
WRDC-TR-90-8007
Volume VII
Part 1

AD-A248 910

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)

Volume VII - Communications Subsystem
Part 1 - Communications Development Specification

S. Barker

Control Data Corporation
Integration Technology Services TL IC2970 Presidential Drive f! f L ECTE !
Fairborn, OH 45324-6209 APR1 i99 U

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER

AIR FCrCE SvYTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-C533

92-09607
9 9 I1.4IIil | I:]11li 11

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is riloasablo to the National Tocknlcal
information Service (NTIS). At NTIS, it Yiii be

available to the qeneral public, including foreign nations

DAV D L. J SON, ect Manager DATE

Wri ht-Patt rs AFB, OH 45433-6533

FOR THE COMMANDER:

//

ARUCE A. RASMUSSEN, Chief DATE

WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICAT ION/DOWNGRAD ING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DS 620343000 WRDC-TR- 90-8007 Vol. VII. Part 1

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FtNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO. NO.
1. TITLE See block 19ELMNNON, N,
1. TITESeeAb1UTHOR(178011F 595600 F95600 20950607

2. PERSONAL AUTHOR(S)

Structural Dynamics Research Corporation: Barker, S., et al.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1/87-12/31/90 1990 September 30 58

i ~16. SUPPLEMENTARY NOTi/- ..

WRDC1MTI Project Priority 6203

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

138 0905-

9. ABSTRACT (Continue on reverse if necessary and identify block number)

This specification establishes the performance, development, test, and qualification requirements of the computer
program identified as the Communications Subsystem, hereinafter referred to as COMM.

BLOCK 11 :

INTEGRATED INFORMATION SUPPORT SYSTEM

Vol VII - Communications Slubsystem

Par-t 1 - Communications Development Specification

") DISTRIBUTION,'AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNCLASSIFJEDUNLIMITED x SAME AS RPT. DTIC USERS Unclassified

2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 2c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WROC MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PA;E

D& 620 4i00O

30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force,
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manaqer. The Prime Contractor was inteqration Technoiogv
Services, Software Programs Division, of the -cntrr-I Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(iISS) . The IISS technology work comprises enhancements to l1S i
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development ano
implementation, IISS intearation ani
test, and technology transfer of 11SS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

T ELK Responsible for defininq and testi.4.
representative integrat- system b-
in Artificial Intelligen-e tecni I
to establish fitness fc! ,1se.

Simpact Corporation Responsible for Communication
development.

aoOs ssin For
NTIS GRA&I
DTIC TAE

Just l C T.aI 1 n.

1 Di. 'A tl o dr oY

DS 620343000
30 September 1990

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

Iv

DS 620343000
30 September 1990

TABLE OF CONTENTS (Continued)

Page

3.2.6.6 Terminate Communication
Port Interface 3-22

3.2.7 Interprocess Communication
Primitives 3-22

3.2.7.1 Create a Mailbox 3-22
3.2.7.2 Send a Message to Another

Program 3-23
3.2.7.3 Receive a Message from Another

Program 3-24
3.2.7.4 Get a Message from Another Program 3-26
3.2.7.5 Delete a Mailbox 3-27
3.2.7.6 Release an Event Block 3-27
3.2.7.7 Start a Timer 3-28
3.2.7.8 Stop a Timer 3-29
3.2.7.9 Wait for an Event to Occur 3-30
3.2.7.10 Terminate a Program 3-31
3.2.7.11 Save an Event Indicator 3-32
3.2.7.12 Request an Error Be Logged 3-32
3.2.7.13 Log an Error 3-33
3.3 Special Requirements 3-35
3.3.1 Programming Methods 3-35
3.3.2 Expandability 3-35
3.4 Human Performance 3-35
3.5 Data Description of Arguments Used

with the Primitives 3-36
3.5.1 Data Descriptions of Arguments for

Communication Subsystem Primitives 3-36
3.5.2 Data Description of Arguments for IPC

Primitives 3-37
3.5.3 Data Description for the Event Block 3-40
3.6 Adaptation Requirements 3-40

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
4.1 Introduction and Definition 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1

vi

DS 620343000
30 September 1990

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE 1-1
1.1 Identification 1-i
1.2 Functional Summary 1-1

SECTION 2.0 DOCUMENTS 2-1
2.1 Applicable Documents 2-1
2.1.1 Specifications 2-1
2.1.2 Standards 2-1
2.1.3 Other 2-2

SECTION 3.0 REQUIREMENTS 3-1
3.1 Communications Subsystem 3-1
3.1.1 Communication Subsystem

Constraints 3-1
3.1.2 Interface Requirements 3-6
3.1.2.1 Interface Block Diagram 3-6
3.1.2.2 Detailed Interface

Definition of COMM 3-6
3.1.2.3 Detailed Interface Definition of

Primitives 3-7
3.2 Detailed Functional Requirements 3-8
3.2.1 Communication Protocol -

Characteristics and Description 3-8
3.2.1.1 Characteristics of the

Communication Protocol 3-8
3.2.1.2 Sequence Number Handling 3-11
3.2.1.2.1 Send Sequence Number Checking 3-11
3.2.1.2.2 Receive Sequence Number

Checking 3-11
3.2.1.3 Use of Protocol for Binary Date

Transmission 3-11
3.2.1.4 Interface Between IBM and non-IBM

Computers 3-12
3.2.1.4.1 Non-IBM Computers 3-12
3.2.1.4.2 IBM Computers 3-12
3.2.2 Message Format 3-13
3.2.3 Timing 3-16
3.2.3.1 Line Idle 3-16
3.2.3.2 Master 3-16
3.2.3.3 Slave 3-16
3.2.3.4 NTM Input Mailbox Full 3-16
3.2.4 Block Check Computation 3-16
3.2.5 Control Characters in Data 3-16
3.2.6 Communication Subsystem Primitives 3-17
3.2.6.1 Intialize Communication Port

interface 3-17
3.2.6.2 Send a Message to a Terminal

Port 3-17
3.2.6.3 Receive a Message from a

Terminal Port 3-18
3.2.6.4 Get a Message from a Terminal

Port 3-19
3.2.6.5 Cancel a Receive Request from a

Terminal Port 3-21

v

DS 620343000

30 September 1990

LIST OF ILLUSTRATIONS

Figure Title Page

3-1 IISS Test Bed Communications Subsystem
(Structural Schematics) 3-2

3-2 IISS Hardware Configuration 3-3
3-3 Interprocess Communication Architecture... 3-5
3-4 COMM Configuration Tree 3-8
3-5 Simple Scenario for Sending a Message

Between NTM's 3-10
3-6 Communication Block Diagram 3-15

vii

DS 620343000
30 September 1990

SECTION I

SCOPE

1.1 Identification

This specification establishes the performance,
development, test, and qualification requirements of the
computer program identified as the Communications Subsystem,
hereinafter referred to as COMM. COMM is one configuration item
of the Integrated Information Support System (IISS).

Please refer to the Software Availability Bulletin, Volume
III, Part 16, CI# SAB620326000, for current IISS software and
documentation availability.

1.2 Functional Summary

The COMM Computer Program Configuration Item (CPCI)
provides a mechanism for transferring messages (data and
control) between two tasks. These tasks can be executing on the
same computer or on different computers. For the latter, the
two tasks are Network Transaction Managers (NTM's).

The major functions of the COMM are:

1. Interhost Communications: Interhost Communications is
responsible for moving variable length messages
without error between computers. This function
receives messages from an NTM, passes the messages to
a local area network (LAN), receives messages from the
LAN, and passes the messages to an NTM.

