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ABSTRACT

ON THE GENERATION OF MULTILEVEL DISTRIBUTED INTELLIGENCE SYSTEMS
USING PETRI NETS

Syed Abbas Kazim Zaidi

George Mason University, 1991

Thesis Director: Dr. Alexander H. Levis

Complex distributed intelligence systems, characterized by the hierarchical arrangement

of their subsystems, are described by families of structures, with each family concerned with

the behavior of the system as viewed from a different level of abstraction. A methodology to

model and generate multilevel hierarchical distributed intelligence systems is presented. The

objects that comprise such a system and the generic interactions among them are defined. A

mathematical framework, based on Hierarchical Petri Net theory, is developed for representing

the interactions among these objects at the same level and across different levels. The

methodology and the resulting models also provide a structured and modular way for solving

the problem of designing large-scale distributed intelligence systems by breaking a

computationaly large problem into sinaller subproblems, thus reducing the computational effort

required to generate the feasible solutions. The methodology is applied to two illustrative

examples.
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CHAPTER I

INTRODUCTION

1.1 MOTIVATION

A methodology for generating distributed intelligence system designs has been

developed by Remy (1986). This methodology results in flat organizational structures,

where the decision making unit is a human decision maker (DM). It generates

organizational structures by determining the interactional structure of the organization, i.e.,

the interactions among human decision makers. The methodology is based on the concept

of allowable interactions among organization members - decision makers -, and on the

development of a mathematical framework to represent these interactions. The methodology

was extended by Demael (1989) to the design of variable structure distributed intelligence

systems. There is a growing need for a methodology to generate in some orderly manner,

either by using the existing algorithms iteratively or by some new algorithm, organizational

structures where the decision making units could be either decision makers or

suborganizations with different internal structures. Such a methodology should also be able

to generate organizational structures at an arbitrary level of abstraction, and be capable of

describing the system's architecture at different degrees of detail.

1.2 PROBLEM DEFINITION

Three main problems need to be addressed to implement properly such a

methodology.

(a) A mathematical framework that is appropriate for the formulation of the

design problem should be identified.

(b) The concept of multilevel hierarchical organizational structures needs to be

formulated analytically.

I



(c) Sets of constraints, structural and user-defined, have to be identified for

different levels in the organization to keep the problem of generating

organizational structures computationaly feasible.

This effort will fill another gap between availability of analytic tools and the real-

world design issues for large-scale distributed intelligence systems. The designer will have

to specify the entire organization in terms of its subsystems, defined at a given degree of

abstraction; then all subsystems are defined, if possible, in terms of their subsystems and

so on. The lowest, as well as the highest, degrees of detail that are desired to be used in

describing organizational structure need to be specified. Requirements will then be

specified for each suborganizational structures in terms of the interactions among the

subsystems of the suborganizational structure at a given level in the organization. Once the

requirements for an organizational or suborganizational structure at a given stratum (level)

in the organization are specified, the designer will be able to choose a structure from a

number of candidate structures, all fulfilling the requirements. Once all the structures for all

the subsystems of the organization are determined, the entire organizational structure can be

described at an arbitrary level of detail - the latter being bounded by the lowest and the

highest levels of abstraction used in the design.

1.3 THEORETICAL BACKGROUND

A quantitative methodology for modeling, designing and evaluating fixed structure

distributed systems has been developed at the MIT Laboratory for Information and

Decision Systems by Remy (1986), Andreadakis (1988), and Demadl (1989). In this work

an organization is considered as a system performing a task; the system is modeled as an

interconnection of organization members. Each organization member is represented by a

multi-stage model. Each stage represents a well defined procedure or algorithm that a

decision maker can perform.

In Remy (1986), a framework was presented which allows designers to express

their design problems in mathematical terms. Then, an algorithm was developed that makes

it possible to characterize and generate all feasible organization structures in terms of

2



partially ordered sets of fixed structures that satisfy both structural and designers'

requirements.

Monguillet (1986) formalized the notion of variable structure decision making

organizations and introduced the use of High Level Nets - Colored Petri Nets -, to model

certain types of variability.

Demael (1989) extended the earlier work by Monguillet (1986) and developed a

methodology for modeling and generating variable structure distributed intelligence

systems. He presnted a mathematical framework for modeling systems that adapt their

structure of interactions to the input they process. The methodology used the language of

Colored Petri Nets to describe the architectures.

1.4 GOALS AND CONTRIBUTION

This research will present a major extension of the earlier work by addressing the

problem of designing multilevel hierarchical organizational forms. The work will be a direct

extension of the work done by Remy (1986).

In this thesis, a mathematical model of interactions among suborganizations at

different levels is defined. This model is an extended version of the existing model by

Remy (1986). The model allows the designer to first determine the levels of organization

being considered. The subsystems of the organization at different levels are specified in

terms of their subsystems. At the lowest level, stratum N', the decision making unit is a

human decision maker with a five stage structure, (Levis, 1991). At all other levels, the

decision making units are suborganizations. Figure 1.1 presents a block diagram

representation of a multi-level organization. Depending on the particular level chosen, the

designer is required to characterize with an arbitrary degree of precision the class of

interactions among the decision making units comprising a system or a subsystem. The

specificity of the designer's requirements determines the degrees of freedom left. Lattice

theoretic results are used to define a partial order among all allowable organizational

structures belonging to a system or a subsystem; then the set of all allowable organizational

structures of the given system or subsystem is characterized by its boundaries.
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The mathematical formulation of the problem is based on Petri Net theory. All the
allowable structures will be translated into Petri Net representations. The set of all

allowable organizational structures can then be analyzed and a particular organizational

structure can be chosen as a result of a comparison of performance with respect to some

designer-defined criteria.

I Level k-1

Level k

K0

mI

Level k+2

Figure 1.1 A Multi-level Organization

The entire organization is described in terms of its subsystems. The organizational

structures associated with the subsystems of the organization are folded or unfolded to

represent the system's architecture at different levels. A set of connectivity rules are

formulated to translate interactions among subsystems of the organization defined at a given
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level to their lower level representations. The interactions that exist at a higher level of

abstraction are translated to their more detailed description whenever an organization is

unfolded to a more detailed representation. The connectivity rules are based on the concept

of a multiechelon hierarchy; the hierarchical relationships are formulated on the basis of

messages that flow to and from the decision making units.

1.5 THE THESIS IN OUTLINE

The thesis is organized as follows. Chapter II is a review of Petri Net theory: the

basic notions are reviewed together with some some advanced topics that will be used

throughout the thesis. Chapter III is a review of Lattice Theory: it presents the formalism

used in subsequent chapters. In Chapter IV, an introduction to the methodology for

generating multilevel organizational structures is presented. Chapter V describes the

translation of this methodology into the language of Hierarchical Petri Nets. In Chapter VI,

additional constraints are introduced that will define the concept of valid organizational

form. Chapter VII addresses the problem of representing connectivity of a higher level

interaction when it is defined at a lower level. In Chapter VIII, a review of the Lattice

algorithm is presented. The algorithmic implementation of the overall methodology is

presented in Chapter IX where an application is also given. Finally, Chapter X contains

conclusions and suggestions for further research.
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CHAPTER II

PETRI NET THEORY

This chapter is an introduction to Petri Net theory. In this chapter the basic

forr.aism of Ordinary Petri Nets is presented. One extension of the theory that overcomes

some limitations ot ordinary Petri Nets is High Level Nets. Two models have been

developed within that approach, Predicate Transition Nets and Colored Petri Nets. The

concepts of High Level Nets are not presented in this chapter as the theory and results

developed in this thesis do not require them. However, the concept of Hierarchical

Ordinary Petri Nets is presented as it is the key concept used throughout the thesis. More

introductory material can be found in Peterson (1981), Brains (1983), and Reisig (1985).

High Level Nets have been described in Genrich and Lautenbach (1981). Advanced

materials on Predicate Transition Nets are provided in Genrich (1987) and Monguillet

(1988). Similarly, advanced material of Colored Petri Nets can be found in Jensen (1987)

and in Demadl (1989).

2.1 INTRODUCTION

Large-scale distributed systems have certain characteristics:

They exh; it concurrency or parallelism. Several components can work at the same

time on the same task. There is thus a need to represent the precedence relations between

the processing of the different components.

These systems very often offer choices. One process may be done by several

components, or several combinations of components. Conversely, a particular component

is usually able to perform different types of processes.

A choice may create a conflict.
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The operations executed by the various components are asynchronous. There are no
global mechanisms that coordinate the scheduling of the processes. Each component
usually starts its processing as soon as it has received all the information it necds. If several

tasks are requested, a queuing discipline (First In First Out (FIFO), Last In First Out

(LIFO), etc...) is enforced to schedule the individual requests.

Complex systems need representations that are easy to use and review. Graphical
models address some of these issues. Complex systems also demand the quality of
verifiability in models. That is, system model should be capable of revealing their logic

when analyzed and allow performance analysis and simulation. Petri Nets have been
introduced in the modeling of Distributed Systems because they give a graph-theoretic

representation of the communication and control patterns, and a mathematical framework

for analysis and validation. Petri Net modeling is appealing for the following reasons:

Petri Nets provide an integrated methodology, with well developed

theoretical and analytical foundations, for modeling physical systems
together with complex (cognitive) decision processes.

Petri Nets capture the precedence relations and structural interactions of

concurrent and asynchronous events. Deadlocks and conflicts can be easily

identified on a Petri Net.

The graphical nature of Petri Nets helps to visualize easily the complexity of

the system. They are thus appealing both to the layman and to the analyst.

Various extensions of the basic theory allow for quantitative analysis of

resource utilization, throughput rate, effect of failures, and reai time

implementation.

The additional property of executabilitv makes the Petri Net a powerful

modeling language.
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2.2 ORDINARY PETRI NETS

2.2.1 Definitions

Definition 1.1

An Ordinary Petri Net is a bipartite directed graph: (P, T, 1, 0).

There are two sets of nodes:

P = {pl, ..., pn} a finite set of places.

A place is depicted by a circle node.

0
A place models a resource, a buffer, or a condition.

T = Itl, ..., tin) a finite set of transitions.

A transition is represented by a bar node.

B
A transition stands for a process, an event, or an algorithm.

The arcs or connectors that connect these nodes are directed and fixed. They

can only connect a place to a transition, or a transition to a place. They are

gven by:

I:PxT-> {0,)

I is an input function that defines the set of directed arcs from P to T.

I(p,t) = I if the arc exists, I(p,t) = 0 otherwise.

An arc from a place p to a transition t indicates that the process t requires the

availability of the resource p, the fulfillment of the condition p, or the

availability of information in the buffer p, in order to occur.
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O:PxT-> {0,1}

0 is an output function that defines the set of directed arcs from T to P.

O(p,t) = 1 if the arc exists, O(p,t) = 0 otherwise.

An arc from a transition t to a place p indicates that when the process t is

finished, it either enables the condition p, makes the resource p available, or

sends an item of information to the buffer p.

Example 2.1: Consider the Ordinary Petri Net shown in Figure 2.1

Figure 2.1 Ordinary Petri Net

The set of places P, the set of transitions T, and the input and output functions that

define the arcs for this net are:

P = I pl, .. p5) T = {tl, t2, t3}

I(pl, tl) = I(p2, t3) = I(p3, t2) = I(p 4 , t3) = 1 l(p, t) = 0 otherwise.

O(p2, t 1) = O(p4, t 2) = O(p5, t3) = 1 O(p, t) = 0 otherwise.

Definition 2.2

A Petri Net is pure if and only if it has no self loop, i.e., no place that can be both

an input and an output of the same transition.
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The net of Fig. 2.1 is pure. All Petri Nets that are considered in this thesis are pume.
For an extensive discussion of this modeling issue, see Hillion and Levis (1986).

Definition 2.3

A path is a set of k nodes and k - 1 connectors, for some integer k, such that the i-

th connector either connects the i-th node to the i+l-th node or the (i + 1)-th node to

the i-th node. The path is directed if the i-th connector connects the i-th node to the

(i + 1)-th node for all i = ],..k..

Example 2.2: In Figure 2.1

p3 - t2 - p4 - t3 - p5 is a directed path,

p5 - t3 - p2 is not a directed path.

If a Petri Net has sources and sinks, then any path from a source to the sink is

called an information flow path. If an information flow path is a set of k nodes such that the

k nodes are distinct, then the information flow path is said to be simple. The path p1 - tI -
p2 - t3 - p5 is, for example, a simple information flow path of the Petri Net of Figure 2.1.

Definition 2.4

A Petri Net is connected if and only if there exists a path - not necessarily directed -

from any node to any other node.

Fig. 2.1 depicts a connected net. Intuitively, this definition formalizes the idea that a

Petri Net models a whole system. There are no partitions of the set of nodes into disjoint

subsets, such that the nodes in one subset are not connected to the other subsets.

Definition 2.5

A Petri Net is strongly connected if and only if there exists a directed path from any

node to any other node.
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The net of Fig. 2.1 is not strongly connected because, for example, there is no

directed path from p I to p2 .

2.2.2 Petri Nets with Markings

A Petri Net can contain tokens. Tokens are depicted graphically by
indistinguishable dots (.), and reside in places. The existence of one or more tokens

represents either the availability of the resource, or the fulfillment of the condition, or the

number of items of information in the buffer. The travel of tokens through the net is

controlled by the transitions. A marking of a Petri Net is a mapping M that assigns a non

negative integer (the number of tokens) to each place.

Example 2.3: Consider the Petri Net in Fig. 2.2 with the indicated marking.

I ti p5

M(pl) M(p3) = 1; M(p4) = 2; M(p2) = M(p5) 0.

Figure 2.2 Petri Net with Marking

It is the same net shown in Fig. 2.1. The single token in the place p 1 indicates the

availability of a resource for the process modeled by transition t2. Similarly, the

two tokens in place p4 represent the availability of two resources or input
conditions for the execution of process modeled by t3.
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Definition 2.6

A transition is enabled by a marking, if and only if all of its input places contain at

least one token provided each input arc represent a single connection between the

place and the transition.

In Example 2.3, tl and t2 are enabled. All the conditions to be satisfied are

fulfilled.

Definition 2.7

An enabled transition can fire. The firing of the transition corresponds to the

execution of the process or the algorithm. The dynamical behavior of the system is

embedded in the changes of the markings, when the firing takes place, a new

marking is obtained by removing a token from each input place and adding a token

to each output place.

Example 2.4: In Fig. 2.2, if tI fires, then the resulting marking is shown in Figure

2.3.

t3p5

Figure 2.3 Petri Net after Firing

Transitions t3 and t2 are now enabled. If t3 fires, the new marking is shown in

Figure 2.4.
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I ~I l p2 I l a

Figure 2.4 Petri Net after Second Firing

Remark: A transition may fire concurrently more than one token, i.e., a process

may handle several tasks at the same time. Each firing of a transition is thus characterized

by an integer k, the firing pattern of the transition. A transition can fire according to the

firing pattern k, if and only if all of its input places have at least k tokens. When the firing

takes place, k tokens are removed from each input place, and k tokens are added to each

output place. The firing pattern is 0 if a transition does not fire.

2.2.3 Linear Algebraic Approach

So far, Petri Nets have been described as graphs. An alternative and equivalent

approach can be developed using linear algebra with integer coefficients (Memmi and

Roucairol, 1980).

Definition 2.8

A Petri Net with n places and m transitions can be represented by a n x m matrix C,

the Incidence Matrix. The rows correspond to places, the columns correspond to

transitions.

Cij = 1 if there is a directed arc from the j-th transition to the i-th place. "1"

indicates that the firing of the j-th transition adds one token to the i-th place.
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Cij = -1 if there is a directed arc from the i-th place to the j-th transition. "- I"
indicates that the firing of the j- th transition removes one token from the i-th

place.

* Cij = 0 if there is no arc from the j-th transition to the i-th place.

Example 2.5: The incidence matrix of the net on Fig. 2.1 is

tl t2 t3
F-1 0 01 p1

1 1 0 -l p2

C=jO -1 0~ p3
0 1 -1 p4

Properties

The marking of a net can be represented by a n x I vector M, where Mi =

M(pi). The i-th entry corresponds to the number of tokens in the i-th place.

The firing pattern of the net can be represented by an m x 1 firing vector F,

where Fj is the firing pattern of the i-th transition.

Given an incidence matrix C, an initial marking M, and a firing pattern F,

the new marking M' is

M'=M +C * F. (2.1)

Example 2.6: The matrix equation that corresponds to the firing of Fig. 2.3 is
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M [ I 4 J [1 [ (2.2)

A -0 0 LJA

2.2.4 Invariants

An incidence matrix makes it possible to use results from linear algebra to infer

properties of the net, Much of the literature is devoted to the study of S- invariants.

Definition 2.9

Given an incidence matrix C, an S-invariant is a n x 1 non-negative integer vector

X of the kernel of CT, i.e.,

CT * X =0 (2.3)

Remark: One must pay particular attention to the fact that X must have non-negative
integer components. The rationale for this constraint results from Theorem 2.1, which

gives a physical interpretation to S-invariants.

Theorem 2.1

Let M0 be any initial marking, and M be any marking that is reachable from M0

after a sequence of firings. X is an S-invariant if and only if

XT*M =XT*Mo. (2.4)

This relation is interpreted as a weighted conservation of tokens. A marking is by
definition a vector of non-negative integers. Conservation of tokens must thus be expressed
with non-negative integers.

16



Definition 2.10

If X is an S-invariant, the set of places whose corresponding components in X are

strictly positive is the support of the invariant, noted <X>.

The support of an S-invariant is said to be minimal if and only if it does not contain

the support of another S-invariant but itself and the empty set.

Theorem 2.2

If X1 and X2 are two S-invariants with the same non-empty minimal support, then

X1 and X2 are linearly dependent.

Proof.

Consider X 1 = [x1 i] and X2 = [x2i], i = l..n. By assumption, X 1 and X2 are

non null vectors. Nothing is changed if it is assumed that the support is made

out of the first p, 0 < p < n, places.

Define r = min i= L..k (xIi / x2i) and m an integer large enough so that for every i

m*r*x2i is an integer.

Then m * (X1 - r *X2 ) is an S-invariant whose support is strictly included in the

support of X 1 and X2 .

Jndeed,CT*m*(Xl - r*X 2) =m*CT*Xl - m*r*CT*X 2 =0 - 0=0.For

every i, m * xIi - m * r * x2i is an integer (Definition of m), and xI - r * x2i is non

negative (Definition of r). Finally, by definition of r there exists some i0 such that
r = xI o / x2i0, hence m.(XI - rX2)io = 0.

Consequently, the support of m * (XI - r * X2) is 0. Thus m * (XI - r * X2) is

zero. The vectors are linearly dependent.

Definition 2.11

A minimal support S-invariant X is an S-invariant whose support <X> is minimal.

The following important result, due to Memmi and Roucairol (1979), highlights the

importance of minimal support S-invariants. Valraud (1989) presents an application of this

result to analyze structural properties of a net.
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Theorem 2.3

Consider a net P. The set of minimal supports of the net P is finite.

If <X>I, ..., <X>k are the k finite supports, andX1,..., Xk is a family of

S-invariants, with <Xi> = <X>i, then the family Xl,..., Xk constitutes a minimal

generating family of the S-invariants, i.e., every S-invariant can be written as a linear

combination of X ,..., Xk with rational coefficients.

Definition 2.12

The S-component associated with an S-invariant X of a Petri Net is the subnet

whose places are the places of <X> and whose transitions are the input and output

transitions of the places of <X>.

By extension, a minimal S-component is the S-component of a minimal support

S-invariant.

Example 2.7: Consider the Petri Net PN of Figure 2.5.

The incidence matrix of PN is

1l-1 07
C= 1 0 -1C-1, 1 0/

L-1 0 1J

P3

p1 Q

Figure 2.5 Petri Net PN
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X = [xl, x2, x3, x4] is an S-invariant if and only if CT * X = 0.

This yields xl = x3 and x2 = x4. There are two minimal supports <Xl> = (pl,

p3} and<X2> = {p2, p41. The S-components associated with <XI> and <X2> are

depicted in Figures 2.6 and 2.7.

PI C

Figure 2.6 S-component associated with <XI>

ti

- t3

Figure 2.7 S-component associated with <X2>

2.2.5 Marked Graphs

Definition 2.13

A marked graph is a connected Petri Net in which each place has exactly one input

and one output transition.

Throughout this thesis, marked graphs play an important role. One crucial result
about marked graphs is Theorem 2.4 (Hillion, 1986). This result has been applied

extensively in Remy (1986) to characterize the Petri Net model of fixed structure systems; it

is used here in Chapter VIII.
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Example 2.8: The net in Figure 2.1 is not a marked graph., because this net has

two sources, i.e. two places without input arcs, and one sink, i.e., a place without

an output arc. Figure 2.8 shows a marked graph.

p2

r p3 I

Figure 2.8 Marked Graph

Theorem 2.4 is stated after the introduction of two new terms.

Definition 2.14

A directed circuit is a directed path from one node back to itself. In Fig. 2.8 pl-tl-

p3-t2-p4-t3-p 1-ti -p2-t2-p4-t3-p 1 is a directed circuit.
A directed elementarv circuit is a directed circuit in which only one node appears

more than once. In Fig. 2.8, pl-tl-p3-t2-p4-t3-pl is a directed elementary circuit.

The place p I is the node that appears more than once.

Theorem 2.4 (Hillion, 1986)

The minimal S-components of a marked graph are exactly its directed elementary

circuits.

Theorem 2.4 is important, because it indicates that the computation of the minimal
S-components can be done by an efficient algorithm based on Linear Algebra, such as the

algorithm of Alaiwan and Toudic (1985).
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In this thesis, a particular type of nets are of importance. In these nets, all the places

but two have exactly one input and one output transition. There is one place with only one

output transition (the source or the external place) and one place with one and only one

input transition (the sink). These nets can be transformed into marked graphs by merging

the external place and the sink into a single place po, (Hillion, 1986). Under those

circumstances, the simple information flow paths from the source to the sink are exactly the

directed elementary circuits that contain the place po. The simple information flow paths can

be computed in that case using the algorithm of Alaiwan and Toudic. See Valraud (1989)

for an extensive treatment.

2.2.6 Petri Nets with Switches

A switch is a node with multiple output places. As with any transition, a switch is

enabled whenever there is at least one token in each of its input places. When a switch

fires, a token is put in only one of its output places. This place is chosen according to some

decision rule.

The decision rules associated with the switch can be anything. They can be

deterministic or stochastic. They can take the information that is contained in the inputs into

account, etc. It is thus possible to model distributed variable structures with switches.

Example 2.9: Figure 2.9 represents a Petri Net with a switch.

Figure. 2.9 Petri Net with a Switch
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At the stage modeled by the switch s 1 there are three alternative courses of action.

According to some rule, only one is chosen. In each case, the course of action that is

chosen will satisfy the condition modeled by p5.

2.3 HIERARCHICAL PETRI NETS

Hierarchical Petri Nets allow the designer to create a large model composed of

many submodels, and isolate a segment to study its details without disturbing or altering

the entire structure. They also provide a modular approach towards modeling a complex

system. This feature is vital for designing complex systems that require frequent study of

alternative structures during the development process. The hierarchical nature of the Petri

Nets provides the designer an abstraction mechanism that

* provides an overview and an adequate representation of system structure,

absent in single level system models;

0 hides details in a consistent way;

* separates into well-defined and reusable components;

* supports top-down and bottom-up design strategies.

2.3.1 Compound Transition

If a subnet of a Petri Net model is replaced by a single transition, the single

transition is termed compound transition. It represents the aggregated effect of the

processes represented by the transitions of the subnet. The system with compound

transitions describes the system at a higher degree of abstraction than the one without them.

Figure 2.10 shows a Petri Net model of a system in which the system's

functionality is described at the most detailed level. The dotted box contains the processes
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that are to be aggregated. In Figure 2.11 the outlined subnet is shown replaced by a single

transition - a compound transition denoted by the label "HS". The subnet that represents the

compound transition at a subpage is shown in Figure 2.12. The term subpage is used in

Design /CPNTI , a commercially available software package for Hierarchical Petri Nets, to
denote pages which contain the subnets replaced by compound transitions and compound

places.

p2 t 2 p4 t 4 06

"3 t 3 p5 t5

Figure 2.10 Detailed Description of a System

Compound

P1 r.ansition 9 6 p8

Figure 2.11 System's Descnption with a Compound Transition
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pl tl 1 p9

Figure 2.12 Subpage Representation of the Compound Transition

The places, in Figure 2.12, with label "B in" or "B out" represent the port nodes.

Port nodes are defined to be the irput and output places of the subnet; its connections with

the uncompound net. On the other hand, all those places whose input and output transitions
are defined within the subnet are not port nodes. Port nodes are used to preserve the

connectivity of the original net. They model the sockets for the places that exist in the preset

and postset of the compound transition in the system's net. The places pl, p4, p5, and p9
in Figure 2.11 are defined as port nodes in Figure 2.12.

When it is desired to replace a subnet by its compound transition representation care

must be taken in selecting the boundaries of the subnet. In order to replace a subnet of a net

by a compound transition, the boundaries of the subnet should be comprised only of

transitions.

The boundary of a subnet is defined to be the set of nodes belonging to the subnet

having at least one of their input and/or output be nodes of the net that do not belong to the

subnet. A subnet with at least one place at the boundary of the subnet can not be replaced
by a compound transition. Figure 2.13 presents such a situation with place p9 as the part of

the subnet that is desired to be replaced by a compound transition.

2.3.2 Compound Place

On the other hand, if a subnet of a Petri Net model is replaced by a single place, the

single place is termed compound place. It represents the aggregated effect of the subnet
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replaced by the compound place. The system with compound places describes the system at

a higher degree of abstraction than the one without them.

9p2 t 2 p4 t 64t6

pl p, t 1,9 6 p8

0 - 33 p5 t 5

Figure 2.13 Illegal Compounding

Figure 2.14 shows the Petri Net model of a system in Figure 2.10 with the dotted

box representing the subnet that is desired to be aggregated by a compound place. In Figure

2.15 the outlined subnet is shown replaced by a single place - a compound place. The

subnet that represents the compound place at a subpage is shown in Figure 2.16.

The transitions, in Figure 2.16, with labels "B in" or "B out" represent the port

nodes. Port nodes model the sockets for the transitions that exist in the preset and postset

of the compound places in the system net. The transitions tl, t4, and t5 in Figure 2.15 are

defined as port nodes in Figure 2.16.

