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Abstract. This paper addresses basic questions regarding reliability of

a-posteriori error estimation. It analyzes in detail an a-posteriori

estimator for linear elements on triangular meshes. It gives the bounds of

the effectivity index depending on the geometry of the triangles and

smoothness of the approximated solution. The theoretical results are in

concordance with the results of our numerical experiments. The second part

analyzes in one dimensional setting a one parametric family of the estimators

and their optimal selection for adaptively constructed meshes.
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1. INTRODUCTION

During the last ten years, starting essentially with [2-5], great progress

has been made in the theory and practice of a-posteriori error estimation.

A-posteriori error estimation is then directly related to adaptive

construction of the meshes. For survey of various results, we refer to [61,

[7], [15], [241 and the references therein. Many estimators were developed

and analyzed either by numerical experimentation, mathematical theory, or

both. Nevertheless, there is no sufficiently detailed mathematical

understanding of various estimators, especially regarding their reliability

(e.g., bounds of the effectivity indices, etc.).

In this paper, we analyze In detail a particular a-posteriori error

estimator for linear triangular elements. We show the dependence of its

effectivity index on various factors such as geometry and smoothness of the

solution. We present theoretical results and numerical benchmark

computations. Further, we analyze a one parametric family of a-posteriori

error estimators In one dimensional setting. We show that for adaptively

constructed meshes (which are equilibrated), asymptotic exactness of the

estimator can be achieved for unsmooth solutions by an optimal choice of the

parameter.

2. BASIC NOTIONS IN THE THEORY OF THE A-POSTERIORI ERROR ESTIMATION FOR A

MODEL PROBLEM

Let 0 c R2 be a polygon with the boundary r. Denote by H = H IM)
0

the standard Sobolev space, and consider the bilinear form B(u,v) on H x H:

B(uv) + 8x 8y a dxdy,

with

1/IJuIlE = u

Let f eL (Q) and
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F(v) = fa fv dxdy e H'

be a functional on H. Then, by u e H we will denote the (exact) solution

of the problem P

(2.1) B(u ,v) = F(v), V v E H.

Obviously, u0  Is uniquely defined by (2.1)

Let At be a class of triangularizatIons of Q; by 5T e At we denote the

triangular mesh and by T = 9' the triangular element. Let S(T) c H be

the set of all functions which are linear on every element T e 5T. Then, as

usual, by u e S(M) we denote the finite element soluticn of the problem P:S

(2.1) B(u sv) = B(u ,v) = F(v), V v E S(M).

We associate to every T e ?T an error indicator n(T) 2 0, which value

depends only on u and f on T and on the neighboring elements. The

concrete form of some error indicators will be given below.

We define the error estimator

1/2

(2.2) (7) = (T)

TET

We will be interested in estimating the error in the energy norm, i.e. we

assume that CM) = Iuo-u s.E* Further we define the effectivity index 8(9)

of the estimator g:

(2.3) 8(Y) =
11U0_ ShE

The error Indicator, estimator and effectivity index depend obviously on uo,

f and ?.

Let Y c H be a set of the (exact) solutions under consideration. We

will call the estimator 9(9') a (Af, ,K I2)-proper If for any u 0 ef

we have
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(2.4) K (IA, Y) s 8 2 (e, ).

The estimator will be called asymptotically (A,Y)-exact if for any u0 e

Y and any sequence ' E A, i = 1,2... such that

(2.5) Ius( I) - 0 o

as I 4 w we have

(2.6) 9C i ) 1 1.

If 8 t 1, i.e. K 1 1, then 9 will be called (A,Y)-upper estimator1

and if 8 s 1, i.e. K 2 1, then 9 will be called (A,Y)-lower estimator.2

We note that K K2 depend on (A,Y). We can also consider the case that Y

consists of one element only, namely u .

If K 1, K2 would be known, then an upper , respectively, lower estimator
121

can be obtained by multiplication of 9 by L , respectively,
K K1 2

An asymptotically exact error estimator can be easily constructed by

exploiting the superconvergence effect of the derivatives of the finite

element solution. A systematic study of the superconvergence phenomena in the

finite elements seems to have begun in early 1970. By now many different

superconvergence effects have been analyzed. For the reviews and references,

we refer to [20], [271 and (301. Most results on superconvergence of the

derivatives for linear triangles are based on [221 and [231. These ideas were

used very effectively in [19]. See also [161 and [171. Superconvergence

results hold only for a very small class (A,Y), when the meshes are

essentially uniform and the solutions are smooth. In [1] it is shown that for

quadratic isoparametric elements, the results are of a very similar nature.