2. Interprocess Communications: Interprocess
Communications allows the NTM to receive messages
from and send messages to programs on the same
computer. The programs may be another portion on the
NTM, COMM, UI/VTI, the precompiler, NDDL, or user
application programs. This function also allows
programs to use timers and to process fatal errors.

i-1

DS 620343000
30 September 1990

SECTION 2

DOCUMENTS

2.1 Applicable Documents

The following documents were used in the definition of the
COMM specification.

2.1.1 Specifications

[1] Control Data Corporation and D. Appleton Co., Inc.;
IISS Test Bed CDM Needs Analysis, 7 June 1982; IISS
Test Bed CDM Environment, 7 June 1982; IISS Test Bed
CDM System Requirements, 7 June 1982.

[2] General Electric Co., Test Bed System Requirement
Document (Draft), Revise-d-23 August 1982.

[3] ICAM Computer-Based Information System (CBIS) System
Requirements Document (Draft), 10 September 1981, CI
#SRD3101400000.

[4] General Electric Co., Test Bed System Specification
(Draft), 23 August 1982.

[5] General Electric Co., Test Bed System Design

Specification, 7 February 1983.

2.1.2 Standards

[6] American National Standards Committee X3, American
National Dictionary for Information Processing,
X3/TR-1-77, September 1977.

[7] ICAM Documentation Standards, 28 December 1981,
IDS150120000A.

[8] SofTech, Inc., ICAM Test Bed Interim Standards and
Procedures, 31 May 1982; ISP620150000.

[9] General Electric Co., IISS Software Development
Guidelines/Conventions (Draft), 23 August 1982.

2-1

DS 620343000
30 September 1990

2.1.3 Other

[10] ICAM Program Office, The Integrated Sheet Metal
Center, 30 September 1981.

[11] ICAM Program Office, The Role of the ICAM Test Bed
and Integrated Informaton Support System (Draft), 18
May 1982.

[12] SofTech, Inc., IISS Response to CBIS Requirements and
'Threads': SofTech Reactions, 18 March 1982.

[13] Digital, VAX-lI Architecture Handbook, Digital
Equipment Corp., Maynard, MA, 1979.

[14] IBM, A Guide to the IBM 3031 Processor Complex and
Attached Processor Complex of System/370, GC20-18
54-3; System/370 Principles of Operation, GA22-70000.

[15.] Honeywell, Level 6 Minicomputer Systems Handbook.

r16] Digital, VAX/VMS System Services Reference Manual,
AA-DO18B-TE; VAX-11 Information Directory and Index,
AA-DO16D-TE.

[17] Users' Manual, IDBMS (2.0) Users' Manual, June 1980.

[18] Systems Users' Manual, IDBMS (2.0) System Users'
Manual, June 1980; IBM, OS/VS2 MVS Supervisor
Services and Macro Instructions; GC28-0683-2.

[19] Honeywell, Level 6 GCOS MOD600 System Concepts,
CB50-02.

2-2

DS 620343000
30 September 1990

SECTION 3

REQUIREMENTS

This section includes functional and performance
requirements for the COMM. In addition, it defines the COMM
interfaces to other IISS CPCI's.

3.1 Communications Subsystem

The Communications Subsystem is primarily used to transfer
messages (as opposed tj files) between Network Transaction
Managers on two different host computers. (The transfer of
messages between tasks on the same computer is accomplished
through Interprocess Communication Primitives.) Two copies of
the COMM (the name of a single occurrence of the Communication
Subsystem program) reside on each host, and each copy
communicates between the NTM and a copy of COMM residing on one
of the other hosts (see Figure 3-1). COMM communicates with the
NTM via the IISS Interprocess Communication Primitives.

The requirement to implement IISS as a system residing on
three computers has caused many system dependent issues to
surface. The system design goal is to isolate system dependent
coding by creating primitives which hide the system dependent
programming from the IISS subsystems. The primitives used by
COMM are:

1. Interprocess Communication (IPC)

2. Interhost Communication (IHC)

3.1.1 Communication Subsystem Constraints

The IISS hardware consists of a Local Area Network (LAN)
and its interface into each computer (see Figure 3-2). The
terminal interface standard is the interface into the LAN. The
interface to tl-e IBM is handled through an IBM 3271 station
emulator (cluster controller) that manages the asynchronous to
synchronous, the EBCDIC to ASCII character set, and the RS232C
to 3270 protocol conversions.

The IISS protocol has permanent virtual circuits
established between each pair of computers by the LAN when it is
started (see Figure 3-1). By placing this requirement on the
LAN, the overhead of having the communication software establish

3-1

DS 620343000
30 September 1990

-- '-!- "a I---m i -- -

Go-I

a

I, -Figur Comm Comm Te t B d com n ca i n cowyte

(W in ruc ur 1% 0. che a ft c)

3?3-2

,OI I- -

I! O

Figure 3-1. 1155 Test Bed Communications Subsystem
(Structural Schematic)

Note: Fix IBM portion of figure CICS should be by MVS

3-2

DS 620343000
30 September 1990

LEGEND r -c c -A 7lQ6N. ON1 C4,I

moo - MODEM 13
muz - MULTIPLEXERI aj I *

SI US INTERFACE uNOT

DU F lL) IE TaANSFER

L---------------o. L- -'

Figure~~~ 3-2 iisHadar oniurt

3-3-i. 3

DS 620343000
30 September 1990

the circuit for each message of each session is removed. The
COMM will be attached to each line when the computer is started
or when IISS is initiated.

The communication subsystem is constrained in the
following ways:

1. It must be implemented on each of the following
systems with no modifications or additions to the
operating systems or communication drivers.

VAX - VMS
Honeywell Level 6 - MOD400
IBM 3084 - MVS

2. A Local Area Network (LAN) will be used to interface
these three systems. Terminal interfaces must be used
since these three systems support no other way to
uniformly interface to a LAN. The terminal interface
to the IBM computer can be supported by using an IBM
3271 station emulator.

3. An MRP program has been chosen to run on IBM using the
CICS sub-operating system. CICS supports only COBOL,
PL-l, and assembly language. Of these three choices,
COBOL has been selected as the implementation
language. (This restriction was lifted in 1984.)

4. Programming in assembly language is to be avoided to
the greatest extent possible.

These constraints place the following constraints on a data
transmission protocol:

1. Full-duplex transmission is not supported.
2. Binary data transmission is supported with data

translation.
3. Variable length data messages must be terminated by a

carriage return.
4. Eight bit characters are not supported (seven bit

characters with the eighth bit used for parity is
supported).

5. Message headers, binary data translation, and the
longitudinal redundancy checking technique have been
chosen to allow for a COBOL implementation.

The communication protocol described in the detailed

3-4

DS 620343000
30 September 1990

Figure 3-3. Interprocess Communication Architecture

3-5

DS 620343000
30 September 1990

functional requirements section satisfies these constraints and
provides for point-to-point communication between any two of the
three NTM's using three permanent virtual circuits on the Local
Area Network.

The Interprocess Communication Primitives (IPC) are the
mechanisms that the NTM will use to transfer data between itself
and the application programs (AP) in the computer (see Figure
3-3). This approach removes the necessity of re-writing the NTM
for each computer in the IISS configuration since the
system-dependent software will be in the primitives.

Because of the highly system-dependent nature of the
communication primitives, they must be implemented three times -
once on each computer.

3.1.2 Interface Requirements

The Communication Subsystem consists of two copies of COMM,
one resident in each host, enabling two NTM's to communicate
with each other. In this sense the communication subsystem
interfaces only with the NTM. This interface is accomplished
with IPC's. To initiate communication with the NTM, COMM must
use an NTM runtime service called INICOM. This service must
supply to COMM its input communication mailbox name. COMM must
call TRMNAT upon termination in order to stop all further
communication with the NTM.

Two types of messages are received by COMM frcm the NTM:

1. Data messages (both binary and native character set)
2. Control messages

A field in the NTM message header indicates whether or not
a message is a data message or a control message. If it is a
data message, another field in the header determines whether the
data message is "native" or "binary." If it is a control
message, the type is included in the message header.

