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FOREWORD

This is the Final Report of contract F19628-88-C-01 59, Analysis of High Frequency Seis-
mic Data. The aim of the research conducted under this contract was to characterize the
high frequency content of noise and signals, and to develop methods of discriminating
between mine blasts and other seismic sources using high frequency seismic data. Two
previous reports (Israelsson et al., 1990; and Israelsson and Carter, 1991) describe much
of the research conducted under this contract and covered the high frequency characteris-
tics of local, regional, and teleseismic waveforms as recorded at the short period Scandi-
navian arrays and the NRDC high frequency stations in the Soviet Union.

Much of the work presented in the previous reports contributed to the mine characteriza-
tion study described herein. The material covered in Israelsson et al. (1990) showed evi-
dence that shooting practices at the Kola Peninsula mines is different than at the
Scandinavian mines. Studies were also made of event characterization using spectrograms
(in an attempt to characterize events with spectral scalloping) and waveform correlation of
closely spaced events. The spectral scalloping study showed that while spectral scalloping
was evident for some mine blasts, it was not a consistent feature. Waveform correlation,
on the other hand, showed promise as a method for grouping events from a specific mine
and was adopted in a modified form for this final study. Israelsson and Carter, (1991) con-
tains studies on the high frequency content of teleseismic P-waves; estimating the charac-
teristics of ripple-fired explosions; and slowness estimation with interpolated NORESS
data. The slowness estimation study was able to discern differences in the wave-fronts of
the first arrivals from the northeast and southwest sections of the Balapan test site using
interpolated NORESS data.

The final six months of the contract were devoted to a study of mining event characteriza-
tion for location and discrimination purposes. Cluster analysis was used to group events
with similar characteristics from the mining district of Karelian, northwest of St. Peters-
burg. The groupings compared well with a careful visual classification of the same data
and were hypothesized to be associated with specific mines. The results of this study are
"ery promising and warrant expanding to other mining districts. Future studies based on
this work, however, should verify the event sources using non-seismic data before an
absolute event identification is assigned.
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INTRODUCTION
Numerous discrimination studies have been performed to distinguish between events of
different source type (Blandford, 1982; Pomeroy et al., 1982). The initial studies used
modeling in an attempt to reproduce the effects of the source on the signal or spectrum.
More recent studies used a case-based approach and tried to parametrize the signal and
spectrum. Studies of frequency content in order to detect "ripple firing" (Baumgardt and
Ziegler, 1988; Smith, 1989) showed that spectral modulations could be used to distinguish
mine blasts from earthquakes and nuclear explosions. Dysart and Pulli (1989) character-

ized chemical explosions and earthquakes recorded at the NORESS array using amplitude
ratios and spectral complexity. Israelsson (1990), in an application of cluster analysis to

the discrimination problem, was able to distinguish closely spaced events located within
an area of 20 km by 75 km by taking advantage of the repeatability of signals from ' nilar
sources. In general, these studies showed that methods used to discriminate events should
be applied at regional distances so that the tectonic environment is integrated (Bennett et
al., 1989).

The purpose of this study is to characterize and distinguish between mines locatled within
a few kilometers of each other. This characterization may then be implemented in an auto-
matic detection, location, and discrimination system such as the Intelligent Monitoring

System (IMS) (Bache et al., 1990). A discrimination method that can associate events
with a particular mine will reduce the number of events that need to be investigated in

more detail.

The IMS processes data from four arrays (ARCESS, NORESS, FINESA and GERESS)
providing a large data set of local and regional events from the baltic shield and the west-
ern part of the east-european platform (Figure 1). An automatic location is computed for
each event which is later reviewed by an analyst. Even when an event location is con-
strained by data from three different arrays, the error ellipse can be large enough to
include several mines. The average estimated error of the IMS locations is 20 km (Bratt et
al., 1990).

Three different areas with a high concentration of mines in the local to regional distance
range from the IMS arrays were identified in the Russian territories closest to Finland.
Two areas are located near St. Petersburg and the third one includes mines on the Kola
Peninsula. This paper is devoted to the results obtained for the mining district located
north of St. Petcrsburg, in Karelian.

The discrimination technique used for this study is a cluster analysis method (Everitt,
1986) based on waveform similarity. It does not require any pre-classification of events
into groups.
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located in Norway while FINESA is located in Finland. Three important min-
ing districts have been identified: in Estonia, in Karelian, and on the Kola
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DATA

The data set covers the period of time from November 4, 1990 to June 28, 1991. Wave-
forms recorded at FINESA, ARCESS and NORESS as well as phase parameters com-
puted and saved during the automatic detection and location of events by the IMS were
utilized in this study. The set of phase parameters extracted from the IMS database was
similar to the set ised by Baumgardt (1987).

Waveforms

Waveforms used in this study were automatically saved on optical disk by the IMS. Since
November 4, 1990, all waveforms with at least one associated phase after analyst review

have been archived, unless a software failure caused a loss of data.

Database Parameters

Only events with at least one Pn or Pg and one Lg phase were considered. For each phase,
the following parameters were extracted from the IMS parameter database:

- detection time
- azimuth computed fromf-k analysis
- velocity computed fromf-k analysis
- center period of the phase
- short term average measured on the incoherent vertical beam filtered between 2 and 4

Hz.
The detection time was used to compute a "relative time". This relative time was defined
as the time difference between the earliest phase detected at any of the stations and the

detection time of the other phases (Bache et al,1990). The short term average (sta) values
were used in a ratio: sta(Pn)/sta(Lg) computed in decibels. Additional polarization param-

eters such as azimuth and rectilinearity for the P-type phase, horizontal-to-vertical ratio
for P-type and S-type phases, and planarity for the S-type phases were added to the set of
parameters described above.

Event locations

In addition to the IMS bulletin, a source of accurate locations for small events in this area

is the bulletir pubiished by the University of Helsinki (Uski et al., 1990). Monthly bulle-
tins are released several months after the events occur. A weekly bulletin is released ear-
lier.

Fewer events were reported in the Helsinki bulletin than in the IMS bulletin as the Hels-
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inki bulletin did not report most of the events with an IMS magnitude below 1.2 (Figure
2). Of the 55 events not reported in the Helsinki bulletin, only seven had an IMS magni-
tude greater than 1.2. Most of the events with a magnitude between 1.2 and 1.8 in the Hel-
sinki bulletin had a "manual location" which means that the Finnish analyst assigned them
to a particular mine by visual inspection. An automatic location was reported for the
events with an IMS magnitude above 1.8 and included information from other stations in
the Nordic countries. The IMS location included information from only the FINESA array
for small events or from all three arrays (ARCESS, NORESS, FINESA) for larger events

(usually with a local magnitude above 1.5).