In [18] the meshes Th with triangles that are obtained from triangles by

uniformly subdividing each element of the mesh 92h into 4 congruent
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subtriangles are analyzed. It is shown that under certain restriction on 9h

a quadratic interpolation of the solution obtained by linear elements yields

the same (asymptotically) accuracy In gradients as of the quadratic elements.

Various asymptotically exact estimates were derived differently although the

superconvergence is essentially present. See, e.g., [131 and references

there. The superconvergence effects need a smooth solution and regular mesh.

This assumption can be weakened when only superconvergence on an interior

domain is analyzed [26]. See also [211 for relevant results. The interior

estimates effect can be used for proving asymptotic exactness of the error

estimators on patchwise uniform meshes as in [5] and [8].

Any asymptotically exact estimator is closely related to the super-

convergence and hence a very stringent assumption on the class (A,Y) is

needed. Nevertheless, it is possible to expect that the effectivity index

will be a reasonable one for the class (At,Y) which is not too far from the

one that leads to the asymptotic exactness of the estimator.

In contrast to the asymptotic exactness, the properness holds for much

larger classes of (A,Y). Essentially it could hold for any u0 E H defined

by (2.1) and all triangulation which satisfies the minimal angle condition.

Existence of K I, K 2 can be proven in most cases, for example, using the

ideas in (2], (51 and (8]. In Section 3 we will give the concrete values of

K K for an estimator.

The aim to establish the asymptotic exactness of the estimator is often

practically not important, because in most applications the solution

is insufficiently smooth and the mesh used in practice is not sufficiently

regular. On the other hand, the mesh is often constructed adaptively and then

it is typical that the error indicators are nearly equilibrated , i.e., that

we can consider subclass A, such that
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(2.7) f{?Je At (max~ n() / min n(?J) < k, u 0 et TO' T650

In addition, Y could be restricted to the functions which are the solution

of the problem P with smooth f, for example, f e H (0) and hence, u

has special singularity in the corners of the polygon Q. Obviously, it is

practically important to analyze the performance of an estimator for the class

(X*,Y). In Section 5 we will address this question in the one dimensional

setting.

Although we mentioned only a simple model problem, all the notions

obviously make sense in more complicated settings, say, for example, the

elasticity problem.

3. ANALYSIS OF AN ESTIMATOR

For any triangular element T e 5, let 2(T) be the set of its three

edges. Further, let

IT = f fdxdy

where by ITI we denoted the area of T. For each edge t of the

triangulation 5 set

au
f = a sI for t c r

0 for t c r

an -u (js s nforV(usr IN) d th

where x IN and Tor  are the two triangles sharing the edge t denoted by

IN and TOU; n is the normal to t outwards to TIN* a denotes the

8u
Jump of -n across the edge t; this value is independent of the choice of
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the direction of n

We define the error indicator n(T):

(3.1) (-r) = ITI'M f) + .~ f It, 2 $] 2

teY (T)

where by Itl we denoted the length of the edge . Then we have

Theorem 3.1. (See [12]).

r ,1/2

(3.2a)CI - ci hN)f1 4 (T IfIu - U4i
TET

(3.2b) cP 0 + I1 - upllE + C [ h4(T)IfIT]

TE6T

In (3.1) by If'1,T' we denoted the H1 (T) seminorm, p a 2 integer and

Iu0 - UPIIE is the error of the finite element solution using elements of

degree p. Constants C' and Cp  are constants depending on the

minimal angle a of the triangulation.

Remark. The expression (3.2) could be written in more general form and

also for general boundary conditions, but we will not do it here (for

more, see (12]). The ideas of the proof of (3.2b) are also partially

related to [14] and [251.

Constants C' and Cp  can be computed (see (121) and we get

1/2 -1/2(01) p12 X
(3.3) 0.548(logp) sin -s cP: 0.813(log p)1/2 sin-2

s C 1 /2e n(3.4) 0.171 s /2n 2J S 0.290 sin1  2).

