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Abstract

In this paper we consider the approximate solution of a class of second
order elliptic equations with rough coefficients. Problems of the type
considered arise in the analysis of unidirectional composites, where the
coefficients represent the properties of the material. We present several
methods for this class of problems, and show that they have the same accuracy
as usual methods have for problems with smooth coefficients. We refer to the
methods as special finite elements methods because they are of finite element

type but employ special shape functions, chosen to effectively model the

unknown solution.

Key words: special finite elements, rough coefficients
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Special Finite Element Methods for a Class of

Second Order Elliptic Problems with Rough Coefficients

1. Introduction

In this paper we consider the approximate solution of a class of second
order, two dimensional elliptic boundary value problems with rough or highly
oscillating coefficients. We apply an approach proposed by Babuska and Osborn
[5] for the approximate solution of problems with rough input data. This
approach was applied to one dimensional problems in Babuska and Osborn [4].

Specifically, we consider boundary value problems of the form

(1.1)
L _ 3 ) 3 3 -
{m&w=-&muy5?umn-wmud5?mdn-fud)V(mwen

ulx,y) =0 V (x,y) € 89,

where Q is a bounded domain in Rz, f 1is a function in LZ(Q), and where
the function a e L®(Q) satisfies
(1.2) 0<asSalx,y) SB<w V (x,y) € Q,

where « and B are constants. Throughout most of the paper we will also
assume that a(x,y) locally varies sharply in at most one direction, a
requirement on the coefficient a that will be made precise later (see
Remarks 2.1 and 4.1); such coefficients will also be called (curvilinear or
straight line) unidirectional. 1If the coefficient a 1is rough, then the
solution u to (1.1) will also be rough; to be specific, u will not in
general be in HZ(Q) and may not be in Hl*e(ﬂ) for any ¢ > O.

Problems of this type arise in many applications; we ;ill be especially

concerned with applications to unidirectional composite materials (briefly,

composites). In these applications the coefficient a(x,y) represents the



properties of the material, and changes abruptly. We will also be interested

in problems in which a(x,y) changes smoothly but rapidly. We will take the

liberty of referring to both types of problems as composites. In Figs.

1.1-1.4 we show some typical configurations for unidirectional composites.

In these figures the coefficient is constant or 1s changing slowly along the

lines or curves and is changing sharply in the transverse direction; the

Fig.

Fig. 1.1. A Straight Line Unidirectional Composite

1.2. A Tubular (Curvilinear Unidirectional) Composite




absence of lines in a portion of the material indicates a constant or a slowly
varying coefficient. We can interpret the lines as fibers in the composite.
This interpretation is, of course, symbolic for problems in which a(x,y)
changes smoothly but rapidly.

Fig. 1.1 shows a straight line unidirectional composite or coefficient
and Fig. 1.2 shows the cross-section of a tubular composite. Figs. 1.3a,b

show reinforced panels. The area A 1n Fig. 1.3b indicates a region in which

.........

]

Fig. 1.3a. Reinforced Panel Fig. 1.3b. Reinforced Panel

a(x,y) 1is smoothly becoming a constant or a smooth function. We refer to the
materials or the coefficients in Figs. 1.2-1.3 as curvilinear unidirectional.
Still more complicated problems can be considered. An example is shown in
Fig. 1.4. While Figs. 1.1-1.3 depict problems in which a(x,y) 1is unidirec-
tional everywhere in the domain, the problem depicted in Fig. 1.4 corresponds

to a coefficient that is unidirectional except on certain lines. Hence we




Fig. 1.4 Irregular Unidirectional
Composite

call it an irregular unidirectional composite. This type of problem will be
addressed in detail in a forthcoming paper. We note that certain interface
problems can be naturally treated as problems of composites. With this
approach it is not necessary to fit the interface with the finite elements, as
is done witﬁ the standard approach.

A finite element method is obtained by restricting the weak formulation
of problem (1.1),

ueHé(Q)

(1.3)
B(u,v) = I
Q

a grad u * grad v dxdy = I; fv dxdy V v € Hé(Q).
to finite dimensional trial and test spaces. The outline of the approach
given in [5] is as follows:

1) Characterize the space of solutions corresponding to the space of
right-hand sides (in our case we suppose f € LZ(Q)). This will involve a
regularity result. Although regularity results are well-known for elliptic

problems with smooth coefficients, they are not available in a direct form for

our problem. Such results will be discussed in Section 2.




2) Select trial spaces that have good approximation properties. The
approximation properties of the trial functions or shape functions are
directly tied to the regularity of the solution. For example, if the solution
u of (1.1) is not in HZ(Q), then 1t is well-known that the usual finite
element method based on piecewise linear approximating functions produces
inaccurate results. The problem of selecting optimal trial functions is not
simple; in practice, one would like to find a trial space that performs almost
as well as the optimal one but that can be reasonably implemented. We use
the phrase special finite element methods to denote methods with this type of
special shape functions.

3) Select a test space so as to ensure the inf-sup (or stability) con-
dition is satisfied and so that the resulting finite element method can be
reasonably implemented.

We will use this approach to design methods of finite element type which
will yield, roughly speaking, the same accuracy as the usual finite element
method when a 1is smooth, but strikingly improved accuracy when a 1is rough.

The organization of the paper is as follows. In Section 2 we present the
regularity results needed for the problems we are dealing with. (Although
Theorem 2.4 presents a regularity result for problems of the type depicted in
Fig. 1.4, the complete treatment of which will, as mentioned above, be the
subject of a forthcoming paper, we have included it for completeness.) Then
we will propose and analyze several methods to solve problem (1.1) in the
special case in which Q = QO = (0,1) x (0,1) and a(x,y) = a(x) 1is a
function of x only. This study is carried out in Section 3, where we
propose three distinct approximation methods. A function al(x,y) = a(x) of
x only is an example of a function that locally varies sharply in-at most one

direction; in fact, such an a(x,y) globally varies sharply in at most one




direction. a(x,y) can also be referred to as straight line unidirectional
(see Fig. 1.1). In Section 4 we present a further development of two of the
methods from Section 3 in order to treat problems of the type depicted in
Figs. 1.2 and 1.3 with curvilinear unidirectional coefficients.

As noted above the approach presented in this paper is thoroughly studied
in the one-dimensional case in [4]. Techniques similar to special elements
were used in Ciarlet, Natterer, and Varga [8] and in Crouzeix and Thomas [9]
to handle degenerate one-dimensional elliptic problems. We also mention the
recent work of Moussaoui and Ziani [16], which deals with the same kind of
problems with a method similar to our Method I, presented in Subsection 3.1.
Finally we mention the papers (3, 17, 18], which are related to our approach.

Throughout the paper, we will use the LZ(Q)-based Sobolev spaces Hk(Q).
consisting of functions with partial derivatives of order less than or equal

to k in LZ(Q). These spaces are equipped with the norms and semi-norms

2 _ a 2
i o= | D i,
“Q lalsk
luI2 - [ :E: IDaulz
k,Q )
Q |al=k
We will also use the spaces Hk(n) for fractional k. Hé(ﬂ) consists of

those functions in HI(Q) which vanish on 8Q. We will also use the space
H-l(Q) = [Hé(n)]’. Throughout, C will denote a generic constant. When we
say "there exists C = C(a,B)," we mean that C depends on the coefficient
a(x,y)' only through its upper and lower bounds a and B (cf. (1.2)).

The authors would like to thank Professor L. C. Evans for calling the

theorem of S. N. Berstein used in Section 2 to their attention.




2. Regularity Results

It is clear that problem (1.1) has a unique (weak) solution in Hé(n);
cf. (1.3). This is an immediate consequence of the Lax-Milgram theorem.
Furthermore,

Ilulll'n s c(a)llfllo'n-

But if a(x,y) 1is rough, then u may not be in H1+€

(Q) for any € > 0, and
therefore we cannot expect any reasonable rate of convergence for the usual
finite element method. Nevertheless, as a consequence of the assumption that
a(x,y) is unidirectional, the solution u does satisfy a regularity property
that can be employed in the derivation of an approximation method for (1.1)
with a good rate of convergence, even though a(x,y) is rough.

It is the purpose of this section to prove such regularity results, first
for the model problem consisting of (1.1) with Q = QO = (0,1) x (0,1) and
the coefficient a(x,y) satisfying a(x,y) = a(x), i.e., with a straight line
unidirectional coefficient (cf. Fig. 1.1), and then for the more general
problem with a curvilinear unidirectional coefficient (cf. Figs 1.2-1.3).
Finally we prove a regularity result that will be applied in a forthcoming
paper to a problem with an irregular unidirectional coefficient (cf. Fig.
1.4). Our main tool is a theorem of Bernstein [6], [13, Section 3.17] for

elliptic equations in non-divergence form, which we now state.

Consider the problem

(2.1) ax

where Q 1is a bounded convex domain in RZ with a Lipschitz and piecewise

C2 boundary 482 and where the functions a,, € L?(Q) satisfy

N




2 2 2

(22) v Y &3 ) a (VIEE ) £ Yyl eq VEeR,
i=1 i, Jj=1 i=1

with 3y = 215 where v and p are positive constants. Note that the

equation in (2.1) is in non-divergence form.

Theorem 2.1 (Bernstein). For each f e LZ(Q), problem (2.1) has a unique
solution u e HZ(Q) n H(l)(n). Furthermore, there is a constant C(v,pu),

depending on v and p but independent of f, such that

(2.3) hall, o = Clo, Il o .

Our hypothesis on Q 1is not identical to the one in [13]. To prove
that (2.3) is still valid for such a domain, one can use the a priori
estimates given in [11, Section 3.1].

The first application of Bernstein’s Theorem will give a regularity

result for problem (1.1) when Q = Q. and a(x,y) = a(x). Corresponding to

0

problem (1.1), with this assumption, we define the space

_ 1 , du du 1
(2.4) H(Q) = {u e H(Q) a(x)gs 55 € H (@)
with the norm
2 2 2
where
(2.5b) t? _ = a|‘3—<a‘3‘3)|2+a132—“|2+l|32“|2 dxd
: L,.Q 3x 9% %3y a ;;5 v
Q

Theorem 2.2. Suppose Q2 = Q. and a(x,y) = a(x). Then for each f € LZ(Q)

0
the solution u of (1.1) is in Hé(n) N HL(Q). Furthermore, thcre is a

constant C = C(a,B), depending on a and B but independent of f, such




that

(2.8) < C(a,B)ufﬂo Q

Il ulp q
Proof. Let u be the unique solution to (1.1) in Hé(n). We introduce the

change of variables or mapping

(2.7} %(x) = r f(l%. Jiy) =y
0

and the notation

(2.8) ulx(x),y(y)) = ulx,y), (x,y) € Q.