Two types of messages are sent to the NTM by COMM:

1. Data messages (both binary and native character set)
2. Status messages (includes statistics)

The communications subsystem interfaces with the LAN via
the standard RS232C terminal interface.

3.1.2.1 Interface Block Diagram

The structural schematic for the communication subsystem is
depicted in Figure 3-1. This shows the COMM interfaces to the
NTM and the LAN.

3.1.2.2 Detailed Interface Definition of COMM

The Communication Subsystem receives messages from and
sends messages to the NTM via the IPC's. Each message contains
message data and a message header as described by the NTM. The
COMM uses the following fields from the header:

3-6

DS 620343000
30 September 1990

o Destination AP Name
o Message Type
o Binary/Native Flag
o Priority Flag

Upon receiving messages from the NTM, the COMM checks for a
control message by checkinq the destination AP name for COMM.
If it is COMM, processing is determined by a message type of
startup link (SL) or shutdown link (SD) or terminates (TR). If
the destination is not COMM, COMM sends the message according to
the binary/native flag.

Messages sent to the NTM from COMM are control messages or
data messages. Control messages have the destination set equal
to NTM, the priority flag equal to high, and are put in the high
priority input queue for NTM. The message type may be link
active (LA), link failure (LF) or recoverable error (RE). The
data portion of the recoverable error message contains the error
number. Data messaqes have the destination set equal to
whatever it was on input to COMM. These messages are put in the
correct NTM input queue according to the priority flag.

3.1.2.3 Detailed Interface Definition of Primitives

The VAX implementation of the primitives uses a combination
of COBOL and FORTRAN. All system services are called using
FORTRAN with most of the other codes such as error checking
being done in COBOL.

The Level 6 implementation of the primitives uses a
combination of COBOL and Assembly Language. All system services
are called using Assembly Language because the Level 6 only
supports an Assembly Language interface to system services.

3-7

DS 620343000
30 September 1990

In the IBM system, IISS is implemented in the Assembler and

interfac,3s to the MVS operating system.

3.2 Detailed Functional Requirements

The node tree shown in Figure 3-4 illustrates the COMM
functions currently defined.

COMM)UNICATION

SUBSYSTEM

INTERHOST I NTERPROCESS

COMMUNICATION COMMUNICATION

Figure 3-4. COMM Configuration Tree

Descriptions of these functions may be found in the
following paragraphs.

3.2.1 Communication Protocol - Characteristics and Description

A simple scenario for sending a message between NTM's is
depicted in Figure 3-5.

3.2.1.1 Characteristics of the Communication Protocol

1. Uses asynchronous communication lines.

2. Contention system with one end point designated as
primary and the other as secondary.

3. Point-to-point.

4. Half-duplex (uses full-duplex communication lines).

5. Interleaved data transmission.

6. Uses the ASCII character set (excluding control
characters 000-037 octal).

7. Error detection and correction by retransmission.

8. Byte stuffing is used to send the control characters.
An exclamation mark (!) precedes a translated control
character. The control character can then be
reconstructed by the receiving COMM program.

9. Eighth bit used for even parity.

3-8

DS 620343000
30 September 1990

10. Accepts variable length NTM messages.

11. All messages terminated by carriage return.

12. Large messages are segmented into packets and
reassembled by the receiving COMM.

13. Transmits variable length communication blocks.

14. Symmetric protocol with contention. The retry timing
in case of simultaneous line bids is 1 second for the
primary endpoint and 5 seconds for the secondary
endpoint.

15. Retries a configurable number of times before
reporting a link failure to the NTM. Currently, the
number is three.

16. Master/Slave relationship determined by the endpoint
that successfully bids for the line. Successful
bidder becomes the master.

17. Data may be transmitted by either the master or the
slave endpoint.

18. All timinq is performed by the master. Time out
interval is 3 seconds.

19. End of transmission bit may only be sent by the master
and only when neither master nor slave has a

(1) Message received
(2) Line bid
(3) Grant line
(4) Message sent
(5) Message delivered
(6) ACK
(7) EOT

3-9

DS 620343000
30 September 1990

II I
NTM I I NTMII I

I I I I
I !

I MAILBOX KILBOX I II I I
I I I I

I (2)(2)

II()I

c (1) I (I)
I6)

I ()I
I I

H(ST6 IOST 2

Figure 3-5. Simple Scenario for Sending a Message Between NTM's

3-10

DS 620343000
30 September 1990

requirement to send data.

3.2.1.2 Sequence Number Handling

The send sequence number and the receive sequence number
are used to prevent either duplication or loss of communiction
blocks. The first data block following a successful line bid is
sent with a send sequence number of 1. Subsequent blocks are
sent with the send sequence number cycling from 2 to 3 and back
to 1. The received sequence number is used in reply to a
sending COMM. A receiving COMM returns the send sequence number
as the received sequence number after forwarding the data to the
local NTM.

3.2.1.2.1 Send Sequence Number Checking

If the send sequence number is as expected, then the data
is stored and that number is returned as the received sequence
number. The expected send sequence number is incremented by
one.

If the send sequence number is one less than expected, then
that number is returned as the received sequence number.
However, the data is not stored since it was stored on receipt
of the prior message (which must have been repeated). The send
sequence number should never be one more than expected.

3.2.1.2.2 Receive Sequence Number Checking

For a given copy of COMM the received sequence number from
the correspondent COMM should be the same as its prior send
sequence number indicating that the correspondent COMM received
the communication block correctly. COMM then increments the
send sequence number for the next block.

If the received sequence number is one less than the prior
send sequence number, then COMM retransmits the data using the
same send sequence number.

The received sequence number should never be one more than
the prior send sequence number. If it is, COMM sends a negative
acknowledgment indicating the error.

3.2.1.3 Protocol for Binary Data Transmission

When an NTM is required to send binary data using this
transmission protocol, the binary information will be expanded
into an acceptable set of characters (0-9 and A-F), transmitted
as characters, and transformed to binary upon receipt from the
LAN. The following data translation algorithm will be applied
to the data by the communication subsystem.

Each byte of data is transmitted as two bytes of ASCII
data. The first byte represents the higher order 4 bits of data;
the second, the last 4 bits.

This translation is reversed by the receiving station in
order to rebuild the original NTM message.

3-11

DS 620343000
30 September 1990

3.2.1.4 Interface Between IBM and non-IBM Computers

When using standard terminal I/O drivers to transmit data

between the IBM and non-IBM computers, there are four problems
that must be considered:

1. Removing control characters from the message before
sending it and inserting them back into the message
after it has been received.

2. Using one character set to compute the longitudinal
redundancy check on all computers.

3. Conversion or translation of certain characters
because of unique problems. For example, spaces are
converted to cursor control by protocol converters so
spaces must be replaced by a special code before
transmission.

4. Checking for characters in EBCDIC that do not have an
equivalent character in ASCII.

These problems are solved in the three subroutines, KMINDA,
EXOUDA, and KLCLRC, in the Communication Subsystem through the
use of two tables. The tables are found in the include files
CTLASC and ASCII on non-IBM computers and CTLEBC and EBCDIC on
the IBM.

3.2.1.4.1 Non-IBM Computers

The CTLASC and ASCII include files are used in computers

whose native character specification is ASCII. The table in the
ASCII include file is used by the EXOUDA and KLCLRC subroutines
to determine if there is an equivalent EBCDIC character, and, if
it is a control character, what the substitution code is.

The table contains positive, negative, and zero values.

The negative values indicate that the character being processed
is a control character or a character that requires special
conversion for transmission. The code to be used in the message
is the negated negative value found in the table. If the value
is positive, the original character is used in the message. If

the value is zero, there is no equivalent character in the

EBCDIC character set.

