
NUWC-NL Technical Report 10,017 AD-A248 841
6 April 1992

A Closed Form Solution
Of a Longitudinal Beam With
A Viscous Boundary Condition

Andrew J. Hull
Submarine Sonar Department

ISOy

Naval Undersea Warfare Center Detachment
New London, Connecticut

97"10022
Approved for public reles"; distribution Is unlimited. i i' 11 ,

102 4 20 06 7



Preface

This report was prepared under the Acoustic Array Technology Program as
part of the Submarine/Surface Ship ASW Surveillance Program sponsored by the
Antisubmarine Warfare/Undersea Technology Directorate of the Office of Naval
Technology: Program Element 62314N, ONT Block Program NU3B, Project No.
RJ1 4R1 3, NUWC Job Order No. V6001 0, NUWC Principal Investigator D. A.
Hurdis (Code 2141), and NUWC Program Director G. C. Connolly (Code 2192).
The sponsoring activity's Technology Area Manager for Undersea Target
Surveillance is T. G. Goldsberry.

The technical reviewer for this report was D. A. Hurdis (Code 2141).

The author wishes to thank Professor Milan Miklavcic of Michigan State
University for his help with this problem.

REVIEWED AND APPROVED: 6 APRIL 1992

F. J. Kinobury
Head, Submarine Sonar Department



REPORT DOCUMENTATION PAGE om No 0"188

Pub.c m mng wae~ for thn call etion of information is estimated to avera hjl er Iggeonse. inirudin the tmie for riviewlf rstrmuon. Iearctng e intmg data stwc.
am m - maintang t idate needed, ed £om.tnga revieWng tie codaction oandncwmtmo tend Commeb ra ading thbden astmate or any Otr aspedt of Us

co @n of mnmtlUOn. including sugstis fr hmuang thif bwden. to Washington veieeduarters taiwces. Dot or tfor informaton Oper to s and Roporm )ls efron1
Daw, ihway. st Ina. Adigton. VA 2202.30. ,id to t Office of Managemet and ludget. Paperwort eduction Poliic (07044I) Waington. C 03

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 6 April 1992 T Proqress
4. TITLE AND SUBITLE S. FUNDING NUMBERS

A Closed Form Solution of a Longitudinal Beam With a PE 62314N
Viscous Boundary Condition PR RJ14R13

6. AUTHOR(S)

Andrew J. Hull

7. PERFORMING ORGANIZATIOI-NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Undersea Warfare Center Detachment TR 10,017
New London, CT 06320

2. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER

Office of Naval Technology
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 wors)

This paper develops a closed form solution of a longitudinal beam with a
viscous boundary condition subjected to point loading. A new inner product
is formulated that allows the time and space modes of the beam to decouple.
This expansion yields explicit eigenvalues and eigenvectors. A frequency
domain example is presented, and the results are compared with finite element
solutions of the same problem. It is shown that the closed form solution is
computationally more efficient than a finite element solution. Additionally,
truncation error at lower frequencies is shown to be extremely small. The
method is easily implemented and can provide time and frequency domain
solutions to this class of problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Closed Form Solution Point Loading 24
Inner Product Time and Space Modes 16. PRICE CODE

Longitudinal Beam Viscous Boundary Condition
17. SECURITY CLASSIFICATION 11I. SECURITY CLASSIFICATION It. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7S40-01-280-5S00 Standard Form 298 (Rev 2-89)
Pr8.crfhd by ANSI %to 1W 4



TR 10,017

TABLE OF CONTENTS

Section Page

1. INTROD U CTIO N ................................................................................ 1

2. SYSTEM M ODEL ................................................................................ 2

3. SEPARATION OF VARIABLES ............................................................... 3

4. SERIES SO LUTION ............................................................................. 8

5. FREQUENCY RESPONSE .................................................................... 11

6. A NUMERICAL EXAMPLE .................................................................. 11

7. C O N CLU SIO N S ................................................................................. 15

R EFER EN C ES ................................................................................... 15

APPENDIX - INITIAL CONDITIONS OF GENERALIZED COORDINATES ......... A-1

LIST OF ILLUSTRATIONS

Figure Page

I Beam With Viscous Damper .................................................................... 3

