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ABSTRACT

A study has been conducted to determine the capability of the
Boeing 747 to operate on rough runways; specifically, runways that
have been damaged by bombing and repaired rapidly using current Air
Force preocedures. The quality of the repairs has been determined
that will allow the aircraft to operate from the repaired surface
without keing subjected to loads on the landing gears that exceed
design limit load.

Tr.is study indicates that the B-747 is capable of taking off on
a repaired runway at 836,000 lbs gross weight provided that repairs
in thk: first 500 feet of the takeoff roll are at least class B.
Repairs furcner down the runway only need to be class E. If the
aircraft will traverse two repairs, tables are provided that give
the mirimum spacing between repairs. Consideration is not given to
traversing more than two repairs.

Analysis indicates that the ability of the nose gear to
withstand loads produced by traversing repair profiles can be
significantly improved by increasing the precharge pressure in the
shock strut. A nose gear precharge of 185 psi will reduce the peak
loads sufficiently to permit a class C repair to be at any position
on the runway, including the first 500 feet. Increasing the
precharge pressure to 272 psi will permit class E repairs to be
located anywhere.

At the maximum landing gross weight of 666000 lbs, none of the
repairs A through E produced loads that exceeded design limit load
during taxi at any speed. The landing touchdown, however, was not
considered in this study. Until such time as an analysis becomes
availakle, it should be considered that no repairs can be located
in the touchdown area.
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1. INTRODUCTION

The US Air Force is concerned with the ability to use runways
in as short a time as possible after they are bomb damaged. The
Air Force Engineering Support Center (AFESC) located at Tyndall AFB
FL. 1is in charge of developing methods for rapidly repairing
runways and taxiways. The project, RAPID RUNWAY REPAIR (RRR),
involves present and future methods for repairing runways and
defining the quality of repairs needed for safe aircraft
operations. The quality which is required is aircraft dependent.
Fighter aircraft, in general, require smoother repairs than
transport or bomber aircraft.

The Aeronautical Systems Division (ASD) and Wright Laboratory
(WL) are assisting AFESC by providing validated computer programs
which simulate aircraft operations on repaired, bomb damaged
runwvays. The conrputer programs for particular aircraft are
developed through contrecsts, or in-house efforts at WL. This
project is called HAVE BOUNCE. The program is managed at ASD and
WL is providing technical support. Headquarters USAF has selected
a variety of fighter and transport aircraft to be evaluated.

The approach is to develop a mathematical wmodel of each
aircraft and simulate the aircraft traversing discrete runway
roughness profiles. The computer programs must have the capability
of predicting lcads at critical locations on the aircraft. WL has
monitored the technical aspects of the contractor’s programs and
performed some simulations in-house usging a WL developed computer
program called TAXI.

Some of the selected aircraft have been tested at the Air Force
Flight Test Center {AFFTC) at Edwards AFB CA. These test have been
compared to the computer simulations which have permitted the
mathematical model to be corrected and validated, thus providing
increased confidence in the accuracy of the simulations. There are
no plans to test the B-747 aircraft, hence only analytical tools
will be available for developing surface roughness criteria for
borb damage repair. The Beeina Company has performed some
simulations of the B-747 taxiing cver discrete repair profiles.
Thase were compared to simulations produced at the WL and are
presented in this report. The comparison has provided a level of
confidence in the Boeing and WL simulations. It is not known if
AFESC will utilize the program developed at WL to develop final
repair roughness criteria or contract for a more detailed computer
program to be developed.




2. ANALYEIS
2.1 General Arrangement Of B-747

The 747 family of aircraft consists of seven models, six of
which are included in the Civil Reserve Air Force (CRAF). The
B-747-200F is certified to a maximum gross weight of 836000 lbs and
is the most critical aircraft for rough runway operations. The
maximum landing weight of this aircraft is 66600G lbs. This report
is directed to determining the capabilities of these two
configurations of the B-747-200F. Figure 1 presents two views of
the B-747 aircraft.