1
The mapping (2.7) maps the domain Q onto @ = (O,I ?z))x(o,l). We see
0

a

du Jdu

that @ e H2(8) if and only if u € Hl(Q). a5% 3y © ul(Q), which is

equivalent to u e HL(Q). We also note that the weak formulation (1.3) of

(1.1) is transformed into

(2.9)

~

T B
[ EE Noi N Mgy - [ FaaRey v T e (@,
X 9% 8y 8y Q

The system (2.9) is simply the variational formulation of

2~ 2~
223223 -5F o4
(2.10) ax dy

o

u=0 on &f.

Note that while the equation in (1.1) is in divergence form, the equation in
(2.10) is in non-divergence (as well as in divergence) form. As a consequence
of Theorem 2.1, (2.10) is uniquely solvable in Hé(ﬁ) n Hz(ﬁ) and

(2.11) Ial, & s Cle.BMafly &

M ~ ~
Since (2.10) is uniquely solvable in Ha(Q). we conclude that u, as defined




in (2.8), which satisfies (2.9), coincides with the solution of (2.10) and

1, x HZ ~ R 1 HL
hence lies in HO(Q) N (Q) and satisfies (2.11). Thus u € HO(Q) n (Q),
which is the first conclusion in the theorem. If we change variables in the

estimate (2.11) to return to the original variables, we obtain

2 _|.2 8u 2, \8u 2
"u"L,Q = J u dxdy*-[ [I |57 ]dXdY
Q Q
2 2
3 . du,,2_ _ 3% 2. 1,3
+J [ 1221201202, 112, ]d dy
3y
Q
= J u adxdy+J L |au 2 ~|§E|2]
&
225 2~
[ [|"—“|2 1282, :%lz]didir
< ¢ dx axay ay
o)
1, ~.2
< max(B, J)lull; &
< max(8, 1)C% (@, BIEFI] 4
2 1,.2 02
s max(8, (o, BITIG o,
which is (2.6). n

Theorem 2.2 was proved by making a global change of variables and then
applying the Bernstein result. The global change of variables exists because
é(x,y) globally varies sharply in one direction: al(x,y) = a(x). We now
prove a second result in which we assume the existence of only a local change
of variables (cf. Figs. 1.2-1.3).

Let ¥ ¢ Q be open and assume that we have a system of orthogonal
curvilinear coordinates (€,7n) defined on X. More precisely, regarding I
and (§,7n) we assume

(1) the functions £,n are defined on £ and are twice continuously

10




(11)
(111)
(iv)
(v)

(vi)

differentiable,

(€,m) : £-5Z’ 1is one-to-one and onto,

3(&,m)

Alw oV ¥

alx,y) ~

>0 on Z,

grad £ - grgd =0 in Z,

Z 1is a rectangle in &,7, l.e., 2 = (E;.Eg) X (n;,n

Fnoaq=

interior edges

or

remaining edges are called

The union of the interior edges is denoted by E.

(2.12)

a(x,y) = a’(§) V (x,y)

2
2)’ and

#, in which case all edges of I are called

the union of one or more edges of Z, in which case
these edges are called boundary edges and the

interior edges.

We suppose further that

€ Z,

where we use the notation, for any function w defined in Z,

wl

(E(x,y),n(x,y)) = wix,y),

See Figs. 2.1a,b for typical configurations.

Level curves of &

Level curves of n

y 4

(x,y) € Z.

Level curves of n

Level curves of &

Fig. 2.1a

11

Fig. 2.1b




Theorem 2.3. Let u be the solution in Hé(Q) of (1.1), where we assume
that f € Lz(n) and that a(x,y) satisfies assumptions (1.2) and (2.12),
where Z, (€,n) satisfies conditions (i) - (vi) above. Let O ¢ £ be open and
satisfy Occ £ if T ndQ=2 and 30 ndLcd if TnadN =02 and

let 0O be the image of @ under the mapping (£,n) (cf. Figs. 2.1a,b).

Then there is a constant C = C(«,B,£,7n,d) depending on «, B, £, », and d

but independent of f, such that
> 1/2

’ 2 , ’
(z.m” [a’lg—s(a’g%)l2+a’lgg—;nl2+;7la_‘2’|2]d€dn] < Cla,B,€,m,d)IE1, o
/ an |

where d = dist(0, E), if E =2 .
1lifE=z

Proof. Clearly u (more precisely, u[ ) satisfies

z

u e HN(E)

(2.14) 1
f a grad u + grad v dxdy = I fvdxdy VY v e HO(Z).
) z

Introducing the change of variables (£&,7) 1in (2.14) we get

, [u’ av’ 2 8u’ av’ 2) a(x,y)
(2.15) J a [a€ 5E Igrgd £ +6n 7n Igr-gd nl ] 37 d€dn

_ ror 8(x,y) , 1 o,
= f f'v aTE T d€dn V v’/ € HO(E ).

Now we introduce a second change of variables,

3
- dt ~ _
(2.18) E-sz. n=n,
3

where Ef is the &-coordinate of the left edge of ZI’. We will use the

notation

12




w(B(E,m), &) = w (M), (£,9) € £, for any function w' on E’
and

§£ = image of I’ under the mapping (Z,7).

Applying this change of variables to (2.15) we get

(2.17)J E;iéﬂ— v’ 5,25, 8u av! ]dédn J R TEGAC A SRV Ho (),

ot oF 20% o9 , A&
where

. _ 2 4(x,y) , _ 2 d(x,y)
(2.18) aj (&) = |grad £l 5(E, 7" as(£.m) = lgrad 7| 5E )

To apply Theorem 2.1, we need to introduce Dirichlet boundary conditions.
From condition (vi) we know that any edge of I 1is either an interior edge or
a boundary edge. Then, through the correspondence determined by the mappings
(§,m) and (&, M), we will refer to the interior and boundary edges of I’
and £’. Now let ¢’ e c“(%T) with ¢’(£,7) =0 for (§,7) near the

interior edges of ‘. Then for Vv’ € Hé(f’), 'V’ € Hé(i’) and we can

replace v/ by 'V’ in (2.17) to get

or

where

13




. 3(x,y) au’ 89’

o ~ ~,2~, 3u’ 3¢’
(2.20) F=f'¢’a ——7—23.’ -2a’al — ——
3(5:" 1 az aé 2 an ai

-’ dng ;'[Si a;g—, a'zaé a_¢_]
’ a

Writing w = u’g’, from (2.19) we get

W e Hé(i')

(2.21) ) ]

[ & Ow OV’ , 5025, W OV lzas = [ P agan v e HE(E).

o, U1 a7 a7 2 o7 % « 0

! T
w € Hé(f’) since ¢’ = 0 near the interior edges of ¥‘. Since U’ is in
Hl(i'). the functions €,n are C2. and a’ = a’(€), we see that F is in

Lz(f'). The system (2.21) is simply the variational formulation of

a2 M o528 (30 ¥ - F in &
1 .x ~ 2 .~
13 ]

w=0 on 3%

(2.22)

The equation in (2.22) can be formally written as

2 2 aa’ aa’
(2.23) G TR R . G-t
9€ an a€ o€ an am

2 2
(2.24) -85 - 3258 .,
d an
which exists by Theorem 2.1 and which satisfles
(2.25) Wy g S ClaB.€,) IGHg 3, -

Now w € Hé(f’) solves the same problem formally. We want to show that
w =W, and hence that w € Hz(f') and satisfies (2.25). Writing (2.24)

divergence form we obtain

14

in




CTANRETS aml<s
2 2 da’ aa’
(2.26) = _5'13_"- ;:2~é%, oW _ ~,2%%20wW
9 an~ o9& of an o
%) gw  .,2%%4aw Pisw  .,2%%4y
=F+ ——+a" —=—-——-a"—=—.
o€ 8% an an o oE an an

Letting U =W - w and using (2.22) and (2.26) we see that

(2.27) (- 67[51 g] - 5123_~[aé, ??UJ
o€ ag a7 8
%215y .2 2250 . o,
< =] = ——2a - in 2
o€ o€ an an
\ U=0Q on 3%,

where we understand the equation in the weak sense. It will suffice to show
that U = 0.
Let T : H-l(f’)-—aHé(f’) be the solution operator corresponding to the
problem (2.22), i.e., let TF = w. Then from (2.27) we get
(2.28) U= T[— ﬁi"-’ - 5'2612- ?—E] = AU.
3 d& an am

Since T : H-l(f’)-—aﬂé(f’) is bounded and Ho(f') is compactly contained

in H-l(f’), we see that A : Hé(f')-—aﬂé(f’) is compact. Suppose now that

U# 0. Then from (2.28) we see that 1 1s an eigenvalue of A. Hence 1 is
-

an eigenvalue of A ; let V be an associated eigenfunction.

We can choose V' € Hz(f') n Hé(i') so that v - v/ | < Vil

1, ¥ 1,8
Then (V'V')H‘(i') # 0 and from the Fredholm alternative we see that the

problem

15




(2.29) (I - A)Z =
has no solution in Hé(f'). Recalling the definition of A we see that

equation (2.28) can be written

da’ aa!
(2.30) z-T[._léé_;lZ?Zc‘%]ﬂ,,'
3k ok an a

which can be formally written as

EUER

%] 9z .,2%%2 sz 5 (-, 8v) -,28 [~, 8V’
=T —~ =T ZIP1 =] 7 =T
o€ ¢ an o8n o&\ " aE ant < an
or
-, 8%2 ~,2., 8%z a_ av' ~.28 (-, 8V’
TAd T T T —|2> -
] an E E an' “an

But Theorem 2.1 shows that this equation has a solution Z 1in Hz(f’) N
Hé(f’). It is immediate that this 2Z solves (2.30) and hence solves (2.29),
a contradiction. Therefore we conclude that U = 0. We have thus shown that

= W and hence that w € Hz(i') and

(2.25") Iwly, g, < Cla,B.E.) Gl & -

Now the function ¢’ can be chosen as a cut-off function satisfying

¢ =1 on O, IDP’'| < C(a')-l. and ID2$'| s C(a')-z, where C is some

positive constant, and

1, if E' = ¢

4 = {dist(b' E’), if E' =2 ¢

Then from the expression for G 1in (2.23) and from (2.20) and (2.18) we have

-, =2
IGlg g S Cla,BEM @) IFly o

16




Thus from (2.25’) we see that
(2.31) lu "2,6’ < "Vﬂz,i, < C(«,B,€,7m,d") Hfﬂo;n-

Now changing from £,7n back to £,%m in (2.31) we obtain

1/2
a’ a_. a’ all |2 + a’ a———zullz + 1_|32u,|2 dé&d
FE|* 3E 3€am a |72 n -
% am

< C(“.B.E»nnal) "fuo 9’

which yields (2.13) since Cl(a.B,g,n)a’ <ds Cz(a.B,E,n)a’. s

Remark 2.1. Equation (2.12), with (§,7) and I satisfying the conditions

(1)-(vi), is basis for the precise meaning of the phrase "a locally varies

sharply in at most one direction," which is fully formulated in Subsection 4.1

(see Remark 4.1).