In Table 3.1 we give values of C' and C p for some a and p.
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TABLE 3.1. Values of C' and Cp

cp

o CP

0
C' p=2 p=4 p=6 p=8

7.5 0.051 2.390 3.306 3.660 3.988

15.0 0.072 1.682 2.341 2.609 2.839

22.0 0.087 1.363 1.918 2.156 2.343

30.0 0.099 1.169 1.670 1.895 2.058

37.5 0.108 1.035 1.508 1.727 1.876

45.0 0.115 0.939 1.400 1.615 1.757

52.5 0.119 0.875 1.334 1.547 1.684

60.0 0.121 0.850 1.309 1.522 1.657

Let us now analyze the bounds (3.2) - (3.4). The bound is partially

asymptotic because of the term involving function f without exact

specification of the constant C. Nevertheless, this term is known a

priori and is much smaller than 9 with the exception of the functions f,

which are unlike in applications. If f is constant on the triangles, which

is not uncommon in applications, then this term is not present. More

important is the term lu0 - ulplE, which expresses the influence of the

smootheness of u . This term can be made arbitrarily small by selecting

sufficiently large p. Nevertheless, this influences the constant Cp . From

(3.3) and Table 3.1, we see that Cp  is increasing with p. Hence, when the

solution u0 has the typical singularity in the neighborhood of the corner of

C2, the estimator will underestimate the true error, especially when the mesh

is more or less uniform. If the mesh is refined in the area of the

singularity of uo, then lower values of p can be used and hence the

estimator will be of higher quality. For more about the properties of the
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p-version which are essential here, we refer to [9] and references therein.

We note that C' is independent of p, which indicates that the

overestimation of the error by 9 is not influenced by the smootheness of the

solution.

The dependence of the performance of the error estimator on the smoothness

of the solution, as discussed above, is typical for any estimators used in

practice. We remark that it is possible to show by the arguments in [2], [5]

and [9] that Cp has a bound independent of p. Nevertheless, a realistic
M

value for this bound is not available.

The expressions (3.3) and (3.4) indicate that the estimator deteriorates

with the angle a. We emphasize that the estimator does not take into

consideration any relation between the shape of neighboring elements.

Further, the estimate uses the "worst" element although possibly very few

elements of this type are present in the triangularization.

Let us remark that for the elasticity problem the constant C' is almost

proportional to sin 1 as for Laplace equation but C' z s

while for the Laplace equation Cp z sin-1/2( I. This difference is strongly
a i 1 2

related to the Korn's inequality. For more, see [12].

We mention that the estimate (3.2) is the worst case which is directly

related to the (A,Y) properness. The question arises whether the estimate

(3.2) - (3.4) is optimal, i.e., whether it is achievable for some u0 E Y and

Y e A. It is possible to show (see [121) that for a special choice of the

(uniform) mesh of triangles with angles ,xa = - and a particular

solution u we get for all 0 s S s

0

(3.5) 0.24(tg ) 1/2 0 u sE.

Hence, if 0 < g , 3 is the minimal angle and we get from (3.5)

9



01/2
(3.6) K1 (3) (sin .l) U s 

where

O<ko K(3) :5 k, 0 :
0 1 1

Hence, with respect to the angle a of the triangle, the constant C' is

optimal. For N S g < N the minimal angles is i - 3 = o and we get

(3.7) 0.24 (ctg a) 1/ 2 g = Ouo - USIIE

or

K 2(a) (sin a)-1/2 u-2 11U lu - uslIE

with 0< k s K2 (a) s kk, O s 0 S -, and hence, with respect to the angle

a also the constant C' is an optimal one. Obviously, it would be desirable

to obtain the values of C' and Cp, which are sharp with respect to a

particular class (M,Y).

Coming back to the effectivity index, we obviously have

K - - - I

1 c p 2 C1
a cc

We note that the notion of angle a is related to the differential

equation under consideration. Here we have considered only the case of

problem P given In Section 1.

In applications we can use the error estimator gK based on the error

indicator 13(5) with

iFCT) = K nCT)

where the constant K can be selected arbitrarily. For example, the constant

K can be selected as the geometric average of C' and Cp  or It can be

chosen so that an upper estimate will be obtained Another possibility is to

10



select K so that the error estimator will be asymptotically exact if Y is

the mesh which satisfies a proper assumption; in our case it is the mesh of

equilateral triangles and K = 0.26864. This value will be uscd in the next

section and the estimator will be denoted by 0*.