The 1landing gear system consists of five single-stage,
vertical-post shock struts with oleo-pneumatic shock absorbing
characteristics. The nose gear, shown in Figure 2, is a single
axle, dual wheel arrangement. The main landing gear systems as
shown in Figures 3 and 4 respectively. They have two posts on the
wings and two on the bedy. Each main gear post has a bogie
arrangement with twin tandem axles. The landing gear footprint is
shown in Figqure 5.

2.2 Repair Profiles

The procedure for repairing bomb damage to runways consists of
filling the crater to within 24 inches of the surface with material
discharged from the crater and compacting with heavy equipment.
The remaining 24 inches is filled with crushed limestone and
compacted with vibratory compactors. The surface is filled,
compacted and graded to a specified degree of flatness. The entire
area of the damaqge is then covered with articulated aluminum planks
that are 1 1/2 inches thick, 24 inches wide and 6 or 12 feet
long. Planks of triangular cross section 2 foot wide are used as
ranps to get get the aircra®t on and off of the mat, The planks
are joined along the long side to form an assenbly which is
nominally 54 by 78 feet. The AM~-2 mat, as it is called, can be
assembled to the side of the crater while the crater 1s being
filled and compacted. The mat can then be pulled over the
compacted crater by a tractor to complete the repair.

In order to investigate a realistic variety c¢f repairs, 4
repair profiles have been selected. They are referred to as SINGLE
BUMP, DOUBLE BUMP, SINGLE MAT and SEVERE BUMP WITH
SETTLING. These configurations are presented in Figure 6.

2.3 Computer Progran
A digital computer program developed in-house at the Flight
Dynamics Directorate was used in the analysis. Computer progran

TAXI was used to simulate the B-747 traversing discrete profiles
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and produced nose, wing and body gear loads as a function of time.
Options are available within the program to cycle through a number
of time history solutions recording only the maximum value of each
solution. Use of this option provided aircraft response in the
velocity domain.

For the condition of free roll, thrust is equal to the sum of
aerodynamic drag and roiling fricticn on the runway. This is
slightly conservative, because there would normally be some thrust
on the engine and engine thrust creates a nose up pitching moment.
Therefore, to neglect it increases the loads on the nose gear. For
the condition of braking with reverse thrust, the moment due to
forward thrust is zero, but the contribution due to reverse thrust
is considered. This is consistant with the real situation.

The aircraft structure was modeled with 18 flexible modes of
vibration, together with rigid body pitch and vertical translation.
Structural damping was assumed to be 3 percent of critical damping.
Lift and moment aerodynamic loads were modeled as a function of the
angle of attack and aerodynamic drag was modeled using a 0.055 drag
coefficient. Damping was added to rigid body pitch and vertical
translation modes to obtain realistic amplitude decay rates over
time periods of 5 to 10 seconds. The rigid body damping simulates
aerodynamic and tire damping that were not explicitly modeled.

The landing gear shock struts were modeled to include bearing
friction, hydraulic forces due to discharge of oil through an
orifice and pneumatic forces trom a nitrogen charged strut.
Bearing friction was modeled as a force opposing the direction of
stroke of the strut. The magnitude of the force was equal to the
smaller of 0.1 times the bearing normal force, or the unbalance
force on the strut relative to static equilibrium. Modeling in
this way allows the strut to stop momentarily when it reverses
direction and not begin moving again until the unbalance force
exceeds a static friction of 0.2 times the normal bearing force.
The pneumatic force within the cylinder was modeled as a reversible
isothermal compression. The hydraulic force was medeled using a
hvdraulic discharge coefficient in conjunction with a variable
orifice area. The orifize area is controlled by the position of
the shork strut by means of a contoured metering pen that passes
through the center of the orifice.

