
UNCLASSIFIED

AD-A250 128

I T i

The Application of Higher Order Logic to Security

Models.

by

FA. Cant and K. Eastaughffe

IF NLASSF,,,

-11-j



I I I I"

UNCLASSIFIED

DST0OA
Electronics Research

Laboratory

Information Technology
Division

Research Report
ERL-0577-RR

The Application of Higher Order Logic to Security

Models.

by

A. Cant and K. Eastaughife

SUMMARY

This paper describes the application of the proof assistant HOL Higher
Order Logic) to reasoning about security models. Using Rushby's general
framework for security models, we show how the HOL system can prove an f
unwinding theorem for non-interference of processes at different security fL
levels. The method of unwinding is then applied to the Low Water Miark CO M T
Model of security. From this analysis, we draw conclusions about the
strengths and weaknesses of HOL as a reasoning tool.

©9 COMMONWEALTH OF AUSTRALIA 1991 -
NOV 91 COPY NO 89

APPROVED FOR PUBLIC RELEASE

i ' ''

POSTALADDRESS: Director, Electronics Research LaboratoryP Box S5, Salisbury, South Australia, 5108.1',

UNCLASSIFIED

925 521 0015



ERL-0577-RR - -

This work is Copyright. Apart from any fair dealing for the purpose of study, research,
criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility
of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

iI



ERL-0577-RR

CONTENTS
Page No.

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Security M odels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 A General M odel ..... ..... ...... ..... ... .......... 2
2.2 The Low Water Mark Model ............................ 4

3 The HO L System . . .. . .. .... .. . . .. . . . . . . ... .. . .. . .. . . . . . .... . 5
3.1 The HOL Logic ................................ . 5
3.2 Proving Theorems in HOL 6............................6

4 A Theory of Security in HOL ....................................... 7
4.1 Type and Constant Definitions .......................... 7

4.2 An Interactive Proof ................................ 9
5 Proof of Security for the Low Water Mark Model ........................... 13

5.1 Type and Constant Definitions ......................... 14
5.2 Proof of Security for the Low Water Mark Model .............. 17

5.3 Covert Channels . ................................ 22

6 Discussion and Conclusions ........................................... 22
7 Acknowledgments .................................................. 23

Bibliography ......................................................... 24

Appendix A Detailed !IOL Proofs ..................................... 25

LIST OF TABLES
Page No.

Table I Primitive Terms of the HOL Logic ........................ . 5
Table 2 Derived Logical Constructs of HOL ....................... 5
Table 3 HO L Types ... ....... ... ..... ... ... .. ... ........ 6

Aeoaa.t oa For

N.TJS QRW&

3 4C t flat

NE]

f Distrilwtion/

Av~ilabili ti C.6.

Dist special



ERL-0577-RR

j iv



- ?4

ERL-0577-RR

1 Introduction

Formal methods are becoming more and more widely used in computer science and software development.
Specification languages, automatic theorem provers, verification tools and other systems based on formal
mathematical techniques all have a crucial role to play. The need for formal methods is especially acute
in systems which are safety or security-critical. In such cases one failure could be disastrous, leading
to loss of life, damage to the environment, breaches of national security etc. In such cases we wish to
have the assurance that the software will function correctly.

We need to be clear on the terminology. Software can be termed correct only with respect to a formal

detailed specification which describes exactly what the program is required to do. The objective of
program verification is to prove mathematically that every execution of the program will satisfy the
given specifications.

A hierarchical approach to system design is now a well-established technique. Such an approach enables
the detailed formal specifications themselves (which can be complex and subject to logical and other
errors) to be proved correct (verified) against a simpler, more abstract specification. In this case. we
speak of design verification. Again. this specification may itself need to be verified against an even
simpler and yet more abstract specification, until we eventually reach the formal top-level specification.
The specifications reflect different levels of detail in the design.

System specifications are naturally expressed in a mathematical notation, and the process of design
verification uses techniques of mathematical proof: we construct a mathematical model of we system

by formulating a theory based on certain axioms, and proving theorems from these axioms. The
mathematician may be content with - and convinced by - paper and pencil proofs. However.
mathematical models in the safety and security critical world need to be subjected to a greater level
of rigour. In such cases an automatic reasoning tool can help us formulate the theory, manage the proofs
of key results and avoid logical errors, leading to increased assurance of correctness.

This paper is concerned with the application of one such reasoning tool, namely the Higher Order Logic
(HOL) system (developed by Professor Mike Gordon at University of Cambridge [I1) to the area ot
security models.

iIOL was originally suggested as a tool for the verification of hardware [2]. Although most of the
activity in HOL is still in this area, HOL has also been applied to protocol verification (31, mathematical
theories such as groups and integers [41. machine architecture specification (5], and, most recently, to

program verification [6]. Until recently. HOL has not been applied to security policy modelling (7]. We
believe that there will be increased interest in this area once tools for the study of concurrency with
HOL become available [8]).

In order to verify that a system satisfies some notion of security, the system needs to be modelled

mathematically and a mathematical definition of security needs to be formulated. The definition of

security varies depending on the security needs of the users of the system. We have followed the
development of Ruslhby's general framework lor security models [91 which defines security in terms of

non-interference - a system is secure if certain processes do not interfere with certain other processes.
i.e. they do not affect the other processes' output and view of the system.

As an instance of this general theory we shall give a detailed treatment of the Low Water Mark Model
for security. Although not a realistic model of security because of its simplicity, the Low Water Mark

Model has some interesting features. It has been studied by a number of authors [10, 11, 12], as a case

study for a range of automatic verification and theorem proving tools.

The purpose of this paper is not to break new ground in the theory of security models, but rather to

show how effective HOL can be in a new problem domain such as security. We shall see that HOL

can give useful insights into this field. The use of HOL in a new area also helps us to highlight HOL's
strengths and weaknesses, and to see how it should be extended or modified to become more useful in

other application areas.

In the next section we shall give a description of a general framework for security models, based on

[91. This is followed by a brief description of the HOL system. In subsequent sections we show how

HOL can be used to prove Rushby's general unwinding theorem for non-interfence of processes, and

, , , .11 i II •II I I



ERL-0577-RR

consider in detail the case of the Low Water Mark model. The interaction with HOL is described in
some detail, in the hope that readers who have no experience of HOL will be able to appreciate how
a medium-sized proof is tackled.

2 Security Models

In terms of the hierarchical approach referred to in the Introduction. the verification of security require-
ments requires that the top level specification be the assertion that the system is secure with respect to
some definition of security. This definition of security will usually require a description of a general
model of a system. This will involve the identification of the types of the system entities and some
abstract functions whose domains and ranges are in the identified types. These abstract functions are
then used to define security.

