for the system

developer. Timing analysis is necessary to determine the validity of a design

or implementation in respect to the real-time specification.

Using timing schema and PERT networks, Ada program timing behavior

can be analyzed. The use of PERT networks is simple but restricted to single

processor systems. Replacing the PERT networks with a communicating

real-time state machines model allows the analysis of Ada programs on

multi-processor systems.

The technique is developed with examples and applied to a Macintosh Isi

programming environment. A foundation is laid for measuring how good a

timing analysis prediction fits the implementation.

ii



Acknowledgement

In the short period of my graduate studies I was aided by several friends

and associates. I cannot thank them all appropriately, but I would like to

single out some of those whose help was critical to this work.

Foremost, I must thank my advisor, Professor Kang Shin. His help and

patience has greatly broadened my understanding and appreciation of real-

time systems. Secondly, I appreciate the efforts of the other members of my

committee, Professors Stuart Sechrest and C.V. Ravishankar.

I would also like to thank Professor Alan Shaw whose work inspired this

effort and who took time to answer my questions about his techniques. Major

David Umphress at the Air Force Institute of Technology and William S.

Salyers of Rational spent valuable portions of their time in getting me access

to a Rational computer system. Mike Bonamassa of Rational lent me key

material and advice on working with DIANA and tools on the Rational

machine.

Finally, I cannot show enough appreciation for the patience, support, and

love of my family. My wife, Karen, picked up the slack around the house

after a full day of work so I could continue working into the evening. My two-

year-old daughter, Kristina, made sure I did not get completely lost in my

work by coming to the office door and asking Daddy for "hugs." They

listened, helped, and kept a smile on my face.

iii



Table of Contents

Abstract ............................................................................................................. ii

Acknowledgem ent ............................................................................................. iii

Introduction ................................................................................................. 1

M otivation ........................................................................................... 1

Objectives ........................................................................................... 3

Organization ...................................................................................... 4

Execution Tim e Prediction and Scheduling ................................................ 6

Introduction ...................................................................................... 6

Traditional Execution Time Prediction Methods ............................ 7

Schem a Based Tim ing Analysis ....................................................... 10

Scheduling Analysis .......................................................................... 13

Discussion .......................................................................................... 15

Timing Schema and Events ....................................... 16

Introduction ...................................................................................... 16

DIAN A Representation of Ada Program s ......................................... 16

Timing Analysis Transformation Algorithm .................................... 20

Tim ing Schem a for DIANA Objects .................................................. 21

Event Structure for DIANA Objects ................................................ 28

Assertions ........................................................................................... 30

Com piler Analysis .............................................................................. 33

Execution Tim e Prediction Algorithm ............................................. 35

iv



Discussion .......................................................................................... 35

Concurrency M odel ...................................................................................... 37

Introduction ...................................................................................... 37

Ada Concurrency M odel .................................................................... 38

PERT N etworks ............................................................................... 39

Communicating Real-Time State Machines .................................... 43

CRSM and Ada Tasking Structures ............................................... 44

Integrating Schema Analysis and CRSM Construction ................. 45

Discussion .......................................................................................... 46

Experim ents ................................................................................................. 48

Introduction ...................................................................................... 48

Setup of the Experim ents .................................................................. 48

Experim ental Results ....................................................................... 52

Interpretation .................................................................................... 52

Discussion and Future Research ................................................................ 56

Appendices .................................................................................................... 59

A. Timing Primitives for Mac IIsi and Meridian Ada .................... 60

B. Test Program Source Code ......................................................... 63

C. Selected DIANA Representations of Test Programs .................. 93

D . Experim ent Output .......................................................................... 104

Bibliography ...................................................................................................... 113

v



Chapter I

Introduction

Motivation

A gap often exists between stating the requirements for a real-time

system and determining if a design matches those requirements. Timing

requirements suffer much from lack of adequate attention during the design

process since techniques to analyze and abstract timing characteristics are

difficult to find or do not trace forward to the implementation. Since the

timing characteristics are among the most critical in real-time systems, the

ability to track these requirements throughout the development life-cycle is

crucial.

The simplest development life-cycle model is the waterfall model. In this

model, each activity - specification, design, implementation, and test -

occurs sequentially after the completion of the preceding phase. In practice,

the waterfall model creates artificial bottlenecks and places unrealistic

constraints on the project. More practical developments, however, still

conduct the same four basic activities [1], [2]. In them, however, the

1



2

activities may occur in different order and repetitiously. Furthermore,

different pieces of the project may exist in different activity phases.

The model for software maintenance is quite similar. The fielded system

has completed all of the development stages. New parts and modified parts

may exist in various stages of completion, however. These additions and

modifications are certainly part of the system and cannot be developed

completely independent from the fielded system. The key difference between

software development and maintenance is that system design and

implementation decisions may not be available to the maintainers. While

doing the same type of thing, maintainers often have less information outside

that embedded in the system.

For an analysis technique to be applicable to the entire project, then, it

must be consistent across development activities. The technique must be

compatible with analyzing the system's parts existing simultaneously in

different stages of development. This requires the technique to apply during

design as well as during and after implementation. The results must

combine into project-wide results, and these results must relate to the

requirements specified for the system.

Typically, real-time systems have finite worst-case response time aiLd

workload requirements for specified scenariU3. Therefore, a system timing

analysis tool must generate predicted response time and workload measures

for the system through the various activities of the development life-cycle.

Only with this type of support can syst em developers track and focus on

timing requirements during system development and maintenance.



3

Objectives

This thesis describes a technique for analyzing execution times of Ada

programs. The primary objective for development of the analysis technique is

that it can apply consistently throughout the development life cycle and

answer questions about response times and workload scenarios. Pyster

points out that the "hardest parts of developing software are specifying and

validating requirements and design" [3]. The primary objective of this thesis

focuses on validating the timing properties of the design as well as the

implementation. Secondary objectives include:

" Applicability of the technique to different development and target
environments with parametric differences only,

" Limited restrictions on design methodology or implementation
style, and

" Few, if any, restrictions on applicability to legitimate Ada

programs.

The technique is based on source code timing schema [4-6]. The results of

applying the schema is used to construct a dependency graph of events

connected by code segments where the code segments are represented by

their exection times. This graph can be manipulated to determine the

worst-case path between two events. The resulting length of the path is the

response time. Simultaneous solution for a scenario of events can determine

the worst-case processor utilization necessary in a specified period of time,

thus determining workload.



4

Organization

The thesis is organized as follows. Chapters II through IV develop the

schema-based execution time analysis algorithm and concurrency extensions.

Chapter V presents and summarizes experimental results.

Chapter II develops the background of execution time prediction and

scheduling analysis. Existing prediction techniques are evaluated with the

criteria described in the objective. Scheduling analysis relies on a priori

knowledge of task time behavior. The tasks used in the scheduling literature

are not necessarily the same as Ada tasks. Thus, a context is developed that

connects traditional scheduling analysis and Ada timing analysis. This

background sets the stage for development of the analysis technique.

The execution time prediction method develops in Chapter III. Timing

schema are defined for a DIANA [7] representation of Ada programs. The

schema is defined in terms of primitives that partition language primitive

constructs (declarations, statements and expressions) into shared and

branch-distinct portions. Furthermore, the schema defines where context

switches may occur; these points are defined as events. Ccmpiler analysis

generates execution time bounds for each primitive. These steps provide the

data for an algorithm to transform DIANA trees into the analysis graph.

This graph has events for nodes and code sequences weighted by their

execution time bounds for edges.

Chapter IV further develops the concurrency issues involved. It defines

the Ada concurrency model. Some limitations on real-time programs

naturally fall out of the application of the timing analysis technique to Ada.

The next step is to manipulate the analysis graph to generate response time



5

and workload values. Two techniques are described. One uses

Communicating Real-Time State Machines (CRSM) [8]. The other uses

PERT analysis techniques.

Experiments are designed to show that the calculated times do indeed

bound execution times. Furthermore, simple experiments are hand analyzed

for worst-case time and compared to the predicted time. Finally, the

predicted, actual and hand-analyzed times are compared to provide a

qualitative measure of the technique.



Chapter II

Execution Time Prediction and Scheduling

Introduction

Execution time prediction and scheduling analysis are relatively old

problems. Yet, they are far from resolved problems. The standard

techniques for determining execution time are primitive. This information,

though, is critical to performing scheduling analysis. Only when the

execution time of a given task is known, then scheduling analysis may be able

to determine whether all deadlines can be satisfied. This chapter compares

existing time prediction techniques to the criteria of life-cycle applicability,

portability, and language limitations. It then discusses how the idea of a task

in scheduling analysis relates to system design and implementation.

Traditionp'ly, the execution time of a program is measured using

instruction analysis of the underlying object code or through testing the

actual execution time of the implementation. More advanced techniques are

developed in [4, 9-14]. These are not used in practice, however, for one reason

or another. By comparing these methods to some criteria defining the needs

6



7

of real-time Ada program development, motivation develops for a technique

derived from Shaw's timing schema [4].

In scheduling analysis tasks (italicized for distinction) are commonly

defined as a tuple of an arrival time, a period or deadline, and a maximum

execution time. This is an abstract notion that relates well to the context of

many real-time systems - an event occurs, a task is generated to react to it

and must complete prior to a deadline; or, an activity must occur periodically

and complete prior to the end of the period. This notion of a task is very

different from the Ada notion of a task. An Ada task is a program construct

which exhibits concurrency. These distinct ideas of tasks are resolved by

relating a task to Ada programming constructs.

Traditional Execution Time Prediction Methods

Two sections in Knuth [15] discuss "Analysis of an Algorithm" and "0-

Notation." While asymptotic analysis is useful in making wide distinctions in

efficiency, it does not relate directly to time. Deadlines are stated in

microseconds or milliseconds, not in O-Notation. Two practical methods are

widely used. Knuth also discusses the first of these, the hand analysis of

machine object code. He combines this with asymptotic analysis to generate

execution time predictions. In general, common sense and logic are used to

derive meaningful information from the object code. The other widely-used

method is benchmarking or test case monitoring.

The most obvious drawback of these techniques to life-cycle analysis of

execution time is that they require object code exist before operating. Thus,

they are of limited use during implementation and only fully useful after its

completion. Hand analysis is also prone to be highly complex. Knuth's



8

example [15, pp. 164 - 169] takes an 83 line assembly program and reduces it

to a linear equation with six independent variables. To accomplish this

required an application of Kirchofrs law to an earlier set of 15 variables and

significant application knowledge. In large real-time programs, this

complexity is overwhelming. On the other hand, testing suffers from lack of

rigor. Unless careful analysis shows that the test cases generate a

relationship to the worst case execution time for the code, then these results

are not necessarily legitimate bounds. Possibly, the derived times may bound

the execution time most of the time. This qualification, though, is not

quantifiable and the consequences of failure may be too severe to rely on it.

Thus, we learn from these techniques a need for analytic simplicity and

logical rigor. Structured programming in higher-level languages was

developed to simplify the logical complexity of unstructured and assembler

code. Several researchers have turned toward analysis of the source code for

timing information to benefit from its reduced complexity.

Mok's annotation technique [11] automates the hand analysis process

described by Knuth. Like Knuth's technique it is limited to the

implementation and post-implementation phases. The developer annotates

the program. The annotated program is fed to a set of timing analysis tools

and to a special compiler. The compiler is modified only in that it adds labels

to various assembly instructions in the code generation phase. These labels

do not affect the final object code that the assembler stage generates. Besides

feeding the assembler stage, the annotated assembly code is also fed to the

timing analysis tool. Using the labels, the annotated source code and

assembly code are merged. The developer then works interactively with the

timing tools to generate timing information about the program.



9

Many of the more advanced techniques, including Haase's guarded

commands and PARCs [9], Halang's extensions to the PEARL programming

language [10], Puschner and Koza's MARS-C language [12], and Kenney and

Lin's FLEX [13], are based on theoretical languages or language extensions

that are not used in practice. Thus, they are not portable as defined nor do

they use Ada. Many of these extensions could be translated to Ada; however,

Ada supersets are disallowed in Department of Defense projects and are

discouraged in general. This raises the restriction that the technique not

require language extensions or particular code generation behavior beyond

that stated in the language definition. It is important to note that

annotations like those used by Mok satisfy this restriction. Although they

require support in the compiler, they do not affect the language definition.

Glicker and Hosch describe a system that uses symbolic execution to

model the behavior of Ada programs [14]. It first determines the best and

worst case threads of execution through the Ada task system given a set of

preconditions. These threads are then measured directly using the target

architecture. This method shows some promise although it can only apply to

completed programs. Its success hinges on the adequacy of the symbolic

execution stage. Tracing all threads through a program is naturally an O(ex)

time activity. Good branch-and-bound heuristics must be applied to keep the

process tractable.

Several of these techniques share common features. The most prevalent

of these is analysis of the programming language constructs themselves to

reason about the timing behavior of the program. This concept is distilled by

Shaw in his timing schema approach. Shaw's work is done in C. Ada has

several language constructs that make timing analysis easier and several



10

more complex constructs than the simple statements and expressions allowed

byC.

In summary, existing techniques are generally not applicable to large real-

time Ada projects. Furthermore, they are not applicable throughout the

development process. Mok's annotations could be extended to Ada's

sequential language constructs. Its biggest short-coming is reliance on

compiler support. It also raises some configuration management hurdles in

ensuring that the data under analysis comes from the current code baseline.

Jumping these hurdles is straight-forward with careful process management.

Shaw's timing schema grant the developer less flexibility than Mok's for

timing analysis, but do not rely on compiler support. Both techniques must

be extended to handle Ada tasking constructs. This thesis' technique

develops Shaw's timing schema, adding tasking support, while allowing some

compiler-independent annotations or assertions.

Schema Based Timing Analysis

Timing schema are based on Hoare logic [16]. Hoare logic uses the

notation {P}S{Q} to mean that given the conditions P immediately prior to

execution of S results in condition Q upon completion of execution. An

inherent assumption is that S does, in fact, complete. The change in time

from executing statement S can be described with Hoare logic as follows

{rt = x}S{rt = x + t(S)}, where rt represents the time, x represents the value of

rt immediately prior to execution of S and t is a function which returns the

execution time of S. The first application of Hoare logic like this is in a paper

by Mary Shaw. [17]



11

The function t has as its domain the set of all possible programs and as its

range the non-negative real numbers. A definition of t can consist of a set of

axioms {(S,t)} relating all programs to their execution time. Since there are

infinite programs, this approach cannot always work. However, t can be

described with a finite set of rules for generating the infinite set of relations

above. This set of rules is a schema.

The above is flawed in that t in the rule set must be a single value to

define a well-formed function. For a single execution of a program, it will

indeed take a specific time value to execute. In fact, the execution time of a

given program may vary from one execution to another. There exist many

reasons for this including differences in inputs, differences in machine state

at the start of execution, inconsistencies in the machine clocking mechanism

and differences in the machine-language instantiation of the program.

Further disc assion of these variabilities will occur in the section on compiler

analysis in Chapter 3. Let t'(S,x) be the function which returns the single

value for the execution time of S as indexed by x E (all possible execution

conditions}. A more correct model oft, then, may be a random variable; thus t

is a mapping from programs to random variables. It is adequate, however, to

model t as a closed interval T = [tIin, ta] where P[t'(S,x) E 71 = 1 for all x.

Therefore, timing analysis of a program S consists of computing t(S). This is

done using a schema which generates a rule computing a closed time interval,

T, for S.

Arithmetic and logical operations on values of T use a form of interval

arithmetic. Additive operations are simply applied component-wise.

Multiplicative operations are distributed, T op x = [train op x, t. op x].

Relational operations are applied to the tmax component first since the worst-



12

case is the more important in real-time analysis. If the t,,a components are

equal, then comparison of the tmin components determines the result.

The schema are defined for the grammatical elements of a language. For

instance, the schema for an if-statement, '[if-statement], might be:

%if-statement] = [10,15] + rtboolean-exp] + [rain(([4,6] + [then-part]),

([2,4] + gtelse-part])), max(([4,6] + 9[then-part]), ([2,4] + gfelse-part]))]
where if-statement ::= if boolean-exp then then-part else else-part;

The schema rule's definition consists of constant parts like [10,15] and

recursive invocation of other schema rules. These constant parts represent

some basic computation to provide the language behavior for that construct.

The logical basis of the above rule is that the system computes the boolean

expression (boolean-exp) and spends time branching on the result ([10,15]).

The branch with the bigger execution time is the worst case choice and the

lesser execution time is the best case choice. The branch execution time

consists of the time spent executing the statements in the branch (then-part

or else-part) and time spent rejoining the main execution stream ([4,6] or

[2,4]).

Primitive times like the constant parts described above are dependent on

the underlying system consisting of the hardware, operating system, and

compiler. The exact value of the primitives will differ from one underlying

system to another, but it is always present in the schema since its existence

derives from some computational need in the language definition. It may be

possible for a particular system to compute a particular primitive in time

[0,E], for a very small F > 0, using special hardware or subsuming it in other

primitives.

Eventually, any given program will reduce through the schema rules to a

sum of primitive times. This is akin to parsing the language where non-

terminals in the grammar are similar to schema rules and terminals are



13

similar to primitive times. Computing the sum gives the resulting execution

time of the code sequence. One inherent assumption throughout this

discussion has been that the program has a single thread of execution. With

multiple threads, timing schema analysis must be applied to each thread.

The relationship between the threads must be addressed with other

mechanisms. These mechanisms will be discussed in the next two chapters.

Scheduling Analysis

Scheduling is one of the main problems in the area of real-time systems.

The problem is to determine if a given set of tasks can meet all of their

deadlines on a given set of processors. Tasks in the sense of scheduling are

described as a triple la, c, d} where a is the arrival time, c is the execution

time required to complete the task, and d is the deadline for the task [18].

Knowing the execution time of a task, then, is critical to conducting

scheduling analysis.

This notion of a task, however, is abstract. An Ada task, on the other

hand, is a concrete programming construct. The two concepts do not

necessarily relate directly. Consider an event-driven system. The response of

the system to a certain input event is a task for scheduling purposes. Its

arrival time is the time of the event. Its deadline is the response time

specified for the system (derived from physical requirements or allocation of

other timing requirements). The final component is the execution time.

While the first two components are commonly defined in the system

requirements or description, the execution time results from design and

implementation. Timing analysis is the technique to determine the execution

time.



14

During the requirements and early design phase, the software analyst

should determine the events, deadlines, and event arrival scenarios the

system will handle. Scheduling analysis is used to determine if the system

can satisfy its constraints. Thus, execution times must be predicted as early

in the design as possible. As design progresses and implementation begins,

the system model is refined. Scheduling analysis continues to determine if

the current model is viable. Thus, execution timing analysis must continue

and hopefully improve through the process. During validation, scheduling

analysis with inputs from timing analysis is used to determine whether or

not the system as implemented can satisfy its constraints in all cases.

Testing is not satisfactory in many cases since it may not test the worst case

conditions that may be encountered.

Scheduling analysis, however, depends on the scheduling strategy

implemented by the system. A rate monotonic system can be implemented

using Ada tasking and priorities. Ada, however, is currently prone to priority

inversion [19]. Many scheduling approaches are available in any

programming language by implementing a scheduler as part of the system.

Cyclic executives are also popular with real-time developers [20].

In summary, it is important to keep distinct the concept of scheduling

tasks and the Ada task constructs. While it is possible, Ada tasks do not map

well to current scheduling strategies. Scheduling strategies can be built into

a system, however, and Ada tasks used within the implementation of that

system separate from scheduling policies.



15

Discussion

Timing Analysis using Shaw's schema techniques and Ada satisfies the

stated objectives. When used with scheduling analysis, timing analysis can

be used to show that a system satisfies its real-time requirements.

Regardless, timing analysis can characterize program timing behavior to give

system developers information for design, implementation and verification

decisions.

Several existing timing analysis techniques only apply to completely

implemented systems. The timing schema approach outlined above can be

used with an Ada program design language (PDL) to provide timing analysis

throughout the development and with varying stages of system completion.

This lets the developer identify and track or correct problems early when they

are cheapest to fix.



Chapter III

Timing Schema and Events

introduction

The first step in timing analysis is transforming the Ada programs into

timing graphs. The transformation is based on a DIANA representation of

these programs. A schema rule is defmed for each type of DIANA node. The

resulting timing graph may be as simple as a single edge, representing a

simple sequential program. It may also be very complex containing several

nodes and branching alternatives. The generation of these graphs are

discussed. The analy-f has some control over the graphs through the use of

assertions.

DIANA Representation of Ada Programs

DIANA is an abstract data type for representing Ada programs [7]. A

DIANA object is mathematically modelled as an attributed tree. The tree

represents a normalized form of a corresponding Ada program. It also

guarantees that a given Ada object has only one defining occurrence; and the

16



17

defining occurrence is an attribute of the other occurrences. Using DIANA

takes care of the complicated Ada parsing and static semantic analysis. The

tree model is easily manipulated.

A given node of the DIANA tree is defined in terms of the attributes it has.

A node has a structural arity in the set {0,1,2,3,n} and has zero or more

lexical, semantic, and code attributes. Additional attributes may exist as

needed by an application; however, these are not standard and cannot be

relied on. The structural arity denotes the branching of each node to other

nodes. The other attributes may provide numeric or textual information or be

semantically related nodes. By sharing identical nodes, the tree becomes a

directed acyclic graph (DAG). The DAG model is identical to the tree model

except that it allows replication to be elimin, t ed.

For example, the simple program below simulates rolling x n-sided dice

where x and n are supplied by the caller. This converts to the DIANA DAG

described following it. The format for a DAG node is

name 1 t node type [ attributes i. Attributes are juxtaposed pairs of the form

attributename attribute-value. Multiple attributes are separated by semicolons.

function ROLLDICE (NUMSIDES, NUMDICE : in INTEGER)
return INTEGER is
subtype DIERANGE is INTEGER 1 .. NUMSIDES;
A DIE : DIE RANGE;
TOTAL : INTEGER := 0;

begin
for A ROLL in 1 .. NUM DICE loop

A DIE " INTEGER(RANDOM * NUM SIDES) + 1;
TOTAL : TOTAL + ADIE;

end loop;
return TOTAL;

end ROLL DICE;

Figure 1: Sample Ada Program

Nodes with names like PDx are part of the Ada package "Standard" provided as part of
the compiler environment. These names are used consistently with the example in [7].



18
Al :camp,_unit [ aspragmas ^A2;

as context ^A3;
as unit -body -A4]

A2 :pragmas [ as list <> ]
A3 :context [ as-list <> ]
A4 subprogram-body [ as-designator ^~A5;

as -header ^A6;
as block stub "A7

A5 :function-id [ lx-symrep "ROLLDICE";
am spec ^A6
am body ^A7
am location void

A6 function [asparam-s ^A8
as-name -'A13]

A7 :block [as-item-a ^A14;
as stma s A29;
as-alternative a s A54

A8 :param-s [aslist < A9 >
A9 :in [as_id_a 'AAlO;

as-name -A13;
as -exp void void

A10O ida [ as-list < -All '-A12 >
All :in-id lxsymrep "NUMSIDES";

am-imit-exp void;
am-obj type "PD9

A12 :in id [lxsynrep "NUMDICE"I;
am-imit-exp void;
am-obj type ^PD9

A13 :used-name id2  ( lxsymrep "INTEGER";
am defn APD8 ]

A14 :item -s as-list < '^A15 ^A16 ^A17 >
A15 :subtype as_id -A18;

as constrained -A19
A16 :var (as id a '^A23;

as__type spec ^A2 5;
as object -def void

A17 :var [as id s ^A26;
as type spec ^A13;
as object def A"A28

A18 :subtypeid [lx -symrep "DIERANGE"f;
am type__spec '^A19

A19 :constrained [as name '^A13;
as -constraint A20;
am type struct '^A19;
am base type ^PD9;
am constraint ^~A20

A20 :range [ as-expl A'A21;
asexp2 ^'A22

A21 :numeric-literal [lx-numrep "1";l,
SM eXp type A PD9;
am-value 1

A22 :used object-id [ lxsymrep "NUM_SIDES"l;
sm-exp type A PD9;
am defn ^~All ]

A23 :id as as list < ^A24 >

2 Note that this node is heavily reused in the structural DAG. This is not surprising since
it represents the type integer.



19
A24 : var id [ lx_symrep "A DIE";

smobjtype ^A19;
sm address void;
smobj def void

A25 : usedname-id [ lx_symrep "DIERANGE";
smdefn -A18 ]

A26 : id s [ as-list < ^A27 >
A27 : varid [ lx-symrep "TOTAL";

smobj_type ^PD9;
smaddress void;
smobjdef ^A28 ]

A28 : numericliteral [ lx numrep "0" ;
smexptype ^PD9;
smvalue 0 ]

A29 : stins [ aslist < ^A30 ^A53> ]
A30 : loop [ as_iteration ^A31;

as stm s ^A36
A31 : for [ asid -A32;

asdscrtrange ^A33
A32 : iteration id [ lx-symrep "A_ROLL";

smobjtype ^PD9
A33 : constrained [ as_name ^A13;

as constraint -A34;
smtype struct ^A33;
smbase type ^PD9;
smconstraint ^A34

A34 : range [ asexpl -A21;
as-exp2 ^A35

A35 : used object_id [ lx_symrep "NUMDICE";
sm exptype ^ PD9;
smdefn -A12 ]

A36 : stm s [ as-list < ^A37 ^A49 >
A37 : assign [ asname -A38;

as-exp ^A39 ]
A38 : used object_id [ lx_symrep "A_DIE" ;

sm exptype ^A19;
smdefn -A24

A39 : functioncall [ as_name -A40;
as paramassocs ^A41

A40 : usedbltn-op [ lxsymrep "+" ;
sm_operator BINARY PLUS ]

A41 : param assoc_s [ as_list < ^A42 ^A21 > ]
A42 : conversion ( as_name ^A13;

as exp -A43 ]
A43 : functioncall [ asname -A44;

asparam-assocs ^A45
A44 : usedbltn-op [ lxsymrep "";

smoperator MULTIPLY
A45 : param assocs [ as_list < ^A46 ^A22 > ]
A46 : functioncall [ as_name ^A47;

asparam-assocs -A48
A47 : usedobjectid [ lx-symrep "RANDOM";

smexptype ...;
smdefn ... ]3

A48 : param assoc s [ as list < > ]

3 This is an external function with nodes outside the immediate program. These are
elided for conciseness.



20
A49 : assign [ as name ^A50;

as_exp ^A51 ]
A50 : used objectid [ lx_symrep "TOTAL";

sm_exptype ^ PD9;
smdefn ^A27 ]

A51 : functioncall [ asname ^A40;
asparam-assocs ^A52 ]

A52 : paramassoc_s [ aslist < ^A50 -A38 > ]
A53 : return [ as expvoid ^A50 ]
A54 : alternative s [ as list < > I

Figure 2: DIANA Representation of the sample program

Al

A2 A3 A4

A5 AB A7

AB A14 A29 A54

A9 A15 Al6 All A30 A53

Al0 Al8 A19 A23 A5 A26 A28 A31 A36

All A12 A20 A24 A27 A32 A33 A37 A49

Figure 3: DAG of structural DIANA nodes for Sample Program

Timing Analysis Transformation Algorithm

The basic algorithm is to transform the DIANA object representing an

Ada program into a graph. The edges of the graph represent sequential

portions of the Ada program. The vertices represent potential context



21

switches. The graph is built by traversing the tree depth-first or "bottom-up."

As each node is traversed a subgraph is created based on the type of node and

the subgraphs of its children. A simple implementation is to apply the

schema function to the root node and using the recursive nature of the

schema to traverse the tree. The traversal of a node is dependent on its type

and structural attributes only. Its schema, however, may use semantic

information in computing bounds and values.

The timing graph created by this process consist of edges weighted with

execution times and vertices to connect edges. Multiple edges leaving a

single vertex represent branching dependent on task synchronization. When

constructed into a system network, only one branch in an instance will be

utilized; the others are discarded.

A delay edge denotes a constraint that a certain time must pass between

two vertices before execution can continue. A context switching node is so

marked where a context switch may occur. This is done solely for the

purposes of calculating the potential number of context switches in the

resulting system model.

Timing Schema for DIANA Objects

The 170 different DIANA node types are listed below. Each entry includes

the structural and key semantic attributes as well as the schema for

computing the worst and best case time bounds for that node type. Several

auxiliary functions are used to simplify the schema. These include:

" Store(Node): Determines the proper primitive time to store a value
in an object by examining the type of the object.