The table in the CTLASC include file is used by the KMINDA
subroutine to restore the original message. Through the table,
KMINDA determines the correct control character or special

character to be inserted into the message in place of the code
character found in the message. The code consists of
alphanumeric characters that will not cause terminal I/O drivers
to react in a special manner. The flag in the message that
indicates a code character follows is the (!).

3.2.1.4.2 IBM Computers

The CTLEBC and EBCDIC include files are used in the iBM
computers where the native character specification is EBCDIC.
The table in the EBCDIC include file is used for two functions.

3-12

DS 620343000
30 September 1990

In EXOUDA it is used to determine if there is a comparable ASCII
character, and, if there is an ASCII equivalent, is it a control
character or a special character. In KLCLRC the table in EBCDIC
is used to convert all the characters in the message to ASCII in
order to perform the sum for the longitudinal redundancy check.
(Negative values in the table are never used in KLCLRC because
conversion is done by EXOUDA before KLCLRC is called.)

The contents of the table in the EBCDIC include file on the
IBM have the same definitions for positive, negative, and zero
values as its counterpart file, ASCII, does in the non-IBM
environment.

The table in the CTLEBC include file is used by the KMINDA
subroutine in the Communication Subsystem on the IBM in exactly
the same manner as KMINDA in the Communication Subsystem on the
non-IBM computers.

3.2.2 Message Format

Each message contains seven characters in addition to the
data characters. The first three characters are called the
header, and the last four characters are called the trailer.
This is depicted in Figure 3-6.

Header Character #1 - Send Data Sequence Number Byte

ASCII Character
0 No send data message
1 Send Sequence Number 1
2 Send Sequence Number 2
3 Send Sequence Number 3

Source sequence number cycles from
1 to 2 to 3 and back to 1 when
data is being transmitted.

Header Character #2 - Received Data Sequence Number Byte

ASCII Character
0 No received data message
1 Received Sequence Number 1
2 Received Sequence Number 2
3 Received Sequence Number 3

Header Character #3 - Control Byte

ASCII Character

The following 8 control chars do not accompany a data msg.
0 Positive Acknowledgment
1 Line Bid
2 On-Line
3 End of Transmission
4 NAK - Parity Error
5 NAK - No Buffer Space
6 NAK - Bad Receive Sequence Number
7 NAK - Bad Send Sequence Number

3-13

DS 620343000
30 September 199()

The following 4 control chars always accompany a data msg.
A ACK - Sending Native Data
B ACK - Sending Binary Data
C ACK - Sending Continued Native Msg.
D ACK - Sending Continued Binary Msg.

Trailer Characters
#1, 2, & 3 - Block Check

These three characters contain a message block check. The block
check is computed by adding all bytes in the message (including
the header bytes). This block check could be up to 18 bits in
size for a message block of size 2048 bytes. The 18 bit
additive result is split into three 6 bit quantities. Each 6
bit quantity is represented by an ASCII character, with the
three characters being stored as the last characters in the
message (high order bytP occurring first).

The block check characters occur only in messages containing
data.

Trailer Character #4 - Carriage Return

3-14

DS 620343000
30 Senf1mhw 1090

- - - - - - - - - ---
I Send I Rcv. I Ctrl. I I I I I C I
I Seq. I Seq. I Byte I DATA I Bcc B Bcc I Boc I R I
I No. I No. I I I 1 I 2 1 3 1 1
------- ---

or

I Send I Rcv. I Ctrl. I C I
I Seq. I Seq. i Byte I R I
I No. I No. I I I

SEND SEQUENCE RECEIVE SEQUENCE NUMBER

0 - No send data 0 - No received data
I - Send sequence I - Receive sequence

number 1 number 1
2 - Send sequence 2 - Receive sequence

number 2 number 2
3 - Send sequence 3 - Receive sequence

number 3 number 3

CONTROL BYTE

THE IOLLOWING CHARACTERS DO NOT ACCOMPANY DATA

0 - Positive acknowledgment
1 - Line bid
2 - End of transmission
3 - NAK - Biock check error
4 - NAK - NTH input mailbox full
5 - NAK - Bad send sequence number
6 - NAK - Bad receive sequence number

THE FOLLOWING CHARACTERS ALWAYS ACCOMPANY DATA

A - ACK - Sending native data
B - ACK - Sending binary data
C - ACK - Sending continued native data
D - ACK - Sending continued binary data

Figure 3-6. Communication Block Diagram

3-15

DS 620343000
30 September 1990

3.2.3 Timing

3.2.3.1 Line Idle

When the line is idle, the line bid message may be sent by
either endpoint. If a collision of line bids occur or if there
is no response, the primary waits for 1 second before
retransmitting a line bid, and the secondary waits for u
seconds.

3.2.3.2 Master

The endpoint successfully bidding for the line becomes the
master. The master waits for 5 seconds for a response from a
slave. A time-out causes retransmission of the prior
communication block.

3.2.3.3 Slave

The slave waits for

(Maximum number of retries x 5 secs) + 5 seconds

for a response from the master. If data is not received within
this time, the slave assumes an end of transmission was missed
and returns to an idle state. If a partial message is being
assembled, a link failure is reported and the partial message is
discarded.

3.2.3.4 NTM Input Mailbox Full

When a copy of COMM discovers that the NTM input mailbox is
full, it waits for one second and tries again to place the
message in the mailbox. If the condition still exists, a NAK
message is returned to the correspondent COMM. The
correspondent COMM sends an error status message to its local
NTM and retransmits the communication block.

3.2.4 Block Check Computation

The block check is computed by adding all bytes in the
communication block excluding the block check itself and the
carriage return. This could account for an 18 bit block check
for a message block of size 2048 bytes. The 18 bit additive
result is split into three 6 bit quantities. Each 6 bit
quantity is represented by a valid ASCII character with the
three characters being stored as the last three characters in
the message (high order byte occurring first).

3.2.5 Control Characters in Data

The 32 ASCII control characters (octal 0-37) affect the
behavior of the I/O handlers and therefore cannot be allowed in
the data stream. Byte stuffing will be used to convert each
control character to a valid ASCII character proceeded by a
usable special character such as data link escape.

3-16

DS 620343000
30 September 1990

3.2.6 Communication Subsystem Primitives

The design of the COMM is made up of a large generic
portion that will be the same for all computers, and a small
host-specific part (primitives) that is specially developed for
each computer. The host-specific part is a group of routines
called the Interhost Communication Primitives (IHC's). The
following is a description of these routines.

3.2.6.1 Initialize Communication Port Interface

Calling Sequence:

CALL INILAN USING PORT-NAME,
RCV-BLOCK,
XMIT-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

INILAN moves the PORT-NAME or some system dependent
equivalent to the appropriate storage in the XMIT and RCV
blocks. If initialization for some system services associated
with the port is required, it is performed in this primitive.
INILAN also initializes the XMIT and RCV blocks with character
zeros.

Inputs:

PORT-NAME
RCV-BLOCK
XMIT-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
System dependent errors

3.2.6.2 Send a Message to a Terminal Port

Calling Sequence:

CALL "XMTLAN" USING XMIT-BLOCK,
EVENT-BLOCK-nn,
FLAGS,
STATUS.

Description:

XMTLAN outputs a message to a given terminal port.

3-17

DS 620343000
30 September 1990

Inputs:

XMIT-BLOCK
EVENT-BLOCK-nn
FLAGS

Outputs:

STATUS

Possible Status Conditions:

Successful
Number of bytes zero
Number of bytes greater than maximum
Receive LAN outstanding
System dependent errors

Notes:

1. The XMIT-BLOCK contains the port name, the number of
bytes to be transmitted, and the buffer with the
message. (See the next section for a detailed
description of the XMIT-BLOCK.)