The next level of specification, describing a particular instance of the general system, will be more
detailed, including the declaration of particular operations and a description of their effect on the system.
Also. the structure of certain entities may be further decomposed, and the functions which were abstract at
the previous level may be given concrete definitions. It is the verification of this second level specification
against a definition of security on which we have focused.

2.1 A General Model

The security model of a system can be formalized in many ways. There is presently much debate
on what an appropriate mathematical formulation of security should be. Two important concepts
are deducibility security [13] and restrictiveness (14] addressing such issues as non-deterministic
systems and for the latter, under what conditions secure systems remain secure when hooked-
up together. Restrictiveness is currently being modelled in HOL by Levitt and Alves-Foss [7],
who have proved that restrictivenes satisfies hook-up security and shown that a simple distributed
system satisfies restrictiveness. In our work, we have studied security in terms of non-interference,
using the state-based description which has been formulated by Rushby (91, based on the earlier
work of Goguen and Meseguer (15]. A system consists of the following:

* a set S of states, with an initial state called initstate;
* a set P of processesl;
• a set C of commands; and
* a set 0 of outputs.

We also have functions

next: S x P x C - S

out: S x P x C - 0

Here nezt(s. p, c) denotes the state of the system obtained when the process p performs the
command c in state s; while out(s, p, c) denotes the output returned by that command. Elements
of A = P x C will be called actions. We are especially interested in the set A* of action sequences
(here regarded as lists, for convenience). The function next can be extended to the function

nertlist : S x A' - S

by defining

neztlist(s, 0) - s, and
neztlist(s, h :: t) = nezt(neztlist(s, t), h)

where (] denotes the empty list, and h::t denotes the list with head h and tail t. We also define

the functions

do: A - S
result : A x A -0

For dw saik of geuraizy we un pmoc.sm s the active qomra them on sm a usei by usaiby.
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by the equations

do(a) netlist(initstate, a),

result(a, p, c) = out(do(a), p, c)

Thus do(j) yields the state reached after performing the action sequence a. while rfsult((. p. c)
gives the output when process p does command c after action sequence C.

As a result of the outputs of some sequence of actions performed starting from the initial state
of the system, a process will have a view of each of the states that have been reached. Formally.
we have a function

view: P x S -

where is some (as yet unspecified) set of private states. At the top level of specification it is
possible to give a formal definition of security without defining what states, outputs and views
look like or how a state is changed by an ac:ion.

A process p, is said to be non-interfering with another process P2 if the results seen by the process
P2 after any sequence of actions is the same regardless of whether process P1 performed some ot
the actions or not. Formally:

rI ilt(s ,.._. c) = I(.% tt(LI//l.! .,,c) Vav E .4 . ( E C

where a /p denotes the sublist of t frrmed by deleting all actions consisting of commands
performed by the process p.

A definition of security can be formulated by firstly declaring some relation R on processes (called
a securib, policy by Rushby), where R (pI, P2) is interpreted to mean that information is allowed
to flow from process P2 to process pl. We shall say that the system is secure with respect to a
policy R if P2 is non-interfering with P, whenever R (pI 'P2) is not true. In other words, if no
information is allowed to flow from pz to pi, then p, should ne unaffected by whatever P2 does.

At this level of detail it is not possible to prove security with respect to non-interference because
the concept of a view has not been formally defined. However, it is possible to prove certain
theorems, including an unwinding theorem which states that if a given definition of the view of I
a process satisfies certain conditions then the system is secure. These conditions are intended to
be simpler to prove and thus, once the system is described in more detail at the second level
of specification, only these conditions need to be proved rather than proving security from first
principles.

Before we give the formal statement of the unwinding theorem, we make the following detiniton.
We say that the system is internally consistent if

view(p, s) = view(p, t) :=o ,t(s, p, c) = out(t,p, c) Vp E P, s, t E S. c E C,

which expresses the fact that, if a process p's view of two states s and t is the same. then the
outputs of commands performed by p will always be identical for these states.

The unwinding theorem is as follows [91:

Theorem: Let M be an internally consistent system with a security policy R such that

(1) R(p1 ,p 2) =* view(p2, nezt(s,pi,c)) = view(p2,s)

(2) view(pl, s) = view(pt, t) =o view(pt, nezt(s, p 2 , c)) = view(pl, next(t, p 2, c))
Vpi,p 2 EP, sES, cEC

Then M is secure (with respect to the policy R).

The proof of this theorem is straightforward, and may be found in [9).

3
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It is useful to prove this unwinding theorem at the most abstract level possible, because it can
then be applied to many different descriptions of systems which may have different definitions
for states, operations, outputs and views but which, nevertheless, satisfy the sufficiency conditions
for security according to the unwinding theorem. There are many different versions of unwinding
theorems but. as hinted by their name, they reduce the problem of security from proving certain
assertions about sequences of actions to proving assertions about single actions.

In Section 4 the top level model of the system is set up within HOL and the unwinding theorem
is proved.

The next level of specification describes the system in more detail by giving definitions to states.
operations. actions (and their effect on states), outputs of actions, views, and a security policy.
This description can still be general in that many real systems may satisfy the definitions; but,
because it is less abstract than the top level description, it characterises a proper subset of the set
of possible systems described by the top level model. One such lower level model is the Low
Water Mark Model.

2.2 The Low Water Mark Model

This model describes a system consisting of a set of processes, a non-empty set of data objects and
three operations used by the processes to access the data objects. Associated with each data object
is a classification which is a member of set of values called levels. Associated with each process
is a clearance level which is also a member of this set. On this set of levels there exists a relation
which will be called dominates, where "dominates(x,y)" means that x has a higher security level

than y. It is assumed that this relation is a partial ordering, i.e. it is reflexive, antisymmetric and
transitive. We shall assume that there is a special level, called system high, which dominates
all other levels. A state can be described as a mapping from data object identifiers to the pair

consisting of the contents of the data object and the classification of the object.

The three operations are reading the contents of a data object, overwriting the contents of a data
object, and resetting the classification of an object to system high. The effect and output of an
operation on a data object performed by a process is dependent on the relationship between the

classification of the object and the clearance of the process. The effect and output of each of the

three operations paired with a process are:

1. READ
The state of the system remains the same after a process has read the contents of
an object. If the clearance of the process dominates the classification of the object.
then the output signals that the read was successful and the contents of the object are
displayed. Otherwise, the output signals that the read was unsuccessful and no other
information is displayed.

2. WRITE
If the classification of the object dominates the clearance of the process then the new
state after a write remains the same, except that the identifier of the object which was

overwritten is now mapped to the pair consisting of the new data and the clearance
of the process. Otherwise, the state remains the same and the output signals an

unsuccessful write.

3. RESET
If the classification of the object dominates the clearance of the process then the new

state after a reset remains the same, except that the data object's contents are cleared

and its classification is now set to system high. Otherwise, the state remains the same

and the output signals an unsuccessful reset.