" Access(Node): Determines the proper primitive time to access a
value in an object by examining the type of the object.



22

* Init(Node): Determines the proper primitive time to initialize a
value in an object by examining the type of the object.

* Save: This function updates the library of computed timing graphs
with the graph computed for some subprogram, task, package, or
generic declaration. These graphs are used by the Insert function
or by the analyst in constructing a system network as described in
the next chapter. Save "returns" the value [0,0]; that is, in storing
the graph designated, this graph is not included in the computed
time of the declaration block in which it occurs. This follows since it
is not executed at time of declaration. Some elaboration time may
be included in the schema in addition to the save, however. This
does, indeed, execute during elaboration of the execution block.

" Stop: Halt computation within an enclosing stm-s type node. This
occurs when an unconditional change in control flow is encountered
in a sequence (i.e., return, goto, or unconditional exit).

" Abort: Ignore this path (stm-s node) since it contains a raise or
abort statement. Currently raise and abort are restricted to use
with error conditions. Error conditions are not analyzed by the
technique at this time.

" Insert(Name): Insert the graph for a subprogram at this point in
the current graph. Look for a recursion assertion if it is the same
subprogram.

" Node(Name): End the current edge. Create a vertex. Start a new
edge(s). With rendezvouses, the node will be linked to a
corresponding node in another task, so one edge will be missing.

" Delay(Duration): Create a pair of nodes with a delay edge between
them of the duration given.

" Activate(Task[s]): Create a context-switching node at this point
preceded by the timing primitive P(activation) and attach Task[s]
(as well as continuing the current thread).

" Queue-Activate(Task[s]): Like Activate except that the node is
inserted after completing all processing of the current declarative
block.

" ConstraintCheck(Node): Determine the proper primitive time for a
constraint check on the type of the given node.

" Print(String): Print the given string on the analyzer's error output
stream.

" Range(DSCRTRANGE): Determines the lowest and highest
possible values of the range.



23

Node ype ritySchema
abort 1 Abort -- abort statements are treated as errors at this point and are not

_____________candidates for a min or max path.
accept 3 P(accept) + Node("start "&as-name) , NodeC'Begin"&as name) +

____________P(rendezvous) + TIasstm s) + P(acceptend) + Node("end "&as name)
access 1 T~as constrained)
address 2 [0,0] -- representation clause affects compilation only
aggregate n I

_________V__ Z.Taslisti])) + Store(sm exp type)

alignment 2 [0,0] -- representation clause affects compilation only
all 1 [0O]
allocator 1 TXas jexp constrained) +

if sm-exp-type = task-spec
then Activate(task)
else Store(smsexptype) + P(allocate-mem(Size(sm-exp-type))
Note: Records and arrays with task components need a hybrid of the if-

____________statement above to apply.
alternative 2 -- subsumed in schema for case node

-ignored as attribute of exception part of blocks
alternative-s n -- subsumed in schema for case node

-ignored as attribute of exception part Of blocks
and then 0 PWand then)
argrument id 0 [0,0] -- identifier "symbol table" entry
array 2 TZas dscrt range~s) + T~as constrained)
assign 2 TXas..name) + T~as~exp) +. Store(as..name) + Constraintheck(as -name)

_____________ +if asexp = used-obecd thn-ts~s.eps.epype) else [0,0]
assoc 2 TZas actual)
attr id 0 [0,0] -- identifier "symbol table" entry
attribute 2 TXas-name) + P("attr" & as-id.smdefn.1xsymrep)

________________ .- attribute execution times are pre-defined
attribute call 2 TZas exp) + TXas_ name) -- as name is a node of type attribute
binary 3 (TZas...expl), TZas..expl) + TZas_,.exp2)] + 7%sbinaryop)
block 3 TZas item -s) + TZas-stm-.s)

- as alternative s represents exception handlers
box -0 1[0,0] -- generic subprogram formal option
case 2 TZasepxp) + P(case) + [nun(choices),max(choices)]

choices = {Tasalteratives.aslstfn].asstms-): 1!g n 5. aseist 1)
-- as alternative s.as listl.as choice s must be static and is ignored

choice-s n n

.ATZas listf ii)

code 2 TXas-exp) -- machine dependent code insertion
-execution time bounds must be specified with a time assertion

comp-id 0 [0,0] -- identifier "symbol table" entry
comp rep 3 [0,0] - representation clause affects compilation only
comprep-s n [0,01--representation clause affects compilation only
compUmt 3 T~asjinitjody)

-- as context and as-pragma..s set up environment only
compilation n (map T aslist) = TXhd(asjlist));(map, T tl(as-list))

-- list of all compilation units in the system
cond clause 2 -- subsumed in schema for "if' node
cond-entry 2 P(cond-entry) + Nodel + Delay(e) + Zas-stm-s2) + Node2;

-- Delay(e) prejudices choice
_____________ _____Nodel + T~as stm sl) + Node2; -- first stm is entrySall

const id 0 [0,0] -- identifier "symbol table" entry
constant 3 TZas-type-spec) + 7Xas..bjectjdef)

contrane 2 Tas constraint)
context I n (0,0] -- set's up environment, no cost



__________ ___24

conversion 2 case as-name.sm-deffi.smjtype-spec, as-.exp.smtypes-pec
real to int: P(convert-float2int) or P(convert-flxed2int)
int to real: P(convert-int2float or P(convert-int2fixed)
real to real: P(convert~flxed2float) or P(convert-float2fixed)
derived : P(convert derived)
array: P(convert array)
others: [0,0] -- not changing base type

if subtype
then Constaint.Check(smsexptype) else [0,0]

____________ _____+ Txas-exp)
deci-s n n

A___ ZTaslisti) + Init(aslisti])

def char 0 [0,0]; -- never called since enum-literat-s is always [0,0]
I___ Access = P(num access)

detop 0 [0,0] operator "symbol table" entry
defer-red constant 2 [0,0] -- any cost will be incurred with full declaration
delay 1 T~as-exp) + P~delay)

____ + Delay((sm ~value or max~subtype range)) + P(delay cap))
derived 1 T~as -constrained)
dscrmt-aggregate n n

______ i=1l

dscrmt id 0 [0,0] -- identifier "symbol table" entry
dscrmt var 3 Tasobjcdf
dscrmt-var-a n nt

dacrt-ranges n n

A___ ITxasjisti)

entry 2 T~as dscrt range -void) + Iasparams)
entry-call 2 T~as - ame) + TZsmnormalized..param..s) + P(queue..entry)

____ + Node("start "&as_name) ; Node("end "&as_name) + [0,0]
entryid 0 [0,0] - identifier "symbol table entry
enum id 0 [0,0]; -- never called since enumjiteraLs is always [0,0]
enum literal s n [0,0] -- list of def~char and enum id; each static so [0,0] elaboration time
exception 2 [0,0] -. declares eetion names
exception~jd 0 [0,0] -. identifier "symbol table entry
exit 2 if as-expvyoid = void then Stop* else I~as~expsyoid)

-computes condition, but doesn't affect number of loop iterations
*a branch containing unconditional exit can only be executed once,

-so normally cannot be worst case branch 4

exp-s n n

A___ I= -is~]

fixed 2 TZas range void) -- as exp is static
float 2 T~as range vyoid) -- as exp is static
for 2 TIas dscrt range)
formal dscrt 0 [0,0]- place holder for generic type parameters
formal fixed 0 [0,0] -- place holder for generic type parameters
formal float 0 [0,0] -- place holder for generic type parameters
formal integer 0 [0,0] -- place holder for generic type parameters
function 2 I~as-param-s)

4 Can be best case, however. Furthermore, unusual conditions such as an exit branch
which is much more computationally intensive than other branches through the loop or
a loop which only executes a small number of times may be a worst case. A more
thorough analysis may determine this.



25
function-call 2 if as-name is used_bltn-id or used-bltn-op then

check sm-value for static expression and treat as folded constant
if one exists , otherwise P(bltn) + T(smu-normalizeLparams8)

else
PMunction -call) + T(sm normalized-param s) + Insert(as-name)

+ PMfnction end)
--em normalizedparam..s includes default params

function id 0 [0,0] -- identifier "symbol table" entry
generic 3 save id(asjid) = T(as-generic..header)

-- as..generic-.param..s is used to define quasi-primitives to be replaced
_____ with actual times when instantiated.

generic-assoc_5 n n
AT(as-listti)

generic-id 0 [0,0] -- identifier "symbol table" entry
generic..param-s n n

goto 1 PrintC'Warning: Unstructured statement <goto> cannot be analyzed")
+ Stop
-- if a forward goto, this will compute correctly; if it causes a loop, then

____ the analysis is bad.
id a n [0,0];

cfh1ices (nj~shti.sjx~od + P(else)) +

T(aslist~n.asstms) :1<n~ I as-list. I}
____P(if) + [min(choices),max(choices)]

in 3 if asexp._yoid * void
then T(as.exp_ void) + P(defaultparam)

in id 0 [0,01 - identifier -symbol table" entry
in op 0 PKin)
in-out 3 [0,0] -- cannot have default parameters
in out id 0 1[0,0] - identifier "symbol table" entry
index 1 [ 0,0] -- as name is an uconstrained type.
indexed 2 T(as...name) + Tas-exp-s);
inner-recordi n n

AT7asjistf ii)

instantiation 2 T(asgenericassoc.s)
integer 1 T(asjange);
item-s n n

iterationjd~ ~~ 0 [0 0]..idetifir b tbl"e

iteaeoid 0 [0,0] - identifier "symbol table" entry

labeled 2 T(a stmn)
loop 2 if as -iteration = void or as-iteration = while

then 'lXas iteration) + P(loop) +
LOOP_-ASSERTION * (Tas stm as) + T(as iteration) + P(iter))
- P(iter) + P(boop-end)

if no loop assertion then if no nodes in as-atm-s
-- then print 'Unbounded Loop" + Stop
-. else unroll as far as necessary

else T(asj- teration) + PKfor_-!nrp) +
Range(asiteration.as-dscrt ange) * (Tas atm a) + P(forjter))

- Mor-iter) + M~or-end)
lprivate 0 [0,0]
L~privatetype id 0 [0,0] -- identifier "symbol table" entry
membership 3 T7as-exp) + Xas-type-range) + Tas-membership-op)



26
Sname-s n nn en T(asjlist(i))

named 2 T(as choice s) + T(asexp)
named stm 2 IT(asstm)
named stm id 0 [0,0] -- identifier "symbol table" entry
no default 0 [0,0] -- generic subprogram formal option
not in 0 P(notjin)
null access 0 [0,0]
null comp 0 [0,0]
null stm 0 P(null)
number 2 [0,0] -- static numeric constant
number id 0 [0,0] - identifier "symbol table" entry
numericliteral 0 if smvalue < SMALLVAL then P(smallnum-literal.access)

else P(num literal-access) -- where num is int, float or fixed
or else 0 P(or.else)
others 0 [0,0]
out 3 [0,0] -- cannot have default parameters
out id 0 [0,0] -- identifier "symbol table" entry
package-body 2 save id(as id & "body") = P(packageelaboration) + T(as-block-stub)
package-decl 2 save id(asjid) = Tas-package_def) + P(package-elaboration)

-- if as_packagedef is rename or instantiation then use other values
packageid 0 [0,0] -- identifier "symbol table" entry
package-spec 2 T(as decl sl) + T(as_decl s2)
paramassocs n n

I___ Taslist[i]) -- actual parameter lists

params n n

parenthesized 1 T(as-exp)
pragma 2 [0,0] -- compiler directive may change global params, but no code gen

Timing Assertion pragmas are handled, of course.
pragma-id 0 [0,0] -- identifier "symbol table" entry
pragma.s n [0,0] -- compiler directive may change global params, but no code gen
private 0 [0,0]
private_type-jd 0 [0,0]-- identifier "symbol table" entry
proc id 0 [0,0] identifier "symbol table" entry
procedure 1 Zas-params)
procedurecall 2 T(sm normalized-param-s) + P(procedure-call) + Insert(asname)

+ P(procedure end)
-- sm normalized_params includes default params

qualified 2 T(asexp) -- asname only used by compiler
raise 1 Abort -- exceptions are treated as errors at this point and are not

candidates for a min or max path.
range 2 T(as-expl) + T(as-exp2)
record n n

Ai Tas-list[i])
_____________ _____ i=1

recordrep 3 [0,0] -- representation clause affects compilation only
rename 1 [0,0]
return 1 Tas-exp~yoid) + Store(functioncall) + Stop
reverse 2 T(as dscrt range)
select 2 P(select)

I asselectclausess I
+ A Tiasselectclausess.as-list[i].as-exp-void) -- comp guards

+ (map (Xx.Nodel + T7x.as-stm-s) + Node2, as-select clauses-s.as-list)
and if I as stm sI > 0 then Nodel + T(as stm s) + Node2)

selectclause 2 subsumed in schema for select node



___________27

select _clause a n - subsumed in schema for select node
selected 2 if as -name.sm.obj..type is a record then

if it has a variant then
T~asjiame) + P(variant-tag-check) + T as-esignatorschar)

else
T~as..name) + 7Xas..designator _char);

else -- it is an expanded name
______________ Tas..name) + TVasdesignator _char);

simplejrep 2 [0,0] -- representation clause affects compilation only
slice 2 TXasjiame) + T7sdscrt-range);

size = I as dscrt range I * sm-exp-type.as constrained.cd-impLsize
atm as n n 7 sls~]

string..literal 0 (0,0];
stub 0 [0,0] -- Used for separate compilation purposes only
subprogram.1Lody 3 save id(as designator) = TXas_block stub) + 'I as header)
subprogram~decl 3 if as-sulprogramdef * void

then save id(as designator) = 7Xas...subprogram~def + T as header)
subtype 2 TZas constrained)
subtypeid 0 [0,0] -- identifier "symbol table" entry
subunit 2 save id(as-name) = 7Xas subunt body)
task-body 2 P(task-ody.elab) + {save id(asid & "'body") = TXas block stub))
taskl-bodyjd 0 [0,0] -- identifier "symbol table" entry
task-decl 2 P(task-spec.elab) + (save id(as-id) = TZas task del) +

Queue-Activate(as-id)
task-Spec 1 TZasjlecl-s)

-- Activated by allocators or declarations (if declaration, queue activate it)
terminate 0 P(terminate)
timed-entry 2 P(timedentry) +

Nodel + T as-stms2) + Node2, - first stm is a delay stm
Nodel + 'I~as...stm...As) + Node2; -*first atm, is entry-call

type 3 7Xastypespec) + 7Xasjlscmt ar s)
- if task type need to save it as well

type id 0 [0,01 -- identifier "symbol table" entry
universal fixed 0 [0,0];
universal integer 0 [0,0];
universal real 0 [0,0];
use n [0,0] -- controls visibility of ida; no code generated
used bltn id 0 [0,0]
used bltn...p 0 [0,0]
used char 0 [0,0];
used name id 0 [0,0]
use(Lobjectjd 0 (0,0];
used.op 0 [0,0]
var 3 1 idas I * [T as type spec) + qas-object-def) +

if as-object-def = void then init(as-name) else store(as-name) +
if as...type-spec = task-spec then Queue-Activate(asjid)]
- similarly for components of as-type-spec...

var id 0 [0,0] -- identifier "symbol table entry
variant 2 7 as choice a) + T7as record)
variantpart 2 TRas variant a)
variant -a n n Xa hs i]

void 0 [0,0] -- voiii attribute; no code or semantic value
while 1 7 as-exp)
with n 1[0,0] -- controls visibility of ids; no code generated

Figure 4: Timing Schema for DIANA Nodes by Node Type



28

Notes:

- Schema with nodes are also described graphically in the next
section.

- Expressions may be static. In this case they are evaluated during
compilation and a value for the attribute smvalue is added in the
DIANA representation. In this case the expression is handled as a
constant object of the appropriate type. In other words, all nodes
which can be expressions are first checked for the existence of an
smvalue attribute before proceeding with application of the normal
schema. These nodes include conversion, qualified, parenthesized,
aggregate, binary, membership, indexed, slice, selected, all,
attribute, attributecall, and functioncall.

- In loops the phrase n * T(x) is equivalent to unrolling the loop. This
is only significant in cases where T(x) introduces nodes. If T(x) is
simply additional edge weight, then n*T(x) can be directly
computed using multiplication.

- Similarly, branching statements like if and case must be
graphically represented if they contain nodes. This is illustrated in
the next section.

- The abort statement non-cooperatively cuts off a task from further
rendezvous and "marks" it for termination. This is normally used
to recover from an error state. In any case, analysis stops on
encountering an abort statement (like it does on raise statements)
and chooses another parallel path as the worst or best case.

- Some schema of the form [0,0] are actually unreachable in
computing the schema formula as defined. In general these are "ID
nodes" which represent an identifier or operator of some sort.
These nodes are very important in the computation of the auxiliary
functions like store, access and init. ID nodes contain the semantic
type information these auxiliary functions need. ID nodes are
always leaves (i.e., they are never internal nodes) and are
meaningful only within the context they appear. Therefore, the
schema of their parent node normally include any primitives that
context may induce as well as generating any auxiliary function
computations necessary.

Event Structure for DIANA Objects

The potential context switches, or events, are introduced by certain Ada

program constructs. The corresponding DIANA node types are listed below



29

with a graphic description of the transformation involved. Figure 7 in the

next chapter illustrates the transformation with some examples. 0

represents a vertex where a context switch may occur. Other vertices are

used to connect edges and to gather alternative choices. Loops containing the

following structures are unrolled completely if bounded and as far as

necessary if unbounded.

Task_Body P(activ) + T(as-itemns0 T(as stm-s) + P(terminate)Q

T(as item-s) T(as-stm-s)

Enclosing Block Q
* Task Activations
* fra declarative

block

Accept P(ccept) (rendezvous)+T(as-stm-s0

ENTRY-NAME

EntryCall P(queueent ry)Q ENTRY-NAME [ 0]E ntry Call+ (sm -norma i ze -a ar&_s

DelayT12L= 
Delay(delay + P(delay-cap)) 0Dea ... .. .. .. .. .. .. .... 0 2,o

CondEntry Dely(c) T(as-stm-s2)

P(cond-entry) 003

entry-call) + T(as stm-s

Tined Entry TCentry-coll) + T(as-stm-sl)

P(timed-entry0

R T(delay) + T(as-stm-s2)

Select T(comp-guards) <se+ect-tm sl

, R < >* + T(as-stm-sN)

> - T(accept), T(delay), T(termlnate)

or, for branch n, delay(e) - else branch.



30
T(as-stm-sl,

If or Case
containing one of 0
the above

T as-stm-sN)

branch 1 through n-1 have some sort of node structure, branch n is
cnputed from all of the sequential branches as is normally done.
If no branch is purely sequential, all n branches have nodes.

In combining the timing graphs into a system network, entry-calls and

accepts are stitched together like shown in the diagram below. Constructs

which have alternative edges are instantiated with exactly one of those edges.

Where the choice matters, careful selection must be made based on the

analysis being performed. For instance, the worst case for a condentry in an

unbounded loop is to always choose the else part. This results in an infinite

chain of else's. (This also illustrates why it is generally bad programming

practice to use a conditional entry in an unbounded loop). Most of the time,

however, the choices are evident.

P(rendezvous)

P~acet)+ T(asstms) 0 00

P(queue-entry)+ T(eue-norma1 zed-po ram-s) ENrRY-NAME

Figure 5: Stitching Together an Accept Statement and Entry Call

Assertions

An assertion is simply a statement. Classically, a software developer uses

assertions to make claims about the state or nature of the program at a

particular point in the code. Often these assertions are embedded as

comments in the code itself. A small number of programming languages like

Eiffel include certain assertions as part of their syntax [21]. In some cases,



31

an automated tool may process these assertions to generate more powerful

claims. This basic idea is applicable to timing analysis. In fact, it grants

much of the power for analyzing designs or incomplete code segments.

Assertions may 'e used to bound unbounded loops or recursion, to specify the

length of time some code will take without specifying the code itself, and to

mark relevant points in the analysis.

A few existing timing analysis techniques use assertions of some sort.

Flex [22], like Eiffel, is a program with built-in assertions. As a real-time

language, these assertions allow run-time checking of timing behavior. The

Flex approach is part of the language definition, however, and this does not

help with the analysis of Ada.

Ada provides a handy construct for implementing assertions, as well.

They are not checked at run-time, however. The pragma statement does not

generate code per se. Instead it passes a directive or a suggestion to the

compiler on how to compile the code around it. Except for some standard

pragmas, pragmas are considered to be implementation defined. Since they

may only change the way code is compiled and not its correctness, a compiler

must ignore any pragma it does not recognize (although it may print a

warning) [23].

The seven assertions defined for this timing analysis are therefore

implemented as pragmas. Each is prefixed with "TA_" to help ensure no

conflict with any compiler's own pragma set. Pragma statements are very

similar to procedure calls. Like procedure calls, arguments to the pragma

may be positionally associated or name associated. Either style may be used

except with the TA_TimeByPrimitives assertion which must be name

associated.



32

TALoopBound This assertion may appear as the first
(Low, High : natural) statement in a loop body. If it does, it

defines the range of times that the loop
will execute. It overrides the bounds
derived by analysis of a for-loop
specification.

TARecursion Bound Similar to a loop bound. It may occur
(Low, High : natural) as the statement immediately following

a self-recursive procedure or function
call. Mutual recursion and recursive
call chains are not supported.

TAMeasureStart Ignore previous code in this compilation
unit for timing analysis purposes. Use
this point as an analysis start point.
This assertion is intended for use in
main programs.

TAMeasureStop Ignore following :ode in this
compilation unit for timing analysis
purposes. This assertion is intended to
mark where the end event should be
inserted.

TATimeAbsolute This assertion is treated exactly like a
(Low, High : Natural) code sequence which reduces to an edge

with time bounds [low, high] (in cycles).

TATime Mix This assertion is similar to
(Instruction-Number : Natural; TATimeAbsolute but uses an
Mix : Mix_Type) instruction count and average

instruction time range (mix) to compute
the time bounds.

TATime ByPrimitives Like TA_TimeMix, this assertion takes
(<prim name> => Natural, _) instruction counts as its arguments.

Instead of counting "average"
instructions; however, the developer
can specify t' aumber of primitive
times. Since iiamed association is used,
only the primitives of interest need be
listed.



33

Compiler Analysis

In order to determine the values of primitive times, careful analyses of the

compiler and the target hardware architecture are required. The compiler

analysis must determine the code generated corresponding to each primitive.

The hardware architecture analysis must calculate the execution time of this

code. Vendor input greatly simplifies the process. However, direct

observation of the compiler and hardware may be needed.

The implementation done in conjunction with this thesis uses the

Meridian 5 Macintosh Ada compiler operating on a Macintosh IIsi. Neither

the compiler nor the hardware were developed with real-time criteria in

mind. This means that predictability is not directly supported and that

worst-case times may be significantly worse than average case times.

Hardware analysis must consider the instruction timing of the processor

along with system interrupt handlers and bus/processor contention for other

system maintenance activities. Vendor timing data is crucial for instruction

timing. In the case of the Macintosh, its Motorola 68030 processor is

described in [24]. Without timing data, extensive testing with logic analyzers

would be necessary to measure either instruction timing or primitive routine

timing. These tests could not guarantee bounds on these times unless they

can guarantee testing all possible conditions for execution. Adequate vendor

data utilizes design knowledge to ensure that time bounds given are true

bounds or at least bounds under specified conditions. The Motorola data

specifies the worst case execution time under assumptions on the length of

5 Meridian AdaTM 4.1, Meridian Software Systems Inc., 10 Paseur St., Irvine, CA, 92718.



34

bus cycles and averaging instruction alignment cases. It does not, however,

specify best case execution time.

Code generation analysis is also simplified with access to vendor design

data. Particularly, a compiler which uses DIANA as an intermediate

representation is relatively easy to trace through the code generation phase

relative to the schema. The Meridian compiler, however, does not use DIANA

and does not supply insight on code generation. Under these circumstances,

analysis may be accomplished by disassembly of the compiler libraries and

test programs. These test program listings are compared to the source listing

and corresponding DIANA structure to associate primitives with measurable

code segments. While this approach lacks the same fundamental guarantees

as hardware testing, compiler activity is very likely to follow the constraints

of the language definition and common compilation practice. Some of these

constraints are embedded in the DIANA construction. This helps make the

relevant cases more obvious. In the event of a prediction anomaly, however, a

new set of code generation circumstances is one of the first things to look for.

The primitive times used in this implementation are developed using the

disassembly method described here.

Primitive times disassociate the uniqueness of each compiler/hardware

/system grouping, but require analysis of each grouping to determine the

values of these primitives. Vendor data greatly simplifies the analysis. A

production system would need high quality, high reliability predictions.

Vendor data is a fundamental necessity to achieve that level. In the

experimental implementation developed with this thesis, vendor data is

available on the instruction set timing, but experimentation is used to

determine system interference and code generation patterns.



35

Execution Time Prediction Algorithm

Generate the timing graph as described earlier. Choose start events

(nodes) of interest. Select the end event of interest. Sum all edges which

"precede" the end event in the graph. An edge "follows" an event when no

path can be found beginning with a start event and not including the event.

An edge that does not follow an event, precedes it.

Note that without priorities, unbounded loops containing conditional

entries and select statements with else clauses create busy tasks.

Theoretically, these tasks may run indefinitely without relinquishing the

processor. Graphically, unrolling these loops create an indefinite number of

edges that have no dependencies on other paths (like a rendezvous does).

Thus, if the first of these edges precedes the end event, then the entire

unrolled loop can precede the end loop. Thus, these constructs must be used

carefully, or else, a method other than the simple graph analysis above must

be used (such as the CRSM approach defined in the next chapter).

Discussion

If done by hand, applying this graph construction technique is tedious. It

needs to be automated. Non-trivial problems generate extremely large

DIANA trees. Automating this turned out to be a difficult problem, however.

The difficulties were not in the technique; but instead, in the development

environment. The task was larger than the system could handle.

On the other hand, this drove home the need for an automated timing

analysis technique. Being forced to use this, relatively abstract, method by



36

hand made me realize the extreme difficulty in evaluating the timing

characteristics of the program. It also seemed to show why timing analysis is

not done as often as it should.

The other issue with developing this approach is the need for compilers

and systems which make some effort to be predictable. The Meridian system

used unbounded recursion or iteration in several areas. Unless it was clear

that some natural bound applied to the value, this created great difficulty.

Alarms, in particular, used several cases of recursion and endless loops -

mostly in searching and deleting. For this reason, they could not be

adequately characterized so I deferred investigating things like

timedentries.

The combination of assertions, source code analysis and the concurrency

analysis upcoming, provides a broad toolkit to the programmer/analyst who

needs to track, verify, or bound the performance of his or her system.



Chapter IV

Concurrency Model

Introduction

The amount of concurrency (both real and perceived) completely changes

the timing behavior from one concurrency model to the next. Two common

models are the fully concurrent model and the interleaved model. The

applicable model is closely tied to system scheduling decisions as discussed

earlier. Ada does not specifically require some degree of concurrency or

another. Its model is compatible with either a fully concurrent architecture

or an interleaved system, as well as combinations of the two.

This thesis applies to the simple case of interleaved concurrency on a

single processor. Currently, most Ada compilers are limited to direct

exploitation of a single processor using the Ada language constructs.

Multiple processors are sometimes made available through usage of

underlying operating system capabilities. Besides wishing to avoid

incorporating arbitrary operating system characteristics, multiple processors

introduce interprocessor communication contention which greatly complicates

timing analysis. Some on-going research is directed at the topic of

37



38

predictable interprocessor scheduling and communication [9, 25-27].

Certainly, the trend is toward multiprocessor systems and direct Ada support

of these systems. Extending the approach here to support multiprocessors

and resource contention is the logical next step in research.

This chapter discusses Ada's rules on concurrency as well as techniques

for modelling Ada concurrency. The two techniques presented are a simple

PERT technique and Shaw's Communicating Real-Time State Machines

(CRSM) [8]. The PERT technique is the one developed in the current schema

definitions. It is usable in single-processor systems with no task priorities.

CRSM accounts for prioritization and may be extendable to multiprocessing

systems. It is more complex to generate and requires automated support to

execute, however. This chapter also outlines an approach for incorporating

CRSM into the schema developed here.