The tires were modeled using parabolic springs and drag
components due to rolling friction that were assumed to act at the
axie. The drag components were 0.05 times the normal force in the
tire. When braking conditions were simulated, the magnitude of the
drag force was assumed to have an additional component for the wing
and body gears equal te 0.45 timcs the normal strut force. T h e
reverse thrust resulting from all four engines was assumed to be a
vector located 70.8 inches below the center of gravity of the
aircraft. This results in a nose down pitching moment which
creates additional load on the nose gear. The magnitude of the
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reverse thrust is a function of the aircraft forward velocity.
Tabular data was obtained from the Boeing Coupany and two parabolic
curves were fitted to the data to produce the rererse thrust versus
velocity presented in Figure 7a.

Specific items that were not modeled in the computer program
TAXI and for which no allowance has bean made include the
following:

Hydraulic damper which arrests the pitch of the articulating
trucks on each of {he main and wing gears

The effect of wing 1ift spoilers
The action of the wheel anti-skid mechanisms

The effects of cylinder expansion ancé oil compressibility

2.4 Simulations

The heavy gross weight of 83€000 lbs was analyzed for free roll
over various profiles. This weight is larger than the maximum
landing weight. Therefore, the aircraft should not be subjected to
significant braking loads at this gross weight except under the
emergency condition of an aborted take-off. Since use of the CRAF
aircraft over repaired bomb damaged runways is an unlikely event,
it is not reasonable to consider this event to occur in conjunction
with another unlikely event, an aborted takeoff. Therefore,;
braking at 836000 lbs gross weight was not analyzed.

‘The maximum landing weight of 666000 lbs was analyzed for those
conditions likely to occur on a normal rollout after landing. The
application of brakes pronduces a nose down pitching moment and
tends to increase nose gear loads. Reverse thrust also tends to
increase nose gear loads. Although the application of heavy
braking and reverse thrust is not normal operation, it is
reasonably possible that they both may be reguired on a short
runway. Therefore, this condition was analyzed.

The condition of an aircraft landing on a repair profile was
not analyzed because it is not within the capabilities of the
computer pregram TAXI.

In this investigation, there were three types of analysis
performed. Each involved taxi over all 4 repair profiles at
constant speed. The analyses are:

FREE ROLL: Rolling friction equal to 0.05 times aircraift
weight.




BRAKED ROLL: Rolling frictien on the nose gear and braking
friction on each of the main gears equal to 0.50 times the
normal gear force.

BRAKING WITH REVERSE THRUST: Reverse thrust as a function of

aircraft velocity acting along the engine axis combined with
braking the same as in the braked roll.

The results of these analyses are presented in two forms:

velocxty plots and time histories. The velocity plots present
maximum parameter response as a functicn of aircraft velocity over
the respective repair profile. These plots are useful in

identifying the critical velocities for each response paraueter.
The time histories display how the parameter values vary with tiune
during a traverse of a particular profile at constant velocity.

Velocity plots are presented for each analysis over each of the
repair profiles. Time history plots are presented for the critical
velocity identified from the velocity analysis. The parameters
that were monitored include nose gezar load, wing gear load and body
gear load.

2.5 Basis For Interpreting Results

The Design Limit Load (DLL) for each gear in the vertical
direction was considered to be the maximum allowable load for safe
operation. It is probable that the strength of each gear exceeds
the DLL, but this is not known. In the future, if there is a need
to establish a higher capability, then additional analysis and test
can be done. Such analysis and test, however, are beyond the scope
of this effort. The DLL for the gears are given in Table 1.

TABLE 1

B-747 DESIGN LIMIT LOAD

Nose Gear Vertical Load 196700 1lbs
Wing Gear Vertical Load 378000 lbs
Body Gear Vertical Load 436000 lbs

2.6 Acceleration For Takeoff

The recommended class of repairs that may be permitted on the
Minimum Operating Strlp (MOS) takes into consideration the velocity
that the aireraft is likely to have at various positions on the
strip during the takeoff roll. Certain repair profiles have
critical velocities and it is necessary to restrict use of that
gquality of repair in an area thut the aircrarft is likely to
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treverse at the critical velecity. Figure 7b gives the aircraft
velocity as a function of position down the strip form the start of
the takeoff roll.

