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1. INTRODUCTION

Symptoms of decompression sickness (DCS) typically are assumed to result from the

formation of gas bubbles in blood or extravascular tissue. Information on extravascular

bubb'es has been severely limitcd by the lack of any noninvasive method of observing

them.

In a previous report (NMRI Technical Report 91-39, Basic Operation of a Detetor

for Stationary Gas Bubbles'), we discussed a system constructed at the Jet Propulsion

Laboratory (JPL) that uses ultrasound to detect stationary gas bubbles. We call the

system. the 'JPL swept frequency bubble detector', or simply the 'bubble detector'. The

bubble detector can, in principle, enable the quantitative measurement of the sizes and

numbers of stationary extravascular bubbles. Its theory of operation depends on these

facts: 1) gas bubbles are the softest objects in tissue, and consequently undergo the

largest deformations when vibrating in a sound field, 2) although vibrations are linear at

sufficiently small deformations, they become increasingly nonlinear at larger

deformations2, and 3) nonlinear vibrations contain harmonics and subharmonics -- that is,

the vibrations contain multiple frequency components even when the driving signal is

monotonal. In theory therefore, when tissue is driven to vibration by externally applied

souna of moderate amplitude, any harmonics or subharmonics in the sound

backscattered from the tissue should be attributable to gas bubbles rather than to stiffer

objects. More specifically, t•ie bubble detector is designed to exploit the 'second

harmonic' component of the energy backscattered by vibrating bubbles (the component

having the frequency twice that of the driving signal).
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A brief description of the bubble detector is offered here. The reader should look to

reference 1 for a more comprehensive discussion.

The bubble detector uses a transmitting pressure transducer to broadcast a

swept-frequency sound pressure field onto a target and a receiving pre.sure transducer to

detect the sound backscattered from the target. It then filters out all frequency

components in the output signal except for either the second harmonic or the

'fundamental' (the component having the same frequency as the driving signal), as

desired. The filtered signal is then processed to give two types of conditioned output

signals. In the 'range' mode the system produces an amplitude spectrum (i.e., a plot of

amplitude versus frequency) in which the independent variable is the difference in

frequency between the transmitted and received signals. This frequency offset is

proportional to the time delay between sound transmission and reception of the

backscattered sound from the target. The distance from the transducer heAd to the

target is calculated from the corresponding frequency offset.

In the 'frequency response' ('FRC') mode, the system generates a spectrum in which

the independent variable is the frequenry of the transmitted signal (referred to hence as

the 'forcing frequency' or 'driving frequency') and the dependent variable is the

amplitude of the backscattered signal from any targets that are at a certain preselected

distance from the transducer head. This output shows the 'frequency response' of the

system consistint, of both the bubble and the bubble detector; that is, it shows how

strongly the system responds to its input as a tunw;ttic -f the input frequency. In theory,

this information should enable one to assay a bubble population: the location of a

2



resonance peak in the spectrum depcntis on the bubble dianictcr and the peak size is

proportional to the number of bubbles at that diameter. The transducers supplied by

JPL operate over a frequency range of - 1-7 Mhz, which encompasses the main

resonance frequencies of bubbles in 1120 of roughly 0.9-6.0 microns diameter, so we can

reasonably expect to be able to identify bubbles in this size range. -

The first technical report in this series dealt with the basic operation of the bubble

detector. As it was being written, the following goals had been achieved:

1) A computer routine that uses an approximate, analytic solution to the differential

equations describing a vibrating bubble to compute the amplitude of the second

harmonic component of the sound radiated from a bubble in a viscous liquid as a

function of the frequency of incident sound.

2) A protocol for preparing calibration standards consisting of known bubble

populations by trapping gas bubbles in transparent hydrogels and determining the

sizes and numbers of bubbles in the gels microscopically.

3) Indications that, through conducting preliminary, semi-quantitative experiments

with bubbles in hydrogels, the signal/noise ratio of the system as delivered was

unacceptably low.

We report here on our continuation of bubble detection studies. The work generally has

been directed toward redesigning the original system to remove shortcomings that

"In NMRi Technical Report 91-39, it was stated that the transducers operated over the frequency range
0.2-5 MH4z, encompassing the main resonance frequencies of bubbles of - 1-20 pm diameter. This statement
was erroneous. By direct measurement, the frequency response of the b lbble detector system as a whole is
reasonably strong over the range of - 1-7 MHz; the manufacturer of the transducers states that the
transducers were designed for operation over the 2-10 MHz range.
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severely limiied it,, utility, and determining whether thc output signal-to-noise (S/N) ratio

is high enough to enable quantitativc analysis of the data for bubbles up to 0 jam

diameter. We eventually had to evaluate the S/N ratio using theory rather than

empiricism because we have found bubbles this small to be too short-lived in vitro to

permit their examination using both the bubble detector and a suitable microscope (the

latter being used to establish bubble size). In fact, the theory discussed in Section V on

the stability of bubble populations in a closed system suggests that it is impractical to

extend the lifetimes of such small bubbles to sufficient length for our purposes in a

system of constant surface tension.

The following new goals have been achieved and will be discussed in this report:

1) Replacing the analogue AM tuner, which was provided with the original system

for demodulating AM signals, with a commercially available signal analyzer

capable of digital demodulation. This improves the system's S/N ratio

somewhat. More importantly, the signal analyzer has been interfaced with a PC

upon which digitized data can be stored, which makes the numerical data

available to us for the first time.

2) Exploring strategies for preparing suitable calibration standards consisting of

quasi-stable buobles trapped in polymer gels.

3) Elucidating whether small spherical bubbles can be stabilized (for the purpose

of producing calibrants) without invoking complicated mechanisms involving

variable surface tension or variable permeability at the bubble surface.

4



Developing and exploring a mathematical simulation of the growth and shrinkage

of bubbles in a closed system with finite surface tension.

4) Developing an approximate, analytic solution to the differential equations

describing a vibrating bubble in an elastic solid and coding it as computer

routines. This approach uses linearized elastic theory (valid for small

deformations) to model the elastic stress associated with oscillations and

nonlinear elastic theory to describe the potentially large elastic stress present at

the bubble wall at rest.

5) Writing into computer code a more accurate, numerical solution to the

differential equations describing a vibrating bubble in a viscous liquid and in an

elastic solid.

6) Measuring system noise has been measured.

7) Estimating the S/N ratio of the system for single bubbles in the size range for

which the system was designed by using !he system noise measurements and the

predictions of the mathematical models.

The mathematical simulations mentioned in items 4 and 5 will allow computation of

the amplitude of the 2nd harmonic component of the sound radiated from a bubble as a

function of the frequency of incident sound.

The analytic expiessions noted in item 4 can be evaluated quickly enough on even a

mc,dest computer to make them useful for deducing the sizes and numbers of bubbles in

a sample containing an unknown bubble population using an iterative curve-

fitting/parameter estimation approach, as follows:

5



We will fit a curve to the voltage amplitude versus driving frequency data provided

by the bubble detector in its 'frequeny response' mode, with the values of bubble

diameter and bubble number taken as adjustable pzrameters to be optimized in the

curve-fitting routine. The data-fitting will consist of minimizing the sum of squares

of error (SSE) using a Marquardt ieast-squares algorithm.3 The SSE is a measure

of the goodness-of-fit of the model to the data. The independent variable is the

driving frequency, the dependent variable is the voltage amplitude, and for an

unknown target sample the parameters to be estimated are bubble radius and

bubble number. The Marquardt algorithm is an iterative routine that

systematically adjusts the values of each unknown parameter 'B' based on the value

of a(SSE)/aB in the cunent iteration.

The numerical solutions mentioned in item 5 are much more CPU-intensive than the

analytic expressions, but presumably more accurate, and will be used to evaluate the

accuracy of the analytic solutions. There is a lack of experimental verification of any

theory's predictions regarding the 2nd harmonic component of bubble osciulations.

The simulation of bubble dynamics (listed as item 3 above) indicates that quasi-stable

bubbles of diameters < 100 Im cannot be obtained in a system of constant surface

tension. Our own efforts to obtain small, quasi-stable bubbles (mentioned above in item

2) produced no results to the contrary: we were unsuccessful in attempts to prepare

suitable calibration standards containing bubbles in the size range of interest.

The mathematical descriptions of bubble behavior from items 4 and 5 enable us to

estimate the output voltage amplitude that should be observed for a 6 14m bubble driven

6



at its main resonance frequency. (This is the strongest output signal that would be

observed "-r any bubble of < 6 6h m diameter at any driving frequency.) By comparison

with the measured noise floor, we have estimated the S/N ratio. Ilhe result of this

estimate casts some doubt on the practicality of quantitatively studying individual bubbles

in the 0.9-6 Am range. The proper course of action may be to study larger bubbles, thus

increasing the S/N ratio without improving any electronic components. This necessitates

the purchase of pressure transducers designed to operate over a lower frequency range

than the pair originally supplied. The size range of stationary bubbles that are most

relevant to DCS is unknown, so there is no reason to insist upon studying bubbles of any

particular size range so long as the size is physiologically plausible.

7
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11 ADDING DIGITAL AM SIGNAL DEMODULATION TO THE SYSTEM

A. Impetus for adding digital AM demodulation

As noted in the Introduction, the bubble detector has two operating modes: the

'range' mode, in which the signal is Fourier-transformed to give information on bubble

location, and the 'frequency response', or FRC mode, in which the signal is demodulated

to give information about the sizes and numbers of bubbles.

For the frequency response mode, the bubble detector (as delivered by JPL) included

a section for analogue demodulation of amplitude modulated (AM) signals; i.e. an AM

tuner. The tuner consisted of a local oscillator, a mixer, and a low-pass filter. It was

noted in reference 1 that the tuner section was a significant noise source. It was noied

also that the hbbhhle detector's outpit signal was analog and that no means had been

provided for digitizihg or recording the output, preventing meaningful data analysis. In

addition, the output was not an amplitude spectrum, as expected from a system intended

to function as a spectrum analyzer, but rather was the sum of waveforms of various

freque,,cies, each waveform associated with one of the acoustic targets in front of the

pressure transducers. This sort of output does not lend itself readily to objective

analysis.

In order for the bubble detector to have potential as a research tool, th..3 problems

noted above must be overcome. Replacing the AM tuner with a digital signal analyzer

capable of AM signal demodulation can solve all three of them. Digital signal

processing does not contribute appreciably to noise, commercially available digital

8



processors normally can be interfaced with computers on which data can be stored and

processed, and we will see that the output of an AM demoduiator for this system is an

amplitude spect am whose relationship with the physical system under study is easy to

conceptualize.

B. Hardware

Demodulating an AM signal is equivalent to recovering the amplitude versus time

information; for this system the input frequency is a linear function of time, and

therefore the demodulated s'gnal is equivalent to a sp.i ctrum of amplitude versus forcing

frequency. A Hewlett-Packard 3561A signal analyzer was chosen for the task. This

machine cannot actually demodulate signals, but it can separate a signal into its real and

imaginary parts. These are captured and sent to a FC, on which the amplitude is

computed at each time point simply by taking the square root of the sum of the squares

of the real and imaginary parts. The HP 3561A simultaneously carries out a fast Fourier

transformation (FFT) on the signal, thus performing the range mode task at the same

time as it handles the FRC mode function.

C. Software

The Appendix contains the HP Basic program used to remotely control the HP 3561A

and the HP 3325A signal generator from an IBM-compatible PC in which a Hewlett-

Packard Basic Language Processor card has been installed. The program runs

measurement 'cycles', pausing between cycles for a user-selectable length of time.

During each cycle the program 1) prompts the bubble detector to make a series of

measurements, 2) extracts the raw output from these measurements from the signal

9



analyzer, 3) converts them to amplitude-versus-forcing frequency spec6ra for the FRC

output, 4) averages the spectra from multiple measurements (i.e., uses 'sigrnal averaging')

to minimize white noise, 5) subtracts from the spectrum a signal-averaged "background"

measurement taken at the beginning of the experiment when bubbles are absent, 6)

stores the result to hard disk, and 7) plots the result on a Hewlett-Packard printer. The

user chooses an appropriate target for the background measurement. For example, if

bubbles are to be formed in an acoustical target during the experiment, one chooses as

background the target itself before the introduction of bubbles.

Simultaneously, the 3561A also performs an FFT on the data for the range mode

output. The result is transferred to the PC along with the FRC spectrum and is then

printed. A few examples of the final outputs from both the FRC and range modes are

shown in the following section.