Remark 2.2. If the mapping function £+ 1in 1is analytic, then the above

analysis is simplified since in this case the functions a1 and a2 in

(2.18) are equal to 1.

Remark 2.3. We can define the local analogue of the space HL(Q) defined in
(2.5). With Z%,(€¢,7), and @ as in Theorem 2.3,

_ Lo 1 .. , du’ a8u’ )
H'(0) = {u: u e H(O") , a S e H @)
with the norm
2 _ 2 2
"u"L,o - "unl‘a + IUIL,O,

where

2 2
2 .8, ,8u .2 8% 2. 1 8% 2
lulL,O —J [a la—s(a 3 JI€+a |3_€6n| +;'I3——n2 | ]dEdn.
0/

In terms of the semi~norm |u| (2.13) can be stated as

L,O"°
IulL'o < C(a.B.E.n.d)llfllo'n-
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Remark 2.4. Theorems 2.2 and 2.3 can be easily generalized to cover
coefficients a(x,y) of the form al(x)az(y) and al(E)az(n). respectively,
and coefficients a(x,y) that are rough in x but smooth in y and a(§,n)
that are rough in £ but smooth in 7, respectively.

The method used in the proof of Theorem 2.3 glves a constant C which
behaves as d-z, where d = dist(0,S); this type of estimate is sufficient to
treat problems of the type depicted in Figs. 1.1-1.3. To analyze the type of
problem depicted in Fig. 1.4 we will need a sharper estimate. Although
the complete study of these problems is reserved for a forthcoming paper, we
here present the relevant regularity result; we show, in faét, that the
constant C behaves as d-1 instead of d_2 by using a more refined
analysis. Although the idea of the analysis is quite general, we will carry
out the analysis only on a simple model problem so as to focus on the
essential ldea.

Llet Q=0 = (0,1)x(0,1) be the square with the boundary 89 composed

0

of the four straight lines T i=1,...,4, shown in Figure 2.2.

i)

ﬁy

01 T3 (1,1

Iy [y

.
©o1n It @1 x

Fig. 2.2
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Let us further define

(O{ 1
HY(R2) = {ueH(Q) : u=0 on Fz v r3 V) F4}

and, for 0 < d < l.

Qd={(x.y)en:d<y<1).
We assume that the coefficient a € L”(Q) is a function of x only and
satisfies

(2.32) O<a<a(x) £B<w V¥ xe (0,1).

Theorem 2.4. For f € L2(Q) and a € L®(Q) satisfying (2.32), let u e

(0)
HY(Q) satisfy

(2.33) J a(x)grad u grad v dxdy = J fv dxdy V v € Hé(n).
Q Q

Then there exists C = C(«,B), depending on « and B but independent of d,

such that

(2.34) < Clifly g+d Ml o).

lull
L,Qd

Proof. As in the proof of Theorem 2.2 we introduce the change of variables

- d .
(2.35) x(x) = Jx 5?27’ yiy) =y
0

and the notation
(2.38) wix(x), y(y)) = wix,y), (xy) € Q.

For any function w in £, W 1is defined in f = (0,A)x(0,1) with A =
1
ds ~
OETET' A tilde means that we are in the domain Q.
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Obviously for a function u satisfying our hypotheses, u, as defined by

(0
(2.35) and (2.36), is in Hg(ﬁ) and
(2.37) C,(«,B) llulll’n s Ilulll,f2 < Cz(a.B)Ilulll_Q-

Furthermore u satisfies the differential equation

2- 2.
(2.38) - 3-2mid - Bo. G e b
ax 3y

Here and in the remainder of this section we will interpret such equations in

the weak sense. Using (2.37) we see that (2.34) holds provided we prove

- -1~
(2.39) < C(Hf"o‘ﬁ-+d Hu"l'ﬁ),

i, &
2.8,

where C 1is independent of d.

The idea of the proof, similar to that of the proof of Theorem 2.3, is
to apply Bernstein’s theorem to u times a cut-off function x chosen so
that y u e Hé(ﬁ). But to get a sharper estimate, we first extract from u a

smooth function (¢, defined in (2.42)) having almost the values of u on fl'

This cannot be done in a simple way, since we only know u € Hl(ﬁ).

The restrictions of u to the edge fl is denoted by
w(x) = u(x,0), x € T = (0,A).

Since we know that

we Hl/z(f) and |wl

00 s CI

1/2,0,0,1 1,0

172

where 00

denotes the norm in the space H_"“(I) (cf. [14]), we

Iy ,2 0,0,1

can represent w in terms of its Fourier series,

[+
wix) = :E:ak sin k %ﬁ ,
=1
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and the coefficients a, will have the property

o
(2.40) Zka.i < cuﬁu? 5
k=1

We introduce the function

(2.41) p(%.3) = Zak sin kmk/A

k=1

which is the solution of

Then we write p = ¢ + Yy, where

sh kn(1-y)/A
sh kn/A '

shkn (1-y)/A

sh kn/A

C

(2.42) p(x,y) = Z a, sin kx/A
k=1

and

(2.43) ¥k, y) = Z ak sin knx/A
k=[d

and [d”!] is the integer part of d L.

Our method of proving (2.39) is to write

solves

(2.44) ax ay

and X, € (ﬁ)l(ﬁ) solves

21

u = Xy * X, where

sh kn(1= sh kn(1-y)/A
" sh kn/A

’




(2.45) ax ay

and to bound «,, in the Hz(ﬁ J-norm. The decomposition u = 1. * X is
1 d 1 2

e
possible since u satisfies (2.38). First let us study Xy the solution of

(2.44). We write X, = ¢$+z,, vhere z e Hé(ﬁ) satisfies

2 2 2 2
621 52621_ _a¢~26¢+?

8%° 85° 1 ax 3y

(2.486)

Now we bound the L2-norm of Fl. Using the explicit formula (2.42) for ¢,

the orthogonality properties of the functions sin k;— X, cosk%?&, and the

formula
1
2 kn(1-y) =~ _ A 2ak _ 1
sh™ ————dy = g sh -3
0
we obtain
(a1
¢
(2.47) 125165 % Zakk

1
where C depends on A = J _TET but is independent of d. Combining (2.40)

and (2.47) we have

a -

15815 5 5 ca™ NG, g
1,9

3%

In a similar way we get

(2.48) |¢’I2 § s cd” llull1 a

We also see that

(2.49) II¢II g s C IIUII
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From (2.46) and (2.48) we get

-1~ w
(2.50) ¥ Cc(d "uﬂl'ﬁ + Hf"o,ﬁ).

g & =
170,Q

Using Theorem 2.1, we see from (2.48) that z, € Hz(ﬁ) and that

(2.51) iz < Cle,B) ||IF

1“2,ﬁ 1“o,ﬁ'
Using (2.48) - (2.51) we see that Xy is in Hz(ﬁ) and satisfies
-1~ ~
~ < o -
(2.52) "Xlﬂz,g < C(d Ilulll’n + "fHO,Q)'
Let us now consider Yo the solution of (2.45). Write X = w-+22,

where z_ € Hi(ﬁ) satisfies

2
6222 ~26222 2 NﬂﬂZW
(2.53) - ) - a T = F? = —~§ s a” J~2 ,
ax av = ax 3y
where F2 € H-l(Q). Since X does not satisfy homogeneous boundary

conditions, we cannot apply Theorem 2.1 immediately. Let x € Cm(O,l)

be a cut-off function satisfying

1 for d<y<1,

x(y)

x(y) 0 for O0<yc< g,
and

lx(J)(i)l < cd™d, y € (0,1), j=0,1,2.

The function X3 = XX, € Hé(ﬁd/z) is the solution of

621 2 621

- 2 AB_F%x)L A3 - Q

(2.54) 5~ -2 (x) > FB*-F4 in Qd/Z’
ax 3y

where (recall that X = w-+22)
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a ~2, ~ 62
(2.55) F, 3 -——(xy) ~a"(x) —(x¥),
3 ~2 ~2
ax 3y
32 2
(2.56) Fy = (xz )-a (%) ——(xz ).
ax ay
We will now Lound F3 and F4 in the L (nd/z) -norm. From the explicit

formula (2.43) for ¢ we see that

122 "'uo 4 SC Z a2l THRA/A,
ds/2

ax k=[d T ]+1

Taking into account {(2.40) and tle fact that

ke KMA/A o g2 A y k= (a7 w1, ..,

we obtain

2
(2.57) 1%, 5 s callE 4

ax d/2
Analogously we get

2

3y
(2.58) -, & < HuH '

352 084/ 1,8

ay ~
(2.59) =i, & » H M S Clully &,

ax 08 5 1,8
and
(2.60) vl s cdfful; g

8 ’

with C 1independent of d. Using (2.55), (2.57)-(2.6C), and the hypotheses

on x, we get

-1, ~
(2.81) NF ). = < Cd ), x
3'0,4, 1,Q

Let us now study F4. From (2.56), (2.45), and the decomposition
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xz = w4-22, we see that F4 can be written as

2 2
(2.62) F, = 1324220 -2y 1222+ 17 (9)z,).
ax ay 3y

5 = 0 on 4f}, 1in particular in T the Poincaré inequality

Because 1z 1’

asserts that

d

2
~ o~ 2~ o~ d 2
(2.63) J 12,(x,y) | "dxdy < 5"22|1,ﬁ'
0“0
As a consequence of (2.53) and (2.59) we have

Now from (2.62), (2.57), (2.58), (2.83), and (2.64) we obtain

-1~
(2.65) IF A = £ Cd “ull, =x=.
4 O’Qd/2 1,Q

Theorem 2.1 can now be applied to X3 the solution of problem (2.54),

with Fa-*F4 € Lz(ﬁd/z) bounded by (2.61) and (2.65), and we obtain

-1, ~
(2.66) s Cd Hu"l'ﬁ.

lxsll, 5 < lxall, &
22,9, 3'2,Q,

Finally from u = xl-kxz, (2.52), and (2.68) we get (2.39), which implies

(2.34). =
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3. Special Methods for Problems with Straight Line Unidirectional Coefficients

In this section we propose and analyze methods based on special elements

to solve the model problem

3 a 3 3 _
5.1) Lu(x,y) = -ﬁ(a(x)ﬂu(x.y))-W(a(x)wu(x,y)) = f(x,y) V (x,y) € Q
u(x,y) =0 V (x,y) € 39,

where Q= Q, = (0,1)x(0,1), f e LZ(Q), and a € L®(Q) 1is a function of x
only and satisfies (1.2). This is problem (1.1) with a(x,y) a straight line
unidirectional coefficient. We will present three approximation methods,

prove they have the optimal rate of convergence, and discuss their merits.