MINE LOCATIONS

Table 1: Mine Locations from the Helsinki bulletin (Hels.) and SPOT photos (Fox,

1990).

Hels. lat. Ion. azim. dist. SPOT lat. Ion. azim. dist.

HC1 60.70 28.70 119.20 1.480 SCI 60.7490 28.8360 116.30 1.510

HC2 60.7 29.0 116.47 1.60 SC2 60.700 29.181 114.99 1.68

HC3 60.6 29.2 117.78 1.74 SC3 60.581 29.065 119.48 1.69

HC4 60.8 29.3 111.06 1.69 SC4 60.846 28.99 111.76 1.53

HC5 60.9 29.3 107.88 1.65 SC5 61.008 29.038 105.71 1.50

HC6 60.9 29.4 107.29 1.70 SC6 60.953 29.176 106.84 1.58

HC7 60.8 29.5 109.78 1.78 SC7 60.902 29.348 107.53 1.67

HCI0 61.1 29.9 98.93 1.88

HCI1 61.1 30.2 98.04 2.00 SCi1 61.142 29.870 97.75 1.85

HCi2 61.5 30.4 86.56 2.07

HC13 61.9 30.6 76.05 2.20

HC14 61.4 31.6 88.54 2.65 SCI4 61.605 31.424 84.06 2.57

HB15 60.0 29.9 125.99 2.37 SB15 60.019 29.742 126.87 2.30

N114 61.03 28.18 111.34 1.10

N117 61.9 29.0 70.55 1.47
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Table I is a list of the mine locations available for the area. The Helsinki bulletin made
reference to 15 mines in this area during this time period. The left half of the table corre-
sponds to the locations found in the Helsinki bulletin. The right half of the table gives
information compiled by Fox (1990) using satellite photos. Helsinki mine locations have
been determined seismically by averaging repeated events. The accuracy of these loca-
tions is only given to one-tenth of a degree. Some locations clearly include several small
mines about 2.5 km apart. According to the scientists at the University of Helsinki, loca-
tions of events outside of the Finnish network are not considered accurate to better than 5
km. An attempt was made to provide an equivalent SPOT location for each Helsinki mine.
SPOT locations can be an average location that includes several small mines. Most SPOT

locations have a corresponding Helsinki location; however, a few Helsinki mine locations
do not have a corresponding SPOT location (Figure 3)

ANALYSIS METHODS

Cluster analysis

In order to characterize and classify the mining events from a small area, a method was
required that could distinguish the subtle differences between closely spaced events. The

ability of the method to work in an automated system was also considered. Cluster analy-
sis was chosen for the task as it provided a method of grouping events based on an com-
parison of event pairs. The result of each comparison was reduced to a single number, the
collection of which constituted the elements of a matrix used by the cluster analysis.

Cluster analysis can be based on the comparison of either "distance" or "similarity"
between data (Everitt, 1986). Distance values are greater than or equal to zero. Similarity
values range from zero to one. In a distance scheme, data that are similar are assigned a
small distance value and data that are dissimilar are assigned large distance values. The
opposite is true for similarity measurements. A similarity measurement was applied to the
waveforms while a distance measurement was more appropriate for parameter data. The
results of either measurement are represented by a cluster tree or dendogram.

Among the several methods used to build cluster trees, the most popular are the complete
linkage method and the single linkage method. The results of these clusters can be quite
different. In the single linkage method, distance between groups is defined as the distance
between the closest members while in the complete linkage method, this distance is
defined as the distance between the furthest members. The results presented in this paper
were better represented by the complete linkage method because it handles problematic

data better (i.e. multiple events). Several similarity measurements were tried and are
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described below.

Cross-correlation

By assuming that events from the same mine should look very similar, the computation of
cross-correlation values provides an easy way to build a numerical link between similar
events. A high cross-correlation value between two events would imply a high probability
that the events were from the same mine. A cross-correlation function wi s computed

between each pair of events using signals recorded on the sz channel (FIA 1 sensor) at

FINESA. The input to the cluster analysis was a symmetric n x n matrix where n was the
number of events. The elements of the matrix were the maximum values of the cross-cor-
relation function.

Waveforms recorded at FINESA from the Karelian mines were studied because the signal-

to-noise ratio was higher than for the data recorded at ARCESS or NORESS. Different
data processing techniques were tested before computing the cross-correlation function.
Raw data, filtered data, and the envelope of either unfiltered or filtered data were tried
using sz, sn and se components either separately or in combination. Different signal
lengths were tested including the entire signal, only P, and only Lg. The best results were
obtained for the cross-correlation between the envelope (from the Hilbert transform) of
the entire signal on the sz component. When the signal-to-noise ratio was low, best results
were obtained with signals filtered between 1 and 15 Hz.

Other similarity measurements

The method described by Israelsson (1990) was based on a covariance matrix which was
built for each component pair and each event. The six covariance matrices were stacked
for each event and a cross-correlation was computed for each pair of stacked traces. This
method was tested but did not provide more accurate results than the cross-correlation

between envelopes.

Another similarity measurement was made using the maximum value of the coherence
between pairs of events. Two different methods were used to pick this maximum value. In
one method, the maximum of the entire coherence furvrtion was used; and in the other
method, the maximum was picked in the frequency band that showed the best signal-to-
noise ratio. Neither method was successful because there was little coherent energy above
the noise between event pairs and it was difficult to find a consistent frequency band from

event to event that provided useful results.

Distance measurements

In an attempt to use data parameters, relations between events were better represented by a

8



distance measurement. The set of phase parameters characterizing each event was used to

compute a "distance" value between each pair of events. The data were first normalized as

the parameters did not have the same units. Then, a principal component analysis was per-

formed on the data to eliminate any redundant information. Finally, an euclidean distance

(Everitt, 1986) was computed for each pair of events that were used in the cluster analysis.

Visual classification

In order to better interpret and verify the results of the cluster analysis, a visual classifica-

tion was performed using recordings of the vertical channel. The visual classification was

based on the following characteristics listed in order of importance:

- Lg - P time,
- Rg - P time,
- similarity in the shapes of the P arrivals for the first three seconds,
- similarity in the shapes of the Lg and/or the Rg phases,
- superposition of the waveforms for each phase,
- frequency content.