2 Eigenvalue Location in the Complex Plane ................................................... 6

3 The n = 2 Eigenfunction ............................................................................ 7

4 Frequency Response of an Axially Forced Beam: 6- and 50-Term Models ................ 13 tr

5 Frequency Response of an Axially Forced Beam: Continuous Solution

Compared With Finite Element Solution ................................................ 14 El
0

DistributL&D
Availability Co04*

A LD t SP".

%!,9 A.,9



TR 10,017

A CLOSED FORM SOLUTION OF A LONGITUDINAL BEAM

WITH A VISCOUS BOUNDARY CONDITION

1. INTRODUCTION

The dynamic response of a beam with a viscous boundary condition is important

because the designers of various structures often use viscous dampers to reduce force

transmissibility and decrease displacement. The need for reduced force transmissibility is

evident since lower force levels permit simpler and lighter structural designs. For this

reason, viscous (shock) absorbers are currently critical to many systems, such as

buildings, cars, and airplanes.

The closed form response of structures with fixed and free boundary conditions has

been previously analyzed [1,2,3]. These analyses form the basis for many classical beam

problems. Their self-adjoint operators are discretized using mutually orthogonal modes to

produce models of structural dynamic response. These models, however, admit only

standing waves into the response and do not consider viscous damping at the boundary.

Recently, a number of papers have appeared that model different effects in beams, such as

compressive axial loads [4,5], elastic foundations [6], and the coupling between flexural

and torsional modes to axial loads [7]. These papers, which use a variety of analytical

techniques to solve for the structural response of a beam, do not consider viscous

dissipation at the boundary.

Although the structural response of a beam with a viscous damper can be

determined using finite element analysis [8,9], this method does have a number of

drawbacks. It is computationally intensive, does not provide explicit eigenvalues and

eigenvectors, and does not yield a closed form solution. Finite element discretizations are

I
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often too large when real time computations are required, as in the case of active control

systems. Additionally, the effects of changing model parameters is not always as apparent

in a finite element model as it is in a closed form algebraic solution.

This paper develops a closed form series solution for the axial wave equation with a

fixed boundary condition at one end and a viscously damped boundary condition at the

other. The addition of a damper to the boundary allows propagating and standing waves to

exist in the structure simultaneously. The system model produces a differential operator

that is nonself-adjoint and corresponding eigenfunctions that are not mutually orthogonal.

By redefinition of the problem on another interval, the space and time modes will decouple

and a closed form series solution can be found.

2. SYSTEM MODEL

The system model represents an axial beam fixed at x = 0 and a viscous damper at x

= L (Figure 1). A force is applied to the beam at location x = xf. The addition of the

damper to the beam will admit standing and propagating wave energy simultaneously. The

linear second order wave equation modeling particle displacement in the beam is

a2u(x, t) E a2u(x, t) _8(x - xf )F(t)

at2  p ax2  pA

where u(x,t) is the displacement (m), E is the modulus of elasticity (N/m 2 ), p is the density

of the beam (kg/m 3 ), x is the spatial location (m), t is time (s), A is the area of the beam

(m2 ), F is the applied force (N), and 3 is the Dirac delta function (1/m). The wave

equation assumes uniform area and negligible internal loss in the beam.

The boundary at x = 0 is fixed and can be expressed as

u(0,t) = 0 . (2)

The boundary condition at x = L is obtained by matching the strain energy of the beam to

the viscous dissipative force in the damper. This can be expressed as

2
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AE (L,t) = -c- u(L,t) (3)

where c is the viscous damping coefficient (Ns/m). When c is equal to zero (or infinity),

the boundary at x = L reflects all the wave energy, and the system response is composed

only of standing waves. When c is equal to A..-E, the boundary at x = L absorbs all the

wave energy, and the system response is composed only of propagating waves. All other

values of c exhibit some combination of standing and propagating wave energy in their

response.