3.1. Approximation Method I.

For 0 <h<1, Ilet €h be a triangulation of Q by (closed)
curvilinear triangles T of diameter < h, where by a curvilinear triangle
T ¢ Q@ we mean the pre-image of an ordinary triangle T ¢ @ under the mapping

(2.7). Corresponding to 6 = we have a triangulation %h of @ by usual

h
triangles. We assume that {eh}0<h$1 satisfies a minimal angle condition,
(3.2) by/p3 S @ ¥ Te %h, YVO<h<1,
where for any bounded set S c¢ Rz.
(3.3) hg = dlameter of S
and
(3.4) Pg = diameter of the largest disk contained in S.

With €h we associate the space of approximating (or shape) functions

2 dt
(3.5) s, = {veli(q): vl e span{l,Jz atey Yt Y Te§,

v is continuous at the nodes of Gh,
v

= 0 at the boundary nodes}.
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As a consequence of our choice for the curvilinear triangles T we see that

Sh c Hé(Q) i.e., is conforming. This is easily seen by noting that the

functions Ix ET_T'Y are transformed to 1,X,y by (2.7). Consequently

§h ={v:ve Sh} (v' is defined in (2.8)), the image of Sh under the

mapping (2.7), is the usual space of continuous piecewise linear approximating

-~

functions with respect to %h’ and Sh is conforming since Sh is.

Our finite element approximation u to u 1is now defined by

b, € Sy

(3.8)
B(uh,v) = Jgfv dxdy V v € Sh.

where B 1is defined in (1.3). Uy is Jjust the Ritz approximation to u
determined by the variational formulation (1.3), in the case (3.1), and the
space Sh defined in (3.5). Since it is easily seen that ﬁh is the Ritz

approximation to u determined by the variational formulation (2.9) and by

the space $§ we could, of course, carry out the computation and the analysis

hl
on the transformed domain . We shall however study the approximation on the
original domain Q since this approach better illuminates the more general
case of a curvilinear unidirectional coefficient studied in Section 4.

It is immediate that B is a bounded bilinear form on Hé(ﬂ)xHé(Q).

Furthermore, the stability condition (e¢f. [1]) holds, i.e., we have

Theorem 3.1. There exists a constant dJ(a) > 0, independent of h, such that

for all 0 < h 51,

(3.7) inf sup |B(v,w)l 2 8(a).
VeSH WeSH
HV"1‘Q=1 HWHI,Q =1




Proof. Since B(v,w) 1is symmetric it is sufficient to prove that B is

coercive, i.e., that

IB(v,v)| 2 8(a) Hv"? Q VvwweS, 0<hsl.

h'
This is immediate.

Approximability here involves the approximation of the soclution u by a

dt
linear combination of the shape functions 1, ET_T’y in terms of which Sh

is defined. Let the points P }’Z,P:3 € Q2 be the vertices of T and let

ﬁ §3 be the vertices of T (cf. Fig. 3.1). Since the functions

~

Ix ——%T,y are transformed to 1,X, 9 by (2.7), we see that the inter-
0
polation problem: Given numbers "1’“2'“3' find
(3.8) wix,y) = a+8 ;?%Tﬂr
0

satisfying w(Pi) = v, i =1,2,3, 1is uniquely solvable.

A A

y y
1
dx
(0,1) (1,1) (0,1) (I a(x)’ 1)
Py Q B,
P, _ 52
P1 Pl
P >
(0,0) (1,0) X (0,0) ( X
a(x)’ )
Fig. 3.1

Suppose u € H'(T). Then @ e Hz(f). and hence u has well defined point

values for any P € T. Thus u has well defined point values for any P € T,
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and we define the span{l,J.x —%Ey,y}—interpolant of u on T by
0? :

dT“ = qa+fB r ﬁt—)-*-wy. dTu(Pi) = u(Pl).
0

We derive now an estimate for the difference u-dTu.

Theorem 3.2. There is a constant C = C(a,B8), depending on a,8 but
independent of T and u, such that

2
CE§|u|

Y ue HL(T).
Py

(3.9) Iu-dTull

TS L,T

where hT‘pT are defined in (3.3), (3.4).
Proof. Using the transformation (2.7), we have

lgrgd(u-dTu)lzdxdy = J %lé: (ﬁ-—dTﬁ)|2d§d§

~ a 9x

2 _
(3.10) lu-—dTull,T = J
T

T

+J A1 (- ag) | 2axay
T o

< max(B,é) lﬁ-d:f.ﬁlﬁ 7

where dTG is the span{1,%,y}-interpolant of u in the triangle T.

Applying the usual linear interpolation theorem (cf. {7, p. 121]), we get

the bound
2
(3.11) Iu-d’fUll,T < Cgllllz’-‘fv

where C 1is an absolute constant. Inequality (3.9) is a consequence of

(3.10), (3.11), and the definltion of the semi-norm |«|

constant C(max(B,é))l/Z.

LT with the
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We define now the Sh-interpolant of ue HL(Q) by

{éhu € Sh

dhu(P) = y(P) for all nodes P € €h.

(3.12)
As an easy corollary of Theorem 3.2, we can state our approximability result.

Theorem 3.3. There is a constant C = C(«,B8,0), depending on «,8, and o

but independent of u and h, such that

(3.13) lu-d ul, o % Chlul VueH(Q), 0<hs<i.

L,Q

Proof. Since the function u-dhu is in Hé(ﬂ), from the Poincare

inequality we have

2 2
(3.14) Ilu--c:lhulll,n < C() :E:lu-dTull,T'
Te?h

Combining (3.8), (3.12), and (3.14) we get

<C cz max h% luli aQ

4
2 Z hy 2
(3.15) Ilu-dhulll’n <C —2 IuIL'.l.
T Teﬁh

p~
e@h T
It follows immediately from the definition of the mapping (2.7) that

1 1
(3.16) hT < max(z,l)hT < max(;.l)h VTEe €h.
Finally, estimate (3.13) follows directly from (3.15) and (3.16). .

As a consequence of the stabllity, approximability, and regularity

results, we obtain an estimate for the error u-uw in the Hl(ﬂ)-norm.

Theorem 3.4. For f € Lz(ﬂ) let u be the solution to (3.1) and let u be

the solution to (3.6), with S defined in (3.5). Then there is a constant

h
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C = C(a,B,0), depending on «a,B8, and o but independent
of f and h, such that

(3.17) lll.l'-uhlll’n < Ch"fﬂo,n. 0 <hs 1.

Proof. It follows from Theorem 3.1 and standard results on the approximation

of problems in varlational form that

(3.18) llu—uhlll,n S C inf fju-xl

1,
xesh

Combining (2.6), (3.13), and (3.18), and the fact that u € Hé(ﬂ) implies

dhu € Sh' we have

la- “h"1,n < Chllfllo'n.

where C = C(a,B,0). (]

Theorem 3.4 shows that the method defined by (3.6) is accurate and robust
for the approximation of (3.1), i.e., the convergence is of first order in the
mesh parameter h with a constant depending on « and B8, but otherwise
independent of the coefficient a(x). Thus the method has the same accuracy
as the usual finite element method based on CO, piecewise linear

approximating functions for smooth problems.

Remark 3.1 Approximation Method I, as we have presented it, is based on a
triangular mesh. One can also consider rectangular meshes. Thus for
0<h=s1, let €h be a partition of Q by rectangles R of diameter <h
and suppose {gh)0<h51 satisfies a "minimal angle condition" ((diam R/diam of
largest disk contained in R) <€ oVR € th and VO < hs<1). With €h we

associate the approximating functions

S, = {v e Co(ﬁ): v|, € span I,ngi, Y, yfxgi YR € €,
h R Oa 0a h

v=0 on 30}

31




The finite element approximation w is defined by (3.6) with this
choice for Sh' Then it is easily seen that the arguments used to prove
Theorem 3.4 yield

(3.17°) lu = wll, o % Cla,B,0)h IIfl, o

the same estimate proved for triangular meshes.

Remark 3.2. Method I has an obvious one dimensional version. This one
dimensional method differs from the standard finite element method based on
CO, plecewise linear approximating functions in that the coefficient a(x)
enters the finite element calculations via its element-by-element harmonic
averages instead of via its averages. It is referred to as a generalized
displacement method (cf. [4]). In the methods presented in this paper, the
coefficient a(x,y) enters the calculations via various element-by-element
harmonic averages and averages, i1.e., via various element-by-element moments

of 1/a(x,y) and a(x,y).

3.2. Approximation Method II.

In Method I we chose shape functions that closely approximated the
unknown solution. We then used the same functions for test functions, and the
stability condition was immediate. In order to ensure our methods were
conforming, we used curvilinear triangles. In this subsection, we discuss a
second method, employing the triangulation by ordinary triangles shown in
Fig. 3.2, the trial functions used in Method I, and C0 plecewise linear test
functions. Now the trial space will be non-conforming, but the test space
will be conforming.

For h = l, n
n

2,3,..., let €h be the uniform triangulation of Q,

with nodes (x (ih,Jh), 1,J=0,...,n, shown in Fig. 3.2.

i,51J)
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-
X0 ¥ =1 x

Fig. 3.2

For use in our ar ] sis, we introduce the mesh dependent spaces

(3.19) H(Q) = (uel?@ : ul e (T vTeg)

with the norms

L}

2 2 2
IIUIILh qu dxdy+|u|1’h
Q

(3.20)

J u2 dxdy + Z J |grad u|2 dxdy.
T

Q Te%’h

It is clear that these spaces are Hilbert spaces.

We define the bilinear form B. on H;(Q)xﬂé(ﬂ) by

h
(3.21) Bh(u,v) = :E: J a grad u * grad v dxdy.
Te@h T

Clearly Bh is bounded on H;(Q)xﬂé(n), with a bound that is independent of

h. Moreover, Bh(u,v) = B(u,v) ¥ u,v € Hé(ﬂ). Now we define the trial space
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Sl,h and the test space Sz,h:

_ 2 . dt
(3.22) Sl.h = {% € L7(Q) : v|.r € span{l.Jz ETFT’V} VTeE,
v is continuous at the nodes of €h.

v = 0 at the boundary nodes}

and
= 0oy . =
(3.23) Sz,h ={veCl(Q): v|T € span{i,x,y}, vlan = 0}.
We remark that S1 h ¢ Hé in general, so S1 h is non-conforming as

ment ioned above.