The visual classification using filtered and unfiltered data sometimes resulted in different

groupings for events from closely spaced mines. The classification based on unfiltered

data (when the signal-to-noise ratio was high enough) was preferably used.

Interactive f-k analysis

An f-k analysis was performed interactively on most of the events using all eighteen sz

channels of the FINESA array. The aperture of the array is 2 km. An apparent velocity

(from a slowness) and an azimuth were obtained for each of the studied events. In this
way, a coherent beam was calculated for each event. The purpose of this analysis was to

see if thesef-k results could provide event locations that were accurate enough to associate

events to specific mines. Azimuth and slowness values obtained by the IMS using auto-
matically picked phases did not provide sufficient accuracy.

FINESA RESULTS

Seven months of FINESSA data were searched for events that occurred within the area

between 60 and 620 latitude, and 28 and 32' longitude. One hundred and forty-four events
met these criteria and were used in the cross-correlation and cluster analysis computations.

The IMS locations of the events are plotted in Figure 4 and listed in Table 2.. The IMS

local magnitudes ranged between 0.22 and 2.66. The distance from FINESA was between

9
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Figure 4. One hundred-forty-four events recorded at FINESA were studied and classi-
fied. Their ]MS locations are shown on this map using labels corresponding
to each group. Their IMS local magnitudes range from 0.22 to 2.6. Even
though IMS locations gave a good idea of the event locations, they were not
accurate enough to distinguish between eveni~s finm two mines 5 km apart.
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Table 2: One-hundred-forty-four events recorded at FINESA.

Ref. V. C. H.C. Date Time ml Lat I Lon I Lat2 Lon2
c9T # Z2 AU 042471 T10:(]O:33 T.49 61.7- 3U.78 59.27 T69
c7 # ZI HB9 11/21/90 12:17:07 1.26 60.71 28.50 59.2 27.6
c79 # W NR 04/09/91 12:57:51 1.08 60.10 28.98 ..... .....

c104 # Z2 NR 04/29/91 10:59:55 1.49 60.07 30.80 ..... .....

c17 ? B1 NR 12/16/90 02:40:17 1.06 61.92 29.55 ..... .....
c37 ? Z2 NR 01/08/91 19:40:37 0.47 61.87 29.79 ..... .....

c40 ? Z2 NR 01/15/91 10:03:54 0.38 60.89 29.96 -----
c41 ? Z2 NR 01116/91 00:07:25 0.59 61.87 30.36 ..... .....

cl01 ? ZI NR 04/26/91 11:33:56 0.61 61.34 28.70 ..... .....

c112 ? Z2 NR 05/12/91 12:45:19 0.37 60.11 28.97
c113 ? Z2 NR 05/12/91 13:06:58 0.20 60.07 28.90 ..... .....

c136 ? B1 NR 06/06/91 20:41:54 0.74 61.81 29.63 ..... .....

c144 ? BI NR 06/28/91 07:31:24 0.59 61.02 29.18 ..... .....

CIO A A AU 11/26/90 12:01:35 1.27 60.76 28.76 61.04 28.31
c3 A A NR 11/15/90 08:02:47 0.83 60.59 28.83 ..... .....
c30 A A NR 01/03/91 12:50:42 0.96 60.68 28.72 ..... .....

c33 A A NR 01/04/91 12:37:10 0.94 60.77 28.41 ..... .....
c36 A A NR 01/07/91 10:31:23 0.91 60.68 28.80 ..... .....
c45 A A NR 01/30/91 12:37:27 0.90 60.57 28.81 ..... .....
c47 A ZI NR 02/04/91 12:10:58 0.76 60.77 28.77 ..... .....

c48 A Z2 NR 02/06/91 12:06:49 0.40 60.79 28.69 ..... .....
c106 A A NR 04/30/91 11:03:02 1.00 60.74 28.61 ..... .....
clII A A NR 05/10/91 11:03:20 1.07 60.98 28.31 ..... .....
c34 B B2 N117 01/04/91 14:17:51 1.37 61.80 29.63 61.9 29.0
c29 B BI NR 01/02/91 11:52:31 0.50 61.76 29.81 ..... .....

c31 B BI NR 01/03/91 19:37:23 0.66 61.92 29.43 ..... .....
c32 B BI NR 01/04/91 11:39:42 0.88 61.74 29.63 ..... .....

c38 B BI NR 01/14/91 11:42:44 0.70 61.92 29.80 ..... .....
c39 B BI NR 01/14/91 19:50:54 0.71 61.63 29.81 ..... .....
c44 B B2 NR 01/28/91 14:23:25 1.28 61.68 28.55 ..... .....

c52 B BI NR 03/11/91 11:46:43 0.54 61.72 29.52 ..... .....

c54 B BI NR 03/11/91 19:40:21 0.56 61.94 29.43 ..... .....
c56 B B 1 NR 03/14/91 11:47:30 1.04 61.73 29.50 ..... .....

c62 B BI NR 03/21/91 19:38:48 0.70 61.75 29.68 ..... .....
c67 B B NR 03/26/91 19:39:11 0.68 61.73 29.47 ..... .....
c78 B B 1 NR 04/08/91 21:56:35 0.60 61.76 28.82 ..... .....
c86 B Z2 NR 04/17/91 18:43:58 0.92 61.86 28.88 ..... .....
c88 B Z2 NR 04/18/91 18:50:56 0.37 61.72 29.66 ..... .....
c92 B BI NR 04/22/91 18:50:23 0.54 61.57 29.67 ..... .....
c109 B BI NR 05/08/91 18:37:51 0.25 61.76 29.26 ..... .....
c116 B BI NR 05/14/91 18:40:40 0.37 61.78 29.51
c122 B 81 NR 05/23/91 19:33:23 0.47 61.44 29.61
c126 B Z2 NR 05/29/91 20:51:57 0.38 61.75 29.69
c133 B I NR 06/4/! 18:55:28 0.22 61.76 29.48
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Table 2: One-hundred-forty-four events recorded at FINESA.