Ada Concurrency Model

The Ada Concurrency Model is straightforward. It follows closely Hoare's

Communicating Sequential Processes [28, 29]. Tasks embody control flows

that may execute in parallel. The Ada main program may be considered as a

task for this purpose. At no time may a task with a lower priority run if a

task with a higher priority is runable on a given processor. Scheduling

decisions between tasks of the same priority is left implementation

dependent.

This model implies that a context switch between tasks will only occur

when a task blocks or a higher or equal priority task becomes runable. A

task may block at any of its synchronization points. These include the end of

its activation, the activation point of another task, an entry call, the start or



39

the end of an accept statement, a select statement, a delay statement, an

exception handler, or an abort statement. It may also block if it uses a

blocking system call. 6 In the worst case, a task blocks in all of these

situations and a context switch occurs. A task may become runable as a

result of an interrupt or expiration of a delay statement. Again, the worst

case is that each of these results in a context switch.

For the purposes of this thesis, the model is simplified. Exception

handlers and abort statements are ignored as error control statements.

While performance under error conditions may also be critical to real-time

behavior, the additional complexity which exception handling and aborts

introduce requires further work. Furthermore, blocking system calls are not

supported since their behavior is implementation dependent. A more general

implementation which accounts for resource contention could add this

capability. Finally, interrupts are modelled as one class of starting events;

that is, as user specified nodes in the timing graph. The time (or relative

time) of a series of interrupts must be supplied and the proper entries graph

chosen by the user. Interrupts may also be handled solely by the operating

system (i.e., clock tick interrupts). In this case the interrupts are not handled

by the Ada program. They are ignored in the timing analysis except as they

contribute to system interference.

PERT Networks

PERT networks are analyzed by computing the critical path to reach an

end event. Parallel tasks are allowed to execute in parallel. That is, PERT

6 In some implementations a blocking system call will block the entire Ada program. This
is quite common behavior in Unix where Ada tasks execute as light-weight processes
within a Unix process. A system call blocks the entire Unix process.



40

models full parallelism. Resource levelling is added to PERT analysis to force

it not to schedule more parallel activities than resources allow. By specifying

that all events use the same resource (CPU) and that there is only one, the

PERT analysis begins to model an interleaved system.

The graph supplied for PERT analysis is simply the timing graph with the

following modifications. A dummy edge (of zero duration) is added between

all dangling activities and the end event. This forces the worst case situation

that all events which may possibly precede the end event will do so. Start

events must be supplied a time of occurrence. The worst case execution time

is then the computed completion time for the end event in whatever time

reference was used for specifying the start events. The number of context

switching nodes must be counted and multiplied by the worst-case context

switch time. This quantity is added to the computed end event time.

This model is limited, however. For instance, PERT cannot handle OR-

branching.. OR-branching is when only one graph edge leaving a node is

executed in a given instance. This occurs in select and expanded "if or" case

statements. With select statements, the choice is driven by the existence of

an entry call (or the lack of any). This situation is evident within the

structure of the graph. An analyst (or perhaps an automated means) can

instantiate the select statements necessary.

There are several nuances with writing rendezvous code. Code can

introduce "race" conditions when two tasks call a third which selects between

the two call just once. Other difficulties are introduced by rendezvous in a

"dependent" context. An independent context is where a select statement can

be called an indefinite number of times; or more generally, when the code

executed by an entry call is independent of any entry calls by other tasks. If

the dependencies in the rendezvous sequence are deterministic, then an



41

analyst may construct the graph in that sequence. When a choice must be

made in selecting the caller of particular entry, it may not be evident which

choice results in the best or worst time bound. Some choices may not

terminate. In the dependent context case, a choice may affect the availability

of calls for other choices. In the worst case, all combinations of rendezvous

sequences would be tried. Trying all such combinations requires a number of

network analyses exponential to the minimum of the number of entry calls

and the number of accept points. In almost all cases, programs which may

not terminate or which deadlock based on race conditions or which deadlock

based on the order of task execution are erroneous.

A simple tasking program illustrates how the PERT technique is used in

analyzing timing behavior. The program results in four graphs which must

be constructed into a single PERT network. The program is followed by the

individual graphs and the resulting network.
procedure DOIT is task body TASKB is

begin
COUNT A, COTEB : INTEGER t= 0; for I in 1 .. 100 loop
RESULT C : INTEGER := 6; COUNTB : COUNTB + I;

end loop;
task TASKA is TASKC.ENTRYB;
end TASKA; COUNT_B := COUNTB + COUNTB;

end TASK_B;
task TASK B is
end TASKB; task body TASKC is

begin
task TASKC is for I in 1 .. 2 loop

entry ENTRYA; select
entry ENTRY_B; accept ENTRY A do
entry DONE; RESULT C t- RESULTC / 2;

end TASKC; end ENTRY A;
or

task body TASKA is accept ENTRY B do
begin RESULT C - RESULTC + 4;

for I in 1 .. 1000 loop end ENTRY B;
COUNTA := COUNTA + 1; end select;

end loop; end loop;
TASK_C .ENTRYA; accept DONE;
COUNTA = COUNTA + COUNTA; end TASKC;

end TASK_A;
begin -- DOIT

TASK-C. DONE;
end DOIT;

Figure 6: Simple Tasking Program



42

TASKA P~far-loop) + INWCPinteger-store) +
_P~int-plus) + P(int-literl-.occess) + P(integer-store) +

P~integeroccess) +. P~foriter)) -P~mntplus) +

P(ci) P~for-iter) + P(for-end) + ENTRY.A 2*P(integer-occess)
P~otPv Pqueueentry)0

TAKBP(forjloap) + 100'(P(integer-stare) P(integer.store) +
TASB+ P(int-plus) + 2*P~integer-occess) P(int.plus) +

p(octiv_ + P(for.iter)) - P~for-iter) + ENTRY8 ~2P~integeraccess),_.Q P(far-.end) + Pcqueue-.entry 0)

TASKC P(farjaoop) + /'\,/-A P(or Iter)+~ ENR-
P(selectC( 1

se ect())0

t 0 8 ENTRY-B

DONELG I P(For-end) + P(ccept)

-P~rendezvous) + P(integer..store) + P(int-.divide)
+ P~int-.literaloaccess) + P(access.int-.vor)

9*-P(rendezvous) + P(integer-store) + P(int-plus)
+ P(integer-literol-access) + P(integer-.access)

3(CP(intjItteral-access) + PCinteger-.store)) +
D O T 3 *P(task.spec -elab) + 3 *P(t sk body -.elab) + P C ueus -entr DONE 0

Activate TaskA,B, and C

Figure 7: Timing Graphs for Simple Tasking Program

Figure 8: PERT Network for Simple 'Taking Program

In figure 8, the PERT network is simply constructed by matching together

the timing graphs for the various tasks and subprograms. The boldface edges

are the ones added to construct the network. In this case, they are added at



43

entry calls and task activations. The triangular node represents the end

event. Zero-weighted edges tie the completion of all relevant threads to this

event. Note that the entry calls in Task A and B are independent. The

network could be constructed with the accepts in Task C reversed. The same

edges and nodes would still precede the end event; the order does not matter.

Communicating Real-Time State Machines

Communicating Real-Time State Machines (CRSM) are an executable

specification technique [8]. Their key feature is the capability for describing

timing properties. They are described by a system model and operational

semantics. Each concurrent task is represented by a state machine with

synchronous intertask communication. The following paragraphs briefly

describe what is developed in the above citation.

The system model is a set of state machines and communication channels.

The state machines are described by a set of states and transitions. The

transitions have labels of the form guard - command. Guards are conditions

that must be satisfied before execution of the associated command. Omitting

the guard is equivalent to a guard of true. The commands may change local

variables and/or communicate with other machines. Channels abstractly

represent communication between two machines. They are identified by an

event name. The event may have parameters associated with it; these are set

during the communication.

The operational semantics describe how to transform an input of CRSM's

and their channels into a time-sequenced event trace. The basic approach is

to construct next event lists for each machine. This is followed by selecting



44

the earliest event(s) from the various lists. These are executed, time updated,

and the process repeated.

Time is represented as a range [min, max] associated with each transition.

This is the time it takes for the transition to execute. Communication occurs

instantaneously. Also each machine has an associated real-time machine

which can be used to model delays as well as get time stamps.

CRSM and Ada Tasking Structures

The basic mapping between Ada and CRSM is to model each Ada task

(and master subprogram) as a machine. Transitions represent execution of

some statement or sequence of statements. Communication between tasks

(entries) are modelled using communication channels. The main change is

that channels can have out variables passed as actual parameters. The event

synchronization does not map exactly to an Ada rendezvous which

synchronizes the sender and receiver for some bounded but significant

amount of time. Thus, events are used to synchronize both the start and the

end of the rendezvous. Furthermore, th- calling machine is not allowed any

other transitions between the events starting and ending the rendezvous.

Operationally, the timing analysis technique L-odels programs on a single

processor. Therefore, CRSMs are executed as described, hut instead of

running all machines in parallel, only one machine is selected to run at at

time. A trace begins with the event of interest and an arbitrary runable

machine is selected to run at each "blocking" point. Because of Ada

interleave semantics, the order transitions are executed is not important (for

independent calling contexts). Priorities can be introduced by making

scheduling decisions based on the Ada priority scheme.



45

Because CRSM and Ada both have roots in Hoare's CSP, it is not

surprising that the mapping between them is straightforward. By

reintroducing parallelism to the operational semantics, CRSM can simulate

multi-processing of Ada programs. This and the ability to make scheduling

decisions give CRSM a great deal more power than a simple PERT

representation of the program.

Integrating Schema Analysis and CRSM Construction

Constructing timing models using CRSM is not much different than using

PERT. Both techniques use graphs. The difference is in the forms of the

graph; and, of course, what they mean and how they are analyzed. Thus, the

same schema apply except for some of those which construct graph elements.

These schema are replaced by the constructs in the following table. Input

events are marked with question marks. These correspond to output events

with the same name and marked with exclamation points. The input RT?. Ix]

is an input from the real-time machine associated with the task to occur at

least x seconds in the future.
P(activ)+

TaskBody )(asitem - T(as-sm-s) + P(termnate). -

Enclosing Block Notactted :- Fase

P(rendezvous) +

Accept P(ccet p StartNomeZ/( 1  T(osstms () EndName>

P(queue-entry) +

Entry Call T(sm -norm al zed promns)> StartName ' E ndNomet (I



46
P(delay) +

Delay T(-aexp) >j RT?[deloy + P(deiay.cap).

Cond Entry RT?[ T(sstm-s2)

Y T entrj..caH) + 4L~tms

P(timed-entry)
TimedEntry - -- (en trycall) + T(as-stm-sl)

T(delay) + T(as-stms)

T(comp-guards) +
Select P(selec t[n])

T(<->) + T(as-stm.sn)
<-> -- accept, delay, terminate or else

For the worst case analysis, the max time is used for each transition. For

the best case analysis, the min time is used. The completion of the analysis

occurs when the activities triggered by the starting events subside. Note that

this model does not require assembly of the generated timing graphs. They

are input to the operational CRSM model as is.

Dependent tasking contexts introduce similar problems in this model

since the calling order may change based on the length of execution at some

point. This change in calling order may result in an overall faster or slower

time. Thus, always choosing the max or min time may not generate the worst

or best case respectively.

Discussion

The concurrent constructs of Ada require special consideration for timing

analysis. On a single processor, only one task can use the processor at a time.

This interleaved model means that the execution time of a program is the

sum of the time spent in each task with one exception. If any tasks use

delays, then it may be possible that no task is runable at some point. This



47

idle time must also be added to the program execution time. PERT analysis

can help make this determination.

CRSM provides a more powerful model. Although developed as a

specification method, it serves well as a descriptive technique. It can model

multiple processors as well as more complex scheduling decisions. Its

drawback is the requirement for a specific tool to run the model.

Dependent tasking contexts are system designs where the timing

properties are dependent on the order that entry calls occur. Neither PERT

nor CRSM can simply determine the bounded execution time of such

programs. Trying all possible orders of entry calls is the sure way of finding

the bounded execution time; however, this is an exponential growth

approach. Further understanding and characterizing the conditions which

cause dependent tasking contexts is necessary to determine if a better

approach can be developed or if the class of programs can be ruled out.



Chapter V

Experiments

Introduction

Experiments consist of benchmark tests. These tests are compiled and

run in a dedicated system environment. They are also converted to a DIANA

representation which is fed to an automating timing graph generator. The

resulting timing graphs are combined into a network and analyzed by hand.

The results are adjusted for system interference are compared to the

experimentally observed times. In a few cases, both the results and

experimental times are compared to worst case times computed using hand

analysis techniques like Knuth's.

Setup of the Experiments

As stated in the introduction, the experiments consist of Ada programs

which undergo timing analysis, which are timed while executed, and whose

prediction and execution results are compared. The benchmark programs

come from two sources. The first is the Special Interest Group for Ada of the

48



49

Association for Computing Machinery (ACM SIGAda) Performance Issues

Working Group (PIWG). The second are programs specifically constructed to

include a wider selection of language features and exercise some of the

capabilities of the analyzer.

The PIWG has constructed a series of benchmarks that measure and

compare various features of the Ada language. The benchmarks measure

both compilation and execution performance. For these experiments, the best

choices are execution benchmarks which test basic sequential language

constructs and which test simple tasking situations. Many of these

benchmarks are relatively simple, so their object code modules may also be

hand analyzed for timing behavior.

The other set of programs are somewhat more complex, but still relatively

small (less than 100 SLOC). In both cases the programs are enclosed within

an iteration loop. The computer clock is read immediately before the

iteration loop and immediately after it completes. The iteration loop may be

run several times. In the case of the PIWG benchmarks, the number of

iterations varies from one run to the next.

Each program is compiled on a Rational R1000. 7 The Rational creates a

DIANA tree for the program. The DIANA tree is copied into a text file and

transferred back to the Macintosh. The Rational represents node identifiers

with a long hexadecimal value; pointers in semantic attributes are marked

with a caret (A). These values are replaced with a simple integer from the set

1 to n where n is the number of nodes in the fie. Semantic pointers are

replaced with a similar value with a package id extension (e.g., ^standard.9).

If it had been available, this file would be loaded into the timing analysis

7 Rational and R1000 are registered trademarks of Rational, 1501 Salado Drive,
Mountain View, California, 94043.



50

program which generates timing graphs for its various program units (i.e.,

subprograms, tasks, package elaborations). Note that compilation units upon

which it depends must be loaded before it; particularly the standard package.

The timing graphs which result are printed. Without the analysis program,

the timing graphs are generated by hand application of the schema to the

DIANA representations. Building networks from these graphs and analyzing

them generate the bounded execution time predictions of interest.

The expected execution time is then compared to actual executions. The

program is compiled and run on the Macintosh system. No other application

programs are run including system extensions like screen savers or virus

protection software. Furthermore, keys are not pressed after beginning the

test execution and the mouse is not moved. Other programs, particularly

system extensions, and input device activity all add to system interference.

The programs do not require disk or screen I/O within the critical timing

section. The benchmark programs complete by printing out the timing

measurements it made.

The execution time of the program (Tex) is represented in the equation:

Tmeasured = Tciock + Tloop-overhead + I x Tex

where I is the number of iterations in the loop. Solving this for Tex results in

Tex = [Tmeasured - (Tclock + Tloop-overhead)] / I = Tmeasured / I

if I is large enough. Before comparison, the predicted times must be adjusted

for the estimated system interference experienced by the test.

System interference is the amount of time the system spends handling

interrupts rather than running the program of interest. A simple benchmark

measures the amount of time in a simple loop. Running this benchmark

under the system configuration described above gives the data necessary to

derive a range of nominal system interference. The benchmark was



51

disassembled and hand analyzed. The result was compared to the timed

execution result and a range for system interference determined.

A better experiment was attempted. This would measure the execution

time with interrupts disabled and compare it to the normally measured time.

The relative difference would represent system interference. The experiment

failed because the system routine for reading the hardware clock directly did

not work and the other clocks were interrupt driven. Note that disabling

interrupts for any significant period of time, in general, would break the Ada

run-time system and thus is not feasible for application experiments.

However, until the problems mentioned above can be fixed, disabling

interrupts is not viable for characterizing system interference, either.

The expected execution time of the system interference benchmark was

computed as requiring 228,030,018 - 250,035,023 cycles which at 25 MHz

equals 9.12 - 10.00 seconds. The measurement was repeated 100 times. Each

measurement was either 14 or 15 seconds. The first time was observed 45

times; thus the . eighted average is 14.55 seconds. This means the time

spent in interrupt handlers is 4.55 - 5.43 seconds distributed across 60 ticks

per second. From this data the average time spent in the tick interrupt

handler is 5.21 - 6.22 ms. The nominal system interference, the percentage of

each tick spent handling interrupts, is then 31.3 - 37.3%.8 Thus, 62.7 - 68.7%

of the processor is available for the experiment and the predicted times

should be divided by these amounts to give the comparable predictions with

system interference accounted for.

8 With five system extensions installed, the system interference rises to 60-65%.



52

Experimental Results

The following table summarizes the results collected. All results are

tabulated in Appendix D. Without the automation to generate timing graphs,

very few predictions were completed. The predicted times are corrected for

system interference.

PIWG 256 1024 8192 256 1024 8192
Experiment Iterations Iterations Iterations Iterations Iterations Iterations

Measured Measured Measured Predicted Predicted Predicted
C000001 T 27-27 108-108 n/rn
C000002 T 28-29 113-113 n/r
H000004 T 13-13 52-52 n/m
P000001 C 1 - 2 5-6 41 -48 1.17- 1.58 4.67-6.31 37.4-50.5
P000001 T 1 - 2 5 - 6 48 - 52 1.27 - 2.01 5.08 - 8.02 40.6 - 64.2
P000010 T 2-3 8-8 69-70
T00001 T 13-13 51-52 n/n
T00004 T 30-30 119-121 n/n

Table 1: Iterated Experiment Results

Experiment Measured Predicted
Time Time

A000091 1.10 - 1.20 ms
A000092 2.78 - 2.84 ms
SimpleTasks 11.8- 14.6

Table 2: Single result experiments

Interpretation

For the experiments completed, the predictions bound the measurements

(as shown in figures 9 and 10). This is hardly surprising if the primitives and

schema are defined and calculated correctly. The question is then how good

the bounds are. The limiting condition on the tightness of the bounds is the

tightness of the primitives involved in the prediction.



53

Experiment P000001 Control Loop

Measured vs. Expected

120

100
,+

80

'- Predicted Upper Bound=- 60 v
.-. 1

ii
l

o*w 40

20 4/
..- Predicted Lower Bound

0 - - - -+ - + ----I -- I - + .  1 - I I I

1 0 100 1000 10000 100000

Number of Iterations

Figure 9: A Plot of Experiment P000001 Control Loop Results and Expectations.

The upper bound of each primitive can be expressed as the lower bound

multiplied by a factor. The lower bound prediction is the sum of the primitive

lower bounds. The upper bound prediction can be expressed as the lower

bound multiplied by a weighted average of the primitive upper bound facto1 's.

The average is weighted by the frequency of occurrence for a given primitive

in the prediction and by the amount of time represented by the primitive.

Some interesting limits arise from this view. Foremost is the observation

that the difference between the actual program execution time and the upper

bound must be less than the factor between the lower and upper bounds. In

the P000001 experiments above, the factor between the bounds are 1.35 for

the control loop and 1.58 for the test loop.



54

Experiment P000001 Test Loop

Measured vs. Expected

140

120 /

o I100 11

* 80

c 601 /+

40

0

1 10 100 1000 10000 100000

Number of Iterations

Figure 10: A Plot of Experiment P000001 Test Loop Results and Expectations.

The second observation is that the factor for the code in a loop body is

invariant, i.e., it does not change if the number of loop iterations change.

Plotting the upper and lower bounds against iterations of the loop on log-log

charts would generate parallel lines. This is the case, in fact, for the graphs

above when plotted on a log-log rather than semi-log scale.

The final observation applies when branching and variable loop bounds

are ignored. The factor between the bounds of the prediction cannot exceed

the largest factor between the bounds of any primitive used in the

calculation. This follows from the way a weighted average works. An

average cannot exceed the largest of its input data. On the a-chitecture

studied, many primitives only vary by 30 - 50%, others vary by factors of four

or more. Tight primitive bounds result in tight prediction bounds.



55

In the experiments above, the worst case bound exceeded the worst case

measurement by factors of 5.2% and 33.7% for the control loop and test loop

respectively. However, testing may not execute the worst case. With the low

number of runs conducted so far these numbers, particularly the second, are

probably high. The observation in the previous paragraph, however,

indicates that the P000001 code is relatively tight compared to the primitives

that may be encountered in other code. Examples involving tasking, delays,

or floating point arithmetic have much larger factors between their bounds.

Coverage of the execution results offer another perspective on how good

the predicted bounds are. Coverage is the range of test results from the

lowest time to the highest time compared to the range of the bounds. For

instance, the measurement runs for the P000001 control loop cover iterated

8192 times cover the range 41 - 48 seconds. The bounds are 37.4 and 50.5

seconds. So, the results cover seven seconds of the 13.1 seconds between the

bounds or 53%.

Without more testing and study of the implications of these metrics, it is

imprudent to draw any conclusions. The metrics of difference factors and

coverage help visualize how the predictions stack up to the actual executions.

Predictions that generate a factor of 1 between worst case execution and the

worst case bound and 100% coverage are obviously ideal. They may be

unrealistic; but may also, in fact, be achievable by applying the technique to

systems with hardware and compilers developed to generate predictable code.



Chapter VI

Discussion and Future Research

The proposed approach to timing analysis is promising. It satisfies the

objectives outlined in Chapter I, but can certainly be improved. Specifically,

it does not take advantage of all the context information available to it; it

does not handle exception processing or 1/0; and it is limited to single

processor systems. These are all areas that should be pursued further.

Additionally, continuing improvement can be made to tighten the bounds by

tightening the primitive time bounds and manipulating the schema to fit

better.

In extending this approach it is important to keep the objectives in mind.

A particularly difficult one is portability, the applicability of the technique to

different hardware and compiler systems. By manipulating the schema to fit

more closely what a particular compiler does, the performance with that

compiler will improve. It may be incompatible, however, with another

compiler. Thus, the schema must continue to conform closely with the

language definition.

Park and Shaw has already somewhat considered the tradeoff between

tightness of the execution time bounds and portability [30]. They look at

large and small atomic blocks represented by their primitive times. This is

another way of factoring context into the picture. By defining primitives in

56



57

larger terms (such as an entire assignment statement), one can better

characterize the compilers behavior. The disadvantage is that many more

primitives are needed (a single assignment primitive is not sufficient; one will

be needed for each major type and for significant optimization patterns). The

goal is to determine a balanced set of primitives and the method for

identifying the proper context for using them.

The most difficult part of the language and most implementations is the

tasking model and constructs. Better characterization and understanding of

tasking activity is a high priority. Here more than any place else, support by

the compiler vendor is crucial to understanding the system. Tasking

implementations are 10,000's of lines of code. The exercise of characterizing

the tasking behavior of the compiler may also benefit the compiler vendor

who should discover what parts of the implementation are least predictable

and most difficult to characterize.

Another way to distinguish characterizations is using modes and

variability. I use these terms to describe the things which vary execution

times from one system or instance to the next. Modes are those things that

are fixed at some point in instantiation of the system (e.g., instruction word

alignment in the object code image). Variability refers to environmental

factors which may continue to vary (e.g., input values, competing workloads,

and operator controls). By so categorizing these things, further

characterization of the systia may become available as modes are fixed for a

particular instance.

Modes and variability can be modelled to some degree with random

processes and variables. A more general understanding of the system is

potentially available using probabilistic models like those in [31] and [32].

Characterizing primitive times as random variables may allow further a



58

priori characterization of a prediction's factors and ranges. An important

distinction that may be provided by studying modes and variability is

separation of dependent and independent random variables. These models

may allow for reasonable specification and verification of a non-perfect

system, e.g., the system that requires 98% availability.

The trickiest problem that must be addressed is multi-processing and

shared resources. Gerber and others have started looking at timing analysis

in light of resource contention [33]. Tying resource sharing into a general

abstract timing analysis model would provide a critical tool to the developers

of real-time systems.

I intend to continue exploring this subject as my research area at the US

Air Force Acad.. ay. Based on personal experience and the literature,

systems developers need timing analysis techniques that can apply t& the

systems they're building today and will be building tomorrow. These

techniques must span the entire development cycle, be general enough to use

on several projects, and provide reliable performance.



Appendices

59



Appendix A

Timing Primitives for Mac Isi and Meridian Ada

The following lists the timing primitives as identified by analysis of the

Ada language, DIANA representation and Meridian Ada code generation.