When it is desired to replace a subnet by its compound place representation, care

must be taken in selecting the boundaries of the subnet. In order to replace a subnet of a net

by a compound place, the boundaries of the subnet should be comprised only of places.
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.. ... ... ... ... ... ...... ... ... . t 4 p 6

Figure 2.14 System in Figure 2.10

t4 p6

Compound

Figure 2.15 System's Description with a Compound Place

p2 t 2 p4 t 4

a out

<p3t 2p 5 t 5

Figure 2.16 Subpage Representation of the Compound Place
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The subnet outlined in Figure 2.17 can not be replaced by a compound place as it

has a transition tI at its boundary.

p2 t 2 p4" t4 6

pl 1 t1p9 t6 p8

Figure 2.17 Illegal Compounding

2.3.3 Folding and Unfolding a Net

A Petri Net model of a system is said to be folded, if certain subnets of the net are

aggregated by compound transitions and/or compound places. The folded net obtained as a

result describes the system at a higher degree of abstraction. The subnets replaced by

compound transition and/or compound places are moved to the subpages as a result of

folding the net. The original detailed description of the system net can be retrieved by

uncompounding the compound transitions and compound places, i.e., by moving the

subnets back to their original locations. A compound transition or a compound place,

therefore, represents a subnet stored at a subpage with port nodes to preserve the original

connectivity of the net. The process of uncompounding all the compound transitions and

compound places is termed unfolding the net. In this thesis, the organizational structures
represented in terms of Petri Nets are folded by creating compound transitions representing

different suborganizations. The processes of folding and unfolding do not effect the Petri

Net properties of the structures; the structures obtai'wcd as a result offolding and unfolding

are legitimate, executable, Petri Nets. The folded structures can be executed with or without

the subpage structures. Figure 2.18 presents a Petri Net with two of its subnets outlined by

dotted boxes. The outlined subnets are replaced by their compound transition representation
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in Figure 2.19. The Petri Net in Figure 2.19 is the folded version of the net in Figure 2.18.

It represents the same system in Figure 2.18 but at a higher degree of abstraction.

The subnets that are moved to subpages as a result of folding are shown in Figures

2.20 and 2.21. Figure 2.20 represents the net replaced by compound transition tl along

with the port nodes, while the subnet replaced by the compound transition t2 is shown in

Figure 2.21.

p2 1 p4 t p6

p3" tt P t5

Figure 2.18 Petri Net of a System

p4

p61 it 1 p9 t 2 P

Figure 2.19 Folded Petri Net
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Figure 2.20 Subnet Replaced by Compound Transition tl

p4 t2 4.6

pl tl P

Figure 2.21 Subnet Replaced by Compound Transition tl

The places p4, p5, and p9 in Figure 2.19 are all the output places of the compound

transition t and input places of compound transition t2. If the system's behavior at a

higher degree of abstraction is desired to be depicted, the three places p4, p5, and p9 can

also be represented by an equivalent single place p2 with input and output arcs having a

weight of 3 as shown in Figure 2.22. If the single equivalent place p2 models the flow of

information from the aggregated processes represented by t to aggregated processes

represented by t2 and the three places between t and t2 in Figure 2.19 represent a

redundancy in the flow of information as the tokens are defined to be indistinguishable then

Figure 2.23 may be used where there is no weighting on the input and output arcs of p2.
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p1 t I p2 t2 p8

Figure 2.22 Folded Version of the Net in Figure 2.18

The net in Figure 2.23 can be unfolded to the net in Figure 2.18 by uncompounding

the compound transitions t1 and t2. The places that are represented by the equivalent place

are defined in the subnets in Figures 2.20 and 2.21, therefore, whenever the compound

transitions are uncompounded, all the places present in the original net will be retrieved

from the subpages producing the original detailed description of the net in Figure 2.18.

p1 t 1 p 2 t2 p8

Figure 2.23 Folded Version of the Net in Figure 2.18

The folding process presented in this section will be used in the design

methodology presented in this thesis.

The process of folding Petri Nets also refers to a technique used to translate the

Ordinary Petri Nets to their Colored Petri Net representations. Since Colored Petri Nets are

not used in this thesis, the folding process mentioned is not discussed here. Interested

readers are referred to Jensen (1990).
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2.4 CONCLUSION

Petri Nets were introduced to represent or model complex systems. A number of

reasons were outlined that make Petri Net modeling appealing as compared to other

modeling languages. A mathematical framework for Ordinary Petri Nets was presented. An

extension of Petri Nets, Hierarchical Petri Nets, was presented as the mathematical and
modeling framework used throughout the thesis.

31



32



CHAPTER III

ORDERING AND LATTICES

The basic concepts about orderings and lattices are presented in this chapter. Lattice

theory is used extensively in Chapters IV, VI, and VII to address the generation of

Stratified Decision Making Organizational (SDMO) structures. Complementary material on

lattices can be found in Birkhoff (1948) and Gratzer (1971). Relationships between lattices

and graphs are explained in Carr6 (1979). The development in this chapter follows (Remy,

1986).

3.1 DEFINITIONS

Definition 3.1

A relation R on a set A is called a binary relation if and only if
V (x,y) E A2 the condition x R y either does or does not hold.

In other words, for each (x, y) "x R y" is meaningful, being either true or false.

Example 3.1

Let A be the set of graduate students at the ECE department of GMU, and R be the

relation "has fewer than or equal number of semester hours as". Then R is a binary

relation.

Definition 3.2

A relation R on a set A is an ordering, if and only if

• R is reflexive: VxE A x R x.

" R is antisymmetric: V (x, y) E A2  (x R y) and (y R x) (x =y).
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R is transitive: V (x, y, z)E A3 (x R y) and (y R z) =, (x R z).

Example 3.2

In { 0, 1 ) the relation "is smaller than or equal to", denoted by <, is an

ordering.

Let S be the set of vectors with three entries in {0,1 }: X = [xl, x2, x3]

x 1, x2, x3 in {0,1 }. Define on S the relation <:

For X=[xl, x2, x3] and Y=[yl, y2, y3],

X",Y ifandonlyif xl yl x2_<y2 x3<y3.

It is easy to conclude that «, is an ordering of S.

Definition 3.3

An ordering R of a set A is a total ordering or chain if and only if
given any (x, y)E A2, either x R y or y R x.

If an ordering is not a total ordering, it is called a partial ordering.

Example 3.3

The set of real numbers is totally ordered by the binary relation "is smaller

than" (<).

The set S of example 3.2 is not totally ordered by ,,.
Neither [ 1, 0, 0] ,, [0, 1, 01 nor [0, 1, 0] [ 1, 0, 0) are true.

Definition 3.4

By y covers x is meant that x R y and that there is no element z, z * x, y such that

xRzRy.
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Definition 3.5: Connected Chain

A chain x0 < xl < ... <xi ... will be connected if xi covers xi- I for all i.

Definition 3.6: Dimension

The dimension d[x] of an element x of a partially ordered set X is the maximum

length d of connected chains xo < x1 < ... < xd = x in X having x for greatest

element - in case d is finite. Similarly, by dimension d[Xi of X is meant the

maximum length of a chain in X.

The notion of dimension is of particular importance when the following condition i-

satisfied:

Jordan-Dedekind Chain Condition

All finite connected chains betweer fixed end points have the same length.

Theorem 3.1

Any subset of a partially ordered set is itself partially ordered by the same binary

relation (Remy, 1986).

3.2 ORDERING

An ordered set can be depicted very conveniently by a diagram, called the Hasse

diagram. In this diagram, each element is represented by a point, so placed that if x R y is

true then the point representing x lies below the point representing y. Lines are drawn

between two points x and y if and only if y covers x. Figure 3.1 shows the Hasse diagram

of the set S described in Example 3.2.
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[1. 1, 1]

[1, 1, 0) [0, 1, 11 l1, 0, 1]

[1, 0, 0l [0, 1, 0l [0, 0, 11

[0, 0, 0]

Figure 3.1 Hasse Diagram

In an ordered set, totally or partially ordered, some elements have properties that are

of interest. In the next paragraphs, some of these elements are defined.

Definition 3.7

Let R be an ordering of A.

If A contains an element co such that (o R x for all x in A, then co is

unique and is called the least element of A.

If A contains an element 0 such that x R 0 for all x in A, then K2 is

unique and is called the greatest element of A.

Remark: These elements do not always exist. For example, in S, these elements

exist. The least element is [0, 0, 0], and the greatest element is [1, 1, 1]. However, if '<<' is

restricted to the subset s, where s = S - ([0, 0, 0], [1, 1, 1]), it is impossible to find a

greatest and a least element.

Definition 3.8

An element m of A is a nmnimal element if there does not exist any element

in A that is strictly inferior to m, i.e.,

x R m implies x = m.
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An element M of A is a maximal element if there does not exist any

element in A that is strictly superior to M, i.e.,

M R x implies x = M.

Theorem 3.2 (Birkhoff, 1948)

Every finite ordered set A has at least one minimal and one maximal element.

Proof: Let the elements of A be xl .... xn. Define the finite sequences mk and Mk by:

ml = M1 = Xl

Mk = Xk if xk < mk-, otherwise mk = mk-1.

Mk = Xk if Mk-I 5 xk, otherwise Mk = Mk-1.

Then mn is by construction a minimal element of A, and Mn is by

construction a maximal element.

Example 3.4: In s = S - 1[0, 0, 01, [1, 1, 1]) we have three minimal elements, and

three maximal elements.

The minimal elements are 1, 0, 0], 10, 1, 0], 10, 0, 1].

The maximal elements are 11, 1, 0], [1, 0, 1], [0, 1, 1].

Theorem 3.3

In a totally ordered set or chain, the notions minimal and least (respectively maximal

and greatest) are equivalent.

Proof: If a is minimal then no other element of the chain X is inferior to it, i.e., x R a is not

true. By Definition 3.3 we have then that a R x must hold for all x # a, a is
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therefore the least element of X. A similar reasoning applies to the maximal

element.

The following theorem, Birkhoff (1948), gives a characterization of the

Jordan-Dedekind condition.

Theorem 3.4 (Birkhoff, 1948)

Let X be a partially ordered set which has a least element ((o) and a greatest element

(0) and in which all chains are finite. Then X satisfies the Jordan-Dedekind chain

condition if and only if there exists an integer-valued function fix] such that

y covers x t y > x and f[y] = fix] + 1

3.3 LATTICES

If the set is totally ordered, its structure is particularly simple; it is a single chain. In

most cases however, the ordering is not total. In order to gain some insight into the

structure of the set, the concept of a lattice (Birkhoff, 1948) is needed, which is based on

local properties of the set.

Definition 3.9

Let B be a subset of a partially ordered set A.

An upper bound of B is an element a of A such that y R a for all y in B.

The least upper bound (l.u.b) of B, if it exists, is the least element of the set

of all upper bounds of B.

By analogy, the greatest lower bound (g.l.b) is the greatest element, if it

exists, of the set of all lower bounds of B.
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Example 3.5: Let B be { [0, 0, 0], [ 1, 0, 0], [0, 1, 0]}. B is a subset of S.

It has a g.1.b, which happens to belong to B: [0, 0, 01.

It has a 1.u.b, which does not belong to B: [1, 1, 01.

Definition 3.10

A lattice is a partially ordered set L in which any two elements x, y have

" a g.l.b or meet (denoted by xry ) that belongs to L.

" a l.u.b or join (denoted by x. , ) that belongs to L.

Definition 3.11: Sublattice

A sublattice L' of a lattice L is a subset L' of L such that the join and meet of any

two elements of L' are in L'.

Figure 3.2 illustrates the local condition. Given two elements x and y, there exists

only one element in the Hasse diagram, the join, which covers both x and y. Similarly,

there is only one element, the meet, which is simultaneously covered by both x and y.

x 
y

Figure 3.2 Local Condition
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The lattice property ensures that the set L has some structuring patterns. It is

possible to identify, for any two elements x and y, two unique boundaries in L, the join

and the meet. Every element that is below x and y must be below the join. Any element that

is above x and y must be above the meet.

Remark: Every Lattice L has a least and a greatest element. The least element is the meet,

which belongs to L, of all the elements of L. The greatest element is the join of

all the elements of L. This join belongs to L, by definition of the lattice.

Example 3.6:

S is a lattice.
On { 0, 11 the meet (r)) and join (u)operators are defined as:

0r)0=0 0u0=0

0r)=10 0Oul=l
I r)0=0 1 U..0 =1

lr=1 1ul=l

The operators are extended on a component-wise basis:

X rY=[xlr)yI, x2rny2, x3 ry3j

XuY=[xluyl, x2 u y2, x3uy3]

Let X be a set, and P(X) be the set of all subsets of X. (P(X) is a lattice

with the partial ordering "is included in".

The meet of two subsets of X, A and B, is the intersection A n B.

The join of two subsets of X, A and B, is the union A u B.

3.4 CONCLUSION

In this chapter some basic concepts of orderings and lattices were presented. A

number of important properties of the elements of ordered sets were also presented. The

elements of ordered sets bearing those properties were identified, i.e., least, greatest,

minimal, and maximal elements. Similarly, some properties of partially ordered sets were

outlined, namely meet and join.

It is concluded that a partially ordered set is a lattice if it has a greatest and a least

element and in which any two elements have both a meet and a join in the set.
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CHAPTER IV

MULTILEVEL ORGANIZATIONAL CLASSES

An introduction to the methodology for generating multilevel organizational
structures is presented in this chapter. Section 4.1 provides basic concepts of multilevel

organizational structures, while Section 4.2 presents the model of a single decision maker.
The set of allowable interactions among decision makers is presented in Section 4.3. The

modeling procedure for a compound node is described in Section 4.4. All the allowable

interactions among compound nodes are discused in Section 4.5. A mathematical model

describing the set of interactions is derived in Section 4.6.

4.1 BASIC CONCEPTS

A Decision Making Organization (DMO) is seen as an information processing

system that performs several functions to accomplish its missions (Minsky, 1986, Levis,
1988). The functions are divided into individual tasks and subtasks, which are performed

by Decision Making Units (DMU). A DMU may be capable to perform several tasks or

subtasks; the combination of a DMU performing a particular task is called a role (Demael

and Levis, 1990).

A DMO has a variable structure if the interactions among individual DMUs can

vary, i.e., if the roles change according to the task the organization has to perform

(Demael, 1989). Conversely, a system for which the interactions can not vary has a fixed

structure. This thesis is restricted to fixed structure multilevel, hierarchical systems.

4. 1.1 Multilevel, Hierarchical System

The concept of a multilevel, hierarchical system is defined in Mesarovic et al.

(1970). Some of the characteristics which every hierarchy has are: vertical arrangement of

subsystems which comprise the overall system, priority of action or right of intervention of
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the higher level subsystems, and dependence of the higher level subsystems upon actual

performance of the lower level.

Mesarovic et al. (1970) defined three types of hierarchical systems. This

classification is based on three notions of levels:

* The level of description or abstraction, the stratum

* The level of decision complexity, the layer.

* The organizational level, the echelon.

The term level is reserved as a generic term referring to any of these notions when

there is no need to distinguish between them.

The concept of stratum is used for modeling organizational architectures when

viewed from different levels of abstraction, while the concept of layer is introduced in

reference to the vertical decomposition of a decision problem into sub-problems. The

concept of echelon refers to the mutual relationship between DMUs comprising a system.

It is necessary to make a clear distinction as to which notion of level one is using
when describing a hierarchical system. The type of multilevel, hierarchical systems

modeled in this thesis are stratified systems, where the system is described by a family of

structures each concerned with the behavior of the system as viewed from a different level
of abstraction, the stratum. A set of rules for defining echelons among subsystems (DMU)

of a Stratified Decision Making Organization (SDMO) is also presented in Chapter VIII.
The definition of echelons, within a DMO, is necessary to resolve the issues of interactions

and connectivity among DMUs at a given stratum.

4.1.2 Stratified Decision Making Organization Classes

Definition 4.1

A Stratified Decision Making Organization (SDMO) is defined to be a DMO in

which a system on a given stratum is a subsystem on the next higher stratum. In a
SDMO, DMUs can be either Decision Making Sub-Organizations (DMSO) or
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human Decision Makers (DM) depending upon the level of abstraction used to

represent the organizational structure of the DMO.

Example 4.1

The administrative structure of GMU is a SDMO, as it can be viewed from a

number of different levels of abstraction, i.e., faculty/staff, departments,

Graduate School/Law School, etc.

For illustrative purposes, a description of a general SDMO is presented in Figure

4.1.

" tuStratum k

Figre . lA Sratfie Deisin Mkin Oraniatumon

-- ~~~~~~~~~ .... ... ,, ...... mm nnmmn nm nnmm m

0
R

Stratum k+1[

Stratum k+2

Figure 4.1 A Stratified Decision Making Organization
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In a SDMO, the highest stratum, stratum '0', contains only one organizational

structure, the node, which represents the entire organization (SDMO). The nodes at all
other strata are referred to as DMUs. The node at stratum '0' shows the highest level of

abstraction that can be used to describe an organizational structure. On the other hand, the
nth stratum contains an elaborated and detailed description of the DMO at the lowest level

of abstraction that is determined by the designer of the organization. The range of 'n' is
defined as 1 < n < N, where 'N' represents the lowest possible stratum at which the
DMUs can not be decomposed further. The determination of the value of 'N' is application

dependent, i.e., it depends upon the kind of organization being modeled, and on the

definition of strata used to describe the organization. For example, in human organizations,

'N' represents the stratum at which the DMUs are human decision makers (DM)

A DMU at stratum 'k' , where 1 < k < n, is defined as a compound node. All
nodes are labeled by an alphanumeric code, DMUik, where T represents the node number

at stratum 'k'. The set of all the nodes at stratum 'k' contains I0tk0 elements, i.e., uIk = 11,

2, ..., lk1 ) and i E Itk.

Proposition 4.1

The following property holds for every stratified decision making organization

(SDMO): The number of nodes at a stratum is larger than or equal to the number of
nodes in the stratum immediately above it.

II1 Ign-I>...>I1k+11 > Il>Itk -ll > > >It01 =1 I < n<N

Proof

Proposition 4.1 follows from the fact that a system on a stratum is comprised of a

number of subsystems which are defined for the next lower stratum; the number of

nodes at a given stratum is given by the sum of the subsystems of the individual

nodes at the next higher stratum.
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4.2 SINGLE INTERACTING DECISION MAKER

A number of models of a role have already been proposed. The origins of the model

can be traced back to the four stage model of the interacting decision maker with bounded

rationality introduced by Boettcher and Levis (1982). The formal specification of the

interacting decision maker was made by Remy (1986). This specification led to an

algorithm, the Lattice algorithm, which generates all feasible fixed structure architectures

that meet a number of structural and user cons aints. Andreadakis (1988) introduced an

alternative model, which was very similar to the four stage one in terms of the allowable

interactions. Levis (to appear in 1992) presented a five stage model of a role that subsumes

the four stage model and Andreadakis' extension. The proposed five stage interacting

decision maker model is shown in Figure 4.2.

Z' V

x .y

Figure 4.2 Single Decision Maker or Role

The decision maker receives a signal x from the external environment or from

another organization member. The situation assessment (SA) stage contains algorithms that

process the incoming signal to obtain the assessed situation z. The assessed situation z may

be shared with other members. Concurrently, the decision maker can receive a signal z'

from another part of the organization; z' and z are then merged together in the information

fusion (IF) stage to produce z". The fused information is then processed at the task

processing (TP) stage to produce v. The commands from other organization members are

received as v. The command interpretation (CI) stage then combines v and V to produce
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the variable w, the input to the response selection (RS) stage. The RS stage contains

algorithms that produce the output y.

This model explicitly shows all the stages at which a decision maker can interact

with other decision makers or with the environment. A decision maker can receive input
from the external environment only at the SA stage. The other inputs, z' and v', can be

multiple and originate from different organizational members. Conversely, a decision
maker can send output to the external environment only from the RS stage. The output z

can only be sent to other organizational members. The output y can be sent to the external

environment. The output y can also be sent to other organization members as input x or z'

or as command input V.

A decision maker need not have all five stages while performing a specified task in

an organization. Depending upon the inputs and outputs a decision maker can have one of

the four possible internal structures.

• SA alone with y = z
* SA, IF, TP, CI and RS
" IF, TP, CI and RS with x = z'

" CI and RS with x = v

Note that the five stage model presented in this section describes the model of a

single node at stratum 'N', the lowest possible stratum.

4.3 INTERACTIONS AMONG DECISION MAKERS

The set of all allowable interactions among the decision makers has been k:fined by
Remy (1986). The following subsections present a review of all the allowable interactions

that can exist among decision makers.
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4.3.1 Allowable Interactions

The four possible links from a decision maker to another one are shown in Figure

4.3. Note that Figure 4.3 does not represent a feasible organizational structure as some of

the allowable interactions shown can not exist simultaneously. A detailed discussion of

feasible organizational structures is presented in Chapter VI. The following section

describes the physical significance of the four kinds of interactions presented in Figure 4.3.

4.3.2 Physical Significance of the Interactions

- External input to SA of DMi: ei

This link represents the presence of an external input to a decision maker DMi. The

content of this information is not the topic of discussion here, and is taken as application-

dependent, see Stabile and Levis (1981) and Hall (1982).The nature of the external input,

however, is discussed in subsection 4.5.2.

DM i

SA IF TP CI RS

( I A IF TP CI RS s

D M

Figure 4.3 Allowable Interactions
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• External output from RS of DMi: si

This link represents the presence of an external output from a decision maker DMi.

Again the nature and content of this information are not discussed here.

* SA of DMi to IF of DMj: Fij

This link models the transmission of assessed situation from DMi to DMj. The

presence of this link only represents the fact that such an interaction occurs at this stage

between the two decision makers.

* RS of DMi to SA of DMj: Gij

This interaction represents the case where the output of decision maker DMi is the
input to another decision maker, DMj, e.g., a serial or tandem arrangement. This

interaction models the situation where in addition to the information about the task, DMi

sends a control signal to DMj in order to trigger the task assigned to the latter.

* RS of DMi to IF of DMj: Hij

This interaction models the result sharing type of information from decision maker

DMi to decision maker DMj. The output information sent by decision maker DMi may or

may not be taken into account by DMj in formulating his own response.

* RS of DMi to CI of DMj: Cij

This link represents the issuing of a command from DMi to DMj. It introduces a

multiechelon hierarchy between two decision makers.

4.4 SINGLE INTERACTING COMPOUND NODE

The second step of the methodology for generating stratified organizational

structures is the definition of the compound nodes. As mentioned earlier, a DMU at stratum

'k', where 1 < k < r ;s a compound node. A compound node itself is a decision making

sub-organization (OMSO) comprised of a number of DMUs defined at the next lower

stratum. Therefore, a compound node structure can be considered as a folded structure of

the lower-strata DMUs and their interconnections. The following subsection describes this

process of folding by taking two DMUs, defined at stratum 'N'. As mentioned, the stratum

'N' is the lowest possible stratum that can be defined for a given Stratified Decision
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Making Organization (SDMO). The DMUs in stratum 'N' are human Decision Makers

(DM) and the rules formulated by Remy (1986) apply to the organizational structures in
stratum 'N'. Once an organizational structure in stratum 'N' is folded into a compound
node, then rules for interconnecting compound nodes need to be formulated. In case the
interactional structure of a compound node follows the same rules as defined for a DM,

then the folding of organizational structures witn compound nodes will follow the same
procedure described for organizational structures in stratum 'N'. As a result, the folding
procedure can be generalized to fold an organizational structure in stratum 'k', where 1 < k

< n. This generalization follows from the fact that a DMU in an arbitrary straum 'k', where

'k' is not equal to 'N', is defined as a compound node. The reason for taking only two

DMs to illustrate the folding procedure is that the interactions are defined in terms of a pair

of DMs. The technique used for two DMs can be generalized to any number of DMs, taken

two at a time.

4.4.1 Folding

Figure 4.4 shows an organizational structure with all allowable interactions from

one decision maker to another with parts of the net grouped together. The grouped portions

of the net are to be replaced by compound transitions. Figure 4.5 shows the structure of the

organization in Figure 4.4 with all subnets compoundL J (replaced by compound
transitions) and all places folded. A ,uffix 'C'- Compound - is, therefore. added to all five

stages in the structure. The compounding procedure has been presented in Subsection

2.3.3. The folding of the places follows the discussion in Subsection 2.3.4. Figures 4.6,
4.7, 4.8, 4.9, and 4.10 present all the subnets that are replaced by the compound

transitions. In these figures, the places with labels of the form 'B in/out' represent the
input and output port nodes (Subsection 2.3.3) to the subnet replaced by a compound

transition. The port nodes preserve the lower stratum connectivity among compound
transitions, and hence play the rule of c,)nnectors when the structure is unfolded.

The new compounded and folded structure, Figure 4.5, preserves the connectivity

of the structure in Figure 4.4. The ideas of compound transitions and folding of places are
taken from Hierarchical Petri Nets and Colored Petri Nets respectively Far a detailed

description of compounding and folding a Petri Net model, see Peterson (1981) and Jensen

(1987).
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SA IF P I FI

Figure 4.4 Organizational Structure in Stratum 'N' with Allowable Interactions

Figure 4.5 Folded Structure

SA

0B out

SA B

Figure 4.6 Subnet Replaced by SAC
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Bin 
Bu

IF

Figure 4.7 Subnet Replaced by IFC

TP

Bin] B out

Bin TP Bu

Figure 4.8 Subnet Replaced by TPC
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BinB Bout

Figure 4.9 Subnet Replaced by CIC

RS

BRS

Figure 4.10 Subnet Replaced by RSC

A careful investigation of different organizational structures with 'm' number of
decision makers yields eight different folded configurations. Figures 4.11, 4.12, 4.13,
4.14, 4.15, 4.16, 4.17, and 4.18 show the organizational structures with all the possible
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interactions that can exist among DMs in stratum 'N' and their corresponding folded
structures in stratum 'N-1'. Note that the set of folded configurations given in these figures

is an exhaustive set; it contains all the possible configurations, as the elements of the set
represent all the possible combinations in which DMs can interact with each other. Again,

all possible configurations are illustrated for organizational structures with two DMs.

4.4.2 Compound Node

In all the configurations shown in Figures 4.11 to 4.18, the five stage processing

part of the structures is identical. The feedback arcs which appear in some of the

configurations represent the interactions among the DMs, where the DMs and their
interactional structure is defined in the lower stratum (stratum 'N'). Therefore, the

compound node is defined as the five stage structure shown in Figure 4.19. All the

possible feedback arcs are suppressed in this model as the compound node structure
represents the higher stratum description of an organizational structure. The lower stratum

interactions need not appear in the higher stratum description as long as these interactions

are preserved in the lower stratum description.