Ref. V. C. H.C. Date Time ml LatI Lon Lat2 Lon2
c18 -C- WC 4 1217T0 12.5r58 -1.96- 60.76 W W 23
c81 C C HC5 04/11/91 13:21:38 2.14 60.93 28.94 60.9 29.3
c140 C C HC5 06/26/91 12:31:59 2.09 60.93 29.01 60.9 29.3
c12 C C HC6 11/29/90 12:29:11 2.66 60.91 29.13 60.9 29.4
c69 C C HC6 03/28/9 1 14:49:15 2.32 60.90 28.96 60.9 29.4
c 123 D D AU 05/24/91 12:02:00 1.99 60.80 28.96 60.92 29.03
c49 D D HC6 12/14/90 11:52:05 2.22 61.11 29.15 60.9 29.4
c77 D D HC6 04/08/91 11:41:08 1.76 60.98 28.97 60.9 29.4
c53 E E AU 03/11/91 12:29:45 2.12 60.91 29.02 60.95 29.03
c94 E E AU 04/24/91 12:07:05 2.25 60.98 29.08 60.96 29.30
c98 E E AU 04/25/91 12:10:27 2.18 60.89 29.13 61.00 29.17
c129 E E AU 05/31/91 13:55:23 2.18 61.03 29.11 60.89 29.12
c22 E E HC5 12/25/90 12:28:48 2.16 60.78 29.08 60.9 29.3
c28 E E HC5 12/28/90 12:27:34 2.08 60.95 29.10 60.9 29.3
c89 F F HC4 04/19/91 12:43:01 1.76 60.93 29.12 60.8 29.3
c21 F F HC5 12/22/90 16:48:34 1.99 60.75 29.08 60.9 29.3
c134 F F HC5 06/05/91 11:43:12 1.79 60.77 29.01 60.9 29.3
c2 G G HC2 11/05/90 12:00:21 2.13 60.85 29.05 60.7 29.0
c50 G G HC2 03/07/91 11:11:24 2.29 60.64 28.72 60.7 29.0
c97 H AU 04/25/91 10:43:00 2.05 60.75 29.03 60.67 29.07
c117 H H AU 05/21/91 12:33:30 1.86 60.78 29.05 60.74 28.99
c125 H H AU 05/29/91 14:06:55 1.85 60.74 28.73 60.64 28.96
c57 H H HCI 03/14/91 11:08:08 1.73 60.72 28.91 60.7 28.7
cl H H HC2 11/27/90 12:17:01 1.42 60.67 28.55 60.7 29.0
c75 H H HC2 04/04/91 12:53:16 1.50 60.75 28.82 60.7 29.0
c16 K K AU 12,/06/90 14:22:38 2.22 60.85 29.19 60.89 29.09
c46 K K AU 01/30/91 12:59:33 2.24 60.85 29.15 60.89 29.11
c74 K K AU 04,03/91 12:25:23 1.99 60.94 29.11 60.91 29.16
c76 K K AU 04/05/91 12:54:23 2.14 60.91 29.13 60.92 29.13
c95 K K AU 04/24/91 13:10:52 2.32 60.84 29.04 60.90 29.21
c27 K K HC4 12/27/90 12:30:36 2.23 60.83 29.23 60.8 29.3
c51 K K HC6 03/07/91 12:37:41 2.17 60.78 29.24 60.9 29.4
c142 K K HC6 06/27/91 13:08:04 2.40 60.87 29.12 60.9 29.4
c35 L L AU 01,05/91 11:41:24 1.56 60.91 29.64 60.90 29.31
c25 M K AU 12/26/90 10:07:28 2.25 60.83 29.31 60.83 29.21
c9 M M HC5 11/24/90 07:48:19 1.65 60.89 29.43 60.9 29.3
c85 M M HC6 04/17/91 09:48:32 1.94 60.97 29.17 60.9 29.4
c60 M K HC7 03/20/91 11:59:51 1.93 60.96 29.19 60.8 29.5
c82 M M HC7 04/12/91 14:23:49 1.68 60.97 29.15 60.8 29.5
c132 M M NR 06104/91 12:00:02 1.11 61.07 29.35 ----- .....
c!08 0 01 AU 05/06/91 16:07:34 2.06 60.55 29.40 60.48 29.19
c 124 0 02 AU 05/28/91 16:13:45 1.87 60.53 29.25 60.51 29.09
c23 0 01 HCI 12/25/90 14:50:11 1.25 60.44 29.31 60.7 28.7
c73 0 02 HC3 04/02/91 14:14:26 2.01 60.64 28.95 60.6 2.
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Table 2: One-hundred-forty-four events recorded at FINESA.