The model is called the Low Water Mark Model because a data object's classification can only

be increased by a reset operation, which will set it to system hbglu.

& 4 -



ERL-0577-RR

The unwinding theorem can be used to prove the security of the Low Water Mark Model given
the additional assumption that the ordering dominates is a total relation, that is, given any two
levels, one must dominate the other. An unwinding theorem specific to this model was derived
by Billard in (16].

Before formulating the above theory in HOL, we shall give a brief overview of the HOL system.

3 The HOL System

The HOL system is large and complex, and it is beyond the scope of this paper to describe it fully.
We refer the reader to the HOL manuals [4] for more details. In the following, we shall attempt to
give a flavour of working with HOL, as well as highlighting those features of the system relevant for
reasoning about security models.

HOL supports interactive theorem proving in higher order logic. It provides a natural and highly
expressive way of specifying and reasoning about models of abstract systems - as well as mathematical
theories in general. It inherits many ideas from the earlier LCF theorem prover developed by Robin Milner
and collaborators in the early 1970's [17]. As in LCF, the programming language ML (ML stands for
Meca-Language) provides the environment in which terms and theorems of the logic are denoted and
theorem proving takes place. We shall assume that the reader has some familiarity with ML (see [181
for an elementary introduction).

HOL is really a proof-assistant and proof checker. It will not prove complex theorems automatically: the
user must have an idea of the way the proof will work, and apply the appropriate steps (called tactics) in
the proof, which proceeds in a goal-directed fashion. The HOL system manages the proof. taking care
of the details of primitive proof steps, and provides a sound theorem proving environment - i.e. the
user is assured that a theorem, once obtained, is true within the logic.

3.1 The HOL Logic

The HOL logic is a version of higher order logic based on Church's formulation of simple type
theory [19]. It is a variant of typed polymorphic A-calculus, with formulae being identified with
terms of boolean type. Variables can range over functions and predicates, and functions can take
other functions as arguments (hence 'higher order').

Terms of the HOL logic have the ML type called term, and are input to HOL enclosed in quotation
marks. The following table, adapted from [4], summarises the primitive terms of the logic:

Table 1 Primitive Terms of the HOL Logic

Kind of term HOL Notation Description

Variable var : a variable var of type a

Constant "const a constant of type o'

Combination "t t' function t applied to t'

Abstraction "x. t " lambda expression

From these primitive terms are built the usual logical constructs, as follows:

Table 2 Derived Logical Constructs of HOL

Kind of term HOL Notation Description

Truth "T" true

Falsity 'F" false

I ,.. 5
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Table 2 (Continued) Derived Logical Constructs of HOL

Kind of term HOL Notation Description

Negation t not t

Disjunction "t V e' t or t'

Conjunction t A t'" t and t'

Implication "t ==> t' " t implies t'

Equality t = t' t equals t'

Universal Quantification "!x.t for all x : t

Existential Quantification "?x.t there exists an x such that t

Unique Existential "?!x.t" there exists a unique x such
Quantification that t

c-term "@x.t ' an x such that t

Conditional 't => t' It" " if t then t' else t"

The types of HOL terms have the ML type called type, and can take the following forms:

Table 3 HOL Types

Kind of Type HOL Notation Description

Type variable ":*&" arbitrary type

Type constant ":bool" fixed type

Function type I :f -> (' " functions from a to a'

Compound type ":(at .... 0.") op" general type constructor

Any term input to the system must be well-typed according to the rules of the logic. HOL has a
type checker for logical terms based on the ML type checking algorithm.!

3.2 Proving Theorems in HOL

While interacting with the HOL system the user is working with an object called a theory. A
theory consists of types, constants, definitions and axioms. It also contains an explicit list of
those theorems which have so far been proved. A theorem is represented in HOL by a value of
ML type thmn. The system is sound in that tle only way to obtain theorems is by generating a
proof. This is done by applying ML functions representing inference rules, either to axioms or
previously generated theorems.' Theorems are denoted generally by r I- t, where r is a set of
boolean terms called assumptions, and t is a boolean term called the conclusion. If F is empty,
we write simply I- t.

The HOL logic itself has five axioms and eight primitive inference rules, along with a vast number
of derived theorems and inference rules. The HOL system is provided with a number of built-in
theories (such as bool, pair and list), as well as a set of useful library theories (such as sets,
string, integr etc) which can be called upon at will.

In practice, proofs are not carried out forwards, but in a more natural goal-directed fashion invented
by Robin Milner for LCF. Milner invented the notion of tactics. A tactic is an ML function which

1. reduces a goal to subgoals, and
2. remembers the reason why solving the subgoals will solve the goal.

6
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For example, suppose we want to prove the formula A A B. Then the goal-directed approach says
that it is enough to prove the subgoals A and B, because we know that from - A and - B we
can deduce the theorem - A A B.

HOL has an extensive subgoal package for managing goal-directed proofs. Becoming a HOL
expert means becoming familiar with a range of tactics, and the situations where they can be
applied. New tactics can be programmed in ML, or (more easily) built up from existing tactics
by means of special functions called tacticals. Quite powerful and sophisticated tactics (which we
might term strategies) can be tailor-made for the problem domain being studied.

4 A Theory of Security in HOL

In this section we shall show how to formalise within HOL the general theory of security which was
described in Section 2. We describe, at the top level of abstraction, the specification of non-interference
and security, and the interactive proof of the unwinding theorem in HOL.

4.1 Type and Constant Definitions

We begin the interaction with HOL by creating a new HOL theory called 'security'. Within this
theory all the entities, functions and relations for the general system are expressed formally in
the higher order language of HOL. Firstly, all the necessary types need to be declared by means
of the following ML commands (the symbol # is the HOL prompt, and the HOL responses are
suppressed).

v7 .. , s e s

=..@. 7'-.? d ~ e ' . ry '',": :er : ess, - >

The first five types are declared as abstract types t-cause, at this level of detail, there is no further
information on the nature of the objects in these sets. However, we do know that an action is a pair
consisting of a process and a command, and that a policy is a relation on processes. Therefore.
these types can be defined in terms of the abstract types.

We also need to declare the primitive constants of the system (note that, in higher order logic.
functions are also constants). The values of the view function are taken to he of the type
privatestate.

#new_.7.3nstar~t ', i nitstate' , ":state");;

*new c:nstart ' "xt " :state -> acti.:n -> state';;
#new 7,D:,stt 'ant ' , :state -> action -> Dutput );;

#new *::r.st3t *vew' , :pro-ess -> State -> privat_3t sz:-"

The functions defined in Section 2 are now easily expressed in HOL. The following interaction
with HOL shows how next list is defined in ML. and also HOL's 'reply' once the definition is
accepted. Note that' next l ist is defined recursively on action lists. Proofs involving recursively
defined functions will typically involve induction on the recursive type.

let NEXTLISTDEF = new-listrecdefinition ('NEXTLISTDEF',
"(nextlist (s:state) ([it(action)1ist) = s) /\

(nextlist s (CONS h t) a next (nextliSt s t) h)');;

7
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S!