The program allows the user to select values of the following operating parameters:

1) frequency range of the frequency sweep (i.e., the start and stop frequencies)

2) sweep time

3) voltage amplitude generated by the 3325A signal generator

4) analyzer frequency 'span' (explained below)

5) 'start frequency' for the analyzer (explained below)

6) number of sweeps to be averaged together during the cycle in which the

background noise is measured

7) number of sweeps to be averaged together during each cycle in which a signal is

measured

10
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8) how long to pause between cycles

D. On the selection of operating parameters

We will now consider the analyzer's start frequency, its frequency span, and how to

chose each correctly. The HP 3561A analyzer captures all signals having frequencies

between the start frequency and the sum of [start frequency + frequency span]. Higher

and lower frequencies are fltered out. Therefore, the span is the bandwidth of the

captured signals. Thie user wants the signal analyzer to capture the output signal only

while the signal generator is performing a frequency sweep. The synchrony between

these two instruments is realized by having the analyzer triggered by the generator at the

start of the sweep. The analyzer also should stop capturing data at the same time as the

sweep is completed. In other words, the 'time record' captured by the analyzer should

bZ the same duration as the sweep time. The correct choice of span ensures this, as we

discuss now.

The HP 3561A analyzer always collects 210= 1024 digital samples per time record.

The sample rate is thereby determined:

sample rate = (1024 samples)/(length of time record) [i]

The sample rate is always 2.56 - span. Because the time record length should equal the

sweep time, we see by 'nspection that

span = 400/(sweep time) [2]

11



where the span is in Hz and the sweep time is in seconds. The program automatically

selects the correct span for a given sweep time, and vice-versa. One must manually

select the start frequency such that signals of interest have frequencies greater than the

start frequency and less than [start frequency + span].

As an illustration, the frequency of the signal received from an acoustical target is

given by

2 (bandwidth of sweep, Hz) • (distance, cm)
fsignai = [3](sweep time, sec) ' (velocity of sound, - 1.5 1W0 cm/sec in water)

where the 'distance' in the numerator is measured between the transducer head and the

target1 . For example, a 0.2-second sweep from 1 MHz to 7 MHz yields a signal of 1.3

kllz for a bubble. located -3.2-5 f frnpt thptratsd,_crs (the tra sducer hed is shaned to

optimize performance for a distance of roughly 3.25 cm). If we record a time record for

a 0.2-second sweep, the frequency span will be 2 k-Ik (as shown in Equation [2]). We

might set the start frequency at 1 kHz to captuie all signals between 0.8 and 2.8 kHz,

thus ensuring that the target associated with the 1.3 kHz signal is detected.

In the FRC mode any signals within the frequency span are lumped together in the

conversion to amplitude, so that there is no resolutiorn of frequencies for any signals that

fall within the frequency span. Therefore, for the example given there is no frequency

resolution in the FRC mode for signals ranging from 0.8 to 2.8 kHz. The most piecise

statement we could make about a bubble's location, based only on the information from

12



the FRC mode output, would bc that its distance from the transducer head is between

2 cm and 7 cm.

Although the range mode does give us the information necessary for deducing the

distances of bubbles from the transducers, the presence of more than one bubble will

lead to ambiguity about which peak in the range mode spectrum corresponds to which

peak(s) in the FRC mode. In other words, associating bubble sizes with bubble locations

may be a hit-or-rmiss procedure.

One further point: whereas there is a large DC noise component and also some noise

at 60 Hz, the start frequency should be set no lower than a few hundred Hz so that these

spurious components are digitally filtered out by the 3561A before further signal

processing.
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III. THE OUTPUT SIGNAL

In this section examples of the system's output signal will be shown and discussed for

various acoustical targets. In all cases the amplitude of the 2nd harmonic component of

the backscattered signal is plotted.

All measurements in this section were made under the following conditions:

sweep time = 0.2 see

span = 2 kHz (therefore, time record length = 0.2 see)

sweep start frequency 2 MHz
sweep stop frequency = 10 MHz

windowing = flattop

signal averaging: 15 time records averaged

target distance - 3.25 cm

The frequency range is that over which the transducer pair was designed to operate,

not necessarily the optimal range. The measurements were made using signal averaging

over 15 frequency sweeps. It was observed that the averaged signal changes negligibly

after -5 averages, and therefore after 15 averages the uncorrelated noise has been

minimized, so that 15 averages yields the same result as would averaging indefinitely.

Figures la and lb show measurements made when the transmitted signal is reflected

from a slab of Wall-Gone sound absorber. The upper plots are the FRC mode outputs

and the lower ones are the range mode outputs (explained in the Introduction). The

FRC portion of Figure la is called a 'background' measurement and the FRC portion of

Figure lb is a measurement of [signal + background - background]. There is no
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background subtraction being performed on the range mode output. Because Figure lb

was obtained simply by repeating the background measurement, its FRC output should

show nearly zero voltage, as it does. The time at which the signal was measured is

recorded in the header of each plot.

In Figure 2, we see similar measurements made with a 3-jam-thick slab of

polyacrylamide (PAAm) gel sitting on top of the Wall-Gone. There are no bubbles in

the gel.

Under each FRC plot we record the "positive area" between the x-axis ard the

positive portion of the curve and the "negative area" between the x-axis and the negative

portion of the curve, computed using trapezoidal integration. They are useful indices

that quantify the results in an easily understood way.

Figures lb and 2b demonstrate that subtracting an appropriate background can reduce

the noise by at least an order of magnitude. It is seen that the residual after background

subtraction is much greater with the PAAm target (Figure 2) than with the Wall-Gone.

This observation has been reproduced in several additional measurements with both

PAAmn and Wall-Gone (not shown). Obviously, the backscattered signal changes

appreciably from one measurement cycle to the next when replicate measurements are

made with a PAAm gel. The reason for this change is not yet clear.

The lumpiness of the frequency responses seen in the ',ackground measurements

in Figures 1 and 2 results from beating between two or more signals of similar

frequencies. To understand this, consider that in the experiment of Figure 2 the Lubble

detector is receiving signals reflected from both the front aaid back surfaces of the

17
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PAAm gel simultaneously. Because the signal from the back surface has travelled 2 • 3

mm = 6 nun farther (or -0.4 Asec longer), its offset frequency should be - 160 Hz

higher. The range mode output does in fact show two distinct frequency components

separated by 160 Hz. This is taken to mean that the signal analyzer is receiving two

signals that differ in frequency by 160 Hz. When they arc summed together for the FRC

display, the beat phenomenon appears as a 160-Hz oscillation in the amplitude. Since

the time of one measurement was 0.2 second, about 32 of these beats should appear in

the FRC plot, as is the case.
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IV. ATTEMPTS TO PREPARE SUITABLE CALIBRATION STANDARDS

For calibrating the bubble detector, it is niecessary to have standards that are subject

to assay by some reliable independent method. We have prepared bubble samples of the

sort that we anticipate using as calibrants and used them in some preliminary

measurements intended to estimate the bubble detector's S/N ratio. We plan to use

calibrants consisting of bubbles trapped in transparent hydrogels and to assay them using

differential interference microscopy. Our approach is described below.

A. Methods

To produce the gels, aqueous solutions were prepared in the following compositions:

solution A
0.20 g/cm3 acrylamide monomer
0.01 g/r.rm3 N.N'-mr.thvlyn -hbi-norvlnmide. rornlinkina monomer

3, ,' ~ - - -- -

1.0 pl/cm3 N,N,N ,N -tetramethylethylenediamine accelerator

solution B
variable 0.2-6 mg/cm3 ammonium persulfate initiator

Prior to mixing the solutions, each was sparged with nitrogen to remove dissolved

oxygen, which inhibits many vinyl polymerizations4 . Each solution was passed through a

filter having a 0.22-m nominal pore size to remove particles that otherwise would

severely confuse the microscopic examination. Equal amounts of solutions 'A' and 'B'

then were mixed and the resulting solution was cast between either a pair of cleaned

glass plates or a glass microscope slide and a glass cover slip. In experiments during the

period covered by this report, the plates (or the microscope slide and cover slip) were

separated by a 150 1r m-thick plastic spacer designed for use in casting electrophoresis
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gels. The monomer solution 'sandwich' was placed under vacuum for a few minutes

(variable length of time). The polymerization was then allowed to proceed at ambient

pressure at least until gelation occurred. Bubbles that formed by cavitation at the

reduced pressure were trapped in the finished gel.

In some experiments the monomer solution was chilled to 0 *C and maintained at that

temperature before and during sparging with N2, to increase the concentration of

dissolved N2. Thus, the overpressure in the monomer solution, defined as [partial

pressure of dissolved gas] - [hydrostatic pressure], would be higher under vacuum and

would persist even after the sample had been returned to ambient hydrostatic pressure.

In other experiments, a detergent (Tween 40) was added to the monomer solution to

reduce the surface tension.

In order to be useful, the calibration standards must be the same size when they are

interrogated ultrasonically as when they were assayed microscopically. Accordingly, the

stability of these bubbles over time was tested by examining some of them under a bright

field microscope over several hours' time while lea ing the gel membrane sandwiched

between the glass plates. Our plan was to assay the calibration standards microscopically

and use the bubble detector to interrogate them within 24 h of their production; during

that time their dehydration would be prevented by storage in an enclosed container

whose interior was kept at the dew point by the presence of standing water.

B. Resuits

Briefly, free bubbles that initially were smaller than 50,um in diameter survived no

more than a few hours before disappearing in any of the experiments. Bubbles larger
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than 100 Am survived for many hours, although their sizes were not measured accurately

enough over time to allow a more precise statement about thcir size stability. Adding

detergent to the monomer solution or keeping the monomer solution chilled during

sparging with N 2 dramatically increased the number of bubbles formed, but neither

treatment had the effect of stabilizing the small bubbles over several hours. Bubbles

formed spontaneously at ambient pressure in the chilled monomer solution upon iu

removal from the ice bath.

The shrinkage and disappearance of bubbles was easily viewed at magnification 100 x.

The collapsing bubbles left behind spherical, water-filled cavities in the gel matrix that

were clearly visible as discontinuities. By staining the gel with food coloring we could be

sure of which spherical cavities contained gas and which contained water -- the, gas

phases transmitted more light since the dye was excluded from them.

In some experiments, a thin film of bone wax was smeared onto one spot on a

microscope slide before the monomer solution was cast onto the slide. Bone wax is very

hydrophobic and was found to be an excellent nucleation site, as expected. Even small

bubbles persisted many hours on the bone wax. This was expected because the boiie wax

preents an irregular surface with numerous crevices, and it is known that some bubbles

in crevices can remain static indefinitely5 . However, they are unsuitable for use as

calibration standards because no reasonably complete mathematical description of the

nonlinear dynamics of either non-spherical bubbles or of bubbles at i, solid boundary is

available.
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V. SIMULATION OF THE GROW rH AND SHRINKAGE OF BUBBLES IN A

CLOSED SYSTEM WITH FINITE SURFACE TENSION

A requisite for calibration standards for the bubble detector is that the bubbles must

remain constant in size for enough time to permit their examination under a microscope

and tieir ultrasonic interrogation. This mearns that they must be stable over a period of

at least a few hours.

To give us an idea of how such stable calibrants might be prepared, a model was

developea that predicts bubble diameter changes as a function of time in a closed

system. Ideally, one would do this by solving the unsteady state continuity equation with

radial synmrmetry. However, the continuity equation for this system is partial differential

equation (PDE) because- of the spatial, as well as temporal, variation in solute

concentration. Solving a PDE was felt to be more time-consuming than this analysis

warranted. Instead, we simplified the mathematics considerably by assuming that the

flux of gas from the bubble surface is proportional to the mass transfer coeffi~ent

evaluated for a sphere in a quiescent liquid at s,eady-state (see Equations [4] and [11]

below). The assumption of steady-state implies that the radius of the sphere, the solute

conce-ntration at the surface of the sphere, and the solute concentration far from the

sphere, all ;-re time-invariant. We also neglected the convective flux associated with bulk

flow toward or away from the sphere as its size changes. All of the above simplifications

are justified when the bubble size is changing sufficient slowly, and therefore are suitable

for a study whose goal was to identify conditions leading to time-invariant bubble sizes.
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Thermal, viscous, and compressibility effects were ignored, which invalidates the

model at very small diameters (i.e., below 10 gm for a surface tension of 73 dynicm),

when implosion is rapid and internal pressures are high. This is inconsequential for our

application: first, we are uninterested in knowing precisely when a fast-shrinking bubble

disappears; second, the system in toto is unaffected by these very small bubbles because

they contain too little gas to be of consequence. The partial pressure of wat,•r in the gas

phase is taken to be the vapor pressure of water at ambient temperature. Its

dependency on either hydrostatic pressure and temperature is ignored, but again, these

effects are significant only for tiny bubbles.

A. Mathematical details

For a single spherical bubble the mole flux of gas away from its surface is

J = k(C'ud-CO) [4]

where J = mole flux, mol/(cm2-sec);

k = external mass transfer coefficient, cm/sec;

C ,"r = concentration of dissolved gas at the outer bubble surface, mol/cm3;

C concentration of dissolved gas far fiom the surface, mol/cm3.