We note that a correction factor K, which is sometimes used in practice,

cannot influence the dispersion of the effectivity index for class solutions

and meshes.

4. SOME NUMERICAL EXPERIMENTATION WITH THE ERROR ESTIMATOR (3.1)

In this section we report some computational results with the estimator 6*

given in the previous section. For detailed results we refer to [11]. The

aim of these experiments is to see how accurately the theoretical results

presented in Section 3 characterize the performance of the estimator in

various concrete cases.

Example 1. Consider Q = (0,1) x (0,1) and the problem

-Au = f on 0

a = 0 on a92

and f is chosen such that u = sin xx sin ity. Further, consider the
0

regular 3 directional meshes that are obtained by uniform refinement of a

1
basic mesh with the ratio p = -, n = 1,2,4,8 as shown in Fig. 4.1.n

mesh ratio 1/1 mesh ratio 1/2

Fig. 4.1. Regular three directional mesh with the ratio p = 1,2.
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TABLE 4.1. Effectivity index of the estimator for Example 1.

NUMBER OF TMESH OF THE RATIO p
ELEMENTS 1/1 1.2 [ 1/4 1/8

8 0.852
16 0.993
32 1.070 1.289
64 1.183 1.804
128 1.147 1.503
256 1.252 2.068
512 1.180 1.571
1024 1.277 2.145
2048 1.192 1.594
4096 1.287 2.169

UPPER BOUND 2.34 2.87 3 9S 5.38

LOWER BOUND 0.29 0.21 0.15 0.12

In Table 4.1 we report the values of the effectivity index and its bounds

computed from Table 3.1, for p = 2. From Table 4.1 we see that as n 4 C,

the effectivity index converges to a limiting value > 1. In this particular

case, and asymptotic expansion of 8 exists. The dependence on p is not

the same as for the bound,but relatively close. We see that the performance

of the estimator deteriorates with p as expected from the theory. We note

that 8 > 1 in all cases, which,of course, does not follow from the general

theory.

Example 2. Let Q = (0,1) x (0,I) as in Example 1, and let us consider

the problem

-Au = f on 0

u = 0 for x = 0,1, 0 y : 1

8u = 0 for y = 0,1, 0 x ! 1

and f is such that u0 = sin nx. The meshes are as in Example 1, but

for p s 1 and p > 1.

12



This problem is not exactly the one we considered (for simplicity) in

Section 3. (Nevertheless, Theorem 3.1 with the same constants hold also

(see [11] and [12]).)

Table 4.2 shows the effectivity index of the error estimator.

TABLE 4.2. Effectivity index of the estimator for Example 2.

NUMBERS OF MESH OF THE RATIO p

ELEMENTS 1/1 1/2 1/4 2/1 4/1

8 1.013
16 1.564 0.717
32 1.107 2.258 0.507
64 1.598 0.783
128 1.131 2.273 0.553
256 1.608 0.800
512 1.137 2.278 0.566
1024 1.611 0.804
2048 1.139 2.279 0.569
4096 1.612 0.806

UPPER BOUND 2.34 2.87 3.87 2.87 3.87
LOWER BOUND 0.29 0.21 0.15 0.21 0.15

Wee see that the effectivity index converges as n -4, as in Example 1.

Also, here the asymptotic expansion of 8 exists. The observed dependence on

p is once more relatively close to the theoretical one. We see that in this

case the effectivity index can be both larger and smaller than 1 depending

whether p < 1 or p > 1.

Example 3. Let us consider 0 = (-1,1) x (-1,1) partitioned

into 4 square subdomains wi, i = 1,2,3,4 as shown in Fig. 4.1

2 1
a(z,y)= a( =y)

3 4
a(--,y) = a(-, y)=

Fig. 4.2. Coefficient a for the problem of Example 3.
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Let us consider the problem

-V(a(x,y)Vu) = 0 on Q

au
a(x,y) -n = g on aQ

where a(x,y) is constant in each ., i = 1,2,3,4, a(x,y) I on w ,1 1 3

and a(x,y) = a on w2 ' W4  The value a is such that the exact solution

u in w is

u (x,y) = r (C. cos(av) + S. sin(p)).0 1 1

where (K,p) are polar coordinates. For = 0.5 and a = 0.1, we get a =

3 + 8 . 5.828 and a = 166.477.... respectively. Although the problem

addressed in this example is not exactly of the type discussed in Sections 1

and 2, the theory covers it too (see [111).