-''TLS .E 7.3= I72 57

To make what follows more readable, from here on we shall only show the HOL responses to
new user definitions. The functions do and result are defined as follows:

,-----=- is. d- exlist ifnls'3ate 3.is2

- 3. rea!t 31ist a = .ut do a',,

Since the definition of non-interference involves a comparison of two lists of actions - one of
which is a sublist of the other - we define a function filter which, given the original action
list and process, will return the appropriate sublist. It is then possible to define non-interference
concisely.

We ire now in a position to lefine security win respect to no-.-interference for an arbitrary
security policy R:

- .secure R !:D! p. eree C!Z

The definition of internal consistency is as follows:

:1J1.EF::ALLY_,C.:NS I STNT- EF

- i~' :trlL...~S2C

s ! T. *.zv . -*'' P Zl -- --

?,P P.i - = -- : :" 7[ 7

This completes the specification of the general system for security. As can be seen, it is quite easy
to formalise it in HOL. There are a number of reasons for this. Firstly, the higher order capability

HOL means that we have no difficulty in defining concepts such as security, where we need to

quantify over a predicate R (the security policy). Secondly, the fact that the HOL logic is strongly

typed means that many trivial errors in setting up the specification can be avoided. Thirdly, it is
easy to define new functions on recursive types such as ixtlist.

8NENLYCN lSET E
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4.2 An Interactive Proof

Having set up the basic theory, we can now prove the unwinding theorem using HOL s subgoal
package, which enables a user to develop a goal-directed proof interactively by issuing commands
(tactics) which produce new subgoals. The package manages the proof by recording which
subgoals still need to be proved in order to prove the original goal.

To carry out the proof, we use a lemma called UNAFFECTEDVIEW_L EMA:

_NA . ECTE-... _.,"4A =

2terna 2 Jy_c:nsistent /

!ai.3:.view p2(drf EIer alist p' = - pd I -
==> secure R

This lemma asserts that, if information flow from process pl to process p2 is not allowed according
to a policy R, then p2's view should not be affected by commands performed by pl. The proof
of this lemma is short and straightforward, and is included in Appendix A.

The proof of the unwinding theorem begins by setting the top goal to the HOL formulation of
the theorem using the definitions above.

!s 7. iew p2 ,next s , = .iew p2
! s ."ew 01 S = View p1 tl ==>

P e. i w p1 next s 'p2, -',j

view pi next t p,-7)'

• . _C

R p1 p2
I S-. v:iew p2 next S (p, J : iew p2 S)
'p s t.
(view pI. = view p1 t)
(!- p2. view pi'next s(p2,,

vi'ew plnext t(p2,:)M)] i=> secure "

Firstly, the goal is decomposed to its simplest form which requires secure R to be proved with
the three conditions as assumptions. For this we use the standard tactic REPEAT (STRI PTAC),
which breaks apart conjunctions and implications, and removes outermost quantifiers. We can then
use the above lemma, which has as its consequence secure R. Therefore. if we can show that
the conditions in UNAFFECTEDVIE._LEMMA can be proved, we shall have solved the goal.
These conditions of the lemma replace the goal if we use the tactic MATCH_MPTAC.

These proof steps are combined into one tactic by using the tactical THEN. In general. tacl THEN
tac2 will apply tacl to the current subgoal and then apply tac2 to all resulting subgoals.

In the following interactions with HOL, the current assumptions are listed below the goal and
each one is delimited by square brackets. Assumptions are numbered from one, starting at the
bottom of the list as displayed.

#e (REPEAT STRIPTAC THEN
MATCHMPTAC UNAFFECTED_VIEWLEM44A);;

9
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. view

view p2 dz ilistz )"
"nernai3yr,:sistent"

r !p! p2. R p! p2

,!s view p2n.ext spl,:) view p2 s
* pl - L

view p! s = view p1 L) ==>
,!L p2. view pirnext s(p2,::)

v iew plinext t(p2,c))) "

The conjunct internally-consistent can be solved simply by rewriting with the assump-
tions, using the HOL tactic ASMREWRITETAC. In order to prove the other conjunct, our first
impulse might be to apply REPEAT STRIPTAC. However, we wish to apply the induction
principle to the action list al, and for this the goal needs to be universally quantified over this
term. REPEAT STRIP_TAC would strip away too much; instead the two outer quantifications
are stripped using GENTAC and the implication is decomposed in two steps.

4e ASM F-WF= T A - -.. EN

EFEAT 3ENTAC -HEN

- .IW Z2_, Ti4: t
71..1

view c- t) "  .iew p2 S- I s' -. vw p ~ e t s p ,-) ,fw p )

,view p! s view pl ) ==>

!c p2. view p1inext s(p2,,:)

= view pl(next tp2,:))* I
p. p2' ]

The term is now in the form where we can apply the induction tactic for lists, producing two
ubgoals - one for the base case of an empty list and one for the inductive step.

4e LIST_:NDUCT_TAC ;;
!DK..
2 subgoals
*!h. view p2(do(filter(CONS h alist)pl))

view p2(do(CONS h alist))"

"internally_consistent" I
" !pl p2.

R pl p2 ==>

(!s c. view p2(next s(pl,c)) = view p2 s)" I
(!pl s t.

(view pl s = view pl t) ==>

(!c p2. view pl(next s(p2,c))
= view pl(next t(p2,c)))" I

"R pl p2' I
*view p2(do(tilter alist pl)) view p2(do alist)'

l0
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V ew P1 - =ewe P
ps ."Jew p - n ex S P, 2' C) iw

iew p next 31p2,c)
=vew plrnexttp,- ! "]

"R pl p2"

The subgoal for the base case is easily solved by rewriting with the definition of f i 1 ter since
filter ( ] p1 = ( ]. To make progress on the subgoal for the inductive step. it can also be
rewritten with the definition of filter:

aeREWRITE_TAC[F:LTER_DEFI!;;

vew 2 T pI, =>

ler a.ist o1 I <,NS h fiIter a'ist ol) ,

ew 0 'd, 3NS h ,

-'view p2 do a>st

This term can be simplified by stripping the outer quantifier and removing the conditional
expression by performing case analysis on FST h = pl. It is possible to expand the two
resulting subgoals by rewriting with the definitions of do and nextist. This will remove

occurrences of CONS and introduce occurrences of next enabling the term to be matched later
on with consequences of assumptions. The tactical THEN is very useful here, since the resulting
subgoals are of the same form and can thus be simplified or solved by the same tactics.