We now make the following reasonable assumptions:

a. There is equilibrium between phases across the phase interface.

b. There is r.o resi.tance to mass transport in the gas phase, so that the partial

pressure of gas at the inner bubble surface "P "'fU" simply equals its bulk value "p b•b, in

the bubble.

c. The concentration of dissolved gas Cis is related to the partial pressure of gas with
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which it would be in equilibrium Pa• according to a concentration-independent partition

coefficient K (i.e., Cd, = KPdij), which is a statement of Henry's Law.

Equation [4] now becomes

J = kK(Pbub-PO ) [5]

We further note that Pbub equals the difference between the hydrostatic pressure within

the bubble and the vapor pressure of H20, and we account for the surface tension effect:

pbub = P + 2c/R-P1 o2 0  [6]

where P = ambient hydrostatic pressure, dyn/cm2;

S= Siirft- tenein, i dvn !,m

The mass balance on the gas inside the bubble (assuming sphericty) gives us

J = -1/(4,xR 2) dn/dt 171

where R = bubble radius, cm;

n = number of moles of gas inside the bubble, mol,

Assuming ideal gas, we have

n = [P bub(4/3). R3 /(RGT)

= [ ( P + 2y/R - PH2o ) (4/3)nR 3 ]/(R0 T) [8]
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and dn/dt = 4n /(RcT) [(0-Pmo)R2 + (4/3)Ra ] dR/dt [9]

where R., = gas law constant, 82.057 atm-cm3/mol-OK;

T = absolute temperature, 'K.

We can now combine Equations [5], [6], [7], and [9] to yield an ordinary differential

equation for the rate of change of the bubble radius:

- kKRGT ( 6 - PH20 + 2o/R - P ')
dR/dt = [10]

[6P - PH20 + (4/3)a /R]

To compute the mass transfer coefficient we use the result that, for a sphere in a

quiescent liquid at steady-state the dimensionless Sherwood Number is 2.06, so that

Sh = 2.0 = 2Rk/D

or k=D/R [i1]

where D is the diffusivity (cm 2/sec). Substitution into Equation [10] gives

- DKRcT (6'- Puo + 2/Ra- Po)

dR/dt = [12]

R [ P - PH2O + (4/3)a/R]

Or, when more than one bubble is present, we can write Equation [12] in this form for

bubble i:
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-DKRGT ( P - F1120 + 2;/Ri - P") [1
dRi/dt =[131 -

Ri [ P - Pao + (4/3)//R]l

Equation [121 or [131 is easily solved analytically for the special case of

constant P, that is, an infinitely large system in which the bubbles have no effect on the

bulk concentration of dissolved gas. For the finite closed system, a mass balance shows

that

dC */dt = K dP"i/dt = -(S/VL)E dn/dt [14]

for i = I to N bubbles, where VL = the volume of the condensed phase, in cm 3. Then

for each bubble i, Equation [9] can be substituted into Equation [14] to yieid

-K dP -/dt = 4x /(VLRGT) E ( [ %.PJ"GRz + 4/3Ri] dR/dt) [15]

This is iiaegrated to yield

P ' = Po - 4n /(3KVLRGT) [ (P-Po0 )(R Ri3 - S R0 ,i) + 2o(r-Ri- 2 R5.i) ] [16]

where P0 ' = initial partial pressure of dissolved gas in the condensed phase, atm.

All summations are from i = 1 to N, where N is the number of bubbles.
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Therefore, Equations [13] and [16] define this system; Equation [13] must be solved

for each bubble in tuni, simultaneously with Equation [16]. We did this using a 4th-

order Runge-Kutta numerical routine.

B. Simulation results

Understanding the simulation results is easier if one keeps in mind the definition of

'critical radius'. This is the radius of a bubble that would be in both mechanical and

thermodynamic equilibrium with the condensed phase, so that there would be no mass

flux at its surface and its size would not change with time. To derive an expression for

Re,it, remember that the driving force for mass transport is (ph-b - P), or

driving force P (Q + 2a/R - P112 0 -p ) [17]

A quasi-stable bubble thus can be defined mathematically as one for which the right side

of Equation [17] is near zero; that is, pbb = PI. R equals the critical radius when the

driving force is zero, so we can solve Equation [12] for the critical radius:

Rit = 2 A/(Po + PH2o-P ) [18]

When R>Rrit the bubble grows and when R<Refit it shrinks. In an unbounded system

where P 00 a constant the growth or shrinkage is monotonic. Iln a finite system in which

P1' is a time-dependent variable, a bubble may alternately grow and shrink as P_

fluctuates and Rcht fluctuates with it.
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To further understand the simulation results, it should be noted that two bubbles of

different sizes cannot simultaneously be equilibrated with the same condensed phase

because their internal pressures differ, and that a larger bubble must always be either

growing faster or shrinking slower than a smaller bubble. These observations lead to the

conclusion that any closed system must ultimately reach one of two possible final states:

1) all of the bubbles have collapsed, or

2) only one bubble remains, and it is the one that was largest initially.

So, we see that bubbles initially grow or shrink depending upon whether their radii are

greater than or less than the initial critical radius of the system. Each bubble later grows

or shrinks depending upon the current value of Rt,, which depends on the history of

bubble size changes in the system. Ultimately, all of the bubbles collapse or else only

one bubble remains.

Unless specially noted, the example simulations to be discussed were computed at Lhe

following conditions:

ambient pressure P = 1 ATA;

temperature T = 293.16 'K (20 °C);

surface tension a = 72.75 dyn/cm (its value at 20 'C for the air/H 20 system);

vapor pressure of water P120  0.02307 atm (its value at 20 'C);

volume of the condensed phase VL = 0.015 cm3;

diffusivity = 3 - 10"5 cm/sec, which is its approximate value for nitrogen in H2O

at 20°C 7;

partition coefficient K = 6.34 • 10-7 mol/(cm 3-atm), which is its approximate value

for nitrogen in H20 at 20 °C8
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The system volume VL also will be seen to be critical to this analysis. Its value of

0.015 cm 3 was chosen because this is the volume of a membrane of dimensions 1 cm x 1

cm x 150 Am, which are roughly the expected dimensions of a calibration standard.

Figure 3 shows simulation results for a case in which five relatively small bubbles are

posited in a condensed phase originally containing a partial pressure of 1 atmosphere

absolute (1 ATA) of dissolved gas. Rrit in this system initially is 60 pm (the critical

diameter is 120 im). All of the bubbles eventually collapse, the smaller ones

disappearing first, the partial pressure of dissolved gas eventually rises to 1.004 ATA but

this is not high enough to prevent the largest bubble from collapsing, i.e., to bring

<•crit<R for the largest bubble.

In the second example, shown in Figure 4, all conditions are the same as in Figure 3

except for the initial sizes of the bubbles. Two of the bubbles initially are larger than

the critical diameter of 120 A m. An inspection of the numerical results from which this

plot was made shows that the bubble that initially is 180 pm in diameter grows slowly for

23 h and then begins to shrink very slowly as P'0 is depleted by the largest bubble, which

will continue its slow monotonic growth as it asymptotically approaches equilibrium with

the rest of the closed system.

A pseudo-stable state is reached in Figure 4 because two of the bubbles are Lirge

enough to significantly influence the amount of dissolved gas. Growth of a sufficiently

large bubble always reduces the driving force for diffusion to that bubble by depleting

P ', and shrinkage of a sufficiently large bubble always reduces the driving force for that
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bubble by augmenting P o. Sufficiently small bubbles won't affect P ' enough to

stabilize their sizes.

In Figure 5, we see an instance of a substantial initial everpressure in the condensed

phase. The initial P ' is 3 ATA, giving a critical diameter of 1.4 Am. Although it is

difficult to see on the plot, the bubbles initially are vey different in size, ranging from

5jAm to 200Am diameter. They all grow rapidly at first; the smaller ones begin

shrinking as P o declines. At time = 5.8 h, P ' has been reduced to 1 ATA by the

bubble growth. Eventually, only one bubble will remain. But, after about 6 h the

bubbles are almost static in size over many hours. This is because the driving force for

mass diffusion is small since P -P oP and the surface tension term 2aP/R is small (see

Equation [15]).

It is evident from studying Figures 4 and 5 that bubbles having diameters much

greater than 100 Am remain fairly static in size over several hours when the overpressure

is small and the surface tension is that of the air/H 20 system. That is, they are pseudo-

stable for our purposes. Bubbles much smaller than 100 Am cannot be stabilized at a

surface tension of 73 dyn/cm.

Figure 6 illustrates a simulation done with the surface tersion set at a = 5 dyn/cm,

which may be possible to achieve using surfactants. Tlhe initial value of P is 1 ATA, so

that a slight 'overpressure' exists only because of the contribution of water vapcr, Still,

the critical diameter is only 8.6 Am because of the low surface tension. None of the

bubbles is larger than 60 m r diameter at the start. The results are qualitatively similar

to those in Figure 5 in that we eventually obtain a pseudo-stable system after an initial
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period of relatively rapid changes. The stability again occurs because of the small

driving force, with P - P 0 and 2a/R being small. In this hypothetical system we have

succeeded iii stabilizing bubbles smaller than 200 A m.

Can bubbles smaller than 20 Am be stabilized if both the surface tension and the

overpressure are extremely small? In Figure 7, P 00 is 0.99 ATA initially, the surface

tension is 5 dyn/cm, so the critical diameter is 15 Am. The bubbles are initially 5, 10, 15,

20, and 30 As m in diameter. The bubbles that begin life with diameters of 15 1 m or less

still are not stabilized: they all collapse within 36 h. The larger bubbles, which grow,

will not stabilize until they are large enough to deplete the dissolved gas surrounding

them; this does not happen within the first 100 h of the simulation, by which time they

both are larger than 90 Am in diameter. It does not seem possible to maintain stable

bbb,,le ..... ller ha.!..-n n m ..... , imlausibly .... .o,.e.,ratln of bbe,

although it certainly would be possible in a much smaller system.
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VIL NOISE MEASUREMENTS

We aitemptcd to quantify the amount of electronic noise generated by the system's

various noi.se sources. Of primary interest is the amount of noise present when the

divide-by-2 circuit is in use, because this is the output from which we hope to deduce

bubble sizes by analyzing the 2nd harmonic component of the sound radiated from

bubbles. Because the amplitude of harmonic distortion products normally depends on

the amplitude of the input signal, the 2nd harmonic noise should increase with the

amplitude of the input signal. This is borne out by the data.

A. Approach and methods

In the following discussion, we report the ratio, in decibels (dB), of V 2h to Vaxlu"nd for

various input voltage levels, where V 2h is the RMS (root mean square) voltage

amplitude of the 2nd harmonic distortion and VmaxIfnd is the maximumMpossible RMS

amplitude voltage of the fundamental component of the output signal. V.1jund was

measured by reflecting the transmitted signal off of the surface of a lead brick with the

divide-by-2 circuit bypassed; lead is an excellent sonic reflector because of the mismatch

in mechanical impedance between lead and water, and the observed output signal

amplitude therefore is taken to be maximized in this experiment for a given input

voltage amplitude.

V 2h was measured by reflecting the transmitted signal off of a slab of Wall-Gone

rubber sound absorber with the divide-by-2 circuit in use and no bubbles apparent.

Using Wall-Gone as the acoustical target is more realistic as a pbysiological analogue
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than measuring noise with a hard target in placu. Although ideally we might expect the

signal in this configuration to be immeasurably small, in fact we observe a substantial

2nd harmonic component generated by 2nd harmonic distortion in the front end

components (consisting of the transducers, the divide-by-2 circuit, a power amplifier in

line between the signal generator and the transmitting transducer, and a mixer), and by

nonlinear vibration of the Wall-Gone rubber. On the other hand, noise levels are

considerably lower with Wall-Gone as the target than with a hard target, because less

energy is reflected to the receiving transducer from the Wall-Gone than from a hard

target.

The scheme for characterizing noise levels using the ratio V 2h/,Vmfund was chosen

because the results are relevant to the system's S/N ratio for measurements of gas

bubbles. Although the reader probably finds this elevance mysterious now, we will

explain it in section VIII, 'Estimating the Signal/Noise Ratio'. Note for now that V 2b,

v "Ifd, is considered the magnitude of noise.

All mea. ements were made under the following conditions:

"range" mode in use

sweep time = 0.1 sec

span = 4 kHz (therefore, time record length = 0.1 sec)

sweep start frequency = 0.2 MHz

sweep st'- freqi. • 5 MHz

windowing = fiattop

signal averaging: 20 time records averaged

target distance - 3.25 cm
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Recall from the Introduction that, in the range mode, the output signal appears as a

spectrum of voltage amplitude versus offset frequency A f, where A f is proportional to the

distance from the transducer head to the target. In the experiments of this section the

output spectrum contained a voltage spike at a frequency A f- 2.1 kHz, which corresponds

to a distance of 3.25 cm in water. The reported voltage was read at the maximum of the

peak at 2.1 kHz. Noise at other frequencies was negligible compared with the noise at

2.1 kHz.

