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THE MULTI-PRODUCT INVENTORY SYSTEM

UNDER CONSTRAINT

BILLY M. MALONEY

Dr. Cerry M. Klein Dissertation Supervisor

ABSTRACT

This Dissertation is comprised of the following research efforts:

1) Implicit Foundation: Functional relationships between the Lagrangian

multipliers and multiple system parameters are identified and used to establish improved

bounds on the optimal multiplier in closed form. A recursive process which rapidly

converges to the optimal Lagrangian multiplier value is also presented.

2) Horizon Extension: Given an existing inventory system and its related optimal

Lagrangian multiplier, an ability to project the multiplier needed to optimize an inventory

defined as various shifts occur in the given system is developed. A recursive process

which identifies the series of Lagrangian multipliers needed to optimize a inventory

horizon in which constrained conditions extend over several periods is also developed.
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3) Dual Constraint System: The ability to determine that portion of the constraint

set which will be binding at the optimal solution is developed. A routine is also

developed which effectively estimates both Lagrangian multipliers needed to optimize the

system when both a budget and a storage space constraint remains binding.

4) Real World Application: Potential benefit gained from implementing the

algorithms developed within this study is demonstrated within a small hardware

company's large volume inventory.
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Chapter I

Introduction

1.1 Introduction

"Inventory control is the science-based art of controlling the amount of stocks held within
a business to meet economically the demands placed upon that business." [25, pp 1]

As early as 1929, Wilson proposed his 'economic order quantity' (EOQ)

formulation for calculating replenishment order sizes for the single item inventory system

[25, pp 57]. This initial attempt to provide a scientific basis for the process of

determining inventory stockage levels was based on two assumptions. The first was that

the total cost, TC, of operating an inventory was comprised of only inventory carrying

costs and a cost of placing replenishment orders. In defining these costs, Wilson assumed

further that the cost of placing replenishment orders, R, was independent of the size of

the order. He also recognized the cost of carrying an item in inventory, C, to encompass

all related cost including but not limited to employee costs, overhead cost, direct labor

and storage costs as well as costs stemming from losses such as stock deterioration.

Wilson's second assumption was that the demand, D, for an item of inventory could be

considered uniformly distributed over the period.

It follows from these assumptions that TC for a single item inventory can be

expressed as:

TC = CQ/2 + RD/Q (1-1)

where Q is the reorder quantity. An expression for Q is obtained by differentiating TC

with respect to Q and then solving the resulting differential.

1
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Q = [2RD/C]"t  (1-2)

Hidden within each of these expressions is the assumption that no restriction be

placed on the inventory system. Any number of constraints could, however, be imposed

on such systems. Storage space constraints, budget constraints, set-up time constraints

or even a management imposed constraint stemming from some external pressure are such

possible limitations. The equations presented by Wilson work well for single item

inventories under a single or multiple constraints since Q simply must be reduced to the

level of the most active constraint to be considered optimal. This, however, is not the

case when multiple items are carried in inventory. Consideration must then be given to

the competition among these items for those limited resources.

1.2 Overview

Using Wilson's fundamental 'Economic Order Quantity' equation as a basis of

study, the research outlined in this dissertation presents the results of both empirical and

theoretical efforts to improve the methods now available to solve the multiple item

inventory system under a single as well as multiple constraints. This effort builds on the

work of Maloney [26] and Klein, Ventura and Maloney [23], who focused on the two-

item inventory system under a single budgetary or space constraint, as well as on Ventura

and Klein [39] who provided an initial extension to the N-item inventory system. In

addition to improving the existing algorithm used to solve an N-item inventory, this

research expands the scope of study to include cases where multiple constraints are active.

An effort to effectively apply these results within a small business setting is also made.

Specifically, the efforts described in [23], [26], and [39] will be re-examined and



3

extended with four primary goals in mind:

1) Improve the efficiency of the Ventura/Klein algorithm by considering multiple

system parameters which are allowed to shift concurrently. The current recursive algo-

rithm is only effective for the two item inventory system where the amount of constrained

resource consumed by each item of inventory is held at one. There exist, consequently,

the need to fully consider the N-item inventory system.