Where a high or low execution timing bound has been determined for the

primitive, the value is shown in cycles. The Mac IIsi executes at 25 MHz.

accept attrcount
access attrdelta
activ 184 618 attr digits

activation attremax
allocatemain attr-epsilon

and-then attrfirst
array-access attrfirst
array-aggr-comp-access attrfirst(N)

array-aggr-setup attr-first-bit
arraycat attrfore

array-comp~access attrjimage
array-comp-store attr-large

array-ge attrlast
array-greater attr last(N)
array-in attrlastbit

array-le attr length
array-lesser attrjlength(N)
array notin attrmachineemax
arra ystore attrmachineemin
attraddress attrmachinemantissa

attraft attrmachineoverflows
attr base attr machineradix

attr_callable attrmachinerounds
attr constrained attrmantissa

60



61
attr-pos fixed-greater
attruposition. fixed-identity
attr..pred fixed-in
attr-range fixed-le
attr-range(N) fixed-lesser
attr-safe-emax fixed-minus
attr-safe lar-ge fixed-mul
attr-safe-small fixed-neq
attr-size fixed- negation
attr_8mall fixed -not -in
attr-stomge-size fixed-plus
attr-suec fixed-store
attr-terminated float-access
attr-val float -abs
attr value float div
attr -width float-eq
ba-and float exp,
ba-not float -identity
ba-or float -mi
ba xor float mnu

bool-access float -mul
bool -and floatneq
bool-eq float-negation
bool-neg float-not-in
bool-not float-plus
bool-or float-store
bool-store for -end 14 22
bool xor for iter 34 50
cond-entry for-loop 6 36
case function-access 0 0
context switch function-call.
convert-array function-end
convert derived if
convert-flxed2float int-abs
convert-fixed2int int-dlv
convert-float2flxed inteq
convert-float2int int-exp
convert-int2flxed int-ge
convert-int2float int-greater
default-param. int-identity
delay ni
else int le
fixed-abs int lesser
fixed-access int-literal-access 0 6
fixed-div int -minus
flxed-eq int -mod
flxed-ge intneq



62
mnt negation

int-not-in
intplus 8 12
int-rem
int-times
integeraccess 4 16
integer-store 5 18
iter
loop
loop-end

null
or-else

package-elaboration

procedure-call 9 40 858
procedure-end 28 100
queue-entry 992 2082
range.check
real-literal-access

record
record-aggrs- omp-acces
record-aggr-setup
record-comp-access
record-conipstore
rendevous

select
slice-access

slice store
string-literal-access

task-body-elab 92 158
task-spec-elab 2202 4166
terminate 24 94
timed-entry

variant-tag-sheck

9 Worst case ,,me is only 301 wheni the
procedure contains no tasks.



Appendix B

Test Program Source Code

A000001
with TEXT_10 ; use TEXT_IO

package DURATIONIO is new FIXEDIO ( DURATION )

A000018
-- This is a universal Ado function to get CPU time in seconds

-- of type DURATION on non time-sharring systems where a
-- tailored CPUTIMECLOCK is not reasonable

-- Do not cross a midnight boundry

-- It is modified to read the clock using the Mac OS clock routine rather

-- than the calendar package. This gives 1/60th second rather than 1 sec
-- resolution.

with EVENTS;

with MAC-TYPES;

function CPUTIMECLOCK return DURATION is

MaxTicks : Constant := 60 * 86400; -- Duration'last
NOW : MACTYPES.LONGINT := EVENTS.TICKCOUNT

begin

return DURATION ( FLOAT (NOW mod maxTicks) / 60.0 )

end CPUTIMECLOCK

A000021
package REMOTE-GLOBAL is -- for explicit control of optimization

A-ONE INTEGER; -- a constant 1 that can not be optimized away
-- A-ONE is intentionally visible. DO NOT CHANGE IT

GLOBAL INTEGER 1 -- global object can not be optimized away
-- GLOBAL is changed by measurement programs
-- the initialization to 1 is used in the body
-- but could be changed by elaboration order

procedure REMOTE; -- do to calls to this procedure, no compiler

-- can optimize away the computation an GLOBAL

procedure CHECK-TIME ( TEST-DURATION : in DURATION )
-- Just print message if TEST-DURATION less then
-- 100 * SYSTEM.TICK or DURATION'SMALL

end REMOTEGLOBAL;

63



64
A000022
with SYSTEM, TEXTIO

package body REMOTEGLOBAL is -- must be compiled last
-- for explicit control of optimization

LOCAL : INTEGER;

procedure REMOTE is -- this is an optimization control procedure
begin

GLOBAL := GLOBAL + LOCAL; -- be sure procedure is not optimized away
exception

when NUMERIC-ERROR =>
REMOTE ; -- can not happen if test is working C prevents inining )

end REMOTE;

procedure CHECK-TIME ( TEST-DURATION : in DURATION ) is
begin

if TEST-DURATION < 100 * DURATION'SMALL or
TEST-DURATION < 100 * SYSTEM.TICK then
TEXTIO.PUTLINE (" ***** TEST-DURATION not large compared to

& "DURATION'SMALL or SYSTEM.TICK " )
end if ;

end CHECK-TIME

begin

A-ONE I ; -- must not be changed by measurement programs

LOCAL := GLOBAL - A-ONE; -- really a zero but compiler doesn't know

end REMOTE-GLOBAL;
-- This is the ITERATION-COUNT control package for feature measurements
-- The set of procedures provide the automatic stabilizing of the
-- timing measurement. The measurement CPU time must be greater than:
-- 1.0 second, DURATION'SMALL * 100 , SYSTEM.TICK * 100

-- Note: If there is no control loop, the START-CONTROL and STOP-CONTROL

-- do not need to be called.

package ITERATION is -- A000031.ADA

subtype ITERATION-COUNTS is INTEGER range 1 .. 32768;

procedure START-CONTROL ;

procedure STOP-CONTROL ( GLOBAL : INTEGER
CHECK : INTEGER )

procedure START-TEST ;

procedure STOP-TEST ( GLOBAL : INTEGER

CHECK : INTEGER )

procedure FEATURE-TIMES ( CPU-TIME : out DURATION

WALL-TIME : out DURATION )

procedure INITIALIZE C ITERATION COUNT : out INTEGER )

procedure TEST STABLE ( ITERATION-COUNT : in out INTEGER
STABLE : out BOOLEAN )

end ITERATION



65
A000033
-- Iteration control package body ( for test development )

This version is instrumented and may interefere with some
-- types of tests

with CPUTIMECLOCK ; -- various choices on tape
with CALENDAR ; -- used for WALL clock times
with SYSTEM ; -- used to get value of TICK
with TEXTIO ; -- only for diagnostics
with DURATIONIO

package body ITERATION is -- A00e032.ADA

-- CPU time variables

CONTROLTIMEINITIAL : DURATION -- sampled from CPUTIMECLOCK at beginning
CONTROLTIMEFINAL : DURATION ; -- sampled from CPUTIMECLOCK at end
CONTROL-DURATION DURATION -- (FINAL-INITIAL) the measured time in seconds
TESTTIME-INITIAL DURATION ; -- ditto for TEST
TESTTIMEFINAL : DURATION
TEST-DURATION : DURATION

-- WALL time variables

WALLCONTROLTIMEINITIAL DURATION ; -- sampled from CLOCK at beginning
WALLCONTROLTIMEFINAL : DURATION -- sampled from CLOCK at end
WALLCONTROLUURAIION DURATION ; -- (FINAL-INITIAL) measured time in seconds
WALLTESTTIMEINITIAL DURATION -- ditto for TEST
WALLTESTTIMEFINAL : DURATION
WALLTESTDURATION : DURATION

MINIMUM-TIME : DURATION := 1.0 ; -- required minimum value of test time
TEMPTIME : FLOAT ; -- for scaling to microseconds
ITERATION-COUNT ITERATION-COUNTS ; -- change to make timing stable
CHECK : INTEGER ; -- saved from STOP-TEST call for scaling

procedure START-CONTROL is
begin
CONTROLTIMEINITIAL := CPUTIMECLOCK
WALLCONTROLTIMEINITIAL := CALENDAR.SECONDS(CALENDAR.CLOCK)

end START-CONTROL ;

procedure STOP-CONTROL ( GLOBAL INTEGER
CHECK INTEGER ) is

begin
CONTROLTIMEFINAL := CPUTIMECLOCK
CONTROL-DURATION := CONTROLTIMEFINAL - CONTROLTIMEINITIAL
WALLCONTROLTIMEFINAL := CALENDAR.SECONDS(CALENDAR.CLOCK)
WALLCONTROLDURATION := WALLCONTROLTIMEFINAL -

WALLCONTROLTIMEINITIAL

if CHECK /= GLOBAL then
TEXTIO.PUTLINE ( " Fix control loop before making measurements." )
TEXTIO.PUTLINE ( INTEGER'IMAGE ( GLOBAL ) & " = GLOBAL " )
raise PROGRAM-ERROR

end if
TEXTIO.PUTLINE ( "Iteration " & INTEGER'IMAGE ( ITERATION-COUNT ) )
DURATIONIO.PUT ( CONTROLTIMEINITIAL );
DURATIONIO.PUT C CONTROLTIMEFINAL );
DURATIONIO.PUT ( CONTROL-DURATION );
TEXTIO.NEWLINE

end STOP-CONTROL ;

procedure START-TEST is
begin
TESTTIMEINITIAL := CPUTIMECLOCK
WALLTESTTIMEINITIAL := CALENDAR.SECONDS(CALENDAR.CLOCK)

end START-TEST ;

procedure STOP-TEST ( GLOBAL INTEGER
CHECK INTEGER ) is

begin



66
TESTTIMEFINAL := CPUTIMECLOCK ;
TEST-DURATION :- TESTTIMEFINAL - TESTTIMEINITIAL
WALLTESTTIMEFINAL :. CALENDAR.SECONDS(CALENDAR.CLOCK)
WALLTESTDURATION := WALLTESTTIMEFINAL - WALLTESTTIMEINITIAL

ITERATION.CHECK := CHECK
if CHECK /= GLOBAL then
TEXTIO.PUTLINE C " Fix test loop before making measurements." )
TEXTIO.PUTLINE ( INTEGER'IMAGE ( GLOBAL ) & " GLOBAL )
raise PROGRAM-ERROR

end if ;
end STOP-TEST

procedure FEATURE-TIMES ( CPU-TIME out DURATION
WALL-TIME out DURATION ) is

begin

compute scaled results

begin
TEMPTIME FLOAT ( TEST-DURATION - CONTROL-DURATION )
TEMPTIME (1000_000.0 * TEMPTIME) /

( FLOAT ( ITERATION-COUNT ) * FLOAT (CHECK));
CPU-TIME DURATION ( TEMPTIME )

exception
when others => -- bail out if trouble in conversion

CPU-TIME := 0.0
end

begin
TEMPTIME FLOAT ( WALLTESTDURATION - WALLCONTROLDURATION )
TEMPTIME (1000000.0 * TEMPTIME) /

( FLOAT ( ITERATION-COUNT ) FLOAT (CHECK) );
WALL-TIME DURATION ( TEMPTIME )

exception
when others =>

WALL-TIME := 0.0
end ;

end FEATURE-TIMES

procedure INITIALIZE ( ITERATION-COUNT out INTEGER ) is
begin

ITERATION-COUNT :- 1
ITERATION.ITERATIONCOUNT : I

end INITIALIZE ;

procedure TEST-STABLE ( ITERATION-COUNT : in out INTEGER
STABLE : out BOOLEAN ) is

begin
if TEST-DURATION > MINIMUM-TIME then
STABLE := TRUE ;

elsif ITERATION-COUNT >= 16384 then
TEXTIO.PUTLINE ( " INCOMPLETE MEASUREMENT * " )
STABLE := TRUE

else
ITERATION-COUNT ITERATION-COUNT + ITERATION-COUNT
ITERATION.ITERATIONCOUNT := ITERATION-COUNT
STABLE := FALSE

END IF;
end TEST-STABLE

begin

if SYSTEM.TICK * 100 > MINIMUMTIME then
MINIMUM-TIME SYSTEM.TICK * 100

end if;

if DURATION'SMALL * 100 > MINIMUM-TIME then
MINIMUM-TIME := DURATION'SMALL * 100 ;



67
end if;

-MINIMUM-TIME is now the larger of 1.0 second,
100*SY STEM. TICK,
100*DURATION *SMALL

CONTROL-DURATION :=0.0
WALL-CONTROL-DURATION :=0.0

end ITERATION



68

A000091

- - "DHRYSTONE" Benchmark Program

-- Version ADA/i

-- Date: 04/15/84

-- Author: Reinhold P. Weicker

-- As published in Communications of ACM, October 1984 Vol 27 No 10

-- The following program contains statements of a high-level programming
-- language (Ado) in a distribution considered representative:

-- assignments 53%

-- control statements 32%

-- procedures, function call 15%

-- 100 statements are dynamically executed. The program is balanced with
-- respect to the three aspects:

-- - statement type
-- - operand type (for simple data types)
-- - operand access

operand globol, local, parameter, or constant. --

-- The combination of these three aspects is balanced only approximately.

-- The program does not compute anything meaningful, but it is syntactically --

-- and semantically correct. All variables have a value assigned to them
-- before they are used as a source operand

package global-def is

-- global definintions

type Enumeration is (ident-l,ident_2,ident_3,ident_4,ident_5);

subtype one-to.thirty is integer range 1..30;
subtype one-to-fifty is integer range 1.50;
subtype capital-letter is character range 'A'..'Z';

type String_30 is array(one-to-thirty) of character;
pragma pack(string_30);

type array-l-dim-integer is array (one-to-fifty) of integer;
type array_2_dim-integer is array (one-to-fifty,

one-to-fifty) of integer;

type record-type(discr:enumeration:=ident-l);

type recordpointer is access record-type;

type record-type(discr:enumeration:=ident-l) is
record

pointer-comp: record-pointer;

case discr is
when ident1 -- only this variant is used,

-- but in some cases discriminant
-- checks are necessary

enum-comp: enumeration;
int-comp: one-to-fifty;

string-comp: string_30;
when ident_2 =>

enum-comp_2: enumeration;

string-comp_2: string_30;



69
when others =>

cha r..comp..1,
char-comp-2: character;

end case;
end record;

end global-def;

with global-def;

use global-def;

package pack-I is

procedure proc-0;
procedure proc-l(pointer-par-in: in record-pointer);
procedure proc-2(int-par.in-out: in out one..to-fifty);
procedure proc-3(pointer-par-out: out record-pointer);

int-glob: integer;

end pack-1;

with global-def;
use global-def;

package pack-2 is

procedure proc..6 (enum-par-in: in enumeration;
enum-par-out: out enumeration);

procedure proc..7 (int-parin-1,
int-par-n-2: in one.to-fifty;
int-par,.out: out one-to-fifty);

procedure proc-8 (array-par-n-.out-1: in out array-ldim-nteger;
array-par-n-out-2: in out array-2-dim-integer;
int-parin-1,
int-par-in-: in integer);

function func-l (char.parin-1,
char-par-in-2: in capital-letter)

return enumeration;

function func-2 (string-parin-1,
string-par-in-2: in string-30)

return boolean;

end pack-2;

with global-def, pack-1;
use global-def;

procedure A000091 is -- Dhrystone

begin
pack-l.proc-0; -- proc..0 is actually the main program, but it is

-part of a package, and a program within a
-package can not be designated as the main
-program for execution. Therefore proc-0 is
-activated by a call from "main".

end A000091

with global-def,pack-2;
use global-_def;
with cpu-time _clock;
with text-io;
with duration.io;

package body pack-I is



70

bool-glob: boolean;
char-glob-1,
char-glob.2: character;
array-glob-1: array-ldim-integer;
array-glob-2: array-2dim-nteger;
pointer-glob,
pointer-glob-next: record-pointer;

start-time duration
stop-time duration
iteration-count :constant : 00

procedure proc-4;
procedure proc-5;

procedure proc-.0
is

int-loc-1,
int-loc-2,
intiloc-3: one-to-fifty;
char-loc: character;
enumjloc: enumeration;
string-loc-1,
string-loc-2: string-30;

begin
_initializations

pack-l.pointerglob.next :=new record-type;

pack-l.pointer-glob new record-type

poiriter-comp => pack-l.pointer-glob-next,
discr => ident-1,
enum-comp => ident-3,
int-comp => 40,
string-comp => "DAWYSTONE PROGRAM, SOME STRING"

stringloc-1 "DHRYSTONE PROGRAM, l'ST STRING";

-- start timer here

start-time cpu-time-clock
for i in 1 iteration-count loop

proc-5;
proc-4;

-- char-globlI = 'A, char-glob-2 = 'W, bool-giob =false

int-loc.I :2;

int-loc-2 3;
stringloc-2: "DHRYSTONE PROGRAM, 2'ND STRING";
enum-loc :=ident_2;

boot-gtob not pack-2.func-2( string-loc-l,string-loc-2);
-- bool-giob = true
while int-loc-I < int-loc-2 loop --loop body executed once

pragma TA10OP-BOUNDS(1, 1);
int-loc-3 '= 5S int-loc-1 - int-loc-2;
__ int-loc-3 = 7
pack-2.proc-j(int-loc..1,int-loc-2, int-loc-3);
-- int-loc-3 = 7
int-loc-1 := int-loc-A 1;

end loop;
-- int-loc-1 = 3

pack-2.proc-8(array-glob-,array-glob_2, mt-_loc-l,int-loc-3);
-- int-glob = 5

proc-l(pointer-glob);
for char-index in ''.Char-glob-2 loop --loop body executed twice

if enum-loc = pack-2.func-l(char-index,'C')
then -- not executed



71
pack- .proc-6(identi ,enumiloc);

end if;
end loop;

-enum-loc = ident-1
-int-loc = 3, intiloc-2 = 3, intloc-3 =7

intloc-3 :=int-loc2 i nt-oc_ 1'
int-loc.2 intloc-3 / nt_ bc 1;
intloc-2 :=7 * ( int-loc-3 - jnt-loc2 )-int-loc-1;
proc-j(intjloc-1);

end loop;
stop-time :=cpu-time-clock
text-io. new-line;
text-io. new-i me;
text-io.put-iineC"Test Name: A000091 Class Name: Composite");
text-io.put(" 1) ;
duration-io.put((stop-time-start-time)*1000/iteration-count);
text-io.put-line(" is time in milliseconds for one Dhrystone");
text-io.put-line("est Description:");
text-io.putjline(" Reinhold P. Weicker's DHRYSTONE composite benchmark');
text-io. new-lime;

-- stop timer here

end proc-0;

procedure proc-l(pointer-par-in: in record-pointer) is -- executed once

next-record: record-type
renames pointer..parin.pointer-comp.all; -- pointer-glob-next.all

begin
next-record :=pointer-.glob.all;
pointer-par-in.int.comp := 5;
next-record.int.comp := pointer-par-in.int-comp;
next-record .poi nter.comp: = poi nter-par-in. pot nter-comp;
proc-3(next-record .pointer.comp);

-- next-record.pointer-glob.pointer-COMP = pointer-comp.next
if next-record.discr = ident-1
then -- executed

next-record~int-comp, := 6;
pack-2.proc-6(pointer-par-in.enumcomP,next-record.enum-comp.1;
next-record.pointer-comp := pointer-glob.pointer-comp;
pack-2.proc-7(nextrecord.intcomp,10,nextrecord.intcomp);

else
pointer-par-in.all := next-.record;

end if;
end proc-1;

procedure proc-2 ( int-parin-out: in out one-to-fifty)
is -- executed once

-in-parin-out = 3 becomes 7
int-loc :one-to-fifty;
enum-ioc :enumeration;

begin
int-loc int-parin-out + 10;
loop

progma TA-LOOP-BOUNDS(1,2);
if char-glob-1 = 'A'
then

int-loc := int-loc - 1;
int.prin-out := int-loc - int-glob;
enumiloc := identi1; -- true

end if;
exit when enumiloc = ident-1; -- true
end loop;

end proc-2;

procedure proc-3(pointer-porout: out record-pointer)
is -- executed once

-- pointer-par-out becomes pointer-glob
begin

if pointer-glob /= null



72
then -- executed

pointer-par-out := pointer-glob.pointer-comp;
else

int-glob:=10
end if;
pack-2.proc-7(10, int-glob,pointer-glob. int-comp);

end proc-3;

procedure proc-4
is

booflioc boolean;
begin

booliloc :=char-glob-1 = ''
bool-loc bool-loc or booflgiob;
char-glob-2 '

end proc_4;

procedure proc-5
is
begin

char-glob-1 W
bool-glob := false;

end procS5;

end pack-1;

with global-def,pack.A; use global-def;
package body pock-2 is

function func-3(enum-par-in: in enumeration) return boolean;
-- forward declaration

procedure proc-6(enum-par-in: in enumeration;
enum-pnr-out: out enumeration) is

begin
enum-par-out :- enum-par-in;
if not func-3(enum-par-in) then

enum-par-out := ident-4;
end if;
case enum-par-in is

when ident-1 =>enum..por-out := ident_1;
when ident-2 =>if pack-l.int-glob>100

then enum-par.out ident-1;
else enum-par-out :=ident-4;
end if;

when ident-3 =>enum..par-out :=ident-2; -- executed
when ident-4 =>null;
when ident..S =>enumparout ident-3;

end case;
end proc_6;

procedure proc7(intparin-1,
int-parin-: in one.to..fifty;
int..par..out: out onetofifty) is

int-loc :oneto-fifty;
begin

int-loc := int-par-in_ 1 + 2
int-par-out :=int-par-in-2 + nt _loc;

end proc-_?

procedure proc-8 (array-par-in-out-1: in out array-ldim-nteger;
array-par-in-out-2: in out arroy-2diminteger;
int-parin-1,
int..par-in-2: in integer)

is

int-loc: one-to-fifty;
begin

intiloc := intpar-inj1 5;
arrayparin-out-l(int-toc) := nt-par-in-2;
arraypar-in-out-l(int-loc + 1) :

array-par-i nout-l(int-loc);
array-parinout-I(int-loc ~- 30) := int _ c;



73
for int-.i.idex in int-ioc..int-loc + 1 loop -- loop body executed twice

pragma TA-LOOP.BOUNDS(2 ,2);
array-par-in-out-(int-loc,int-index) int-loc

end loop;
orray-parjn-out-j(int-loc,int-loc-1)

array-parin-out-2(int-loc,int-loc-1) + 1;
arraypar-in-out-2(intiloc + 20,int-loc) :

a rray..par-i nout-l(int-loc);
pack-l.int-glob :=5;

end proc_8;

function func-1 (chor-par-.in-1,
char-parin-2: in capital-letter) return enumeration

is

char-loc_ 1 char_ loc-2 capital-_letter;

begin
char-loc-1 char-par-in-1;
char-l.c-2 char-loc_ 1
if .2arIoc_ /. char-par-n-2 then

return ident-1;

elereturn ident-2;
end if;

end func-_1;

f',nction func-2(stringparin-1,
string-par-n-2: in string-30) return boolean

is

irt-loc: one-to-hirty;
char-loc: capital-letter;

-'egin
int-loc 2= ;
while int-loc <= 2 loop

pragma TA-LOOP-BOUNDS(1, 1);
if func-l(string-par-in-l(int-loc),

string..par-in 2(int-loc+1)) 4 dent-1 then
char-loc ''
int-loc :=int-loc: + 1;

end if;
end loop;
if char-loc >='W' and char- bc < 'Z' then

int-lo, 7;
end if;
if char-loc 'X' then

return true;
else

if !ztring~pnrinjl > st-ing-parin-2 then
int-loc: := int-loc: + 7;
return true;

el S'
return false;

end if;
end if;

end func-2;

fujnction func-3(enium-par-in: in enumeration) return boolean
is

enum-boc: 'n. --ration;
begin

enum-loc - enum par-in;
if enumjloc = ident-3 then

return true;
end if;

enI func-_3;

end pack--;
-- Ada version of Whetstone Be ;-hmark Program



74
-- This must be edited to "with" the compiler suppliers math routines

-- SIN, COS, A-FAN, SQRT, EXP and LOG
-- These results may be interesting to compare to Z000093 that uses
-- a physically included, all Ada set of math routines



75

-- WHETADA.ADA distributed as A000092.ADA --

-- Ado version of the Whetstone Benchmark Program. --
-- Reference: "Computer Journal" February 1976, pages 43-49 --

-- for description of benchmark and ALGOL60 version. --

-- Note: Procedure POUT is omitted.

-- From Timing Studies using a synthetic Whetstone Benchmark
-- by Sam Harbaugh and John A. Forakis --

-- Authors Disclaimer
-- " The Whetstone measure deals only with the most basic scientific/ --

-- computational aspects of the languages and computers and no general --

-- conclusions should be drawn from this work. Application specific --

-- benchmarks should be written and run by anyone needing to draw --

-- conclusions reguarding suitability of languages, compilers and --
-- hardware. This data is reported to stimulate interest and work in --

-- run time benchmarking and in no way is meant to influence anyone's --

-- choice of languages or software in any situation " --

with CPUTIMECLOCK ;
with TEXT-IO; use TEXT-IO;
-- Change the following line to use the compiler vendors or manufacturers
-- math library.
with MATH-LIB; use MATHLIB; -- manufacturers routines ( Meridian for Mac )

procedure A000092A is
--pragma SUPPRESS(ACCESSCHECK); DO NOT USE PRAGMA SUPPRESS for PIWG
--pragma SUPPRESS(DISCRIMINANTCHECK);
--pragma SUPPRESS(INDEX-CHECK);

--pragma SUPPRESS(LENGTHCHECK);
--pragma SUPPRESS(RANGE-CHECK);
--pragma SUPPRESS(DIVISIONCHECK);
--pragma SUPPRESS(OVERFLOW-CHECK);

--pragma SUPPRESS(STORAGECHECK);

--pragma SUPPRESS(ELABORATIONCHECK);

package REALIO is new FLOATIO(FLOAT); use REALIO;

subtype CYCLES is INTEGER range 10..50;

procedure WHETSTONE(NO0OFCYCLES : in CYCLES;

STARTTIME,STOP-TIME: out FLOAT) is

-- Calling procedure provides
-- the encompassing loop count, NOOF CYCLES.

type VECTOR is array (INTEGER range <>) of FLOAT;
Xl,X2,X3,X4,X,Y,Z : FLOAT;
El : VECTOR(I..4);

J,K,L : INTEGER;
-- Set constants
T constant := 0.499975;

T1 constant 0.50025;
T2 constant 2.0;
-- Compute the execution frequency for the benchmark modules
NI constant 0; --Module 1 not executed

N2 constant := 120;
N3 : constant := 140;
N4 : constant 3450;

NS : constant 0; -- Module 5 not executed
N6 : constant :=21;

N7 : constant := 320;
N8 constant := 8990;
N9 : constant := 6160;
N10: constant 0; -- Module 10 not executed

Nll: constant 930;



76

procedure PA(E: in out VECTOR) is
-- tests computations with an array as a parameter

I INTEGER;
-- T,T2 :FLOAT are global variables
begin
1:=O;
loop

pragma TA-.LOOP-BOUNDS(6,6);
E~l) :=(E(1) + E(2) + E(3) - E(4)) * T;
E(2) :=(E(1) + E(2) - E(3) + E(4)) *T;
E(3) :=(E(1) -E(2) + E(3) + E(4)) * T;
E(4) := -E(1 + E(2) + E(3) + E(4)) IT2;
I := 3 + 1;
exit when j >= 6;

end loop;
end PA;

procedure PO is
-tests compotations with no parameters
-TJ,T2 :FLOAT are global
-El :VECTOR(1. .4) is global
-J,K,L :INTEGER are global
begin

E10J) =E1(K);

E1(K) : El(L);
El(L) :=El(i);

end PO;

procedure P3(X,Y: in out FLOAT; Z : out FLOAT) is
-tests computations with simple identifiers as parameters
-T,T2 :FLOAT are global
begin
X T (X +Y)
Y T *(X +Y)

Z :=(X + Y) / T2;
end P3;

begin

START-TIME := FLOAT(CPU-TIME-CLOCK); --Get Whetstone start time

CYCLE-LOOP:
for CYCLE-NO in 1. .NO0OF.CYCLES loop

-- Module 1 : computations with simple identifiers
X1 := 1.0;
X2 :=-1.0;

X3 :=-1.0;

X4 :=-1.0;

for I in 1. .N1 loop
XI : (Xl + X2 + X3 - X4) *T;
X2 :=(Xl + X2 - X3 + X4) * T
X3 :=(XI + X2 + X3 + X4) * T;
X4 :=(-XI + X2 + X3 + X4) *T;

end loop;
-end Module I

-- odtjle 2: computations with array elements
El(i) :=1.0;
El(2) :=-1.0;
E1(3) -1.0;
E1(4) :=-1.0;
for I in 1. .NZ loop

El(l) (E1(l) + E1(2) + E1(3) - El(4)) * T
F1(2) :=(El(l) + El(2) - [1(3) + E1(4)) * T

E1(3) :=(El(l) - E1(2) + E1(3) + E1(4)) * T;
E1(4) :=(-EI(1) + E1(2) + E1(3) + E1(4)) *T;

end loop;
-end Module 2



77
-- Module 3 : passing an array as a parmeter

for I in 1..N3 loop
PACE1);

end loop;

-- end Module 3

-- Module 4 : performing conditional jumps
J :=1;
for I in 1..N4 loop

if J=l then
) :=2;

else

J :=3;
end if;
if J>2 then

J 0;
else

3 : 1;

end if;

if J<1 then
3 1;

else
J 0;

end if;

end loop;
--end Module 4

-- Module 5 omitted

-- Module 6 performing integer arithmetic
3 :=1;
K 2;
L 3;
for I in 1..N6 loop

J J * (K-J) * (L-K);

K L*K - (L-J) * K;
L (L-K) * (K+J);
E1(L-1) FLOAT(3+K+L);
El(K-l) FLOAT(J'K'L);

end loop;

end Module 6

-- Module 7 : performing computations using trigonometric
functions

X 0.5;
Y 0.5;
for I in 1..N7 loop

X : T*ATAN(TZ*SIN(X)*COS(X)/(COS(X+Y)+COS(X-Y)-1.0));
Y T*ATAN(T2*SIN(Y)*COS(Y)/(COS(X+Y)+COS(X-Y)-1.0));

end loop;
-- end Module 7

-- Module 8 : procedure calls with simple identifiers as
parameters

X 1.0;
Y 1.0;

Z 1.0;

for I in 1..N8 loop
P3(X,Y,Z);

end loop;

-- end Module 8

-- Moduie 9 : array reference and procedure calls with no

parameters
I :=1;
K 2;

L 3;
Eil1) := 1.0;
El(2) 2.0;

E1(3) 3.0;
for I in 1..N9 loop

Pe;

end loop;



78
-- end Module 9

-- Module 10 : integer arithmetic
J 2;
K 3;
for I in 1..N10 loop

I J + K;
K K + 3;
I :=K - 3;
K :=K- J - 3;

end loop;
-- end Module 10

-- Module 11 performing computations using standard
-- mathematical functions

X := 0.75;
for I in 1..N1l loop

X := SQRT(EXP(LN(X)/T1));
end loop;

-- end Moudle 11

end loop CYCLE-LOOP;

STOP-TIME := FLOAT(CPUTIMECLOCK); --Get Whetstone stop time
end WHETSTONE;

procedure COMPUTE.WHETSTONEKIPS is
-- Variables used to control execution of benchmark and to
-- compute the Whetstone rating :

NOOFRUNS : constant := 5; -- Number of times the benchmark is executed
NOOFCYCLES : INTEGER; -- Number of times the group of benchmark

-- modules is executed
-- I : INTEGER;

-- Embedded (as 10) in "N" constants at beginning of WHETSTONE proc
-- Factor weighting number of times each module loops
-- A value of ten gives a total weight for modules of
-- approximately one million Whetstone instructions

START-TIME : FLOAT;
-- Time at which execution of benchmark modules begins

STOP-TIME FLOAT;
-- Time at which execution of benchmark modules ends
-- (time for NO-OFCYCLES)