B. Result

Table 1 shows the noise level measured over a five-fold range of input voltage levels.

Inspection of the rightmost column in the table reveals that the noise level is essentially

constant at -- 37 dB relative to the maximum output signal level at input voltages greater

than 2 V.

As an incidental (but important) observation, we see from the entries in the third

column that the system's frequency response (i.e., output voltage at the fundamental

frequency + input voltage) is nearly linear over the input voltage range of 2.5 to 4 V

peak-to-peak from the signal generator, suggesting that this is an advantageous operating

range. From additional measurements (not shown) it has been observed that the linear

frequency response occurs over the same range of input amplitudes even when Wall-

Gone is the acoustical target. The substitution of Wall-Gone for lead attenuates the

output signal by 94% consistently, regardless of input amplitude. It is suggested

therefore that the appearance of nonlinear frequency response is a much stronger

function of Van than of Vot-
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TABLE 1: System Noise

voltage setting on VV
3325A signal generator mVafuxd V V

1 V peak-to-peak 47.42 1V RMS 0.793 mV RMS - 31 dB

1.5 90.78 1.523 - 35
2 136.1 2.288 - 3b
2.5 181.0 3.032 - 36

3 229.6 3.826 - 37
3.5 268.7 4.43 .- 38
4 301.6 4.969 - 37

4.5 332.1 5.398 37

5 357.3 5.781 - 37
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VII. THEORY OF VIBRATING BUBBLES

A, Approximate analytic solutions via the perturbation method

The motion of a free, spherical gas bubble in an ingQmprgsib condensed phase has

been described by solving the equation of motion, i.e., the momentum balance, for the

condensed phase. This equation is found to be an ordinary nonlinear differential

equation. Since the system is spherically symmetric (given a homogeneous, isotropic

medium) the only spatial dimension of importance is the radial coordinate r. If the

equation is written at the outer bubble surface, we obtain9'10

RR- + (3/2)(R') 2 = 1/PL[ Pin(t) - 2o/R - cR 1 [19]

where R = R(t) is the bubble radius at time t, cm;

R' = dR/dt;

RN = d2R/dt2;

pL = density, g/cm3 ;
Pi,(t) = the pressure at the inmer surface of the bubble at time t, atm;

= surface tension, dyn/cm;

R = radial stress at the outer bubble surface, dyn/cm2 .

The term v R arises when we apply the boundary condition that radial stresses are

continuous across the bubble surface. In section C we show how this stress term is

rewritten in terms of strain or rate of strain, depending on what constitutive equation is

valid for the condensed phase. For now, let us assume that the bubble resides in a
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Newtonian fluid. In section C we will show that this leads us to calculate V R = P"t +

4AR'/R, where Pou is the hydrostatic pressure at the outer surface of the bubble.

ProsperettilO°' found an approximate, analytic solution to Equation [19] for a

sinusoidally oscillating ambient pressure, that is for a bubble in an externally applied

sound field. The mathematics are quite complicated and we will only summarize some

of the major features here. For more details see the Appendix of reference 1. For a

reasonably complete discussion of the mathematics one must look to Prosperetti's

papers

Prosperetti replaces OU"(t) with P0 (1-ecos(O t)), i.e. PO is the mean ambient pressure,

e is the amplitude of sound waves imposed on the bubble, and the frequency of that

sound is 0. The internal pressure Pi,(t) is represented by a polytropic expression

Pi, = Pin,eq (Ro/R(t))j' - 4 /•thR'/Ro, where R, is the equilibrium radius, r is the

"effective polytropic exponent", Pin0 q is the internal pressure corresponding to R =R,, and

A th is a so-called 'thermal viscosity' introduced as an ad hoc corrective term to

compensate for the polytropic expression's inability to account for phase shifts between

pressure and temperature. Prosperetti also defines an 'acoustic viscosity' Ag that arises

from momentum transfer from the bubble to the liquid. The thermal and acoustic

viscosities have the same units as a "real" viscosity and each is a "damping" term,

meaning that it appears in the momentum balance as a multiplier to the velocity term

R'. Accordingly, Prosperetti combines all three viscosities into an "effective viscosity"

erf "- + AMth + IAw" Equation [19] now becomes
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RR" + (3/2)(R ')2 =

1/PJL Pi.,eq (Ro/R(t))a• - Pj(l'ecos(Qt)) - 2o/R - 4puffR"/R 1 1201

Expressions for the polytropic exponent, thermal viscosity. and acoustic viscority all are

calculated from a separate analytic solation to the system of six partial differential

equations that comprise the linearized equations of continuity, motion, and energy in

both phases. The condensed phase is considered compressible in the linearized

governing equations, even though the nonlinear Equations [19] and [20] are written for

incompressible liquids. (In fact, the acoustic damping term is zero for an incompressible

medium.) linearized equations are valid for small perturbations from equilibrium -- in

this case, for small amplitude vibrations -- but keep in mind that no information on

harmonics, subharmonics, or phase shifts is contained in a linearized treatment of a

vibrating system. The mechanics of solving this system of equations are exceptionally

complicated.

Next, the substitution R(t) = Ro (1 + x(t)) is made into equation [20]. Tile

dimensionless variable 'x' is seen to be a fractional perturbation of the bubble radius

R(t) from its equilibrium value R0. The problem is made tractable by discarding all x, x',

and x" terms that are raised to powers of 4 or greater, but note that retaining the 2nd

and 3rd power terms retains the essential effect of the nonlinearity (provided x is small).

Finally, algebraic solutions to the resulting equation are obtained by a "perturbation"

technique first advanced by Krylov, Bogolyubov, and Mitropolsky12. Each solution is

valid when the forcing frequency Q is 'near' one of the system's resonance frequencies.
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We are particularly intercsted in the 2nd harmonic component of the solutions, which is

found by retaining only the terms that are of frequency 2Q, since that component will be

measured by the bubble detector. It turns out that the mathematical system (and

presumably the physical system likewise, if its mathematical description is accurate) is

'catastrophic': as the forcing frequency is swept through the various resonance

frequencies there are discontinuous jumps between stable solutions, and there is

hysteresis behavior that causes the location of these jumps to depend on whether the

forcing frequency is being swept upward or downward.

The procedure summarized above yields an algebraic expression for the amplitude of

the oscillations of R as a function of forcing frequency and all other relevant parameters.

This is readily converted to the amplitude of the radiated pressure wave corresponding

to it, denoted IIPradil, by solving the linearized 'wave equation' in the liquid (in fluid

mechanics a wave equation is simply the equation of motion written for a compressible

medium in which a wave is being propagated). If desired, only the 2nd harmonic

component of the radial oscillations can be included, and we designate the pressure

amplitude of that component as IIP,,d2hII.

The fact that the values of the parameters Vi' and 'pt' (used below) are estimated

using first order expansions (linearizations) of the terms in the mass, energy, and

momentum balances means that they are valid only for a linear system. Their usage

when analyzing this nonlinear system is an ad hoc approach necessitated by the difficulty

of the mathematics.

Clearly, the analytic solution incorporates several questionable assumptions and
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computational simplifications. Its value is that it can be computed rapidly enough to

make it useful in the iterative data-fitting routine mentioned in the Introduction to this

report, with which the equilibrium bubble radius R0 will be estimated for an unknown

bubble by comparing observed resonance frequencies with the predicted values.

B. Numerical solutions via the Galerkin Spectral Method

Given our reservations about the reliability of the analytic solution discussed in

section A, we would like to have a means of numerically solving the equations governing

a vibrating bubble without resorting to so many simplifying assumptions. This new

solution could be used to evaluate the accuracy ef the analytic solution in the absence of

direct experimental verification, which is unlikely to appear any time soon. We are

willing to trade computational economy for accuracy with the numerical solution.

Kamath and Prosperetti 13 used a Galerkin spectral method to solve the governing

equations and folind significant deviations of the analytic solution from the numerical

results when the driving amplitude was high enough. As will be discussed shortly, the

mathematical description that Prosperetti evaluated using the Galerkin method is in

some ways more sophisticated, in other ways more simplified than the description he

evaluated earlier using a perturbation technique. This confuses a comparison of the

results from the two solutions. The reader should look to reference 14 for an overview

of Galerkin techniques. Here, we will review the partioilars of how Prosperetti (and we)

used the Galerkin spectral method on our system.

The Galerkin method is used to reduce the partial differe~itial equations ', a system

of ordinary differential equations, which subsequently are solved using the Gear method.
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The result consists of the value of R, the bubble radius, as a function of time at some

forcing frequency Q. This time domain information can be converted to an amplitude

spectrum via Fourier transformation. To get the steady state solution one integrates

until steady state oscillations are attained, then Fourier transforms the time domain data

from only the last oscillation cycle. If one is interested in the amplitude of only the 2nd

harmonic component as a function of 0, then the amplitude at frequency 20 is extracted

from the spectrum. Once the steady state radial amplitude at frequency 20 has been

computed over a range of 0 's, we can construct the spectrum of amplitude versus a.

Also, the amplitude of R at frequency 20 can be converted to 11 Pmd 2hiI by solving the

aforementioned linearized wave equation in the condensed phase. In sections D and E,

we will present results in an alternative form that does not involve Fourier

transformation: we show the maximum bubble radius attained during a steady state

oscillation.

In Prosperetti, Crum, and Commander,'5 simplified governing equations are derived

from the conservation equations for mass, momentum, and energy for both the gas in the

bubble and the liquid outside the bubble, along with boundary conditions at the gas-

liquid inteiface (i.e., the bubble wall). Based on several reasonable assumptions, and

several order of magnitude comparisons that show certain quantities to be negligible, the

authors are able to reduce the original system of six partial differential equations (i.e.,

the conservation equations) to one partial differential equation and two ordinaly

differential equations.

Two basic assumptions are that the gas is perfect and the bubblc maintains a
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spherical shape. An order of magnitude argument shows that, near the main resonance

frequency of a bubble in forced oscillation, the Mach number M, of the bubble wall,

referred to the speed of sound in the gas, is extremely small; i.e. MB - RIcG is close to

zero. Using this approximation it can be shown 13 that the radial gradient in pressure

inside the bubble is negligible compared with the temporal variation of pressure; i.e., the

pressure is almost uniform spatially within the bubble. An estimate of viscous shear in

the gas shows it to be negligible. Based on these results it can be shown that the

momentum balance equation for the gas reduces to the simple statement that gas

pressure is a function only of time.

Some further assumptions, which involve the bubble wall temperature and vapor

effects, are less important, because the system equations would still be tractable without

them. An order of magnitude estimate shows that, owing to the greater thermal inertia

of liquid than gas, the temperature at the bubble surface is almost unperturbed from the

ambient temperature provided there is not too much heat being alternately consumed

and released by the evaporation and condensation of vapor. The authors ensure the

validity of this approximation in their mathematical construct by neglecting vapor

altogether. In the physical world, they suggest (based on their order of magnitude

estimates) that the approximation is valid for bubbles in H2O at temperatures up to

about 50 'C. In other words, the liquid must be sufficiently cool. With the use of this

approximation the equation of energy in the liquid phase can be dispensed with;

otherwise, it would be needed for determining the boundary condition on the energy

equation in the gas phase.
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In addition, both slow and fast diffusion of the gas in and out of the bubble are

known to have negligible dynamical effects. Thus, diffusion is ignored entirely and we

assume the bubble boundary is impervious to the gas. Fast diffusion refers to diffusion

with time scale the order of one period of the oscillation; slow diffusion (often called

rectified diffusion) refers to diffusion with a time scale of, for example, thousands of

periods in which the total gas contents and/or the equilibrium radius of the bubble may

change.

Under the stated assumptions, the system of equations to be solved becomes:

a) Radial dynamics equation:

We use Keller's equation for a gas bubble in a compressible liquid.

(1 -•Rc)RR + 3/2(1-R/(3c)) R2 _

1iP L(1 + R/c + (RPc) dldt)p, - 1/P L(1 + RlC)pA(t + Ric) [21]

where R - R(t) is the bubble radius at time t, p L is the density of the liquid, 'c' is the

speed of sound in the liquid, pa is the pressure in the liquid just outside the bubble, and

pA(t) is the ambient pressure (in radial equation PA is evaluated at time = t + R/c).