#-e. EN TAC THEN 'P .E~TCTEN
FPEWRITE_T7A 1 RT-F

-;u~bgoals

"view p2(rexrnr-xtlist inItstate(filter alist p1) h)
view p2 iext~riext~iit vnitstate pdist)h) i

]'hs trm an e imiier b~y.:rstripnt.eotrqatfe n"rmvn h odtoa

R p1 p -
reut:. view pthnext sp,: =fd view p2 s T

(!P1 s t.
(view p1 s =tvew p t)n
(!c p2. view pl(next s(p2,cfl

=view p1(next t(p2,c))))"
'R p1 p2*
'view P2(do(filter alist p1))

=view p2(do alisti" I
• (FST h = p1) = P T ]

iK..
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"',Jw c2 .q x st .n:itstate IfiJlter a isT: pl

ew : :e i initsIP,- vew CZ 3'
;Jew P! S- t]

" !p 1  =vlwpl} .

ps . view pi~next s'p : e
- . e.plnexe tlpn,:Vt 2

'R o l p2

iew p2 doifilter alist pl)
= view p2 (do alist)"

FST h p2.) = T

At this point we shall concentrate on proving the first (i.e. bottom) subgoal. The proof of the
second subgoal will follow the same steps. Now that the definition of nextlist has been used
to remove occurrences of CONS, the goal is more readable if the terms of the form nextlist
initstate al (where al is an action list) are rewritten in terms of do. We use our own
inference rule SYM-GEN, which takes theorems of the form - !xl ... x0 . tI = t2 and gives
the theorem H !x1 ... xn. t2 = tl. The goal is also rewritten using the second assumption. We
then use the powerful tactic RESTAC, which searches for assumptions of the form A : B and
attempts to match A against other assumptions, using modus ponens to produce new assumptions
matching B.

i ASM_- .... : vE:O" ' :,,E RES_TAC

-s

..: p. view p _-ext Z{'_ ..:))
= View pl nrext tip2,:)f))

*R p1 p2'

-view P2(doi. er elist pie
ieview pi(d : 2iwt

iFST h =P11
. view pnext p, ) iew p2 s

view p2 next iew pne --. )

view p2neXt fil ter as ist p

The second assumption, together with the fact that the first component of h is p1 (the third
assumption) will solve the goal. Although this seems a fairly straightforward step. it requires
fine manipulation of some of the assumptions and careful rewriting which is performed by the
following compound tactic:

#e(REWRITEASM_TAC [1 4 ]) THEN
ONCEREWRITETAC[PAIR-h] THEN

PUREASM_REWRITETAC(] THEN

REWRITETAC []);;
OK..

goal proved
. . I- view p2(next(nextlist initstate alist)h)

view p2(nextlist initstate(filter alist pl))

12
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"v-w next 7e<id n-sae -t.

!3. -. vi ew nrext " .  -' v ew P- _
C1 

S t.
"[ew C1 3 = viw p! t.>

C= vie pl next S _ p2-z '
.-.. JP1 next

:!D all Z ~,

: v-ew A'Jefitr ist pi;
T p

This completes the proof of the first subgoal of the case analysis step we performed earlier. The
second subgoal can be proved along similar lines, thus solving our original goal and proving the
desired theorem. As a final step, we add it to the current theory, and bind it to the ML identifier
UNWINDING_THM.

7" "S- Z -

IP

_- .. .. . - t - ,

The full details of the proof are given in Appendix A.

5 Proof of Security for the Low Water Mark Model

Given the general theory of security developed in the previous section, it is possible to prove in HOL
that a particular system is secure. In this section, we shall describe the proof of security for the Low
Water Mark Model using the unwinding theorem.

It is not possible in HOL to use UNWINDING-THM as it stands, because the types comand, object.
state, output and the functions next and out now need to be given concrete definitions instead
of being abstract. A new theory needs to be created where these types and constants (along with other
types and constants) are defined. The unwinding theorem, including the auxiliary lemma, needs to be
reproved (although this is straightforward, being essentially automatic). This highlights a problem with
HOL's treatment of theories. Ideally, we would like to be able to instantiate the original theory by giving
some of the abstract types and constants of that theory concrete definitions and automatically inheriting
the theorems of the original theory. However, the HOL system does not as yet provide a mechanism

for doing this.

13
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5.1 Type and Constant Definitions

We give below the definitions of some of the types which were abstract in the general security
theory, and some further types which are needed to describe the Low Water Mark Model. The
data objects of the system have the type object which is a pair consisting of its contents of type
data and its classification of type level. The states of the system are considered to be mappings
from the type filename, which is the set of data object identifiers, to the type object. The
output of a command is considered to be a pair consisting of some data and a boolean value
intended to indicate whether the command was successful or not.

new_ ype
new-*- '.pe 'Jatd' ;

nw_ .--,Y P e 'process';;
new_type "'f4lename';;
-ew ype_abbrev , 'object', :data#1evel');;
new_ yre_abbrev 'state', ":filename -> Dbject');;
..ew_-':'pe abbrev o'utput' , ":data#booI');;

The type command is defined using HOL's type definition package, due to Tom Melham. This is
an extremely useful facility (with some fundamental limitations which will not concern us here).
It is ideally suited to defining new recursive and compound types, because it will automatically
provide a number of useful theorems, including an induction theorem. It will also provide a tactic
which reduces the proof of a goal with a universally quantified variable of recursive type to a
proof of the goal tbr elements of the base type and a proof of the inductive step for the recursively
structured elements of the type. In this case, the type command is not recursive, but it is still
a good idea to use the type definition package to produce a tactic which splits a goal which is
an assertion about commands to three subgoals, one for each type of command - read, write
and reset.

!f. n(READ -E
!3 f. fn(WRITE J fin i
f. fntRESET = f2 f

*.et Z$MMAND CASESTM' =
repd n e i luct:no hepu ::resind Ax vw idm;

:-2 iAN _AS ESTNM =

Li. P{READ f ,\ J d f. P;WRITE i W)
\(Li. P)RESET f)) -=> '~C. P c

SetcM.MMANDTASESTAC
* .J~~:,UCTTJXEN COMMAND.CASES_,TRM ASSUME_,TAC;;

The type definition package as also helpful in expressing the view function neatly. As we shall

see later, the view of a process is a partial function from filenames to objects, so we need
some way of expressing the fact that. for certain filenames, the value of such a function is
undefined. Partial functions can be modelled in HOL in the following way. We define a type
called private_state, which has a distinguished element called UNDEF. Two theorems can
be proven about elements of this type - one that the element UNDEF is not equal to an element
of the form oJ fil name and the other that the constructor oBJ is one-to-one.