Ref. V. C. H.C. Date Time ml Lat1 Lon I Lat2 Lon2
c4 O OU W 1-016W90 12w1T27 1.5 66.36 29.0 .
ci00 0 02 NR 04/25/91 13:08:04 1.67 60.54 29.24 ..... .....
c12! P P AU 05/23/91 13:29:58 1.68 61.21 29.97 61.07 30.03
c128 P P AU 05/31/91 13:33:41 1.43 61.15 29.88 61.10 29.88
c8 P P HCIO 11/22/90 11:37:10 1.88 61.24 29.95 61.1 29.9
c14 P P HC1O 11/30/90 11:49:14 1.48 61.03 29.94 61.1 29.9
c59 P P HCIO 03/19/91 16:16:40 1.67 61.17 29.69 61.1 29.9
c66 P P HCIO 03/25/91 09:23:51 2.06 61.21 29.78 61.1 29.9
c72 P P HCIO 04/02/91 09:48:18 1.68 61.13 30.11 61.1 29.9
c90 P P HCIO 04/19/91 12:58:09 1.93 61.17 29.85 61.1 29.9
c87 P P HCIl 04/18/91 13:14:26 1.59 61.40 29.79 61.1 30.2
c135 P P HCII 06/05/91 14:26:01 1.27 60.91 29.54 61.1 30.2
c68 P P NR 03/28/91 09:19:48 1.53 61.27 29.82 ----- ....
c105 P P NR 04/30/91 10:57:16 1.59 61.30 29.83 ..... .....
c99 R R AU 04/25/91 12:42:54 1.89 61.85 30.40 61.86 30.66
c R R HCI3 11/16/90 13:01:22 2.31 61.92 30.44 61.9 30.6
c13 R R HC13 11/30/90 09:50:22 1.43 61.93 30.50 61.9 30.6
c19 R R HCi3 12/18/90 08:59:28 1.28 61.88 30.43 61.9 30.6
c20 R R HCI3 12/19/90 11:01:31 2.05 62.00 30.38 61.9 30.6
c42 R R HCI3 01/21/91 10:00:47 1.46 61.78 30.38 61.9 30.6
c71 R R HC13 03/29/91 13:41:28 1.89 61.96 30.28 61.9 30.6
c80 R R HC13 04/10/91 10:10:09 1.04 61.88 30.31 61.9 30.6
c84 R R HCI3 04/17/91 08:46:47 1.26 61.86 30.45 61.9 30.6
c114 R R HCI3 05/13/91 08:52:24 1.08 61.69 30.35 61.9 30.6
c61 R R NR 03/21/91 08:08:54 0.85 61.86 30.17 -----
c26 S S AU 12/27/90 10:36:59 2.54 61.80 30.59 61.75 30.79
c43 S S AU 01/25/91 12:20:30 2.12 61.94 30.44 61.86 30.66
c83 S S AU 04/13/91 11:52:34 2.55 61.81 30.66 61.71 30.92
c65 S S HC13 03/23/91 12:07:26 2.45 61.84 30.60 61.9 30.6
cl10 S S NR 05/10/91 07:10:04 1.23 61.91 30.39 ..... .....
c137 T W AU 0607/91 05:39:36 2.32 60.06 29.59 60.11 29.69
c143 T HB15 06/27/91 15:22:31 2.40 60.10 29.61 60.0 29.9
c118 U Z2 NR 05/23/91 12:09:53 0.78 60.66 30.54 ..... .....
c120 U Z2 NR 05/23/91 13:27:15 0.75 60.62 30.57 ..... .....
c130 V S NR 06/01/91 12:46:19 1.05 60.74 30.49 ..... .....
c131 V W NR 06/01/91 13:41:11 1.12 60.82 30.53 ..... .....
c103 W W AU 04/26/91 13:28:10 1.56 61.71 31.20 61.31 31.56
c127 W W AU 05/31/91 12:55:57 2.31 61.69 31.42 61.52 31.74
c138 W W AU 06/07/91 17:47:06 1.47 61.48 31.01 61.66 31.95
cI W W HCI4 11/05/90 09:46:23 1.74 61.42 31.55 61.4 31.6
c5 W W HCI4 11/30/90 15:07:45 2.42 61.61 31.44 61.4 31.6
c24 W W HCI4 12/26/90 08:47:57 1.82 61.70 31.42 61.4 31.6
c58 W W HCI4 03/19/91 11:27:01 1.62 61.74 30.86 61.4 31.6
c91 W W HC14 04/19/91 13:08:41 1.80 61.67 31.23 61.4 31.6
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Table 2: One-hundred-forty-four events recorded at FINESA.

Ref. V. C. H.C. Date Time ml Latl Lon I Lat2 Lon2
¢141 WT W HC1 79T1 13:45 2.32 W. . __ 31.6
c55 W W NR 03/13/91 10:11:56 0.87 61.88 31.05 ..... .....
c96 W W NR 04/25/91 09:38:12 1.09 61.54 30.81 -----. .....
c63 a K HC7 03/22/91 13:22:27 1.71 60.80 29.10 60.8 29.5
c70 b D HC5 03/29/91 13:38:51 2.37 60.97 28.86 60.9 29.3
c102 d C AU 04/26/91 12:13:15 2.04 61.02 28.99 60.99 29.02
c64 h F HC5 03/22/91 12:34:16 1.55 60.99 29.07 60.9 29.3
c119 k K AU 05/2391 13:03:18 2.13 60.89 29.22 60.90 29.17
c6 k 0 HC6 11/20/90 13:13:52 1.31 60.79 28.51 60.9 29.4
c107 k E NR 05104/91 14:27:50 0.50 60.86 29.52 ..... .....
c139 mn M HC6 06/26/91 12:04:19 1.93 60.90 29.17 60.9 29.4
c15 m D NR 05/14/91 05:51:45 0.83 61.05 29.14 ..... .....

Ref.: Reference number

'".-Visual classification results

C.:Cluster analysis results
H.C.: Helsinki mine location, (AU:automatic; NR: Not reported in the bulletin)

ml: IMS local magnitude
LatI, LonI: IMS coordinates
Lat2, Lon2: Helsinki coordinates
#: events that do not belong to the Karelian mine district
?: events not classified visually because of a low signal-to-noise ratio
.: Multiple event

1.480 (165 km) and 2.650 (295 km) and the azimuthal coverage was 50'. For 89 of the
events, a location was reported in the bulletin from Helsinki (monthly or weekly bulle-
tins). In Figure 5, locations from the IMS are compared with the locations from the Hels-
inki bulletin. The average difference in location between events in these two bulletins was
23.01+0.23 km for the manual locations and 24.45±8.30 km for the automatic locations.
The large discrepancy between the standard errors of these mislocations is due to four
events that were grossly mislocated by the IMS

Results of the visual classification

To do the visual classification, an upper limit on the number of groups was set above
which signals were considered to belong to the same group even though small differences
could be observed. The number of groups was defined by the results of cluster analysis.
All of the events were classified into 18 basic groups. Figure 6 shows the reference events
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Figure 5: Eighty-nine of the events studied were reported in the Helsinki bulletin; 31
events were located automnaically and 55 events had "manual locations". On
this plot, IMS locations are compared with Helsinki locations, both manual

and automatic. The largest discrepancies in location occur for events with a
low signal-to-noise ratio. Two of them were clearly mislocated by the IMS.
An interactivef-k analysis further confirmed that the azimuths determined by
the LAS were erroneous.
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that were identified as representing distinct waveforms. Each group has been labeled with

a capital letter that will be used in the text to refer to these groups: A being the nearest
group to FINESA and W being the farthest group. To illustrate the repeatibility of these

mining events, all the events belonging to groups K and S are displayed in Figure 7.

The events from group A were unique: the Lg phase was barely observable and the Rg

phase was strong. For the ten events included in this group, the automatic phase identifica-
tion of IMS identified only one event with an Lg phase. For the remaining nine events, the

analyst reviewing the IMS solutions either added an Lg or renamed Rg to Lg.

B was the largest group with 18 events. In addition to having a small Lg-P time, their poor
signal-to-noise ratio made them unique in the data set. These events were mostly located
in Finland according to the IMS and their locations spread over a large area (100 km2).