Keller's equation is valid when the Mach number of the bubble wall is sufficiently small

so that quantities proportional to its square may be neglected. We assume

pA(t) - p., (1 - e sin() ). A balance of the normal stresses across the bubble surface

yields:
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P.8 - pB(t) - p - 2o/R - 4 9 L (AIR) [22]

where PL = liquid viscosity.

b) Pressure equation:

This equation relates the internal pressure to the temperature gradient. Since the

internal pressure p is assumed to be uniform throughout the bubble; p is independent of

r; it depends only on 't'.

p -3/R( (y- 1)K .(Otlr)IR - ypR) [23]

c) Temperature equation:

This is also called the energy equation.

yp/((y - 1)1) [aT/at + l/(yp) ((y - 1) K aTiar - 1/3 rA) alar ] - A - V • (K VT)

[24]

where K(T) is the thermal conductivity of air. Based on data for

200 "K < T < 3000 *K, Kamath and Prosperetti suggest using the linear function

K(T) - 5.528 T + 1165.

Boundary conditions for system:

The temperature on the bubble surface equals the constant exterior temperature T..

51



Initiz' conditions for system:

Bubble is at rest with eouilibrium radius Ro.

Internal pressure has value po - (2 o / KO ) + p..

Temperature is constant throughout bubble; its value is T...

Let us define a scaled radial variable y - r/R(t) to be used instead of r.

A dependent variable r (y,t) is defined by r a fT K(e) dO where K(T) is defined

above.

The Galerkin method is used to replace spatial partial derivatives (i.e., those

involving the variable 'y') with finite linear combinations of Chebyshev polynomials

Tk(y). Specifically, we represent r (y,t) as an infinite sum of shifted Chebyshev

polynomials *k' (y) - T 2k (Y) - 1. Let the coefficients be denoted at (t). Denote by
N

'N the series truncated after N terms; xN - E ak(t) &k(y)
k-1

The pressure and temperature equations involve spatial derivatives. Using the

expression for -c we can convert these spatial derivatives into finite linear combinations

N

Z ek(Q) T,(y) where the ek(t) are functions of the ak(t).
k-1

With these techniques, the temperature equation is reduced to a system of ordinary

differential equations which can be integrated in time. Following Kamath and

Prosperetti's approach we used a four-term Chebyshev expansion. The system must be

integrated for many (usually more than 10) cycles before the system reaches steady-state

oscillations. For certain parameter values there may be more than one stable solution; if

52



so, the solution that arises in any giv -n problem will depend on the initial conditions

used for that problem. In other words, the bistability/hysteresis effect, well established

for the analytic solution with resonance frequencies (see the preceding section), appears

as well in the numerical solution.

C. Derivation of the normal stress at the surface of a spherical cavity

The boundary condition on the equation of motion in the medium surrounding a

bubble (Equation [19]) is different for a liquid than for a solid because different

constitutive equations govern the mechanical behavior of the two types of media.

The continuity equation for an incompressible substance with spherical symmetry can

be written either

or (1/r2) a(r 2u,)/Or 0 [25b]

where vr = radial velocity and Ur = radial displacement. Velocity is simply the time

derivative of displacement: Vr = Our/t. Integration yields

vr = A 1(t)/r [26a]

or ur = A 2(t)/r [26b]

where A 1(t) and A 2(t) are integration factors to be evaluated later. The boundary

condition on the continuity equation is continuity of either velocity or displacement at
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the bL-jble surface:

Virs '_ = dR/ht = R' [27a]

or Urlr=R = R-RE [27b]

where RE = bubble radius at which the medium surrounding the bubble is undeformed,

which in general is not the same as the equilibrium radius R.. It follows from Equations

[26] and [271 that

v, = R 2R'/r2 [28a]

or ur = R 2(R-RE)/t [28b]

The boundary condition on the equation of motion is continuity of tne radial stresses

across the phase interface*:

-Pin + 2a/R = "V R [29]

where r R is the radial stress at r = R.

"We are obeying the following incomprehensible arbitrary convention on signs of stress components,
taken almost verbatim from reference 9:
The stress rp, due to action by materia on the positive side of the srrface on the material on the negative
side, is positive if the line of action is along positive spatial coordinate x,.
Conversely, the stress exerted from the negative side of the surface on the material on the positive side is
positive if the line of action is along negative x,.
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Now we will apply the constitutive equations. For a Newtonian liquid, the stress

tensor components are l.nearly related to the components of the rate of strain tensor:

Sij = -P6 ii + A i [30]

where P = hydrostatic pressure, atm;
= Kronecker delta, defined thus:

= 1 when i=j, and/li = 0 when ioj;

S= viscosity, dyn/cm;

A =component of the rate of strain tensor.

The components of the linearized rate of strain tensor are linear functions of velocity

vector gradients. For satisfying the boundary condition with spherical symmetry we need

only know the radial normal stress t., It is found from the radial normal component of

th Waeofkri, 4 p~d PI~la coolrdiates Is given byY

A = 2 av,/ar [31]

And so the boundary condition equation [29] is solved by _ R = "C lr=R, which is readily

evaluated; the boundary condition for a Newtonian liquid becomes

P.t + 2o/R = Pi,, - 4ýLR'/R [32]

For a linearly elastic solid, by definition the stress tensor components are linearly related

to the components of the strain tensor1 6:
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T = .(e-l+e 22+e33)6,j + Zej [33]

where I and AL are the Lame constants;

e = small strain tensor component;

ell,1,, and e33 are the normal strain components.

(By longstanding convention, the second Lame constant unfortunately is denoted by the

same Greek letter as is the viscosity of a liquid.) Equation [33] does not appear at first

to contain the hydrostatic pressure, but we can make the substitution 16

P = -B (e611+e22+63)_

( - I + 2 ) (Ell +e 2 2 +e 3 3 ) [34]

where B = bulk modulus, dyn/cm 2.

Equation [33] now becomes

"Tij = [ -P - (24/3)(el+E 22 +e 33) 16ij + 2tgeij [35]

The continuity equation tells us that in an incompressible system the sum of the normal

strain components (e '0 +e(33) is zero, so we can simplify the constitutive relation to

T ii = -Ph ij + 2ueij [36]
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In linearized elastic theory the strain tensor components are linear functions of

displacement vector gradients. For this spherically symmetric system we need to obtain

the radial normal stress from the radial normal strain, which in spherical coordinates is

given by

er = 8uj/ar [37]

And so the boundary condition again is solved by CR = - Ar=-R- This radial normal

stress component is given by

TrrIr-R = -P - 4 (R-RE)/R [38]

at the bubble surface. Finally, let us replace the Lamb constant with the more familiar

Young's modulus E. For an incompressible solid p = E/3. Our final expression for the

linearized elastic boundary condition is therefore

Pot + 2o/R = Pi.- (4E/3)(R-R,)/R [39]

Linearized elastic theory is valid for small deformations. At larger strains we require

the nonlinear theory, in which expressions for the strain components are calculated from

gradients in the displacement vector without discarding terms of order 2 and higher. The

mathematics involved in computing our boundary condition for this kind of system are

well beyond the scope of this report. Fortunately, the result has been published 17:
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xrr[r-R = - (1/6)E [5 - 4(RE/R) - (RE!R) 41 [401

The boundary condition on the equation of motion for large elastic deformations is given

by

PoUt + 2o/R = Pi.- (1/6)E [5 - 4(RFJR) - (RE/R)4  [41]

This boundary condition approaches the one for a linear elastic solid (equation [39]) in

the limit as R - RE.

So, the appropriate boundary condition is substituted into the equation of motion

(Equation [19]) and that equation is solved either analytically or numerically to yield a

description of an oscillating gas bubble, To obtain the analytic solution it is necessary to

assume linear elasticity when modelling oscillations in a solid, so Equation [39] must be

used to calculate the elastic stress on the bubble wall arising from oscillations of the

radius about its static value Ro. However, the nonlinear Equation [40] is used to

compute the elastic stress imposed on the wall of the static bubble, i.e. the stress arising

from the difference between R0 and RE. Thus, in the analytic solution we have a linear

oscillatory stress superimposed on a nonlinear static stress. When using the Galerkin

method the nonlinear Equation [40] is used for all calculations of elastic stress.

There is one potential complication when figuring the boundary condition for a

vibrating bubble in an elastic solid. The following relations are true for the strain and

elastic stress in the solid surrounding the bubble:
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for R > RI: er < 0 and r,, < 0, [42a]

and for R,< RE e, = 0 and r. = 0, [42b]

where RE w-- bubble radius at which the medium surrounding the bubble is undeformed.

(The strain and stress are negative when R > RE because of our arbitrary sign

convention.) Equation [42] says that the bubble pushes against the solid when R > RE,

but doesn't pull on it when R < RE; that is, the solid does not adhere to the bubble wall.

Consequently, the boundary condition is discontinuous at R = RE. If a bubble is made

to oscillate in size such that its radius is greater than RE during expansions and less than

RE during contractions, then its boundary condition is discontinuous in time. Describing

such a system mathematically would present formidable challenges. We therefore limit

ourselves to analyzing systems for which R is never less than RE during vibration.

Experimentally, if a bubble is formed by cavitation in a solid then R,, = 0 and the

discontinuous boundary condition can never exist. If, on the other hand, the solid phase

is formed by solidifying a liquid around a gas bubble that is at its equilibrium radius Ro

then we expect that RE = R0, and if the bubble radius is made to oscillate about R0 (in

response to sound waves, for instance) then the boundary condition is discontinuous in

time.

D. R.esults: Bubbles in a viscous liquid

Using FORTRAN programs that implement the models discussed above, we have

generated the graphs shown below. In all these graphs, we show the maximum bubble

radius attained during an oscillation after the system is in a steady state mode. The
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maximum value is given as a function of the driving frequency; the latter is expessed as

a ratio of driving frequency to natural frequency of the bubble.

The expression 'Galerkin Method' in the graph headings refers to the program that

implements the Keller equation (see above) for bubble oscillations. In thiý program the

differential equation modeling heat flow across the bubble wall is solved numerically

using the Galerkin spectral method. The expression 'Perturbation Method' refers to the

program which implements Rayleigh's equation (with the addition of thermal and

acoustic regarding damping terms as discussed above, and a natural frequency (o0 for the

bubble which depends on the driving frequency (j). The graphs are based on

approximate analytic solutions proposed by Prosperetti"'. These two methods are used

for the case of a bubble in water driven by a sound wave with a small amplitude (0.3

atm). For the associated graphs, see Figures 8 and 9. Figures 10 and 11 are graphs for

the case of a bubble in water driven by a sound wave with a larger amplitude (0.6 atm).

For this larger amplitude, which we use as well for the last four figures, we use another

program based on Rayleigh's equation without the enhancements described above. The

program, which \ve refer to as the 'Simple Model', solves the differential equation using

a very accurate numerical method. Use of a numerical solution makes unnecessary

certain analytic approximations required in the perturbation approach. The greater

numerical accuracy achieved aliows the simple model to handle large driving amplitudes

which lead to numerical instabilities using the perturbation theory approach.
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E. Results: Bubbles in an elastic solid

The last four figures apply to the case of an elastic solid with a shear modulus of

8 WO0 dyne/cm2. This is a low value for the shear modulus and indicates a soft elastic

solid. For example, this shear modulus would be typical of a fairly high-concentration

polyacrylamide gel.18 Figure 12 (Galerkin Method) and Figure 13 (Simple Model)

describe the case of a bubble for which R0 = R,, (recall that the latter is the radius at

which thc.re is no strain in the solid). This means that, at mechanical equilibrium, the

solid is unstrained and the bubble wall is not subject to elastic stress. We use a common

value of 10 ;m, because bubbles of this size are of interest. For Figure 14 (GalPrkin

Method) and Figure 15 (Simple Model), we consider the case of a bubble for

which R. > RE. We allow for large deformations; the nonlinear stress-strain relation is

described by Equation 40. Here, R. = 10 p m, RE = 5 g m.

In general, there arc two stable solutions to both Rayleigh's and Keller's equation for

values of the frequency ratio that lie in the resonance bands. The perturbation program

will always find both these solutions since it has analytic expressions for them. The

situation for the Galerkin program and the simple model program is more involved. The

stable solution that is numerically calculated in these programs depends on the initial

conditions; in general, starting with the bubble at rest and with radius Rk leads to the

solution with the smaller amplitude. Finding initial conditions that lead to another

stable solution involves some numerical experimentation. For these differential

equations only at most two stable solutions have been found to exist in any resonance

band; however it is possible others exist. For the case described in Figure 13 we were
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able to find such initial conditions (initial radius = 2 - 1% cm, and initial velocity = R-

cm/sec); therefc e we display both solutions. As the system is stiffened, either by

increasing the shear modulus or by decreasing RE, the two solutions may coalesce into a

single one. One has to consider this possibility when one is unable to find more than

one stable solution.
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VIII. EST11MATING THE SIGNAL/NOISE RATIO

We can use the models presented in section VII to estimate the ratio of [the sound

pressure amiplituae aIt the 2nd h rmonic frg iung radiated by a spherical bubble to the

receiving transducer] to [the sound pre.-,sure amplitude at the fundamental f~ur~.ii.

radiated by the transm-itting trans-ducer]. This tells us the "line loss" attendant with

measuring a bubble. For instanice, if P0,.t is one-twetitieth of Pi, then the 'Line loss is

95% or 13 dB. If we assume that the bubble detector's overall frequency response is

linear (that is, V.., is a linear function Of Vin) then for this example V.. would be 13 dB

below its maximumi attainable value.