Let us consider the uniform 3 directional meshes with the ratio p = 1

shown in Fig. 4.1. In Table 4.3 we give the effectivity index G.

TABLE 4.3. The effectivity index for Example 3
and uniform mesh.

NUMBER OF iii =0.5 = .
ELEMENTS

32 0.658 0.520
128 0.694 0.512
512 0.711 0.524

2048 0.719 0.536
9192 0.722

We see that when the singularity increases, the effectivity index is going

down as predicted theoretically. (This is the influence of the term

Ilu0 - up11E in the estimate as discussed in Section 3.)

Let us now use an adaptively constructed mesh which is refined in the

neighborhood of the origin where the singularity is located. Two sequences of

meshes, A and B, which differ in the strengths of refinement were constructed.

14



The strength of the mesh refinement of the sequence B Is stronger than that of

A. In Fig. 4.3 we show two meshes of both sequences.

\1

~Al \ \ /

~ ~ 7

A2 B2

Becus oftesrne/eieetI eqec ,asalrvleo
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In Table 4.4 we report the effectivity index for Sequences A and B of the

meshes for the case a = 0.5

TABLE 4.4. The effectivity inces 8 for Example 3 (a = 0.5)
for the meshes with different strength of refinement.

SEQUENCE A SEQUENCE B

NUMBER OF NUMBER OF
ELEMENTS 8 ELEMENTS 8

32 0.658 32 0.658
87 0.712 64 0.719
194 0.738 96 0.787
370 0.761 168 0.830
725 0.787 244 0.880
1297 0.807 363 0.918
2346 0.828 485 0.960

604 0.959
768 0.975
965 0.995

We see also that the effectivity index for mesh A is better than that for the

uniform mesh (Table 4.3) as predicted by the theory.

We have seen that the theoretical results presented in Section 3 explain

very well the computational data. For more numerical experiments, see [11).

Summarizing the results shown here and in [11], we can make the following

conclusions about the estimator given in Section 3.

1. The estimator performs as expected from Theorem 3.1.

2. The effectivity index depends on the mesh, especially on the minimal

angle of the triangles. Hence, avoiding small angles is preferable. The

notion of the angle depends on the differential operator.

3. The effectivity index is not too sensitive to the topology of the mesh

uniform or not uniform (except for the minimal angle).

4. The effectivity index can be larger or smaller than 1 depending on the

solution.

16



5. If the solution has singular behavior, the quality of the estimator

deteriorates and the effectivity index goes typically down. The derivation

can be avoided by the proper refinement, for example, by adaptive procedure,

as follows from Theorem 3.1.

5. ANALYSIS OF AN ESTIMATOR IN ONE DIMENSIONAL CASE

As we have said in Section 2, asymptotic exact estimators can be

constructed by employing the superconvergence phenomena of the recovery of the

gradient of the solution for linear elements or higher derivatives for

elements of higher degree. This applies only for the meshes (essentially

uniform) and solutions which produce the superconvergence effects. Never-

theless, these error estimators can be used then for wider class of meshes and

solutions,and one can expect that a KIK 2 , proper estimator will be

obtained with acceptable values of K ,K2 for a reasonable class (A(,Y).

This is essentially the idea of (19].

We will address here a construction of an error estimator in one dimension

which is directed to meshes constructed adaptively. For more details see

[101.

Let us consider the model problem

(5.1) -u" = f on I = (0,I)

u(O) = u(M) = 0

and let f be such that u e HI(I). Let 5 be a partition of the interval
0 0

I with nodes 0 = x < x < ... < x = , Ti = [xi i x I h. = x. - x.wihnde 0x fli-'i' 1 1 -I

i = 1,..., n. Consider the finite element method with piecewise linear

elements on 5. In this case we have

(5.2) u( .)(xi) = u0 (xi).