2.7 Aralysis By The Boeing Company

The Boeing Company of Seattle, Washingten, performed an
analysis tc identify critical components of the aircraft. They
igdentified the nose gear, wing and fuselage as being potentially
critical. These results are presented in Table 2 in terms of
design limit load. In considering the nose gear, wing and
fuselage, the margin of safety for the nose gear was the lowest of
vhe chree components, It is presumed that if it is safe to taxi
over a partlcular profile from a nose gear load standpoint, then it
is safe from a wing and body load standpoint. This aosumptlon
was necessary because the computer program TAXI does not have the
provision to monitor win~ and body loads.

TABLE 2

“ESULTS QF BCZING COMPANY ANALYSIS
Taxi of B-747 ove. Single Pump at 836000 lbs

Max Wing loads 78% DLL
Max Fuseclage Loads 60% DLL
Max Inboard Nacetle Loads 238% DLL
Max Outhcard Nacelle Loads 20% DLL
Max Nose Gear Load 83% DLL
Max Wing Gear L. ad 60% DLL
Max Rody Gear Load 49% DLL

Results from the conputer program TAXI were compared with
results from the Boeing Company analysis. The maximum vertical
gear loads as a function of taxi velccity are compared in Figure 8
for taxi over a double bump at a ~ross weight oi 836000 1lbs.
Although none of the gear loads exceeded design limit loads, there
are differences in the two analyses. For the nose gear, th:
analyses differ by 3 percent (Boeing lower), wing gear by 2 percent
(Boeing lower) and body gear by 2 percent (Boeing higher). Figwes
9, 10 and 11 present a comparison of the time histories of the
nose, wing and body year loads respectively for taxi cver a dounle
bump at 23 knots at a gross weight of 836000 1ibs. A% this
velocity, the analysis differ by 6 percent for the nose year
{Boeing lower), wing gear by 1 percent (Boeing higuer) and body
gear by 1 percent (Boeing higher). These compirisons indicate a
reasonable level of confidence in the two analyses.

2.8 Landing Analysis By The Boeing Company
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Tha Boeing Company performed a landing analysis where discrete
profiles were encountered during touchdown at various sink speeds.
For a B-747 at 666000 1lbs gross weight, landing with the main gears
on a double bump at the most critical time during the touchdown, it
was determined that design limit loads would be exceeded by the
vertical bending loads on the fuselage at body balance station
(BBS) 13900, for a sink rate of 7.2 feet per second.

Although a sink rate of 7.2 feet per second gives reasonable
latitude, caution is advised. The presence of upheavel can add to
the loads. Figure 12 illustrates that a 1 inch upheavel over a
distance of 10 feet produces a slope that is equivalent to a sink
rate of 2 feet per second when encountered at a forward velocity of
240 feet per second.

2,9 Load Stroke Curve

The pneumatic force in each strut is a function of the
precharge pressure in the strut, the volume of the strut when it is
fully extended and the area of the pneumatic piston in the strut.
Use of parameter values taken from engineering drawings of the
shock struts produced values that were slightly different for those
used in the analysis by the Boeing Company. To eliminate these
differences as much as possible, small changes in the precharge
pressure, strut volume and piston area were made so as to achieve
the best possible match to the pneumatic load stroke curve used in
the Boeing analysis. Figures 13, 14 and 15 present comparisons of
the load stroke curves used in the two analyses for the nose, wing
and body gears respectively.

2.10 Eeffect Of Structural Flexibility and Aerodynamic Loads

As a check on the reasonableness of the TAXI analysis, the
effects of aircraft flexibility and aerodynamic loads were
considered. A time history analysis was performed in which the
flexible modes of vibration were removed from the analysis.
Another analysis was performed in which the aerodynamic pressure
was set equal to zero so that where would be no aerodynamic forces.
Figures 16, 17 and 18 present these two analyses together with a
rational analysis for taxi over a single bump at 60 knots with a
gross weight of 836000 lbs, for the nose, wing and body gears
respectively. The effects appear to be reasonable.