2. A good status indicates that the message has been
accepted for transmission. It does not mean a
successful transmission.

3. The number of bytes to be transmitted must be at least
one and no more than 1024. The maximum number of
bytes is a communication variable that can be changed.

4. The event block that is passed to XMTLAN must be the
same as the one that is passed to RCVLAN and GETLAN.

3.2.6.3 Receive a Message from a Terminal Port

Calling Sequence:

CALL "RCVLAN" USING RCV-BLOCK,
EVENT-NUMBER,
EVENT-BLOCK-nn,
FLAGS,
STATUS.

Description:

RCVLAN informs the operating system that the program will
accept a message from the given terminal port.

Inputs:

RCV-BLOCK
EVENT-NUMBER
EVENT-BLOCK-nn

3-18

DS 620343000
30 September 1990

Outputs:

STATUS

Possible Status Conditions:

Successful
Only one receive outstanding permitted
Event number zero
Event number greater than maximum
System dependent errors

Notes:
1. Only one receive may be outstanding for a given

terminal port.

2. The event number may have a value of 01 through 22. A
value of zero or 23 throuqh 99 causes an error status
to be returned. The maximum number of events
outstanding that can be waited on at any one time is
22 because COBOL on the Level 6 limits the number of
arguments in a calling sequence to 25.

3. The event number must be unique.

4. The value of the event number is the priority of the
receive message request in relation to the other
outstanding requests. The lower the value, the higher
the priority.

5. The RCV-BLOCK contains the port name, the buffer size,
and the buffer into which the message will be stored.
(See the next section for a detailed description of
the RCV-BLOCK.)

6. The RCV-BLOCK that is passed to RCVLAN must be the
same one that is passed to GETLAN when the program
actually gets the message from the given terminal
port.

7. The event block that is passed to RCVLAN must be the
same one that is passed to GETLAN when the program
actually gets the message from the given terminal
port. The event block is also the same one that is
passed to XMTLAN to send a message to the port.

3.2.6.4. Get a Message from a Terminal Port

Calling Sequence:

CALL "GETLAN" USING RCV-BLOCK,
EVENT-BLOCK-nn,
STATUS.

3-19

DS 620343000
30 September 1990

Description:

GETLAN accepts the message that was received from the given
terminal port and moves it into the given buffer.

Inputs:
RVC-BLOCK
EVENT-BLOCK-nn

Outputs:
STATUS

Possible Status Conditions:

Successful
Receive not satisfied
Not a LAN event block
No receive outstanding
Buffer size zero
Buffer size greater than maximum
Buffer too small
System dependent errors

Notes:

1. The RCV-BLOCK contains the port name, the buffer size,
the buffer, and a location into which the number of
bytes in the message is stored by GETLAN.

2. The RVC-BLOCK that is passed to GETLAN must be the
same one that was passed to RCVLAN for the given
terminal port.

3. The event block that is passed to GETLAN must be the
same one that was passed to RCVLAN for the given
terminal port. The event block is also the same one
that is passed to XMTLAN to send a message to the
port.

4. If the buffer size is too small for the entire
message, an error status is returned and the message
is lost. There is no longer a receive outstanding.

5. If no receive is outstanding for the given terminal
port, an error status is returned.

3-20

DS 620343000
30 September 1990

3.2.6.5 Cancel a Receive Request from a Terminal Port

Calling Sequence:

CALL "CNLLAN" USING RCV-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

CNLLAN removes the receive outstanding for a given
terminal port.

Inputs:

RCV-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
No receive outstanding
Not a LAN event block
System dependent errors

Notes:
1. The RCV-BLOCK that is passed to CNLLAN must be the

same one that was passed to RCVLAN when the receive
was requested.

2. The event block that is passed to CNLLAN must be the
same one that was passed to RCVLAN when the receive
was requested.

3. The RCV-BLOCK contains the port name, the buffer size,
the buffer into which the message will be stored, and
a location for the actual number of bytes in the
message. (See the next section for a detailed
description of the RCV-BLOCK.)

4. If there was a message present, it is lost.

3-21

DS 620343000
30 September 1990

3.2.6.6 Terminate Communication Port Interface

Calling Sequence:

CALL "TRMLAN" USING PORT-NAME,
RCV-BLOCK,
XMIT-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

TRMLAN is needed for the IBM environment only. It issues
VTAM calls to disconnect from the port. The implementation on
the other computers is a stub.

Inputs:

PORT-NAME
RCV-BLOCK
XMIT-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

3.2.7 Interprocess Communication Primitives

The IPC primitives are used to transfer messages between
tasks on the same computer. They have been designed to localize
all host dependent code in several small routines. These
routines are referred to as the Interprocess Communication
Primitives or IPC's.

3.2.7.1 Create a Mailbox

Calling Sequence:

CALL "CRTMBX" USING INPUT-MAILBOX-NAME,
MAILBOX-SIZE,
EVENT-BLOCK-nn,
STATUS.

Description:

CRTMBX creates a mailbox through which the program will
receive messages from another program running on the same
computer.

3-22

DS 620343000
30 September 1990

Inputs:
INPUT-MAILBOX-NAME
MAILBOX-SIZE
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid mailbox name
Mailbox already exists
Mailbox size zero
Mailbox size greater than maximum
Event block not initialized
System dependent errors

Notes:

1. If the input mailbox has been created previously, an
error status is returned.

2. The event block that is passed in the CRTMBX call is
the same event block that is passed when the program
issues RCVMSG and GETMSG for the input mailbox.

3. The mailbox size is only applicable on the VAX and IBM
implementations of the CRTMBX primitive. The resource
wait mode on the VAX must be disabled to permit the
program to regain control immediately upon detection
of mailbox full.

3.2.7.2 Send a Message to Another Program

Calling sequence:

CALL "SNDMSG" USING TARGET-MAILBOX-NAME,
BUFFER,
NUMBER-OF-BYTES,
EVENT-BLOCK-nn,
STATUS.

Description:

SNDMSG sends a message to another program running on the
same computer through the input mailbox of the other program.
The event block is system dependent storage that is required by
SNDMSG. It is not associated with an event that can be waited
on.

3-23

DS 620343000
30 September 1990

Inputs:

TARGET-MAILBOX-NAME
BUFFER
NUMBER-OF-BYTES
EVENT-BLOCK-nn

Outputs:
STATUS

Possible Status Conditions:

Successful
Mailbox not found
Mailbox full
Number of bytes zero
Number of bytes greater than maximum
System dependent errors

Notes:
1. The receiving program must have previously created its

input mailbox. If no mailbox exists with the given
name, an error status is returned.

2. A good status indicates that the message has been
accepted by the operating system for transfer. It does
not mean that the message has been received by the
other program.

3. If the status of "mailbox full" is returned, the
program must retry at a later time.

4. The number of bytes to be sent must be at least one
and no more than 2000.

5. The event block must not be in use for an input
mailbox or a timer. An event block associated with a
mailbox is in use if the mailbox has been created but
not deleted. An event block associated with a timer is
in use if the timer has been started but not cancelled
or runout during a WAITnn.

6. A series of SNDMSG calls being directed to a single
target mailbox should use the same event block. The
VAX assigns a logical channel ID to a target mailbox
at the time of the first SNDMSG call and uses that
channel ID for subsequent SNDMSG calls. This event
block cannot be used for other purposes until it is
released (see RELEVB).

3.2.7.3 Receive a Message from Another Program

Calling sequence:
CALL "RCVMSG" USING INPUT-MAILBOX-NAME,

EVENT-NUMBER,
EVENT-BLOCK-nn,
STATUS.

3-24

DS 620343000
30 September 1990

Description:

RCVMSG informs the operating system that the program will
accept a message sent from another program to the given input
mailbox. The program continues executing. The fact that a
message has been sent by another program is obtained with the
WAITnn or GETMSG primitive.