SA IF TP a PIS

SA IF TP al RS

a) Organizationa Structure in Stratum 'N'

b) Folded Structure in Stratum 'N-I'

Figure 4.11 Organizational Structure I and its Compound Node Representation
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SA IF TP a FIS

a) organtizational Structure in Stratum W

SAC FC

b) Folded Structur i n Stratum 'N-1

Figure 4.12 Organizational Structure 2 and its Compound Node Representation

SA IF TP a RS

a) Organizational Structure in Stratum 'N'

b) Folded Structure in Stratum'N-lI

Figure 4.13 Organizational Structure 3 and its Compound Node Representation
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SA IF TP a PIS

SA IF TP Cl RIS

a) Organizational Structure in Stratum 'N'

b) Folded Structure n Stratum 'N-I'

Figure 4.14 Organizational Structure 4 and its Compound Node Representation

SA IF TP el RS

SA IF: TP Q PIS

a) Organizational Structure n Stratum 'N'

b) Folded Structure in Stratum N-1'

Figure 4.15 Organizational Structure 5 and its Compound Node Representation
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a) Organizationl Structure in Stratum N'J

b) Folded Structure in Stratum 'N-i'

Figure 4.16 Organizational Structure 6 and its Compound Node Representation

SA IF TP CI RS

a) Organizational Structure in Straturn 'N

b) Folded Structure in Stratum 'N 1

Figure 4.17 Organizational Structure 7 and its Compound Node Representation
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SA IF TP Cl RS

SA IF TP Cl RS

a) Organizational Structure in Stratum N

SAC IFC TPC CIC RSC

b) Folded Structure in Stratum 'N-i'

Figure 4.18 Organizational Structure 8 and its Compound Node Representation

SAC IFC TPC CC RSC

Figure 4.19 Compound Node

4.4.3 Single Interacting Compound Node

The five stage model of a DMU (compound node) presented in the previous section
will be, from now on , the only one to be considered. The organizational structures, no

matter what their interactional structure is, can be folded into the compound node structure

of Figure 4.19. Note that the internal structure of the compound node will always contain

all the five stages (SAC, IFC, TPC, CIC, and RSC). The presence of all the stages of a
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compound node introduces a number of structural constraints to be discussed in Chapter

VI.

Figure 4.20 shows all the input and output stages of a single compound node. The

input and output stages are the same as those of a DM described in section 4.2. The

physical interpretation of these interactions, however, varies slightly from that of a single

DM.

x y

Figure 4.20 Single Interacting Compound Node

A compound node receives input or data x from the external environment (sensors)

or from other compound nodes of a system. The incoming data are processed in the

compound situation assessment (SAC) stage to get the assessed situation z. This variable
may be sent to other compound nodes. If the compound node receives assessed data from

other compound nodes, these data z' are fused together with its own assessment z in the
compound information fusion (IFC) stage to get the revised assessed situation z". The

assessed situation is processed further in the compound task processing (TPC) stage to

determine the strategy to be used to select a response. The variable v contains both the
assessed situation and the strategy to be used in the compound response selection stage. A

particular compound node may receive a command v' from superordinate compound

nodes. This is depicted by the use of the compound command interpretation (CIC) stage.
The output of that stage is the variable w which contains both the revised situation
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assessment data and the response selection strategy. Finally, the output or the response of

the compound node, y, is generated by the compound response selection (RSC) stage.

The input and output stages of a compound node are the same as those of a DM;

therefore, the organizational structure with compound nodes as DMUs will have the same

kind of topology as of those with human decision makers. The folding procedure described

for an organizational structure in stratum 'N' therefore can be generalized for any

organizational structure in stratum ', where 1 < k < n, if it is desired to have a stratum

'k- ' description of the organization.

4.5 INTERACTIONS AMONG COMPOUND NODES

The model of the compound node in Figure 4.20 is the one used to define the
interactions that can exist between two compound nodes at a given stratum. This section

describes all the allowable interactions that can exist among compound nodes.

The allowable links from a compound node to another are shown in Figure 4.21.

First, consider the inputs and the outputs to the compound nodes in Figure 4.21.

External Input, Input to SAC of DMUi: ei

This link represents the external input to a decision making compound node. The

external input is defined to be an item of information directly from the environment or a

control signal from a compound node structure defined at the next higher stratum. The

presence of such a link characterizes the fact that a particular DMU may receive data from

the external environment or from another DMU located at the next higher stratum. The

term external input is explained with the help of an example.
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DMU i

SAC IFC TPC ClC RSC

DMUj

Figure 4.21 Allowable Interactions

Example 4.2

Figure 4.22 shows two compound nodes, DMUik and DMUjk, and the
interactions between them . The organizational structure shown in Figure 4.22 is
defined for stratum 'k'. Figure 4.23 shows the system in Figure 4.23 with
compound nodes unfolded in order to have a stratum 'k+' description of the
organizational structure. Let each compound node, when it is unfolded, contain two
DMUs. The basic decision making units at stratum k+l are defined as DMUak+l,
DMUbk+1, DMUck+I, and DMUdk+I

It can be seen in the figure that the links ea, eb, ec exist; The DMUs 'a',

'b', and 'c' are receiving external inputs. The nature of the external input, however,is different for these DMUs. The nodes DMUak+I and DMUbk+I are receiving
inputs from the external environment (the input transition-place pair on the left),
while DMUck+l is receiving an input only from DMUik. Therefore, an external
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input at stratum 'k+ F is defined to be an input signal either from the environment

or from the systems defined at higher ('k') stratum.

DMUik

SAC IFC TPC CIC RSC

DMUjk

Figure 4.22 Structure i, stratum W for Example 4.2

DMUik

"DMUIk+1SAC IFC TPC CIC RSC

eb

DMUbk+ 1

¢M~k+1 SAC IgC TPC CIC RSC

DMUdk+I

DMUJk

Figure 4.23 Structure in stratum 'k+l' for Example 4.2
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* External Output from RSC of DMUi: si

This link represents the external output of a decision making compound node to

processes external to the organizational structure considered. This output can either be fed

to other compound nodes at the next higher stratum or can be directly sent to the external

environment depending upon the designer's specifications defined for all other higher strata

of the system. The external output is illustrated in Example 4.2, where DMUs 'a', 'b', and
'd' are producing outputs. The output from DMUak+1 and DMUbk+I is fed to the

subsystems of DMUjk, while that of DMUdk+I is sent directly to the environment.

* SAC of DMUi to IFC of DMUj: Fij

This link models the transmission of assessed situation from compound node i to

compound node j. The presence of this link only represents the fact that such an interaction

occurs at this stage between two compound node. As a matter of fact this link now

characterizes a 'compound link' between two compound nodes. The question of how many

such physical links are represented by this 'compound link' is addressed in Chapter VI.

* RSC of DMUi to SAC of DMUj: Gij

This interaction models the transmission of control from the output of a decision

making compound node to the input of another. The two compound nodes are then said to

be connected in a serial or tandem arrangement; the processing of one is dependent upon
the completion of the processing by the other. The link represented by the coefficient Gij

will not be a compound link as explained in the following Chapter.

* RSC of DMUi to IFC of DMUj: Hij

This interaction models the result or processed information sharing type of

interaction between two decision making compound nodes. The issue of the actual number

of links going from one compound node to another when the compound structures are

unfolded is addressed in Chapter VI.

* RSC of DMUi to CIC of DMUj: Cij

This link represent the flow of instructions or commands from one decision making

compound node - DMUi - to another - DMUj. It introduces echelon type hierarchical

relationship between two sub-organizational structures -compound nodes. The actual
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number of such links representing this hierarchy at the next lower stratum will be presented

in Chapter VI.

When a compound node 'q' in stratum 'k-l' is unfolded in stratum 'k' into an

organizational structure with 'm' DMUs, then the maximum number of links

(interconnections) between DMUs is given as:

(LqkOmax = 4m2 - 2m mE PIk (4.1)

4.6 MATHEMATICAL MODEL

The previous section leads to a mathematical representation of interactions between decision
making nodes/compound nodes.

4.6.1 Representation of Interactions

The coefficients ei, si. Fij, Gijt Hij, Cij of Figure 4.8 are integer variables taking

values in {0, 1 }, where i will indicate the presence of the corresponding link in the

organizational structure at the stratum for which the structure is defined. Note that the value

of the coefficient does not indicate the number of such links which actually exist. Sii!a-rly,

a value 0 for the coefficient will indicate the absence of the link altogether.

The variables are aggregated into two vectors e and s, and four matrices F, G, H,

and C. As mentioned before, in order to avoid cumbersome notation the stratum and node

numbers associated with the six arrays are not shown.

The interaction structure of an m-DMUs compound node T, i E Pk, is theretore

represented by the following tuple.

"ik+ 1 = I e, s, F, G, H, C } i Pk

k = 0,1,2,...,n
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Note that the DMUs of the compound node are defined in stratum 'k+l', Figure

4.24. The structure of the compound node i' at stratum 'k' will be the five stage model

shown in Figure 4.20. Yik+l rcpresents the interactional structure of the compound node

T, when the level of abstraction used to describe the structure is of stratum 'k+l'. The

compound node T itself is defined as a DMU for stratum 'k'.

The six arrays e, s, F, G, H, C are defined as follows;

" Two m x 1 vectors e and s representing the interactions of the m-DMUs ('a'

and 'b'), Figure 4.24, with the external processes.

e = [eal a = 1,2,...,m m E I9k+l

S = [Sal a = 1,2,...,m mC E k+l

" Four m x m matrices F, G, H, C representing the interactions among tne

decision making nodes/compound nodes of the organizational structure

represented by compound node T.

F [Fab] G = [Gabl a = 1, 2. m

H [HabI C = [Cab] b = 1, 2, m

m ' Itk+l

DMUik Stratum k

Stratum k+1

Figure 4.24 A Stratified Organization
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The diagonal elements of the matrices F, G, H, and C are set to '0'; DMUs are not

allowed to interact with themselves.

Faa = Gaa = Haa = Caa = 0 for a=l,2,..., m wheremE lak+J

4.6.2 Well Defined Net

The six-tuple Xik+1 is called a Well Defined Net (WDN) of compound node 'i'

which is located at stratum 'k'. The dimension of the WDN is 'm', where 'm' is the

number of decision making units (DMU) in 'i'. The set of all WDN of dimension m will be

denoted by Wik+](m). It is clear that the set of all WDNs defined for compound node 'i' is

isomorphic to the set {0, 1 }(Lik+I)max, Equation 4.1. The dimension of Wik+I(m) is

therefore

2(Lik+)imax = 2 (4m2-- 2in)

4.6.3 Lattice Structure of Wik+f(m)

The formalism of the lattice theory, as presented in Chapter III, is applied to the set

of all Well Defined Nets, Wik+I(m). of a compound node 'T located at stratum 'k' with

dimension m. As a result, an order is defined on this set as follows

Definition 4.2

Let

Y-ik+l = fe, s, F, G, H, C1 and Y'ik+l {e', s', F', G', H', C') be two

WDNs of the same dimension m.

'ik+1 is said to be a subnet of Xik+l, denoted by X'ik+l < YK+I. if and only if

e' , e F' F G' G G

s H' H C' C
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The relation ',,' has been defined in Chapter 2, i.e., A ,, A' if and only if every

element of A' is less than or equal to the corresponding element of A.

The set of all WDNs is therefore a partially ordered set. The following properties

are the result of some of the definitions presented in Chapter III and are therefore given

without any further proof.

The least element of the set of all WDNs of a compound node is defined to

be the WDN whose arrays have all their elements equal to 0. It is denoted

by o n .

The greatest element of the set of all WDNs of a compound node is defined

to be the WDN whose arrays have all their elements equal to 1 except for the

diagonal elements of the arrays F. G, H, and C. It is denoted by Qjm.

A WDN Yik+l will cover another WDN Y-'ik+l if and only if

X'ik+l < Yk+l and Yik+l has exactly one more link than Y'ik+l, i.e.,

d[ ik+1I = d[Y'ik+lI + I.

According to Theorem 3.4 of Subsection 3.2, Wik+l satisfies the Jordan-Dedekind

chain condition. The following propositions give a characterization of the join and meet of

two WDNs of dimension m.

Proposition 4.2

Let

Y'ik+1 = e', s', F', G', H', C') and Y,"ik+l = {e", s", F", G", H", C"}

be two WDNs of dimension m.

The join of Y"'ik+ 1 and Y"ik+l, -il = Y'ik+i U Y"ik+! , will be a WDN

represented by the arrays e, s, F, G, H, and C with

e =e' U e" F=F' u Fl C =C' U C"
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s=s' U s" G=GUG" H =H' U H

The binary operator 'U' has already been defined in Chapter III. The operator is

then extended to arrays taking values on the set 10, 1 }, on an element to element basis.
Note that the same notation 'u' has been used for three different operations: the

composition law defined on the set { 0. 1}, the extension of this law to arra-1s, and the join

operation between two WDNs.

The join of two WDNs is defined to be a new net that contains all the interactions

that appear in either one of the two WDNs or both.
Proposition 4.3

Let

Y'ik+l = Je', s', F', G', H', C') and '"ik+l = {e", s', F'', G", H'', C'')
be two WDNs of dimension m.

The meet of X-'ik+l and I "ik+1, 1ik+I = Y'ik+I n I "ik+f , will be a WDN

represented by the arrays e, s, F, G, H, and C with

e =e' ell F =Fr) F" =C' C C"

S= S) sit G=GO) G" H=H' r H"

The binary operator 'n' has already been defined in Chapter III. The operator 'CV

is then extended to arrays taking values on the set {0 , 1 }, on an element to element basis.

Note that the same notation 'n' has been used for three different operations: the

composition law defined on the set (0, 1}, the extension of this law to arrays, and the meet

operation between two WDNs.

The meet of two WDNs is defined to be a new net that contains only the
interactions that appear in both WDNs.
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From Propositions 4.2 and 4.3 it is clear that the join and meet of any two WDNs
can always be defined and are within the set of WDNs. Since the partially ordered set has a
least and a greatest elements, Proposition 4.4 follows.

Proposition 4.4

The set Wik+1 of all WDNs of dimension m of a compound node T located at

stratum k' is a lattice.

4.7 CONCLUSION

An introduction to the methodology for generating Stratified Decision Making

Organizations (SDMOs) was presented in this chapter. The first part of the chapter was

comprised of basic concepts and definitions of Multilevel Hierarchical systems. A review

of the model of a single interacting decision maker was then presented. In the second part

of the chapter, an organizational structure with human decision makers was folded to obtain

a compound node structure. The folding procedure was then generalized to all

organizational structures defined at any arbitrary stratum. A compound node model was

selected against a number of possible folded structures. The third part of the chapter dealt
with the definition and interpretation of the interactions among compound nodes. Finally, a

mathematical model was presented for the interactions, and the concept of Well Defined

Nets (WDNs) was introduced based on the mathematical model. It was found out that the

set of all WDNs Wik+1 of a compound node i in stratum k with m subsystems is a lattice.
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CHAPTER V

REPRESENTATION OF MULTILEVEL ORGANIZATIONAL CLASSES

5.1 INTRODUCTION

The labeling used by Remy (1986) to represent places and transitions of an

organizational structure is extended to label the places and transitions of the stratified

organizational structures. Note that the labeling technique used by Remy applies only to the

nodes at stratum 'N', the lowest stratum with human decision makers (DM) as DMUs. A

brief review of the said labeling technique is given in this section.

The labeling technique used by Remy (1986) was introduced primarily for

computational purposes. Table 5.1 gives the labels associated with all possible transitions

of an organizational structure.

TABLE 5.1 Labeling of the Transitions

Description Label

Input transition to

Output transition t6

SA of decision makerT ti

IF of decision maker T t2i
TP of decision maker 'i' t3i

CI of decision makerT t4i

RS of decision makerT ti
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The generic label of an internal transition of an m-decision maker organization is
given by tsr with 1 _ s 5 5 and 1 :5 r : m. The index 's' corresponds to the stage and 'r' to
the decision maker.

Table 5.2 indicates the scheme used for labeling all the internal and interactional
places of an organizational structure.

TABLE 5.2 Labeling of the Places

Transitions Corresponding
Input Output Places

-- to PO

t - tli Ph

ti t2i P2i

t1i -4 t2j P2ij

t2i t 3i P3i
t3i -4 t4i P4i

t4i - t5i P5i

t5i "4 t6  P6i

t5i - t Ij P6ij I

t5i "4 t2j P6ij2

t5i -4 t4j P6ij4

t6 P7

Example 5.1

Figure 5.1 shows two decision maker,, 'i' and j', with all allowable interactions
from decision maker 'i' to decision maker j'. The places and transitions are shown
labeled according to the schemes defined in Tables 5.1 and 5.2.
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The following section describes a modified labeling technique for representing

stratified organizational architectures.

DMi
Pli t l i  P2i t2i P3i t3i P4i t4i P&i t5i P6i

Pl1  t1 i P2 j t21  P3 j t3  P4  t4  P5& t 5 ' P6j

DMI

Figure 5. 1 Labeling of Transitions and Places

5.2 COMPOUND NODE IN STRATUM 'N-i'

Figure 5.2 shows a stratified organization with n = N = 1. The decision making

entities at stratum '1' are DMs T and 'j'. There is a single compound node at stratum '0'.
The generic label of DMU is used to represent all the three nodes. The process of folding

an organizational structure at stratum 1' to obtain a compound node structure at stratum '0'

will give insight to the generalized labeling scheme necessary to be implemented for

stratified organizational structures. The generalized labeling scheme will be presented in

later sections.
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DMUlo Stratum 0

M DMU I  DMU1

Stratum 1

Figure 5.2 Stratified Organization with n = 1

Figure 5.3 shows two DMUs 'i' and 'j' at stratum '1' with all allowable

interactions from DMUiI to DMUjI. It is shown in the figure that the labeling scheme

presented earlier is modified slightly and one more digit is added to each place and

transition label. The added digit depicts the stratum number to which a particular DMU

belongs. The label of an internal transition is now given as tsrk, where 'k' represents the

stratum number for which the DMU is defined. Similarly, the labels for all internal and

interactional places are modified. The input and output transitions and places are treated in a

different manner. The said places and transitions are assumed to be the processes which

belong to the compound node at the stratum 'k if the interactional structure is described at

stratum 'k +1'. Therefore, the label associated with the input and output transitions and

places have '0' as the stratum number and '1' as the DMU number instead of '1' for the

stratum and 'i' or j' for the DMU number.

The modified labeling scheme is given in Table 5.3 and Table 5.4
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DMI

Piji tiji p211  t2 j 1  p3 j 1  t311 p411  t4j1 P5.1  1511 P6 1

DM1

Figure 5.3 Modified Labeling Scheme

TABLE 5.3 Labeling of the Transitions in Figure 5.3

Description Label

Input transition tOlo

Output transition t610

SA of decision makerT 'i'
IF of decision maker 'i t2i I
TP of decision maker 'i t3i I
CI of decision maker 'i t4i I

RS of decision makerT t'i'
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TABLE 5.4 Labeling of the Places in Figure 5.3

Transitions Corresponding Places

Input Output

-4 tOlO Polo

tolO - tlil plil

tlil -4 t2i Ip2iI

till - t2jl P2ijl

t2il -4 t3il p3il

t3ij -4 t4i I P4i 1

t4il -4 t5iI P5il

t5il - t6 10 P6il

t5il tiji P6ijIl

t5il -4 t2jl P6ij2l

t5il t4jl P6ij41

t610 P710

The sequence of processes carried out to fold the structure, at stratum '1', in order

to obtain a compound node structure of the same organization, in stratum '0', is shown in

Figure 5.4 and Figure 5.5. A detailed discussion on folding the organizational structures

will be presented in later sections. The folding procedure adopted here follows the

discussion in Section 4.4, Chapter IV.
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DMU i

P lil t l i l  P2i1 t2i 1 P3ili t3ili P4i1 t4il i  P5i1 t 5 i1  Pi1

Pll t 1 P2 l t2jl P3 lt-0 P .. 24/ Pj1 4j l  5j l t5j 1 P6i1

DMUI

Figure 5.4 Structure to be Folded in Stratum '1'

Figure 5.5 Compound Node in Stratum '0'

The labeling of the compound node structure in Figure 5.5 now can be generalized

for all compound nodes in an arbitrary stratum 'n-l', 1 !< n < N. The following sections

generalize the results obtained in this section.
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5.3 TRANSITIONS OF A WDN IN STRATUM 'k

The transitions of a compound node are compound transitions; they represent a
subnet comprised of transitions and places defined at a lower stratum. The following

section presents a labeling scheme which is applicable to the transitions of all the DMUs

defined in an arbitrary stratum 'k'. In Figure 5.6, a DMU 'q' is shown in stratum 'k-I'
with two subsystems, DMUs T and j', in stratum 'k'. The DMU 'i' has two subsystems

defined at a lower stratum, namely DMUs 'a' and 'b', while DMU 'j' has DMUs 'c' and

V as its subsystems at stratum 'k+l'. Figure 5.6 will be used as a reference for the

variables defined throughout this chapter.

DMUqk'I I Stratum k-1

-Stratum k

DMUak+l DMU bk+l DMUck+I DMU dk+1

Figure 5.6 A Stratified Organization
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Table 5.5 gives the labels associated with all possible transitions of a WDN at

stratum k'. It can be seen in the table that transitions are labeled to reflect the DMU they

belong to, the stage they represent, and the stratum for which they are defined. This

labeling technique is introduced primarily for computational purposes and also to provide

an algorithmic approach for folding or unfolding an organizational structure. Note the
labels of the two supplementary transitions that represent the interactions of the

organization with the external environment or processes defined at higher strata. Their

labels represent the compound node number of the organizational structure under study.

Therefore, it can be said that the labels of the input and output transitions of an

organizational structure behave as a mapping function between the system defined at a

higher stratum to its subsystems (DMUs) in the lower stratum. Whenever organizational

structures are folded, with portions of the net replaced by compound transitions, only those

places and transitions are compounde" that belong to the subsystems of a single compound

node in higher stratum. The compound transitions inherit the node number from the labels

of input and output transitions of the lower stratum system's description.

TABLE 5.5 Modified Labeling of Transitions

Description Label

Input transition tOqk-I

Output transition t6qk-I

SA/SAC of DMU 'i tlik

IF/IFC of DMU i t2ik

TP/TPC of DMU 'i' t3ik

CI/CIC of DMU T t4ik

RS/RSC of DMU 'i' t5ik

The generic label of an internal transition will now be tsrk with 1 < s < 5 and 1 r _

m and 0 < k < n. The index 's' represents the stage, 'T the DMU number, and 'k' the

stratum.
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5.4 PLACES OF A WDN IN STRATUM k'

The places of a WDN defined for a stratum 'k', where 0 < k < n-i, are compound

places obtained by folding the places of the WDNs defined at a lower stratum - stratum

'k+l'. The places of the Petri Net representation of a WDN at a stratum 'k' can be

partitioned into four groups: Internal places represent connections that remain within the

boundaries of a node or compound node; Interactional places are the places which

correspond to the interactions among nodes or among compound nodes; a sink and a

source represent the interaction of the WDN with processes defined at higher strata. The

following sections present a labeling scheme that could be used to represent the places of

an organizational structure for a given stratum,

5.4.1 Internal Places of a Decision Maker

There are four types of internal places characterized by the stages they are related to:

" SA/SAC to IF/IFC

• IF/IFC to TP/TPC

" TP/TPC to CI/CIC

* CI/C1C to RS/RSC

As mentioned earlier, all five stages (SA, IF, TP, CI, and RS) need not be present

in a particular node defined at stratum 'N'. On the other hand, a compound node structure

will have all the five stages (SAC, IFC, TPC, CIC, and RSC). The existence of an internal

place in a node at stratum 'N' is determined by the following rules (Remy 1986):

• SA to IF: A place will exist between the SA and IF stages of a node (decision

maker) if and only if

* SA has at least one interactional input place and IF has at least one

interactional input place.

or
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* SA has at least one interactional input place and CI has at least one

interactional input place.

or

* SA has at least one interactional input place and RS has at least one

interactional output place.

* IF to CI: A place will exist between the IF an CI stages of a node if and only if IF

has at least one input place (interactional or internal).

* CI to RS: A place will exist between the CI and RS stages of a decision maker if

and only if CI has at least one input input place (interactional or internal).

Note that the above rules insure that the net representing a decision maker can not

be partitioned into two separate subnets. The rules also guarantee compliance with Section

4.2 where it is stated that only four internal configurations of a decision maker are

allowable: SA alone, SA-IF-TP-CI-RS, IF-TP-CI-RS, and CI-RS.

5.4.2 Labeling of Places

The labeling of places, like the labeling of transitions, is introduced primarily for

computational purposes. It also provides an algorithmic approach for folding and unfolding

the organizational structures at different strata. A description of the labeling technique

follows. A place will be labeled with a minimum of three and a maximum of five digits.

The minimum number of digits necessary to completely characterize a place will be used.

The complete characterization of a place involves the stage it represents, the DMU to which

it belongs, and the stratum for which it is defined. Three digits are used to characterize

internal places: The first one corresponds to the input stage of the place, the second

one corresponds to the DMU, and the third one corresponds to the stratum where the
DMU is located. The interactional places representing the sharing of assessed situation

between two DMUs require four digits. The first digit characterizes the type of place under

consideration - for example, an SA/SAC to IF/IFC interactional place -, the other two

specify the DMUs sharing this information, while the last digit characterizes the stratum

number where the two DMUs are located. Lastly, the remaining interactional places among
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the DMUs are labeled with five digits. The first one characterizes the type of place, the

second and third ones specify the DMUs exchanging information, the fourth one allows to

differentiate between output stages (SA/SAC, IF/IFC, CI/CIC ) and the last one indicates

the stratum number. The modified labeling scheme for places of a WDN is given in the

Table 5.6. The variables used in the labels correspond to variables described in Figure 5.6.

TABLE 5.6 Modified Labeling of Places

Transitions Corresponding

Input Output Place Label

-4 t~qk- I P~qk-1
t~qk- 1 - tlik Plik

tlik "- t2ik P2ik

tilk 4 t2jk P2ijk

t2ik  t3ik P3ik

t3ik t4ik P4ik

t4ik -" t5ik P5ik

t5ik -4 t6qk-1 P6ik

t5ik tljk P6ij lk

t5ik -4 t2jk P6ij2k

t5ik t4jk P6ij4k

t6qk- 1 - P7qk-1

5.5 MAXIMUM NUMBER OF TRANSITIONS AND PLACES

5.5.1 Maximum Number of Transitions and Places in a WDN

When a compound node 'q' in stratum 'k- l' is unfolded in stratum 'k' into an

organizational structure with 'm' DMUs, then the maximum number of transitions in that

WDN is given as:
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(Mqk)max = 5m + 2  qE 1k-i m k (5.1 )

The maximum number of places in the m-dimensional WDN can be determined as

presented in Table 5.7. Places are listed according to their input transitions, which is

equivalent to a listing according to the first digit of the numerical part of their label.