ELAPSED-TIME FLOAT;
-- Time between START-TIME and STOP-TIME

MEAN-TIME : FLOAT; -- Average time per cycle
RATING : FLOAT; -- Thousands of Whetstone instructions per sec
MEAN-RATING : FLOAT; -- Average Whetstone rating
INTRATING INTEGER; -- Integer value of KWIPS

begin
NEW-LINE;
PUT-LINE
("Test Name: A000092 Class Name: composite");

MEAN-TIME := 0.0;
MEAN-RATING := 0.0;
NOOFCYCLES := 10;

RUNLOOP:
for RUN-NO in 1..NOOFRUNS loop

-- Call the Whetstone benchmark parocedure
WHETSTONE(NOOFCYCLES,STARTTIME,STOPTIME);

-- Compute and write elapsed time
ELAPSEDTIME :- STOP-TIME - START-TIME;

-- Sum time in milliseconds per cycle
MEAN-TIME := MEAN-TIME + (ELAPSEDTIME*1000.0),

FLOAT(NOOFCYCLES);

-- Calculate the Whetstone rating based on the time for
-- the number of cycles just executed and write



79
RATING := (1000.0 * FLOAT(NOOFCYCLES))/ELAPSEDTIME;

-- Sum Whetstone rating
MEAN-RATING MEAN-RATING + RATING;

INTRATING INTEGER(RATING);

-- Reset NOOFCYCLES for next run using ten cycles more
NOOFCYCLES :. NOOFCYCLES + 10;

end loop RUNLOOP;

-- Compute average time in millieseconds per cycle and write
MEAN-TIME := MEANTIME/FLOAT(NOOFRUNS);

NEW-LINE; PUT("Average time per cycle : ");

PUT(MEANTIME,5,2,0); PUTLINE(" milliseconds");

-- Calculate average Whetstone rating and write
MEAN-RATING MEANRATING/FLOAT(NOOFRUNS);

INTRATING INTEGER(MEANRATING);

NEW-LINE; PUT("Average Whetstone rating
PUTLINE(INTEGER'IMAGE(INTRATING) & KWIPS");
NEW-LINE;
NEW-LINE;

end COMPUTEWHETSTONEKIPS;

begin

COMPUTEWHETSTONEKIPS;
end A000092A;



80
-- PERFORMANCE MEASUREMENT : task creation and termination time
-- 1 task no entry
-- task type in package, no select

with REMOTE-GLOBAL ; use REMOTE-GLOBAL
package CREATEPACKI is
task type Ti is
end T1 ;
procedure Pl -- will create task, run task, and terminate task

end CREATEPACK-1 ;

with CREATEPACK_1 ; use CREATEPACK_ 1

with REMOTE-GLOBAL ; use REMOTE-GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement
with PIWGIO ; - output results

procedure C000001 is -- main procedure to execute

CPU-TIME DURATION ; -- CPU time for one feature execution
WALL-TIME DURATION ; -- WALL time for one feature execution

CHECK-TIMES : constant 100 ; -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATIONCOUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

begin

ITERATION.STARTCONTROL -- dummy to bring in pages on some machines

delay 5.0 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, ITERATION-COUNT increases each time

-- Control loop

ITERATION.STARTCONTROL
for 3 in 1 .. ITERATION-COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop

GLOBAL GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECKTIMES )

- Test loop

-- establish task create and terminate time

ITERATION.STARTTEST ;
for J in 1 .. ITERATION COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in I .. CHECK-TIMES loop

P1 ; -- this has task that has global increment and call inside
end loop

end loop ;
ITERATION.STOPTEST ( GLOBAL , CHECK-TIMES )
ITERATION.TESTSTABLE ( ITERATION-COUNT , STABLE )
exit when STABLE

end loop

ITERATION.FEATURETIMES ( CPU-TIME , WALL-TIME )



81

-- Printout

PIWGIO.PIWGOUTPUT ( "C000001" , "Tasking"
CPU-TIME , WALL-TIME , ITERATION-COUNT

Task create and terminate measurement "
with one task, no entries, when task is in a procedure"

using a task type in a package, no select statement, no loop, )

end C0001 ;

package body CREATEPACKI is
task body T1 is

begin
GLO8AL GLOBAL + A-ONE
REMOTE

end T1 ;

procedure P1 is
T :T -- this creates the task, runs task to completion and terminates

begin
null

end P1

end CREATEPACK_1



82
-- PERFORMANCE MEASUREMENT : task creation and termination time
-- 1 task no entry
-- task defined and used in procedure, no select

with REMOTE-GLOBAL ; use REMOTE-GLOBAL
package CREATEPACK_2 is
procedure P1 ; -- will create task, run task, and terminate task

end CREATEPACK_2 ;

with CREATEPACK_2 use CREATEPACK_2
with REMOTE-GLOBAL ; use REMOTE-GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement
with PIWG_10 -- output results

procedure C000002 is -- main procedure to execute

CPU-TIME DURATION -- CPU time for one feature execution
WALL-TIME DURATION ; -- WALL time for one feature execution
CHECK-TIMES : constant 100 ; -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATIONCOUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN -- true when measurement stable

begin

ITERATION.STARTCONTROL ; -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, ITERATION COUNT increases each time

-- Control loop

ITERATION.STARTCONTROL
for J in 1 .. ITERATION-COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop

GLOBAL GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECKTIMES )

-- Test loop

ITERATION.START-TEST
for J in 1 .. ITERATION-COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in I .. CHECK-TIMES loop

Pl ; -- this has task that has global incremenf and call inside
end loop

end loop ;
ITERATION.STOPTEST ( GLOBAL , CHECK-TIMES )
ITERATION.TESTSTABLE ( ITERATION-COUNT , STABLE )
exit when STABLE

end loop

ITERATION.FEATURETIMES ( CPU-TIME , WALL-TIME )

Printout

PIWGIO.PIWG-OUTPUT ( "C000002" , "Tasking"
CPU-TIME , WALL-TIME , ITERATIONCOUNT

Task create and terminate time measurement. " ,
with one task, no entries when task is in a procedure,"
task defined and used in procedure, no select statement, no loop " )

end C00002 ;



83

package body CREATEPACK_2 is

procedure P1 is
this creates the task, runs task to completion and terminates
execution time for task taken out by control loop

task TI is
end T1 ;

task body Ti is
begin

GLOBAL GLOBAL + A-ONE
REMOTE

end T1

begin
null

end P1

end CREATEPACK_2



84
-- PERFORMANCE MEASUREMENT : operations on boolean arrays

arrays are NOT packed
operations on components in loop

with REMOTE-GLOBAL ; use REMOTE-GLOBAL ; -- control uptimization
with ITERATION o-- btain stable measurement
with PIWGIO -- output results

procedure H000004 is -- main procedure to execute

CPU-TIME DURATION ; -- CPU time for one feature execution
WALL-TIME DURATION ; -- WALL time for one feature execution
CHECK-TIMES : constant 100 -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATION-COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

-- Boolean array declarations

type UNPACKEDBITARRAY is array ( NATURAL range < ) of BOOLEAN;

BITVALUE_1 BOOLEAN GLOBAL > 0;
BIT-VALUE_2 BOOLEAN GLOBAL rem 2 = 0;
BITVALUE_3 BOOLEAN GLOBAL <= 1;

subtype UNPACKED-16 is UNPACKEDBITARRAY ( 0 .. 15 );

UNPACKED 1 UNPACKED-16 UNPACKED_16'( 0131619112115 => BITVALUEl,

11517111113 => BITVALUE_2,
others => BITVALUE3 );

UNPACKED_2 UNPACKED-16 := UNPACKED_16'( 0..3 => BITVALUEl,
4..12 => BITVALUE_2,

others => BITVALUE3 );

begin -- procedure H000004

ITERATION.STARTCONTROL ; -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, ITERATIONJOUNT increases each time

-- Control loop

ITERATION.STARTCONTROL
for J in 1 .. ITERATION-COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop

GLOBAL := GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECKTIMES )

-- Test loop

ITERATION.STARTTEST
for J in I .. ITERATIONCOUNT loop
GLOBAL := 0 ;
for INSIDE-LOOP in I .. CHECK-TIMES loop

GLOBAL := GLOBAL + A-ONE;
for I in UNPACKEDI16'RANGE loop
UNPACKEDI( I ) UNPACKED_2( I ) xor not UNPACKEDI( I );

end loop;
for I in UNPACKEDI6'RANGE loop
UNPACKED_2( I ) := UNPACKED-l( I ) or UNPACKEDZ( I );

end loop;

for I in UNPACKED_16'RANGE loop
UNPACKED-l( I ) not( UNPACKED-l( I ) and UNPACKED 2( I ) );

end loop;
REMOTE;

end loop



85
end loop
ITERATION.STOPTEST ( GLOBAL , CHECK-TIMES )

-- Be sure UNPACKEDI has been computed

if UNPACKEDl( GLOBAL rem 16 ) then
GLOBAL := A-ONE;
REMOTE;

end if;

ITERATIONTESTSTABLE ( ITERATION-COUNT , STABLE )
exit when STABLE

end loop ;

ITERATION.FEATURETIMES ( CPU-TIME , WALL-TIME )

-- Printout

PIWGIO.PIWGOUTPUT ( "H0004" , "Chapter 13"
CPU-TIME , WALL-TIME , ITERATIONCOUNT

Time to perform standard boolean operations on arrays of booleans."
For this test the arrays are NOT PACKED with the pragma 'PACK.'" ,
For this test the operations are performed on components in a loop." )

end H000004



86
-- PERFORMANCE MEASUREMENT : Minimum procedure call and return time

procedure local

no parameters

with REMOTEGLOBAL ; use REMOTE-GLOBAL
with ITERATION

with PIWG_IO ;

procedure P00001 is -- main procedure to execute

CPU-TIME DURATION
WALL-TIME DURATION
CHECK-TIMES : constant 100
ITERATION-COUNT ITERATION.ITERATIONCOUNTS
ITSOK : BOOLEAN

procedure PROC_0 is -- may be inlined thus zero time
begin

GLOBAL GLOBAL + AONE
REMOTE

end

begin

ITERATION.STARTCONTROL ; -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, ITERATION-COUNT increases each time

-- Control loop

ITERATION.START-CONTROL
for J in I .. ITERATION-COUNT loop

GLOBAL := 0 ;

for INSIDE-LOOP in 1 .. CHECK-TIMES loop

GLOBAL GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECKTIMES )

-- Test loop

ITERATION.STARTTEST
for J in I .. ITERATION-COUNT loop

GLOBAL := 0 ;

for INSIDE-LOOP in 1 .. CHECK-TIMES loop
PROC 0 -- this has control global increment and call inside

end loop
end loop ;
ITERATION.STOPTEST C GLOBAL , CHECK-TIMES )
ITERATION.TESTSTABLE ( ITERATION-COUNT , ITSOK )
exit when ITS-OK

end loop

ITERATION.FEATURETIMES ( CPU-TIME , WALL-TIME )

-- Printout

PIWGIO.PIWGOUTPUT ( "P000001" , "Procedure"
CPUTIME'- WALL-TIME , ITERATIONCOUNT

Procedure call and return time ( may be zero if automatic inlining )
procedure is local '

no parameters )
end P000001 ;



87
-- PERFORMANCE MEASUREMENT : procedure call and return time

procedure in package
ten discrete "in" parameters

package PROC-PACKAGE-1O is
procedure PROC_0 ( Al, A2, A3, A4, AS, A6, A7, A8, A9, A10 in INTEGER )

end PROC-PACKAGE-10

with PROC-PACKAGE-10 use PROCPACKAGE-10
with REMOTECLOBAL ; use REMOTE-GLOBAL ; -- control optimization
with ITERATION obtain stable measurement
with PIWGIO -- output results

procedure P000010 is -- main procedure to execute
CPU-TIME fDURATION -- CPU time for one feature execution
WALL-TIME DURATION -- WALL time for one feature execution
CHECK-TIMES : constant 100 ; -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATIONCOUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN -- true when measurement stable
Al INTEGER :AONE ;
A2 INTEGER Al + AONE
A3 INTEGER A2 + AONE
A4 INTEGER A3 + AONE
AS INTEGER A4 + AONE
A6 INTEGER AS + AONE
A7 INTEGER A6 + AONE
A8 INTEGER A? + AONE
A9 INTEGER A8 + AONE
AIO INTEGER A9 + A-ONE

begin

ITERATION.STARTCONTROL -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- unil stable measurement, -,ERATION-COUNT increases each time

-- Control loop

ITERATION.START CONTROL
for J in 1 .. ITERATION-COUNT loop

GLOBAL := 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop

GLOBAL GLOBAL + AIA2+A3+A4+AS*A6+AT-A8-A9 A10
REMOTE

end loop
end loop ;
ITERATION.STOP CONTROL ( GLOBAL , CHF(KTIMES )

Test loop

ITERATION.STARTITEST
for J in I .. ITERATION-COUNI (u~p

GLOBAL :- 0 ;
for INSIOELOOP in I .. CHECK-TIMES loop
PROCO ( Al, A2. A3, A4, AS, A6, A7, A8, A9, AO )
-- this has control global incren.-nt and call inside

end loop
end loop ;
ITERATION.STOP TEST ( GLOBAL , CHECKTIMES )
ITERATION.TEST-STABLE ( ITERATION COUNT , STABLE )
exit when STABLE

end loop

TIERATIONFEATURETIMES ( CPUTIME , WALL-TIME )



88
-- Printout

PIWGIO.PIWGOUTPUT ( "PeOeee" , "Procedure"
CPU-TIME , WALL-TIME , ITERATIONCOUNI

" Procedure call and return time measurement"
" Compa re to P 005 " ,
" 10 parameters, in INTEGER " )

end P00010 ;

with REMOTE-GLOBAL ; use REMOTE-GLOBAL
package body PROC-PACKAGE-10 is -- compare to PMNS

procedure PROC-0 ( Al, A2, A3, A4, AS, A6, A7, A8, A9, A10 in INTEGER ) is
begin

GLOBAt GLOBAL + AI+A+A3+A4+A5+A6+A7-A8-A9-Al;
REMOTE

end ;
end PROC-PACKAGE-10



89
-- PERFORMANCE MEASUREMENT : Minimu, entry call and return time

task inside procedure
1 task 1 entry
no select, do..end

with REMOTE-GLOBAL ; use REMOTE-GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement
with PIWGIO ; -- output results

procedure T0061 is -- main procedure to execute

CPU-TIME DURATION ; -- CPU time for one feature execution
WALL-TIME DURATION ; -- WALL time for one feature execution
CHECK-TIMES : constant : 10 ; -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATIONCOUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable

task T1 is
entry El

end T1 ;

task body Ti is
begin
loop
accept El do

GLOBAL GLOBAL + A-ONE
REMOTE

end El
end loop

end

begin

ITERATION.STARTCONTROL ; -- dummy to bring in pages on some machines

delay 66.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, 1-ERATIONCOUNT increases each time

-- Control loop

ITERATION. STARTCONTROL
for J in 1 .. ITERATION-COUNT loop

GLOBAL :. 6 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop
GLOBAL GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECK-TIMES )

-- Test loop

ITERATION.STARTTEST
for J in 1 .. TERATIONCOUNT loop

GLOBAL :. 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop
T1.E1 ; -- this has control global increment and call inside

end loop
end loop ;
ITERATION.STOPTEST ( GLOBAL , CHECK-TIMES )
ITERATION.TESTSTABLE C ITERATION-COUNT , STABLE )
exit when STABLE

end loop

ITERATION.FEATURETIMES ( CPU-TIME , WALL-TIME )



90
-- Printout

PIWG-IO.PIWGLOUTPU1T ( '7TGGfi" , "Tasking"
CPU-.TIME , WALL-TIME ,ITERATION-COUNT

"Minimum rendezvous, entry call and return time
"1 task 1 entry ,task inside procedure
"no select)

abort TI

end T01



91
-- PERFORMANCE MEASUREMENT : tasks entry call and return time
-- 1 task 2 entries
-- one select statement

with REMOTE-GLOBAL ; use REMOTE-GLOBAL
package TASKPACK_4 is

task Ti is
entry El
entry E2

end T1 ;
end TASKPACK4;

with TASKPACK4 ; use TASKPACK_4
with REMOTE-GLOBAL ; use REMOTE-GLOBAL ; -- control optimization
with ITERATION ; -- obtain stable measurement
with PIWG-IO ; -- output results

proczdure T0004 is -- main procedure to execute
CPU-TIME DURATION ; -- CPU time for one feature execution
WALL-TIME DURATION ; -- WALL time for one feature execution
CHECK-TIMES : constant 100 ; -- inside loop count and check
ITERATION-COUNT ITERATION.ITERATION-COUNTS ; -- set and varied by ITERATION package
STABLE : BOOLEAN ; -- true when measurement stable
CASE-COUNT : constant := 2

begin

ITERATION.STARTCONTROL ; -- dummy to bring in pages on some machines

delay 0.5 ; -- wait for stable enviornment on some machines

ITERATION.INITIALIZE ( ITERATION-COUNT ) ;

loop -- until stable measurement, ITERATION-COUNT increases each time

-- Control loop

ITERATION.STARTCONTROL
for J in 1 .. ITERATION-COUNT loop

GLOBAL :- 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop
GLOBAL GLOBAL + A-ONE
REMOTE

end loop
end loop ;
ITERATION.STOPCONTROL ( GLOBAL , CHECK-TIMES )

-- Test loop

ITERATION.STARTTEST
for I in 1 .. ITERATION-COUNT loop

GLOBAL :- 0 ;
for INSIDE-LOOP in 1 .. CHECK-TIMES loop

Tl.El ; -- this has control global increment and call inside
Ti.E2 ; -- this has control global increment and call inside

end loop
end loop ;
GLOBAL :- GLOBAL / CASE-COUNT
ITERATION.STOPTEST ( GLOBAL , CHECK-TIMES )
ITERATION.TESTSTABLE ( ITERATION-COUNT , STABLE )
exit when STABLE

end loop

ITERATION.FEATURETIMES C CPU-TIME , WALL-TIME )
CPU-TIME :- DURATION ( CPU-TIME / CASE-COUNT )
WALL-TIME :- DURATION ( WALL-TIME / CASE-COUNT )



92

-- Printout

PIWGIO.PIWGOUTPUT ( "T00004" , "Tasking"
CPU-TIME , WALL-TIME , ITERATION-COUNT

" Task entry call and return time measured" ,
" One tasks active, two entries, tasks in a package
" using select statement " )

abort Ti
end TOOO;

package body TASKPACK_4 is
task body TI is
begin
loop

select
accept El do

GLOBAL GLOBAL + A-ONE
REMOTE

end El
or

accept E2 do
GLOBAL GLOBAL + A-ONE
REMOTE

end E2 ;
end select

end loop
end T1 ;

end TASKPACK_4



Appendix C

Selected DIANA Representations of Test Programs

The timed fragment from P000001 and the entirety of SimpleTasks is

included here in DIANA form. This DIANA form is that used on the Rational

machine. It represents as a bracketed list with a node type tag, non-

structural attributes, and child nodes (structural attributes) in that order,

e.g., [dn-type attrl attr2 [child1] [child2]]. The hexadecimal numbers to the

left are memory addresses for the nodes and can be ignored. Semantic

attributes of the form smattr = [dn-tag A] represent a pointer to a specific

existing node of the type indicated.

POOOO01:
1FC91SAleClB: [ON-LOOP

Ix-line-count = 7

1FC910A_10E82: [ONFOR
1FC91OA-10EFB: [DNITERATIONID

SMSEQNUM = 1

SMPARENT = [DNPROCID A]

lx-symrep - "J"
sm-obj-type = [DNRANGE A]

]
1FC91OA-110B: [DNRANGE

smbase-type = [ONINTEGER A]

1FC91A-11B7: DNNUMERICLITERAL
lx-numrep = "1"
sm-exp-type = [DNINTEGER A]

smvalue - 1
]

1FC91OA11136: [DNUSEDOBJECTID
lx-symrep = "ITERATION-COUNT"
sm-defn = [DNVARID A]

sm-exp-type = [DNCONSTRAINED A]

smvalue = No value
]

]
]

1FC91A-11FE1: [DNSTMS
Ix-line-count = 5

93



94
IFC91OAJ11lF3: [ON-ASSIGN

lx-ine.xount =1
1FC91OA1A1270: [DN-USED-.OBJECT-ID

lx-.syurep = "GLOBAL"
sm-defn - [ON-VARID A]

sm-exp-type - [DN-CONSTRAINED A)

su,.value - Uninitialized

1FC9l0Aii131F: [DR-NUMERIC-.LITERAL
lx-numrep - "0"
sm..exp..type - [DN-INTEGER A]

sm-value =0

1FC91OA-113B9: [DN-LOOP
Ixxline-count =4

1FC91OA-115CO: [DN-FOR
1FC91OA.11639: [DN-ITERATION-ID

SM-SEQNUI = 1
SM-PARENT = [DN-PROC-ID A]

lx-symrep = "INSIDE-LOOP"
sm..obj...type = [DN..RANGE A]

1FC91OA.11759: [DN-RANGE
sm..base-type = CDN-INTEGER A]

1FC91OA-.117F5: (DN-NUMERIC-LITERAL
lx-numrep = "1"
sm-exp-type = [DN-INTEGER A]

sn-volue = 1

1FC91OA11874: [DN-USED-OBJ]ECT-ID
lx..symrep = "CHECK-TIMES"
sm-defn = [DN..NUMBER...ID A]

sm-exp..type = [DN-INTEGER A]

sm..yalue = 100

IFC910A..11F71: [DN-STM-S
Ix-ine-.count = 2

1FC91OA.11931: [DN-.ASSIGN
lx-ine.count = 1

1FC91OA-1A19BB: [DN..MSED.OBJ ECT-ID
lx-.symrep = "GLOBAL"
sm-defn = [DN-VARJD A]

sm-.exp..type = [DN..CONSTRA1NED A]
sm-value = Uninitialized

lFC910A-llA5D: [DN-UNCTION.XALL
sm-exp-.type = [DN-INTEGER A]

sm-volue = Uninitialized
sm-normalized-paraa..s =[DN-EXP_.S A]
lx..prefix - FALSE

1FC910A-llB1C: [DN-USED-BLTN-OP
SM-ORIGINAL-NODE =[DN-.USED..OP A]

Ix-symrep = "+"
sm-operator = INTEGER-ADD

lFC9lOA-I1D7D: [DN-PARAM-ASSOC-S
1FC910A-11BCF: [DN-USED-OBJ ECT-ID

lx..symrep = "GLOBAL"
sm-defn = [DN.VAR-ID A]

sm-exp.type = [DN-CONSTRAINED A]

sm..yalue -Uninitialized

lFC91OA-1lCA6: [DN-USED-OBJECT-ID
lx-symrep = "A-ONE"
sm-defn = [DN-VAR-ID A]

sm-exp-type - (DN-CONSTRAINED A]

sm-value =Uninitialized



95
1FC910A..11DF7: [DN-PROCEDURE-CALL

Ixxine.count - 1
sm..normali zed-pao u.s - DN-EXP..S A]

1FC916A-llE9B: [DN-USED-NAME-ID
Ix..symrep - "REMOTE"
sm..Aefn = [DN-PROC-ID A]

1FC9l@A..11Fl2: [DN-PARM-ASSOC.SJ



96

SimpleTasks:
IF77DQA-AD12: [DN-.COM...UNIT

lx- ine..count - 55
SM-IOJABLE-

1F77D@ACE56: (D#4.CONTEXCT
lx-.line-.count - 0

]
1F7700A..CEC6: [DN-SUBPROGRA.LBOY

S&-FOINARD - [DN-SUBPROGRAM-DECL A]
lx-ine.count - 55

1F77D@A-CF6A: [D#4-PRoC-ID
DD-RUST.ME - 2
Ix-.symrep - ODOIT"
sfl-spec - CDNLPROCEDJRE A]

sni..body - [DL-BLOCK A]

srn~stub - null
smjfirst - [~DN-ROC-.ID A]

lF77DA-DOAC: EDN-PROCEDURE
lF770eA-DlOB: [DN-PARMS

Ix-line-.count - 0
SM-ID..TABLE-

1F7708A.0198: [DN-BLOCK
POST..COWEVNT.JIEIGHT -- 2
PRELCOI4ENT-HEIGHT -- 2
lxiine-count - 53

lF77DO.13D74: CDN-ITEM..S
lx-line..count -49

1F77DeA.025A: CDN-VAR
Ix-line-count - 1

1F77D@A..554: CDN-ID-S
lF77EIA-02FE: [DN-VAR..ID

SM-PARENT - CDNLPROC-ID A]

lx..symrep - "COUNT.A"
sm-.obj..type -[DNLCONSTRAINEO A]

smobj-def -[DtNNERIC-LITERAL A]

1F77DeA0429: [DNLVAR-ID
SM-PARENT - [DN-PROC..ID A]

lx..symrep - "COUN-B"
sm~abj-type -[DN-CONdSTRAINED A]

sm..obj..def - DN-4NEKRIC-.LITERAL A]

lF770OA-..083: [DNLCONSTRAINED
sm..type-.struct -[DN-INTEGER A]

srn-bose-type -[DN-INTEGER A]
snLcofstraint - DN-RANGE ]

lF7700A-.D695: [DL-USED-.NAME-ID
Ix-sywirep - "INTEGER"
sm-defn - [DN-~TYPE-ID A]

CDtL VOID]

lF7700A-.D70C: [ON-JNNERIC-.LITERAL
lx-nzIrep -W
sm-exp-type - [DN-~INTEGER A]

sm-value - e

lF7700A-D7A6: [DNLVAR
POST-COMMUENT.HEIGHT - -2
Ix..line.count - 2

lF77OGA-D975: IDN-ID.S
1F7700A..D84A: [DN-VAR-ID

SM-PARENT - (DN-PR0C-ID A]

Ix-syrep - "RESULT-C'
sm-obj. .type -[DN-CONSTRAINED A]

sm-obj-def -[DN-NUMERIC-LITERAL A]

lF77@A-D9D4: [DN-CONSTRAI NED
sm-type-struct -[DN-INTEGER A]

sm-base.type CD[O#INTEGER A]

sm-.constraint -[DN..RANGE A]

lF77DeA0DAB6: CDN-USED-NAJ4E-I
lx-s1mep - "INTEGER"
sm-defn - [DNLTYPE-ID A]

[DtL VOID]

1F77DOA-DB2D: [DN-NUP.ERIC-LITERAL
lx-nunrep -W
s& exp-type - [DR-INTEGER A]

sn-value - 6

lF77DOADCOA: (DN-TASK-DECL
POST-COMMNTHEIGHT - -2



97
lx-line-count - 3

lF770OADC94: EOL-VAR-.ID
SK_)ARENT _ [ONPROCJD A]

lx-.s1.urep - "TASK.A"
sa..obj-type - EN-TASK-SPEC A)
somobj-def -[DN-TASK-SPEC A)

lF77VOA.008A: CDN-TASK-.SPEC
lx-ine-couflt - 0
sm..body - [DNd-BLOCK A]

lF7700A-DEID! [DL-DECL-S
LX.YERBOSE - TRUE
lx-jie-couflt . 0
SMJD-ABLE-

lF77D@A-DF3F: [DN-.TASK-.DECL
POST..COWIENT-IEIGHT -- 2
Ix-jine-count - 3

lF77DA-.DFC9: CDI-VAR-ID
SMLpARENT - [DNPROCJD A]

Ix -symrep - "TASK-B
siILobjtype [ DN-TASK-SPEC A)
smobjdef -[DN-TASK-SPEC A)

1F770eA-EOSF: [DN-TASK-.SPEC
lx-line-coutit - 0
sm-body . [DN-LOCK A]

lF7700A-El52: CDN-DECL-S
LX..VERBOSE - TRUE
Ix-jinecouflt e
SM-IO-ABLE-

lF77D@AE274: (DN-TASK..DECL
POST-COIENT-HEIGHT -2-
lx line-count - 6

lF77D0AEZFE: CDNd.YARID
SJ4YARENT - [DNLPROC-IO A)

lx-symrep - "TASK-C
sfl-obj-type -[DNLTASK.SPEC A)
sni-obj-def -[DNLTASK-SPEC A)