Our finite element approximation w, to u 1is then defined by

Wy €5y

(3.24)
Bh(uh,v) = Iéfv dx Vv e Sz,h'

Note that the space H;(Q) is not well suited for a weak formulation of the
exact problem (3.1). Nevertheless, the error analysis of (3.24) can be
carried out in the usual way. Let us suppose that a stability condition holds

for (3.24), i.e., there exists & = 8(a,B8) such that

(3.25) inf sup IBh(u,V)I 2 8(a,B) >0 VYV O<hZ=<1.

ueSl'h veSz'h

luly p=1 vl g=1

Since dim S1 h= dim 82 h’ (3.25) implies that (3.24) is uniquely solvable.
1
For any u € H (Q&, vwe can define Phu by
P,u € S
(3.26) {“ 1.h
Bh(Phu,v) = Bh(u.v) Vve Sz,h'

It is clear that Ph is a proJectlion onto S1 . This projection is

uniformly bounded in h; in fact by (3.25) and (3.26) we have
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1Pyl < s(a,8)" ! sup IB,(Pu,v)| s Clo,B)lull, , Vue H}ll(m.

veSZ’h

IV, g1

For u the solution of (3.1) and u the solution of (3.24) we have for any

X € Sl,h’

Hu-%ﬂhh=IN-PEmLh=Iwa%ﬁxhrvuthIIHXmBHHu—ﬂHJY

Thus we have proved there exists a constant C = C(a,B8) such that

(3.27) "“'WJ1J15C inf uu-xh,h
xeS1 h

(cf. [1]).

We show now that the stability condition (3.25) holds.

Theorem 3.5. There is a positive constant & = &(«,8) such that

(3.28) inf sup IBh(u,v)I 2 8(a,8) VYO < h<1.

ueSl.h veSz'h

“““1,h=1 HVHI’Q=1

Proof. Let a {(0,1)>R denote the piecewise harmonic average of a(x},

i.e., let
i -1
_ )= dt
(3.29) ahIIi = {h r at—)} ,
Xy-1
where I1 = (xi-l’xi)’ For any u € Sl,h’ let v e SZ,h be defined by

v(P) = u(P) for all nodes P of €

We will verify now the relations:

(3.30) a3 T (3% 5y - 5y
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Let us first consider a triangle T of the type shown in Fig. 3.3.

yA
(xi_la YJ) (xi, yJ)

()(i_ly yj_l)

Y

Fig. 3.3

On T we have

V = _y-YI-l (y-Yj-l)"(X“Xl_1)
vix,y) U(xi-l’yj—l){l }Hﬁu(xi_l.yj){

h h
X~Xy1-1
+U(Xi,yj) T
and
J)< dt
Y-¥i-1 (y-yj-1) xila(t
u(x,y) = U(xi-l’yj—l){l- B }4-u(x1_1,yj) = - .
Jx a(t
Xy-1

Futey)) s

J)‘dt
a(t)
1-1 )
! dt

a(t)
Xy-1

From these two formulae we clearly get

ac')_u = U(thj)-u()(;_th) h av du av
ax h Jx, dt ax’ 3y 8y
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On the triangles of the type shown in Flg. 3.4 the proof follows the came

(Xi_ly y‘j_l) (‘Xi’ yj_l)

Fig. 3.4

lines. So the relations (3.30) are proved. Now using (3.30) and the Poincaré

inequality we have

(3.31) Bh(u,v)

]

20 0v, uav)
dx dx dy dy 4

v

« E | grad vI2 dxdy = aIVIf Q2 %”Vﬂf Q
J ’ ‘
Teth T

To complete the proof we still have to bound uvul Q from below in terms of

||u1||1 he Using the relation (3.30) we obtain

2 2 2
(3.32) Iul? h = Z J{[}h ?)—;] + [g—;-] }dxdy < [g] lvlf Q-
T

Teth

On the kind of triangles T shown in Fig. 3.3 we have
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2 - _YYia
(3.33) J lul“dxdy = J Iu(xi—l'yj—l){l ———ﬁ—{}
T

T
dt J)‘ dt
_ X a(t) X a(t) >
+ulx, .y ){u“-ﬂ-;"——}+u(x Yy )=t | “dxdy
e n bodt 1 r" dt
a(t) alt)
X)-1 Xi-1

IA

3 J gy )12+ utxy 1y )12+ utxgLy 1Py
T

h2
3 5 {|U(xi—1'yj-1)

H

12+ Julx )I2+IU(xi,yJ)I2}

1-1,yj

IA

c [ Iv]2dxdy .
‘T

On triangles of the type shown in Fig. 3.4 we have the same estimates.

Inequalities (3.32) and (3.33) show that

2
(3.32) oty < e+ [E 2y o

From (3.31) and (3.34) it follows immediately that (3.28) holds with & =

2
o B =172
§{C + [—] } .

a

For u € HL(Q), let dhu be the S1 h—interpolant of u, i.e., let

dhu be defined by

‘4ues
(3.35) h L,h
dhu(P) = u(P) V nodes P of ﬁh;

dhu is well defined since u 1is well~defined on the nodes and since the
images of the vertlices of any T € €h are noncolinear. In the next theorem

we derive an estimate for the interpolatien error Ilu--dhull1 h

38




Theorem 3.6. There is a constant C = C(a,B), depending only on a and 8

but independent of u and h, such that

(3.38) Ju-dpuly ;< Chlul_ o Yue @), o<hsi.

Proof. This proof is similar to that of Theorem 3.3. Let u e HL(Q). T e €h,
and RT be the smallest rectangle containing T. Let T,ﬁT be the images of
T,R under the mapping (2.7). Then, applying the usual linear interpolation
theorem as in (3.11), we have

Q-4 ~ <
(3.37) lu dhuli,RT

To obtain the result in the original variables we note that

~ ~ 2 21 1 2
- ~ = - —_ > -
(3.38) G-diulg 5 J' lu-dyul® 2 dxdy 2 5 lu-dpulg o
Rt
and (cf. (3.10))
(3.39) la-d"ul? . 2 min(, 1/8) lu-d ul®
h '1,Rr ~ ! h™'1,Ry’
By the definition (2.5b) of the semi-norm I-IL R.* W€ have
» Rt
(3.40) Iulz’ﬁT = IuIL,RT'
With (3.38) ~ (3.40), inequality (3.37) yields
b
- T =
(3.41) ju dhuli,T < Cle,B) pi 'uIL,RT’ i=0,1.
Rr
From (2.7) we have
~ < ~ >
(3.42) hRT < max(l/a,l)hRT. pRT 2 min(1,1/8) pr
Finally, (3.36) is a consequence of (3.41) and (3.42). .
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As a consequence of (3.27), (3.28), (3.36), and (2.6) we obtain

Theorem 3.7. For f € LZ(Q), let u be the solution to (3.1) and let w

be the solution to (3.24). Then there is a constant C = C(«,8) such that

(3.43) lu-wull, , S Chiflg o

Remark 3.3. In Remark 3.1 we briefly outlined Method I for rectangular

meshes. Here we give a rectangular mesh version of Method II. Let
Sy p = {% ecl@ : v R € span {I.JZ g%—T, Y, ¥ . g%ET }V Ret,
v=0 on 69}
and

= 05y . =
Sz,h = {% e C(Q) : VIR € span {1, X, ¥, XY }V R € €h. v=0 on 489}.

Our finite element approximation u, is now defined by (3.24) with this

choice for S1 h and 52 . In this situation we need a hypothesis on a(x)

in order to ensure stability. Let

X X=X
¢i(x) = -1 and wi = ; 1 .
G
a
*1-1

and then let
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-1 1
C; =h rx v, ¢, adx,
1-1
and
D, = ! ri ¥, adx.
X141
We assume
4A.C, - (B +D)2
1-1 i Y

4Ci 29 >0, Vi,h.

Then (3.28) holds with & = 8(a,8,7) > 0. We therefore obtain

(3.43°) lu-uly o < ClaBr)h Ifl, o

We remark that S1 h is conforming in this rectangular mesh case in contrast

with the triangular mesh case in which S1 is nonconforming.

»h

3.3. Approximation Method III.

In Method I we introduced curvilinear triangles in order to ensure the
approximating functions were conforming, while in Method Il we used a special
triangulation with ordinary triangles obtaining a nonconforming method. In
this section we design a conforming method based on an arbitrary triangula-
tion with ordinary triangles.

For 0 <h =<1, 1let & ©be a triangulation of Q by ordinary triangles

h

of diameter < h and suppose {gh}0<h51 satisfies

(3.44) 21 fSo V Te E , ¥h (minimal angle condition)
T .

and

(3.45) g; Sv V Te €h, vV h (quasi-uniform condition),

where hT.p have been defined in (3.3), (3.4). Let P_,...,P be the
T 1 my,
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nodes of fh. The function wJ denotes the usual plecewise linear basis

function associated with the node PJ = (XJ’yJ)’ J = 1,...,mh, i.e.,
wJ is piecewise linear with respect to €h,

wd(Pi) = 514‘
we remark that

ny

= 1.

Z”’J

J=1
For each J € (1,....mh) let

v\j = span(wJ(x.y),wJ(x,y) OL wJ(x.y)(y yJ))-
X

J

For the space of approximating functions we choose

Mp
(3.46) S, ={v: QR : v = :E:v , vV.€V, v=0 on 3q}.
h J J J
J=1

Our finite element approximation uh to u is now defined by

Y, €Sy

(3.47) J
B(u ,v) = | fvdxdy Y vesS
uh Q

h'

U is the Ritz approximation to u determined by the variational formulation

(1.3) and by the space S, defined in (3.46). To study the convergence of

h

the approximation (3.47), we turn our attention to an approximation result for

{Sh)0<hsl'

First we show that we can approximate u € HL(Q) by a linear

dt
combination of I,Ji att)y” y yJ on SJ' where for J = 1,....mh, SJ is
J

the finite element star associated with the node P :

J
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SJ = U T.
Tefh
PJGT

Let RJ be the smallest rectangle with sides parallel to the axes containing

SJ and let JJ be three specific vertices of RJ' including all vertices

that 1ie on 8Q. For any u € HL(R ), we define the span{l,Jx dt Y~y -
J x,at ) J

interpolant of u associated with PJ by

_ dt ) )
(3.48) dJ’hu = a+fB jx ETET*'V(Y yJ)’ (dJ,hu)(P) u(P) V Pe JJ'
Xy

We will prove the following approximability result.