TABLE 5.7 Maximum Number of Places in a WDN

Description Corresponding Maximum Number

Place Label

* Source Place POqk-1

• Source -4 SA/SAC Plik Nlqk = m

* SA/SAC - IF/IFC P2ik

P2ijk N2qk =
• IF/IFC - TP/TPC P3ik N3qk = m

* TP/TPC- CI/CIC P4ik N4qk =m

* CI/CIC -4 RS/RSC P5ik N5qk = m

RS/RSC -4 SA/SAC P6ijlk m2 -m

IF/IFC P6ij2k m2 -m

-- CI/CIC P6ij4k m 2 - m

Sink P6ik m

* Subtotal RS/RSC -- N~gk = 3m 2 - 2m

Sink Place P7qk-1 1

TOTAL 4m 2 + 2m + 2
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The maximum number of places of a WDN is obtained by adding the starred entries

in Table 5.7 and is given as:

(Nqk)max = 4m2 + 2m + 2 (5.2)

5.5.2 Maximum Number of Transitions and Placcs in Stratum 'k'

When an organizational structure at stratum '0' is decomposed at an arbitrary

stratum 'k', where 1 !5 k 5 n, the maximum number of transitions in that description of the

structure is given as:

k-I
Mk max = 512kI + 2 1 IjA/I (5.3)

1=0

The first term in Equation 5.3 corresponds to the total number of transitions

representing different stages (SA/SAC, IF/IFC, TP/TPC, CI/CIC, RS/RSC) of the DMUs

in stratum '. Since the number of DMUs in the organizational structure is determined by
the total number IItkI of the set 4.k of all the nodes in stratum 'V', the maximum number of

transitions in the net at stratum 'k' will be five (total number of stages in a DMU) times the
total number of DMUs Ik. The second term in the equation accounts for the exact number

of input and output transitions in the net at stratum '. Since each compound node has

exactly one input and one output transitions when it is unfolded to the next lower stratum,

the total number of such transitions in an arbitrary stratum ' will be two times the total

number of compound nodes that are unfolded in the process of unfolding the organizational

structure from stratum '0' to stratum 'k'. From the discussion above it can be easily
inferred that Equation 5.1 is an special case of Equation 5.3, where IgkI = m and k = 1.

The maximum number of places in the organizational structure at stratum '' is

determined by Table 5.8.

The maximum number of places of an organizational structure is obtained by adding

all the starred entries in Table 5.8.
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12 ~k-1 54
Nk max = 4 k12 + 2 ItkI + 2X Iptt (5.4)

1=0

TABLE 5.8 Maximum Number of Places in an Organizational
Structure in stratum 'k'

Description Maximum Number

* Source Place k-1

/=0

* Source -+ SA/SAC NIk =Pik'

* SA/SAC --+ IF/IFC N2k = IP-k12

* IF/IFC - TP/TPC N3k = IlkI

* TP/TPC -4 CI/CIC N4k = IgkI

* Cl/CIG - RS/RSC N5k =I'kI

RS/RSC -4 SAISAC IP-k12 - I'ki

IF/IFC 1P-k12 - I'Pkl

CI/CIC I/GIIG2 - I'Pki

Sink I~tkI

* Subtotal RS/RSC N6k = 3 19kl12 2 I'Pkl

* Sink Place k-I

I=0
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5.6 CORRESPONDENCE BETWEEN MATRIX AND PETRI NET
REPRESENTATIONS

There is a direct-one-to one correspondence between interactional places and the
non zero elements of the matrix representation of a WDN described in Section 4.6. Each
#1' in the arrays representing a WDN corresponds to the presence of a particular kind of
interaction between two DMUs or between a DMU and the external environment. Table 5.9

lists all possible links and gives for each of them the correspondence between the matrix

and Petri Net representations. A link characterizes the presence of a particular kind of

interaction in terms of a place and its input and output arcs. The actual number of such links

present in the lower-strata description of the organization will be determined in Chapter VI.
In Table 5.9, the Petri Net representation of the links is given in terms of the interactional

places and their corresponding input and output transitions.

TABLE 5.9 Correspondence Between Matrix and Petri Net Representations

Matrix Corresponding Transitions Corresponding

Representation Input Output Place Label

ei = 1t~qk- 1 -'4 tlik Plik

Si t5ik -'- t6qk-I P6ik

Fij = I tlik -4 t2jk P2ijk

Gij = 1 t5ik "4 tljk P6ij lk

Hij = 1 t5ik -4 t2jk P6ij2k

Cij = 1 t5ik " t4jk P6ij4k
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Once the interactional places are defined, internal places are uniquely determined.

The rule for the determination of internal places is trivial for compound nodes as all the

stages must be present in a compound node structure. Therefore, no matter what

interactions one compound node has, it will contain all the internal places. The rules for the

determination of internal places for a DMU representing a human decision maker is

presented in Subsection 5.4.1. These rules were developed by Remy (1986).

The development in this section will be illustrated with two examples. In both cases
the matrix representation is given first. The interactional places of the Petri Net are then

defined and then the internal places are added to complete the structure. The places and

transitions are annotated with appropriate labels.

5.6.1 Example 5.1

Figure 5.7 gives the matrix representation of X12, a 2-dimensional WDN

of a compound node '1' in stratum 'I' with the interactional structure defined for

stratum '2'. The stratum '2' is defined to be the lowest stratum with n = N = 2,
therefore, the DMUs in stratum 2' are human decision makers (DMs). Figure 5.8
shows the corresponding interactional places in the Petri Net representation of 12.

Finally, Figure 5.9 presents the entire Petri Net structure, with internal, input, and

output places added.

12= { e, s,F, G,H,C }

e I IF 0 1] G=[0 0]
1 01 0 01

S 0 1H 0 01 0 01

Figure 5.7 Matrix Representation of -12
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p 11 t12 t~ 2 312 12 512DMU 1 2

t 1 
6124

1

ElDMU 2 2

p 22tl22 t22 t3 2 2  t 4 2 2  t 5 2 2 P2

Figure 5.8 Interactional Places Of 112

p 112 t1 12 P2 1 2 t2 2  P3 1 2 t 1 2 P4 1 2 t4 1 2 p5 12 t 5 1 2  D U1

pl 22 tl 22 P222 t2 2 2 P3 2 2 t3 2 2 P4 2 2 t 4 2 2 P52 t522 P62

Figure 5.9 Petri Net Representation Of X-12
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5.6.2 Example 5.2

Figure 5.10 gives the matrix representation of 122, a 4-dimensional WDN

of a compound node '2' in stratum '1' with the interactional structure defined for

stratum '2'. The stratum '2' is defined as the lowest stratum (n = N = 2). The

DMUs comprising the compound node '2' are DMU32, DMU42, DMU52, and

DMU62. Figure 5.11 shows the corresponding interactional places in the Petri Net

representation of 122. Figure 5.12 presents the entire Petri Net structure.

22 e, s, F, G, H,C

00 0 01 -00 0 0]

e=(0 0 1 11 F=[- 0 0 G= 0 0

01 0 0 00 0 J
-0 0 0 0- 0 0 0 0-

s=[l0 0 1] H= 0 0 0 1C= 1 0 1 0

0 1 0 00 0 0 10 0 0 00 0 0

Figure 5.10 Matrix Representation of 122
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t 4 3 2  1532 P632

DMU 3 2

P 4342

P 2542 t22 142 14 542 D MU 4 2

P021 tO21 1662t621 P72

0 t D MU 52
P1 52 tl152 t252 1352 4 52 t552

0 D MU 6 2
p162  tl 62 262 t3 62  1462 t56 2 P66 2

Figure 5. 11 Interactional Places Of 122

4 3 2 P 53 2 6 3 2 D U 3

P1 65 2  ti162 P2 6 2 ? 262 P35 t35 2 p45 2 462 P562 t55~62

Figure 5.12 Petri Net Representation Of 122
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5.7 INCIDENCE MATRIX

As described in Chapter II, a Petri Net can be represented by an integer matrix
reflecting its topological structure. The matrix, called incidence matrix, is the basis of a

number of algebraic computations that are made on pure Petri Net structures. This section

shows the construction of the incidence matrix of a WDN and its folding or unfolding as a
result of describing the same organizational structure at different strata. An example is
presented at the end of this section to illustrate the results.

5.7.1 Construction of the Incidence Matrix

As mentioned in Subsection 4.6.2, Yqk represents the WDN in stratum ' of a

compound node 'q' in stratum 'k-l'. The incidence matrix Aq.k-1.1 of the WDN ,Yqk is
defined as follows. Aq,k-lJ is a rNI x MI matrix, where k-I ! _ n is the stratum at which

the organizational structure of 'q' is described by the mqtrix. The columns of Aq~k-I.

correspond to the transitions of the net and the rows to the places of the Petri Net
representation of the node 'q' in stratum T'. The matrix Aq.k-l.k-I of the compound node

'q' is trivially shown in Figure 5.13. Note that the matrices of all the compound nodes have
the same structure as that of Figure 5.13. The folding or unfolding of matrices to obtain

different strata description of an organizational structure is discussed in later sections.

tlqk-i t2qk-I t3qk-I t4qk-1 t.qk-I

Plqk-I -1 0 0 0 0

P2ok- 1 -1 0 0 0

P.30- o 1 -1 0 0

P4qk-I 0 0 1 1 0

P5qk-1 0 0 0 1 -1

P6qk-I 0 0 0 0 1

Figure 5.13 Matrix Representation of a Compound Node
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The elements of the incidence matrix take values in {-1, 0, 1 ). An element with 1 or

-I as its value indicates the presence of a single link at the very stratum for which the

incidence matrix is defined and also depicts the presence of lower strata elements of the

block of incidence matrix representing lower-strata connections of the link. Therefore, the

elements of the incidence matrix represents blocks, if the lower strata description of an

organizational structure is desired.

The determination of the non-zero elements of Aq.k-1.k (the incidence matrix of the
WDN with 'i' DMUs, where m e {i, j}, in stratum 'k', of a compound node 'q' in

stratum 'k-l') is done as follows: The labeling of places presented in Section 5.4.2 is

designed in such a manner that, once a place is identified in the net, its input and output

transitions can be determined by just reading the place label. The location of the non-zero

elements can be determined by the input and output transitions. The labeling of the places is

the only information used to determine explicitly the elements of Aq.k-l.k associated with the

compound node 'q' in stratum 'k-1'.

In the following development, transition corresponding to the n-th column of

Aq.k-l.k will be denoted by ts'm'k, where s' denotes the stage (0 < s'_5 6), m' e {i, j), and

'k' depicts the stratum number. To characterize arn (the element of the r-th row and n-th

column), the Kronecker delta is used. The Kronecker delta is defined as follows:

1, i=j
= {0, otherwise (5.5)

Let us consider the r-th row of Aqk-l.k ; this row will correspond to a place. Five

cases are distinguished according to the number of digits in the label of a place.

- Place has a three digit label: Psqk-, s = 0, 7

POqk-I is the source of the organization and has only an output

transition, tOqk.-, while P7qk-I is the sink and has only an input transition,
t6qk.1. Since all organizational structures are required to have a sink and a

source, the following equations hold:
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am= -1 s = 0 and s'= 0 (5.6)

am= 1 s = 7 and s'= 6 (5.7)

All other elements of the first and last rows are equal to zero.

• Place has a three digit label: Psik, 1 _< s : 6

The analytical equations are given as:

ara = (8i s'+l - 8i s') X 8j m' 1 5s'55 (5.8)

XM = (8iS+i S-') s' = 0 or s'= 6 (5.9)

° Place has a four digit label: P2ijk

This case is covered by the following equation:

(ira = (81 s' X 8i m') - (82 s' X Sj m-) (5.10)

" Place has a five digit label: Psijyk, Y 1, 2, 4

A generic index s is used to accommodate places representing interactions

introduced by special constraints. Special constraints are introduced in

Chapter VI. The analytical equation, however, is given as:

0Cm = (As-1 s'X 5im)- (&Y S. X 8.M-) (5.11)

Equations (5.6), (5.7), (5.8), (5.9), (5.10), and (5.11) completely characterize the

incidence matrix of the compound node 'q' in stratum 'k-1' when represented at stratum

k'. In order to describe the same organizational structure at lower strata, a methodology of

unfolding the organizational structure is presented in Subsection 5.7.4.

5.7.2 Examples

In this section, the incidence matrix of the examples presented in Section 5.5 are

constructed with the help of the equations presented in the previous section.
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Example I (Figure 5.10)

The incidence matrix A1 12 of Y12 is given in Figure 5.14

tOll t112 t1 2 2  t212 t222 t3 1 2  t322 t412 t4 2 2  t512 t522 t6l1

POl -1 0 0 0 0 0 0 0 0 0 0 0

P112 1 -1 0 0 0 0 0 0 0 0 0 0

P122 1 0 -1 0 0 0 0 0 0 0 0 0

P212 0 1 0 -1 0 0 0 0 0 0 0 0

P2122 0 1 0 0 -1 0 0 0 0 0 0 0

P222 0 0 1 0 -1 0 0 0 0 0 0 0

P2212 0 0 1 -1 0 0 0 0 0 0 0 0

P312 0 0 0 1 0 -1 0 0 0 0 0 0

P3 2 2  0 0 0 0 1 0 -1 0 0 0 0 0

P412 0 0 0 0 0 1 0 -1 0 0 0 0

P4 2 2  0 0 0 0 0 0 1 0 -1 0 0 0

P512 0 0 0 0 0 0 0 1 0 -1 0 0

P522 0 0 0 0 0 0 0 0 1 0 -1 0

P61242 0 0 0 0 0 0 0 0 -1 1 0 0

P622 0 0 0 0 0 0 0 0 0 0 1 -1

P711 0 0 0 0 0 0 0 0 0 0 0 1

Figure 5.14 The incidence matrix A112 of Y12

Example 2 (Figure 5 13)

The incidence matrix A212 of -22 is given in Figure 5.15

5.7.3 Folding an Organizational Structure

In order to obtain the stratum '', where 0 -< I _< k- 1, description of an organizational

structure in stratum 'k', the structure in stratum 'k' is first folded to obtain the stratum 'k-i'
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description of the organization. In order to fold an organization structure in stratum 'k', all
the subsystems and their interactions that are defined in stratum 'k' are folded into
compound node structures. These compound nodes are now defined as DMUs of the

stratum 'k-i' description of the organization. All the interactions that were defined only in
stratum 'k' are no longer present in this description.

f02 1  1152 1162 t242 '252 '262 '342 '352 '362 '432 '442 452 462 t532 t542 t552 '562 '621

pM -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P152 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 12 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P252 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

P2U2 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P62 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

P22 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

352 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0

P362 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0

P "2 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0

"452 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0

P462 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

P532 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0

P52 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0

P552 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0

P 562 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0

P632 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "1
4342 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

P642 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0

45,622 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0

P&W2 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0

P62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

P 021 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 5.15 The Incidence Matrix A212 Of Y22

93



On the other hand, the interactions defined in higher strata are still represented in the
description. Therefore, while folding an organizational structure in stratum 'k' to obtain the

stratum 'k-i' description of the organization, only those subsystems and interactions are
folded that have 'k' as their stratum number in their labeling scheme with the exception of

input and output transitions and places that have 'k- 1' as the stratum number. As mentioned

earlier, these transitions and places are used to map the subsystems to their compound node
representation in the next higher stratum. Figure 5.16 shows a subsystem of an

organizational structure identified in a stratum 'k' description of the organization. The

figure also shows an interactional place that is defined at stratum 'k-i'. The place

represents an interaction between the subsystem identified and some other subsystem of the

organization not shown in the figure. Note that the subsystem identified for illustration has
only two DMUs 'i' and j' and all the allowable interactions from T to 'j' are shown in the

figure. The reason for selecting two DMUs for illustration is evident from the fact that the

interactional structures of organizations or suborganizations are defined in terms of the

interactions between pairs of their DMUs. Therefore, the folding process illustrated by two

DMUs can be applied to any number of DMUs comprising an organization or

suborganization. Figure 5.17 presents the compound node structure of the subsystem in

Figure 5.16. Note that all the interactions defined in stratum 'k' do not have their

representation in stratum 'k- 1' description of the subsystem, whereas the interactional place

P6rq4k-1 is present in the description. It can also be seen that the transitions and places of the
compound node inherited the compound node number from the input and output places and
transitions of the subsystem in Figure 5.16.

Once an organizational structure in stratum 'k' is folded to stratum 'k-1', the same

procedure can be applied iteratively to fold the structure to any stratum higher than the

current stratum. Note that the folding procedure must be applied sequentially; it is not

possible to fold the structure in stratum 'k' to stratum 'k-2' without having an intermediate
stratum 'k- 1' description of the organization. Also note that the nets obtained after folding

process are executable Petri Nets.

Figure 5.18 presents all the subnets of the structure in Figure 5.16 that are replaced

by compound transitions. The places annotated with labels of the form 'B in/out' represent

port nodes. The concept of port nodes has been presented in Section 4.4, Chapter IV.
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"6rq4k-1

DMU Ik

Plk tlik P2k t2jkPi ~kPi i ~k5kPi

P I I 6l

DMU

k

DMU k

Figure 5.16 Subsystem of an Organizational Structure

Psra4k-l1
DMU qk-1 .

PIqk-1 tIQk.1 P2qk-1 t~qk- P 3qkl1t 3q04'4 -I t4qk-1 P~qk-1 5qki P60k-1

Figure 5.17 Compound Node Representation of the Structure in Figure 5.16

The incidence matrix of the structure in Figure 5.16 is shown in Figure 5.19. The
incidence matrix for the compound node structure in Figure 5.17 is calculated by replacing

all the incidence matrices of the subnets in Figure 5.18 by their compound transition

representation. The places that have their port node representation in the lower stratum

description of these compound transitions are grouped according to the scheme

presented in
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=LjQ~~o B out -

lik ulk P2jk t2jk P3jk

a) Subnet replaced(folded) by Itq- b) Subnet replaced (folded) by I 2qk-1

P~i t34k P4ik P6rq4k- 1

Plk 3jk ~ik P4jk 4ik P1 5jk

c) Subnet replaced (folded) by t 3kld) Subnet replaced (folded) by I kl

B out

p5jk t5ik P6jk

a) Subnet replaced (folded) by 15I

Figure 5.18 Lower Stratum Representation of the Compound Transitions in Figure 5.17
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The places Plik, PIjk, P6ik, and P6jk are not included in Table 5.10 as these places

are not defined as the port nodes for any of the subnets presented in Figure 5.18. Note that
the interactional places defined in a higher stratum are also not included in the table as they

retain their original representation in all those strata that are lower than or equal to the

stratum in which they are defined. As a result of folding the incidence matrix of the
structure in Figure 5.16, the incidence matrix of the folded structure in Figure 5.17 is

shown in Figure 5.20. As stated earlier, the transitions in the incidence matrix in Figure
5.20 of the compound node in Figure 5.17 represent the incidence matrices of the subnets

shown in Figure 5.18. The incidence matrix of the subnet that is folded by the compound

node transition tlqk- 1 is shown in Figure 5.21. In Figure 5.21, port nodes are marked with

an asterisk (*)

tOqk-1 tlik tljk t2ik t2jk t3ik t3jk t4ik t4jk t5ik t5jk t6qk-1

POqk-1 -1 0 0 0 0 0 0 0 0 0 0 0

Plik 1 -1 0 0 0 0 0 0 0 0 0 0

Pljk 1 0 -1 0 0 0 0 0 0 0 0 0

P2ik 0 1 0 -1 0 0 0 0 0 0 0 0

P2jk 0 0 1 0 -1 0 0 0 0 0 0 0

P2ijk 0 1 0 0 -1 0 0 0 0 0 0 0

P3ik 0 0 0 1 0 -1 0 0 0 0 0 0

P3jk 0 0 0 0 1 0 -1 0 0 0 0 0

P4ik 0 0 0 0 0 1 0 -1 0 0 0 0

P4jk 0 0 0 0 0 0 1 0 -1 0 0 0

P5ik 0 0 0 0 0 0 0 1 0 -1 0 0

P5jk 0 0 0 0 0 0 0 0 1 0 -1 0

P6ik 0 0 0 0 0 0 0 0 0 1 0 -1

P6jk 0 0 0 0 0 0 0 0 0 0 1 -1

P6ijIk 0 0 -1 0 0 0 0 0 0 1 0 0

P6ij2k 0 0 0 0 -1 0 0 0 0 1 0 0

P6ij4k 0 0 0 0 0 0 0 0 -1 1 0 0
P7 11  0 0 0 0 0 0 0 0 0 0 0 1
Poq4k- I L 0 0 0 0 0 0 0 0 -1 0 0 0

Figure 5.19 Incidence Matrix of the Subsystem in Figure 5.16
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TABLE 5.10 Equivalent Places in Stratum Ic-i' of the Places in Stratum Vk

Corresponding
Places in Stratum Wk Equivalent Places in

_________________________ Stratum 'k-i'

POik Plqk- 1

IIP2ik P2ijk P2ijrk P2jk P2jik P2jirk] P2qk-1

[P3ik P3jk] P3qk-1

[P4ik P4jk] P4qk- 1

[P5ik P5jk] P5qk-I

[P6ij 1k P6ij2k P6ij4k P6ijrk

P6jilk P6ji2k P6ji~k P6jirk P7qk-I] P~qk-1

tlqk-4 t2qk-1 t3qk-i t4qk-1 t5qk-1

Plqk.1 -1 0 0 0 0

P2qk-1 1 -1 0 0 0

P~kI 0 1 -1 0 0

P4qk.1 0 0 1 -1 0

P~k. 0 0 0 1 -1

P6qk.1 0 1 0 0 1

P6rq4k- I 0 0 0 -1 0J

Figure 5.20 Incidence Matrix of the Folded Structure in Figure 5.17
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tOqk-I thik tlIjk

POqk-l* -1 0 0

Plik 1 -1 0

Pljk 1 0 -1

P2ijk* 0 1 0

P6ijlk* L 0 0 -1

Figure 5.21 Incidence Matrix of the Subnet Replaced by Compound Transition tlqk-1

The folding procedure can now be generalized as follows:

In order to fold an organizational structure in stratum 'k' to obtain a stratum -1'

description of the structure, all the subsystems defined in stratum ' are identified by their
input and output transition-place pairs. All the interactions defined in stratum 'k' are also

identified. The subnets of the organizational structure are then replaced by their compound
transition representations and the places of the net identified as defined in stratum 'k' are

replaced by their equivalent representation as discussed before. The interactional places that

are defined on higher strata than stratum ' retain their original representations.

Figure 5.22 presents the lower stratum description, with all possible interactions, of

compound transitions tlqk-1, t2qk-l,, t3qk-l,, t4qk-l,, and t5qk-1. In the figure, all the possible

input interactions are shown with the transitions representing the stages of DMUik, while
all the possible output interactions are shown with the transitions of DMUjk. In describing

different interactions, generic labels are used for interactions that are defined in a stratum
'2, where k < X < 1, among generic DMUs a and b. The generic labels 'g' and 'Y' are

used to represent the stages of DMUs, therefore 1 < g, y < 5. The generic labels account

for all those interactions that are either defined at a higher stratum than stratum 'W or the

interactions implemented by special constraints, Rp. All the places shown with label 'B

in/out' are defined as port nodes. The port nodes will retain their existence in the stratum

'k-l' description of the organization, if they are not replaced by their equivalent

representation. The transitions and non-port nodes in Figure 5.22 represent the actual

subnets being replaced by the compound transitions.
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Figures 5.23, 5.24. 5.25, 5.26, and 5.27 show the incidence matrices of the

subnets in stratum 'k' that are represented by corresponding compound transitions in

stratum 'k-i' as a result of folding the organizational structure in stratum 'k' to stratum

'k-l'. The x's and -x's shown in the figures represent potential input and output

connections that might exist between a transition-place pair respectively. The x's take their

values from the set {0, 1 ), a I denotes an output connection, while a -1 indicates an input

connection. The subnets shown in Figure 5.22 are moved to subpages when the

corresponding subnets are replaced by their compound transition representation in the

attempt to fold the organizational structure. The incidence matrices representing these

subnet are shown with all possible kinds of interactional places that may or may not be

present in the organizational structure, therefore generic labels for stratum node numbers,

and stages of a DMU are used to accommodate all possible interactional structures. Note,

the subnets in Figure 5.22 and the incidence matrices of the subnets are presented in terms

of only two generic DMUs 'i' and 'j', the reason for which has already been explained.
The places with an asterisk (*) represent port nodes.

tOqk-I tlik tljk

POqk* -x 0 0

Plik x -x 0

PIjk x 0 -x

P2ik 0 x 0

P2jk* 0 0 x

P2ijk* 0 x 0
P2jik* 0 0 x

P6ijk 0 0 -x

P6jilk 0 -x 0

P6q'qlk-1 -x 0 0

P2cark* 0 x x

Pvact lxk 0 -x -x

Figure 5.23 Incidence Matrix of the Subnet Represented by tlqk-1
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t2ik t2jk

P2ik -X 0

P2jk* 0 -x

P3ik* X 0

P3jk* 0 x

P2ijk* 0 -x

P2jik* -x 0

P6ij2k * 0 -x

P6ji2k * -x 0

P3aofrvX x x

Ppc4o2k* -x _xj

Figure 5.24 Incidence Matrix of the Subnet

Represented by t2qk-.I

t3jk t3jk

Pik -x 0

P3jk * 0 -x

P4ik* x 0

P4jk* 0 x

P4aoyX* X X

Pgap43x* -x -X -

Figure 5.25 Incidence Matrix of the Subnet

Represented by t3qk..I
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t4ik t4j k

P4ik* -x 0

P4jk* 0 -x
P5ik* x 0

P5jk * 0 X.

P6ij4k * 0 -X.

P6ji4k * -x 0

P5cxfryk x x
Pw434X L -X -X -

Figure 5.26 Incidence Matrix of the Subnet Represented by t~qk..I

N~k tijk t4qk-I

P5ik -X 0 0

P5jk* 0 -X 0

P6ik X 0 -X

P6jk 0 x -X

P6ijlk * X 0 0

P6j2k * X 0 0
Pik* x 0 0

P6jilk * 0 x 0

P6ji2k * 0 x 0

P6j~k * 0 x 0

P6qq Ik- I 0 0 x

P6apy). X X 0

PpokL -x -X 0

Figure 5.27 Incidence Matrix of the Subnet Represented by t-Sqk-I
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5.7.4 Unfolding the Organizational Structure

Unfolding is the process in which an organizational structure in a particular stratum

is decomposed into its subsystems and their mutual interactions defined in lower strata. The

process yields a more elaborate and detailed description of the organization under study. In

this process, the compound transitions are replaced by the subnets representing these

compound transition in a lower stratum. This process of uncompounding the compound

transitions continues till the desired degree of abstraction used to describe the system is

achieved. As a result of uncompounding the compound transitions, the equivalent places in

a stratum 'k' representing the places of the subnets in stratum 'k+l' are automatically

replaced by the places whose equivalence they are depicting. The port nodes defined in the

subnets replacing compound transitions are used to connect all the subnets replaced. The

subnets have already been presented in Figure 2.22. The incidence matrix of an unfolded

organizational structure is constructed by replacing compound transitions by the incidence

matrices of the subnets representing these transitions in the next lower stratum, Figures

5.23 to 5.27. Once all the incidence matrices of the subnets are put together, they are

merged into a single incidence matrix representing the organization in stratum 'k+1' by

joining all those rows of the individual incidence matrices which have the same place labels

and, as a result, constructing a single row in the incidence matrix. All other unspecified

elements of the incidence matrix are set to zero since these elements represent the

interactions that are either not permissible or not defined in the organizational structure.