3
lF7700&-E3F4: [DL-TASK..SPEC

lx-line-caunt-
sm-body - [ON BLOCK A3

lF77DAEDCO: [DNLDECL-S
Ix-jine-cotjnt - 3

lF7700bA487: CDNSuBPROGRAM-DECL
Jxine-count - 1

1F77DSA-ES2B: EDN-ENTRYJ-D
SM-SEQWIJ4 - 1
SMPARENT - [DL-VAR-ID A)

lx~s)mrep - "ENRYA
sm~spec - (DN-ENTRY A

1F7700A-E648: [OL-ENTRY
Ix-.line-count -
(DNVOID)

lF7700A-E6D5: [DNLPARAMLS
lx-li"'eunt -

SM-ID-ABLE

CDN-YOID]

lF770&-E 79A: [DNLSuBPROGRAM-DE Ci
lxiine-count -1

1F77E0A-E83E: [DN-ENTRY-ID
SJ.LSEQNUM - 2
SMPARENT - [DNLVAR-ID A)

Ix-syn~rep - "ENTRYB
sm-spec - [DL-ENTRY A

lF77DOA-E95E: [DN-ENTRY
Ix...1ine-count - 0
[DNLVOID)

lF7700A-E9E8: [ON-PARAILS
lxjlinesojnt -0

SM-ID-ABI.E-

CDN-VOID)

1F77D@AEAD: [ONSUBPRORAM-DECL
lx- ine-.couflt -1

lF77DOA-EB51: [DN-ENTRY-JO
SMSEQNUM - 3
SM_~PARENTr - CDN-VAR-ID A]

Ix-syirep - 'DONE*
sNLspcC - [ON-ENTRY A)



98
IF77DOA-.EC71: (OW ENTRY

lI..line-count - 0
(DNLVOID]

lF77Oh-ICB: (ON-PARAALS
lx-.line-count 0
SM-IO-ABLE-

[DN-VOIO)

I
I

I
1F77D@A.F14A: (DNd.JASK-BODY

SM3FORWARO - [DN.JASK.OECL A]

lx-ine-count - 9
1F77M-F1D4: [DL-TASK.SODY-ID

lx-sy Irep - "TASK-A
snLspec . CDNTSK-SPEC A

sm~bcxiy . CDNLSLOCK A]
sm-.stub - null
smfirst - [DNLVAR-ID A]

lF770@A-2C3: (D*L.BLOCK
POST-COMMENTHEIGHT -- 2
lx-line..count - 8

IF77DAF367: (ON-ITEM-S
Ixxjine-oult -
SNJO.-TABLE

1F77OA-106E3: CDN-STM-S
Ixxjine-count - 6

IF77DOA-F412: [DNLOOP
xljinesount - 3

1F77DOA-619: [D#1.FOfl
1F7OSA-F692: [DNITERATION-ID

SM-SEQNN4 - 1
SM-PARENT - CO#LVAR-ID A]

Ix-.symrep -"I
snt-obj-type - [DL-RANGE A]

lF770SAF782: CODMRANGE
smrbase-type - (OL-INTEGER A]

1F77DGA-F84E: (WNNUERIC-LITERAL
lx-nLnrep - "1"
sni-exp-.type - CDN-INTECER A]
sni-volue-1

1F 77DA-.FSC: (0D.NNUERIC-LITERAL
SM-INTVAAJE - 1IWO
lxnurrep - "100
sui-exp type - CDN-IMTEGER A]

sm-volue - 1600

IF 77D@A-FE62: (D#4..STt&.S
lx..linescount - 1

1F77D@A..F9OA: (DNASSIGN
lx-line..count-1

IF 770GA-FA64: [DLUSED-OBJECT-ID
Ix-symrep - "COUTA"
sm-defn - CDN-VAR-JD A]

sm-exp..type - (D-CcONSTRAINED A]

s m-volue - Uninitialized

lF 71GA-FB@6: CDN-FUNCTION-CALL
sm-exp-type - CDN-INTEGER A]
sn-volue - Uninitiolized
sm-normal ized-.parcm-s -[DN-EXPS A

Ix-pref ix - FALSE
1F7700AFBC5: [DF4.USED-BLTN-OP

SM-ORIGINAL-NODE - DNLUSEDOp A]
lx-syomrep -""
snI-operotor - INTEGER-.ADD

iF 77DOAFE$3: (DN-PARAMLASSOC.S
lF 7700AFC 78: CDN-USED-.OJECT-ID

Ix-symrep - *COUNT.A-
srn-defn - (DNLVARJO A)
sm-exp-type - [DN-CONSTRAINED A]
sm-volue - Uninitialized

IF770DA..FD4F: [DNNLME RICI ITE RAL
lx-.ntenrep ---
sn1.exp-type -(DN-INTEGER A]

sin-volue-1

1F77OAFEO2: [DN-ENTRY-.CALL



99
SM-ORIGINAL-NODE - [DNLPROCEDURE-CALL A]

lxiin..count - 1
smjiorwalized-parii-s - [DL-EXPS A]

IF7708A-.FF76: EOLSELECTED
sm-exp-type - null
saiivolue - Uninitialized

lF77D@A10@1A: [DN-USED.OJECT-.ID
lx-sywirep - "TASK.C*
sm~defn - [DNLVAR..ID A]

sm-exp-type - [DNLTASK-SPEC A]

sm..value - Uninitialized

1F77D8A-1006C: [D#4 -USED-.NAE-ID
lx-s nrep - ENTRY.A"
sm..defn - [OLENTRY..ID A)

IF77DGA-10133: [DNLPARAM-ASSOC-S)

IF 77D@A-10238-: [DW-ASSIGN
lx-line..count - I

170.102C2: [DNUSEOOBJECT-ID
lx..s)Nirep - "COUNT-A"
sm-defn - [DNLVAR-IO A)

sm-.exptype - ErDN-CONSTRAINED A)

sni-volue - Uninitiolized

lF77DOA-10364: [DN-FUNCTION-CALL
sm-exp-type - [DL-INTEGER A)

sm-volue - Uninitiolized
saminorwal ized..porczits - DNLEXPS A)

lxjwref ix - FALSE
lF77D@A.10423: [DIN.USED-BLTN-OP

SM-ORIGINAL-NODE - EO-USED~op A)

Ix-syiirep - *sm-aperator - INTEGER-.ADD

1F77DOA-10684: CDN-PARA4-ASSOC-S
1F77DOA-104D6: [DN-USED..OBJECT-ID

Ix-sywrep - "COUNT-A"
sm-defn - [DN-VAR-ID A]

sm-exp-type - [DN-CONSTRAINED A

sm-value - Uninitiolized

iF 77DOAiOS5AD: [DN-USED-OBJECT-ID
lx-syanrep - "COUN-A"
sni-defn - [DN.YAR-ID A)

sm-exp-type - IDNLCONSTRAINEO A3

sm-.value -Uninitialized

lF7700A-10753: [DN-ALTERNATIVE-S
lx-iine-count -

iF 700& -10891: [DN-TASK-BODY
SM-FO1WARD - EDNTASK-DECI A)

lx-line.count - 9
IF 77DA-191B: CDN-TASK-.BODY-ID

lx-s)Rrep - "TASK-B"
sm-spec - [DN-TASK-SPEC A)

sm-bady - [DN-BLOCK A]

sm~stub - null
smjfirst - [DN _VAR-ID A)

iF 77DOA-10AOA: [DN-.BLOCK
POST-COq4ENT-HEIGHT - -2
Ix-line-ount - 8

lF77DOA-.10AAE: (DNITEMS
lx-line.count - 0
SM-ID-ABLE -

lF77D0A100A: (O)N.STh5s
Ix-jine-ctjnt - 6

lF77DOA..10859: [DN.J.OOP
1x..line..count - 3

lF77DOA-J0065: (ON-FOR
lF7700A-10tE9: [DNJTERATION-ID

SM-SEQNUM - I
SM-PARENT - [DN-VAR-IO A]

lx-sywrep - "I-
sm-ob]-type - [DN-RANGE

lF77DOA-1EF9: [DN-RANGF,
sm-base-type - [DN-INTEGER A]

1F77OSAl0F95: [DNNMERIC-LITERAL
lx-numrep - 1
sm-exp-type - [DN-INTEGER A]

sm value - 1



100
1F7706A-.11014: (DNLNUMERIC-.LITERAL

lx-nuerep - "100"
sm-exp.type - [OPLINTEGER A]

Se~value - 100

1FI7DSA-1ISS9: [oN-STh-S
lx-line-saunt - 1

1FZDA.11BAE: [DN-ASSIGN
lx-.line-caunt - 1

1F77DGL-1113S: (DN-USE-OBJEaJ-D
lx-syylrep - "COUNL.B"

s-en- [N-VA-ID A)

set-exp..type - [DN-CONSTRAINED A]

I sm~value - Uninitialized
1F77DOA..111DA: [DN-FUNCTION.CALL

sm-exp-type - [DNJINTEGER A)

sm..value - Uninitialized
smnamlized-parfl..s - DNEXPS A)
lx-pref ix - FALSE

1FZ7DOA..11299: [DN-USEDBLTN-OP
SM-ORIGINAL-NODE -[DNLUSEDSOP A]

lx-.sywnrep - "+"
smuoperator - INTEGER-.ADD

1FZ7DOA14FA: [DN-PARAM-ASSOC-S
1F77D0A-1134C: [DN-USED.OBJECT-ID

lx-syirep - %COUN1IB"
sm-defn - [DN-VARJID A]

sue..exp..type - [DN-CONSTRAINED A)

se-value - Uninitialized

IF ZZDeA-11423: [DN-USED-SBJECT-ID
lx..syrnrep - "I"
sntdefn - [DN-ITERATION-ID A]

sm-.exp-type - [ON-RANGE A)

sm..value - Uninitialized

lF77OA-15C9:[DN-NTRYCA ]

1F77DGA-15C90: [DNRECC1

smiexp-type - null
sm value - Uninitialized

1FZ7DG&-11711: [DN-USED-OBJECT-ID
lx..symerep - "TASK-C
sm-defn - [DN-.VARJID A]I

sm-.exp-type - [ON-TASK3SPEC A

sm-value - Uninitialized

1F77DOA-117B3: [DN-USED-.NAME-ID
Ix-symrep - "ENTRY-B"
srnidefn - [Dt-ENTRYJID A]

1F77DGA-.1182A: [DN-PARAM-ASSOC-S]

IF?700A..1192F: [0N.ASSIGN
lxjline.count - 1

1F77DOA11989: [0N.USEDOBJECT-ID
lxtslirep - 'COUNT-B"
smtdefn - [DtLVARJID A]

sm~exp-type - [DN..CONSTRAINED A]

sm value - Uninitialized

1F770A11A58: [DN-FUNCTION-CALL
se~exp-type - [ON-INTEGER A]
smevyalue - Uninitialized
sm.nonalized-parat-s -[DN-EXP.S A]

lxprefix - FALSE
1F710OA-1BIA: [DN-USED-SLTN.OP

SI.LORIGINAL-NODE -[DPLUSEDSP A]

lx..syinrep - "
snt-operator - INTEGER-ADD

1F?70AJ1D7B: [DN-PARAJ4..ASSOC-S
1FZ700AJ11BCD: [DN-USED.OBJECT-ID

lx-syerep - "COUNT-8"
sm-defn - [DtLVARJOD A]

sm-exp-type - [DN-CONSTRAINED A

se-value - Uninitialized

1F7ZDAJ1CA4: [ON-USED..OBJECT-ID
Ix..sywrep - "COUNT-B"
sntdefn - [DN-VARJID A]

snt-exp-type - [DNLCONSTRAINED A]



101
sm-value -Uninitialized

1F77DeA-.11E4A: [DN..ALTERNATIVE..S
lxiine-couflt -0

1F7700A..11F88: [DN-ASK-BODY
SM-FORWARD - [DNTASK-DECL A]

Ixxiine-count - 16
1F77D@Aj2012: [DN-ASK-BODY-.ID

lx-symirep - "TASKC"
sn~spec - EDN-TASK-SPEC A]

sm-body - [DN.BLOCK A]

sm-stub - null
sni-first - [OtLVAR-ID A)

lF77DOA.12101: [DN-BLOCK
POST-CO94qENTHEIGHT - -2
lx-line-count - 15

1F77DeA-.21A5: [DN-TEM-.S
lx-ine.xouft - 0
SM.ID-ABLE-

lF77DOAi.3BC6: [DN-SThLS
lx-ine-count - 13

lF77DeAj2250: [DN-.LOOP
lxiine.count - 11

IF7?OA-12457:. [ON..FOR
1F77DOA-.12400: rON-.ITERATION-ID

SI.LSEQNUM - 1
SM-LPARENT - [DN-VAR-ID A]

Ix-symlrep - 'I"
smobj-type - [DN-RANGE A]

lF77DOA-125FO: [DN-RANGE
srn-base-type - [DN-INTEGER A]

1F77DeA-.268C: [DN-.NUMERIC.LITERAL
lx-.numrep - "1"
sm-exp-type - [DN-INTEGER A]

sni..value 1

1F77DOA-127OB: EDN..NUMERIC-LITERAL
lx..numrep -7"
sm-exp..type - CDN-INTEGER A]

snivolue - 2

iF 770OA-3920: [DNSTM-S
lx-line-count - 9

1F7700A-1278A: [DNSE LECT
lx-line-count - 9

lF77DOA..138OB: [DNLSE LECT-CLAUSE-S
lx-ine.count - 8

1F77DeA..1282F: [DNL.SELECT-CLAUSE
lx-line-count -3
[DL-VOID]

lF77OA-2F92: [DNLSTM..S
Ix-line-caunt -3

1F77DeA.12804: CDN-.ACCEPT
Ix-ine-count- 3

1F77DeA12978: [DNLUSED..NAE-ID
Ix-.symirep - "ENTRY-A"
set-defn - CDN-ENTRY-ID A]

1F7700A-129EF: [DN-PARAM-S
lxiine.xount - 0
SMLID-ABLE-

lF77DOA-12F22: [DN-ST'LS
Ix- ine-count - 1

1F7700A-.12A9A: CDN..ASSIGN
lxiline-ount - 1

lF77DeA-12B24: [DN-USED-OBJECT-ID
Ix-symrep - "RESULT-C"
sm..defn - [DN.YARID A]

sel-exp-type - CDNLCONSTRAINED A]

sm..volue - Uninitialized

1F770OA-128C6: [ON-FUNCTION-CALL
sm-~exp-type - (DN-INTEGER A]

sei..volue - Uninitialized
sm-nareal lzed-parrn-s - DLEXP.S A]

lx-.pr'efix - FALSE
lF7700A-12C85: [ON _USED-BLTN-OP

SM-ORIGINAL-NODE -[DN-USED..0p A]

Ix-smrep - "/'
snl-aperator - INTEGER-DIV



102
lF77DOA-12EC3: EDN-PARAI4.ASSOC-S
lF77OA-2D38: [DN-.USED.-OBJECT-ID

Ix-syrerep - "RESULT-.C"
sni..defn - [DN-VAR-ID A]

sm-exp-type - [DN-CONSTRAINED A]
sni-volue - Uninitiolized

3
lF77DeA-.2EOF: [DN-LUMRIC-.LITERAL

lx-naerep -"2
snI-exp-type - [DN-INTEGER A)

sntvalue -2

lF77eA-101D [DNSELCT-CAUS
Ix-lne-cunt
[DN-VOID

lF77DeA-.131D: [D..DLN-LUSED-AEI
lx-s.mlep - "ENtR- 3

smDNf -[D-OIO]I A

1F7700A-131DD: [DDNSTP4S -
Ix-ine-ount -

IF 77DOA-1370: [NCEPT
lx-jine-unt -

lF770@A-.1331: [DN.USEJ4AED-BET
lx...symrep -NRY.B"-C

sm~defn -EDNENTRY-ID A]

1F77DOA13 100: [D~PRN-FNT NCL
smiinesount - D-NEGRA
smJ0.TA lE - nntoie

sm-7om0lAed3710:- [DN-EXPS A
lxjinercoun - FAS

1F77DA-.13288: r0.ASIN-UE-LNO

lxjineecount - NEE-D

1F77DOA-.1326: [DN..USED.OBJECTJD
Ixxssyrrep -RESULT,..C

sm..defn - [DNVARRI0 A]

sm-eep..tpye - DN-CRANSTAIE A]

sm...valu -Unniiidiz

1F77DOA-13584: [FUCIONUMELIEA
snimxpetp-tp -DNJNTEGE A]A

sei-value Unnt4ie

lx-li.-ren -x 1 AS
lF77DOA-134: E0NUSED..BLTN.0P

Ix-slx.synie -- DOE
SMsmcpeeto -[DNTEGERA0D A

1F77DOA-13A6: [0NYAAK..ASOC..

IF77DOA-1356: [DNDUE0-STMET..1
Ixxline-crup - "RSUL



103
lF7lDOA-flC36: [DN-ALTERNATIVE-S

lxjline-ount - 0

1F7700A-1463D: [DN..STh.S
PRE-.COMIENT-HEIG4T - 1
lxjline-sount - 2

1F77DG&-142F2: [DN-ENTRY-CALL
S&CORIGINAL-IODE - (DNLPROCEOURE-.CALL A)

lxjline-sount - 1
smtnormlize-parat-s - [DN-EXP3 A)

1F77DOA-14396: CDN-SELECTED
sm-exp..type - null
se-value - Uninitialized

1F7700k-1443A: [DN-USEDSBJET-D
lx..syiirep - "TASKSC"
sm-defn - [DNSVARJID A]
sm-exp-type -. [DPLTASICSPEC A

sm..value - Uninitialized

1F7ZDOA..144DC: [DN-USED-NANE-.ID
lx..symnrep . " DONE"
sm-defn - (DN..ENTRY..ID A)

iF 7700A-14553: [DN-PARA&-ASSOC-S]

1FflDGA-I46FO: [DN-ALTERNATIVE..S
lx-.line-caunt -0

1F7700A-1483C: [DN.YRAGMA..S
lxjline-count - 0



Appendix D

Experiment Output

main
1000 Iterations of simple tasking system takes 11.8167 seconds.
main
1000 Iterations of simple tasking system takes 11.9333 seconds.
main
1000 Iterations of simple tasking system takes 11.9833 seconds.
main
1000 Iterations of simple tasking system takes 12.0500 seconds.
main
1000 Iterations of simple tasking system takes 14.3834 seconds.
main
1000 Iterations of simple tasking system takes 14.3833 seconds.
main
1000 Iterations of simple tasking system takes 14.4000 seconds.
main
1000 Iterations of simple tasking system takes 14.3833 seconds.
main
1000 Iterations of simple tasking system takes 14.3834 seconds.
main
1000 Iterations of simple tasking system takes 14.3833 seconds.
main
1000 Iterations of simple tasking system takes 14.3834 seconds.
main
1000 Iterations of simple tasking system takes 11.7333 seconds.
main
1000 Iterations of simple tasking system takes 14.5667 seconds.
main
1000 Iterations of simple tasking system takes 14.5667 seconds.
main
1000 Iterations of simple tasking system takes 14.5667 seconds.
main
1000 Iterations of simple tasking system takes 14.5667 seconds.
main
1000 Iterations of simple tasking system takes 14.5667 seconds.

104



105
Teat es-, A000090
Clock rasolution seasureeent running Iteration I

Test D cription. 74557.0000 74557.0000 0.0000
Detersine clock resolution using second differences Test Iteration I
of values returned by the function CPU Ti..Clock. 74558.0000 74558.0000 0.0000

Iteration 2
Metaar of saqple values is 7000 74550.0000 74550.0000 0.0000

Clonk Resolution - 1.000000000000000 seconds. Test Iteration 2
Clock Resolution (overage) * 1.0000000000000000 74559.0000 0.0000

Clock Resolution (variance) - 0.00000000000000 seonde. Iteration 4

74559.0000 74559.0000 0.0000
Test Iteration 4

Test Eses A000091 Class Maae. Composite 74559.0000 74559.0000 0.0000

1.2000 is ties in silliseconds for one Dhrytoe Iteration 0
Test D"eription, 74560.0000 74560.0000 0.0000
Reinhold P. *eicker'. DHRYSTOM0 coposite bench k Test Iteration 0

74560. 0000 74560.0000 0.0000
Iteration 16

Test ees, A000092 Class Ms coposite 74540.0000 74561.0000 1.0000
Test Iteration 16

Averaq tiae per cycle . 2784.33 milliseconds 7450.0000 74562.0000 1.0000
Iteration 32

Average Whetstone rating * 359 KWIPS 74562.0000 74562.0000 0.0000
Test Iteration 32
74562.0000 74564.0000 2.0000

Iteration I Iteration 64
73717.0000 73717.0000 0.0000 74564.0000 74545.0000 1.0000

Test Iteration I Test Iteration 64
73717.0000 73717.0000 0.0000 74565.0000 74568.0000 3.0000

Iteration 2 Iteration 128
73718.0000 73719.4000 0.0000 74569.0000 74569.0000 0.0000
Test Iteration 2 Test Iteration 120
7370.0000 73710.0000 0.0000 74570.0000 74576.0000 6.0000
Iteratio 4 Iteration 256
73710.0000 737109.000 0.0000 74576.0000 74578.0000 2.0000

Test Iteration 4 Test Iteration 256
73719.0000 73719.0000 0.0000 74578.0000 74591.0000 13.0000

Iteration 8 Iteration 512
73720.0000 73720.0000 0.0000 74591.0000 74594.0000 3.0000
Test Iteration 6 Test Iteratio 512
73720.0000 73721.0000 1.0000 74594.0000 74620.0000 20.0000

Itsration 16 Iteration 1024
73721.0000 73721.0000 0.0000 74620.0000 74424.0000 6.0000

Test Iteration 16 Test Iteration 1024
73721.0000 73723.0000 2.0000 74426.0000 74678.0000 52.0000

Iteration 12 Iteration 2048
73723. 0000 3 723.9000 0000 74678.000 74689.0000 11.0000

Test Iteration 32 Test Iteration 2049
73723.0000 73727.0000 4.0000 74690.0000 74793.0000 103.0000

Iteration 64
73727.0000 73727.0000 0.0000 Test sees H000004 Clens saes. Chapter 13

Test Iteration 64 CPU Ties, 449.2 icroseconds

73727.0000 73734.0000 7.0000 sell Ties 449.2 icroseconds. Iteration Count, 2048
Iteration 120 Test Description.
73734.0000 73735.0000 1.0000 Tie to perfore standard boolean operations on arrays of boolosns.

Test Iteration 128 For this test the arrays am NOOT PACKED with the pragm 'PACK.
73735.0000 73749.0000 14.0000 For this test the opertions a performed on components in a loop.

Iteration 254

73749.0000 73750.0000 1.0000
Test Iteration 256 Iteration 1
73750.0000 73777.0000 27.0000 75295.0000 75295.0000 0.0000

Iteration 512 Test Iteration 1
73777.0000 73780.0000 3.0000 75296.0000 75296.0000 0.0000

Test Iteration 512 Iteration 2
73780.0000 73034.0000 54.0000 75294.0000 75296.0000 0.0000

Iterstion 1024 Test Iteration 2
73034.0000 73039.0000 5.0000 7529k.0000 75296.0000 0.0000

Test Iteration 1024 Itertion 4
73039.0000 73947.0000 108.0000 75297.0000 75297.0000 0.0000

Test Iteration 4
Test s- C000001 Class Mans, Tasking 75297.0000 75297.0000 0.0000

CPU Tie. 1005.9 sicroseconds Inration 0
all Ties, 1005.9 dicrosoccnds. Iteration Count, 1024 75297.0000 75297.0000 0.0000

Test Description, Test Iteration 0
Task create and terminate measuresent 75297.0000 75297.0000 0.0000
with one tak, c entries, when task is in a procedure Iteration 16
using a tak type in a package, no select etat-ent, no loop, 75290.0000 75290.0000 0.0000

Test Iteration 16
75290.0000 75290.0000 0.0000

Iteration I Iteration 32
73949.0000 73949,0000 0.0000 75290.0000 75298.0000 0.0000

Test Iteration I Test Iteration 32
73949.0000 73950.0000 1.0000 75299.0000 75299.0000 0.0000
Iteration 2 Iteration 44

73950000 7390.0000 0.0000 75290.0000 75299.0000 0.0000

Test Iteration 2 Test Iteration 64

73950.0000 73950.000 0.0000 75300.0000 75300.0000 0.0000

Iteration 4 Iteration 12073950.0000 73951.0000 1.0000 75300.0000 75300.0000 1.0000

Test _teratin 4 Test Iteration 128
73951.0000 73951.0000 0.0000 75301.0000 75302.0000 1.0000

Iteration 8 Iteration 254
739151.0000 73951.0000 0.0000 75302.1000 75303.0000 1.0000

Test Iteration 0 Tst Iteration 254
73952.0000 73953.0000 1.0000 75304.0000 75305.0000 1.0000

Iteration 16 Iteration 512
73953.0000 73953.0000 0.0000 75305.0000 75300.0000 3.0000

Test Iteration 16 Test Iteration 512
73953.0000 73955.0000 2.000 75300.0000 75311.0000 3.0000

Iteration 32 Iteration 1024
73955.0000 73955.0000 0.0000 75311.0000 75314.0000 5.0000

Test Iteration 32 Test Iteration 1024
73955.0000 73959.0000 4.0000 75317.0000 75322.0000 5.0000

Iteration 64 Iteration 2048

73959.0000 73960.0000 1.0000 75323.0000 75333.0000 10.0000

Test Iteration 44 Test Iteration 2040
7390.0000 73947.0000 7.0000 75333.0000 75345.0000 12.0000

Iterat ion 120 Iteration 4096

73967.0000 73960.0000 1.0000 75345.0000 75344.0000 21.0000

Test Iteration 128 Test Iteration 4096
73940.000 73902.0000 14.0000 7536.0000 75390.0000 24.0000

Iteration 256 Iteration 0192

73962.0000 73904.0000 2.0000 75390.0000 75431.0000 41.0000

Test Iteration 254 Test Iteration 0192
73964.0000 74012.0000 2.0000 754131.0000 75479.0000 48.0000

Iteration 512 Iteration 1384

74012.0000 74015.0000 3.0000 75479.0000 75561.0000 02.0000
Test Iteration 512 Test Iteration 16304
74115.0000 74071.0000 54.0000 75561.0000 75657.0000 94.0000

Iterat ion 12-cu IcILT 4~0~f sn
76972.0000 74077.0000 5.0000

Test Iteration 1024 Test sees. P00001 Class nes Procedure
74077.000 76190.0000 113.0000 CPU Tie, 8.5 scros- onds

Wil TiM 8.5 sioroseconds. Iteration Counts 16304
Teat Uss C000002 Cies Re., Tasking Test Decriptios
CPU Ties, 1054.7 sicrsonds Pronedere cell and return ties ( my be aeo if autoestic inlining )
Wall Tie 1054.7 *icrosecondm. Iteration Coant, 1024 procedure is local

Test Description, no parasetern
Task create and teminate tim seanursent.
vith one task, no entries esn task is in a procedure,
task defined and ned in procedure, no select etateset, no loop Iteration I

75659.0000 75459.0000 0.0000



106
Test it arat ion 1 Teat Iteration 2

756509.0000 750.0000 0.0000 76177.0000 76377.0000 0.0000
I terotion 2 Iteration 475660.00 00 715660.0000 0.0000 76377.0000 76377.0000 0.0000
Teat Iteet ioe 2 Tent Iteration 4

75660.0000 75660.0000 0.0000 7637$.0000 76370.0000 0.0000
Itsrat ion 4 I tertion7506.00tO00 75600.0000 0.0000 7637 1.0000 76170.0000 0.0000
Test It"ation 4 Tent Iteia. &75660 .000 7160.0.00 000 76379.0000176380.0000 1.0000
Iterat ion 0 Iteration 10

75661.0000 75661.0000 0.0076300. 0000 76300.0000 0.0000
Test Iterat ion, 0 Test Iterat ion 167560756 561.000 0.0000 76380.0000 76382.0000 2.0000

Itrto 6 IteratiLos 32

75 661.0000 75661.0000 0.0000 76382.00 00 76303.0000 1.0000
Test Iteration 16 Teat Iterat ion 32

75662.0000 75662.0000 0.0000 76303.0000 763 07.0000 4.0000
I t.ration 32 Iteret ion 64

75662.000 75662.0000 0.0000 76307.000 76307.0000 0.0000
Teat Iter-at ion 32 Test Iterat ion 64

75663.0000 75663.0000 0.0000 77000 76705.0000 0.000
Iteratio 64 Iteramtl,, OOO1203,,00 1075663.0000 15663.0000 0.0000 763500 60.00 000Tent IterMttion 60 Teat Iterat ion 120

175664.000'0 7 566400 000 76396.000 766410. 0000 15.0000
Itetion 020 Iter-ti;;0025
75 665 .0000 75666.0000O 0.:0000 76411.0000 76413.0000 2.0000

Teat Iteration 128 Tent Iteration 25675666.0000 75667.0000 1.0000 76413.0000 76443.0000 30.0000
I teration 25 6 Iteration 512

7 5667.00 00 75669.0000 2.0000 76443.0000 76446.0000 3.0000
Tast Iteration 256 Test It erat ion 512

75669.0000 756710000 2.0000 7644 6.0000 76507.0000 61.0000
1teretion 0502 Iteat ion 1024

7 5671.0000 75675.0000 4.0000 76507.00 00 7 6512.0000 5.0000
Test Iteration 502 Test Iteration 1024

7567 5.000 0 75679.000 600 76513.0000 76634.0000 121.0000
Itaretion 1024
75670.00 1565.00 6.0000 Tent Keen, T0OOO04 Cles an es Tasking

Test Iterat ion 1024 CPU Ti.., 566.4 :icroseconds
75686.0000 75694.0000 0.0000 0611I Ti-, 56. eioroseoondn. Iteration Count, 1024

Itetio 204 Tent Description I
756;4.000075470.7.000 13.0000 Task cnr all end return tias soanored

Tent Iteraion 2 040 0. teks eci, too entries, tasks in a package
75707.0000 75724.0000 17.0000 unia aeleot taete-ot

I tertion 4096
75724.0000 75749.0000 25.0000

Tent Iteration 4096 Tent Ken, A000090
75749.0000 75783.0000 34.0000 Clock rsolution ananoroent runing

Iteret ion $192 Tent Deeripti ion
75 704.00 00 753033.0000 49.0000 Detera,,, cock resolution uning second differmet.