Obviously u' is constant on T and hence, it is discontinuous. Let us
s(T)

17



now construct a continuous piecewise linear function U so that for i =

1,...,n-1,

(5.3) U(x i ) = u'I + u's I - + i 1 u s l1

where

(5.4) UUIIS = u'I -u'I
i +i i

is the Jump of the derivative of us at xI  (obviously I = 1 + i), U(x i)

depends only on the values of u' In the elements 5' and i' which

contains the mesh point x For the definition of U(x ) and U(xn ), we will

extend the U(x) by an extension preserving the smoothness (for example, by

an antisymmetric extension).

We will now define the error Indicator

(5.5) iiei) r ( Mj (a~) -u's)' dx]

and accordingly the error estimator.
hi

The problem is now how to select oI Let AI h and
i+1

I(5.6) (X 1
1 'I I+A i1

1( 5 .7 ) C c 2 , -1
2,1 I+AI

The estimator 1 based on (5.6) was proposed in [281 and the estimator 21 2

based on (5.7) was proposed in (51 and [9]. Let us note that both estimators

1 and 92 are the same for uniform mesh. i.e., for A, = 1. We have

Theorem 5.1 (see [10])

i) 9 is an asymptotically exact estimator for any mesh and u e

H2 C(I) , > 0.

18



1i) 1 is an asymptotically exact estimator only for A = 1, i.e., for1

the uniform mesh.

Note that both estimators can be understood as extension of an

asymptotically exact estimator for uniform mesh. Here the estimator 2 is2

asymptotically exact for arbitrary mesh, but similar result cannot be achieved

in two dimensions.

Let us now address the problem of the optimal selection of a when u0

is not sufficiently smooth and Theorem 5.1 is not applicable.

Let us assume that

i) u"(x) > 0 on I

ii) u'(x) usI + ai -xi_ ) r,(x) where x 2

2 2

and

a, 12 f (u-us)(x)dx

hi T

hI T I

a.h.
iii) (u'-u')j (xi) 1 1 (I-LI) Li = o(M)s T i 1 2 1

aIh
(u'-u') I (X)= 2 (I-RI) R. = o()

i 2 i1 1

23
Iau'u)ht = I C1-K ), K i = o(1).

((U'-U')2)1dx - hOK2K M

ii

We remark that if u is sufficiently smooth L, RI Ki = O(hi). The

assumption that u(x) does not change, the sign in the neighborhood of the

singularity can be relaxed.

We have

Theorem 5.2 (see (10)). Assume that i), Ii), and iiI) are satisfied and

that the mesh is equilibrated with respect to the energy norm (i.e., TI(T)

constant), then
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1(5.8) Mi I+A/ 2

0

yield an asymptotically exact estimator.

Theorem 5.2 shows that the asymptotically exact estimator for an unsmooth

solution and adaptively constructed meshes is different than the estimator

which is asymptotically exact for smooth solution 1  14. When 0 is

0

smooth then, of course, A = 1 + o(1) for the adaptively constructed mesh.

Let us mention that the choice

(5.9) 0Is] =
.I/S

+A

leads to the asymptotically optimal estimator when the mesh is equilibrated

with respect to the norm u'1L ,I s s s , and hence, the estimator

is related to the norm L while the estimator & Is not a good one

for any adaptively constructed mesh for an unsmooth solution.

~1/2
If we would know the values of (u-us ) dx = (T), then the

optimal error estimator will be (see (101) for

A[21
(5.10) a[ 1

1 A E(II 1/2
71EX (T I}

if 71X EX 1+1 i 1/Ex~i. ) CTi)

EXX I

1Ex (Ti) 1r(Ti)

we can use these values in (5.10) and get the values of a which will be

denoted by [2

Let us now present some examples.
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Example 5.1. Let u = xp - x be the solution of (5.1), and let the x. =

(3 i = 0,...n. Further, let S. 1 denote the elementary
1n) U s' 1L (T.)

2 1

effectivity Index. In Table 5.1 we report for n = 10 the value of I1u' -

U' sL cTi) = error and the elementary effectivity indices i for the error

Il] (21 [2] -(2]
estimator, based on c , a , and (

TABLE 5.1. The elementary effectivity index.