Once an organizational structure in stratum k' is unfolded to stratum Y+l, all the

interactional links present in the stratum 'VC description of the organization need to be

translated to their lower stratum representation in case these lower stratum connections are

not specified. A number of connectivity rules are needed to be formulated in order to

resolve this issue. Chapter VII deals with this problem and proposes a number of

connectivity rules to be implemented in order to translate a higher stratum interactional link

to its lower stratum representation. At this point, the only assumption that is made

regarding this connectivity issue is as follows. An interactional link whose input and output

connectivity is defined in 5tratum 'k' is translated into a single link at stratum 'k+]'

between the subsystems of the input and output compound transitions having this

interactional link in stratum 'k'. The i:ssue of connectivity is further elaborated by
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examining all possible interactions one at a time and observing the possibilities that might

occur in an attempt to translate the interaction to its lower stratum representation.

Figure 5.28(a) shows an interactional link between the SAC stage of

DMUik to IFC stage of DMUjk, while Figure 5.28(b) presents all the

possible input and output connections that might represent the single

interactional link in terms of the subsystems in stratum 'k+l' of compound

nodes T and 'j'. Each 'x' in the figure represents a potential output

connection, while a '-x' indicates a potential input connection. Only one 'x'

and a '-x' should get a value of '1' and '-1' according to the assumption

mentioned above. Figure 5.29 presents the Petri Net representation of the

problem discussed Note that the variables used in the labels of the

subsystems of compound nodes T and j' refer to the scheme presented in

Figure 5.6.

tlik t2jk

P2ijk [ 1 -1 ]

(a)

tlak+l tlbk+l t2ck+l t2dk+l

P2ijk E x -x -x -]

(b)

Figure 5.28 Strata 'k' and 'k+ ' Representation of P2ijk
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DMU l ~k 9i 4 5k pi

DMU utlk t 2ik t3ik t 4ik t 5ik

(a) Stratum Vk Representation

DMkl P2ak+ 1 P3ak+l P4ak+ 1 %ak+ 1 %ak+ 1

POW 1 k+1 2ak+ 1 t3ak+1 t ak tSak+l P7ik

DM ti ~ i~ t Wk

dk1 k+ 2dk+ 3k+ Pk-l 5dk+

(b) Staubk+1'Rpeetto

Fiur 5.29I Per Netk Rersntto ofigre.2
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Figure 5.30(a) shows an interactional link between the RSC stage of

DMUik to SAC stage of DMUjk, while Figure 5.30(b) presents the input

and output connections that represent the single interactional link in terms of

the subsystems in stratum 'k+l' of compound nodes T and nj'. This case

has already been discussed in Section 4.5 and is different from the one

discussed above. It is evident that for these kind of interactions no

connectivity rules are needed. Figure 5.31 shows the Petri Net

representation of the situation depicted in Figure 5.30.

t5jk tljk

P6ijlk E 1 -1 ]

(a)

t6ik tOjk

P6ijlk E 1 -1 ]

(b)

Figure 5.30 Strata 'k' and 'k+l' Representation of P6ijlk
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DMU lk P2ik P3ik P4ik 95ik 96ik

DM lik t 2 k t 3ik t 4ik t ik

(a) Stratum Vk Representation

DMU kl P2ak+1 I 3ak+l P4ak+l %ak+ 1 %ak+ 1

DM~dk t lkl takl t 3kl k+1a t 5kilPi

(b) Staubk+ 1 Rpeetto

P~~~qkFgur 5.31~ tlb~ Petr Ne~lt Represetto ofk~ Figure 5.30

t 611 1 k 6108



Figure 5.32(a) shows an interactional link between the RSC stage of

DMUik to IFC stage of DMUjk, while Figure 5.32(b) presents all the

possible input and output connections that might represent the single
interactional link in terms of the subsystems in stratum 'k+l' of compound

nodes 'i' and j'. Figure 5.33 presents the Petri Net representation of the
problem discussed.

t5ik t2jk

P6ij2k E 1 -1 ]

(a)

t5ak+l t5bk+I t2ck+l t2dk+l

P6ij2k Ex -x -x -]

(b)

Figure 5.32 Strata 'k' and 'k+l' Representation of P6ij2k
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DMU lk P2ik P3ik 9ik 5WK 6ik

DMU k t lik t 2ik tsik t 4ik t 5ik

(a) Stratum Ik' Representation

DMU kl P2ak+1 P3ak.1 P4ak+1 P5ak+1 P5a.

9Oik t 1 k+l 2ak+1 3ak+l 4ak t5ak+1 P7ik

DM ti Ptj~ t t

2k+ ld 2dk+ 3dk+ 4k+ 5dk+l

(b Srtu k+ 1 ersetto

P~qk~lFiurekl 5.33l eti Ne~lt Rereenato of~ Fiur 5.32 ~ q-

t Oqk 1 P~j~k t6110



Figure 5.34(a) shows an interactional link between the RSC stage of
DMUik to CIC stage of DMUjk, while Figure 5.34(b) presents all the

possible input and output connections that might represent the single
interactional link in terms of the subsystems in stratum 'k+l' of compound

nodes T and 'j'. Figure 5.35 presents the Petri Net representation of the

problem.

t5ik t4jk

P6ij4k E 1 -1

(a)

t5ak+l t5bk+l t4ck+1 t4dk+1

P6ij4k E x  x -x -x]

(b)

Figure 5.34 Strata 'k' and 'k+l' Representation of P6ij4k
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DMU Ik 9ik 93ik P4ik P5ik 9%lk

DMU Ik t ik 2ik t3ik t4ik '5ik

(a) Stratum Vk Representation

OMU kil P2ak+l P3ak+1 P4ak+l %ak+ 1 P6ak+l

POW t lak+l 2ak+ 1 t3ak+1 4ak t5ak+l P7ik

DMU t t t t t

d~i- k+1 ldk+1 2dk+1 3bk+1 + I 5dk+l 1q-

(b) Staudk+ 1 'epsntio

igure 5.35 etr Ne~lt Represetato ofk~ Figure 5.34

t Oik ~cdk+ t112



Finally, a generic label is used for the places representing an interactional
link in stratum X*, k < X < n, among DMUs 'a' and 'P' with the input and

output stages of the places denoted by 'g' and 'y', 1 < t, y _< 5. Figure

5.36(a) shows the situation where an interactional place defined in stratum
'X' is translated into an interactional link between the corresponding stages

of DMUs 'i' and j' in stratum 'k'. Figure 5.36(b) presents the situation
where the said interactional link is translated in terms of the subsystems of

DMUs 'i' and j' which are defined in stratum 'k+l'. The generic case

shown in Figure 5.36 also accounts for the interactional links that are either

defined at a stratum higher than stratum 'k' or implemented by the special

constraints Rp.

tpik t)jk

Ppcx~yX [ 1 -1 ]

(a)

tpak+l tpbk+l tyck+ 1 tJk+ 1

Ppa3r y. x x -x -x ]
(b)

Figure 5.36 Stratum 'k' and 'k+l' Representation of Ppy3x

After unfolding an organization structure to the next lower stratum, the Petri Net
representation is checked for any internal sinks or sources. All the internal sinks and

sources, if they are found, are then deleted. In the incidence matrix representation the check
is performed by searching all rows of the matrix, except for the first and the last ones, for

any row with a single non-zero element.
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Appendix B describes implementation of the folding and unfolding procedures on a

software package called DesignCPNTI.

5.7.5 Example 5.3

Figure 5.37 gives a block description of a 2-strata Stratified Decision
Making Organization (SDMO) with two nodes '1' and '2' in stratum '1', where

each of these two nodes has its subsystems defined in stratum '2' - the lowest
stratum. The organizational structures of the compound nodes '1' and '2' are taken
from Examples 5.1 and 5.2.

DMU 10SStratum1

............

Figure 5.37 2-Strata SDMO For Example 5.3

Figure 5.38 gives the matrix representation of Xl i, a 2-dimensional WDN
of the compound node '1' in stSatum '0' with two subsystems '1' and '2' and their

interactions defined in stratum '1'. Figure 5.40 shows the corresponding Petri Net

representation of Y1 1, Finally, Figure 5.39 presents the Petri Net representation of
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the SDMO in stratum '2' with the nodes '1' and '2' in stratum 'I' unfolded to

stratum '2'. The dotted arcs in Figure 5.40 show the possible connections that can

exist as a result of the translation of a higher stratum interactional link to its lower

stratum representation. The connectivity rules, presented in Chapter VII, are

applied to choose a pair of input and output dotted arcs to represent a fixed link at

the lower stratum.

XI ={e,s,F,G,H,C)

e_, oI F_[ o1G 0
0 01 0 01

s-[1 1] H [O 0] C=[ 0 1]
0 01 0 01

Figure 5.38 Matrix Representation of Y-11

111 liP 2 1 1 t2 1 3 11 3 1 P4 1 1 t 4 1 1 P 11t51 P1

Polo t010 t.j 61° 7

P 61241

DMU1

P12 1  t1 2 1 P2 2 1 t2 2 1 P321 t3 2 1 P4 2 1 t 4 2 1 P521 5 2 1 p6 2 1

Figure 5.39 Petri Net Representation of X I

The incidence matrix A102 of node '1', in stratum '0', when unfolded to stratum '2'

is given in Figure 5.41. In Figure 5.41, the x's represent the possible connections shown

by dashed arcs in Figure 5.40.
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5.7.6 Equivalence Between the Representations of a WDN

A WDN can be represented in three different ways, i.e., the matrix representation

as presented in Section 4.6, the Petri Net representation given by the incidence matrix of

the net and the Petri Net representation given by the labeling of the places.

P112 t1 1 2 P2 1 2  t212 P3 1 2 t312P412 1412 P5 12t 5 12

Pol to l P12 
1 P711

061242

P1 22  1 2 2 22 2  t222 P3 2  32462 2 P5 2 5 62 2P 010 t 010 P 12 t 610 710

t432 P 32i3 %32
' DMU,

P 3434 
b

P 252 1242 P34 t 4 42 2t4 DM 2

1 02 P64622 P654 61 p72

P1 52 11 52125 t252 P352t3 2P 2 4 2 P5 1 2

S DMU 62

P 162 t 62 P262 126 2  
P362 1362"462 t4 6 2 

%562 t 562 P662

Figure 5.40 Petri Net Representation of Y1I in stratum '2'
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The three different representation, however, are equivalent, i.e., a one-to-one

correspondence exists between any two of them. For proof of the previous statement, see

Remy (1986).

5.8 GENERIC PROPERTIES OF WDNs

The following proposition by Remy (1986) characterizes a class of Ordinary Petri

Nets that model the elements of W.

-10000000000000000000000000000000 0
1-10000000000000000000000000000000
01-100000000000000000000000000000
010-10000000000000000000000000000
1000-1000000000000000000000000000
00001-1000000000000000000000000000
000010-10000000000000000000000000
0010000-1000000000000000000000000
00100000-100000000000000000000000
00010000-100000000000000000000000
0001000-1000000000000000000000000
0000010000-1000000000000000000000
000001000-10000000000000000000000
00000010000-100000000000000000000
000000010000-10000000000000000000
0000000010000-1000000000000000000
00000000010000-100000000000000000
000000000010000-10000000000000000
0000000000010000-1000000000000000
00000000000010000-100000000000000
000000000000010000-10000000000000

A102 = 0000000000000100000-100000000000
000000000000000100000-10000000000
0000000000000000100000-1000000000
00000000000000000100000-100000000
000000000000000000100000-10000000
0000000000000000000100000-10000000
00000000000000000000100000-100000
000000000000000000000100000-10000
0000000000000000000000100000-1000
000000000000000000-10000100000000
00000000000000000000000010000-100
0000000000000000000000000000010-1
000 000 000000 00000 0 0 -x -x -x -xx x 0 0 00 0 0 0
000000000000000000000000010000-10
00000000000-100000000000000100000
0000000000000000000-1000000100000
000000000000000000000-10000100000
0000000000000000000000-1000010000
000000000000000000000000000010-10
0000000000000000000000000000001-1
__00000000000000000000000000000001__

Figure 5.41 Incidence Matrix A102 of node 'Vin stratum '0'Unfolded in Stratum '2'
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Proposition 5.1

Let the source and sink places of the Ordinary Petri Net representing a WDN Yik+l

in stratum 'k+l' of a node T stratum 'k' be combined into a unique place, the
external place. If the resulting Petri Net is strongly connected, it is a marked graph.

The proof is straightforward. Each internal or interactional place has exactly one

input and one output transition. The sink has one input transition but no output transitions,

while the opposite holds for the external place. If the external place and the sink are merged

together into one single place, every place in the net will therefore have one input and one
output transition, Since the net is strongly connected, every transition has at least one input
place and one output place, and the net is a marked graph.

5.9 CONCLUSION

A modified labeling scheme was presented to label the places and transitions of a

Stratified Decision Making Organization (SDMO). The labeling technique is primarily
introduced for computational purposes but it also gives an algorithmic approach to fold and

unfold organizational structures from one stratum to another. An upper bound to the
maximum number of places and transition in an organizational structure defined in an

arbitrary stratum was presented. A one-to-one correspondence was established between the
Petri Net and matrix representations of an organizational structure. The construction of the

incidence matrix of a Petri Net representation of an organizational structure was presented.

The incidence matrix is the basis of a number of algebraic computations that are made on

Ordinary Petri Net structures. The folding and unfolding of organizational structures was
presented to describe system's architectures at different levels of abstraction. The folding
and unfolding processes were applied to both Petri Net and incidence matrix
representations. Finally, an example was presented to illustrate the folding and unfolding

processes.
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CHAPTER VI

CONSTRAINTS

Well defined fixed structures in multilevel organizational classes have been

described in Chapter IV. The mathematical and Petri Net representations of the Well

Defined Nets (WDNs) have been presented in Chapter V. In this chapter, the constraints

that must be verified by WDNs defined at a particular stratum are described.

6.1 INTRODUCTION

A number of structural and user-defined constraints have already been introduced

by Remy (1986) and Demadl (1989). The existing set of constraints fulfills the requirement

of an organizational form when defined at the lowest stratum 'N', with DMUs as human

decision makers (DMs). The introduction of the stratified organizational forms and the

concept of compound node leads to the definition of an extended set of constraints that

must be satisfied by the organizational structures defined at stratum 'k', where 1 < k < n

(n < N). For illustration purposes, two different set of constraints are presented. These two

sets of constraints are defined as follows:

(i) Global Constraints : The set of constraints that must be satisfied by all the

organizational forms regardless of the stratum for which they are defined.

(ii) Compound Node Constraints : The set of constraints that are defined only

for the rganizational forms which have compound nodes as DMUs.

These constraints not only eliminate the WDNs that do not represent realistic

organizational forms, but also reduce the dimensionality of the design problem. The

introduction of the constraints proceeds from two different considerations.
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(a) Some W DNs correspond to patterns of interactions among DMUs that do
not make any physical sense, might introduce deadlocks, cause circulation

of messages in the organization, and result in partially connected

organizational forms. These WDNs should be eliminated, if realistic

organizational forms are to be generated. No designer wants to obtain these

structures as candidate architectures for the system under study. There is

thus a need to define structural constraints, which rule out the types of

WDNs that have the mentioned problems.

(b) Any practical design procedure should provide the designer with only those

candidate structures that satisfy the structural specifications of the system.

The designer must thus be given the possibility of translating his knowledge

of the system's structural specifications into mathematical terms by

imposing user-defined constraints.

6.2 STRUCTURAL CONSTRAINTS

Structural constraints on the set of fixed structures have been defined in Remy

(1986) using a model of a single-stratum organization. In the sequel, these constraints are

adapted to the problem of this thesis. As mentioned earlier, the set of constraints are

classified as global and compound node constraints. The structural constraints defined in

Remy (1986) map directly to the set of global constraints.

6.2.1 Global Constraints

Let -qk be an organizational form in stratum 'k' defined for node 'q' in stratum k-

1'. Then the fixed structure associated with it must satisfy

*(RI)

(a) The Ordinary Petri Net that corresponds to -qk should be connected, i.e.,

there should be at least one (undirected) path between any two nodes in

the net.
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(b) A directed path should exist from the source place to every node of the PN

and from every node to the sink.

* (R2) The Ordinary Petri Net that corresponds to Yqk should have no loops.

i.e., the structure must be acyclic.

* (R3) In the Ordinary Petri Net that corresponds to Yqk, there can be at most one

link from the RS/RSC stage of a DMU 'T to another DMU 'j', i.e., for
each 'i' and 'j', only one element of the triplet I Gij, Hij, Cij } can be

non-zero.

* (R4) Information fusion can take place only at the IF/IFC and CI/CIC stages.

Consequently, the SA/SAC stage of a DMU can either receive information
from the external environment, or a control signal from another DMU.

Constraint R 1 (a) eliminates any organizational structure that does not represent a
single structure. Constraint R 1 (b) insures that the flow of information is continuous within

the organizational structure. It eliminates internal sink or source places. For the kind of

organizational structures modeled in this thesis, R1(b) implies R1(a).

Constraint R2 allows acyclical organizational structures only. This restriction is
imposed to avoid deadlocks and infinite circulation of messages within the organization

(Levis, 1984). Note, however, that constraint R2 does not imply that the graphical

representation of the stratified organizational forms is acyclical, because the folding of

acyclical nets can yield a structure with loops. The constraint of acyclicity is restricted to the

elements of the set of WDN Wqk of a node 'q' in stratum 'k- ' defined in stratum 'k'.

Constraint R3 indicates that it does not make sense to send the same output to the
same role at several stages. It is assumed that once the output has been received by a DMU,

this output is stored in its internal memory and can be accessed at later stages.

Constraint R4 has to do with the nature of the IF/IFC stage. The IF/IFC stage has
been introduced explicitly to perform a fusion between the situation assessments performed

by other DMUs. It prevents a DMU from receiving more than one input at the SA/SAC
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stage (Balbes and Dwinger. 1974). Subsection 6.3.3 presents a way of circumventing this

restriction without increasing the dimensionality of the design problem.

6.2.2 Compound Node Constraints

Let Yqk be the organizational form in stratum 'k' defined for node 'q' in stratum

'k-i' with DMUs 'i' and 'j' being the compound nodes. Then the fixed structure associated

with Ypk, in addition to the global constraints, must also satisfy the following compound

node constraints.

* (C1) In the Ordinary Petri Net that corresponds to -qk, there must be an input

link to the SAC stage of a DMU T. This input link can be an external

input or a control signal from another DMU 'j'.

" (C2) In the Ordinary Petri Net that corresponds to Yqk, there must be at least

one output link from the RSC stage of a DMU 'i'. This output link can be

an external output or control signal to another DMU 'j', or both.

Constraint C1 insures an input connection to a compound node DMU. As

mentioned earlier, a compound node has all of its five stages present in an organizational

structure with the compound node as a DMU. The constraint insures the presence of the

SAC stage of a compound node.

Constraint C2 insures an output connection to a compound node DMU. The

constraint realizes the presence of the RSC stage of a compound node. Once the SAC and

RSC stages are present, all the intermediate stages must also be present, thus satisfying the

condition that all the stages should appear in a compound node structure.

The application of constraint R 1 on organizational forms with compound nodes as

DMUs implies constraints C l and C2.
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6.3 USER-DEFINED CONSTRAINTS

As mentioned in the Introduction, a design procedure should allow the designer of

an organization to introduce constraints that reflect specific structural considerations. He

may rule in or rule out some links, force a certain pattern of interaction, or express

hierarchical echelon type relationship between the DMUs.

These restrictions and specification will be denoted as user-defined constraints.

They can be introduced in two different ways.

6.3.1 Constraints Rf

The designer can place appropriate O's and l's in the arrays I e, s, F, G, H, C }

defining the WDN.

6.3 2 Constraints Rp

To accommodate some very special kind of interactions not covered by the arrays

mentioned above, the designer of an organization is allowed to introduce special

constraints, Rp. The links introduced as special constraints may be the ones that are not

covered by the allowable interactions presented in Figures 4.3 and 4.8. The links,

however, are fixed and therefore do not increase the dimensionality of the design problem,

rather they introduce some flexibility in the design procedure. The rationale behind the

introduction of special constraints is given in Remy (1986).

6.3.3 Conflict Among Constraints

In general, no conflict is allowed between the structural and user-defined

constraints. There is a single exception, however, to this generic rule. This exception has

been introduced by Remy (1986) to alleviate the restriction imposed by constraint R4. The

exception is adapted to the context of this thesis as it also solves a number of design
problems introduced by the restrictions imposed by R4. The exception is the following: R4

will not apply to the special constraints. Consequently, a DMU can have more than one
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input at his SA/SAC stage, provided that all those inputs but at most one be special

constraints.

6.4 MATHEMATICAL REPRESENTATION OF THE CONSTRAINTS

Definition 6.1: External Place

If the source place POqk-I and the sink place P7qk- I of a WDN Y-qk of a node 'q' in

stratum 'k-i' are merged into a single place, the resulting place is termed as the

external place.

The constraints on WDNs can be translated into formal ones as follows:

Constraint R I

Let the source place and the sink place of the WDN ,qk be merged into

the external place, Rl(a) and Rl(b) can now be formulated as

The Petri Net representing ,qk should be strongly connected

Corollary

Proposition 5.1 by Remy (1986) indicates that any element of Wqk that

satisfies R I and whose sink and source places are merged into the external
place is a marked graph.

Constraint R2

Once the constraint RI is satisfied and the external place is defined,

Constraint R2 becomes

All simple information flow paths of the Petri Net contain the external

place
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where simple information flow paths have been defined in Chapter 2.

Constraint R3

The analytical expression of this constraint is given as:

V (i,j) E [1..tk1 2  Gij + Hij + Cij _< 1 i#j (6.1)

Constraint R4

The translation of this constraint into mathematical terms follows:

m

[9.0Iik] ej + Z Gij 1 (6.2)
i=1

Constraint C I

The constraint is trivially expressed as:

' jE [1 ..-1k4] e, + Gj 1 (6.3)
i=1

Constraint C2

Like Cl, C2 is translated easily into

M
V [1I..1I4k] si + Gji >1 (6.4)

i=1

Constraint Rf

As mentioned earlier, the constraints Rf are defined by assigning 0 or I to

elements of the arrays e, s, F, G, H, and C.
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Constraint Rp

An Rp constraint is characterized by an interacriona! link not covered by

the arrays mentioned above or a link that can be represented in a WDN but

the introduction of the link violates one of the constraints listed in Section

6.3. It is designated by its input and output transition pair, (tsik, trj), tsik

is the input transition, while trjk is the output transition - 's' and 'r'

represent the stages, while T and 'j' represent the DMUs. The following

restrictions apply to the set of Rp:

* i # j : the two DMUs should be different.

" All those links that can be represented in a WDN should not appear in Rp

except for the case where
" s = 5 and r = 1 : a link between RS/RSC and SA/SAC

stages.
" If s = 5 and r = 1, 2, 4; provided that the introduction of

these links in WDN violates constraints R3.

In the Petri Net representation, each special constraint will be represented by an

interactional place. The labeling of the place will be determined by its input and output

transitions as:

(tsik, trjk) will correspond to Ps+lijrk.

6.5 TERMINOLOGY

6.5.1 Set of Constraints, R

The set of structural constraints is denoted as Rs, while the set of user-defined

constraints is represented by Ru, which in turn is given as:

Ru Rf U Rp
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R = Ru u9Rs

where

R,=R I1,.R2 .iR3uR4uCI uC2 (6.5)

The binary operator 'u' is defined as the union of its operands. Therefore, the set

of structural constraints Rs is described as the union of all the constraints defined in Section

6.3, while the set R is shown as the union of sets Ru and Rs.

6.5.2 Well Defined Structure, WDS

A Well Defined Structure is defined to be a WDN at stratum 'k+l' of a node 'i' at

stratum 'k' that fulfills the special constraints Rp:

WDS = (WDN, RP)

In order to avoid cumbersome notation, node and stratum variables are not added to

the labels used to denote WDSs.

Since the special constraints are taken as fixed constraints throughout the design

procedure, the WDS is trivially defined as:

WDS = (WDN, Rp) --+ WDN

6.5.3 Admissible Organizational Form

A WDS that fulfills the set of user-defined constraints Ru has been defined as an

Admissible Organization Form (AOF). The set of all AOFs will be denoted as W(Ru)ik+i.

6.5.4 Feasible Organization

An AOF that fulfills the set of constraints R is called a Feasible Organization (FO).

It is defined to be a WDN that fulfills the complete set of constraint, R. It is denoted as

W(R)ik+l.
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If the set of special constraints and set of user-defined constraints Rf are given and

are not empty sets, the following inclusion holds. Since the introduction of a constraint

either rules in or rule- out certain links, the restriction imposed by the constraint excludes a

a number of WDNs from the set of WDNs satisfying the constraint.

Wik+j :D W(Ru)ik+l D W(R)ik+l (6.6)

6.6 CONVEXITY OF THE CONSTRAINTS

6.6.1 Convexity

Definition 6.1: Interval

If a and b are elements of a partially ordered set A satisfying a < b, then an interval

[a, b] is defined to be {x E A I a < x : b}.

Definition 6.2: Convex Subset

A subset A l of the partially ordered set A is convex if and only if the following

implication holds:

(V (al,bl)E A12) (al :bl) = (A1D[al, bl]) (6.7)

Definition 6.3: Convexity of the Property

A property S defined on A is convex if and only if every element x of A located in

the interval [a, b], where a and b satisfy S, also satisfies S.
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Proposition 6.1 (Remy)

If a property S is 'onvex on A, a convex subset A I of A that satisfies S is

completely characterized by its minimal and maximal elements as:

Al = {xE Al 13(al,bl)E Al. x Almax al <x_<bl } (6.8)

If a set is convex, its structure can be assessed with three simple tools, a partial

ordering, a set of minimal elements and a set of maximal elements. Any element that is

below one maximal element and above one minimal element belongs to the set. There is no

need for an extensive, and possibly combinatorial, description of all the elements. Finding

convex subsets in the set of WDS is quite important since convexity allows the description

of the subsets without resorting to a combinatorial computational problem. In that case, the

set of solutions can be obtained in terms of the minimal and maximal elements of the set.

6.6.2 Convexity of the Constraints

This section applies the results presented in the previous subsection to char,-,vterize

the constraints. The constraints R are properties on the set Wik+l since a constraint is either

satisfied or violated by a given WDS. We can therefore apply the concept of convexity

defined in the previous subsection to the different constraints in R.

The advantage of having convex constraints is obvious since in that case the set

W(R)ik+l can be characterized by its minimal and maximal elements. The minimal and

maximal elements of set W(R)ik+l are defined in Chapter VIII.

Proposition 6.2 (Remy)

The constraints R2, R3, R4 defined on the set Wik+l are convex.

Proof

The proof of the proposition is given in Demael (1989) and is very direct. Let us

consider R2. If a WDS is acyclical, i.e., fulfills R2, then any WDS obtained by
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removing links from the initial WDS will also be acyclical. Loops can not be created

in a loop-free structure by removing links. The same argument applies to the

constraints R3 and R4. For a detailed proof of the Proposition for constraints R3

and R4 see Dematl (1989).

Proposition 6.3 (Remy)

Constraint R 1 defined on the set Wik+I is not convex.