Because most of the B events had a magnitude less than 1.0, only the largest event (cl 11)

with a magnitude of 1.07 was reported in the Helsinki bulletin

Groups C through M included events related to a cluster of mines, all within an area of

about 16 km 2 . This subgroup was the most challenging to the clustering technique. The
Lg-P time as well as the Rg-P time were not characteristic enough to allow a classification
based on these parameters. However, the shape of the first P arrival along with the shape

of the PMP phase were used in the visual classification. The first five seconds of the signal

for representatives of the eight groups C through M are plotted in Figure 8. The interpre-
tation of results from the cluster analysis made it necessary to distribute these events into

ten main groups.

Events from group 0 were easily identified based on their unique Lg-P and Rg-P times.

The events from group P occurred at mines HC10 or HC11 according to the Helsinki bul-

letin. A thorough visual analysis along with the results of the cluster analysis, showed that

their Lg-P times were within one second of each other. Only one mine has been located on

SPOT photos for this area (SC10).

Events from groups R and S, which were all located at mine HCI 3 according to the Hels-

inki bulletin, were separated into two groups based on the shape of the first arrival. The
difference in the shape of the first arrival could be due either to a eifference in the source
or to a path effect. R events exhibited an impulsive P arrival while the S events showed an
emergent P followed by a strong second arrival (probably a PMP wave). Even though R

events had smaller magnitudes, anf-k analysis showed that no emergent P-wave could be
distinguished before the impulsive P. Figure 9 shows one event from each group with

approximately the same magnitude. The Lg-P time was slightly larger for the events from
S. This observation implies the presence of two mines so close to each other that a regular
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Figure 7: Events from group K and S are plotted to show the difference between two
groups as well as the repeatability of the signal in each group. A difference is
clearly seen in the Lg-P time and in the presence of an Rg phase. For other
groups, a difference is evident only in the shape of the first arrival, the Lg-P
time being the same.
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Figure 8: This figure shows the first arrival of reference events for groups C through
M. Their Lg-P times and Rg-P times vary by less than one second. Differ-
ences between events can best be seen using unfiltered data to look at the
shape of the first arrival. Although only four mines have been reported in this
area in the Helsinki Bulletin, visual classification and cluster analysis deter-
mined 8 groups with more than one event and two with only one event. A
careful SPOT photo analysis should be performed to determine whether or
not this subdivision corresponds to a real distribution of the mines.
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location routine could not distinguish between them. The quality of the SPOT photo pres-
ently available for this area did not allow a confirmation or a denial of the presence of two
different mines.

Groups U and V contained two events each and were located within 22 km of each other
by the IMS but far from any reported mine. They were the only events located in this par-
ticular area during the 7-month period. Two events (U) occurred on one day and the other
two (V) one week later at about the same time of the day.

The events from group W showed a large scatter in their location despite their relatively
high magnitudes. The IMS located most of them close to the SPOT location HCI4. Their
Lg-P time was unique and the Rg phase had very small amplitudes for most of the events.

Four events did not fit any of the 18 groups described above. The visual analysis showed
that these four events were clearly mislocated by IMS; one event had a Lg-P time too large

for it to be located within the studied area, and the other three events had very poor IMS
azimuth estimates and were actually located in Estonia. These observations were later
confirmed by the interactive f-k analysis as discussed below.

Some conclusions based on the visual classification are given below:

- Most of the groups were easily distinguished using their Lg-P and Rg-P time.
- For groups C through M, the shape of the first arrival was a determining factor.
- The visual review showed that four events were mislocated in the IMS bulletin.
- The Rg phase was an important feature among the characteristics used to separate dif-

ferent groups. It has been shown that Rg waves are strongly site dependent (Murphy

and Shah, 1988).
- The resulting visual classification agreed partially with the Helsinki "manual location"

but more groups were found than the number of mines reported in the Helsinki bulle-
tin.

Results of the interactive f-k analysis

Af-k analysis was performed on each event using a 0.5 s window starting at the beginning
of the first arrival. Table 3 shows the average values and standard deviations of the appar-

ent velocity and the azimuth (Aziml, Ap. veil) computed for each group. The average
values included only the events for which the visual classification was in agreement with
the cluster analysis. Only eight events belonging to group B were studied due to low sig-
nal-to-noise ratios. Although these events also had very low signal-to-noise ratios, the val-
ues computed with the f-k analysis were stable (small standard deviation). The velocities
derived from thef-k analysis for the first arrival are plotted on a map (Figure 10) to show
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Figure 10: Apparent velocities of the first arrival have been computed for each event
using an f-k analysis method. This map shows the spatial distribution of the
average apparent velocity for each mine group. North of Lake Ladoga, the
velocity is around 6.45 km/s while South of the lake, the velocity is around
7.35 km/s and keeps increasing up to 8.77 km/s for the events located on an
island in the Gulf of Finland. Strong variations in the thickness of the crust as
well as sharp lateral boundaries in the crust can explain these changes in the
apparent velocity.
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Table 3: Azimuth and velocity values computed automatically by the IMS (Azim2,
Ap.vel2) and the same values computed usingf-k analysis (Aziml, Ap.vell).

group AzimI Ap.vell Azim2 Ap.vel2

A 121.27 0.23 6.45 0.04 122.24 3.49 6.77 0.69
B 79.32 0.53 7.42 0.07 78.93 8.55 8.10 0.70
C 120.71 0.36 6.47 0.06 112.99 1.45 7.02 0.09
D 120.68 0.35 6.44 0.09 117.59 2.06 6.76 0.04
E 117.58 7.87 6.65 0.40 111.18 2.14 7.11 0.08
F 120.70 0.86 6.44 0.02 111.73 1.28 6.94 0.15
G 121.050.00 6.410.00 120.040.47 7.120.12
H 120.79 0.38 6.43 0.02 119.33 2.64 6.97 0.15
K 120.81 0.55 6.46 0.08 114.16 1.05 7.26 0.09
M 120.72 0.50 6.45 0.04 112.49 1.23 7.10 0.45
0 120.63 0.47 6.43 0.02 122.46 2.65 7.24 0.41
P 102.02 0.68 7.35 0.08 106.20 6.05 7.01 0.28
R 79.43 0.50 7.36 0.06 76.221 1.62 6.94 1.06
S 93.52 1.95 7.17 0.38 81.74 10.63 7.39 0.21
U 101.540.00 7.460.00 106.973.47 6.970.01