14
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_e:~ r. _ S=_ae 3x.:rf

- ' e ? rn !p. fn -9,: p, f p,

b ef p. 9"J p -NDEF

cr:% state_.:ne_ cne =

r.,sate_;e :r.e_.,e =

!p p'. ,BJ p =DBJ p') p = p'

Some constants also need to be defined: dom denotes the relation on level which was called
dominates in Section 2. The properties of reflexivity, antisymmetry, transitivity and totality tor
the relation dorm can be asserted by including as assumptions to any goals PO REFL_DEF.
PO_ANTISYMDEF, PO_TPANS_DEF, POTOTALDEF.

. b -4: pM =

7- -7AL_ -- = - p _ o a =
a b. 'M b =

The constant syshigh denotes a level which is intended to be the level which dominates all f
other levels. This is asserted by HIGHMARKDEF.

ne_-z,- nstant ,sysiIgh' , *: level");

H13HMARKDEF : - highmark = ,!a. ,- syhigh a)

We also need a function called processlevel which associates with each process its clearance
level. When the output of a command does not include the contents of a file, the constant null
of type data can be used to represent no information.

.,.~w :..,starl 'pr:cess_evel', ":pr ;:e;s
new _-nst~l <' u l' *:data") ;;

We define some auxiliary functions which will be useful in defining the functions next and out.

MKOBJECTDEF = ! a b. mk object a b = a,b

DBJECT_LEVEL_DEF I- !X. objectlevel X = SND X

OBJECTDATA_DEF = I- !X. object-data X = FST X

UPDATEDEF = I- !f X s.

update f X s = (\f'. ((f' = f) => X I s fV)

15
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Next and out are supposed to take as their second argument an action, which is a pair consisting
of a process and a command. We would like to define next and out using HOL's function
definition facility for recursive types by giving the value returned by the functions by cases on
the form of the command. However, HOL will only allow such a definition if the variable of
type command is a single argument rather than one contained in a pair. To get around this. the
functions currynext and curryout are defined with the pair of a process and a command
split into two arguments and next and out are defined (with an action as a single argument) in
terms of currynext and curryout. (The purpose of labouring this point is to show that
such issues are not always straightforward in HOL).

- ie. :ir7ry~.ext f pEAD le I z

,: i=-r v._- .' .... pWRITE dl file)
Jr... bfest~eve sfi-l :1e! 'proccess-l-evel p x>

:idite file -k_ :bect dpr:-ess-leve: p))s

file))pr::ess_evel p >

!3 P fil.

-'l , ,-Iu -

-:m_:. c.t_ levez.; file: 'pr:esslevel p =>

77 : !s f ie.

For the Low Water Mark Model. information is not allowed to flow from p1 to p2 if p2 has
a clearance which is strictly lower than p1's clearance. Therefore the security policy can be

defined as follows:

= 1- _:upl p2.EE ~e

p-D p! p4= iJom pro'eszevel pprcessleveil P1

We also need to give a definition for the view of a process. Rushby gives a construction of a
canonical view function for secure systems which at first sight appears a promising candidate for
the automation of security proofs. However, there are problems with using such a construction.
The definition involves an equivalence relation on action lists, which means that proofs of the
conditions of the unwinding theorem would require induction on action lists. This defeats the
purpose of the unwinding theorem because such proofs are long and unwieldy, involving a lot
of cae analysis, Ideally we need a simple definition of the view of a process which avoids any
induction on lists. In many cas this is possible. For the Low Water Mak Model, we can define

16
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the view of a process in a given state as a partial function from filenames to the set of private
states. The function is only defined for those filenames whose level is dominated by that of the
process and, in that case, the result is the object to which the filename is mapped in the given state
lifted into the type of private states. Otherwise the filename is mapped to the element UNDEF.

7:W_ - !p S. view r 3

5.2 Proof of Security for the Low Water Mark Model
To prove that the Low Water Mark Model is secure, we need to show that it satisfies the three
conditions of the unwinding theorem - having first reproved for this model the unwinding theorem
in exactly the same way as was done in Section 4.

The first condition (internal consistency of the system) and the second condition of the unwinding
theorem are easy to prove by a general strategy of rewriting with definitions, decomposing the goal
using STRIPTAC and performing case analysis until all conditional expressions are removed. The
goal is then either proved by rewriting using the assumptions, or proved by finding a contradiction
among these assumptions. Some finer manipulation of several of the subgoals and assumptions
is required between these steps.

The third condition of the unwinding theorem is much more difficult to prove than the other
two. and needs a more detailed discussion. It is this third condition that requires the assertions
that dom is a reflexive, antisymmetric, transitive and total order, and that syshigh dominates
all other levels. Firstly, the goal is rewritten and stripped until the term obtained is a universal
quantification on a variable of type command. We can then use the tactic COI'RANDCASESTAC.
which decomposes this goal into three subgoals corresponding to the three different cases in the
type definition of command.

I

I

17



ERL-0577-RR I

- PC A- RA DF

3 -i Sv NDrnext s~w,RZESET f~f' =

r - -w,,PEE f f =

':':IDEFIE

lzmnpr~cess_level -i SND(--ext tw,WP:TE A ft7 =

a . i iIcD A > 1= i

13, b :.I= c -!:-n b dom>

!a b. >.I-. -a b I-m b ~i'
*",xf. ldm~pr- -ss revel u iSND~s f))

= 'BJ s f ) I !jNJEF)
.\f. Aom'pr-ces-level uH(SND(t f))

UNDEF II

(domlprocess-level u)HSND(next s(w,READ f)f')l =>
OBJ(next t(w,READ f~f') I

UNDEF))'
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i!:. q~m .- 'h :h

d .: 3 b

3!a b. - >.m a

f ' -pr - s "=" " u SND(ES
*> :, V DE : ).

These three subgoals all have the same form, so it is likely that the same tactics can be applied
to each of them. We shall just look at the second subgoal. Once the outermost quantifiers are
stripped, this subgoal requires proving two functions equal. This can be done by showing that the
results of the two functions are equal for all values. The theorem EQEXT ( I - f g. ,x.
f x = g x) :=> (f =g) makes such a step valid.