Proof

The constraint RI is not convex as it is possible to break the connectivity of a fixed

structure by removing a link as well as by adding a link. This happens, for

example, if a link that is added to the structure originates from a transition of the

current net but does not terminate at a transition that was previously in the net. In

that case, a transition without output place is created, which violates R 1. Figure 6.1

describes a sequence in which RI is fulfilled, violated, and fulfilled again by

successively adding two links.

Proposition 6.4

Constraints C l, C2 are convex

Proof:

The restrictions imposed by C I and C2 are realized by placing Is at the appropriate

places in the arrays e, s, and G in order to ensure that a compound node structure

has both input and output links. Let X'ik+l and X"ik+l be two elements of the set

Wik+l satisfying constraints C1 and C2, then a WDN Xik+1 located in the interval

[X'ik+1, X"ik+II will also satisfy these constraints since the addition or removal of
all other links except the ones placed by C I and C2 do not have any effect on these

constraints.

Proposition 6.5

Constraints Ru are convex
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Proof: The specifications defined by Ru are realized by placing Is and/or Os at the

appropriate places in the arrays e, s, F, G, H, and C in order to rule in and/or rule

out certain interactional links between DMUs. Let X'ik+l and ,"ik+l be two

elements of the set Wik+ satisfying constraints Ru, then a WDN Yik+I located in

the interval [Yik+l, X"ik+l] will also satisfy these constraints since the addition or

removal of all other links except the ones placed by C I and C2 do not have any

effect on these constraints.

The set W(Ru), therefore, can be characterized by its minimal and maximal

elements.

Figure 6.1 Successive Structures

6.7 CONCLUSION

The constraints that must be satisfied by the WDNs were presented in this chapter.

The constraints were defined as global and compound constraints. It was shown that the

constraints applied to organizational structures with human decision makers as DMUs

(global constraints) are not all convex. The problem posed by constraint R I has been

solved by Remy (1986) by using the concept of simple paths. The solution to the design
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problem will be presented in Chapter VIII. Fortunately, the set of structural constraints for

compound node organizations are all convex, as the introck ctitn of constraints Cl and C2

implies RI, and both have been proved convex in Proposition 6.4. The set of FOs can,

therefore, be characterized easily by its minimal and maximal elements for the

organizational structures comprised of compound nodes.
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CHAPTER VII

SOLUTION TO THE DESIGN PROBLEM

This chapter addresses the problem of connectivity. The proposed methodology

resolves the issue of the lower-strata connectivity of an interactional link defined at a higher

stratum. This issue has been raised a number of times in Chapter IV and Chapter V. In

Section 7.1, the messages flowing in an organizational structure are classified in three

different categories. Section 7.2 discusses the Petri Net representation of the different

classes of messages in an organizational structure. Section 7.3 characterizes the hierarchical

echelon type relationship among the DMUs of an organizational structure defined in a

particular stratum on the basis of the classification presented in Sections 7.1 and 7.2. An

analytical model of the echelon hierarchies is given in Section 7.4. Finally, Section 7.5

presents some rules that are defined on the basis of the hierarchical relationship presented in

Section 7.4 to resolve the lower-strata connectivity problem of higher-strata links. An

example is worked out in Section 7.5.

7.1 TYPES OF DATA

The messages that flow in a multilevel organizational structure are classified in the

following categories and subcategories according to their contents:

* Information, INF

* Input/Output

* Assessment

* Response

* Control Signal, CTR

• Command, CMD
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As mentioned above, messages conveying information (INF) are further divided

into three subcategories, inputs/outputs, assessments, and responses. Inputs represent

observations from the external environment (sensors) or the external inputs defined in
Subsection 4.5.2. Assessments are defined to be the outputs of the situation assessment

stage of a DMU. The messages containing information about the response of a DMU are
taken as responses.

The control signal is defined to be a signal which, in addition to a limited amount of

information about the task, contains an enabling signal for the initiation of a subtask.

If the response or course of action selected by a DMU is dependent upon the
message sent by another DMU, then such a message is termed a command or order.

7.2 PETRI NET REPRESENTATION

The interactional links presented in Chapter IV can be classified according to the

different types of messages they carry. The designer of an organizational structure

determines the contents of a signal flowing in the structure; the definition of the type of
messages is application dependent. The interactional links presented in Chapter IV have
been given a generalized physical interpretation in Subsection 4.5.2. Figures 7.1 and 7.2

show a possible interpretation of the interactional links in terms of the different types of

messages introduced in the previous section. The figures map the classes of messages
presented in the previous section to their Petri Net representation in view of the physical

interpretation of the interactional links presented in Subsection 4.5.2. Figure 7.1 shows the

interactional links corresponding to the different types of messages being input to a DMU.
Figure 7.2, however, presents the Petri Net representation of the different classes of
messages as viewed in terms of the output from a DMU. It should be noted that a designer

is free to interpret the interactional links present in the organizational structure in terms of

the classes of messages presented in Section 7. 1 to a degree of refinement that suits the
very application.
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7.3 DEFINITION OF ECHELONS IN AN ORGANIZATIONAL STRUCTURE

As mentioned in Chapter IV, echelons refer to the mutual relationship among DMUs of an

organizational structure. The echelons define superordinate and subordinate DMUs within -

an organization. The identification of a superordinate or a subordinate DMU can only be

done by analyzing the type of messages that a particular DMU is receiving from and/or

sending to other organization members. Therefore, the interactional structure of a DMU is

taken as criterion for defining the relative position of the DMU in the multiechelon

hierarchy of an organization under study. In an attempt to define a multiechelon hierarchical

structure of an organization in terms of the interactional structure of the decision making

units (DMUs) comprising the organizational structure, the interactions of a DMU are

divided into two classes: input interactions, and output interactions. The following sections

present two separate multiechelon hierarchical structures in terms of all the possible input

and output interactional structures that a DMU can have while performing its assigned task.

in an organizational environment. An echelon with lower index value is considered to be at

a higher level than one with high index value, i.e., the echelon '1' is the superordinate level

as compared to the echelon '2'. The echelon '0' is taken as the highest echelon; a DMU

defined at echelon '0', if it exists, is considered as the executive of the organization under

consideration.

7.3.1 Ordering in Terms of Inputs

The three classifications of the organizational data given in Section 7.1 yield 23-1

different input interactional structures of a DMU. The seven possible ways in which a

DMU can receive input messages are given in the first column of Table 7.1. The line of

reasoning used to define a multiechelon hierarchy in terms of the input interactional

structure of the DMUs is as follows:

Let the outputs from a set of DMUs be taken as constant and let only the input

interactions of the DMUs be considered. Then, a DMU receiving CTR or CMD type of
messages is considered at a lower echelon than the one receiving INF messages. A number

of sublevels are also defined within the DMUs having INF as input interaction. The DMUs

receiving responses are taken at a higher echelon than the DMUs receiving inputs or
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assessments. Similarly, DMUs with assessment type of input interactions are considered at

a higher echelon than the DMUs with input type of INF.

a) Information, INF

i) Input ii) Assessment iii) Response

SA/SAC F H

b) Control, CTR

c) Command, CMD

Figure 7.1 Classification of Input Interactions

a) Information, INF

i) Output ii) Assessment iii) Response

RS/RSC SA/SAC RS/RSC

b) Control, CTR
RS/RSC G.

c) Command, CMD

RS/RSC C

Figure 7.2 Classification of Output Interactions
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A DMU with CTR input is considered at a higher echelon than the ones with CMD

inputs. The DMUs with all other combinations of input interactions fall within these three

echelons. Table 7.1 shows all the input interactions associated with a DMU and the
corresponding ordering on the basis of the echelons to which they belong. A DMU with an

order 1 is considered at the highest echelon as compared to all other DMUs with the
identical set of output interactions. Note that the ordering defined in Table 7.1 is based on

the input interactional structure of the DMU and is independent of the output interactional

structure of the DMU.

TABLE 7.1 Ordering in terms of Input Messages

Input Interactions Corresponding

Order

INF 1

INF, CTR 2

CTR 3
INF, CMD 4

INF, CTR, CMD 5

CTR, CMD 6

CMD 7

7.3.2 Ordering in Terms of Outputs

The echelons for the DMUs in terms of their output interactional structure are

defined reciprocally to the definition of the echelons presented in Subsection 7.3.1: The
DMUs with INF outputs are taken at lower echelons than the ones with CTR or CMD

outputs for a set of DMUs, where all the inputs to the DMUs are taken as constant

throughout the set and only output interactions are considered. Similarly, DMUs with CTR

outputs are at lower echelons than the ones with CMD. Table 7.2 presents DMUs with all
possible output interactions and the corresponding ordering for the DMU based on their

echelon definition. A DMU with an order I is considered at the highest echelon as
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compared to the all other DMUs with the same identical input interactions. Note, the order

presented in Table 7.2 is defined in view of the output interactional structure of a DMU and

is independent of the input interactions.

7.4 MULTIECHELON HIERARCHICAL ORGANIZATIONS

In this section, an echelon index is defined for a DMU based on both input and

output interactional structures of the DMU. Table 7.3 shows a matrix between all the

possible input and output interactions that a DMU can have along with the ordering defined

for the input and output interactions. The rows and columns of the matrix are arranged

according to the ordering defined for each element of the row/column in Subsections 7.3.1

and 7.3.2. A DMU is characterized as a 2-tuple, (I, 0), where T corresponds to the order

defined by the input interactions of the DMU (Table 7.1), and 'O' represents the order

defined by the output interactions of the DMU (Table 7.2). The set of all the elements of the

matrix is represented by 171. It is defined to be the set of DMUs with all the possible

interactional structures and their associated input and output ordering. The classification of

input and output interactions presented in the previous section yields 49 (7x7) elements for

the set l.

TABLE 7.2 Ordering in terms of Output Messages

Output Interactions Corresponding

Order

CMD I

CTR, CMD 2

INF, CTR, CMD 3

INF, CMD 4

CTR 5

INF, CTR 6

INF 7
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TABLE 7.3 Matrix Between Input and Output Orderings

Output CMD CTR, CMD INF. CTR, INF. CMD CTR INF, CTR INF

Input CMD

INF (I. 1 (1,2) (1.3) (1,4) (1,5) (1,6) (1,7)

INF. CTR (2.1) (2.2) (2.3) (2.4) (2,5) (2,6) (2.7)

CTR (3.1) (3,2) (3.3) (3,4) (3,5) (3,6) (3,7)

INF, CMD (4.1) (4.2) (4,3) (4,4) (4,5) (4.6) (4.7)

INF, CTR, CMD (5,1) (5.2) (5,3) (5,4) (5,5) (5,6) (5,7)

CTR, CMD (6,1) (6.2) (6,3) (6,4) (6.5) (6,6) (6.7)

CMD (7,1) (7.2) (7,3) (7,4) (75) (7.6) (7,7)

Proposition 7.1

The set [- is partially ordered by the binary relation '<'.

The binary relation ',<' has been defined in Chapter III. Proposition 7.2 is a direct

consequence of the Proposition 7.1.

Proposition 7.2

The set l is a lattice.

The lattice structure of 1l is obtained in Figure 7.3 as a result of the partial ordering

that exists between the elements of the set -. The arrows represent the relation "is higher

than", i.e., 0--J means that 'A' is higher than 'B'. The echelon index for a DMU is

now defined by the following equation.

Echelon Index = I + 0 - 2 (7.1)
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Figure 7.3 presents the multiechelon hierarchy that will be used in defining the

echelon index associated with an organizational member. In the methodology, after

unfolding a compound node to the next lower stratum, each of the DMUs of the compound
nodes is identified as one of the elements of the set [I. Once the echelon indices associated

with all the subsystems of the compound node are identified, a number of connectivit'

rules are specified to translate an interactional link defined in a higher stratum to its lower-

stratum description, on the basis of the multiechelon hierarchy presented in this section.

7.5 RULES OF CONNECTIVITY

A number of simple rules are defined to resolve the lower-stratum connectivity of
higher-stratum interactional links. As mentioned in Chapter V, an interactional link at a

higher stratum will be translated into only one interactional link in the lower stratum. The

restriction imposed by this condition and the rules that will follow are formulated as a result

of ideas borrowed from Information Sciences.

Let us consider two compound nodes T and 'j' in stratum 'k'. The compound

nodes T and j' themselves are DMUs of an organizational structure 'q' defined at stratum

'k-l'. The subsystems (DMUs) of compound node T are given as 'a' and 'b', while

compound node 'J' is composed of DMUs 'c' and 'd', Figure 7.4 (reproduction of Figure

5.7 ). The rules of connectivity now can be formulates as follows:

" Rule 7.1

An interactional link defined at stratum 'k' from a compound nodes T to another

compound node j' is translated into a single link at stratum 'k+l' from DMU 'a' or

'b' to DMU 'c' or 'd'.

* Rule 7.2

The translated lower stratum interactional link between the subsystems of the

compound nodes T and 'j' will connect the highest echelon-DMUs of the two
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suborganizational structures. The highest echelons identified for the subsystems of

T and j' need not necessarily be the same.

* Rule 7.3

If a compound node has two or more DMUs at the same highest echelon, the

following rule applies:

" For an output interaction the DMU with higher '0' index is selected

* For an input interaction the DMU with higher T index is selected.

* For two or more DMUs with identical (I, 0) indices, one of them is

selected arbitrarily.

" Rule 7.4

If in following Rules 7.1 to 7.3 constraint R1 or R2 is violated, then the next
highest echelon-DMU will be selected to participate in the interaction. The

identificatP',n of the next highest echelon-DMU follows the procedure presented in

Rules (7.2) and (7.3).

Example 7.1

Figure 7.4(a) shows a WDN Y-qk in stratum 'k' of a compound node 'q' in stratum

'k-I'. The DMUs defined in stratum 'k' are T and 'j'. The organizational structure

shown in Figure 7.5(a) has an interactional link from RSC stage of DMU T to CIC

stage of DMU 'j'. The organizational structure in Figure 7.5(a) is unfolded to its

stratum 'k+l' description in Figure 7.5(b). The DMU in stratum 'k+l' are

identified as DMUs 'a', 'b', 'c' and 'd'. The dotted arcs in Figure 7.5(b) indicate
all possible connections in stratum 'k+ 1' that may represent the interactional link

defined in stratum 'k'. Let us consider that the echelons identified for the DMUs
a'', , 'c' and 'd' are '0', '12', '6', and '6' respectively. Now, the interactional

link in stratum 'k' will be described by a single interaction of the same kind

between corresponding stages of the DMUs 'a' and 'c' since 'a' and 'c' are the
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highest echelon-DMUs defined within the suborganizational structures T and 'j'

respectively, Figure 7.5(c).

Echelon '0' (1 1)

Echelon T 1 2 211

Echelon '2' (

Echelon '3' (1, 4) (2. 3) (3, 2) (4, 1)

Echelon 4 (1, 5) (2, 4) (3 3) (4, 2) (5, 1)

Echelon '5' (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1)

Echelon '6 (1, 7) (2. 6) (3, 5) (4, 4) (5, 3) (6, 2) (7, 1)

Echelon 7 (2, 7) (3, 6) (4, 5) (5, 4) (6, 3) (7, 2)

Echelon '8' (3, 7) (4, 6) (5, 5) (6, 4) 3)

Echelon V9 (4, 7) (5, 6) (6, 5) (,4

Echelon '10 5 7

Echelon '11' ( 7

Echelon '12'

Figure 7.3 Multiechelon Hierarchy
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Strtu Stauk-

S .k+ ... Stratum k+1

Figure 7.4 A Stratified Decision Making Organization

7.6 EXAMPLE

The connectivity rules presented in Section 7.5 are applied to the organizational

structure of Example 5.3, Subsection 5.6.5. As it is mentioned in Chapter V, Figure 5.41

shows all the possible combinations of connections between DMUs in stratum '2' that may
exist as a result of translating the interactional link between DMU 1 and DMU 2 1 in stratum

'1' to its stratum '2' representation. However, according to Rule 7.1. only one interactional

link between the subsystems in stratum '2' will represent the higher stratum (stratum '1')

interactional link denoted by the interactional place P61241 in Figure 5.41. In order to

identify the potential DMUs in stratum '2' that will have the desired single interactional link

between them, the echelon index for each of the DMUs in stratum '2' is calculated. The

echelon indices associated with the DMUs DMUl2, DMU22, DMU 3 2, DMU42, DMU5 2,

* ~ and DMU 62 are identified as 0, 9, 6, 3, 3, and 9 respectively. DMUJI2 of the compound

node '1' in stratum '1' has the highest echelon index (0) compared to the other subsystems

* ~ of the compound node '1'. Therefore, the RS stage of DMU312 is selected as the input stage

to the interactional place P61241 (Rule 7.2).
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DMUM

DAUik

(a)

DM

DEW

(b)

DUU.,

(C)

Figure 7.5 Lower Stratum Representation of a Higher Stratum Interactional Link
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The highest echelon index identified for the subsystems of the compound node '2'

in stratum '1 is '3' which is associated with two DMUs, DMU 4 2 and DMU52 . However,

the 2-tuple (I, 0) representation, presented in Section 7.4, of the echelon index associated

with DMU 4 2 is given by (1, 4), while that of DMU 52 is (2, 3). According to Rule 7.3,

DMU 4 2 is selected to participate in the interactions since it has the higher T index.

Application of the connectivity rules results in the organizational structure shown in Figure

7.6.

The incidence matrix of the net shown in Figure 7.6 is presented in Figure 7.7.

7.7 CONCLUSION

A set of connectivity rules to resolve the lower stratum representation of higher

stratum interactional links was presented. The connectivity rules are based upon the

multiechelon hierarchical relationship that may exist among the DMUs of an organizational

structure. In order to define the multiechelon hierarchy among organizational members, the

messages that flow in an organization are classified into different categories. An ordering

was then defined on input and output messages to characterize the echelon type relationship

among different organizational members. An echelon index was defined based on the

orderings described for input and output messages. According to the methodology

presented in this chapter. whenever it is desired to translate a higher stratum interactional

link to its lower stratum description, all the subsystems defined in the lower stratum are

identified in terms of their echelon indices and then the connectivity rules are applied to the

structure. The methodology was applied to resolve the connectivity problem to an example

presented in Chapter V.
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Figure 7.6 Application of the Connectivity Rules to the Organization in Example 5.3
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-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0-1 0000000000000000000000000000
1 000-1 0000000000000000000000 00000
0 0 0 0 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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00 1 00000-1 00000000000000000000000
000 1 0000-1 00000000000000000000000
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000000 1 0000-1 00000000000000000000
0 0 0 0 0 0 0 1 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00000000 1 0000-1 000000000000000000
000000000 1 0000-1 00000000000000000
0000000000 1 0000-1 0000000000000000
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000000000000 1 0000-1 0000000000000

0200000000000000100000-100000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0

0000000000000000 1 00000-1 0000000 00
00000000000000000 1 00000-1 00000000
000000000000000000 1 00000-1 0000000
0000000000000000000 1 00000-1 000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0-1 0 0 0 0 0
000000000000000000000 1 00000-1 0000
00000000000000 00000000 1 00000-1 000
000000000000000000-1 0000 1 00000000
000000000000000000000000 1 0000-1 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0-1
00000000000000000000-1 00 1 00000000
0 00000 000 000000 0000000000 1 0000-1 0
0000 0000000-1 00000 000000000 1 00000
0000000000000000000-1 000000 1 00000
0000 00000000000000000-1 0000 1 00000
000000 00000000 00000000-1 0000 1 0000
0000000000000000 000000000000 1 0-1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-100000000000000000000000000000001-

Figure 7.7 Incidence Matrix of the Net in Figure 7.6
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CHAPTER VIII

THE LATTICE ALGORITHM

A Feasible Organization (FO) has been defined as a Well Defined Net (WDN) in

stratum 'k+l' of a compound node in stratum 'k', that satisfies both the structural and
user-defined constraints. The compound node for which the WDN is defined can be an

entire organization, a case where the compound node is located at the highest stratum

(stratum '0'), or a subsystem defined for an arbitrary stratum 'k', where I _< k < n. The
design methodology, introduced by (Remy, 1986), presented in this chapter determines the

set of all Feasible Organizations, defined in stratum 'k+l', for a compound node 'i', in

stratum 'k', corresponding to a specific set of constraints. It is assumed throughout this
chapter that the user-defined constraints Ru are given.

8.1 CHARACTERIZATION OF THE SET OF FEASIBLE ORGANIZATIONS W(R)

As mentioned, once the set of special constraints is given, the notions of WDN and

Well Defined Structure (WDS) are interchangeable. The term WDN will, therefore, be used

throughout the chapter. The set of Feasible Organizations W(R) is a subset of the set of all

WDNs W. Since, the set W is an ordered set, Chapter IV, according to Theorem 3.1 the set

of Feasible Organizations (FO) is a partially ordered set with the same order (denoted <)

defined on W, (Remy, 1986). From Theorem 3.2, the set of Feasible Organizations (FO)
W(R) has at least one minimal and one maximal elements. Note that for the sake of

simplicity the node and stratum indices are not shown.

Definition 8. 1: Universal and Kernel Nets

The Universal Net associated with the constraints Ru - Q(Ru) - is the WDN

obtained by replacing all undetermined elements of {e, s, F, G, H, CI by 1.
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Similarly the Kernel Net - o(Ru) - is the WDN obtained by replacing the same

undetermined elements by 0.

The set W(Ru) of all Admissible Organization Forms is characterized by the

following proposition.

Proposition 8.1

The set W(Ru) is the subset of W that satisfies the following two conditions:

* Any element , of W(Ru) is a subnet of the Universal Net 92(Ru).
* The Kernel Net o(Ru) is a subnet of any element Y of W(Ru).

Alternatively,

W(Ru) = { E e W I (.)(Ru) - : < Q(Ru) }

Proof
Since user-defined constraint Ru is convex on W, the convex subset W(Ru) of set

W satisfying Ru can be characterized by its minimal and maximal elements,

Proposition 6.1. The proof is completed, if it is noted that W(Ru) has a single
maximal element (the Universal Net) and a single minimal element (the Kernel Net).

Corollary (Remy 1986)

W(Ru) is a sublattice of W.

Definition 8.2: Maximally (Minimally) Connected Organization

A maximal element of the set W(R) of all Feasible Organizations will be called a

Maximally Connected Organization (MAXO). The set of all MAXOs will be

denoted as Wmax(R).

Similarly, a minimal element of W(R) will be called a Minimally Connected

Organization (MINO). The set of all MINOs will be denoted as Wmin(R).
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Maximally and minimally connected organizations can be interpreted as follows. A

MAXO is a WDN such that it i' not possible to add a single link without violating the set of
constraints R, i.e., without crossing the boundaries of the subset W(R). Similarly, a MINO

is a WDN such that it is not possible to remove a single link without violating the set of
constraints R. The following proposition is a direct consequence of the definition of

maximal and minimal elements.

Proposition 8.2 (Remy 1986)

For any given feasible Organization I, there is at least one MINO X'min and at least

one MAXO Xinax such that YXmin <  X Ymax. Alternatively,

I E W 1 3 (Ymin, Xmax) E Wmin(R) x Wmax(R) Y-nin < 15 <  max } D W(R)

Note that the previous inclusion is not an equality in the general case. As mentioned
earlier, the constraint R1 is not convex (Pioposition 6.3) on the set W for a compound

node with human DMs as DMUs. Therefore, there is indeed no guarantee that a WDN
located between a MAXO and MINO will fulfill the constraint RI, since such a net need not

be connected. To address this problem, the concept of simple path has been introduced by

Remy (1986). The set of WDNs for compound nodes with subsystems other than human
DMs do not have this problem, as the constraints C I and C2 are convex and together they

imply constraint R 1, Proposition 6.4. Therefore, the set of Feasible Organizations for such

a compound node can be completely characterized by the MAXOs and MINOs.

8.1.1 Simple Paths

Let I be a WDN that satisfies constraint R I and whose source and sink have been

merged together into a single external place. If the source and sink places of a Y are merged
together to form an external place, then a simple path of I is defined to be a directed

elementary circuit which includes the external place.

According to Proposition 5.1, the Petri Net representing Y is a marked graph. A
simple path is therefore a minimal support S-invariant of Y whose component

corresponding to the external place is I (Hillion, 1986). Note that if the component
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corresponding to the external place is not 1 then the S-invariant is an internal loop of the

net. The concept of S-component has been presented in Chapter II. An S-component of a

WDN is itself a WDN whose places are exactly the places of the support of the S-invariant

and transitions are the input and output transitions of these places. The matrix

representation of the S-component is obtained by identifying the interactional places of the

S-component. Consequently, the simple paths of a WDN are themselves WDNs. The set of

all simple paths of the Universal Net Q(Ru) are denoted as Sp(Ru).

Sp(Ru) = {IsP, sP2. ..., sPi, .... SPr} spi < Q(Ru)

8.1.2 Union of Simple Paths

If the cardinality of Sp(Ru) is r, we can write Sp(Ru) = {spi, 1 <i < r). Since

simple paths are WDNs, the set Sp(Ru) is included in the set of all WDNs, W. The set of

all possible unions of elements of Sp(Ru), augmented with the null element 9P of W, is

denoted as USp(Ru). The null element 9, is defined to be a WDN with all elements equal to

zero.

USp(Ru) = {E E W 1 3 {spi, ..., spir I Sp(Ru)r X = spiIu ... u spit) u{fp}

The union of two elements of Sp(Ru) is the WDN composed of all the simple paths

included in either one of the two considered elements.

The following proposition justifies the introduction of simple paths.

Proposition 8.3 (Remy 1986)

Every WDN, element of the set USp(Ru), satisfies the connectivity constraint R1.

Reciprocally, a Feasible Organizational Form that fulfills the constraint RI is an

element of USp(R11). In formal language:

{Z E W I RI[YI- 1 D USp(Ru) D IX E W(Ru) I RI[Y]1 = 1)

R1[XI = 1 means that X satisfies the constraint RI.
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8.1.3 Characterization of W(R)

The following proposition, Remy (1986), characterizes the set of all feasible

organizations.

Proposition 8.4

Let I be a WDN of a compound node defined in a stratum ' of dimension 'm'. X
will be a Feasible Organization if and only if

* Y is a union of simple paths of the Universal Net Q(Ru), i.e., Y e USp(Ru).

* . is bounded by at least one MINO and one MAXO.

In formal language:

W(R) = E USp(Ru) 13 (Xmin, Xmax) E Wmin(R)xWmax(R) Xmin < Y < Xmax}

As mentioned earlier, the characterization of the set W(R) for the cases where

organizational structure is comprised of the DMUs other than human decision makers is

much simpler. The following proposition characterizes the set W(R) for such cases.

Proposition 8.5

Let I be a WDN of a compound node defined in a stratum 'k, where k # N, of

dimension 'm'. Y will be a Feasible Organization if and only if

* X is bounded by at least one MINO and one MAXO.