W 101.93 0.97 7.30 0.00 95.01 8.52 7.28 0.42
c7 125.22 6.70 148.24 7.30

c79 134.77 7.19 134.13 8.92

c93 74.44 6.52 168.51 7.46

c 104 117.11 8.83 31.39 6.49

their spacial distribution. These events were located at distances from FINESA that corre-
spond to the cross-over point of the travel-time curves for this area. Events located near

the northern part of Lake Ladoga showed an apparent velocity ranging between 7.27 to
7.41 km/s; events located south of the lake exhibited an apparent velocity between 6.39
and 6.54 kn/s; and events located further south in the Gulf of Finland (Island not plotted
on the map) showed an apparent velocity close to 9.0 km/s. The apparent velocity of the
second P type arrival was about the same for all of the events: 6.5 km/s. The events with
the lowest velocity were also the closest to the array and the first arrival was a Pg phase.
The two other sets of events were at about the same distance from FINESA and the differ-

ence in the apparent velocity could be explained by a difference in the travel path. In both

cases, the first arrival was a Pn phase. However, the crust thickens rapidly from the Gulf
of Finland to the Baltic Shield (Figure 11), thus increasing the apparent velocity.

A second P phase was seen, more or less clearly, within the two seconds following the
first arrival on most of the signals. The second arrival was a PMP phase (reflected from the
Moho). The presence of this phase was not related to the size of the shot. It did not appear
on the signals from group P whose magnitudes were between 1.27 and 2.06 while the
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Figur Th: Contour map of crustal thickness (km) and schematic map of Pn velocity for
the 1Baltic Shield and adjacent areals bascd on D)SS data. Line:s oft'qual Moho
depth are represented by thick solid lines for reliable data and dashed lines for
unreliable data. Values of Pn velocity are: 1, 7.8 to 8.0; 2, 8.1 to 8.3; 3, 8.3 to
8.5. Thin solid lines denote DSS profiles. The crustal thickness varies from as

little as 30 to 35 km near the coast to 50 to 55 km within the interior areas. Pn
wave velocity varies from 7.8 to 8.0 km/s up to 8.3 to 8.5 km/s (the most fre-

quently observed values are 8.1 to 8.2 km/s). There is no direct relationship
between variations of the crustal thickness and Pn velocity (Ryaboy, 1990).
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events from group B with smaller magnitudes (0.22 to 1.37), showed a sharp second

arrival. The distance to the array also did not influence it's presence. For instance, events

from group R did not show the PMP phase, but it was seen on signals from groups located

both closer to and farther from the array. Lateral heterogeneities, in addition to differences

in crustal thickness, may explain the presence of the PMP phase. Its interpretation will

require further study.

F-k analysis was performed automatically in the IMS based on a computed arrival time.

The window length was 3.0 s and began 1.0 s before the arrival time. Our results were

based on a 0.5 s window length, but tests showed that there were no significant differences

in the results for window lengths up to 5.0 s. Average values of the apparent velocity and

the azimuth computed from the IMS values are reported in Table 3. Only the IMS results

for the first arrival are shown and compared to the interactivef-k analysis. IMS also stores

the results for secondary phases.

A careful f-k analysis provides important information about events. Even though com-

puted values for the same group of events are very stable, the azimuth can vary by up to

one degree around this value. For our purpose, this is too large of a location error (about 5

km) and the visual classification, if associated with a known mine, provides more accurate

results.

Cluster analysis results using waveforms

Figure 12 shows the cluster tree resulting from the analysis of filtered data (1-15 Hz). The
lowest level of the tree (cross-correlation value of 0.4) shows the separation between

events located north of Lake Ladoga and events located south of the lake. For the branch

on the left, there is a dichotomy in the tree separating events with a large Rg phase from

events with little to no Rg phase. At the level of the tree corresponding to a cross-correla-

tion value of 0.57, the cluster separates the events into 10 groups. At this level, groups A,

M, P, R, S, V and W are defined while events from group B are split into two subgroups
(BI and B2) and events from groups C through M belong to one large group.

The events from group B had the smallest signal-to-noise ratios. Bi corresponds to the

largest events with a magnitude greater than 1.0 while the other events group in B2. If a

narrower frequency band is used (1.0 to 8.0 Hz), no subgroups are obtained.

The Z branch of the cluster tree does not define a group of events that look alike. These

events cannot be classified in any group because of low signal-to-noise ratio, uniqueness,

or the fact that they are multiple events.

Figure 13 shows the cluster tree using the 55 events from groups C through 0. Seven
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small groups can be distinguished from one another at a cross-correlation value of 0.67,
but a level of 0.75 must be used to distinguish between groups F, G, and H. The high level
of correlation is related to the stability of the shape of the signal in this tight grouping of
events. Note that the M events, previously grouped together by the visual classification,
have been split into two groups here.

The visual classification differed from the cluster analysis for ten of the 144 events with-

out including the events that were labeled with lower case letters. These ten events were
characterized either by a low signal-to-noise ratio or were multiple events. Nine events
had such a low signal-to-noise ratio that a visual classification could not be performed.
The events labeled with lower case letters were unique and could not be classified in any
group, thus their visual classification was questionable.

Four events were erroneously included in the data set due to large azimuth errors in the
IMS and actually belong to mining districts in other areas. This error was discovered
through interactivef-k analysis. The P - Lg time for these three events was nearly identical
to the P - Lg time for mines in the study area. One of these events erroneously clustered
with events from group W while the three other events were classified with either group

ZI or Z2. These events clustered at low levels with events most similar to them.

Cluster analysis results using phase parameters data

The use off-k parameters in addition to other measurements (SNR, period, azimuth, slow-
ness, etc.) computed during the automatic processing of the IMS in a cluster analysis gives
results comparable to those that would be obtained by grouping events based on IMS loca-
tions. The addition of polarization parameters from three-component polarization analysis
did not improve the results of this cluster analysis because polarization parameters are
more characteristic of the receiver than of the source.

RESULTS OF THE CLUSTER ANALYSIS USING ARCESS AND
NORESS DATA
Among the 144 events, 39 were recorded at ARCESS and 31 at NORESS. Both arrays are
located at a distance of about 9' from the mining district. Despite their relatively high
magnitudes (1.56 to 2.66 for ARCESS data and 2.01 to 2.66 for NORESS data), the data
had low signal-to-noise ratios (Figure 14). Envelopes were computed using data filtered
between 2.0 and 5.0 Hz. The signal length used in the cross-correlation process was set to
175 s including 15 s before the arrival. The cluster analysis based on these data gave poor
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quality results (Figure 15 and 16) probably due to poor signal-to-noise ratios and the lack
of an Rg phase in the NORESS and ARCESS data.