71 --_E A ...

i.%." ~ ~ ~ 'vi;7 i.e.' :w;;:T f f'

= =t

Sd r Dpr.:ess_ ';el ui SND(next .w,WRITE d

:BJ nex" w,WRITE d ff'
'-IDEF)

"3b. i:m b,ii.rb:==>d a = b ' I
L "!3 b. im a b r> *,-m b d a

[ " ",f ,r,:m pr:,,:ess_Ieve1 ui;(SND(s f)) '

=> OBJ(s f) I UNDEF))

,f. iTmpr-cess-level u( SND(t f))
=> OBJ~t f) I UNDEF)VI"

This subgoal can be simplified by once again stripping the outer quantifier and then applying beta
conversion. It can then be rewritten using the definition of next, producing a fairly complex goal
which requires furher case analysis in order to be simplified.
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Z ET_As_ h

ETA- : -. r:c-ss 3eh": we S

b v? s f, pr-<:7ess level W) =>, . ' = > ,cr:cessevel w! s z

SS

-- eseS e e w

a :s- 31 a

b.k 3 3 b;

"'ab :m a b , c~ k~ b c zm c

b' . >ijcM a b2Ajizrb a

i*x z~:mes s'.ei, . ~eSNDs xe

e> ' X) :JNDE7 -

j':r :prccessle!v&. u, %sD e f r X)
=> -2Jt x) NDEF)" I

Because the term is so complex, it is difficult to determine by human inspection on what conditions
case analysis should be performed. As an automated reasoning tool, it would be useful for

IOL to be able to pick out the relevant conditions. HOL does contain a built-in tactic called
CONDCASESTAC which performs case analysis on the outermost conditionals. However, these
outer conditionals may contain further conditional expressions which should firstly have been
split into cases to put the assumptions in their simplest form. A tactic called COND_DIVE_TAC
(written by M. Ozols) is used instead, ibis tactic searches the term for the first condition of a
conditional which does not contain any turther conditional expressions unless they involve bound
variables occurring within lambda expressions. It perform case analysis on this condition and
then attempts to simplify the goal by applying

BETA..TAC and rewriting with the new list of assumptions. If COND...DIVETAC is repeatedly
applied, all conditional expressions should be eliminated from the goal. When this is done to the
above goal, 12 subgoals are produced. Case analysis has in fact been performed on five conditions,
which would normally produce 32 subgoals -the tactic automatically solves the other 20 subgoals

20 by rewriting and beta conversion. An example of one of thes 12 subgoals is shown below:

20.
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: . -1--m -'s :.
,  

-" b

b : ieve b. zrm:c === s ,s a -

*.7: -Pr S>

-im . .. pr:cess.Jeveslw"

------------------------------------------------ level.w

1-:M nr:.:ess ev -I4, SND~s f- ) =>
-zJ ' 'UNZ-,?F, = D2JE f,"

It can be seen that the goal can only be proved by finding a contradiction among the assumptions.
The overall proof involves solving many subgoals of this form. In the above case, if case
analysis is performed on the condition occurring in the first assumption. that assumption will
either become UNDEF = OBJ(t f) or OBJ( s f) = OBJ(t f) . In the first case, the
theorem not-obj-undef can be used to rewrite the assumption to FALSE. In the latter case
the theorem privstateoneone can be used to show s f = t f. which, together with
the third and the sixth assumptions, gives a contradiction.

._. ... ... ... . s~ ta~e f HEN.- ., F ';R T :: A2 i 2

_v rV stater:ne :ne;

A' -CAL : 7 T_ "t::EF '?E
AS _=E E: , :; A _ 4;: .. ..E

........... .

Trevicus suoor: :

1: subgoals

The remainder of the proof consists of proving the remaining subgoals in the same way: by
rewriting, case analysis, further rewriting, finding contradictions among assumptions etc. The
subgoal package will then return us to the point where case analysis was last performed so that
the other cases can be solved. Once they are solved, we are returned to the previous case analysis
and so on. until a!l cases have been proved.

The full proof has been completed in HOL. It is rather long and unilluminating, and is given in I
Appendix A.

21
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5.3 Covert Channels

We conclude this section by considering what happens if we drop the assumption that the relation
dominates is a total ordering. In this case, it is well-known that the Low Water Mark Model
exhibits covert channels, and is not secure. It is interesting to see how to show this in HOL.

Consider two distinct processes p and p' which are completely unrelated to each other (so the
ordering is not total). Suppose in the initial state of the system t is a filename whose level
dominates both that of p and that of p'. Then both p and p' can successfully write to f.
However, if p writes first. the level of the file becomes that of p' , and p can no longer write
to it. Thus process p has interfered with process p, and so the system is not secure.

The goal is given to HOL as follows:

7: es Z _ -hP
. -_re-

The proof is straightforward, and is given in Appendix A.

6 Discussion and Conclusions

ItOL has reached a certain level of maturity as a research tool, but it is only just beginning to be used
in industry. It will be some time before HOL is able to perform program verification, and work in this
area is still experimental [6]. However, as we have seen above, HOL can be used with some success to
reason about specifications near the top level. and thus to carry out design verification.

Our work has highlighted a number of advantages to working with HOL which make it a useful and
versatile tool.

The IIOL logic is expressive since it is higher order and polymorphic. As we have seen. it allows
theories to be expressed in a natural and succinct way. In many cases this facilitates the understanding
of mathematical theories and system specifications.

The soundness and level of mathematical rigour of the HOL system are of particular benefit for reasoning
about safety and security critical systems. Once a proof is completed. the user can have a high level
of assurance in the outcome.

The built-in inference rules and tactics of HOL are of a fine-grained nature, providing the user with
a flexibility not available in many other automated reasoning systems. If a theorem or goal does not
exactly tit the form required by a built-in tactic or inference rule. it is possible to carry out quite delicate
manipulation until the required form is achie,,ed.

The ability to combine tactics and inference rules using tacticals and the ML language also gives great
flexibility and power to the user, who is able to create new tactics designed for use within a particular
problem domain, or for goals which have particular characteristics.

The subgoal package allows flexibility in the way theorems are proved. HOL can be used interactively
(as a proof assistant) to develop proofs step by step. Proof steps can be 'undone', and the proof state
saved at any time, say if we need to prove some side lemma. We can also use it as a proof checker by
providing HOL with a complete proof and receiving the proved theorem as output.

On the other hand, carrying out this work has made us acutely aware of some of the shortcomings of HOL.

HOL is a difficult system for a beginner to learn, especially in comparison with other program verifica-
tion/theorem proving environments such as mEVES (201, Gypsy (211 and MALPAS (22]. As previously
noted the first taste of HOL can be quite frustrating, especially without a HOL 'expert' to be a guide.
The new user must invest considerable time and effort before simple proofs can be attempted.
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The proof presented in the previous section may have given the impression that proofs in HOL are
straightforward and quickly constructed - even if they may not always look 'natural'. Unfortunately.
this is not the case. A medium-sized proof such as the above is quite laborious and time-consuming to
construct, involving a good deal of proof 'exploration'. Often, a vast number of cases must be considered,
and one then has the choice of defining a different tactic for each subgoal. or else using a single tactic
as a blunt instrument on all the subgoals. Using a single tactic can improve the readability of the proof.
but can be qtute inefficient - some proofs can take several minutes, or even hours, of computation.