In formal language:

W(R) = E W(Ru) 13 (Y-min, Xmax) E Wmin(R)xWmax(R) Xmin< I! < max }

Propositions 8.4 and 8.5 gives a characterization of the set W(R) just like

Proposition 8.3 gives a characterization to the set W(Ru). In the cases where the DMUs of
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the organizational structure are not human decision makers, a link is the incremental unit

leading from a WDN to its immediate superordinate, while in the cases where human

decision makers are defined as the DMUs of the organizational structure, the simple paths

play the role of building unit. In generating organizational structures with simple paths, the -

connectivity constraint RI is automatically satisfied. The following section illustrates the

methodology by applying it to an example problem.

8.2 APPLICATION

Let us consider the set of user-defined constraints presented in Figure 8.1

corresponding to 2-dimensional WDNs associated with a compound node DMU I(, where

the WDNs are defined in stratum 'n=N=1', the lowest stratum. The 'x' in the arrays of
Figure 8.1 corresponds to the unspecified elements. The O's and l's indicate the forced

absence or presence, respectively, of links. Note that all the diagonal elements are
identically 0 as they represent the inadmissible links.

The organization under consideration has two DMUs. DMU 1 1 acts as the sensor of
the organization; it receives information from the external environment. DMU21 produces

the organization's response with respect to the external environment. All other interactions

between these two DMUs and the external environment are optional. The Universal Net
Q(R u) is obtained b) replacing all x's by l's. The net Q)(Ru) is represented in Figure 8.2

with bold connectors representing the links imposed by user-defined constraints Ru. The
Kernel Net co(Ru) is given in Figure 8.3 obtained as a result of replacing all unspecified

elements by O's. The MAXO (M) and MINO (in) identified for the set W(R) are given in

Figure 8.3. All the simple paths calculated are given in Figure 8.4. The lattice

representation of W(R) is presented in Figure 8.5. The Hasse diagram presented in Figure

8.6 is constructed by taking the only MINO (in) found in the set W(Ru) and by adding

different simple paths to it. All the WDNs found as a result of adding these simple paths to

the MINO (in) are the elements of the set W(R), thus representing all the Feasible

Organizational structures for the given organization.
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Xi =e,s,F,G,H,C)

e=(I x] F = 0] G =[ 01

s f x 1I H =[O 0] c=[O I]

Figure 8.1 Matrix Representation O;Yi11

Pil1  till P211 t211 P3 1 1  131 1 P4 1 1  t41 1 PSII5 1 1 51 1 1 M

21
P I 21 1P 2 2 1 t221 P3 2 1 t 3 2 1 P4 2 1 t421 P 51t521 P6 2 1

Figure 8.3 Knierel Net QR)
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MINI

p111  till t61l P71P1 0t1 41  41 5 11
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pi11111  P2 1 1 t2l 1P 3 1 1 1311 P4 1 1 1411 P 11 1 511 P61 1

P1 J O 
~ OP1

P Il 11P 21 1  t211 P 3 11 t 3 1 Ip 4 11 t4 l1 p5 11 t5 1 1

P2 614

14 21 P521 t521

0121 '121

p 12 1  1121 t421 P52 1 t5 21  P621

P 5

P 12 1  '121 p22 1 t22 1  P321 t 32 1 P4 21 t421 P5 21 1 521 P6 2 1

Figure 8.5 Simple Paths
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M

m~~ + l5 + p4 +p 4+p

M ~ ~ p "+ P1 mm5 + p5 5+p

m

Figure 8.6 Hasse Diagram of the Lattice m-M

8.3 CONCLUSION

A review of the Lattice algorithm, introduced by Remy (1986), was presented in

this chapter. A slight modification was presented in the algorithm for the organizational

structures with DMUs other than human decision makers - a case not covered by Remy. It

was found that the introduction of the compound node constraints (C I and C2) has resulted

in a mere simplification of the Lattice algorithm. A characterization of the set of all Feasible

Organizational structures W(R) for a given set of user-defined constraints was presented
for both cases (organizational structures with or without human DM). The algorithm was

applied to an example problem to illustrate the methodology.
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CHAPTER IX

APPLICATION OF THE ALGORITHM TO THE DESIGN PROBLEM

9.1 INTRODUCTION

This chapter presents the entire algorithm for generating Stratified Decision Making

Organizational (SDMO) structures. The algorithm is developed by connecting the concepts

and results presented in Chapters IV to VIII. Aflowchart description and a pseudocode, a

Program Design Language (PDL), description of the algorithm provide the entire design

procedure. Section 9.2 presents the algorithm for the Bottom-Up design approach, while

the Top-Down design procedure is given in Section 9.3. A comparative study of the two

approaches is presented in Section 9.3. Section 9.4 consists of the entire algorithm

incorporating both approaches. An example is presented to illustrate the methodology

developed.

A flowchart description is used to depict the logic, procedures, and elements of the

algorithm. The American National Standards Institute (ANSI) has defined standard

flowcharts symbols and their usage, ANSI (1970). Figure 9.1 presents the symbols that

are used in the development of the algorithm presented in this chapter.

9.2 BOTrOM-UP APPROACH

In the bottom-up approach, the lower strata nodes are designed first; subsystems

are designed prior to the systems to which they belong. In this approach the design

procedure starts with the specification of the lowest stratum (stratum 'n') nodes, and then

these nodes are mapped into the next higher stratum (stratum 'n-I') compound nodes. The

WDNs of the next higher stratum (stratum 'n- 1') compound nodes, defined in terms of the

lower stratum subsystems. are generated by the lattice algorithm applied to each node. The

procedure continues till the highest stratum (stratum '0') compound node is defined in

terms of its subsystems (DMUs) in stratum 'J'. Once all the FOs are generated for each
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compound node in stratum k, where 0 5 k < n, in terms of the subsystems (DMUs) in

stratum 'k+l', then the organizational structure can be unfolded to any stratum description

with the help of the procedure presented in Subsection 5.7.4. After unfolding the

organizational structure to an arbitrary stratum ', all the higher strata interactional link are

translated to their lower stratum, stratum 'kV, representation by the application of the

connectivity rules presented in Section 7.5. As mentioned in Chapter VII, the connectivity

rules can not be directly applied to stratum 'k' if the stratum to which the interactional links

belong is not the next higher stratum, stratum 'k- 1'. The connectivity rules must be applied

to all intermediate strata first. Then the interactional links, appearing as a result of this

successive application of the rules, in the organizational structure, in stratum 'k-l', are

translated to the next lower stratum (stratum 'k') by the rules. In case a higher stratum

description is required, the folding procedure presented in Subsection 5.7.3 is applied to

the organizational structure. A flowchart description of the approach is presented in Figure

9.2, while a pseudocode description of the design procedure is shown in Figure 9.3.

9.3 TOP-DOWN APPROACH

In contrast to the bottom-up approach, the top-down design procedure generates the

organizational structures of the the higher strata nodes first; systems are designed prior to

the subsystems comprising them. In this approach, the design procedure starts with the

highest stratum (stratum '0') node, and then the subsystems for the node are specified for

the next lower stratum (stratum 'I'). Each node in stratum 'T is then designed in terms of

its own subsystems in lower strata. The procedure continues till the lowest stratum (stratum
'n') nodes are defined. The folding and unfolding procedures are presented in Section 5.7.

The connectivity issue follows the same scheme presented in the previous section. A

flowchart description of the approach is presented in Figure 9.4, while a pseudocode

description of the design procedure is shown in Figure 9.5.
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Symbol Represents

The input or output of data, where the
INPUT/ medium of input or output is not specified.

MManual input.

Any manipulation or processing of data.
PROCESS

PROCESS 1]Perform processing using a seperate procedure,
USING j function, or subprogram unit.

PROCEDURESl]

TRNAL The begining or end of an algorithm module.

Taking of alternative actions based upon presence
'ECISION or absence of some condition. Often called a

decision symbol.

Annotation. Used for added comments. Connected

ANNOTATIONS to flow-hart where helpful to provide
additional information.

Sequence and flogk of logic.

Figure 9.1 Flokwchart Symbols
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START

Initialization

Input 'n'

--------- --- -- --- Specify the total number of strata (W')
IC=n In the organization.

------ ----- -- -- --- Specify the total number of nodes 11,kI
rl n u t'l u Ir'In the lowest stratum (stratum n).

------ ----- -- -- --- Specify the total number of compound
El :p :u !'I Lk-n~l'nodes I P k-i1 IIn the next higher

I ~stratum (stratum'k-i').

kC=kI- 1 -> - L Subsystems aIn stratum WC are Identified

AP ~for systems In stratum 'k-lI.

~User-defined constraints Ru are specifiled

Z In terms of the elements of the arrays
(a, s, F, G, H, C) for the organizational

r ~ ufor nod 'l"structure T', w here I e plc-i

Specify the set of Feasible
Organizations (FO) for node 'I

Specfy (R)and selct one FO for
&SecFO WR- -------- further development.

- - - - Store the Incidence matrix Al1, k-1, kC

? > Sore l, k1, kof the selected WDN.

Figure 9.2 Flowchart for the Bottom-Up Approach
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Begin
initialization : var -- int

input (total # of strata 'n' in SDMO) : n -- int

k = n: k -- int
input (total # of DMUs in stratum 'k', 19kI) : 'Ilk-- int

for (k = n ; k > 0 ; -1)
Begin for

input (total # of DMUs in the next upper stratum, Ipk-1)

Imk-1--) int
Map (lPlkl, 19k-11, M) : (I, 14k-11) --> M, (int, int) --- int

for (i = 1 ; i < Itk.l ; +1)

Begin for

user-defined constraints Ru (e, s, F, G,H,C)
e, s, F, G, H, C -- int

lattice algorithm (Ru, R, W(R)) (Ru. R) --- W(R)

select FO (W(R), lik, Ai, k-i, k) W(R) -4 (Xik, Ai. k-1, k)

store (lik, Ai, k-i, k)

end for

end for

input (stratum 'I" for which the description is required) I -- int

folding/unfolding ((Y1, ..,Xi), (AI01, ... ,Aik), AI01 :

( 11 ,...-i), (A10 1, ... ,Aikl) - AI0

connectivity rules (R7.1, R7.2, R7.3, R7.4, Ai01 A10/ --1 A101

end

Figure 9.3 Pseudocode Description of the Bottom-Up Design Procedure
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STC

Initialization

Specify the total number of
I np u t n strata (Wn) in the organization.

I ntr unuber f th
k =0 hihs tam (k =0).

I [There is only one compound
lmkI= 1-----------L(Ik = 1)n stratum V.

Spciy hetoalnubeAo

inu lkliL---- noe susstm) l yli

speitetrat nubeo

lnpt'0+1' ospeciuedsintems) of the elemnt

the n zato nal str uctu re

Iatre th nidene atr i systems i

_J spcifed n trmsofthe electedWONI ---- _ _ _ __o h ary (,a F ,HC o
Figur 94flowrt for the To-onzaoatrctr

-f'I, wer164 P



Begin
initialization : var - int

input (total # of strata 'n' in SDMO) : n - int

k = 0: k ---> int

ImkI = 1 : 1 k1 ---> int

for (k= 0 ; k < n ; +1)
Begin for

input (total # of DMUs in the next lower stratum, I Ik+1I)
14a-11 ---* int

map (iPk+1I, 14k, m) : (iPk+ I,. kl) - m; (int, int) -* int

for (i = IlakI ; i > 0 ;-1)
Begin for

user-defined constraints Ru (e, s, F, G,H,C)
e, s, F, G, H, C - int

lattice algorithm (Ru, R, W(R)) : (Ru, R) - W(R,)

select FO (W(R), Xik+l, Ai, k, k+1) :

W(R) -- (Xik+l, Ai, k. k+l)
store (Yik+l, Ai, k, k+1)

end for

end for

input (stratum ' for which the description is required) / -- int

folding/unfolding ((Y-1, ... ,i), (AI01, ... ,Aikl), A10/ :
(Y-1 ...., l) (A101, ..... Aikl) --> A101

connectivity rules (R7.1, R7.2, R7.3, R7.4, A10 1) Aj0 -4 A101

end

Figure 9.5 Pseudocode Description of the Top-Down Design Procedure
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9.4 COMPARATIVE STUDY OF THE TWO APPROACHES

The two approaches presented in the previous sections provide identical results if

the same Feasible Organizational structures (FOs) generated for each node are considered.

Since the generation of WDNs for a particular node in an arbitrary stratum 'k, where 0 :-
k < n, is independent of the generation of WDNs for any other node in any other stratum

'1" (0 < I < n), the end result of the design procedure is independent of the approach taken.
However, each approach not only provides a systematic way of designing an organizational

structure, but also gives the designer an option to choose the sequence in which the results

are produced.

In case the emphasis of the designer is on the subsystems of the entire organization

then the Bottom-Up approach should be adopted in order to generate the organizational

structure. As mentioned earlier, in this approach, the subsystems are modeled before the

system itself. Therefore, the design procedure produces information about the subsystems

and the interactions among them even before the entire organization is modeled. If it is

required to investigate the details of the subsystems of the organization at any point of the

design procedure, the process can be interrupted at that point without even exercising the

entire algorithm, and then all subsystems defined at the time of interruption can be

investigated in terms of their lower strata descriptions thus saving a lot of time and

computational effort, especially for very large systems. Note that the behavior of the

subsystems in the entire organization can not be determined just by investigating their

individual organizational structures since a number of interactions among them may be

defined at a higher stratum.

On the other hand, if the emphasis is on the entire system instead of its subsystems

and the manner in which it evolves, then the Top-Down approach is the one to be

considered. In this approach, the design process starts with the entire system designed at

the highest abstraction (highest stratum description) desired, then each subsystem is

modeled in terms of its higt er stratum description Therefore, the design procedure

produces information about the system at a relatively higher degree of abstraction as the

process evolves. At any point, the design process can be interrupted to investigate the entire

organizational structure to a degree of abstraction that has been defined at the time of

interruption without generating all the suborganizational structures at the lowest stratum.
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9.5 OVERALL STRUCTURE OF THE ALGORITHM

The entire design procedure is presented in terms of a Flowchart description in

Figure 9.6 by joining the two Flowcharts presented in Figures 9.2 and 9.4. The shaded

boxes represent the processes that are different in each approach. No further explanation is
required as both the approaches has been described in Sections 9.2 and 9.3.

STDO T r77

Figure 9.6 Overal Stutuof thloih

N 1
i.0 -..

II 'AppIy

,J " Connectivity
Rlsv

Figure . Oeal tutueo teAgoih
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9.6 APPLICATION

In this section, the design methodology presented in this thesis is applied to a fairly

simple and illustrative example. Figure 9.7 presents a block description of a 2-strata

Stratified Decision Making Organization (SDMO) with n = N =2.

U2 DMU 1 Stratm 0

Figure 9.7 A 2-Strata SDMO

The Bottom-Up approach is used to generate the organizational structure. Stratum

'1' contains three subsystems, DMU1 1, DMU 2 1, and DMU31 of the organization. The
design methodology is applied to the problem in the Bottom-Up manner. The steps of the

design procedure are given as follows.
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Step 1

" Specification of total number of strata: n = 2
" Specification of the current (lowest) stratum, stratum 'k': k = 2
* Identification of DMUs in stratum 'k' (stratum '2'):

DMU 1 2 , DMU 2 2 , DMU 3 2 , DMU4 2, DMU 5 2 ,

DMU 62

" Identification of compound node(s) in stratum 'k-i' (stratum '1'):

DMUII, DMU 2 1 ,

DMU3 1

* Mapping compound node(s) in stratum 'k-l' (stratum '1') to its/their

Subsystems in stratum 'k' (stratum '2'): The subsystems in stratum '2' of the

compound nodes in stratum 1' are given in Table 9.1.

TABLE 9.1 Compound Nodes in Stratum '1' and their Subsystems in Stratum '2'

Compound Nodes in Subsystems in

Stratum '1' Stratum '2'

DMU11  DMU12, DMU2 2

DM"U2 1  DMU 32, DMU 42

DMU3 1  DMU52, DMU 62

Step 2

Generation of organizational structure for compound node DMU 11 in terms of

its subsystems and their mutual interactions: The user-defined constraints for

subsystem DMUII are given in Figure 9.8. The Petri Net representation of X12

and the incidence matrix A 112 of the selected WDN for DMUII are shown in
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Figures 9.9 and 9.10. The Universal Net, Kernel Net, MAXOs, MINOs and

all the simple paths for -12 are given in Appendix A.

Y12 = fe, s, F, G, H, C}

e = [1 x] F= [0 1G =[
x 0 0 0

s = t0 x] H= [0 C= [ 0]
x 0 0 0

Figure 9.8 Matrix Representation of ,12

P 112 t112 DMU 1 2

P2122

t2 2 2 P322 t3 2 2 P 4 2 2 t 4 2 2 p5 2 2 t5 2 2 P6 2 2

Figure 9.9 Petri Net Representation of the Selected WDN Y-12

170



tOl I t112 t222 t322 t422 t522 tI61

Potl -1 o 0 0 0 0

P112  1 -1 0 0 0 0 0

P2122 0 1 -1 0 0 0 0

P322 0 0 1 -1 0 0 0

P422 0 0 0 1 -1 0 0

P522  0 0 0 0 1 -1 0

P6 22  0 0 0 0 0 1 -1

P711 0 0 0 0 0 0 1

Figure 9.10 Incidence Matrix A 112 off 112

Generation of organizational structure for compound node DMU 2 1 in terms of

its subsystems and their mutual interactions: User-defined constraints for the

next subsystem DMU 2 1 in stratum '1' are shown in Figure 9.11. The Petri Net

representation and the incidence matrix of the selected WDN --22 are given in

Figures 9.12 and 9.13.

12 2 = {e s. F, G, H. C}

e I I F o x G [o o
e=[1 11 F= [0 G=[ 0

s:[1 11 H= KC1 ~ O 0
x 0 LO 0

Figure 9.11 Matrix Representation of 122
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P132 t132P 2 3 2 
t232 P332 t332P 4 3 2 t432 P532t 5 3 2  P632

P021 t021Pa42 t 621 P721

~DMU

42
P1 4 2  t1 4 2 P2 4 2 t2 4 2 P342 t34 2 P4 4 2 t442 P542 t5 42 P642

Figure 9.12 Peri Net Representation of Selected WDN -22

Generation of organizational structure for compound node DMU31 in terms of

its subsystems and their mutual interactions: The last subsystem DMU 3 1 in

stratum '1' also has two DMUs, DMU52 and DMU 6 2 , in stratum '2'.Tnle

interactional structure desired by the designer between DMU 52 and DMU 62 is

given in Figure 9.14 in terms of the matrix representation. One of the generated

WDNs fulfilling user and structural constraints is presented in Figure 9.15 in

terms of the Petri Net representation. The incidence matrix A32 of the net in

Figure 9.15 is given in Figure 9. 16.
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t021 t132 t142 t232 t242 t332 t-42 t432 t442 t532 t542 t621

P021 -1 0 0 0 0 0 0 0 0 0 0 0

P 13 2  1 -1 0 0 0 0 0 0 0 0 0 0

P142  1 0 -1 0 0 0 0 0 0 0 0

P2 32  0 1 0 -1 0 0 0 0 0 0 0 0

P2 4 2  0 0 1 0 -1 0 0 0 0 0 0 0

P 3 3 2  0 0 0 1 0 -1 0 0 0 0 0 0

P34 2  0 0 0 0 1 0 -1 0 0 0 0 0

P4 3 2  0 0 0 0 0 1 0 -1 0 0 0

P442 0 0 0 0 0 0 1 0 -1 0 0 0

P532  0 0 0 0 0 0 0 1 0 -1 0 0

P5 4 2  0 0 0 0 0 0 0 0 1 0 -1 0

P63442 0 0 0 0 0 0 0 0 -1 1 0 0

P632 0 0 0 0 0 0 0 0 0 1 0 -1

P6 4 2  0 0 0 0 0 0 0 0 0 0 1 -1

P721 0 0 0 0 0 0 0 0 0 0 0 1

Figure 9.13 Incidence Matrix A212 of 122

32= {e, s. F, G, H C

e=[1 x] F= [ G [0 x]
0 0 X 0J

s=lx 1] H= C0 1] C=[0 01
00 0 0

Figure 9.14 Matrix Representation of 132
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P152 t152P 2 5 2 t2 5 2 P352 t3 5 2 D4 5 2 t4 5 2 P 552 t 5 5 2
DMU 5 2

'031 t031 t 631 Pt631

P 5622

~DMU

t2 6 2 P3 6 2 t362 P462 
t 462 P5 6 2 t562 P6 6 2

Figure 9.15 Petri Net Representation of Selected WDN Y32

t031 t152 t252 t262 t352 t362 t452 t462 t552 t562 t631

P03 1  -1 0 0 0 0 0 0 0 0 0 0

P152  1 -1 0 0 0 0 0 0 0 0 0

P252 0 1 -1 0 0 0 0 0 0 0 0

P352  0 0 1 0 -1 0 0 0 0 0 0

P362 0 0 0 1 0 -1 0 0 0 0 0

P452 0 0 0 0 1 0 -1 0 0 0 0

P462 0 0 0 0 0 1 0 -1 0 0 0

P552  0 n 0 0 0 0 1 0 -1 0 0

P562 0 0 0 0 0 0 0 1 0 -1 0

P65622  0 0 0 0 0 0 0 -1 1 0 0

P662  0 0 0 0 0 0 0 0 0 1 -1

P73 1  0 0 0 0 0 0 0 0 0 0 1

Figure 9.16 Incidence Matrix A3 12 of 13 2
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Step 3

* Specification of next higher stratum: k = 1
* Identification of compound node(s) in stratum 'k-i' (stratum '0'): DMU1O
* Mapping compound node(s) in stratum 'k-l' (stratum '0) to its/their

Subsystems in stratum 'k' (stratum '1'): All the nodes in stratum '1' are the

subsystems of DMUIO.

Step 4

Generation of organizational structure for compound node DMU 10 in terms of

its subsystems and their mutual interactions: The interactional structure as

desired by the designer for the subsystems in stratum '1' of the organization is
given in Figure 9.17. The Petri Net representation of the entire organization in

stratum '1' is presented in Figure 9.18, while the incidence matrix A10 1 of the

net is shown in Figure 9.19.

S= {e, s, F, G, H, C}

e-[1 1 1] F= 0xG= [0 0 0

s 0 0 0 0 0

s=[1 1 11 H=- 0C 12 0 x
0 0 0 0

Figure 9.17 Matrix Representation of III

Step 5

Unfolding the organization DMU 10 to stratum '2': The unfolded organizational

structure in stratum '2' is presented in Figure 9.20 after the connectivity rules

are applied to the interactional links among DMU1 1 , DMU 2 1, and DMU 3 1.
Finally, the unfolded incidence matrix of the organizational structure is given in
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Figure 9.21. Again, all the Universal Nets, Kernel Nets, MAXOs, MINOs and

all the simple paths for Yll, Y12, -22, and -32 are given in Appendix A.

DMUP1 1 1  tiPl 211 1211 P3 11 t3 1 1P4 1 1 1 1 P5 11 t5 1 1  P6 1 1  11

10~~ ~ ~~ 2321 1 31 2 1 P1

P32341

/ DMI

P1 3 1  t 13 1 P2 3 1 t231 P331 '331P431 1431 P5 3 1 t53 1  P631

Figure 9.18 Petri Net Representation of Selected WDN Y11

too ... ... tto

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1-1000000000000000
10-100000000000000
100-10000000000000
0 1 00-1 000000000000
001 00-1 00000000000
000 1 0 0-1 00 0 0 0 0 0 0 0 0
0001 0-1 00000000000
0000 1 00-1 000000000
000001 00-1 00000000
0 0000 0 1 0 0-1 0 0 00 0 0 0

A 101 = 0 0 0 0 0 0 0 1 0 0-1 0 0 0 0 0 0
00000000 1 00-1 00000
000000000 1 00-1 0000
0 0 0 0 0 0 0 00 0 1 0 0-1 00 0
00000000000 1 00-1 00
0000000000001 00-1 0
0000000000000 1 00-1
0 0 0 0 0 0 0 0 0 0 0 0 00 1 0-1
0000000000-1 000 1 00
0 00 00 0 00 00 00-10 10 0
0 00 00 00 00 00 00 0 01-1
-00 00 00 00 00 00 00 0 01 _j 7o

Figure 9.19 Incidence Matrix A101 of Yll
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t
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Figure 9.20 Unfolded Organizational Structure in Stratum '2'

9.7 SUBMARINE EMERGENCY CONTROL

In this section, the design methodology is applied to the ship control party of a

submarine performing an emergency control task. The description of the problem follows

from Weingaertner (1989) who considered a five member decision making organization.
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Figure 9.21 Unfolded Incidence Matrx of the Organizational Strcture in Stratum '2'

9.7.10Overview of Submarne Emergency Control

Submarne emergency control has been broadly defined as those actions tken to

counteract the effcts of any and all system falures which impede the normal operation of

the submarne and the accomplishment of its mission. Although submarnes var, any

submarne must be able to submerge to and maintain a commanded depth, maneuver
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precisely at depth, and rise rapidly to the surface without broaching, in the event of an

emergency or in the conduct of its mission. The failures which may befall a submarine
range from those of little direct consequences to those threatening catastrophe. They may

arise from a variety of sources including design flaws, human error, and battle damage.
The gravity of casualties is magnified by the high speed of modem submarines, especially

those of the attack classes. The range of operating depths is on the order of only five times
the length of the vessel. A distressed vessel may therefore, within tens of seconds, plunge

to dangerous depths where the hull may crush, or ascend to and broach the surface, giving

away its position and potentially exacerbating the casualty or even colliding with another

vessel.

All control decisions, both normal and emergency, are the responsibility of the five
member ship control party (SCP). The SCP relies upon several effectors for exercising this

control: main and variable ballast tanks for aiding in depth and trim control, external control

surfaces (rudder, stem planes, fairwater planes) for controlling trajectory, and naturally, a
propeller. (see Figure 9.22).

To detect and diagnose an emergency, the members of the ship control party have

available a number of sources of information. Figure 9.23 depicts the SCP positions before

the ship and ballast control panels. On the ship control panel are indicators of ship state

(speed, depth, heading, trim and roll conditions) and control surface positions displayed
with pointer and dial meters and auxiliary plane indications provided by lights located along

the dial perimeters. Also on the ship control panel are the control mode buzzer and lights.

When electrical power or normal hydraulic power to a set of planes is lost, the control

mode shifts automatically from normal mode (electrical-servo control) accompanied by the

sounding of the buzzer and the activation of a light corresponding to the affected plane.