Inputs:

INPUT-MAILBOX-NAME
EVENT-NUMBER
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox named
Not a receive event block
Only one outstanding receive permitted
Event number zero
Event number greater than maximum
System dependent errors

Notes:

1. Only one receive may be outstanding for a given input
mailbox.

2. The event block that is passed to RCVMSG must be the
same event block that was passed to CRTMBX when the
given input mailbox was created.

3. The event number must be unique. (See the description
of the event number in Section 3.5.2)

4. The value of the event number is the priority of the
receive message request in relation to the other
outstanding requests. The lower the value, the higher
the priority.

5. The event number may have a value of 01 through 22. A
value of zero or 23 through 99 causes an error status
to be returned. Because COBOL on the Level 6 limits
the number of arguments in a calling sequence to 25,
the maximum number of outstanding events that can be
waited on at any one time is 22.

3-25

DS 620343000
30 September 1990

3.2.7.4 Get a Message from Another Program

Calling Sequence:

CALL "GETMSG" USING INPUT-MAILBOX-NAME,
BUFFER,
BUFFER-SIZE,
NUMBER-OF-BYTES,
EVENT-BLOCK-nn,
STATUS.

Description:

GETMSG accepts the message that was sent from another
program running on the same computer and moves it into the
given buffer.

Inputs:
INPUT-MAILBOX-NAME
BUFFER-SIZE
EVENT-BLOCK-nn

Outputs:
BUFFER
NUMBER-OF-BYTES
STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox name
Not a receive event block
No receive outstanding
Receive not satisfied
Buffer too small
Buffer size zero
Buffer size greater than maximum
System dependent errors

Notes:

1. If no receive is outstanding for the given input
mailbox, an error status is returned.

2. If a receive is outstanding but no message has been
delivered by the operating system, a status is
returned indicating that no message has been received.

3. If the buffer size is too small for the entire
message, an error status is returrpd and the message
is lost. An outstanding receive for that mailbox no
longer exists.

4. The event block that is passed to GETMSG must be the
same one that was passed to RCVMSG for the given input
mailbox.

3-26

DS 620343000
30 September 1990

3.2.7.5 Delete a Mailbox

Calling Sequence:

CALL "DELMBX" USING INPUT-MAILBOX-NAME,
EVENT-BLOCK-nn,
STATUS.

Description:

DELMBX removes the ability to receive messages from another
program through the given input mailbox.

Inputs:

INPUT-MAILBOX-NAME
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox named
Not a receive event block
System dependent errors

Notes:

1. The event block that is passed to DELMBX must be the
same event block that was passed to CRTMBX when the
given input mailbox was created.

2. If there are messages remaining in the mailbox, they

are lost.

3. The given event block is re-initialized.

3.2.7.6 Release an Event Block

Calling Sequence:

Call "RELEVB" USING TARGET-MAILBOX-NAME,
EVENT-BLOCK-nn,
STATUS.

Description:

RELEVB releases an event block which had been used for
sending messages to a target mailbox. The event block is cleared
and may be used for another purpose.

Inputs:
TARGET-MAILBOX-NAME
EVENT-BLOCK-nn

3-27

DS 620343000
30 September 1990

Outputs:

STATUS

Possible Status Conditions:

Invalid event for mailbox named
System dependent errors (VAX only)

Notes:
1. The VAX implementation of RELEVB deassigns the logical

channel previously assigned to the target mailbox by
SNDMSG.

2. All logical channels assigned to target mailboxes by
SNDMSG primitive calls on the VAX are deassigned when
a process terminates. Therefore, for many
applications, a call to RELEVB is not required.

3.2.7.7 Start a Timer

Calling Sequence:

CALL "SETTIM" USING TIME-INTERVAL,
EVENT-NUMBER,
EVENT--BLOCK-nn,
STATUS.

Description:

SETTIM requests the operating system start a timer with the
given time interval. The program continues executing. The fact
that the timer has elapsed is obtained from the WAITnn
primitive. Only one timer may be active at a time.

Inputs:
TIME-INTERVAL
EVENT-NUMBER
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Time interval zero
Time interval greater than maximum
Event number zero
Event number greater than maximum
Event block not initialized
System dependent errors
Timer already active

Notes:

1. The time interval is given as HHMMSS.

3-28

DS 620343000
30 September 1990

2. The minimun time interval is 000001. The maximum time
interval is 24 hours, 59 minutes, 59 seconds.

3. The event number must be unique. (See the description
of the event number in Section 3.5.2)

4. The value of the event number may be 01 through 22. A
value of zero or 23 through 99 causes an error status
to be returned. The maximum number of outstanding
events that may be waited on at any one time is 22
because COBOL on the Level 6 limits the number of
arguments in a calling sequence to 25.

5. The value of the event number in relation to the
values of other event numbers is an indication of
priority for the WAITnn primitive. The event number
with the lowest value has the highest priority.

6. The event block that is passed to SETTIM must be the
same event block that is passed to CNLTIM to cancel
the timer.

3.2.7.8 Stop a Timer

Calling Sequence:

CALL "CNLTIM" USING EVENT-BLOCK-nn,
STATUS.

Description:

CNLTIM cancels the request made to the operating system by
SETTIM to be notified when a given time interval has passed.

Inputs:

EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Not a timer event block
System dependent errors

Notes:

1. The event block that is passed to CNLTIM must be the
same event block that was passed to SETTIM to start
the timer.

2. The given event block is re-initialized.

3-29

DS 620343000
30 September 1990

3.2.7.9 Wait for an Event to Occur

Calling Sequence:

CALL "WAITnn" USING EVENT-NUMBER,
STATUS,
NUMBER-OF-EVENT-BLOCKS,
EVENT-BLOCK-01,
EVENT-BLOCK-02,

EVENT-BLOCK-xx.

where nn is a number from 01 through 22 that indicates the
number of event blocks being passed

Description:

WAITnn waits for one of the outstanding requests that are
associated with the list of event blocks to be satisfied. The
event number associated with the completed request is returned
in the EVENT-NUMBER variable.

Inputs:

NUMBER-OF-EVENT-BLOCKS
EVENT-BLOCK-01
EVENT-BLOCK-02

EVENT-BLOCK-xx

Outputs:

EVENT-NUMBER
STATUS

Possible Status Conditions:

Successful
Number of event blocks zero
Number of event blocks greater than
maximum
List of event blocks greater than
number of event blocks
Event numbers not unique
No requests outstanding
System dependent errors

Notes:

1. The order in which the testing for the completion of a
request is performed is based upon the event number
asso'-iated with each event block. The request with
the lowest event number has the highest priority;
therefore, the check for its completion is done first.

3-30

DS 620343000
30 September 1990

The request with the next lowest event number is
checked second, and so forth. This process continues
until a request associated with one of the given event
blocks has been satisfied.

2. If two requests have been completed, the one with the
lowest event number is indicated to the calling
program. The information that another request has been
satisfied is retained by the primitive until the
WAITnn is called again.

3. The maximum number of event blocks that may be passed
is 22. Because COBOL on the Level 6 limits the number
of arguments in a calling sequence to 25, the maximum
number of outstanding events that can be waited on at
any one time is 22.

4. At least one event block must be passed.

5. Each event block must have a unique event i tr-er
associated with it; otherwise, an error status is
returned.

6. It is not required to have an outstanding request
associated with each event block passed to WAITnn.
Because the primitive is able to differentiate between
event blocks that have outstanding requests and those
that do not, the WAITnn primitive may be passed all
the event blocks that would be needed for the worst
case. If there are no requests outstanding, however,
an error status is returned.