In section VI, 'Noise Measurements', we reported a relative noise level equal to the

ratio of [the 2nd harmonic noise level] to [the maximum attainable level of the

fundamental of the output signal]. Therefore, by inspection, we can estimate the S/N

ratio of the system by dividing the line loss associated with a given bubble by the relative

noise level as reported in section VI. In this section we discuss the estimated S/N ratio

for single spherical bubbles of various sizes in water.

The line loss estimates were made using the analytic solution to the governing

equations. T'he line loss is predicted to be only a weak function of the amplitude of the

driving signal within the range of 0 to 0.5 atm sound pressure amplitude. The analytic

solution is valid only at small amiplitudes (i.e., small driving pressures), and the model

yielded nonsensical results when it was extended to higher transmitted pressures,
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precluding meaningful comment at this time about what happens with these stronger

driving signals.

For a bubble in water the line loss is estimated to be -31 dB for a 6 A m-diameter

bubble and - 34.5 dB for a 0.9 1r m-diameter bubble at transmitted sound pressure

amplitudes of up to 0.5 atm.

Combining the predicted line loss with the noise measurements of section VI, we

estimate the S/N ratio. At a setting of 3 V P-P on the 3325A signal generator the S/N

ratio is estimated to be 6 dB for a 6 p m-diameter bubble and only -2.5 dB for a 0.9 A m-

diameter bi-bble. This is uncomfortably low There is no further improvement in the

S/N ratio to be gained by signal averaging, because extensive signal averaging has been

used already when obtaining the noise measurements. However, it is obvious from the

sample data from section III that the noise level can be reduced by at least an order of

magnitude by subtracting a judiciously chosen background measurement from the signal,

which gives hope that the system may be sensitive enough to detect individual bubbles.

If the S/N ratio proves unacceptably low in practice, then for a remedy we may

consider that the simulation results show that the signal level from a bubble is roughly

proportional to the bubble diameter. Therefore, the S/N ratio could be increased,

without replacing the existing electronic components with more linear components, by

investigating larger bubbles. This approach would require that we replace the existing

transducers with a pair designed for a lower frequency range, which would encompass

the resonance frequencies of larger bubbles.
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IX. CONCLUSIONS

The bubble detector has been redesigned and provided with appropriate software. It

now has the potential to be of use.

Simulations of bubble oscillations have yielded iniportant insights. These

simulations, combined with measurements of the system noise, suggest that it may be

difficult to detect a small (g 6 p m diameter) bubble whose main resonance frequency is

within the range over which the transducers are sensitive. A separate simulation of

bubble size dynamics suggests that such small bubbles would be difficult to stabilize for

the purpose of calibration. We also have learned via simulation that the sigial strength

increases linearly with bubble diameter and that bubble stability improves with size.

Obviously, it may be advantageous to replace the present transducers with a pair that

functions over a frequency range that encompasses the resonance frequencies of larger

bubbles, and we are investigating that possibility. In the meantime, experiments will be

undertaken to determine whether the existing system is capable of ex vivo detection of

gas bubbles in dog spinal cords during and after decompression.
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APPENDIX: HP Basic Program to Control HP 3325A Signal Generator

and HP 3561A Signal Analyzer

10 ! THIS PROGRAM LISTS THE INITIAL SETTINGS FOR THE 3325A SIGNAL
20 ! GENERATOR, THE HP3561A SIGNAL ANALYZER, AND THEN OFFERS THE
30 ! OPPORTUNITY TO CHANGE SOME OF THESE DEFAULT SETTINGS. IT ALSO
40 ! TRIGGERS THE EXPERIMENT, EXTRACTS THE DATA FROM THE TIME BUFFER IN
50 ! THE 3561A, CONVERTS THE DATA TO AN AMPLITUDE-VERSUS-TIME SPECTRUM
60 I (WHICH, BECAUSE OF THE NATURE OF THE EXPERIMENT IS ALSO AN
76 0 AMPLITUDE-VERSUS-FORCING FREQUENCY SPECTRUM), AVERAGES IT OVER A
80 I USER-SELECTABLE NUMBER OF REPEAT MEASUREMENTS, SUBTRACTS THE
90 I "BACKGROUND" (OR BASELINE) MEASUREMENT, STORES THE DATA
100 ! FOR LAYER USE, AND PLOTS II TO BOTH THE SCREEN AND A PRINTER.
110
120 OPTION BASE 1 MINIMUM NUMBER OF ELEMENTS IN AN ARRAY IS 1
130 PRINTER IS CRT I PRINTS TO SCREEN
140 RANDOMIZE I CHANGE SEED OF RANDOM NUMBER GENERATOR
L50 !
160 TNTEGER Zero(514) ! THIS ARRAY TO BE USED 1O FILL THE BUFFER
170 MAT Zero= (0) 1 AT I/O PATH '@Tag' WITH ZEROES
180 ! IN BETWEEN TRACE DUMPS FROM THE SIG ANALYZER.
190!
200 INTEGER Tag field(350),R ange,Rec-size
210 INTEGER Raw data(30,1024) BUFFER
220 INTEGER Rawraw data(1024) BUFFER
230 INTEGEk Raw tracc(401) I FOR READING TRACE FROM BUFFER
240 INTEGER N,Limit,Sweeps,Sweepback,,Ii,18
250 REAL Amplitude(512),Backgrnd(512),NegareaPosarea
260 REAL Trace _data(401) ! FOR CONVERTING BINARY TRACE DATA TO VOLTAGES
270 DIM Name$[15],Filc$[30] ! FOR NAMING THE OUTPUT FILES
280 !
290 ASSIGN @Anz TO 711 I OPEN THE I/O PATHS
300 ASSIGN @Siggen TO 717
310 ASSIGN @Header TO BUFFER 1350];FORMAT OFF
320 ASSIGN @Time buff TO BUFFER Raw raw data(*);FORMAT OFF
330 ASSIGN @Tag TC BUFFER [10281;FORMAT OFF
340!
350 GOSUB Set-defaults
360 GOSUB Displaydefault
370 GOSUB Changedefault
380 GOSLB Init siggen
390 GOSUB Init anz
400!
410
420 BEEP (INT(RND*5127) +81),1
430 GOSUB How-many
440 GOSUB Index
450 !
460 Name$ ="\HPBLP\DATA\"
470 Files = Name$&"STRr&VAL$(Istart)&".BCK"
480 BEEP (INT(RND*5127)+81),1



490
500 ! MEASURING BACKGROUND
510 !
520 INPUT "HIT 'ENTER' TO MAKE A BACKGROUND MEASUREMENT ",Dummy$
530 PRINT""
540 PRINT "NOW COLLECTING TIlE BACKGROUND MEASUREMENT"
550 PRINT""
560 N=0 I INDEX N = 0 IF MAKING BACKGROUND MEASUREMENT,
570 ! N = 1 IF COLLECTING REGULAR DATA
580 OUTPUT @Anz;"NAVG";Sweep back ! TRACE DATA ARE TIME AVERAGED OVER
590 ! "Sweep back" NUMBER OF SWEEPS
600 OUTPUT @Anz;"SCAL" ! 3561A SELF-CALIBRATION
610 WAIT 3 ! WAIT FOR 3561A SELF-CAL
620 OUTPUT @Anz;"STRTr START TIME AVERAGE
630 FOR Ii= 1 TO Sweep back
640 GOSUB Trigger-system
650 GOSUB Read-data
660 WAIT Sweep_time I WAIT FOR SIG GEN TO CYCLE BACK
670 NEXT Ii
680 GOSUB Convert and sum
690 MAT Backgrnd= Amplitude
700 GOSUB Store data
710 GOSUB Integrate
720 GOSUB Plot data
730 DUMP GRAPHICS I PIXEL-BY-PIXEL DUMP OF SCREEN TO EXTERNAL PRINTER
740 !
750 CONTROL @Tag,3;1 I MAKE SURE BUFFER POINT WiITER IS ON 1ST BYTE
7660 OUTPUT .a . Fo!. IL. nUXRrrl ni rIrit l lIZ .,. 5.,iKULE.S
770
780 GOSUB Read trace I DUMP TRACE FROM S1G ANALYZER TO EUF'FER
790 GOSUB Scale-trace
800 GOSUB Plot-trace
810 DUMP GRAPHICS I PRINTING TRACE BY DUMPING SCREEN TO PRINTER
820 !
830 I COLLECTING DATA
840
850 N = 1 I INDEX N = 0 IF MAKING BACKGROUND MEASUREMENT,
86w I N = 1 IF COLLECTING REGULAR DATA
870 OUTPUT @Anz;"NAVG";Sweeps I TRACE IS TIME-AVERAGED OVER "Sweeps"
880 ! NUMBER OF SWEEPS
890 BEEP (INT(RND*5127)4 81),1
900!
910 PRINT""
920 INPUT "HIT 'ENTER' TO START DATA COLLECTION",Dunimy$
930 OUTPUT @Anz;"STRr ! START TIME AVERAGE
940 FOR 18=Istart TO (1000+Istart) ! CAN DO UP TO 1000 COLLECTION CYCLES
950 Files = Namnc$&"AMP"&VAL$(18)&".DATr
960 PRINT""
970 PRINT""
980 BEEP (INT(RND*5127) + 81,,1)
9(A) PRINT "NOW ON COLLECTION CYCLE NUMBER ";18
1000 PRINT""
1010 PRINT""
1020 OUTPUT @Anz;"SCAL" 1 SIG AN CALIBRATES ITSELF



1030 WAIT 3 ! WAIT FOR 3561A SELF-CAL
1040 OUTPUT @Anz;"STRT" ! START TIME AVERAGE
1050 FOR Ii = 1 TO Sweep
1060 GOSUB Trigger-system
1070 GOSUB Read datay
1080 WAIT Sweep time ! WAIT FOR SIG GEN TO CYCLE BACK TO "START'
1090 NEXT Ii
1100 GOSUB Convertand sumi
1110 !
1120 MAT Amplitude= Amplitude-Backgrnd ! SUBTRACTING THE 'BACKGROUND""
1130 ! MEASUREMENT BEFORE PROCEEDING
1140 GOSUB Store data
1150 BEEP (INT(R-ND5127)+81),1
1160 !
1170 GOSUB Integrate
1180 GOSUB Plot data
1190 DUMP GRAPHICS
1200 !
1210 CONTROL @Tag,3;1
1220 OUTPUT @Tag;Zero(*)
1230 !
1240 GOSUB Read trace
1250 GOSUB Scale-trace
1260 GOSUB Plot trace
1270 DUMP GRAPIHICS
1280 !
1290 PRINT "CYCLE COMPLETE; PAUSING BEFORE NEXT CYCLE"
1300 PRINT --

1310 PRINT""
1320 PRINT""
1330 WAIT Waittime
1340 NEXT 18
1350 !
1360 ASSIGN @Path TO ' ! CLOSE THE I/O PATHS
1370 ASSIGN @Header TO *
1380 ASSIGN @Time buff TO *

1390 ASSIGN @Tag fO *

1400 !
1410 STOP
1420 !
1430 Set defaults:
1440 ' SET DEFAULTS FOR PARAMETERS
1450
1460 ! DEFAULTS FOR SIGNAL GENERATOR
1470
1480 Sweepstart f= 1 ! START SWEEP AT 1 MHz
1490 Strtsweepunit$="MH" ! MEGAHERTZ
1500 !
1510 Sweepstop f= 10 ! STOP SWEEP AT 7
1520 Stop_sweepunit$-="MH" ! MEGAHERTZ
1530 !
1540 Signal_amp = 3 ! AMPLITUDE IS 3
1550 Sigampunit$ ="VO" ! VOLTS
1560!