The ballast control panel provides information about ship's depth and trim

conditions, the status of its ballast tanks and pressurized air banks, as well as information

and alarms corresponding to all other vital non-weapon ship systems, e.g., water sensor

alarms, gyroscope alarms, and life support system status. The ballast control panel is also

equipped with a telephone for communicating with all other ship compartments. This
telephone bears reports of flooding casualties.
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A final source of information is a loudspeaker providing information about surfaced

and submerged sonar contacts and tactical situations which may affect the response to an

emergency.

i Operations and Control Spaces

EMain Ballast Tanks

U] Control Surfaces

Figure 9.22 Submarine Control Configuration

-0 0 0

M "

c, 0 M

FLOODING LOCATION LEE HELM (L) HELM (H)

TACTICAL

PIPE SIZE SITUATION

WATER SENSOR
ALARMS

HYDRAULICS ALARM

GYRO ALARMS CHIEFOFTHE

SHIP DEPTH WATCH (COW) DIVING OFICER
OF THE WATCH (DOOW)

TRIM

OFFICER OF THE DECK (OD0)

Figure 9.23 The Layout of the Ship Control Party and the Ship Control Panel
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9.7.2 Organization Modeling

The ship control party consists of five decision makers: the Officer of the Deck

(OOD or 0), the Diving Officer of Watch (DOOW or D), the Chief of the Watch (COW or

C), the Lee Helm (L), and the Helm (H). The organization has hierarchical and parallel

aspects as shown in Figure 9.24. At the top of the structure is the OOD, who has the
responsibility for integrating the ship control process with the other aspects of the ship's

mission. For emergency control, his job is essentially to decide whether certain aspects of

the emergency response should be restricted because of the existence of a sensitive tactical

situation. Second in command is the DOOW whose task in the emergency context is to

direct and monitor the actions of his subordinates responding to the casualty, subject to any

restrictions placed by the OOD. The COW and the helmsmen comprise the bottom tier of

the organization, immediately under the DOOW. The COW receives all information on

flooding casualties and hydraulic failure, which he shares with the DOOW. He is also in

charge of controlling the ship ballast system for aiding in the control of depth. The Lee

Helm, L, drives the ship's stem planes, the control surface that modulates the vehicle's

trim angle and thus its depth. In performing this task, L receives information about the

plane angle and the control mode (see Weingaertner, 1989) as well as ship state

information. Finally, the Helm, H, controls the ship's rudder and fairwater planes based on

plane angle information, control mode, and ship state information - the same information

that is available to L.

SCP as a Stratified Decision Making Organization

Figure 9.25 presents the SCP as a Stratified Decision Making Organization

(SDMO), where DOOW, COW, L, and H comprise a suborganization in stratum 2'. The

OOD is taken as another subsystem in stratum '1'. The interactions between the OOD and

the rest of the SCP are defined in stratum '1' as interactions between the OOD and the

compound node representing the suborganization of DOOW, COW, L, and H in stratum

'2'. The unfolded organizational structure in stratum '2' of the node in stratum '0' will

show the detailed interactional structure of the SCP.

The design methodology is now applied to the SDMO in Figure 9.25. The members

of the SCP, OOD, DOOW, COW, L, and H are denoted by DMU 52 , DMU1 2, DMU32,
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and DMU42 respectively. The compound node representing the suborganization consisting

of DOOW, COW, L, and H is denoted by DMUII in stratum '1', while the compound
node representation of OOD is denoted by DMU21. The compound node in stratum '0'

representing the SCP is denoted by DMU 10.

tactlal

contro surfaces baalstcanro

Statm

DOOW

~main and
variale

control surfaces, ballast
engine order tanks

Figure 9.24 The Ship Control Party

DMU 10 StatmU 1 Srau

12 22~ 4252

Figure 9.25 SCP as a 2-Strata SDMO
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Application of the Methodology

The Bottom-Up approach is adopted to generate the organizational structures.

Stratum '1' contains two subsystems, DMU1 , and DMU 2 1. The steps of the design

procedure are given as follows.

Step I

* N=2
* Specification of total number of strata: n = 2
• Specification of the current (lowest) stratum, stratum 'k': k = 2
* Identification of DMUs in stratum 'k' (stratum '2'):

DMUI2, DMU22, DMU 32, DMU42, DMU52

These DMUs are actually DMs.
* Identification of compound node(s) in stratum 'k-l' (stratum '1'): DMU 11 ,

DMU21
* Mapping compound node(s) in stratum 'k-l' (stratum 'l') to its/their

Subsystems in stratum 'k' (stratum '2'): The subsystems in stratum '2' of the

compound nodes in stratum '1' are given in Table 9.2.

TABLE 9.2 Compound Nodes in Stratum '1' and their Subsystems in Stratum '2'.

Compound Nodes in Subsystems in

Stratum '1' Stratum '2'

DMU11 DMU12, DMU22

DMU32, DMU42

DMU21 DMU52
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Step 2

Generation of organizational structure for compound node DMUII in terms of

its subsystems and their mutual interactions: The user-defined constraints for

subsystem DMU II are given in Figure 9.26. The user-defined constraints are

derived from the discussion in Section 9.7.2 and Figure 9.24. A special

constraint has also been implemented by a inserting an interactional link

between the SA stages of COW and DOOW, as this link represents the situation

where the DOOW's SA stage selects an appropriate algorithm for filtering out

the extraneous information from the external inputs by using assessed

information from COW. The special constraint is implemented by the defining

an interactional place P2 2 112. The Petri Net representation of 712 and the

incidence matrix A1 12 of the selected WDN for DMUI 1 are shown in Figures

9.27 and 9.28. The MAXOs, MINOs and all the simple paths for 112 are given

in Appendix A.

Y,12 = {e, s, F, G, H, C}

0 0 0 01 0 0O
e=[x 1 1 11 F= 0 G= 0

F0 00 1 F0i1 1 1
S=[O 1 1 11 H= 0 0 C= 0

Figure 9.26 Matrix Representation of 112
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S1I2 t1 1 2 p2 1 2 1212 P3 12 t3 1 2 P4 1 2 t4 1 2 P512t512

DMU
1 2

P1 2 04  2 2 1 42 p 3 ~31 2 42 P 4 p13 42  P64 42

Poll 'oil ,232 t1
PF2312 2 P711

~DMU3
2

P 13 11 232 32 P332 t332P432 t432 P532t532 P

P2 1 P2342

l DMU42

P 142 142242 242 P342t342P442 t4 4 2 
P 542 t 5 4 2 

P642

Figure 9.27 Petri Net Representation of the Selected WDN 112

Generation of organizational structure for compound node DMU21 in terms of
its subsystems and their mutual interactions. As there is only one DM in stratum
'2', the structure of DMU 2 1 will trivially be represented by the structure of

DMU 52.

Step 3

0 Specification of next higher stratum: k = 1
* Identification of compound node(s) in stratum 'k-i' (stratum '0'): DMU 10
• Mapping compound node(s) in stratum 'k-l' (stratum '0') to its/their

Subsystems in stratum 'k' (stratum '1'): All the nodes in stratum '' are the

subsystems of DMUI 0 .
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Figure 9.28 Incidence Matrx A112 of X12

Step 4

Generation of organizational strcture for compound node DMU10 mn ers of

its subsystems and their mutual interactions: The interactional strcture as

described in Section 10.2 for the subsystems in stratum '1' of the organization

is given in Figure 9.29. The Petr Net represntation of the entir organization

in stratum '1' is presented in Figure 9.30, while the incidence matrx AI0 j of

the net is shown in Figure 9.31.
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Figure 9.29 Matrix Representation of Y, 11

p1 11 tl1 1 P2 1 1 t211 IP 3 1 1 t3 1 1 P4 1 411 P 5151P11 DM

P 121 t121 P221 t221 P32 t321 P42 1 t4 2 1 p521 t5 21 p62 1

Figure 9.30 Petri Net Representation of Selected WDN X-11
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tOlO till tl2I t2ll t221 t3lI t321 t4 I1  t421 t5 lI t521 t610

POlo -1 0 0 0 0 0 0 0 0 0 0 0

Pill 1 -1 0 0 0 0 0 0 0 0 0 0

P121 1 0 -1 0 0 0 0 0 0 0 0 0

P211 0 1 0 -1 0 0 0 0 0 0 0 0

P2121  0 1 0 0 -1 0 0 0 0 0 0 0

P221 0 0 1 0 -1 0 0 0 0 0 0 0

P3 11  0 0 0 1 0 -1 0 0 0 0 0 0

P32 1  0 0 0 0 1 0 -1 0 0 0 0 0

P411 0 0 0 0 0 1 0 -1 0 0 0 0

P421 0 0 0 0 0 0 1 0 -1 0 0 0

P5 11  0 0 0 0 0 0 0 1 0 -1 0 0

P52 1  0 0 0 0 0 0 0 0 1 0 -1 0

P6 11  0 0 0 0 0 0 0 0 0 1 0 -1

P62 1  0 0 0 0 0 0 0 0 0 0 1 -1

P62 14 1  0 0 0 0 0 0 0 0 0 -1 1 0

P7 10  0 0 0 0 0 0 0 0 0 0 0 1

Figure 9.31 Incidence Matrix AI0 1 of Y 1

Step 5

Unfolding the organization DMU10 to stratum '2': The unfolded organizational

structure in stratum '2' is presented in Figure 9.32 after the connectivity rules

are applied to the interactional links among DMUII, and DMU21. The

interactional links between the compound nodes in stratum '1' are translated in

terms of interactions among their subsystems in stratum '2'. Finally, the

unfolded incidence matrix of the organizational structure is given in Figure

9.33. Again, all the Universal Nets, Kernel Nets, MAXOs, MINOs and all the

simple paths for Y 11, and 2:12 are given in Appendix A.
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9.8 CONCLUSION

The entire algorithm for generating Stratified Decision Making Organizations

(SDMO) was presented. The two approaches, Top-Down and Bottom-Up, were

emphasized and a comparative study of the two approaches was done. The two approaches
mentioned produce identical results if applied to a particular problem but differ in the

manner in which the system's architecture evolves under the two design approaches. The

proposed algorithm was applied to to two illustrative examples with all the steps of the

design procedure explicitly outlined.

P021 t021 P1 5 2 t15 2 P2 5 2 t2 5 2 P3 5 2 t3 5 2 04 5 2 t4 5 2 1:552 t552 P652 t 621 P721

DMU 5 2

P1 12 t 11 12 t2 1 2  
P312 t312412 4 P512 t5 2P olo t 6 100M~
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11 t i P22)tl1 
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t4 3 2 

P532 15 3 2  
P

P 2 12P2342
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P142 t1 4 2 P2 4 2 
1
2 4 2 P342 1342P442 t4 4 2 P 542t 54 2 P6 4 2

Figure 9.32 Unfolded Organizational Structure of SCP in Stratum '2'
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Figure 9.33 Unfolded Incidence Matrx of the Organizational

Strcture of SCP in Stratum '2'
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CHAPTER X

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

10.1 CONCLUSIONS

This thesis described a methodology to model and generate multilevel hierarchical

distributed systems. A system which is comprised of a vertical arrangement of its

subsystems is considered as a multilevel hierarchical system. The higher level subsystems

of such a system are characterized with their priority of action and right of intervention. The

performance of the system, however, depends upon the lower level subsystems. The type

of multilevel hierarchical systems modeled in this thesis are stratified systems, where the

system is described by a family of structures each concerned with the behavior of the

system as viewed from a different level of abstraction, the stratum.. The basic concepts of

multilevel hierarchical organizational structures are presented in Chapter IV. The objects

from which the system may be built are also presented in Chapter IV. In this model, a

decision making process described by a five stage process, and interactions among these

decision making processes are identified. It is shown that the organizational structure of a

decision making organization or sub-organization can be represented in matrix form. The

notion of a Compound Node is introduced to formalize the concept of higher level

description of organizational or sub-organizational structures. The decision making entities

in the least abstracted description of an organization are human decision makers (DMs).

In Chapter V, the methodology is formulated using the language of Hierarchical

Petri Net theory. The concept of having a family of organizational structures for a system

where each member of the family describes the system's behavior at a different degree of

abstraction is realized by folding and unfolding the organizational structures. The processes

of folding and unfolding allow one to have a description of an organization at any desired

degree of abstraction. The two processes generate all the relevant descriptions of a system's

architecture. Folding process yields organizational structures with lower degree of detail,
while unfolding results in more elaborated description of an organization. The processes of
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folding and unfolding an organizational structure are translated into both matrix and

Hierarchical Petri Net representations.

In Chapter VI, the class of structures that must be considered, given a design

problem, is described. The structural and user-defined constraints are identified for

different levels of abstraction used to describe the organization. A set of modified structural

constraints have been imposed to define the set of organizational structures that make

physical sense. The set of user-defined constraints is introduced to allow the designer of a

system to translate his knowledge of the specific application into the formalism of the

design procedure. The notion of convexity is used to analyze the properties of different

constraints.

The problem of interpreting higher level interactions in lower levels arises when an
organizational structure is unfolded to its lower level description. Chapter VII addresses

this issue of connectivity for the higher level interactions when defined at lower levels. A

scheme to identify the echelon type hierarchical relationship among DMUs is presented and

a set of connectivity rules is formulated on the basis of multiechelon hierarchy present in

the system's architecture. The connectivity rules are used to translate interactions among

subsystems of the organization defined at a given level to their lower level representations.

In Chapter VIII, a review of the Lattice algorithm is presented. The set of all

allowable organizational structures of the given system or subsystem is characterized by its

boundaries. Lattice theoretic results are used to define a partial order among all allowable

organizational structures belonging to a system or a subsystem. The process includes the

application of the Lattice Algorithm (Remy, 1986) iteratively at different levels in the

organization with redefined structural requirements for the particular levels and for the

particular system or subsystem under consideration.

The algorithmic implementation of the overall methodology is presented in Chapter
IX. An appropriate user interface is defined. It allows the designer to go step by step

through the entire design methodology. Two simple examples illustrate the design

procedure. It is seen that by defining a team of organizational members in a multilevel

environment and then generating the organizational structure has resulted in a substantial

reduction of computational effort which is required in generating all the feasible solutions.
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The methodology provides a structured and a modular way of solving a design problem.

An organization with hundreds of lower level subsystems can be modeled with lesser

computational effort by carefully defining the higher level subsystems of the organization in

terms of the lower level subsystems. The entire organization can then be modeled only in

terms of the higher level subsystems. The higher level subsystems are modeled in terms of
the lower level subsystems. Finally, all the structures are integrated to produce a family of

structures for the organization each describing the organization at different degree of detail.

10.2 DIRECTIONS FOR FURTHER RESEARCH

Research can be pursued in many directions to improve and extend the

methodology developed in this thesis.

The hierarchical relationship among Decision Making Units (DMUs) is

established by investigating the input and output interactions of each DMU.
There is a need of an algorithm which identifies the hierarchical relationship

among DMUs by looking at pattens in the arrays or incidence matrix

defining an organization.

A natural extension to the current effort would be to achieve a more relaxed

set of connectivity rules from those presented in Chapter VII. Especially,

the translation of a higher stratum interactional link into a single interactional

link at a lower stratum should be relaxed to multiple interactional links in the

lower stratum representation of the organization. This would also require a

careful investigation of the set of connectivity rules and it seems that an

extended set of connectivity rules will be achieved as a result. A situation

where an executive broadcasts his commands to all of his subordinates can

be easily modeled in the extended version.

The present model should include new protocols of interactions between
DMUs. The present model permits only three interactional links between

two DMUs. This paucity of interactions prevents the DMUs from having

elaborate protocols of interactions at several stages of their processing. For
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example, as mentioned by Demael (1989), if A has already received a

message from B, it can not ask B to send more information. New

interactions should be defined and be interpreted in terms of their physical

relevance. The connectivity rules presented in Chapter VII can then be

modified and made an integral part of the design methodology.

It would be particularly interesting to work on a methodology for modeling

and generating variable-structure multilevel hierarchical distributed

intelligence systems. In this kind of structures, not only the interactions

among DMUs in a given stratum will change according to the input they

process, but the interactional structure of their subsystems in lower strata

will also change. This can be achieved by using the Stochastic Timed

Colored Petri Net formalism.

Lastly, coordination issues in a multilevel hierarchical environment have not

been addressed yet. There is need for an analytical model to measure the

coordination among subsystems of an organization defined at different

levels of abstraction, and the system's performance against all possible

coordination strategies used in the organizational structure.
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APPENDIX A

This appendix contains the simple paths, MAXOs and MINIOs for the WDNs
presented in the two illustrative examples in Chapter IX. The simple paths, MAXOs and

MINOs listed in this appendix are produced with the help of ARCGEN, a software

application which implements the lattice algorithm. Figures A-I to A-10 list the nets

belonging to the first example with six DMUs in stratum '3' DMUs in stratum '1'. The rest

of the figures belong to the second example in which the organizational structure of the ship

control party of a submarine is modeled.

MINO

A-2 MINO and MAXO of 112 in

Chaptr IX

A-1 Simple Paths Of Y-12 in Chapter IX %
A-3 Simple Paths of 122 in Chapter IX
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A-4 MINOs and MAXO of Y22 in

Chapter IX

A-5 Simple Paths of Y32 in

A-3 Simple Paths of Y22 Continued Chapter IX
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A-5 Simple Paths of Y-32 in

Chapter IX Continued

A-6 MINO of 13 2 in Chapter IX

MAX*

A-8 Simple Paths of Y1 I in Chapter IX
A-7 MAXO of Y-32 in Chapter IX
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A-9 MINOs of ~iin Chapter IX lo z

(SCP)
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A-I1 Simple Paths Continued

201



MAXO MAXO

A-14 MAXOIMIN~ofXji in

Chapter IX (SCP)

A-12 MAXO Of Y-12 in Chapter IX

(SCP)

A- 13 Simple Paths of 2:11jin Chapter IX

(SCP)
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APPENDIX B

PROCEDURES FOR FOLDING AND UNFOLDING THE

ORGANIZATIONAL STRUCTURES USING DESIGN CPN TM

INTRODUCTION

In order to carry out a folding and/or unfolding procedure one has to be familiar

with the software Design/CPNTM. In the following discussion, only those procedures and

steps are outlined that are used to fold and unfold a particular organizational structure given

at a specified stratum. The reader is, therefore, requested to go through the manuals of the

software, in case, he or she is not familiar with the software itself. The following

discussion might lead to a non-executable Petri Net representation of the organization if the

instructions in the above mentioned manuals are not followed carefully. Note, the software

implementation discussed in this Appendix is valid for Macintosh TM and Sun

Microsystems implementations of the Design/CPNTM released by Meta Software

Corporation.

The processes of folding and unfolding are presented with the help of an example

Petri Net model of an organization defined in stratum '2'. One has to have a Petri Net

representation of an organization in a given stratum in order to fold it to the strata above the

current one. The folded structures can be unfolded up to the stratum at which the Petri Net

representation is defined. As a result, one can not unfold an organizational structure below

the one in which the structure of the organization has been constructed. In order to have an

even lower - if theory permits - stratum representation, the designer has to construct the

Petri Net representation for the required stratum with the help of the incidence matrix

constructed as a result of the methodology. It is now made clear that the software does not

support the methodology for generating multilevel hierarchical organizational structures as a

result of the algorithm presented in Chapter IX. Rather, it supports the graphical (Petri Net)

representation of the organization structures generated analytically by the methodology. It

is, however, important to note that once an organizational structure is represented in terms
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of its Petri Net model, the Petri Net structures can be folded and unfolded in accordance to

the theory developed in the previous chapters. The hierarchical nature of the software

makes it a perfect choice for representing organizational structures and their folded and

unfolded versions.

FOLDING

Figure B- I represents a Petri Net model of an organization in stratum '2' with four

DMUs defined in the stratum. The place and transition labels are suppressed for the sake of

simplicity, only the labels associated with interactional places are shown as they play a key

role in deciding whether or not a particular place should be folded at a given stratum.

2122 612

010 2121 61241 710

021 721

Figure B- I
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In Figure B-2, the shaded rounded boxes represents the boundaries of the subnets

that are to be replaced by compound transitions as a result of folding the structure in

stratum '2' to obtain the structure in stratum T1'. All the nodes inside a particular box are

selected together by invoking the command Enter Group Mode in the Group menu.

Once a correct group is formed, the command Move to Subpage ... is invoked

in the CPN menu. As a result, an option window will appear. Click OK. A compound

transition labelled with 'HS' will replace the selected nodes. The said compound transition

can be placed at a desired location by pushing the shift button and dragging the transition

by mouse movement. All the subnets outlined by the boxes are treated in this manner

sequentially.

010 2121 6124 71

Figure B-2
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If all the subnets are replaced by their compound transition representation, one

should get a structure shown in Figure B-3. Following the discussion in Subsections 2.3.4

and 5.7.3, the redundant places between any two transitions are omitted. Similarly, the

interactional places that are defied in stratum '2' are also deleted as they have no

representation in stratum '1'. Note that the place labels shown in the figures will help in

deciding which ones are to be deleted. The justification of the statement made is given in

Subsection 5.7.3.

Oil 711

H HS HS HS S

010 2121 61241 71

021 S 72 1

Figure B-3

Figure B-4 presents the organizational structure in stratum '1'. Again all compound

transitions are identified by the label 'HS'. Note the changes in place labels. These changes

follow the scheme presented in Subsection 5.7.3. The designer of the organization has to

make these changes in order to be consistent with the methodology. Once the labeling

scheme is implemented by the designer, the software will keep track of the labels.
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Figure B-5 shows the structure in stratum '1' with the subnets outlined by dashed

boxes. The folding of this structure will yield the stratum '0' representation of the

organization under consideration.

The folding procedure discussed before is again applied to each subnets. One

obtains as a result the structure shown in Figure B-6

111 611

0021 21 6124171

HS HS HS HS HS

Figure B-4

111 611

H= HS H S H .S ..... ... .

Figure B-5
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0 0 0 O0,

010 22 1 1710

HS HS HS HS HS

Figure B-6

The redundant places and interactional places defined in stratum '' are omitted and

a structure shown in Figure B-7 is obtained. The structure in Figure B-7 represents the
compound node representation of an entire organization. Again, note the changes in place
labels. The designer has to be careful in order to be consistent with the labelling scheme.

110 610

HS HS HS HS HS

Figure B-7

Once an organizational structure is folded to its highest stratum, it is recommended
to save the stratum '0' representation of the entire organization. One now can unfold and

fold the structure to any desired description.

UNFOLDING

As mentioned before, a folded structure can be unfolded to its lower strata
descriptions. In this section those procedures are outlined which are necessary to be carried
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out in order to unfold an organizational structure in stratum '0' to its lowest stratum
(stratum '2') description. For illustration, the folded structure in Figure B-7 is considered.

The leftmost transition shown in Figure B-7 is selected and the command Replace

by Subpage is invoked in CPN menu. An options window will appear as a result.
Disable the option Delete Port Nodes with No Port Assignments. Click OK. The
lower stratum (stratum '1') representation of the compound transition will replace the

compound transition and the Petri Net structure obtained as a result will be similar to one

shown in Figure B-8. Note that the interactional place 2121 has reappeared as a result of

unfolding. This place along with other places was deleted in stratum '0' during the folding
process, but the lower stratum description preserved the lower stratum connectivity.

010 2121

111

610121 H 1

HS HS HS HS HS

Figure B-8

Similarly, another compound transition (one representing the SAC stage) is
unfolded and the structure shown in Figure B-9 is obtained. The interactional link defined

in stratum '1' can now be seen with its input and output connections. Also, note the
changes in the labels. This time, the designer does not have to do anything; the software

has kept track of all labels.
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111

HS HS HS HS HS

Figure B-9

At this point, it is necessary to describe a problem in the software. In Figure B-9,

the interactional place 2121 is shown connected to its input and output transitions. But the

place represented by 2121 is actually two places placed on top of each other, one with the
input arc and the other with the output arc. The software does remember the precise

location of a place that has been folded but loses its connectivity. The situation is depicted

in Figure B-10.

121

HS HS HS HS HS

Figure B- 10
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The only solution to this problem at this stage is to maintain the connectivity

manually. An arc of one of the two places is selected and then connected to the other place

by dragging it to the place. The place with no input and output arcs can now be deleted.

This procedure is shown in Figure B- 11

1212

HS HS HS HS HS

Figure B-l

Figure B-12 shows the organizational structure in stratum ''. The structure in

Figure B-12 is obtained as a result of unfolding all the compound transitions of the net in

Figure B-7 and connecting all the unconnected (though not visually) places.

Figure B-13 presents the organizational structure in stratum '2' which is obtained

by unfolding the compound transitions of the net in Figure B-12. The unfolding is done

according to the procedure outlined before. Again, the nets presented in this discussion

need not be executable on computer. One has to program them according to the procedures

presented in the Design /CPN TM manuals.
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1111

12162

HS HSFigur B-WH

Figure B- 12
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APPENDIX C

GLOSSARY

ANSI American National Standard Institute

C ij Interaction from RS/RSC stage of DMU 'i' to CI/CIC stage of DMU
tit

CI/CIC Command Interpretation

CMD Command

CTR Control

DM Decision Maker (human)

DMO Decision Making Organization

DMSO Decision Making Sub-Organization

DMU Decision Making Unit

DMUik Decision Makining Unit Tit in Stratum 'k

d[Xik+1 Size of WDN ik+1

ei External input to SA/SAC stage of DMU T

Fj Interaction from SA/SAC stage of DMU Tit to IF,/IFC stage of DMU
,j

FO Feasible Organization

Glj Interaction from RS/RSC stage of DMU '' to SA/SAC stage of

DMU 'j'

g. I. b Greatest Lower Bound

H ij Interaction from RS/RSC stage of DMU Tit to IF/IFC stage of DMU
,j,

I Order defined on Inputs

IF/IFC Information Fusion

IN F Information

Aq,k.l,l Incidence matrix in Stratum T of the Organizational Structure of
Node 'q' in Stratum 'k-1'

(Lqk)max Maximum number of Links in a WDN of a Compound Node

I.u.b Least Upper Bound
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MAXO Maximal element of the set W(R)

MINO Minimal element of the set W(R)

(Mqk)max Maximum number of Transitions in the WDN of Node 'q'

Mk max Maximum number of Transitions in the Organizational Structure

defined in Stratum 'k'

lIk Set of all Nodes in Stratum 'k'

N Lowest degree of Abstraction possible

n Lowest degree of Abstraction desired

(Nqk)max Maximum number of Places in the WDN of Node 'q'

N k max Maximum number of Places in the Organizational Structure defined

in Stratum 'k'

0 Order defined on Outputs

PDL Program design Language

IT Set of all DMUs represented in a 2-tuple form (I, 0)

R Set of all Constraints

Rf User-defined Constraints given by ls and Os in the arrays

{e, s, F, G, H, C)

Rp Special Constraints

Rs Structural Constraints

RS/RSC Response Selection

Ru User-defined Constraints

SA/SAC Situation Assessment

SDMO Stratified Decision Making Organization

Si External Output from RS/RSC stage of DMU 'i'

SP Simple Path

Sp(Ru) Set of all Simple Paths of the Universal Net

TP/TPC Task Processing

USp(Ru) Set of all possible Unions of elements of Sp(Ru)

W Set of WDNs

WDS Well Defined Structure

WDN Well Defined Net

W(R) Set of all WDNs satisfying R

W(Ru) Set of all WDNs satisfying Ru

Wmax(R) Set of all MAXOs
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Wmin(R) Set of all MINOs

Q1 Greatest Element

(0 Least Element

YXik+l WDN in Stratum 'k+1F of a Node Ti in Stratum Vk
Q(Ru) Universal Net

ro(Ru) Kernel Net
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