LX

" Xf

Figure 1. Beam With Viscous Damper

3. SEPARATION Or VARIABLES

A decoupled series of ordinary differential equations that represent the system are

now developed from equations (1) - (3) and the initial conditions of the beam. The first

step in deriving decoupled differential equations involves finding the eigenvalues and

eigenfunctions of the model. This is accomplished by application of separation of variables

to the homogeneous version of the wave equation (equation (1)) and the corresponding

boundary conditions (equations (2) and (3)). Separation of variables assumes that the

independent variable can be written as a product of two functions: one in the time domain

and one in the spatial domain. This form is

u(x,t) = T(t)X(x) (4)

3
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Equation (4) is now substituted into the homogeneous version of equation (1), which

produces the following ordinary differential equations:

d2T(t) 2ET(t) = 0 (5)

dt2  p

and

d2X(x) X2X(x)=0 (6)
dx 2

where X is the complex-valued separation constant.

The general solution to equation (5) is

Xd-t
T(t) = Ae 4 +Be FP (7)

The fixed boundary condition (equation (2)), is now applied to the spatial ordinary

differential (equation (5)) which gives

X(x) = ex - e - X x  (8)

Applying the viscous boundary condition (equation (3)) to equations (7) and (8) yields B =

0 and the n-mode-indexed separation constant

Xn= I 1ge[AE - c P + (2n +1)7r n=0,±1,±2,... (9)

where i is the square root of- 1. The real part of the separation constant is associated with

the propagating wave energy, and the imaginary part of the separation constant is

associated with the standing wave energy. The eigenvalues of the system are the separation

constants multiplied by the wave speed,

4
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An= epXn , (10)

where An has units of rad/s. A plot of the eigenvalue location in the complex plane is

shown in Figure 2. The eigenvalues are equally spaced and parallel to the real axis. Once

the indexed separation constant is determined, the spatial eigenfunctions can be defined by

inserting equation (9) into equation (8), which gives

(Pn(x)=eXnx - e-Xnx (11)

A typical eigenfunction (n = 2) is shown in Figure 3 for c = (0.5)A p-. The

eigenfunctions are not mutually orthogonal on [0,L]; therefore their inner product with

respect to one another on [0,L] is not zero, and traditional boundary value techniques will

not decouple the time and space modes. A method is developed below that redefines the

problem interval over [-L,L] and decouples the time and space modes of the system. Once

the modes have been decoupled, the problem solution can be transformed back to the

original interval of [0,L].

5
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Figure 2. Eigenvalue Location in the Complex Plane
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Figure 3. The n =2 Eigenfunction
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4. SERIES SOLUTION

The displacement (or solution) to the forced wave equation, written as a series

solution, is

00

u(x,t) = Xbn(t) (Pn(x) , (12)

n=-oo

where the bn(t)'s are the generalized coordinates and the 9Pn(X)'S are the spatial

eigenfunctions. Derivation of an inner product that decouples the time and space modes

requires the time derivative (velocity) of the particle displacement to be written in two

different forms. The first form is the derivative of equation (12) and yields

(x,t)= n(t)n(X) , (13)

n=-00

where the dot over b denotes the time derivative of the fuaction. The second, developed by

using equations (7) and (4), is written as

00

n=oo

Equating equations (13) and (14) produces

00

[~n(t)-A ~t]~()= 0 .(15)j:1bn(0 Anbn(t)](Pn(X)=0-(5

nf-oo

The assumption is now made that differentiation will distribute over the summation.