1570 ! SET DEFAULTS FOR ANALYZER
1580!
1590 Start freqanz= 1 ! START OF FREQUENCY SPAN IS AT 0.8
1600 Strt f anz unit$="KHZ" ! KILOHERTZ
1610 !
1620 Span freq_anz=2 ! SPAN OF FREQUENCIES IS 2
1630 Span f anz unitS="KHZ" ! KILOHERTZ
1640 !
1650 Sweep-time .4/Span freq.anz ! SWEEP TIME DEPENDS ON SPAN
1660 !
1670 Rcc size = 1
1680 !
1690 RETURN
1700 !
1710 Displaydefault:
1720 ! SHOW CHANGEABLE DEFAULTS
1730
1740 PRINT "YOU ARE CONTROLLING THE HP 3325A SIG GEN, THE HP 3561A SIG AN,"
1750 PRINT "AND THE REST OF THE BUBBLE DETECTOR FROM THIS PC."
1760 PRINT""
1770 PRINT""
1780 PRINT "SOME OF THE DEFAULT SETTINGS ON THESE DELICATE INSTRUMEN rs"
1790 PRINT "ARE HARD-CODED IN THIS IMMENSELY COMPIJCATED PROGRAM, WHICHI"1
1800 PRINT "SHOULD BE TOUCHED ONLY BY HIGHLY TRAINED, AUTHORIZED PERSONNEL."
1810 PRINT "HOWEVER, OTHER SElTINGS CAN BE SELECTED EVEN BY AN"
1820 PRINT "IGNORANT LAYMAN LIKE YOURSELF."
i873 0PRINT =FOR INSTANCE, THE SIAXI AND STOP FREQS -OR THE SWEEP,"
1840 PRINT "THE TIME TO COMPLETE A SWEEP, AN4D THE AMPLITUDE OF THE SWEEP"
1850 PRINT "CAN BE CHANGED. IN ADDITION, FOR TI"1E ANALYZER, THE START FREQ-
1860 PRINT "AND FREO SPAN CAN BE CHANGED."
1870 PRINT "NOT ONLY THAT, BUT YOU CAN SELECT HOW MANY SWEEPS WILL TJE"
1880 PRINT "IIME-AVERAGED INTO EACH CYCLE, AND HOW LONG THE SYSTEM"
1890 PRINT "PAUSES BETWEEN CYCLES. WHY, IT'S LIKE .IVING IN SPACE !!!"
1900 PRINT""
1910 PRINT""
1920 INPUT "PLEASE HIT THE ENTER KEY",Dummy$
1930 RETURN
1940 Display sctting:
1950 PRINT""
1960 PRINT "THE SETTINGS FOR THESE INSTRUMENTS ARE."
1970 PRINT""
1980 PRINT "FOR THE SIGNAL GENERATOR"
1990 PRINT""
2000 PRINT" 1 SWEEP START FREQ =";Sweepstartf;Strtsweep_unitS
2010 PRINT" 2 SWEEP STOP FREQ =";Sweepstopf;Stopsweep_unitS
2020 PRINT" 3 SWEEP TIME =";Swecptimc;"SECONDS"
2030 PRINT" 4 SIGNAL AMPLITUDE =";Signalamp;Sig_ampunit$
2040 PRINT""
2050 PRINT "FOR THE ANALYZER"
2060 PRINT""
2070 PRJNT " 5 START FREQ =";Sartfreq_anz;Strt f anz unitS"
2080 PRINT" 6 FREQ SPAN =";Span freq_anz;Span f -an.unit$
2090 PRINT""
2100 RETURN



2110
2120 Change_dcfault: I
2130 ! CHANGE ANY OF THE DEFAULTS?????
2140
2150 GOSUB Display setting
2160 !
2170 Firstquestion:
2180 !
2190 INPUT "DO YOU WISH TO CHANGE ANY OF THE SETfINGS (Y OR N) ?-,Reply$
22(X SELECT Reply$
2210 CASE `N',n"
22Z0 RETURN
2230 CASE "Y",'y'
2240 GOTO Make changes
2250 CASE ELSE
2260 PRINT "PLEASE RESPOND WITH Y OR N"
2270 GOTO Firstquestion
2280 END SELECT
2290'
2300 Makechanges:
2310 ! MAKE CHANGES IN SOME PARAMETERS
2320
2.330 INPUT 'PLEASE INDICATE (BY NUMBER) WHICH PARAMETER SHOULD BE CHANGED"
2340 SELECT
2350 !
2360 CASE 1
2370
2W8 INPUT "PLEASE ENTER THE NEW SWEEP START FREO",Sweep_startf
2390 PRINT "WHAT ARE THE UNITS (CHOOSE FROM THE FOLLOWIFNG)"
2400 PRINT""
2410 PRINT" liZ HERTZ"
2420 PRINT " KH KILOHERTZ"
2430 INPUT" MH MEGAHERTZ",Strt sweep unit$
2440 GOTO Changc_default
2450 !
2460 CASE 2
2470 !
2480 INPUT "PLEASE ENTER THE NEW SWEEP STOP FREO",Sweepstop f
2490 PRINT "WHAT ARE THE UNITS (CHOOSE FROM THE FOLLOWING)"
2500 PRINT""
2510 PRINT" HZ HERTZ"
2520 PRINT" KH KILOHERTZ"
2530 INPUT" MH MEGAHEkTZXStopsweep unit$
2540 GOTO Changedefault
2550 !
2560 CASE 3
"2570 !
2580 INPUT "PLEASE ENTER THE NEW SWEEP TIME, IN SECONDS",Sweeptinie
2590 I IF CHANGE SWEEP TIME, CHANGE SPAN, TOO
2600 Span_freq_anz =.4/Sweepftime

2610 Span f anz unitS="KHZ"
262M GOTO Changc_default
2630 !
2640 CASE 4



2650
2660 INPUT "PLEASE ENTER THE NL AX SIGNAL AMPLITUDE",Signal-amp
2670 PRI/NI "WHAT ARE THE UNITS (CHOOSE FROM THE FOLLOWING)"
2680 PRINT'"
2690 PRINT " VO VOLIS"
2700 PRINT ' MV MILLIVOLTS"
2710 PRINT" VR VOLTS RMS"
2720 INPUT" MR MV RMS",Sig amptmit$
2730 GOTO Changedefault
2740 !
2750 CASE 5
2760 !
2770 INPUT "PLEASE EN'I ER THE NEW START FREO FOR THE ANALYZER",Start-freqanz
2780 PRINT "WIIAT ARE THE UNITS (CHOOSE FROM THE FOLLOWING)"
2790 PRINT""
2800 PRINT" HZ HERTZ"
2810 PRINT" KHZ KILOHERTZ"
2820 INPUT" MHZ MEGAHERTZ",Strt f anz unitS
28.30 GOTO Changedefault
2840
2850 CASE 6
2860!
2870 INPUT "PLEASE ENTER THE NEW SPAN PREQ FOR THE ANALYZER",Spanfreq_anz
2880 PRINT "WHAT ARE THE UNITS (CHOOSE FROM THE FOLLOWING)"
2890 PRINT""
290 PRINT" HZ HERTZ"
'2910I PRDNT" 3Q-qz .I f'N-TER1fT'7"

2920 INPUT" MHZ MEGAHERTZ",Span f anz units
2930 ! IF CHANGE SPAN, CHANGE SWEEP TIME, TOO:
2940 IF Span f an unitSt='HZ" THEN Sweep time=400/Span freq_anz
2950 IF Span f anz unit$="KHZ" THEN SweepL.time-=.4/Spanfrcq_ainz
2960 IF Span f anz unitS ="MHZ' THEN Sweep time =.0004/Span..freq_anz
2970 GOTO Change_detault
2980 !
2990 CASE ELSE
3000
3010 PRINT "PLFASE CHOOSE AN INTEGER FROM I TO 6"
3020 GOTO Changedefault
3030!
3040 END SELECT
3050 RETURN
3060O
3070 Init-siggen:
3080 ! INITIALIZE THE SIGNAL GENERATOR
3090
3100 OUTPUT @Sigg,-n;"STr;Sweepstart_f;StrL sweep unitS
3110 OUTPUT @Siggcn;"SP";Sweep stop_(fStopsweep unitS
3120 OUTPUT @Siggen;'-I";Swecp_time;"SE"
3130 OUTPUT @ Sigen;uAM';Si•-al-amp;Sig_a up_unitS
3140 OUTPUT @Siggcn;"RF2"
3150 !
3160 RETURN
3170 I
3180 nmi ianz:



3190 ! INJTIALIZE THE ANALYZER
3200 ! SEE HP MANUALS FOR THE MEANINGS OF THE FOLLOWING HP-lB MNEMONICS
3210 OUTPUT @Anz;'TACM" ! TIME CAFTURE MODEL
3220 OUTPUT @Anz;"SF";Start_)rcq anz;Strt_f-anz unil$
$230 OUTPUT @Anz;"SP";Span. fieq_anz;Span_f_anz units
3240 OUTPUT @Anz;"AVTI" ! USING TIME AVIERAGING ON THE 3561A
3250 OUTPUT @Anz;"FLAT ! CHOOSE FLATTOP WINDOWING
3260 OUTPUT @Anz4"SLTA" ! DEFINE kRACE 'A'
3270 OUTPUT @Anz;"VSFS.3MVRM" ! SET VERTICAL SCALE FOR TRACE
3280 ! DISPI.AY ON FRONT PANEL OF 3561A
3290 OUTPUT @Anz;"VSLI" I LINEAR VERTICAL SCALE
3300 OUTPUT @Anz;"MAG" ! CHOOSE MAGNITUDE DISPLAYED
3310 OUTPUT @Anz;'SLTB' I DEFINE TRACE 'B'
3320 OUTPUT @Anz;"TIRE" 'REAL TIME DISPLAY
3330 OUTPUT @An7;"TBNR1REC' ONE TIME RECORD AT A TIME IN THE BUFFER
3340 OUTPUT @Anz;TRGR"
3350 OUTPUT @Anz;"EW'"
3360 OUTPUT @Anz;"SLOPNEG" E EXTERNAL TRIGGER; TRIGGERED BY NEGATIVE SLOPE
3370 !
3380 PRiNT "WAITING WHILE ANALYZER IS BFING INITIALIZED"
3390 WAIT 5
3400!
3410 1 DO ONE AUTORANGE ON THE 3561A SIGNAL ANALYZER:
3420 OUTPUT @Siggen;"SC" I START CONTINUOUS RUN ON 3325A
3430 WAIT .5
3440 OUTPUT @Anz;"SARG" I DO ONE AUTORANGE ONLY
3450 PRINT""
3460 PRINT "WAITING FOR SIGNAL ANALYZER TO AUTORANGE"
3470 PRINT""
3480!
3490 WAIT 8 1 WAIT FOR COMPLETION OF AUTORANGING
3500 OUTPUT @Anz;"SCAP" I INTO TIME CAPTURE MODE
3510 WAIT Sweep_time +.5
3520 OUTPUT @'Anz;"DTBB" ! DUMPING TIME BUFFER IN BINARY TO PC
3530 TRANSFER @Anz TO @Hcadcr;COUNT 350,WAIT
3540 CONTROL @Header,5;35 I GET RANGE PROM HEADER
3550 ENTER @Headcr;Range
3560 Factor =4/3*10^((Range +4.812)/20)/32768 I FOR CONVERTING TIME BUFFER DATA
3570 1 FROM BINARY TO VOLTAGE
3580
3590 OUT'NUT @Anz;"ACAL OFF- ! DISABLES AUTOCALIBRATION OF 3561A
3600 OU i'PUT @Anz;"ARNG OFF" ! DISABLES AUTORANGING OF 3561A
3610 OUTPUT @Siggen;"SS" I RESETS 3325A SIG GEN
3620 RETURN
3630 !
3640 H-low many: I HOW MANY SWEEPS TO PERFORM PER CYCLE
3650 AND HOW LONG BETIWEEN CYCLES
3660!
?'70 PRINT ""
3680 PRINT""
3690 INPUT "HOW MANY SWEEPS PER CYCLE ...