A fundamental difficulty, as we remarked when attempting to go from the general theory of security to
the Low Water Mark Model, is that in HOL theories are inherited en bloc, and cannot be instantiated
to specific instances. Essentially, what is needed is a mechanism for the refinement of types. We plan
to examine this question in future work.

We also needed to write a range of fine-grained tactics for rewriting assumptions, and manipulating them
in general. While the HOL system allows this to be done without difficulty, it is time-consuming, and
we believe that such tactics should already be part of the system.
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Appendix A:
Detailed HOL Proofs

We give below, in full, the HOL code for the following:

1. auxiliary tactics needed for the proofs;
2. the proof of the unwinding theorem;
3. the proof of security for the Low Water Mark Model; and
4. an example of a covert channel.

S, me Auxiliiary s
-- - - -----------------------------------------------

.. ............... .. . . . . . . . . . . . .. . . . . . . . . . . . .

[e= "'?ES T n Inr l

:f _r.r~s= " thn LL AC else
AS : - 2T -SA-; : k l t THE, ASS11-4ETAl_ : 4 ::i : :

S-. -.: _= A ':: T - : ?. f:"ir. -

----------- e ::R E :.e zs , csst. pc-sest2 " i therthns

-t rewritten m~ elc n !ihrnst) poslsti)
-etet~ms =~ :MP n. ci. nhmt cc-sist- r

:ap \th. -;f -rem th rewritten) then

REWRITE-RULE
r.fiiter x.:c r.:,t rewrite rhns -- thertums -

- L-R.._EW.TE-ASLTAC p:slzti. p::st. thmisr

:" PASSUMLST asl.

,4:ELSTTAC 7T4}LEWR:TERULE 3si posisti t.::

Let WRITE-ASM.TAC Thi

ASL-REWRITEASL.TAC ,upt I (length asl)) r! th.

let ASL_REWRITE_LNE-TAC pos posist thi 2
ASLREWRITEASL_TAC (posl poslst thl;;

.et ASMwMPTAC n m =ASSUMLIST
(\asl. ASSUMETAC (MATCHnP .el n asil (el mn o ns

let ASM_LST_MPTAC n mls= ASSUM-LIST
(\asl. (ASSUMETAC (MATCHP (el n asi)

(CONJL (map l\n. el n asi) ml)))));;
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-: - > -3ne~

* -. *-:. -, = "'I w :DN T1U>

7 ~ W.. If~w. reex: e, x t -,i Ve. e

_N!':' ~ ~ ~ 7I.C -;Fr -T-_,' _T

1_:E ET ET - AC T-HEN

77-P A ~ TEvE TE~M ]E T
ASMPwP~THEN E

-- b. ~-: 7H MEN
-'. - -_T TERE F T-E N T his nr-ves 'Case 7ase

-A F

__W I--7Cspt h THE

-r - -i:- Mar -

?Ew,,R:TE-TAC[IrNT-ERNALzY-2;N,'SISTENTDZEF;VIrWEDEF;POT"T.ALDEF, THEN
:TRIPTAC THEN REPEAT 3ENTAC THEN STRIPTAC) THEN

..VANDCAS ESPAC THEN
::EPEAT 3ENTAC) THEN

WR'~ TAC~O!T EF~'PY "TEF~ THEN
REPEAT CNDZIVETAC; THEN
-PANGE-ASMTAC 1 BETARULE o 7'th. AP-THM th "f:filename)) THENL

7StJ2GOALS I
let READ-TAC= I
ASL-REWIRITE-ONE-TAC 1 (2;31 (not~objundef;priv-state_one-one;

((GENALL o NOTEQSYM o SPECALL) not..obundef)]) THEN
ASMPREWRITETAC(]) THEN
(FALSE-TAC) )and

WRRESACI
ASMCASESTAC 'dom(processjlevel u) (objectjlevel( (s:state) f)) ) THEN
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3 .A ) L-

NE A- 5 4 E

£n :?X

P:A7 -H I '
- ~ ~ TE -7-' PC~

-A- 7H ES AO

I:

XT H- Z .

AL- EW PN_ _EA I -E

: ASE-§AO
ASS!_STMRTAO 25 THEN
ASLREWRITE_(-NETAO 1 THEN
ASETAO
JOE ASM- TAZ 1: 1 E "or::ess >vl HEN

* ASM..ZST.)APJAO 3 A C> THEN
ASLZREWRITE_ -INETAO ;12 - TIE
ALSE..TAO
AT:M_LST_MF-TAC 7 t25 T 7H EN
AOL-REW4RITEO:NETAO 1 [21 (] ( THEN

FALSE-JA7 1

The third condition

let CONDJ3 PROVE(
* highmark /\po..retl /\ poantisym i\ po-trans /\po-tota.

(!u s t.H(ViCW u s) z (view u t)
!:>c w.H(view u (next s (w~cH() = (view u (next t (w:!)!,
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-------------

-7

I-N7

N 4~%'" -7=A 7 --h -Ap -H' "TI-24 -'

2%2%rduce s 12 aubgnal %

pr"0s Thne or ND N s:state--

-'7--7 SY r :FCALL : b

-A' -

Fr SN4 -:1De - H

A:_PWP TE_ QNETAO '-;4 7H~::dt~rvs~e EN ne

* -MP:TE:NETA -. * THETHE

'M 3MPTAC:1;
RITEONETAC

A S *AA S STAT -- ;-;e SN'ID' S:soate t,- THENL

z APETE_ 'N E7 *:. : def;prv-statesne
SENAL * F ~SY aSPEQALL) rtDbjundef): THEN

-- -P:T§EA 4: L HENI

ASMT AT: 12 SPEC 'pr::-ess~levei u*)i THEN
A-MLSMPTAC 11 [6; 11) THEN

ASLREWRITE-ONETAO 3 [1;141 (1) THEN
FALSEJAC] and

tacS

IASM-CASESJTAC "domcprocess~level u) (SNOC (s:state) fE)") THENL

[;ASL-.REWRITEONE-TAC 2 [1;31 (nocobj-undef;priv.satesne..ne;

(IGEN-.ALL o NOTEQ-SYN o SPEC-ALL) notob-uldef)1) THEN
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7A.- -

a 3t 1 3

- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - -

cl p.

.WP1TE_7.. -' '

:14A4.3EASM_ CAT
'p :- pr::eszV HE

FES_TAC THEN
rHAN.]EASM_ TA_ -

-3PEC:. p *r ' P' wRITE3'f

p pr:.:esa, WPITE a f)]*;

ASHPEWRITE_:.,NEJTAC 1 DEPS THEN

CHANGE-.ASM,.JAC I BETARULE THEN
ASMREWRITETDNETAC I DEF'S THEN

C-HANGEASMTAC I BETA-RULE THEN
ASL..yEWRITE-O.NETAC 1 [5] [PAIREQ] THEN
ASM..REWRITETAC ( 1);;
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