Ten Iteation 010 of vau reond by the fonotion CPUTim _Clock.
75833.000 75902.0000 69.0000

Ite-ation 16304 u bar of I eqi luen in 7000
759002.0000 76001.0000 99.0000 Clock Reoltn 1 1000000000000000 aode.:

Tent Iter-at ion 16384 Clock Renobotion (aerae)- 1.000 000000 000 00 0 ne o.
76001.0000 76138.0 000 137.0000 Clock Resolution (variance) a 0.000000000000000 _-on.

Test Kae, POOOO10 Class Maee, Procedure,
CPU 1-,e 23.2 ai ronod. Tent Keen, 00901la ee Composite

V.1 Tims, 23.2 airro -ode. Iteration Count, 16304 1.2000 in tie in nilClisond-sfor meo Obrystone
Tent Deaript ion I Teat Description,

Procedure call and retun ties eaurenent Reinhold P. Weickerns IORYSTOIO omosoite benobsark
Coper to P000005
10 paranters, io IWreGER

Tent Keen, 6000093 Clos en -osoit.

Iteratio I Average t ie pnr cycle , 2034.67 ailli-.rod.
614000 76 00.0 0.0000l

Tent 0i ' Iteation 1 Average Whetstone rat ing 353 OWIPS
76140.0000 76140.0000 0.0000

Iteration 2
7614 0.0000 76141.0000 0.0000 IterationI

Tent Iteration 2 77930.0000177930.0000 0.0000
76141.0000 76141.0000 0.0000 Tent Iteration 1
Iteration 4 7 79390000 77939.0000 1.0000
76141.0000 76141.0000 0.0000 Iteation 2

Tent Iteration 4 77939.0000 77939.0000 0.00 00
76141. 0000 7614 1.0000 0.0000 Tent Iteration 2
Iteratio 77939.00 77939.0000 0.0000

7 6042.0000 76142.0000 0.0000 Itert ion 4
Tent Ineration 0 77939.0000 77930.0000 0.00

,76142.0000 76143.0000 1.0000 Teat It eratiro 4
Itertion 16 77940."0000 77940.0000 0.0000
76143.0000 76143.0000 0.0000 Iterat ion 0

Tent Iteration 06 77940.0000 77941.0000 0.0000
76143.0000 7144.0000 1.0000 Tent iteration '
Iteret io 32 

77041.000 77042.000 10007 6144.0000 76144.0000 0.0000 Itrto 6
Tent Iteat ion 32 77942.0000 71042.00 0 .00
76145.0000 76146.0000 1.0000 Tent Iteration 16
Iteration 64 77942.0000 770944.0000 2.0000
7614 6.00 00 76 147.0000 0.0000 Iteration 32

Tent Iteration 64 77944.0000 77944.0000 0.0000

176147.0000 76150.0000 3.0000 Tent Iterto 32
Iteration 0 20 7705.00077040.0000 3.0000
76 150 .00 00 76151.0000 0.0000 Iteration 64

Tent Iterat ion 020 77948.0000 77940.0000 0.0000
760151. 0000 76 158. 0000 7.0000 Tent Itertion 64

teration 256 77949. 0000%77 955.*000 6.0000
75.07615 0.0000 1.0000 Iteration 120

TntIteration 256 77956.00 77600 0.00
76160.0000 76173.0000 13.0000 Tent Iteration 120

Iteration 512 77057.0000 77970.0000 13.0000
76173.0000 76175.0000 2.0000 Iteration 25 6

Tent tti r 512 77.7 0.0000 7972.0000 2.0000
76176.0000 76202.0000 26.0000 Tent Iteration 256

Iteration 024 177972.0000 77999.0000 27.000076202.0000 762.7.0000 5.0000 Itration 50
Tent Iterat ion 1024 77090.00.00 7000'200 .00
7.207.'0000 76259.'0000 52.0000 Tent Iteration 50

Iteration 2048 
.71002.0000 78056.0000 54.0000

T76259000076270.0000 11.1110 Iteration 1024

Tet Iteorato 2040 70056.0000 78062.0000 6.0000
76270.0000 76374.0000 104.0000 Tent Iteration 0 024

79062.0000 78170.0 000 108.0000
Tent Toen TOOOOO1 Clean o-m, Tasking
CZ~ Tine. 454 .0.i ..nod Ten Keen C000001 Class We, Tasking
nail Ties, 454.01 *irroeed.. Iteration Coont, 2040 CPUt T=e, 096.0 J airoeoodn
Test seeription, Well Ties, 996.1 nioronodn Iteration Cont, 1024
Hini:na reedenvoon, entry raledrtrIi etDerpin
I teak Itentry , tank meln procednre Tek.r. teen tnt maorneont
on I-n with on task, no etriea. when tank is in aproredore

usng a tank type in a package, no .I et attesint. no loop,

Iteration 174376.0000 76376.0000 0.0000 Iteration I
Test Itertion 01 78173.0000 78173.0000 0.0000

767.00 76376.0000 0.0000 Tent Iteaton I
Iraion 02 70.00070173.0000 0.0000

76377.0000 76377.0000 0.0000 Iterat Ion I



107
78173.0000 78173.0000 0.0000 79587.0000 79588.0000 1.0000

Test Iiration 2 Test Iteration 64
70173.0000 78174.0000 1.0000 79508.0000 795S0.0000 0.0000

Iterat ion 4 Ite ation 120
79174.0000 70174.0000 0.0000 79589.0000 79589.0000 0.0000

Test Iteration 4 Test Itrat ion 120
70174.0000 70175.0000 1.0000 79509.0000 7950.0000 1.0000

Iteration 1 Iteration 256
76175.0000 780175.0000 0.0000 79591.0000 79592.0000 0.0000

Test Iteration 8 Test Iteration 256
79175.0000 70176.0000 1.0000 79592.0000 79594.0000 2.0000

Iteration 16 Iteration 512
70176.0000 70176.0000 0.0000 79594.0000 79597.0000 3.0000

Test Iteration 16 Tent Iteration 512
78176.0000 78178.0000 2.0000 75997.0010 79600.0000 3.0000

Iteration 32 Iteration 1024
78179.0000 78179.0000 0.0000 79001.0000 79600.9000 5.0000

Tent Iteration 32 Tnt It tion 020
6170.09000 70102.0000 3.0000 79607.0000 79613.0000 6.0000

Iteration 64 Iteration 2049
7.103.0000 70813.0000 0.0000 79613.0000 79625.0000 12.0000

Test Iteration 64 Test Iteration 2049
780183.0000 78190.0000 7.0000 79625.0000 79639.0000 03.0000

Iteration 120 Iteration 4096
78191.0000 70091.0000 0.0000 79139.0000 79661.0000 23.0000

Test Iteration 129 Tet Iteration 4096
78191.0000 78206.0000 15.0000 79062.0000 7969.0000 26.0000

Iteration 256 Iteration 8192
78206.0000 78207.0000 1.0000 79649.0000 79734.0000 46.0000

Test Iteration 256 Tent Iteration 9192
78207.0000 76236.0000 29.0000 79735.0000 79787.0000 52.0000

Iteration 512 Iteration 16304
78236.0000 78239.0000 3.0000 79787.0000 79979.0000 92.0000

Test Iteretion 512 Test Iteration 16384
70239.0000 70296.0000 57.0000 7990.0000 79964.0000 IC4.0000

Iteration 0024
702960.0000 3 .0 6.0000 Tent Kem P00000 Class Mame, Procedure

Test Iteretion 1024 CPU Time. 7.3 nicroneoonds
7S302.0000 78415.0000 113.0000 Wall Tine1 7.3 nicroseconds. Iteration Count, 16384

Test fenoript ion
Test Me C000002 Cle. onen, Tasking Proondore call and return time ( my be zero if automatic inl.nioq
CPU Tien 1044.9 microeond. prooedure in local
Wall Tim, 1044.9 ncroconds. Iteration Count, 1024 no paraeters
Tent Oescription,

Task ete. nd terminate ti e nsreaent.
with one task, no entries when task i in a proedor, Iteration I

task defined and used in procdur no elet statement, no loop 79986.0000 79986.0000 0.0000
Test Iteration I
79906.0000 79986.0000 0.0000

Iteration 0 Iteration 2
7:783.0000 78783.0000 0.0000 79980.0000 7996. .0000

Test Iteration I Test Iteration 2
78713.0000 78783.0000 0.0000 7997.0000 7997.0000 0.0000

Iteration 2 Iteretion 4
7894.0000 78794.0000 0.0000 79987.0000 79987.0000 0.0000

Test Iteration 2 Test Iteration 4
70784.0000 78794.0000 0.0000 79987.0000 79987.0000 0.0000

Iteration 4 Itertion .
78704.0000 78784.0000 0.0000 79997.0000 79968.0000 1.0000

Tent Iteration 4 Test Iteration 8
78704.0000 78785.0000 1.0000 79999.0800 79900.0000 0.0000

Iteration 0 Iteration 16
7785.0000 76795.0000 0.0000 79989.0000 7998.0000 0.0000
Tet Itertion 8 Tent Iteration 16
.795.0000 707.5.0000 0.0000 79909.0000 79980.0000 0.0000

Iteration 10 Iteration 32
79786.0000 70706.0000 0.0000 79989.0000 79909.0000 0.0000
Tent Iteration 16 Test Iteration 32
7.7.0.0000 79707.0000 1.0000 79990.0000 0.0000
Iteration 32 Iteration 44
79797.0000 70707.0000 0.0000 79990.0000 79991.0000 0.0000

Test Iteration 32 Test Iteration 64
7877.0000 78709.0000 2.0000 79991.0000 79991.0000 0.0000

Iteration 64 Iteration 128
70799.0000 78790.0000 1.0000 79992.0000 79993.0000 1.0000

Test Iteration 04 Test Iteration 128
71790.0000 79793.0000 3.0000 79993.8000 79994.0000 1.0000

Iteration 129 Iterntion 250
78794.0000 79795.0000 1.0000 79994.0000 79996.0000 2.0000

Test Iteration 120 Test Iteration 256
78795.0000 798001.0000 0.0000 79996.0000 79999.0000 3.0000

Iteration 250 Iteration 512
7902.0000 71903.0000 1.0000 79999.000 90802.0000 3.0000

Test Iteration 256 Test Iteration 512
70083.0000 7886.0000 13.0000 80002.0000 90007.0000 5.0000

Iteration 512 Iteration 1024
78816.0000 76919.0000 3.0000 s0007.0000 80013.0000 6.0000

Test Iteration 512 Test Iteration 1024
78919.0000 78845.0000 26.0000 90014.0000 10022.0000 8.0000

Iteration 1024 Iteration 2048
78845.0000 70051.0000 6.0000 00023.0000 80036.0000 13.0000

Test Iteration 1024 Test Iteration 2048
70051.0000 76903.0000 52.0000 80036.0000 80053.0000 17.0000

Iteration 2048 Iteration 4096
70903.0000 7914.0000 0000000 80054.0000 80000.0000 26.0000

Test Iteration 2040 Test Iteration 4096
78915.0000 79018.0000 103.0000 90000.0000 60115.0000 35.0000

Iteration .192
Test Kme, 9000004 Class KWe, Chapter 13 .015.0000 60168.0000 53.0000
CPU Ti e 449.2 microseonds Test Iteration 0092
Wall Tie, 449.2 nirosenond.. Iteration Count, 2046 9016.0000 90230.0000 70.0000
Tet oript ion | Iteration 16304

Ties to perform standard boolean operatione on errey of boolensn. 00230.0000 80343.0000 105.0000
For this test the arry are Nor PACWBD tith the pree DOCK Tet Iteration 10394
For this test the operations ar performed on componente in a loop. 90343.0000 80482.0000 139.0000

Tent R.-n P000010 Class Nme, Procedure
Iteretion 0 CPU Ties, 20.9 :icroneond
79994.0000 79584.0000 0.0000 Wall Tien. 20.0 nicrone onds. Iteration Count, 16384
Test lieret Ion I Test Description,
79584.0000 79594.0000 0.0000 Procedure all and return time masur t
Iteration 2 Compare to P000005

79504.0000 79594.0000 0.0 10 paraeters, in 1910000
Test It erat ion 2
79584.0000 79564.0000 0.0000

Iteration 4 Iteration I
79505.0000 79565.0000 0.0000 80485.0800 00405.0000 0.0000

Test Iteration 4 Test Iteration
1950 5.080 79585.0000 0.0000 00485.000 00495.0000 0.0000

Iteration 8 Itsetion 2
79585.0000 79565.0000 0.0000 60485.0000 00405.0000 0.0000

Test Iteration 9 Test Iteration 2
7956.0000 7958.0000 0.0000 60410.0000 6046.0000 0.0000

Iteration 16 Iteration 4
79506.0000 79580.0000 0.0080 80400.;0000 80490.0000 0.0000

Test Iteration 16 Tent Iteration 4
,951&.0000 79506.0000 0.0000 80400.0000 80406.0000 0.0000

IteratIon 32 Iteration 8
79507.0000 79587.0000 0.0000 80416.0000 60487.0000 1.0000

Test Iteration 32 Test Itetion 9
1957.000 79587.0000 0.0000 90417.0000 90487.0000 0.0000

Iteration 04 Itert ion 10



108
80487.0000 80400.0000 1.0000 Iterat ion 64

Toot Iterat in 16 37491.00 00 37492.0000 1.0000
so41I.a00 1040900 100 Iterat n 1 0

Itrto 237491000 317100.0000 1.0000
so0409.0000 @0409.0000 0.10Ieain 216
Teot Itets ion 32 37514.00 00 3 7515.0000 1.0000
so040 9.0000 $04 q1.0000 2.0000 Iteration 512

Iteration 64 37543.0000 37546.0000 3.0000
.0491.0000 80491.0000 0.0000 Iteratio 1024

Toot Iteration 64 37600.0000 37606.0000 6.0000
40492.0000 00495.0000 3.0000

Iteration 128a Toot Ina., CoooooO Class. Mae., Tanki.9
8049 5 .00 00 @00496.0000 1.0000 CPU Ti.., 1005.0 nooeod

Teat Iterations 020 01AI1 Ti., 100oo5.9 *ioro-eondn. Iteration Counts 1024
Io0496.0000 80502.0000 4.0000 Teat Deo:iptions
Iteration 356 Task create end teraleate onswore-nt
86502.0000 80504.0000 2.0000 with one tank, no entries, when tank in in a protedore

Tont Iteration 254 casinq a taok type in a Package, no nelect ntateent, no 1oo0,
so0So4.00 00 51.0000 13.:00
Iteration 5131
10511.0000 00520.0000 3.000 Itertion 1

Tent Iteration 5 12 37718.0000 3718.000 0 0.0000
80 520.0 0545.0000 25.0000 IterationItn,-Ion 024 371t. 0003781.0000 000

056 000 055100 5.000 Iteaion
Teat Iteraioe 410 37719. 00037719.0000 0.0000:
01.000 60000 00* 1.00 Iteration 0It rtion 4204 01 37119.0000 37719.0000 0.0000
$002.0000 0413.0000 11.0000 Iteattio 14

Tent Iterati o 04 31720. 00 00 37720.0000 0.0000
0064.0000 10..OM 101.0000 Iteration 32

377232.00 00 37723.000 000
Tent Tn.. TOOOOO1 Cle..n Mee, Tankiog Iteration 644CPU Tino. 439.5 :1 ronrondn 31126.0000 377121.000 1.00
Wall Ti-. 439.5 niorwrodo. Iteration Count, 2040 Iteration 120
Teat Denription, 31134. 0000 37735.0000 1.0000

M in i... -ed--,oon entry -ai and return t ian Iteration 256
I tank I entr IL tank m d. ptdor. 1149.0000 31150.0000 2.0000

n elect Irtrtin.,512
37719.0000 37782.0000 3.0000
I teration 1034

Itarati on 1 37039. 0000 3 7845.0000 6.0000
00718.0000 80710.0000 0.0000

Tent It-rat ie I Tent Ween. C000002 Clans Mae, Tanking
So07 11.00s00 9071I00 0.0000 CPU Ties, 1054.1 :iron=odn.

Iteration 2 Wll Tin. 1054.1 .icroneodn Itoetion Coont, 1024
9001100000 80718.0000 0.0000 Tent Deori ptiont

Tent Iteat~on 2Tank create and teoaiate tine neanoroenot.
no~.~.t .*7flyt~ ~7 ~with non took, no ontroe when teask in.c procedure,

Int. . 4 tank defined end need in procedure, n net ntete.nt. no loop
007119. 00 00 007119.0000 0.0000

Tent Iteat ion 4
80711.0000 $0720.l0000 100

Items.1 0000 0 0720.0000 0.0000R31327.100138327.0000 0.0000
Teat Iteratle iss Iteration0 2
s12 0.000 2100 0 .0000 3032S.00 00 30320.0000 0.0000
.t.rat Ion 3 Iteration 4
00722.0000 00722.0000 0.0000: 38328.0000 30320.0000 0.0000

Toot Iteration 36 I teratio 0.0711 .0 1073.00.0000 38328.0000 30329.0000 1.0000
Itertio 32Iteration 06

80724.0000 107 24.0000 0.00 38329.000 30329.0000 0.0000
Tet IteratiLons 32 Iteration 32

80124.000 00o720.000 4.00 38330.10000 38330.0000 0.0000
Iteration 64 Iterations 64
t072.000 079.00 10000 38332.000 36333.0000 1.0000
1. Iterationl 66 Iteration 120
so0I2'p.0000 60136.0.;0 3.00 3336. 00 00 30:337.0000 1.0000
tron 2 Iteration 2535.00 20080731.0000 8071.0000 0.0000 38343.0000 334000 200

Tt Iteratio 320 Itation 512
9.)7 38.0000 *0752.*0000 14.0000 3.358.00 0. 30361.0000 3.0000

Iteration 256 Iteration 102 400753.0800 0154.0000 1.00 5307.0000 38392.0000 5.00
Tent lIterat ion 25:60 ittio 10204:000

1074.00 014.00 30.0000 30444.000034500 100
Itaeaton 53

00704".0000 90787.8000 3.0000 Tet Rae 8000004 Clans Nm, Chapter 13
Tent Iteration 5 12 CPU Ti.. 449.2 ireeod

00781.0000 80047.0000 60.0000 Wall Ti... 449.2 nioroneondis. Iteration Counts 2040
Iteration 30245.00 Tent D.nnript ion

$s0041.00 00 105000 6.0000 Ti.., to perfor at-edrd =1=. operation. on arrmyn of hoolna.
Tent I t 1io 1024 For thin tent the arrmyn.r 0 PACKSD with the Prage, 'PIC..
go 53.0000 80912.0000 119.0000 yer thin tent the opearastion. asre perfor= on coo0ntn In op

T-7t N., "00004 CLeno Wae., Tanhieg
CPU Tilos.. I I5. ioironeoonds, Iteration I
Mall Ti., 551.0 inlorossecond.. Iterat ion Count, 1024 39110.0000o 3911.0000 0.70000
Tent Onoript ion, I teration 2
Tanh entry tail end return tin e aanred 39119.00 00 39119.0000 0.0000
One tooh* eotiwn, two entries, tash. in a pachage Iteration 4
utinq neleot ntateasnt 39139.:0000 39119.0000 0.0000

Iteation 039119.0000 39119.0000 0.0000
Tent Ia.., A000090 I teratio 16

Cloch renoltionanornn running 39119.0000 39120.0000 3.0000
Teat Doescriptio. ,Iteration 32
nte- ine cock renolution using nenod differnces 39120.0000o 39120.0000 0.0000
00 w.10on: -tnrned by the function CPUTI.._Clock. Iteration 64

139,120i.0000 39121.0000 1.0000
ftnber of nP. 1 - tnne In 00 0 Iteratio 120
Clockh 1 lnotion 1 .000000000000000 ne-od.. 39121.0000 39122.0000 1.0000
ClothRs loinke0 a 3.000000000000000 n o. Iteration 256

Cl1t enntion (weine 0 .000000000n: nd.313000 39125.0000 200
Iterat~o i0 512

39120.0000 39329.000 3.0000
Toot Iems 6000093 Cla en Coolt Iteration 1024

.2000 In t 1n ina deod for one Dhryatone 39133.0000 39138.0000 5.0000
Tent Deer ipt ion, itt-ion 2.04

einhold P. enok rn 0YSTOM couoaIt. Denthek 39145.000 3915.0000 11.0000
Iteraton 4094

39 169 .0000 3 9192.0000 23.0000
Tt We.., A000092 Clan. Mnssin coocninn Iteratio I- 19 2

39217.0000 39262.0000 45.0000
Arnqe tie. per cycle , 2845.33 *illie-d. Iteration 145044393313.0000 39403.0000 90.0000
Awrge Whotone- rating, 351 lNIlS

Tent -a.' "00003 Clean Mae.n, Procedure
CPU Tiae. 7.9 itcronooad

Iteration I Wall Ti.. 7.9 n.-noond.. Iteration Connt, 16364
37402.0000 37482.0000 0.00Tent Oseerription.
Itesrntion Prmndr lad return tI. ( may he nero if notonatit inlieing

37 4:3.0000237403.0000 0.00pronedore ca Ind

Iteration 4 nopara.. ter.

131403.00'00 37403.0000 0.0000

137404.0000 37404.0000 0.0000 Iterat=000on 0.0 0.00
IteratIon 16 35800 90.00 00037405.0000 37405.0000 0.00Iterastion 2
iteration 32 3;509.00 00 39509.0000 0.0000
37407.000 37418.0000 1.000 Iteration 4



109
39500.0000 39509.0000 0.0000 Iteration 0
Iteration * 77019. 0000 77019.0000 0.0000
30500.0000 30500.0000 0.0000 Iteration 16
Iteration 16 77820. 0000 77020.0000 0.0000
39010.0000 39510.0000 0.0000 Iteration 32

Iterat o 32 77022.0000 17022.0000 0.0000
39500.0000 350.0000 Iteration 64
Iteration 04 7702 .0000 77826.0000 0.0000
3051t.0000 3051,0000 0.0000 Iteratio 120

1tat io, 120 77033.0000 77033.0000 0.0000
39512.0000 30513.0000 1.0000 Iteration 256

Itaration 256 77047.0000 77040.0000 1.0000
39514.0000 30515.0000 1.0000 Iteat in 512
Iteration 512 77075.0000 77070.0000 3.0000
30510.0000 30521.0000 3.0000 Iteration 1024
Iteration 1024 7932.0000 77937.0000 5.0000
30525.0000 39532.0000 7.0000

Itaration 2040 Test Mae. C000001 Class Name, Tasking
39540.0000 39553.0000 13.0000 CPU Ti.., 996.1 i.-rosoond.

Iteration 4006 Wail Ti... 006.1 aioroeonds. Iteration Count 1024
39560.0000 30594.0000 25.0000 Teat Des-ription,

It.rstion 8192 Task crnate and terminate measurement
30627.0000 3970.0000 51.0000 t ona taak, no etrias, when task i. in a procedure

IteratIon 16304 sing a task type in a package, no select statement, no loop,
30742.0000 39044.0000 102.0000

Test Naes P000010 Clans Naes Procedure Iteration 1
CPU Tim, 15.0 icroseconds 78046.0000 70046.0000 0.0000
Wall Tim 16.5 sicronnoond.. Iteration Cont, 16384 Itration 2
Test Description, 70047.0000 70047.0000 0.0000
Procedure call and return tim measurement Iteration 4
Compare to P000005 78047.0000 78047. 1000 0.0000
10 para eters. in IWI0G80 Iteation 0

7;040.0000 70040.0000 0.0000
Iteration 10

Iteration 1 78049.0000 74000.0000 0.0000
39976.0000 39976.0000 0.0000 I teration 32

Iteration 2 76051.0000 78051.0000 0.0000
39076.0000 39976.0000 0.0000 Iteration 64

Ttrertion 4 70055. 0000 70056.0000 1.0000
3976.0000 39976.0000 0.0000 Iteration 120
Itration 0 78063.0000 70064.0000 1.0000
39977.0000 39977.0000 0.0000 Iteration 256
Iteration 16 7007'.0000 7800.0000 2.0000
39978.0000 39978.0000 0.0000 Iteration 512Iteration 32 70100.0000 70111.0000 3.0000

30079.0000 39970.0000 0.0000 . ntation 024
Iteration 64 8167.0000 78172.0000 5.0000
3901.0000 39991.0000 0.0000

Iteration 128 Tet la&t C000002 Class m.e, Tasking
30985.0000 3995.0000 0.0000 CPU Tine, 1054.7 :icroseconds

Itaration 256 Wall Ti.., 1054.7 licroseconds. Iteration Count, 1024
39002.0000 30993.0000 1.0000 Tet Description.

Itaration 512 Task create and teninate time easurnment.
40007.0000 40009.0000 2.0000 with one tank, no entries when task is in a procedure,

Iteration 1024 task defind and used in procedure, no select statement, no loop
40035.0000 40041.0000 6.0000
Iteration 2040
40003.0000 40104.0000 11.0000 Iteration 1

70651.0000 70651.0000 0.0000
Teat ame, T000001 Class Mae, Tasking Iteration 2
CPU Time. 454.1 4seoso d. 78651.0000 70651.0000 0.0000
Wall Time. 454.1 ioroeoond.. Iteration Count, 2040 Iteration 4
Tst Dencription, 78652.0000 78652.0000 0.0000

Minia- rendervoos, try all and return tiee Iteration 8
I task I entry , task inside procedure 78653.0000 70653.0000 0.0000
no select Iteration 16

70653.0000 78654.0000 1.0000
Iteration 32

Iteration 1 70055.0000 70655.0000 0.0000
40210.0000 40210.0000 0.0000 Iteration 64

Iteration 2 70657.0000 70657.0000 0. 0000
40210.0000 40210.0000 0.0000 Iteration 120
Iteration 4 78660.0000 78661.0000 1.0000
40211.0000 40211.0000 0.0000 Iteration 256
Iteration 0 7866.0000 70660.0000 1.0000
40212.0000 40212.0000 0.0000 Iteration 512
Iteration 16 70603.0000 7@605.0000 2.0000
40213.0000 40213.0000 0.0000 Iteration 1024
Iteration 32 78712.0000 70710.0000 6.0000
40215.0000 40215.0000 0.0000 Iteration 2048
Iterat io 64 70770.0000 78701.0000 11.0000
40219.0000 40220.0000 1.0000

Iteration 120 Test Sane, 0000004 Clan. Name Chapter 13
4022t.0000 40220.0000 0.0000 CPU Time. 440.2 ic-roseonds

Iteration 256 Wall Ties 440.2 lironnonde. Iteration Cont. 2048
40244.0000 40245.0000 1.0000 Test Description.