7. If an error status is returned, the event number is
set to character zeros.

8. The 'list of event blocks greater than number of event

blocks' error is checked only by the IBM.

3.2.7.10 Terminate a Program

Calling sequence:

CALL "ENDRUN".

Description:

ENDRUN calls the appropriate system routine to stop
execution of the particular program without halting the IISS
system.

Inputs:

None

Outputs:

None

3-31

DS 620343000
30 September 1990

3.2.7.11 Save an Event Indicator

Calling Sequence:
CALL "LOCKEF".

Description:

LOCKEF is applicable only to the VAX. Its purpose is to
obtain event indicator 63 from the system so that none of the
other primitives can use it. LOCKEF is needed to work around a
bug in VAX-il DBMS. It is called by the Request Processors that
manipulate data store under the VAX-11 DBMS.

Inputs:
None

Outputs:
None

3.2.7.12 Request an Error Be Logged

ERRPRO -- Process Error

Description:

This module is used to process errors. It gets the current
date and time, formats the message and writes the message to the
mailbox ERRMBX. In case of an error, this module will print a
message on the operator hardcopy console. It will not terminate
the processing of the calling program, but will return control
to the calling program regardless of whether the error message
is being written to the mailbox or not. Another task, ERRLOG,
will read the error message from the mailbox and log the message
on a file. See module specification of ERRLOG for details of
this error logging task. The format of an error message is as
shown:

Byte Data

1 - 2 function code (DA)
3 - 10 current date (YY/MM/DD)
11 - 18 current time (HH:MM:SS)
19 - 24 module name
25 - 29 return status
30 - 89 message description

INTERFACES:
ENTRY CONDITIONS:
RET-STATUS PIC X(5).
MODULE-NAME PIC X(6).
MESG-DESC PIC X(60).

EXIT CONDITIONS:
(NONE)

GLOBAL BLOCKS:
(NONE)

3-32

DS 620343000
30 September 1990

DATA ORGANIZATION:

LOCAL VARIABLES:

ERR-STATUS PIC X(5). --ERROR STATUS

DATABASE INTERACTION:

LIMITATIONS:

Depending on the operating system, we may have a problem
trying to write a message to the operator console. If so, some
other mechanism will be used to log the error status on a
hardcopy device in case this module encounters an error while
writing to the ERRMBX mailbox.

3.2.7.13 Log an Error

ERRLOG -- PERFORM ERROR LOGGING TO A FILE

Description:

This program reads a message from mailbox ERRMBX. The
format of the message is as follows:

Byte Data

1 - 2 Function code
e.g., DA -- error message data to be

logged to file ERRLOG.DAT
CF -- close current version of
file and open a new version of
the file ST -- close current
version of file and terminate
processing

3-33

DS 620343000
30 September 1990

3 - 109 Data portion of message -- If the
'unction code is DA, the data portion of
the message is formatted as follows:

Byte Data

3 - 10 current date (YY/MM/DD)
12 - 19 current time (YY/MM/DD)
21 -35 process name
37 - 42 module name
44 - 48 return status
50 - 109 message description
11, 20, 36,
43, 49 (blank)

Depending on the function code, this routine will branch to
the corresponding part of the program. If an error is detected
in this module, it will try to display the error on the
operator's hard copy device. This module is executed as soon as
IISS is brought up. It will check to see if mailbox ERRMBX is
already created or not. If not, it will create the mailbox.
Otherwise it will set up the event block for a future receive.
Mailbox ERRMBX is a temporary mailbox and there is no need to
delete or clean up the mailbox when this program is brought up.
If there is no message in the mailbox, this program will suspend
processing and wait for a message to arrive at mailbox ERRMBX.
If the message contains function code ST, this routine will
close the current version of the file and terminate processing.
If the message contains function code CF, this routine will
close the current version of the file and open a new version of
the file. Then it continues to read messages from the mailbox.
If the message contains function code DA, it will write a record
to the ERRLOG.DAT file and continue to read messages from the
mailbox.

DATA ORGANIZATION:

LOCAL VARIABLES:

DATABASE INTERACTION:

ERRLOG.DAT -- this is an indexed file of record size (102) with
the following format:

Byte Data

1 - 8 current date (YY/MM/DD)
9 - 16 current time (YY/MM/DD)

17 - 31 process name
32 - 37 module name
38 - 42 return status
43 - 102 message description

3-34

DS 620343000
30 September 1990

LIMITATIONS:

LEVEL 6 MOD 400 operating system does not keep track of the
version number of the file. In order to keep different versions
of the file, we may have to rename the current version of the
file and then create a new version using ERRPRO.DAT as the file
name.

3.3 Special Requirements

3.3.1 Programming Methods

COMM programming methods shall conform to the standards set
forth by General Electric in the IISS Software Development
Guidelines/Conventions document. Principles of structured
design and programming will be adhered to.

3.3.2 Expandability

The design constraints on the communictions subsystem were
to follow the ISO reference model, use a local area network,
and, if possible, use standard, vendor-supported softwre
drivers. The objective is to avoid writing new drivers with all
of the maintenance problems that this entails, and to avoid
developing any special hardware. Various communications
packages and approaches were reviewed and evaluated with respect
to their applicability to the local area network usage, the
availability for the computers to be used on the Test Bed, and
their adherence and extension to the ISO reference model. The
final conclusion was that no communication protocol existed or
was in the detailed specification stage, even for the lower
levels, to fully satisfy the needs and constraints of the Test
Bed and at the same time not to unduly overburden the system
with capabilities that are not needed for a LAN-based system.

Based on the evaluation of currently available packages,
and in consultation with Computer Technology Associates (active
on the ISO committee), it was decided to develop a protocol
based on the standard "bisynch" protocol for level 2 that would
serve in the interim period and be compatible with the
substitution of new standard protocols when they become
available. Also, local area network vendors will begin
supplying compatible host protocols. In the meantime, the
protocols developed for the project will use standard terminal
drivers supplied by the computer vendors and will interface to
the local area network as a standard terminal, making the
interface completely standard for the LAN.

Since the system dependent software for each host computer
on the IISS is implemented in the primitives, additional types
of computers can be added to the IISS and only the primitives
have to be reimplemented.

3.4 Human Performance

Not Applicable.

3-35

DS 620343000
30 September 1990

3.5 Data Description of Arguments Used with the Primitives

3.5.1 Data Description of Arguments for Communication Subsystem
Primitives

- Xmit-block

The argument XMIT-BLOCK is a variable name associated with
a block of contiguous storage. It contains the port name, the
number of bytes to be transmitted, and the buffer for the
message. The message consists of the header, the data, and the
longitudinal redundancy check (LRC). The location of the LRC is
the three bytes immediately following the data. XMIT-BLOCK
also contains the buffer size so that both blocks can be
manipulated by the same subroutines. Its description in COBOL
is

01 XMIT-BLOCK.
03 XMIT-PORT-NAME PIC X(4).
03 XMIT-NO-OF-CHARS PIC 9(4).
03 XMIT-BUFFER-SIZE PIC 9(4).
03 XMIT-BUFFER.
05 XMIT-HEADERI PIC 9.
05 XMIT-HEADER2 PiC 9.
05 XMIT-HEADER3 PIC X.
05 XMIT-DATA PIC X(1021).
03 XMIT-SEQUENCE-NO PIC 9

- Rcv-block

The argument RCV-BLOCK is a variable name associated with a
contiguous block of storage. It contains the port name, the
number of bytes in the message just received, the maximum number
of bytes the buffer can hold, and the buffer for the message.
Its description in COBOL is

01 RCV-BLOCK.
03 RCV-PORT-NAME PIC X(4).
03 RCV-NO-OF-CHARS PIC 9(4).
03 RCV-BUFFER-SIZE PIC 9(4).
03 RCV-BUFFER.

05 RCV-HEADERl PIC 9.
05 RCV-HEADER2 PIC 9.
05 RCV-HEADER3 PIC X.
05 RCV-DATA PIC X(1021).

03 RCV-SEQUENCE-NO PIC 9.

- Flags

The argument FLAGS is a variable name associated with a
contiguous block of storage. It contains data that indicates
whether this version of COMM is primary, what the state of COMM
is, time settings, and the host and target computer indicators.