Decoupled space and time modes will validate this assumption. The forced wave equation

(1) is rewritten with the above equations. The second partial time derivative is found from

the time derivative of equation (14), and the second partial spatial derivative is found from

the second spatial derivative of equation (13). Inserting these derivatives into equation (1)

yields

8
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> Ibn(t)-Anbn(t)AnPn(x) = (16)fl=-ooP

Equation (15) is now differentiated with respect to x and multiplied by the wave

speed -. The result is then added to equation (16) to formspee

bn(t)-Anbn(t)]2AneXnx = (x-xf)F(t) x E [0,L] (17)

n=- t pA

and is subtracted from equation (16) to give

I [in(t) -Anbn(t)]2An e- 6nx =-(x-xf)F(t) x e [0,L] (18)

n=-oo pA

The interval of equation (18), now changed from [0,L] to [-L,0] by substitution of -x for x,

yields

X [bn(t)-Anbn(t)2AneXnx = -(-x-xf)F(t) xe[-L,0] (19)
n=-oo pA

Combining equations (17) and (19) into a single equation and breaking the exponential into

terms that contain the index n and terms that do not contain the index n results in

(2n+l)irxi

[bn(t)_ Anbn (t)]2Ane 2L =
n=-oo

-1 1 Aloge I - xc 4-E-t)
e AE L +E c +c1E pA x e [-L,0]

(20)
o AE'/'P- c - "

e L19 AJ-c- x 8S(x - x f )F(t)]  X E [0,L]

9
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-(2m+I)irxi

The exponential e 2L (where m is an integer) is now multiplied on both sides of

equation (20), and the resulting equation is integrated from -L to L. The left-hand side of

the equation is orthogonal on the new interval and can be expressed as

L (2n+l)lcxi -(2m+l)nrxi

Jbrm(t)-Anbnm (t)]2Ane 2L e 2L dx

[bn(t)- Anbn(t)]4LAn n = m
-= (21)

Use of the reflection property of integrals and the bound of 0 < xf < L results in the right

hand side of equation (20) becoming

F(t)- - 8(-x - xf)e-mxdx + Lx - xf)e-XmXdx]

= -F(t)(pm(xf) (22)

pA

Equations (21) and (22) can be equated (for n = m) to form ordinary differential equations

for the generalized coordinates bn as

1bn(t)- Anbn(t) = -F(t)Pn (xf) (23)
4LAnpA

An explicit solution to equation (23) cannot be found until a time-dependent forcing

function has been specified.

The initial conditions of the generalized coordinates can be determined from the

initial conditions of the beam. This equation is

10
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I LdU au 0 d(X) dx L
an(0) = f. -(X,) d 1 f- u(x,O)W0n(x)dx , (24)

4nL J0 x dx 4XnL J0 at

where -u(x,0) is the initial strain energy in the beam (dimensionless) and -(x,0) is the

initial velocity of the beam (m/s). The formulation of equation (24) is presented in the

appendix.

5. FREQUENCY RESPONSE

A frequency domain solution to equation (23) can be found by specifying that the

forcing function F(t) be equal to a harmonic function F0ei°Ot, where F0 has units of

newtons. Solving the differential equation (23) results in the following solution to the

generalized coordinates:

bn (t) = -F° 0 np(xf) eiw (25)(ic0- An) 4LAnpA

When equation (25) is inserted into equation (12), the displacement of the beam becomes

00
u(x,t)= I-F 0 Pn(xf)P n(x) eOt (26)

n=- i- ) 4LA pA

Equation (26) can be truncated using 2N symmetric terms to yield an engineering solution

to the problem.

6. A NUMERICAL EXAMPLE

The accuracy of the model and the effects of truncation error were investigated with

a numerical example. The following constants were used: L = 20 m, E = 207 x 109

N/m 2 , p = 7.8 x 103 kg/m3 , F0 = 1000 N, A = 0.01 m2 , xf = 3 m, and c = 75000 Ns/m.