Theorem 3.8. There is a constant C = C(«,8) such that
2
_

< Cle,B) T lu'L,RJ'
PRJ

(3.49) |u vi=0,1, J=1,...,m,

_dj,hUIi,SJ ,
u € Q).

Proof. Let Jj e {1,...,mh) and u € HL(Q) be given. With the node P, we

associate the finite element star S, and the rectangle R S, and R

J J J

are the lmages under the mapping (2.7) of SJ and RJ' Clearly ﬁj is also

a rectangle. It follows from (2.7) and (3.48) that dj~hu is the

span{1,x,y}-interpolant of 4, i.e., dJ pu € span{1,x,y} and dj~hu(ﬁ) =

u(P)VP € JJ. Thus

(3.50) lu-d, . ul

Returning to the original variables in (3.50) (cf. (3.38) - (3.40)), we obtain
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2
- | =
(3.51) lu dJ,huli,R < C(a, B) T luIL.R , 1 0,1.
J PR J
3
As in (3.42) we have
(3.52) < max(}, 1)h . px 2 min(1,1)p. .
hﬁj o’ hRJ' ﬁj ’B RJ
Finally, (3.49) is a consequence of (3.51) and (3.52). .
Before stating an approximation result for {Sh}0<h51’ we prove 2a
technical result.
Lemma 3.1. Let {gh}0<h<1 be a family of triangulations satisfying the
minimal angle condition (3.44). Let Pl""’th denote the nodes of €h and
let SJ be the finite element star associated with PJ' Then we can
partition the set {Pl""’Pm } of nodes into a finite number of disjoint
h

sets 1 with ¢ depending on o but independent of h, such that

1""’IU

PI’P € Ik' i1 = j, implies éi n éJ =@ (§1 denotes the interior of Si).

J
Proof. The proof is simple; in fact, we give an algorithm to construct the
partition. We assimilate the triangulation to a graph, the edges being arcs.
Because of the minimal angle condition, a node P1 has a limited number of
arcs ﬁ;ﬁik, Q = {Pik : k=1,...,7,} being the neighbors of P, with

7y S y, where 7y depends on ¢ but is independent of i and h. We now

state the algorithm. To construct 1 we do the following. First take P

1 1

in Il; then take the node of smallest index s 1in {Pl""'Pm | AN ({Pl} v
h
Q.), toensure & n8 =92, and so on until the set {P ,...,P. I\({P,} v
1 1 s 1 mp 1
Q1 v {PS} v QS v...) s empty. To construct 12 we do the same as before

with the subgraph of nodes ({P ,....Pm }\Il' From the minimal angle condition
h

1

and the construction of Il' a node of this subgraph will have at most -1
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arcs. In this way we construct 13, .«. . The algorithm will stop after at

most ¥ steps.m

Theorem 3.9. There is a constant C = C(a,B8,v,0), depending on «,B,v,0

but independent of u and h, such that

Mp
(3.53) |u—ZdeJ’hu|1’g <$Chlul o Vue whQ), 0 <h <1,
J=1

Proof. Let u € HL(Q) and let I .,I, be the partition of the nodes of

1" ¢

%’h given in Lemma 3.1. Then, since supp w,j = Sj’ we have

Mp Mp
2 _ 2
(3.54) ju-~ ijd,j,hull,n = Izwj(u dj,hu)ll,n
J=1 J=1
14
_ - 2
- lz Z vilu-ds iy g
k=1 jel,
¢
< eZ|Z v (u-d, )2
J J.h 1,4
k=1 jely
¢
- _ 2
= LZ J IZ grgd(wj(u dj,hu])l dxdy
k=1 'Q jel,
¢
- _ _ 2
= CZ J Z [ (grad wj)(u dj,hu) +¢J grad(u dj,hu)l dxdy
k=1 'Q jel,
Mp
2 2
< ZCZ J' {|(grad 'ﬁj)(u_dj,hU)| + WIJ gr‘gd(u-dj’hu)l }dxdy.
J=1°s,

We note that with the assumptions (3.44), (3.45), we have the bounds
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1 o

< <
min p min hT
PJET PJET

v

7|3

<1 and rad <
JI lgra ¢Jl

Thus from (3.54) we get

(3.55) Ju- :E: wJ 3, pY 1 Q < 2!:5:{;1n p J Ju-d J, hul dxdy
TS

PjéT J

4-J |gr~g_1d(u—d‘j hu)lzdxdy}.
S

J
We now use Theorem 3.8 in (3.55) to get
my my 4 4
2 Pr, MR 2
(3.56) fu- v.d,  ul < 2&(a, B) + jul
JJoh'1,a min pz pz L,RJ
J=1 J=1 T T R

With the assumptions (3.44) and (3.45), the following estimates are obvious:

hr h
> > - > —
hRJ 2 max h.r 2h, pRj 2 min p. 2 min 2 .

PyeT PjeT | PjeT ve

So the inequality (3.56) becomes

Mp T
(3.57) =) v, i g s capenn®) ui?
. J J,h 1'9 - r 0 Vo L,RJ
= J:l
my 2
It remains to estimate Y |ul We have
L,Ry
J=1
Mh
(3.58) > Z Ny ui2
J=1 Tégh

where

NT = The number of rectangles RJ such that T n RJ z 2.
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Let us now show that under the assumptions (3.44) and (3.45) the numbers NT

can be bounded independently of h for all T e €h. Let T e €h be given.

If Tn RJ # @, then Pj lies within the (closed) disk D of radius

(v2+1)h centered at the center of T. To estimate the number of nodes lying

inside D, we first estimate the number N of triangles K that lie inside

the disk D’ of radius (v2+2)h. Since from (3.44), (3.45) we get

th < hz | 4 %
<n n

22 2

v o 40

(7Y
nhl'b

< area(K),

4
we have the estimate

= nhz

N
tla:zo-'2

< zz: area(K) <€ area(D’) = n(2+V§)2h2.
KcD’

and hence
N < 4v2c2(2+V§)2.

So for NT we have the bound

(3.59) Ny < 12u2¢2(2+\/§)2 VTe t’h, 0 <hsi1.

Finally combining (3.57)-(3.58) we get

my
2 2 2
(3.60) lu :E: deJ,hu'l,Q < Ch lulL.Q’
J=1

where C depends on «,B8,v,0 but not on u nor on h. Inequality (3.53)

follows from (3.60). =

As with the Approximation Method I, the stability condition is immediate

{(cf. Theorem 3.1). In the same way we proved Theorem 3.4, we can prove

Theorem 3.10. For f € LZ(Q), let u be the solution to (3.1) and let u

be the solution to (3.47). Then there is a constant C = C(«a,B8,v,0) such

47




that

Note that in the proof of Theorem 3.10 we use the fact that u e Hé(ﬂ)

Mp

implies :E: gll‘jd‘j pY € Hé(ﬂ). This is true because JJ contains any vertices
J=1

of R, that lie on 4Q.

J

3.4 Comments on Methods I, II, III

We have described three methods for approximating the solutions of
problems of the type depicted in Fig. 1.1. The usual finite element method
is inaccurate for these problems since the solutions may not be in H1+€(n)
for any € > 0.

Methods I and Il are closely related. The central idea in these methods
is to exploit the existence of a mapping from the general element to the
reference element that transforms the special shape functions into polynomials
and the unknown solution into a smooth function, and thereby obtain a good
convergence rate. For singular corner behavior and homogeneous material, this
idea is exploited in [5].

It is advantageous to use rectangular meshes in @ that are aligned with
the direction of the unidirectional composite, as described by a(x,y),
because they are the images of rectangular meshes on f1. The major difference
between Methods I and II is in their treatment of the right hand side f.
Since with Method II, f enters the computation through integrals of f times
the usual piecewise linear test functions (as opposed to integrals of f
times the special test functions (cf. (3.5)), Method II is preferable when

many right hand sides must be treated. On the other hand, Method Il is less

stable than Method I, leading to larger constants in the error estimates (cf.
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(3.17), (3.17’), (3.43), (3.43’)). In fact, for quadrilateral meshes Method
II may not converge for some a’'s; see the hypothesis on a(x) in Remark 3.3.
We note that for triangular meshes Method II always converges.

Method III, although similar in its use of good local approximating
functions, (e.g., functions satisfying the differential equation) has a
rather different character than Methods I and II. In Method III the alignment
of the mesh does not play a role. Finite element approximating spaces based
on shape functions satisfying the differential equation have been suggested
and employed in various contexts. The main problem in their use is the
enforcement of some type of conformity. This can be done by various hybrid
methods, e.g. (see [2], [12], e.g.). These are, however, problems in ensuring
the stability of these methods, and some of these problems have not been
satisfactorily resolved. In contrast, Method III proposed here has no
problems of this type, and is very accurate and robust. For some
computational aspects of a similar method employing harmonic polynomials in a

p-version fashion and applied to the solution of Laplace’s equation see [15].
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4. Methods for Problems with Curvilinear Unidirectional Coefficients

The methods presented in Section 3 cover problems on rcctangu.ce domains
with coefficients that globally vary sharply in at most one direction, i.e.,
that are straight line unidirectional. Here we extend Methrds I and III to
cover coefficlients that locally vary sharply in at most one direction, i.e.,
that are curvilinear unidirectional, and to cover domains with curved
boundaries. Method I‘, the extension of Method I, will be based on quadri-
lateral and triangular elements and Method III’, the extension of Method III,

will be based on triangular elements.

4.1. Method 1’

Consider the boundary value problem (1.1) and suppose
e« for 1<1sn’, (Qi,Ei,ni) is an open subset of Q and a
coordinate system satisfying conditions (i)-(vi) in Section 2 and for

1

n” +1 <1< n, where n’ £ n, (Qi,Ei,ni) is an open subset of Q

and a coordinate system satisfying conditions (i)-(iii), (v), (vi) in

Section 2, i.e., £ = Ei = Ei(x,y). n=m = ni(x,y) and if (x,y)

, 12 1
ranges over Qi' then (El' nl) ranges over Q1 = (EQI.EQl) x (nnl,
2

nnl), where Qi’ Ei(x.y). nl(x.y) satisfy conditions (i)-(iv), (vi)

if 1 £ n’ and conditions (i)-(iii), (vi) if 1 2 n’ + 1 (let E.1

denote the union of the interior edges of Qi);

. {Ql)T=1 covers 1 1in the sense that
(4.1) Q= U‘i‘=1 Q,
and
(4.2) an = U?=1(Interior (ﬁi n 8Q) in 89};

* for 1 <1 5 n’, we have
(4.3) a(x,y) = a(xi(E.n). yi(E,n)) = al(s) V (x,y) € Q.
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where x = xi(E.n), y = yi(i,n) is the inverse of the mapping
Ei(x.y), ni(x,y) (a1 here plays the role of a’ 1in (2.12)), and

for n’"+1 <1 <n, a(x,y) is smooth on Qi.