2.11 Rigid Body Damping

Damping was added to the rigid body pitch and vertical
translation modes in order to account for the aerodvnamic and tire
damping that is not modeled explicitly in the computer program
TAXI. Damping added to the rigid body modes has little effect on
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the initial encounter of a repair profile, but has a significant
effect on the loads from a second profile located a considerable
distance from the first and encountered when the oscillation is at
a critical phase. The objective was to add a reasonable amount of
damping so as not to severely penalize the B-747’s capability to
encounter multiple repair profiles, yet to have confidence that the
taxi analysis 1is under damped and thus produces higher
(conservative) loads. Comparison of the results of the Boeing
analysis and TAXI for 25 knot over a double bump indicate that they
have about the same damping upon initial bump encounter. The
Boeing analysis displayed a damping ratio of about =0.039 and TAXI
displayed a damping ratio of about -0.034 for a period of time
immediately after leaving the repair profile. It is interesting to
note that data available from the C-130 test indicated a damping
ratio of about -0.08 after mat encounter. For multiple repair
encounter, however, the damping at lower amplitudes is of
considerable importance. A Boeing computer run made to determine
initial conditions, indicated that the oscillatory component of
nose gear load decayed from 15000 1lbs to 2000 lbs in 5 cycles.
TAXI analysis indicated a decay from 15000 lbs to 2000 lbs in 7
cycles. Hence, for the same low amplitude, the Boeing analysis
indicated a damping ratio of -0.06 and TAXI indicated a damping
ratio of -0.04. This provides reasonable confidence that excessive
damping has not been added to the TAXI analysis and that the
results are expected to be conservative. The effect of rigid body
damping on nose, wing and body gear loads is shown in Figures 19,
20 and 21 respectively.




3. RESULTS
3.1 Velocity Analysis

Table 3 presents a summary of results from 12 velocity analyses
with respect to nose gear vertical 1load, the most critical
structure for taxi over repair profiles. The first 12 figures
following Table 3 give nose, wing and body gear loads as a function
of velocity for the analyses summarized in Table 3. Two gross
weights were analyzed and 4 repair profiles. For 836000 lbs gross
weight, only free roll was analyzed. For 666000 lbs gross weight,
only braking was analyzed, however, it was considered both with and
without thrust reversal. For those conditions where the nose gear
load exceeded design limit load, the condition was reanalyzed using
a nose gear strut precharge pressure adequate to reduce the loads
to below design limit load.

3.2 Time History Analysis

Table 3 also identifies the particular velocity which produced
the maximum nose gear load, referred to as the critical velocity.
For the 836000 lbs gross weight conditions, time histories are
presented for taxi over each repair profile at the critical
velocity, except for conditions where the nose gear precharge
pressure was increased. For the 666000 lbs gross weight
conditions, time histories are presented for taxi over each repair
profile at the critical velocities for combined braking and thrust
reversal, which were determined to be more critical than without
thrust reversal.

3.3 High Pressure Strut Analysis

For taxi at 836000 lbs, class E repairs produced nose gear
loads that exceed design limit load. For this condition, a variety
of computer runs were made in which the nocse gear precharge
pressure was increased. The results of these analyses are
presented in Figure 52, which indicates that a precharge pressure
of 280 psi would permit the aircraft to taxi over class E repairs
at any speed.

3.4 One-Ninus-Cosgsine Profile Analysis

Although a One-Minus-Cosine profile is not considered a likely
st~-e for a bomb damage repair profile, this shape was analyzed
br.cause it is a smooth shape that is often used in analytical
comparisons. Figure 53 presents the results of a velocity analysis
for an 836000 lb aircraft traversing a 3 inch high One-Minus-Cosine
shaped profile with a wave length of 60 feet. Nose, wing and body
gear vertical loads are presented in figure 54, 55 and 56

9




respectively, for traverse of the same profile at 60 knots, which
is very near the critical velocity for the nose gear load.