...DURING REGULAR DATA COLLECTION (1 TO 20) ?",Sweeps
3700 IF Sweeps>20 OR Sweeps< I THEN How-many
3710



3720 Hownmany_back: ! HOW MANY SWEEPS DURING BKGD MEASUREMENT
3730 INPUT "HOW MANY SWEEPS PER CYCLE DURING ...

...BACKGROUND MEASUREMENT (1 TO 30) ?",Swccp_back
3740 IF Sweep back>30 OR Sweepback<l THEN Howmany back
3750 !
3760 How long:
3770 INPUT "HOW LONG (IN SECONDS) BETWEEN CYCLES ?",Waittimc
3780 IF Waittime<10 THEN
3790 PRINT "TOO SHORT AN INTERVAL, CHOOSE A TIME OF AT LEAST 10 SEC"
3800 GOTO How long
3810 END IF
3820 !
3830 PRINT""
38 RETURN
3850 !
3860 hlidex:
3870 INPUT "THE DATA FILES WILL BE NUMBERED, STARTING WITH NUMBER --",Istart)
3880 PRINT""
3890 RETURN
3900 !
3910 Trigger-system: ! BEGIN THE DATA COLLECTION
3920 !
3930 OUTPUT @Anz;"SCAP" ! ANALYZER IN START CAPTURE MODE
3944) WAIT Sweep_time+.5
3950 OUTPUT @Siggcn;"SSSS" I THE FIRST "SS" RESETS THE SIGNAL GEN
3960 ! AND THE SECOND STARTS THE SWEEP
3970 WAIT Sweep-time ! WAIT FOR SWEEP TO FINISH BEFORE
3980 1 TRYING TO READ TIME BUFFER
3990 RETURN
4000 !
4010 Read data: i GET BUFFERED DATA FROM THE ANALYZER
4020!
4030 IF N=0 THEN Limit=Sweepback I N=0 MEANS BKGD BEING MEASURED
404W IF N=1I THEN Limit=Sweeps I N=1 MEANS REGULAR DATA BEING COLLECTED?
4050 PRINT" ON SWEEP ";Ii;" OF";Limit
40o& PRINT""
4070 !
4080 OUTPUT @Anz;"DTBB"
4090 New read: I"
4100 CONTROL @Header,3;1
4110 CONTROL @Time buif,3;1
4120 TRANSFER @Anz-TO @Header;COUNT 350,WAIT
4130 TRANSFER @Anz TO @Time_buffCOUNT 2048,WAIT
4140 MAT Rawdata(li,*)= Rawrawdata
4150 RETURN
4160
4170
4180 Convert and sum: ! GET AN AVERAGE FOR THE DATA OVER SEVERAL SWEEPS
4190 !
4200 PRINT""
4210 IF NaO THEN I N=0 MEANS BKGD BEING MEASURED
4220 Limit =Sweepback
4250 PRINT "NOW AVERAGING OVER THE ";Limit;" SWEEPS"
4240 END IF



4250 IF N=1 THEN ! N=1 MEANS REGULAR DATA BEING COLLECTED
4260 Limit =Swccps
4270 PRINT "NOW AVERAGING OVER THE ";Limit;" SWEEPS AND SUBTRACTING BACKGROUND"
4280 END IF
4290 !
4300 FOR J=1 TO 512
4310 Amplitude(J) = 0
4320 FOR li =1 TO Limit
4330 ! CONVERT TO AMPLITUDE AND DO TIME AVERAGING SIMULTANEOUSLY
430 Amplitudc(J) = SORT(Rawdata(Ii,2*J-1)"2- 4Rawdata(li,2*J)"2) +Amplitude(J)

4350 NEXT li
4360 NEXT J
43-70 MAT Amplitude= Amplitude* (Factor/Limit))
4380 RETURN
4390
4400!
4410 Store-data: ! STORE AMPLITUDE SPECTRUM AFTER SUBTRAC'HNG BACKGROUND
4420 !
4430 CREATE BDAT FileS,512,8
4440 ASSIGN @Path TO File$
4450 OUTPUT @)Path;Amplitudc(*)
4460 !
4470 RETURN
4480 !
4490 Integrate: ! FIND AREA UNDER VOLTAGE AMPLITUDE SPECTRUM;
4500 SEPARATE POSITIVE AND NEGATIVE CONTRIBUTIONS TO TOTAL AREA
4510 Area=0
4520 rosarea=0
4530 Negarea=0
4540 FOR Irt-=1 TO 512
4550 Area= (Amplitude(Int) +Amplitude(Int + 1)) +Area
4560 IF Amplitude([nt) > = 0 AND Amplitude(Int + 1) > = 0 THEN
4570 Posarca = Posarca + Amplitudc(I nt) + Amplitode(Int + 1)
4580 ELSE
4590 IF Amplitude(int) < = 0 AND Amplitude(Int + 1) < = 0 THEN
4600 Negarca = Negarea + Amplitude(Int) +Aniplitude(Int +- 1)
4610 ELSE
4620 IF Amplitudc(Int)>0 AND Amplitude(lnt+ 1)<0 THEN
4630 Posarea =Amplitude(Int)*Amplitude(lnt)/(Amplitude(Int)-Amplitude(int +1)) + Posarca
4640 Negarca = Amplitude(Int + 1)*( 1 + Amplitude(Int)/(Amplitude(Int + 1)-Amplitude(Int))) + Negarca
4650 ELSE
4660 IF Amplitudc(Int)<0 AND Amplitude(Int+1)>0 THEN
4670 Posarca =Amplitudc(Int +1)*(1 + Amplitude(] nt)/(Amplltudie([nt + 1)-Amplitude(Int))) + Posarca
4690 Negarea =Amplitude(Int) *Amplitude(Int)/(Amplitude(Int)-Amplitude(Int + 1)) + Negarea
4690 END IF
4700 END IF
4710 END IF
4720 END IF
4730 NEXT lnt
4740 !
4750 IF Strtsweepunit$ ="HZ" THEN Startf= Sweep start I/1.E + 6
4760 IF Strtsweep_unitS ="KHJ THEN Startf= Sweepstart f/i.E + 3
4770 IF Strt sweep_ uit$="MH" THEN Startf=Sweep_siart_f
4780 IF Stopsweepunit$="HZ' THEN Stopf= Sweep stop f/1.E+6
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4")~ Negdrca crca.Ssp-tu) I I - h, 51-1 (Ex%' NI "~ IT.) in0 %%

4loU RLIUR.N

4&,.4 FI,,4 4 ~tt [)iS1LAkI IIII. DATA ONA% U

441W CLUL't YCRULN 'ALJ"li-. DI',.PLA'I Rk1A1%) AN £IEAIM73 CS DLA'n t CALLIPL~ I.
4910 (CCII

4'~).' 1 1S

494J D L)TILRM%IiN ItkVk IAIk !UI: N A.M'N ý.~JWLD L\TL.%Ž'

49-*] REIAI hm~1
+kjoA MAI Ab%.irn - AB.ŽtAmpbaudwk, C*)",-%LR A~pIblk %'L-kn1X 1%) %ULtiNtIt UtL-

4~~7U M~t~.i= MA\~Ab~..npt p~ * [)TtR.kkt%! %I-A(\IT1.I) OfL~.S ~~AT
4QWj ~rsItPI~~~. -4;* 1) ' MAX %ALI'[- ON N AXNk. I'LOI Is SiIkdROW1S-
49,1

5XkLO IFY N 0 TI IEN '-AIlLI TtIL PLOT AND IriL A\[-\
:5010 MIOV, 21,9
50a)2) lABE'l. "BACK(JROL NI) (a *&TIML~iT1IlLi')ATE).& '& DA`1'11 INI[I)A1 L)
'503o ELSE !N - 1; SKINAL. BELINC MLASL'RLD
5040 MOVE 50,95
5051) ILABEL "SIGNAL (a "&TIMES(T IMEDATE)
5,,X0 E-N D
5070!
50)80 MCVE 9,75
5091) Label$ = "Voltage'"
-3100 FOR 1=1 TO7
5110 LABEL LabelS [,1]
5120 NEXT 1
5130!
5140 MOVE 13,80
5130 Label$ ="Amplitude"
5160 FOR 1=1 TO9
5170 LABEL LabcIS1l,IJ
5180 NEXT 1
5190!
5200 MOVE 41,17
5210 LABEL "Forcing Frequency (MHz)"
5220 MOVE 18,89
5230 L4BET-L VALS(Ylim)&- uV"
5240 MOVE 22,58
5250 LAL1EL "0uW
5260 MOVE 15,29
5270 LABEL VAU$(-Yl~m)&" WV
52801 MOVE 36,2.3
5290!
5300 IF Strt sweep unitS ="HZ" TIHEN LABEL VALS(Swecp-start -f/1.E+6)
5310 IF Strt_sweep unitS ="I(I-" THEN LABEL VALS(Sweep-startlf/1.EA3)
5320 IF Strt-sweep unitS ="MI I" THEN LABEL VALS(Sweep~start_)



5330 MOVE 106,23
5340 IF Stopsweepunit$="HZ" THEN LA.XBEL VAL$(Swccp_stopf/1.E+6)
5350 IF Stop-sweepunit$="KI1" TlEN LABEL VALS(Swccp_stopf/1.X+3)
5360 IF Stop_ •wccl,_unit$="MH" THEN LABEl. VAL$(Swecpstop_1)
5370 !
5380 MOVE 6,9
53(X0 LABEL USING "17A,S6D.2D,15A";"POSITIVE AREA IS ",Posarca," microvolls-MI-z"
5-0) MOVE 6,4
z410 LABEL USING '17A,S6D.2D,15A';"NEGATIVE AREA IS ,Negarea," mictovolhs-MHz"
5420
54.10 VIEWPORT 38,1,30,90 ! POSITION THE GRAPH ON THE CRT
5440 WINDOW 0,Swccp_timc,(-Ylim/1.E+6),(Ylim/1.E46) ! SIZE THE AXES
54-0 AXES SwLcptimc/10,(Ylimi/l.E+6)/1,0,0 ! ADD TICK MARKS

5470 PEN 1
54&) Dx = (Sweep timnc/(Rcc_sizc))/512
54f10 X=0
55.WJ MOV. 0,Amnplitudc(l)
5510 FOR !=I TO512
5520 DRAW X.Amplitudc(l) ! P'A)T TEE DATA
553o X-X4DDX
55•U) NEXT 1
5550 R:TURN
55W !
5570 Read trace: ! READ THE MAGNITUDE TRACE FROM THE 3561A,
5.S0 ! MAGNITUDE RAS BEEN TIME-AVERAGED ON THE 3561A.
5590 OtiTPLrI @((Anz;"SLTA" ! ACTIVATE TRACE A, THE IAGNITUDE TRACE
5N,, ,_TI , , -, DUMP ACTIVE TRACE AND HFADER DATA
51lt) TRANSFER @Anz TO @Tag;END,WAIT ! TRANSFER TO BUFFER ON 17C
5620 CONTROL @Tag,5;5 ! POSITION THE BUFFER POINT READER TO BYTE 5
5630 ENTER @Tag;Raw trace(*) ! READ THE DATA FROM THE TRACE INTO AN ARRAY
561u)!
5650 RPI'URN

5670 Scale trace: ! CONVERT BINARY DATA TO VOLTAGE
568& FOP It=I TO 40)5690 Trace data(It) 1O(atrc
50 T 10.(Rawrac(t)*.005/20.) ! CONVERTS TO VOLTAGE
5700 NEXT It

5710 RETURN
5720 !
57.3) Plot trace: ! DISPLAY THE TRACE FROM THE 3561A ON SCREEN
5740 !
5750 CLEAR SCREEN ! ALPHA DISPLAY RETAINED AS GRAPHICS DISPLAY IS CALLED UP
5760 GCLEAR
5770 GINIT
5780
5790 Maxi=MAX(Trace data(*))
5800 Ymax= 100*(INT(Maxi*i.E- +4) + 1) ! MAX VALUE OF Y; PLOTIING IN MICROVOLTS
5810 ! DETERMINE HOW FAR THE Y-AXIS S:IOULD .,XTEND:
5820 Ylim= Ymax
5830
58,40 IF N =0 THEN ! LABEL THE PLOT AND THE AXES
5850 MOVE 47,95
5860 LABEL "BACKGROUND TRACE'



58A0 ELSE ! N = 1; SIGNAL BEING MEASURED
88M MOVE 50,94
8W) IABEL'SIGNAL TRACE"
5900 END IF
5910

592m MOVE 9,75
5930 LabelS ="Voltage"
5940 FOR I=1TO 7
5950 LABEL Labc$SIIi
5900 NEXT I
5970 !
5980 MOVE 13,80
5990 LabelS ="Amplitude"

6000 FOR I=1 TO 9
6010 LABEL Labcl$[I,I]
6020 NEXT 1
0130 !
6040 MOVE 42,17
6050 LABEL "Offset Frequency (kltz)"
6060 MOVE 18,89
6070 LABEL VAL$(Ymnax)&" uV"
6080 MOVE 22,29
6090 LABEL "0 uVW
6100 !
6110 IF Strt f anz unit$="HZ" THEN Startfreqanz=Startfrcqanz/1.E+3
61-'; IF Strt C an? unitS="MHZ" THEN Startfreqanz=Start freq_anz*].E+3
6130 IF Span f anz unit$="HZ" THEN Spaaifrcq~anz=Spanfrcqanzi/.E+3
6140 IF Span f anz unit$="MHZ" THEN Span frcq.anz =Spanfreqanz*l.E+3 3
6150
6160 MOVE 36,23

iiI70 LAlIEL VALS(Syartnfremanz7)
6180 MOVE 106,23
6190 LABEL VAL$(Start frcqanz + Span freq__,xiz)
6200 i
6210 VIEWPORT 38,108,30,90 1 POSITION THE GRAPH ON THE CRT
6220 WINDOW 0,Spanfreq_anz,0,(Ylim/1.E-6) ! SIZE THE AXES
62-30 AXES Spanfrcqanz/1G,(Ylim/1.E+6)/10,0,0 I ADD TICK MARKS
6240 !
6250 PEN 1
6260 Dx= Span fret anz/400
6270 X=0
6280 MOVE 0,Traceda*a(1)
6290 FOR It= 1 TO 401
6300 DRAW XTrace data(It) ! PLOT THE DATA
6310 X=X+Dx
6320 NEXT It
6330 RETURN
6340
6350 END

% d A •.p %f-: :iv .- ,,• -.