With {(Qi.Ei,ni))?=1 satisfying these assumptions, for each 1 let 01

be the result of pulling each interior edge of Q, (cf. condition (vi) of

i
Section 2) a distance d towards the center of Qi' Then the Oi's are open
sets of the type considered in Theorem 2.3 (i.e., 0i < Qi, 0i << Qi if
ﬁi na =2 and 80.1 n ani c 4Q if ﬁi n 80 # ) and {Oi}?=1 satisfies
(4.1)-(4.2), provided d is sufficiently small. Note that d = dist(Oi,Ei).
We consider d to be fixed.

We note that if (1.1) corresponds to problems of the type depicted in
Figs. 1.1-1.3 or to a smooth interface problem modeled as a composite

material, then {(Qi, £,, ni)}?=1 can be chosen to satisfy the conditions

i
outlined above.
We note that these assumptions imply that 4Q is a piecewise smooth

(C”) curve with vertices with angular measure «a satisfying O < a < m; in

particular { has no reentrant vertices.

Remark 4.1. If our proclem satisfies these assumptions we say that a(x,y)
locally varies sharply in at most one direction. Such coefficients are, as
indicated earlier, also called (curvilinear) unidirectional.

With Q, Ql,...,ﬂn, 01""'0n’ n’, and a(x,y) satisfying the hypothesis
described above, we now describe the meshes we will employ. For 0 < h 51,
let €h = {T}) be a mesh on § consisting of curvilinear (closed) quadri-
laterals or triangles, and satisfying "he following properties:

+ Each T 1is contalned in some 51 : Tc 1 £ i(T) £ n;

%1y

+ If 1{T) £ n’, then T 1is the image of a rectangle T’ in Qi(T)
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under the mapping x = X1y = xi(T)(E,n). Y=Yy T yi(T)(E'n)’

i.e.,
T=A0y) : x=x&n), vy =y &,
1 1 1 1 2 2
< S €< < < PR T },
EQur) 1 € E‘; 6?11(1')’"91(1') fr 220 2 M
where
2 1 2 1
(4.42) IET ETISh. InT-nTISh.
L, 1€ -l
(4. 4b) o S-—TE—————— < o,
In -nll
T T

where 1 € ¢ < » 1is independent of the mesh. The mapping (si(T)’

i o ool 22 1 .2 s
ni(T)) maps T onto T’ = (€T, ET) X (nT, nT) and T’ 1is mapped
onto the reference rectangle Tg = (0,1) x (0,1) by the mapping
1
£ £ &
dt [ dt }' dt
J.1 2im 1 21(T) 1 (T 1
x 1 EQHT) Q (1) Lz T
(4.5) &=%& = 2 - 2 SR T¢ 2 B
T 4t JT dt T T
a a
J.1 i(T) 1 i(T
& g

Thus the composition of these two mappings maps T onto TO = Tg,

and the inverse, FT’ of the composition maps TO onto T.

« If 1(T) 2 n’ + 1, then T 1is the image of

()

T = |T , if T 1is a quadrilateral

T, = a reference triangle, if T 1is a triangle

0O =9 0O
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under a mapping F. satisfying

T

FT is invertible, and FT and F;l are smooth,

2 -1 -1
(4.6) IFTll.m,’I‘o < Ch, |F.r|2.m'.ro < cn%, |F; |1'm’T < Ch -,
and
= A 2 = -2
(Z,m)eT® x,yle
where
161y, 0 q = Sup IDG(L. ), g2 p2)e
T (t,s)eQ TAN
I0°G(t, )y (g2 g2y = max_ ID'G(t,8) (aphe..apl,
12 ! ‘neRz
Iy =<1
1<i<é
i = the Euclidean vector norm on R2,

and

JG(t,s) = Jacobian of G at (t,s).

The constant C in these estimates is independent of the mesh. We

easily see that the mapping FT : To-—aT defined above for 1i(T) £

,

n’ satisfies parallel assumptions. Hence we have T

0
FT(T ) for
all T, and it is convenient to associate the mesh € = {T} with the

set of mappings {FT}.

* The standard compatibility condition is satisfied. Suppose that Tl

and T, are quadrilaterals with a common edge ¢ : & = Tlr\Té.

See Fig. 4.1; note that we are using two copies of the reference

rectangle To.
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(0,1 (1,1) (2,1)

o1

(0,0)

Fr,

Fig. 4.1

Assuming that ¢ 1is the image of the vertical line segment {(&,7)

£ =1,0 <% <1} under both Fy ~ and FTz' we require that
1

(4.8) FTI(I.n) = FTZ(l,n) ,0 £ 951,

If ¢ is the image under F of a different edge of the reference

T2

rectangle, we would modify (4.8) in an obvious manner. Also, if

either Tl or T 1s a triangle, the compatibility condition would

2
be modified in an obvious way.
We point out that our mesh matches the (curved) boundary of Q by means

of blending (non-isoparametric) elements.

Remark 4.2. In the quadrilateral element case, verification of (4.8) and
(4.7) usually proceeds along the following lines. Let T*®* denote the
straight line quadrilateral with vertices ai,i =1,2,3,4, coinciding with
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those of T (see Fig. 4.2), let

h.r = diam T*,
Pr = diam of largest disk contained in T*,
= - . -— <
¥p = max {Icos((ai+1 ai) (ai_1 ai))l 15154 (mod 4)}
y A
a3 A
1
A A
a4 a3
a9
F
T* O
4
— - -
X A A z
4 a9 g
Fig. 4.2
and assume
M <
hTSh. pTSG, 7T-7<1,

where ¢ and ¥ are independent of the mesh. Let ?T denote the bilinear

»

mapping of TO onto T and write

One then makes assumptions on the perturbation ¢ that imply (4.6) and (4.7)
are satisfied. This procedure is outlined for isoparametric quadrilateral
elements in [7, Exercise 4.3.8]. The parallel procedure for triangular

isoparametric finite elements is carried out in [7, Theorem 4.3.3].
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It remains to describe our shape functions. On T € ?h we use the shape

functions
(4.9) 1 F_l (x,y) F-1 (x,y) F‘"1 (x,y) F'-1 (x,y), if T |is
‘ *T,1 e tT, 2 7Y T, ’ T,2 7'7°7
a quadrilateral
and
(4.9) 1. F2l (xy), Fol (x,y), if T 1is a triangle
. ’ T’l 1 ’ T’z ’ ’ 1]

where F}l(x,y) = (F;ll(x,y), F;IZ(X.Y)). i.e., we use the pull-back poly-
nomials determined by the bilinear shape functions 1, &, 7, &7 in the quad-
rilateral case and by the linear shape functions 1, &, % in the triangular

case. For 1i(T) £ n’ we easily see that the functions in (4.9) are

£ (x,y) ¢ (x.y)
J 1(T) dt J HT) N
> a
1 i(T) 1 1 1 0T
(4.10) 1 1 LITC SRR 2t R PRO SRS D hut g
. » E2 ’ 2 _ 1 ’ 2 _ 1 Ez
.[ a J dt
1 7i(T) —_—
1 & 1M
Then we let
(4.11) Sh = {v e LZ(Q) : v| € span of the shape functions on T,

T
v is continuous at the nodes of ?h.

v = 0 at the boundary nodes}.

Because of the above assumptions, 1n particular (4.8), we see that S ¢

h
Hé(ﬂ). i.e., Sh is conforming. The Sh-lnterpolant of u 1is defined by
d ues
(4.12) h n
(dhu)(P) = u(P) ¥V nodes P of €h.
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Because of our choice of shape functions, dhu is a good approximation to wu.
In Fig. 4.3 we show a typical part of the mesh on Q. ‘e show the sets
Qi and 0i as well as the elements of the mesh. Note thai. . th the Qi’s
and the ei2ments fit the geometry of the fibers. In Flg. 4.4 we show the
mesh in a neighborhood of the boundary of . We see in particular the
interior and the boundary edges of the nl‘s. In Fig. 4.5 we show a typical
mesh. We do not show the sets Qi and 01’ but do show the areas where the
coefficient a(x,y) is smooth and where it is rough (the areas with the
fibers). Note that in the area of the fibers we use quadrilaterals elements
while in the area where a(x,y) 1is smooth we use both quadrilateral and
triangular elements. Obviously triangular elements cannot be avoided, but

quadrilateral elements are preferable because they usually lead to higher

accuracy (although with the same rate of convergence).
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N //,— _——’/
/, ——— =
t 4
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] !
- =~ \v’,

Fibers of Composites
Boundary of Q,

————— Boundary of O,

................. Boundary of the Elements

Fig. 4.3. Typical configuration of the sets Qi’ 01,
and the elements inside Q.
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The approximation property of the spaces S is formalized in

h
Theorem 4.1. There is a constant C = C(a,8, (El,‘n1 ..(En,.nn,)
(nn,+1,...,nn, alq UEEREE aIQ , d) depending on «, B, (51,1;1
n’+1 n
(€ .m0y Q. qs--0 0, aln IUREEEY aln , and d but independent of h and
n’+1 n
u, such that
(4.13) lu - dhull1 q s < Ch Hf"

Proof. Consider T € €h and let dTu be defined by
dTu € span {shape functions on T},

(dTu)(P) = u(P), for all vertices P of T

(cf(4.12)). For 1i(T) £ n’ we see that dTu is well defined by noting

successively that (dTu)' {where the prime denotes the transformation from

the variables (x,y) to the variables )) is the

€ty MM

i 01) Sim 7
J dt dt

1 & 1 1 1 &
€& D gy -p Wy T T HD

span { 1, — , =3 T 3 1 52 r -interpolant
dt dt
Jet 21(T) Jet 21(T)
T T J
of u’ at the points P’, that (d;u)’ (where the tilde denotes the trans-

formation from the variables (gi(T)’ni(T)) to the variables

Sim et
(4.14) EI(T) = J . EI?;;- ni(T) = 7)
EQ
{

is the span{1, Ei(T)’ (1) Ei(T) 1(T)} interpolant of u’ at the points
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P/, that u’ e Hz(ai(T)), from Theorem 2.3, and that the points P’, for P a

vertex of T, form the vertices of a rectangle in bi(T)' Note that the

variables EI(T) and ﬁi(T) have here been defined differently than in

(4.5). This is necessary in order that the set bi(T) depends only on 1i(T)

and not on T. For i(T) 2 n’ + 1 we see that dTu is well-defined by
noting successively that d}u (where the tilde denotes the transformation
from the variables (x,y) to the variables £ = F;}l(x.y), 2= F;}z(x.y)) is
the span{1, &, n, &n}-interpolant of U if T 1is a quadrilateral and the
span{1,&,n}-interpolant of u if T 1is a triangle, that u e HZ(TO), from

standard elliptic regularity results since T ¢ oi(T)

on Qi(T)’ and that the points P are the vertices of the rectangle TO. We

and a(x,y) 1is smooth

note that these observations show that d.u in (4.12) is well-defined.