2) Extend the results obtained in achieving (1) to a more realistic multi-period

horizon inventory system. The goal will be to develop a capability for finding the (V

values needed to optimize a series of inventory systems created by shifting parameters

within a known system over a given horizon.

3) Extend the results of (1) and (2) to the multi-constrained inventory system with

an initial focus on systems with two linear restriction. With no means available to predict

when none, one or both of these constraints will be binding at the optimal solution a trial

and error based methodology must currently be used. The goal of this extension will be

to develop an effective procedure for determining that portion of a system's constraint set

which remains active and then effectively solve for or estimate the needed Lagrangian

multipliers.

4) Demonstrate the potential effectiveness of the results obtained from (1), (2) and

(3) by implementing the resulting algorithms within a real-world multi-product, multi-

constraint inventory system.

An overview of the material to be presented follows. Chapter two presents a

statement of the specific inventory problems considered within this study. A literature
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review tracing three branches of research related to these problems is also presented.

Chapter three describes the empirical efforts made to gain a deeper understanding

of how a system's lagrangian multiplier, 4D, relates to simultaneous changes in multiple

system parameters of the single constraint inventory problem.

Chapter four outlines the analysis conducted on a set of functions related to

equations (1-1) and (1-2). This analysis provides the foundation for the algorithms

presented in chapter five by providing the shape and character of these functions.

Chapter five presents an algorithm which provides not only easily computed initial

bounds around 't" for the N-item single constraint inventory problem, but also introduces

an algorithm which improves these initial upper and lower bounds. A comparative

analysis is presented which demonstrates the effectiveness of this bounding algorithm.

Finally, a recursive algorithm is given which converges to 4" without using the normally

required trial and error based processes.

Chapter six extends the material presented in chapter five, building on the

empirical work shown in chapter three to establish the algorithms necessary to identify

a new V" from a known system within which multiple parameter perturbations have

occurred. These algorithms allow for periodic updating of a constrained inventory

system's lagrangian multiplier without repeating the detailed analysis outlined in chapter

five.

Chapter seven returns to an empirical study in order to establish the relationships

which exist between lagrangian multipliers 4 and 0 from a dual constrained inventory

system and shifts which may occur in the respective constraint levels imposed on that
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system. Building on the results of this empirical study, an algorithm is presented which

determines whether both 4) and 0* must be greater than zero at the optimum solution.

When this occurs, the algorithm provides effective estimates for both cI" and 0" otherwise

the optimum solution is presented.

Chapter eight illustrates the potential effectiveness characteristic of the algorithms

presented in chapters five, six and seven by implementing them within a real-world,

multi-product, multi-constraint inventory system. Inventory data collected from Tyree

Parts & Hardware of Columbia Missouri will be used facilitate this demonstration.

Chapter nine provides a summary of the work accomplished in this dissertation

and presents several topics suitable for future research.



Chapter II

Problem Statement and
Literature Review

2.1 Statement of Problem

The total cost of operating a multi-item single period inventory system can be

written as:

N
TC = £ (1/2 CQ + RVDQi) (2-1)

i=1

where: C, = cost of carrying the ith item
in inventory,

= reorder cost for the ith item
of inventory,

Di = a uniform demand rate for the
i' item of inventory

Q = the unconstrained order quantity
for the ith item of inventory and

N = the number of different items
carried in inventory.

The initial focus of this research effort will be to minimize equation (2-1) when only a

single limitation on resource, U, is imposed. Building on the resulting foundation our

focus will then shift to the multi-constrained system.

2.2 Single Constraint Problem Formulation

A complete formulation for a single storage space constrained inventory problem

or equivalently for a capital investment constrained inventory problem is presented below.

6
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Within this formulation, W, equals the storage space required per unit of inventory or the

cost associated with holding each item in inventory while U represents the available

resource level.