T. p = 0.7 5  = 9.01

e] (2] -[2] ^[2]i error (X cc OC

1 1.99(-3) 1.290 1.237 1.095 1.131

2 8.11(-3) 1.118 0.881 1:011 0.895

3 1.42(-2) 1.128 0.861 0.907 0.909

4 1.95(-2) 1.110 0.897 0.929 0.934

5 2.42(-2) 1.084 0.928 0.950 0.957

6 3.86(-2) 1.063 0.948 0.964 0.962

7 3.27(-2) 1.048 0.961 0.973 0.981

8 3.66(-2) 1.037 0.940 0.979 0.971

9 4.04(-2) 1.029 0.976 0.984 0.998

10 4.40(-2) 0.700 0.936 0.986 0.968
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Ti p =1.75 2.5

[1] [2] [2] -[2]
error O a a (

1 3.56(-4) 3.247 2.696 1.036 1.242

2 2.15(-3) 1.656 1373 1.022 0.963

3 4.96(-3) 1.286 1.146 1.005 1.034

4 8.59(-3) 1.156 1.076 1.002 0.980

5 1.29(-2) 1.097 1.047 1.001 1.019

6 1.79(-2) 1.066 1.031 1.001 0.986

7 2.35(-2) 1.048 1.023 1.001 1.013

8 2.97(-2) 1.036 1.017 1.000 0.989

9 3.64(-2) 1.028 1.013 1.000 1.010

10 4.36(-2) 0.875 0.914 1.000 0.991

The meshes used are approximately equilibrated and hence the quality of

the estimator based on cc and a [ 2 ] are comparable and of good quality.

-[1]
The optimally corrected estimator and the theoretical one (based on a and

-[21a give a better effectivity index.

In Table 5.2 we show the elementary effectivity indices for the mesh which

is very well equilibrated.
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TABLE 5.2. The elementary effectivity Index for an
equilibrated mesh.

i p = .75, =6.5

(1] [21
i error c

1 1.50(-2) 1.05414 0.99399

2 1.57(-2) 0.95943 0.98301

3 1.57(-2) 0.99164 0.99574

4 1.57(-2) 0.99608 0.99809

5 1.57(-2) 0.99770 0.99890

6 1.57(-2) 0.99848 0.99928

7 1.57(-2) 0.99892 0.99949

8 1.57(-2) 0.99920 0.99962

9 1.57(-2) 0.99938 0.99971

10 1.57(-2) 0.99414 0.99974

We see from Table 5.2 that for perfectly equilibrated mesh, the estimator

[21
based on a performs very well, as expected.

Let us compare the performance of the estimator and 2 based on~2

(5.6 and (5.7)).

Example 5.2. Consider the mesh with xi_2 = 0.01, xi_1 = 0.04, x. =

0.09, x 1 = 0.16 and let u(x) = Re(xP+qi), and let us be interested in

8. for the estimators g and 9 . Table 5.3 shows the result.
1 2

23



TABLE 5.3. The elementary error Indicator 8 as function of p,q.

q =0.0 q =0.5

p

1 2 1 2

0.55 1.07 1.78 4.70 6.19

0.65 1.03 168 3.18 5.21

0.75 1.99 1. 57 1.59 2.80

0.85 0.97 1.48 1.18 2.07

0.95 0.96 1.39 1.01 1.69

1.05 0.96 1.32 0.94 1.45

1.15 0.96 1.26 0.92 1.29

1.25 0.97 1.20 0.93 1.17

1.35 0.98 1.15 0.97 1.08

1.45 1.01 1o11 1.01 1.02

1.55 1.03 1.07 1.07 0.99

1.65 1.07 1.04 1.13 0.97

1.75 1.10 1.02 1.20 0.96

1.85 1.15 1.01 1.27 0.97

1.95 1.19 1.00 1.35 0.99

2.05 1.24 1.00 1.44 1.02

2.15 1.30 1.01 1.52 1.06

2.25 1.35 1.02 1.61 1.11

We see from Lhis table that the estimator 9 is better than 9 for an
1 2

unsmooth solution, and 2 is better than 9 for a smooth solution, as2 1

expected, due to the asymptotic exactness of 9 .2

13 can make the following conclusion:

1) The asymptotically exact estimator for the set of smooth solution does

not perform well for an unsmooth solution.

2) The asymptotically exact estimator for the class At* of equilibrated

meshes performs well also for an unsmooth solution. This estimator is a

different one when compared with the asymptotically exact estimator for smooth

solution.
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3) For different equilibration criteria different estimators are

asymptotically optimal.

Although no two dimensional analysis is available, we expect that very

good estimators are possible to construct for equilibrated meshes as in one

dimension.
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