3.5 Aircraft Traversing Multiple Repair Profiles

An aircraft traversing more than one repair profile may
exr ‘ence increased load if the second profile is encountered
while the aircraft is at an unfavorable phase of the rigid body
oscillation that resulted from the first profile. An analysis was
performed to determine the minimum spacing between repair profiles
if two are encountered. The spacing allows the rigid body
oscillations to be attenuated so that the gear loads from the
second profile do not exceede design limit. The results are
summarized in Table 4. Figures 57 through 72 present velocity
analysis plots of all possible pairs of the four repair profiles
that were investigated. The case of encountering more than 2
profiles has so many possible combinations and spacings that it was
not addressed in this analysis.

10




4. CONCLUSION

1 Aircraft velocity can be determined as a function of the
distance traveled during the takeoff roll from Figure 7b for the
B-747 at 836000 1lbs gross weight. This chart can be used to
determine the probable speed that an aircraft will encounter a
repair profile, if the position of the repair profile is known
relative to the start of the takeoff roll.

2. The maximum nose, wing and body gear loads can be determined
for the B-747 traversing class A, B, C or E repair profiles at any
speed up to takeoff speed for gross weights of 836000 and 666000
from velocity analysis plots provided in this report.

3. The minimum spacing between repair profiles is presented for
pairs of class A, B, C and E repair profiles such that design limit
load will not be exceeded for 836000 lbs gross weight.

4. The computer program TAXI, which was utilized in producing the
results for this report, produced results that were similar to
results produced by a computer program that was developed at the
Boeing Company.

a. For the nose gear, the maximum values from a time history
analyses differ by 3 percent (Boeing lower), wing gear by 2
percent (Boeing lower) and the body gear by 2 percent (Boeing
higher).

b. Over a double bump at 25 knots at a gross weight of 836000
lbs, the maximum value from the time history analysis for the
nose gear differed by 6 percent (Boeing lower), wing gear by
1 percent (Boeing higher) and body gear by 1 percent (Boeing
higher).

c. There was a very close correlation between the Boeing
Company and TAXI analyses on the stroke curves.

i1




S. RECOMMENDATIONS

1. It appears that the B-747 has significant capability to
negotiate rough runways. If it is considered likely that it will
be used in this manner, then it is recommended that a flight test
program be initiated to validate or refine the roughness criteria
set forth in this document.

2. Following validation of the computer model, it is recommended
that a more extensive analysis be conducted to define the
capability to operate over multiple repair profiles.

3. If enhancement of the B-747’s rough runway capability is

desirable, the pratical aspects of the high pressure nose gear
strut should be investigated.
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Figure 1 External Dimensions of B747
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Table 3

CRITICAL TAXI CONDITIONS
FOR SINGLE BUMP ENCOUNTER

CLASS MAX MAX CRITICL TIME OF NG GROSS BRAKES REVERSE
REPAIR NOSE NOSE VELOCITY CRITICAL PRE- WEIGHT MU=0.4 THRUST
LOAD LOAD NG LOAD CHARG 80000
LBS MAX
LBS $DLL FPS SEC PSI LBS YES/NO YES/NO
A 124200 63 113 2.97 150 836000 NO NO
B 158800 81 114 1.02 150 836000 NO NO
C 179700 91 41 4.42 150 836000 NO NO
C 147900 75 117 2.99 150 836000 NO NO
E 201100 102 39 4.62 150 836000 NO NO
E 164400 83 105 1.54 150 836000 NO NO
A 122500 62 47 3.90 150 666000 YES NO
B 158500 81 146 1.48 150 666000 YES NO
c 166100 84 42 4.29 150 666000 YES NO
E 187200 95 41 4.68 150 666000 YES NO
A 139900 71 49 3.69 150 666000 YES YES
B 163300 83 121 1.33 150 666000 YES YES
C 174900 89 43 1.50 150 666000 YES YES
E 196200 98.7 47 3.89 150 666000 YES YES
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Table 4

MINIMUM SPACING IN FEET FOR
TRAVERSING TWO REPAIR PROFILES

FIRST PROFILE (TYPE)

SECOND
PROFILE A B C
(TYPE)
A 0 0 0
B 0 400 200
c 0 400 200
*
E 400 400 500

*
E profile must not be traversed at speeds
between 20 and 40 knots.
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