ASSOCIATION OF EVENTS TO MINE LOCATION
Having defined clusters of events both visually and through cluster analysis, the task

becomes associating a mine with each group of events. Twenty-one groups of events were
identified above, but only fifteen mines have been listed in the Helsinki Bulletin and even
fewer were located on SPOT photos by Fox (1990). Because ground truth was not avail-
able for the events used at the time this study was made, seismic locations reported in the
IMS and Helsinki Bulletins and the results of the interactive f-k analysis was the only
infomation used to make the association. Other information (possibly provided by mining
authorities) may be used in future analysis efforts.

Events from group A and from group I were all located close to mine SCI (HCI) by the
IMS. The visual analysis showed a clear difference in Lg-P times between the two groups,
however: events from group I have Lg-P times 8 s greater than the events from group A.
The Helsinki bulletin reported an automatic location for event cl0 from group A that was

close to mine N 114. The Helsinki bulletin also reported a manual location for event c57
from group I at mine HC1. This discrepancy between bulletins may be explained by a mis-
identification of the phases for group A in the IMS. As noted in the visual description of

events from group A, the analyst often renamed the Rg as an Lg resulting in a location too
far from the array. The distance between HCI and N114 is 43 km, which corresponds to a

difference in travel-time of about 8.25 s. Event cl II with the only Lg correctly identified
by the IMS for this group of events was located near mine NI 14. Thus, events from group
A are associated with mine N 114, and events from group I are associated with mine SCI
(HCI)

Only one event from group B was manually located by the Helsinki analysts. In Table 1,
this mine is labeled N 117. The interactivef-k analysis gave stable values for the events in
this group and most of them could be located at this mine. The large scatter observed in
the IMS locations for these events is explained by their small magnitudes.

Events from group 0 were located by the IMS close to mine SC3. There was little scatter
in the locations. One of these events was manually located at mine HC3 by the Helsinki

analysts.

Events from group P were located at one of two different mines, IICIO or IlClI, accord-
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Figure 15: Result of the cluster analysis performed on 31 events recorded at ARCESS.
Data were filtered between 2 to 5 Hz. Events with the highest signal-to-noise
ratio give reasonable results.
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Figure 15: Result of the cluster analysis performed on 31 events recorded at NORESS.
The same frequency band applied to the ARCESS data was applied to these
signals.
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ing to the Helsinki bulletin. For this area, only one mine was reported on SPOT photos by
Fox (1990). Lg-P times for this group vary by 1.0 s, which is not enough to justify the dis-
tance between HC10 and HCI 1, but could correspond to events from different parts of the
same big mine.

Seven events from group R and one event from group S were manually associated with
mine HC 13 according to the Helsinki bulletin. Three other events from group S were auto-
matically located around this mine by the same bulletin. Any difference in location

between the two groups was not clearly seen using the IMS location. No reliable SPOT
photo was available for this area. Events from groups R and S may have been from the
same large mine or from two different mines.

Events from group T were located on an island in the Gulf of Finland where a mine has
been identified on a SPOT photo (SB 15).

Events from group U could not be associated with any mine as none were reported on this
part of the southern coast of Lake Ladoga. Although two of the events had an IMS magni-
tude greater than 1.0, they were not reported in the weekly bulletin from Helsinki. These
events may have been related to construction activity.

Events from group V were located far from each other by the IMS, probably because of
their small magnitude, and they were not reported in the Helsinki bulletin. No mine was

reported close to these events.

The Helsinki bulletin reported five group W events and located them all at mine HC14.
The IMS locations for the set of events were closer to mine SC14.

Associating the events from groups C through M with specific mines was not possible
with the limited information available. These groups contained events that were located in
a small area where only five mines were identified in the Helsinki bulletin and on SPOT
photos (SPOT locations can include several small mines). In this particular case, the limi-
tations of the current seismic location procedures are shown. Even when carefulf-k analy-
sis was used to obtain more stable values of the azimuth, the results were not accurate
enough to allow a perfect match between event groups and mines. Possible flaws in the
Helsinki manual locations were also observed. In some cases, several events that cluster
together and were identified as belonging to the same group visually, were manually
located by the Helsinki analysts as originating from different mines.
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SUMMARY AND CONCLUSIONS
Events recorded at the FINESA, ARCESS and NORESS arrays were studied with the aim
of identifying and characterizing mines located north of St. Petersburg. Both waveforms
and parameters computed during the automatic process were used in this study.

Cross-correlation values computed between the envelopes of the vertical component seis-
mograms were found to be the best similarity measurements for use in a cluster analysis.
This method was verified by a visual classification of the waveforms along with an inter-
activef-k analysis. Thef-k analysis provided explanations for the questionable results of

the cluster analysis and showed that the assumption of identical travel paths for all of these
events was not valid. Eighteen different groups (with more than one event per group) were
identified from the 144 events by both cluster analysis and visual classification. Four

events were not classified as they were originally mislocated and do not really belong to
this mining district.

The Helsinki and IMS bulletins were used as references for the locations of these events.
Only 89 events were reported in the Helsinki bulletin for the covered period of time. Fifty-
eight events had been "manually located" by the Helsinki analysts at 15 different mines.
Their classification agreed with our grouping for events located in areas where only one
mine had been reported: HC3, HC10, HC13, HC14 and HB15.

SPOT photos from this area are currently being analyzed. They provide information about
the size and the actual number of active mines. This information allows a better classifica-

tion of the events as the number of groups (mines) is predetermined. But, in order to
improve the matching between groups of events and mines, information concerning the

origin time, the "true" location of the shot, as well as the shooting parameters and the yield
of the shot need to be gathered directly from the mines.

Two other mining districts showing a high concentration of mines are available to test this
method. The implementation of this method in an automatic system such IMS would
required a selection of master events for each mine. A "pre-location" of a given event by
the automatic routine would determine what mining district was relevant. The event would
be compared to the reference events built for this particular district. The maximum value
of the cross-correlation of the envelope functions would be compared to the thresholds
previously determined for each mine by cluster analysis. As seen above, a threshold needs

to be set in order to delimit the different groups. If this threshold is too low to separate sev-
eral groups, a second comparison should be performed using a smaller set of reference
events. For mislocated events, the result of the cross-correlation with the master events
should give a value below the threshold. In such cases, these events would be re-analyzed

carefully.
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