h
Now we estimate {u - d.rul1 T First suppose 1{(T) < n’. Changing
variables we obtain
d(u- d._u) 2 8(u- d. u)
T | 4T

ax dy

o arul? - L{
[

a(u’ - (dTu)')

2
} dx dy
2

alu’ - (d.u)’) 2
Igr?d g1(T)|

T
&, (1)

94 (1)

<] |

2 2
- 3(x,y)
lgréd "1(r)| } ale d&; ()97 (1)
1(17), M(T)

2

8(u’ - (dou)’)
T +

a(u’ - (dTu)')

2
} 9€; (1™ (1)

%, (1) oy (1)
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8% - (dou)) |2 a(d - (dou)) |2
=C ! T + 3 T Q. . dn
1z oz 1(T) e 1M (M)
T @y(T) 1(T) (1)

e o _ e 2

~

where dTﬁ’ = (dpu)’ denotes the span{l, &

interpolant of u’ on T’. Here £&

LT M) Sum M)

(1)’ ni(T) are as defined in (4.14).

Thus by standard approximation results for bilinear functions (cf. Theorem

3.1.4 in [{7]) we have

lu-%uH.rSChl@l

2,1
and hence, for 1 < j £ n’,
2 2 ~, 2
(4.15a) Z fu dTull,T < Ch Z [u ,2,’1"’
1(T)=] 1(T)=]
2,~,.,2
< Ch |u I2,b.
J
2, ,2
= Ch™|u| )
L,O
J
where C = C(a,B.(El.nl).---.(€n,.nn,)). Now consider i(T) 2 n’ + 1. Using

(4.6) and (4.7) and the usual proof of approximation results (cf. proof of

Theorem 4.3.4 in [7])), we obtain

hx—dTull'T < Ch(lull,T + Iulz'T)

and hence, for n’ + 1 £ j < n,

2 2 2 2 2
(4. 15b) Z lu—d.rull’.r € Ch Z Ilu"Z.T < Ch ||u||2'0
1(T)=j 1(T)=] J
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For any T, (dhu) = d.u, and thus from (4.15a,b) we have

T T
2 2
(4.16) Iu--dh\.\ll.n = :E: ju dT“'l.T
T € €h
2 2
=)y tmdiiie > ) du-auil g
1<3<n’ i(T)=j n’+153dsn  1(T)=j
2 2 2
<o [Z Mo, Z "“"2.03]'
1<j<n’ n’+1<jsn
where C = C(e,B, (El,nl),...,(En,,nn,). From Theorem 2.3 we have
2 2
(1) Z w2, scini o
1<j<n’ J
where C = C(a,B8, (El,nl),....(in,.sn,). d). Since alx,y) 1is smooth on

QJ for j2n’ +# 1, from standard elliptic regularity results we have

2 2
(4.18) > g, sanZ
n’+15j<n J
where C = C(Qn’+1’“"nn’ algnl+1,...,a lgn, d). As a direct consequence of

(4.16)-(4.18) we get (4.13), as desired. =

Our finite element approximation u to u is now defined by

{uhesh

(4.19) I
Bl(u,,v) = fvdx V v € S
uh Q

he

Since we are using S for both the test and trial space, stability is

h
immediate. Approximability has been established in Theorem 4.1. We thus

have
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Theorem 4.2. Suppose Q,(il,nl),....(én,nn), n’, a(x,y) satisfy the
assumptions in the first part of this subsection. Suppose u 1is the solution
of (1.1) and Uy is the solution of (4.19). Then there is a constant C =

Cla,B, 0, (§,m ). (§ ,m ), Q Q. -»alg »d) such that
n

PR a ’e
n’+1 IQn,+1

2
(4.20) lu - uh"l < Ch "fHO,Q vVfel(Q), 0<h<h

, Q2 o

4.2. Method IIT’

Consider the boundary value problem (1.1) and suppose {(Qi, &i. ni)}?=1,

n n : .
{(Qi, Ei, ni)}1=n’+1’ a(x,y), and {Oi}i=1 are as described in Subsection
4.1. For 0 < h < ho let ?h = {T} be a triangulation of Q by ordinary
triangles together with curvilinear triangles which fit the curved part of
80, all of diameter £ h. Forany T e ﬁh let T* be the ordinary triangle

with the same vertices as T. Then ﬁ; = {T*} 1is a triangulation of Q by

ordinary triangles, but U T* = UT* 1is a polygonal approximation to Q and
T*e6*  Tet,

not an exact fit of Q. We assume all T* have diameter £ h and that

" . e . cl e C
{gh}0<h5ho satisfies the minimal angle condition (3.44) and the quasi-uniform
condition (3.45). Let {P. = (x., )}"h be the noles of €* and let .

J 3 =t h Y

denote the piecewise linear basis function corresponding to P‘j (and the
triangulation tﬁ). If T is curvilinear, then by restricting the domain of
definition of wJ or by extending wJ as a linear function we can assume wj

is linear on T, and hence that is continuous on @ and linear on each

J

T. Let SJ = UT be the finite element star associated with PJ' Now it is

Te?h

PJGT
easily seen that if ho is sufficiently small, then any SJ will lie in some
= + 1(3)’ = 5
0. : R < < n. ‘ .

i SJ c 01(5) 1 i(J) € n. Let SJ < Oi(J) be the image of SJ nQ

under the mapping (Ei(J)’ ni(J))’ let RE(J) be the smallest rectangle with
sldes parallel to the axes containing SB(J) , and let RE(J) be the preimage
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of Ri(J)l under ). Ri(J)'c o’

3 € MW . i(j) since 0Oj(y) 1sa

rectangle, and hence RS(J) lies in 01(J). Define JE(J) to be three

specific vertices of RE(J), including all vertices that lie on 4AqQ.
Next we define our space of approximating functions. For Jj = 1....,mh
let
(4.21) [ £1(x,y)
VJ = VE(J) = span{?j(X,Y), wj(x,y) I . 5%%—T’ wj(x,y) [ni(x.y) - néll}

Enl

if 151i=1(J) €n’

A

span{ﬁj(x.y). wJ(x.y) (x-xJ), wJ(x.y) (y-yj)}

if n"+1<1=1i(J)<n and Q noQ =20

span{wj(x.y), wj(x,y) [Ei(x,y)-ﬁéll, wJ(x,y) [ni(x.y)-néil}

| If n"+1<i=1(J)sn and Q noQz=e.

The 3rd line in this definition has been stated for the case in which the

preimages of the points (Eéi, nél), ( Q, nét

situations we could modify the definition in an obvious way. Then for the

) lie on 8Q. In other

space of approximating functions we choose

Mp
(4.22) Sh= {v : QDR : v = ZVJ, vJ € VJ’ v=0 on 8Q}.
J=1

Our finite element approximation u, to u 1s now defined by

v, €Sy

B(uh,v) = I fvdedy ¥V v esS
Q

(4.23)
h
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Since we are using the space Sh for both the test and the trial space,
stability is immediate. To study the convergence of the method (4.23) we need
to prove an approximation result for the spaces {Sh)0<h<l' This is done by

combining the ideas of Subsections 3.3 and 4.1.

Let dg(g)u be defined by
[ r E;(x,y)
i03) dt _1 _ . ,
(4.24) dj,h u e span{l, I . NOL ni(x,y) nni} if 1 <1 =1i(j) €n
Em
<span{l, x—xj, y-yj} if n’ +1<1i=1i(j) £n
; and ﬁi nag=o
span{1, £.(x,y) - El 7, (x y)--n1
» '1 ’ Qi, 1 4 Qi
\
if n’ +1<1i=1i(j) £n and ﬁi nan = o.
@ty Py = uwp) v p e S,
| J.h J
di(J) .
3,h u Is a good approximation to u on Sj’ as made precise in
Theorem 4.3. There is a constant C = C(a,B.(El,nl),....(En.nn)) such that
1(4) hel(J)
(4.25) Ju-d ul < [C =L— Jul, Li(J) , If 1 51(J) £n’
Joh Mk, sy K L,R
pRi(J) J
)]
4
h21(J)
C L — full, oi(J) , if n’+1 € i(j) < n ,
k 2,R
[ PRt () J
J

for J = 1....,mh , k=0,1.
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We omit the proof of this result since it is similar to that of Theorem 3.8.

The approximability result for (Sh}0<h$h0 is given in
Theorem 4.4. There is a constant C = C(a.B,v.v.(El.nl),...,(En,nn)) such
that
mp n’ n
(4.26) =Y v Pur g > o ¢ )
’ J J»h lon I—-.oi 2,01 )
J=1 i=1 i=n’+1

We omit the proof of this result since it is similar to that of Theorem 3.8S.
Finally as a consequence of (4.26), Theorem 2.3, and <tandard elliptic

regularity results we have

Theorem 4.5. Suppose Q, (El.nl)....,(sn,nn), n’, and a(x,y) satisfy the
assumptions in the first part of this subsection. Suppose u is the solution
of (1.1) and u, is the solution of (4.23). Then there is a constant C =

C(a.B,v,v,(El,nl),...,(En,nn), n’, d) such that

(4.27) Ilu-uhll1 Q < CthHO Q Ve LZ(Q), 0 <hs ho.

4.3. Comments on Method I’ and III’

The differences and similarities of Methods I’ and III’ are similar to
those of Methods I and III, which were discussed in Subsection 3.4. We note
that with Method I’ we have to fit the elements to the geometry of the fibers
of the composite, as seen in Fig. 4.5. Thls 1s not necessary in the case of
Method II1’, and this freedom could be utilized in many situations. For
example, suppose the coefficient is changing rapidly but not abruptly along a
line. Then Method II£’ could be used, leading to an enrichment of the usual

finite element space by special shape functions in the neighborhood of the

line.
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II,

10.

11.

12.

Implementational considerations and computational studies of Methods I,

III, I’, and III’ will be presented in a forthcoming paper.
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