Figure 4 is the frequency domain response of the structure U(xr,wO) viewed at xr = 11 m for

a 6-term (-3 < n 5< 2) and a 50-term (-25 < n _< 24) model. Numerical simulations

suggest that two first order terms are needed to model each beam resonance. There is only

11
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a 0.45 percent (-46.9 dB) difference between the two truncated models up to the third

resonance of the beam. The addition of terms to the model does not change its value at the

lower frequencies. This is due to the frequency content of each generalized coordinate: the

lower indexed coordinates contain only lower frequency response and the higher indexed

coordinates contain only higher frequency response.

Figure 5 shows the 6-term frequency response of the structure compared with finite

element analysis results using 5-node (square marker), 8-node (diamond marker) and 21-

node (triangle marker) finite element models. The addition of terms to the finite element

model produces more accurate results at lower frequencies due to the coupling between the

nodes in a finite element formulation. Because the bandwidth of the system matrices are

greater than one, the mode shapes are not explicit to the analysis, and the addition of terms

(nodes) to the analysis can affect the accuracy of many beam resonance modes. The

continuous formulation presented above eliminates the problem of banded system matrices

by use of an orthogonal inner product to decouple the mode shapes of the beam.

12
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Figure 4. Frequency Response of an Axially Forced Beam: 6- and 50-Term Models
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Figure 5. Frequency Response of an Axially Forced Beam: Continuous Solution
Compared with Finite Element Solution
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7. CONCLUSIONS

The axial response of a beam with a damper at the end can be determined by using

separation of variables and by changing the interval of the problem. A truncated series

solution can be implemented to approximate the exact dynamic response. Truncation error

at lower frequencies is extremely small. This closed form solution is computationally

efficient and the eigenvalues and eigenvectors of the system are explicit.
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APPENDIX

INITIAL CONDITIONS OF GENERALIZED COORDINATES

The initial conditions of the generalized coordinates can be determined from the

initial conditions of the beam. Rewriting equation (12) at time t = 0 yields

00

u(x,0) = Ibn(0) (Pn(x) . (A.1)
n=-(A

Equation (A. 1) is now differentiated with respect to the spatial variable x to give

00diu oo
a () n( x -X'nx )

au (x,0) = bn(0)Xn(e"n +ek) (A.2)
ax

n=-o,

and differentiated with respect to the time variable t to give

0
-at (x,0) bn(0)X (e n x -e - Xn x ) (A.3)
at n=-co

Equation (A.2) is the initial strain energy in the beam and equation (A.3) is the initial

velocity of the beam. Equations (A.2) and (A.3) are now added to yield

00

= -x (x, 0) + - (x,0) (A.4)
~ 2b(0)X ~X ax ~

n=-,,

and subtracted to yield

2bn(0),n e-Xnx = au (x,0)- ) (A.5)lax at Ix0 (A5

n=

The interval of equation (A.5) is now changed from [0,L] to [-L,0] by the substitution of -x

for x. This equation is

A-i
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001

2b,, (0)n e nx = [U (-x,0) - (-x,0) x [-L,O] (A.6)1 ax at I
n=-oo

Equations (A.4) and (A.6) are now combined and the exponential is broken into two terms:

one contains the index n and one does not contain the index n. The resulting equation is

(2n+l)itxi

1 2bn(0) ne 2L

n=-0o

-1, 1 o I -A ,/F --c - lf 1

au(-x,O)a(x0) [-L,01

lax at I
(A.7)

1 -1 loge AEv-cvrI
[u (x,0)+--u-(x,0) e Lx [L,0]

-(2m+1)rxi

The exponential e 2L is now multiplied by both sides and the left-half of equation

(A.7) is integrated from -L to L. This yields

bn(O); nL~, [LU --- t (-x,0) e -Xnx dx

L a eXnx dx (A.8)+o ,Lax at

Using the reflection property of integrals and equation (11), equation (A.8) can be rewritten

to give

1 fLau dpn(x) 1 L u
bn(0) I -(x,O) d X---- -(X,0)Pn(x)dx (A.9)

4? L0 ax dx 4X-Lo 0 a

A-2
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