3-36

DS 620343000
30 September 1990

- Port-name

The argument PORT-NAME contains the alphanumeric characters
required by the operating system to indicate the exact terminal
port the COMM program will use.

01 PORT-NAME PIC X(12)

3.5.2 Data Description of Arguments for IPC Primitives

- Input-mailbox-name

The argument INPUT-MAILBOX-NAME contains a 14-character
alphanumeric (no embedded blanks) that is used by the program to
indicate it will accept and process messages from other programs
running on the computer if they are sent to a mailbox with this
14-character label. It is recommended that a different mailbox
name be used to receive messages from different programs. Its
description in COBOL is

01 input-mailbox-name-x PIC X(14).

- Target-mailbox-name

The argument TARGET-MAILBOX-NAME contains the 14-character
alphanumeric that is the input mailbox name for the program to
which the message is to be sent. Its description in COBOL is

01 target-mailbox-name-x PIC X(14).

- Mailbox-size

The argument MAILBOX-SIZE contains the the amount of
storage in bytes the programmer wants allocated by the operating
system for the given mailbox. Its description in COBOL is

01 mailbox-size-x PIC 9(5).

- Buffer

The argument BUFFER is a variable name that is associated
with a given amount of contiguous memory. The amount of memory
should be enough to contain the largest single message that will
be sent or received. Its description in COBOL is

01 buffer-x PIC X(2000).

- Number-of-bytes

The argument NUMBER-OF-BYTES contains the actual number of
characters that, in the case of SNDMSG, are to be sent. In the
case of GETMSG it is the number of bytes that were moved into
the buffer. Its description in COBOL is

3-37

DS 620343000
30 September 1990

01 number-of-bytes-x PIC 9(4).

- Buffer-size

The argument BUFFER-SIZE contains the maximum number of
bytes that can be stored in the buffer by GETMSG. Its
description in COBOL is

01 buffer-size-x PIC 9(4).

- Number-of-event-blocks

The argument NUMBER-OF-EVENT-BLOCKS contains the number of
event blocks that are being passed to the WAITnn block. Its
description in COBOL is

01 number-of-event-blocks-x PIC 99.

- Time-interval

The argument TIME-INTERVAL contains the number of hours,
minutes and seconds the timer is to count before it returns a
request complete. Its description in COBOL is

01 time-interval-x.
03 time-in-hours PIC 99.
03 time-in-minutes PIC 99.
03 time-in-seconds PIC 99.

The maximum time interval is 24 hours, 59 minutes, 59

seconds.

- Status

The argument STATUS contains a code that indicates whether
the primitive was successful or not; and, if it was not, what
the problem was. Its description in COBOL is

01 status-x PIC X(5)

- Event-block

The argument EVENT-BLOCK is a variable name that is
associated with a block of contiguous memory to be used by the
primitive. It is, therefore, system dependent storage that may
not be used by the program. Since it is system dependent, its
size will vary from host to host. There are a set of include
files that a programmer may use to define the event blocks. The
names of the files are

EVBK01.system standard suffix
EVBK02. " "

EVBK22.

3-38

DS 620343000
30 September 1990

The programmer must decide the maximum number of event
blocks that will be needed by the program at any one time. In
the initialization section of the program, all the event blocks
must be initialized to character zeros. The event block will be
re-initialized by the primitives when the timer runs out or is
cancelled and when a mailbox is deleted.

The event block differs from the other arguments passed to
the primitives. For all the others, the primitives need the
contents or value of the arguments. In the case of the event
block, however, the primitives need its address. Therefore, a
dummy argument for an event block will not work. The following
code illustrates the incorrect passing of event blocks.

MOVE EVENT-BLOCK-01 TO EVENT-BLOCK.
PERFORM CREATE-MAILBOX.

MOVE EVENT-BLOCK-02 TO EVENT-BLOCK.
PERFORM CREATE-MAILBOX.

CREATE-MAILBOX.
CALL "CRTMBX" USING INPUT-MAILBOX-NAME,

MAILBOX-SIZE,
EVENT-BLOCK,
STATUS.

Programmers should use the CASE statement to invoke the

primitives requiring an event block as an argument.

- Event-number

The argument EVENT-NUMBER is a code that is returned by the
WAITnn primitive to indicate which of the outstanding requests
was satisfied. The code is set by the programmer through the
value in the EVENT-NUMBER passed to the RCVMSG and SETTIM
primitives. The value must be in the range 01 through 22.

For example, a program could create MAILBOX-A, MAILBOX-B
and MAILBOX-C and issue a receive on each of the mailboxes with
EVENT-NUMBER set to 01, 02 and 03 respectively. If a message was
sent by another program to MAILBOX-B, the WAITnn primitive would
return 02. Thus, the programmer can use the EVENT-NUMBER as a
condition data item to determine what program sent the message.

Its description in COBOL is

01 event-number PIC 99.

3-39

DS 620343000
30 September 1990

The event number is also used by the WAITnn primitive to
determine the order in which the outstanding requests are to be
tested. The request with the lowest event number is checked
first. The request with the next lowest event number is checked
second, and so forth.

3.5.3 Data Description for the Event Block

The contents of the event block are system dependent except
for the first two fields. The first field is the event type
with a COBOL description of PIC 99. The second field is the
event outstanding flag with a COBOL description of PIC 9. Both
fields are described in more detail below.

- Event-type

The possible values for event-types are

01 IPC Receive
02 Timer Runout
03 LAN Receive (Terminal input complete)

- Event-outstanding

The possible values of event-outstanding codes are

Zeros No request outstanding
Character One Request outstanding, wait not complete
Character Two Request outstanding, wait complete. This

state indicates that the request for a
receive on either the LAN or a mailbox
has been satisfied but that the user has
not performed a get. The user is not
required to perform a get after a wait or
receive.

3.6 Adaptation Requirements

The COMM must be compiled, linked, and installed on each
host (VAX/VMS, HL 6/GCOS MOD400, IBM/MVS) in the IISS test bed.
These are located at the General Electric facility in Albany,
New York. If a new host type is added to the configuration, the
host specific primitives must be reimplemented for the new host
and relinked with the recompiled nonhost-specific software.

3-40

DS 620343000
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definition

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error.

"Antibugging" is defined as the philosophy of writing
programs in such a way as to make bugs less likely to occur and
when they do occur, to make them more noticeable to the
programmer and the users. That is, do as much error checking as
is practical and possible in each routine. This approach will
be followed in the COMM.

The quality assurance provisions for test will consist of
the normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team. Structured design,
design walk-throughs and the incorporation of "antibugging"
facilitate this testing by exposing and addressing problem areas
before they become coded "bugs." A detailed description of the
unit tests for COMM is given in the Unit Test Plan for the
Communication Subsystem, UTP620143000.

The integration testing will entail use of a test NTM
implementation on each host. This test program will send
messages to COMM, read messages from COMM, and print out
results. COMM can also read messages from a terminal and output
messages to a terminal in the absence of a LAN. A simple cable
can also be used to connect the VAX and L6 instead of the LAN.

4-1

DS 620343000
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed site
located at Arizona State University in Tempe, AZ. The software
associated with each COMM CPCI release will be delivered on a
media which is compatible with the IISS Test Bed. The release
will be clearly identified and will include instructions on
procedures to be followed for installation of the release.

5-1 ,U S Government Printing Offhce 1992-648-127/62206