Iteration 512 Ti. to parfora standerd boolean operation. on array. of boolman.
40276.0000 40279.0000 3.0000 For thin tet the arrays am O0T PACKED with the pag. -PACK.-

Iteration 1024 For this test the operations am performed on components in a loop.
40340.0000 40346.0000 6.0000

Tet "e, T000004 Class Same, Tasking Iteration I
CPU Tim. 571.3 sioroseonds 70400.0000 79400.0000 0.0000
Wall Time 571.3 sicroseconda. Iteration Count, 1024 Iteration 2
Teat Dsription, 70400.0000 79400.0000 0.0000

Tank entry tall and return time easured Iteration 4
sne tasks nctivn, to entries, task. in a package 70400.0000 79401.0000 0.0000

main0 select statement Iteration 0
79401.0000 79401.0000 0.0000

Iteration 16
Tat Vln, A000090 79401.0000 79401.0000 0.0000

Clonk reolotion mssureent running IteratIon 32
Teat Oesriptions 79402.0000 79402.0000 0.0000

Deterein clock rsolution using -eond differences Iteration 4
of rlue eturned by the fonction CPU_Tim._Clock. 70402.0000 70402.0000 0.0000

Iteration 120
Nmber of ample nluens is 7000 70403.0000 70404.0000 I.0000

Clok Resolution - 1.000000000000000 -eronds. Iteration 256
Cl ok Resol tion (aewr ee) 1.000000000000000 seonda. 70405.0000 79406.0000 1.0000
Clok Reoltion arane) a 0.000000000000000 seond.. Iteration 512

70400.0000 7940-1000 2.0000
Iteration 0024

Test Man. A000091 CaI... Man, Composite 79414.0000 79419.0000 5.0000
1.2000 is ti, in aillisend for one Dhrystone Iteration 2040

Ta:t Description. 79425.0000 79436.0000 11.0000
Reinhold P. Micker'a DORYS7T,0 omposite benchmark Iteration 4006

79440.0000 79469.00 21.0000:
Iteration 5102

Tet MSan. A000092 Clean Meams Composite 79494.0000 79536.0000 42.0000
Iteration 16384

Average time per cycle , 2004.00 sillieo ond 79505.0000 79670.0000 85.0000
..... INCOMPLTI MASLOUDl T .....

A-nnge Whetstone rating * 357 NWIPS
Tat M-: P000001 Class Seme, Procedure
CPU Time, 7.9 si ro-onds

Iteration I Wall Time, 7.9 sicrosenonds. Iteration Count, 16304
77017.0000 77017.0000 0.0000 Teat Denription

Iteraton 2 Pronere all and return tine I mey be eo it autonatic Inling )
77010.0000 77010.0000 0.0000 proera in 00041

Iteration 4 no parameters
7700.8000 77011.0000 0.0000



110
Iteratin 0

Itrat ion 1 82935.0000 02935.0000 0.0000
79770.0000 179770.0000 0.0000 Iteration 2
Iteration 2 82936.0000 $2936.0000 0.0000
79770.0000 79770.0000 0.0000 Iteratio 4
Iteration 4 82936.0000 82936.0000 0.0000
29770.0000 79771.0000 1.0000 Iteration 8
Iteration 0 *2937.0000 $2937.0000 0.0000
79771.0000 79771.0000 0.0000 Iteration 16
Iteration 16 82930.0000 02939.0000 0.0000
79771.0000 79771.0000 0.0000 Iteration 32
Iterat on 32 82940.0000 02940.0000 0.000
7972.0000 79772.0000 0.0000 Iteration 64
Iteration 64 32944.0000 02944.0000 0.0000
79773.0000 79773.0000 0.0000 Iteration 020
Iteration 128 82951.0000 02952.0000 1.0000
79774.0000 79775.0000 1.0000 Iteration 250
Iteration 256 02965.0000 82967.0000 2.0000
79776.0000 79778.0000 2.0000 Iteration 512

Iteration 512 02994.0000 82996.0000 2.0000
79730.0000 79783.0000 3.0000 Iteration 1024
Iteration 1024 83051.0000 03056.0000 5.0000
7978.0000 79794.0000 6.0000

Iteration 2049 Tet an, COOOOI1 Class Ken. Tasking
79803.0000 79000.0000 03.0000 CPU Time, 996.1 *icroneronda

Iteration 4096 Wall Tim. 996.1 *cironeoond. Iteration Count, 1024
79833.0000 79060.0000 27.0000 Tet Oeoripion,

Iteration 0992 Tak ornate and terminate n.arnont
79394.0000 79947.0000 53.0000 oith one task no ontnian, ohen tack in in a procedure

Iteration 16384 using a task type in a package, no select stateent, no loop,
00014.0000 00120.0000 106.0000

Tnt Iso. P000010 Cans Wanm, Proondure Iteration 1
CPU Tie1 17.7 micronconds 83167.0000 93167.0000 0.0000
Wall Ti n 17.7 microseconds. Iteration Count, 16384 Iteration 2
Test Deanription. 83007.0000 3167.0000 0.0000
Procedure call and return tin masurnment Iteration 4
Coopae to P000005 93168.0000 8316.0000 0.0000
10 par ters, in IWMIOR Iteration 0

83168.0000 83168.0000 0.0000
Iteration 10

Iteration 1 03109.0000 93170.0000 1.000
90257.0000 90257.0000 0.0000 Iteration 32

Iteration 2 83172.0000 83072.0000 0.0000
t0250.0000 90250.0000 Iteration 4

Iteration 0 83176.0000 8376.0000 0.0000
30258.0000 80259.0000 0.0000 Iteration 120
Iteration 3 83104.0000 0305.0000 1.0000
90250.0000 90250.0000 0.0000 Iteration 256
Iteration 4 83199.O000 83200.0000 1.0000
80259.0000 80259.0000 0.0000O Iteration 512
Iteration 32 83229.0000 83232.0000 3.0000
30260.0000 80260.0000 0.0000 Iteration 1024
Iteration 64 8329.0000 33294.0000 5.0000
90262.0000 90262.0000 0.0000

Iteration 129 Test Ket C000002 Class neme, Tasking
s026'.0000 90267.0000 1.0000 CPU Ti=n, 1064.5 ci.roenood.
Iteration 256 Well Tim 1064.5 icronerond.. Iteration Count, 1024
90273.0000 80275.0000 2.0000 Tet Desnriptions

iteration 512 Tank reate and terminat, ti aeeasreenat.
90289.0000 80290.0000 2.0000 with one tank, no entries ohn teak i. in a procedure,

Iteration 1024 task defined and used in proodos, no select statement, no loop
80317.0000 90322.0000 5.0000
Iteration 2040
80374.0000 80335.0000 11.0000 Iteration 1

03774.0000 83774.0000 0.0000
Test MNan T000001 Class Nasn Tasking Iteration 2
CPU Timt 449.2 mic ond 93774.0000 3774.0000 0.0000
W(all Tin, 499. roe2 ireonds. Iteration Count, 2049 Iteration 4
Tet nenoriptie. 03775.0000 93775.0000 0.0000
minim. randeovous, entry call and return tin Iteration 8
I task I entry , task inside procedure 93775.0000 33775.0000 0.0000
no select Iteration 96

83770.0000 33770.0000 0.0000
Iteration 32

Iteration 1 83777.0000 83770.0000 1.00
30491.0000 80491.0000 0.0000 Iteration 04

Iteration 2 83779.0000 83700.0000 0.0000
90491.0000 90490.0000 0.0000 Iteration 123

Iteration 4 83793.00 00 13.00 .0000
90490.0000 90491.0000 0.0000 Iteration 256

Iteratin 9 83791.0000 83792.0000 l.OOtO
80492.0000 80492.0000 0.0000 Iteration 512

Iteration 16 93805.0000 a 308.0000 2.0000
80494.0000 00494.0000 0.0000 Iteration 1024
Itert ion 312 3834 .00O 3840.0000 6.0000
80496.0000 00494.0000 0.0000 Iteration 2040
Iterat ion 64 93392.0000 02904.0000 12.0000
$0500.0000 30501.0000 1.0000

Iteration 120 Test Mans. 8000004 Clan. Nae, Chapter 13
90500.0009 30509.0000 0.0000 Cpu Tin, 449.2 minroneconds

Iteration 254 all Tim, 449.2 *icroseond.. Iteration Count. 2048
80524.0000 80525.0000 1. 000 Test nanription.

Iteration 512 Tin to perfora standard b=lean operations on arrays of boolnans.
90555.0000 30558.0900 3.0000 For ths test the array. a WI PAC"ED with the prage PACt.

Iteration 1024 For this test the operationa are perforeed on oonent. in a loop.
10018.0000 80623.0000 5.0000

Tent . T000004 Class N m, Tasking Iteration 0
CPU Tin, 561.5 airron1ond0 14523.0000 84523.0000 0.0000
Wall Tien 561.5 aicroercoeds. Iteration Count, 1024 Iteration 2
Tnt Daoription, 04523.0000 84523.0000 0.0000

Tank aetry ail and rturn tin amasred Iteration 4
One tenkn artive, too ontries, tanks in a peokoge 84523.0000 34523.0000 0.00

nlng elt atateent Iteration U
80452 504.0000 0.0000

Iteration 04
Tent Nanss 0000090 04524.0000 84524.0000 0.0000
clok reeoltion aeaur-ant running Iteration 32Tet De rtion. 84524.0000 94524.0000 0.0000
otereine clock resolution u.Ing scond diffarenoes Iteration 64
of I alo mrtmerned by the function CPU_TinClook. 94525.0000 84525.0000 0.OOOO

Iteration 120
Meter of n:ple -Iaes i. 7000 34529.0000 34526.0000 0.0000

Clock ealution a 1.000000000000000 sanonds. Iteration 256
Cbook Resoletion (average) 1.0000000 0000 ond:. 34527.0000 04529.0000 2.0000
Clok Renolotion (varine) C 0.000000000000 neroads. Iteration 512

94531.0000 94533.0000 2.0000
Iteration 1024

Toot ant A000091 Ciana Sen Cooposite 34539.0000 84592.0000 6.0000
1.1000 is tin in nillieonde for one .hryntone Iteration 2043

Teat 0escriptio, 34548.0000 04559.0000 01.0000
Reinoid P. liker'n DnRYSTOUK o.posite besechark Iteration 4096

34571.0000 34592.0000 21.0000
Iteration 8192

Test No, A000092 Class man, composite 0417.0000 84659.0000 42.0000
Iteration 06334

A-raqe tie par Vole , 2924.67 ailli ds $47!9.090 34793.0000 85.0000
....* ITWCPLffT MASUREM1T .....

a9e, (hattese rat ing , 354 iWTPS
Test NanM P90000 Clen Mean, Predorn
CPU Tine, 7.9 ' icroseoonds



111
Cll Ti.,m 7.9 sicroneconds. Iteration Count, 16304
Tent Onosription. AOtcle9 tine par cycle -342351.67 .illeeoede

Proeduro call and return tien ( mYy b zero if auto-tic inlninq )
proc-dure i local Ara. Whetstone ratin

9 
g 231 ICIPS

no ereenert

Itert iot

Iteratin I 140000 142.0000 0.0000
4893. 0000 803.0000 0.0000 Iteration 2

Itecation 2 142.0000 142.0000 0.0000
4093.0000 04803.0000 0.0000 Itsr-t on 4

Iteration 4 143.0000 143.0000 0.0000
0483.00 00 483. 0.0000 Itention 0
Iteration 0 144.0000 144.0000 0.0000
04893.0000 81894.0000 1.0000 Iteration 10
Iteration 16 145.0000 145.0000 0.0000
04894.0000 84804.0000 0.0000 It.ration 2
Iterat ion 32 143.0000 147.0000 0,0000

840940000 04094.0000 0.0000 Iteration 04
Iteration 64 150. 0000 151.0000 1.0000
04095. 0000 04096.0000 1.0000 It.rat i" 020

Iteration 123 151. 5.0000 0.0000
4097. 0000 04007.0000 0*0000 teratIon 256

Iteration 25 0 172.0000 173.0000 1.0000
04090.0000 04900.0000 1.0000 Iteration 512
Iteration 52 201.0000 303.0000 1.0000

3403.0000 04900.0000 3.0000 Iteration 0024
Iteretion 1024 257.0000 263.0000 6.0000
$4911.0000 84917.0000 6.0000

Iteration 2040 Test la, C0001 Clean Mase, Tasking

04920.0000 &4039.0000 11.0000 CPU Ti=es 000.1 6 irroaeconds
Iteation 4090 0411 Ti.., 00.1 icroseconds. Iteration Count, 0024

10450.0000 0403.0000 27.0000 Test Da= ript
Iteratin 0192 Task create end terminate awauronent
15016.0000 05069.0000 53.0000 with one tak, no entrieswhen task is in a procedure
Iteration 16304 using a tak type in a peokage. no selet .tatnt, no loop,

05137.0000 15243.0000 100.0000

T" t Me, P000010 Clas Nm, Procedure Iteration I
CPU Tie, 1.7 nicrosecond 373.0000 373.0000 0.0000
Cell Ti.., 1 *. *icroaecond.. Iteratio Count. 16304 Itrtion 2
Taint Dencciptl. 37 30000 373.0000 0,0000

Pruedure call and return tis m -esurosnt Iteration 4
Co e Ire tO P000005 374.0000 374.0000 0.0000
10 perameters, in IOOGlO Iteretion 0

374.0000 374.0000 0.0000
ItIIrat 00 16

Iteration 1 376.0000 376.0000 0.0000

1580.0000 l05O0.0000 00000 Iteration 32
Iteration 2 231.0000 370.0000 0.0000

85300.00 00 853#0.00 0.00 t3r7t0io0 04

Iteration 4 
301.0000 302.0000 1.0000

0531. 0000 05301.0000 0.0000 Iteration 020
Iteration 0 300.0000 2 00.0000

05331.0000 05301.0000 0.0000 Iteration 256
ItertIon 0 14 404.0000 405.0000 1.0000

8512.0000 05302.0000 0+0000 Iteration 5012

Istation 32 434.0000 43170000 3.0000

35303.0000 35363.0000 0.0000 Itarntion 0024
Iteration 64 493.0000 490.0000 6.0000

05385.0000 9515.0000 0.0000
Iteration 128 Tent "'l C000002 Clas le, Tasking
05330.0000 05309.0000 0.0000 CPU TTa 0035.2 ' itroecond

Iteration 256 Call Ti.., 1035.2 aicronecoude, Iteretion Count, I024

05300.0000 85397.0000 1.0000 Tent Omaription.
Iteration 512 Task create and terinete ti. .surennt.

I5401.0000 05413.0000 2.0000 mith a tank, no entrien hn task is in a procedure,
Iteration 1024 task defined and uled in proondurn, no select atatennt. no loop
0540.0000 05445.0000 

5.0000

Itertio 2040
05409.0000 85508.0000 11.0000 Iteration I

910. 0000 970.0000 0.0000
Tet Same, T00000I Cles e-, Tankinq Iteration 2
CPU Tine, 454. I irroancondn 970.00020 97.0000 0.0000
Call Ti., 454.1 nirronoond.. Iteration Cont, 2041 Iteration 4
Tent Descrit ion, 979.0000 979.0000 0.0000

Ini.. rendn~oon, entry cell and return tie Iteration 1
1 teak 1 antry , tank inaide procedure 979.0000 979.0000 0.0000
no select Itarntion 00

910.0f000 030.0000 0.0000
Iterst ion 2

Iteration 1 901.0000 982.0000 1.0000
r5614.0000 05014.0000 0.0000 Iteration 64

Iterat ion 2 903.0000 904.0000 1.0000
156t.o0000 5615.0000 0.0000 Iteration 123

Iteration 
I ts7.0000 930.0000 1.0000

15615.0000 05615.0000 0.0000 Iteration 250

Iteration 
95.00000 900.0000

85616.0000 05616.0000 0.0000 
9teration 512

ltetion 16 009.0000 0012.0000 3.0000
05617.0000 05617.0.000 0 0000 Iteration 1024
Iterstion 32 1030.0000 1040.0000 6.0000
15620.0000 05620.0000 Iteration 2048

Itr1tIon 64 1096.0000 1000.0000 12.0000

15624.0000 05624.00Ou 0.0000

Iteration 126 Tnt mes.. 0000004 Clas Nme. Chapter 13
*5632.0000 85633.0000 1.0000 CPU Ti.., 444.3 aicro onda

Iteration 256 Cell Ties 444.3 Vtro conda. Iteration Coont, 2043
3064.0000 85649.0000 1.0000 Tent Oesnriptiont

Iteretion 502 Ti. to perlorm stand-rd booen onrations on arreys of boolnn.
0549.0000 35602.0000 1.0000 For this test the array. ea 000 PACO cith the praye oPf 0.3

Iteration 024 For Chia test the nperetionn ene prformO on c ente in a loop.

15741.0000 05746.0000 
5.0000

Tet me... T000004 Claina Mes, Tasking Iteration 1

CPU Ti.., 550.6 ic.necond.n 1101.0000 1790.0000 0.0000
Cill Ti.., 556.6 microseconds. Iteration Count, 1024 Iteratio 2
Tent o I ripIos, 

1790.0000 191.0000 0.0000

Tank entry call and raturn tine nenaured Iteration 4

one tank . ti, too entries. task in a package 1190.0000 10.0000 0.0000

using selact at.tmeet Iteration 1
1791.0000 1798.0000 0.0000

Itratin 16
Tent - ome. A000000 1799.0000 2179.0000 0.0000

ClOck rolntin .aurpe.t r.nning Iteration 32
Tent on sripoion n 17M9.0000 1799.0000 0.0000
onenine clock rnolntion en n nond ifff erCo Iteration 64
of seIen returned by the function CPUTi.._Clock. 100.0000 1000.0000 0.0000

Iteration 023

Omebr of maple -alues is 7000 101"0000 10902.0000 1.0000
Clock Reeoietion * 1.000000000000000 seondn. Iteration 256

Clock henolutio (noecege 1.0000000000 seond. 1803.0000 1104.0000 1.0000
Cl=oc Oeaoluti vnarim ) 0.000000000000000 asMood.. Iteration 512

00. 0000 00.00 3.000
Iteration 0024

Test N.-., A000091 CIA- m-.., Coqosite 1813.0000 0riS.0000 6.000

1.2000 is ti.e in sillaeconda for one flhryton. Iteration 2040

Tent Deript io t 25.0000 1131.0000 12.0000
m. inold P. Wmirker'a 0D0tSUCO c-o9 ite b-h-erk Iteration 409

1350.0000 0014.0000 24.0000
TterStion 0092

Tent me. 000002 Class me. comonit, 11 9.0000 1947.0000 40.0000



112
Otorat ton 10634

I90.0000 2093.0000 95.0000

T t U. P000000 Class Iea, Procedure
CI: Ti-., 4.1 1.crosacoeo
Mall Ti.., 4.3 sic - aeond.. Iteration Cment, 16334
Tet D =ri o.

ProWndur call and ratrn tio I sy be ero it autontic inlininq

adroo..0r. I. 1-.1
n0 pr0e 2 .r

219.0000 2107.0000 0.0000
Iteration 2
2191.0000 2191.0000 0.0000

Itsratio 4
It!!:i001 210.00 

0.:2191.0000 2191.0000 0.0000
Iteratiln 1
2199.0000 21l.0000 0.0000

Iteration 06
211.0000 219.0000 1.0000

Iteretion 32
201.0000 201.0000 0.0000

Itertin 64
2200.0000 2200.0000 0.0000

Itertim 120
2201.0000 2202.0000 0.0000

Itoat ion 236

2203.0000 204.0000 7.0000
tore t ion 12
2207.0000 2210.0000 3.0000

Iterat ion 0024
2219.0000 2281.0000 2.0000

Iterat ion 2040
12239.0000 2212.0000 S2.0000

Iteration 0030
2230.0000 2213.0000 26.0000

1trt im 0114
2436.0000 2530.0000 101.0000

Tet lBn, P000000 Clans 0.... Pr-cdure
I=02 Ti. I .N .0) ic;:-d.
Wll Tina 1.3 Picrsecond. Itertion Cont, 16384

Teot Deerript ioe.
Procedure cell end return tias onaeurannt
Coopre to P000003
10 parewaters. in IOTMG

Iteration I
2674.0000 2614.0000 0.0000

Iteret ion 2
2675. 0000 2675.0000 0.0000

Iterat Ion 4

It25.0000 2675.0000 0.0000
Iteration
26,50000 2675.0000 0.0000

Iterlt in 16
2671.00" 2".0000 0.0000

iterat ion 12

2M, ,0000 1677,0000 0.0000
Iteret i14 60
2603.0000 2670.0000 0.0000

Itart IS 2

26 *.0000 2610.0000 1.0000
Iterat ton 2%6
2000.0000 2692.0000 2.0000

Iteratlon 312
2705.0000 2108.0000 1.0000

Iterat ion 1024
2734,0000 2719.0000 '.0000

Iterat io 204
2791.0000 102.0000 00.0000

Tent WaNso T9O00001 C I.. Nee, T..king
CPU Tin, 454.0 :icroecorda
Wll Tin, 454.1 1c .oe. Iterutlo. Cont, 2040

Test enlptine.
1tnin. r-iep v. , Irery cell rn. etur tiow
I task I entry * talk maid procure

no .01-t

Iterat ion I
290.0000 2100.0000 0.0000

tert in 2
2901.0000 2900.0000 0.0000

Iterat ion 4
2900.0000 2903.0000 0.0000

Iterat ion 1

2910.0000 2910.0000 0.0000
Iteret in 10

911.0000 2911.0000 0.0000

Iterat ion 0
I3'3.0000 291.0000 0.0000

Iterat i 0 04
2927.0000 201.0000 1.0000

Iterat ion 1

223.0000 2926.0000 1.0000
Iterat ion 251

2942.0000 294 1.0000 0.0000O

tOrt eeion 512
2910.0000 2977.0000 0.0000

Iteration 0020

103l.0000 0044.0000 6.0000

Teat - a#., "0001 ClIa. Sel Tenkinq
CP e 366.4 lioralo !
I'll T 566.4 nicreconds, Iteration count, 1024

Tet t iZl
T.k entry cell s ed retere tOia eored
Oe telks ectine, tenontrife, tasks in a paiche
aing aecl-t statmnt



Bibliography

1. Boehm, B.W., A Spiral Model pf Software Development and Enhancement,
in Software Engineering Project Management, R.H. Thayer, Editor. 1987,
IEEE Computer Society Press: Los Alamitos, CA. p. 128 - 142.

2. Yeh, R.T., et al. , A Commonsense Management Model, in IEEE Software.
1991, p. 23 - 33.

3. Pyster, A., The Synthesis Process for Software Development, in System
and Software Requirements Engineering, R.H. Thayer and M. Dorfinan,
Editor. 1990, IEEE Computer Society Press: Los Alamitos, CA. p. 528 -
538.

4. Shaw, A.C., Reasoning About Time in Higher-Level Language Software.
IEEE Transactions on Software Engineering, 1989. 15(7): p. 875 - 889.

5. Park, C.Y. and A.C. Shaw. A Source-Level Tool for Predicting
Deterministic Execution Times of Programs. Department of Computer
Science, University of Washington, (Technical Report 89-09-12).
September 13, 1989.

6. Shaw, A-C. Towards a Timing Semantics For Programming Languages.
in Third Annual Workshop, Foundations of Real-Time Computing. 1990.
Washington, DC: Office of Naval Research.

7. Goos, G., W.A. Wulf, A. Evans Jr., and K.J. Butler, ed. DIANA: An
Intermediate Language for Ada. Lecture Notes in Computer Science, ed.
G. Goos and J. Hartmanis. 1983, Springer-Verlag: Berlin. 201 pages.

8. Shaw, A.C. Communiating Real-Time State Machines. Department of
Computer Science and Engineering, University of Washington, (Technical
Report 91-08-09). August 1991.

9. Haase, V.H., Real-Time Behavior of Programs. IEEE Transactions on
Software Engineering, 1981.7(5): p. 494 - 501.

10. Halang, W.A. A Priori Execution Time Analysis for Parallel Processes. in
Proceedings of the Euromicro Workshop on Real-Time. 1989. IEEE
Computer Society Press.

113



114
11. Mok, A.K., P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating

Tight Execution Time Bounds of Programs by Annotations. in 6th IEEE
Workshop on Real-Time Operating Systems and Software. 1989.
Pittsburgh:

12. Puschner, P. and C. Koza, Calculating the Maximum Execution Time of
Real-Time Programs. The Journal of Real-Time Systems, 1989. 1(2): p.
159- 176.

13. Kenny, K.B. and K.-J. Lin, Measuring and Analyzing Real-Time
Performance, in IEEE Software. 1991, p. 41 - 49.

14. Glicker, S.M. and F.A. Hosch. Toward Automating the Execution Timing
Analysis of Ada Tasks in Event-Driven Real-Time Systems. Applied
Research Laboratories, The University of Texas at Austin, (Technical
Report ARL-TR-91-4). 19 February 1991.

15. Knuth, D.E., The Art of Computer Programming. Second ed. Addison-
Wesley Series in Computer Science and Information Processing, ed. R.S.
Varga and M.A. Harrison. Vol. 1/Fundamer, -'al Algorithms. 1973,
Reading, Massachusetts: Addison-Wesley Publishing Company. 634
pages.

16. Hoare, C.A.R., An Axiomatic Basis for Computer Programming.
Communications of the ACM, 1969. 12(10): p. 576-580.

17. Shaw, M. A formal System for Specifying and Verifying Program
Performance. Department of Computer Science, Carnegie-Mellon
University, (Technical Report CMU-CS-79-129). 21 June 1979.

18. Walden, E. and C.V. Ravishankar, A Survey of Hard Real-Time
Scheduling Algorithms. unpublished draft, 1990..

19. Cornhill, D., et al. Limitations of Ada for Real-Time Scheduling. in
Proceedings of the International Workshop of Real-Time Ada Issues. 1987.
Moretonhampstead, Devon, UK: ACM SIGAda.

20. Baker, T.P. and A. Shaw. The Cyclic Executive Model and Ada. in The
Real-Time Systems Symposium. 1988. Huntsville, AL: IEEE Computer
Society.

21. Grogono, P., Comments, Assertions, and Pragmas. SIGPLAN Notices,
1989. 24 (3): p. 79 - 84.

22. Lin, K.-J. and J.W.S. Liu. FLEX: A Language for Real-Time Systems
Programming. in Third Annual Workshop, Foundations of Real-Time
Computing. 1990. Washington, DC: Office of Naval Research.

23. Military Standard Ada Programming Language, ANSI/MIL-STD-1815A,
U.S. Department of Defense, Ada Joint Program Office, (January 1983).



115

24. Motorola, MC68030 Enhanced 32-Bit Microprocessor User's Manual.
Third ed. 1990, Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

25. Shin, K.G. HARTS: A Distributed Real-Time Architecture. in Third
Annual Workshop, Foundations of Real-Time Computing. 1990.
Washington, DC: Office of Naval Research.

26. Stankovic, J.A. and K. Ramamritham, The Spring Kernel: A New
Paradigm for Real-Time Operating Systems. SIGOPS, 1989.23(3): p. 54 -
71.

27. Chen, M.-S., K.G. Shin, and D.D. Kandlur, Addressing, Routing, and
Broadcasting in Hexagonal Mesh Multiprocessors. IEEE Transactions on
Computers 1990.39(1): p. 10 - 18.

28. Hoare, C.A.R., Communicating Sequential Processes. Prentice-Hall
International Series in Computer Science, ed. C.A.R. Hoare. 1985,
Englewood Cliffs, New Jersey Prentice-Hall. 256 pages.

29. Hoare, C.A.R., Communicating Sequential Processes. Communications of
the ACM, 1978.21(8): p. 666-677.

30. Park, C.Y. and A.C. Shaw. Experiments With a Program Timing Tool
Based on Source-Level Timing Schema. in IEEE Real-Time Systems
Symposium. 1990. Lake Buena Vista, Florida: IEEE Computer Society
Press.

31. Woodbury, M.H., Workload Characterization of Real-Time Computing
Systems. 1988, The University of Michigan:

32. Chu, W.W., C.-M. Sit, and K.K. Leung, Task Response Time For Real-
Time Distributed Systems With Resource Contentions. IEEE Transactions
on Software Engineering, 1991. 17(10): p. 1076 - 1092.

33. Gerber, R. and I. Lee. Communicating Shared Resources: A Model for
Distributed Real-Time Systems. in IEEE Real-Time Systems Symposium.
1989. Santa Monica, CA: IEEE Computer Society Press.