N
(P) Min TC = . (1/2 CiQ + RID/Q) (2-2)

i=1

Subject To:

N
I WQj U (2-3)

i=l1

-Q <0 i=1,2 ..... N (2-4)

Utilizing the Lagrange multiplier theory presented by Hildebrand [17] and first

applied to constrained optimization problems by Everett [6], Problem (P) can be rewritten

in its Lagrangian form. Letting (D be a nonnegative Lagrange multiplier for equation

(2-3) and 8i the same for each equation (2-4), Problem (P) becomes:

Max G(cb,8)

Subject to: ),8i > 0

where G(4),Si)=

N N N
Min L= 1(1/2CiQi + RD/Q) + (D( WiQi - U) - aiQ (2-5)

i=1 i=1 i=1

This expression can be simplified since when equation (2-5) is at its optimal value Q

> 0 and 8, = 0. A restatement of the Lagrangian function associated with Problem (P)



8

therefore becomes:

G()) =

N N
(PD) Min L = 1 (1/2 CQj + R1D/Qj) + (D( IWQ, - U).

i=l i=1

The Karush-Kuhn-Tucker (KKT) conditions related to problem (P4D) are:

5L/8Qi = 0 i = 1,2 ...... (2-6)

WQ - U!5 0 i = 1,2 ..... (2-7)

( WQ - U ) = 0 i = 1,2 ..... (2-8)

-4 0 (2-9)

-Q"< 0 i = 1,2 ...... (2-10)

Two cases must be considered in attempting to solve Problem (PD). The first of

these occurs when the sum of the unconstrained reorder quantities is less than the

imposed limitation. Under such conditions the constraint is inactive and the unconstrained

reorder quantities are optimal. In this case 4D must be equal to 0 in order to satisfy KKT

condition (2-8). The second possibility occurs when the sum of Q is greater than the

imposed constraint level. Here 4) must be greater than zero and each Q must be reduced

to Q" so that equation (2-8) again is satisfied. From KKT condition (2-6), the optimal

reorder quantity for each Q" is given by:
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Qj* =((2RDj) /(C, + 2WiD))" 2  i = 1,2 ...... (2-11)

From KKT condition (2-8) and conditions of feasibility:

N
I W =Q* U. (2-12)

In examining expressions (2-11) and (2-12) the optimum solution to (PD) is

obtainable once V* is found such that (2-12) is satisfied. The efficient selection of this

optimum value, however, has proven to be extremely difficult.

2.3 Multi-Constraint Problem Formulation

Formulation of the multi-constraint system can be illustrated by considering both

a space and a budget constraint simultaneously. In such cases, the constraint set can be

stated as follows:

N
Y WQ w (2-13)
i=1

N
Z BjQj < B (2-14)

i=1

-Q<0 i=1,2....N (2-15)

where W defines the storage space required per unit of inventory and where B, defines

the cost associated with holding each item in inventory. Here W and B set limits on

maximum inventory space and inventory budget respectively. Letting D and ( be a

nonnegative Lagrange multipliers for equation (2-13) and (2-14) respectivel), the
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Lagrangian function associated with Problem (P) can be restated where G(4),O)=

N N N
Min L = 1(1/2 CQ + R1D/Q,) + D(YWiQi - W) + O(_BiQi - B).

i=l i=1 i=l

(Pkbo))

The Karush-Kuhn-Tucker (KKT) conditions related to

problem (P(1,O)) are:

6L/0Q = 0 i = 1,2,....N (2-16)

XWQ-W<0 i= 1,2 ..... N (2-17)

I BiQ i - B5 <0 i = 1,2... N (2-18)

(IWiQ -W)0 i= 1,2....N (2-19)

E(.BiQ-B)=0 i= 1,2 ..... N (2-20)

__ 0 (2-21)

> 0 (2-22)

-Q" < 0 i = 1,2 ....... N (2-23)

From KKT condition (2-16), the optimal reorder quantity for each Q is given by:

Q =((2RiDi) /(Ci + 2Wi(c + 2BiE))'/2 i = 1,2... (2-24)

As in the case of the single constraint problem, the efficient selection of the lagrangian

multipliers V" and E" necessary to minimize problem (P) has also proven to be

formidable. The determination of V" as well as ®" will be the major concern during the
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second phase of this research.

2.4 Literature Review

2.4.1 Foundation Review

Early literature pertaining to constrained inventory control, as reflected even in

current textbooks, is surprisingly sparse. Holt [19] expanded on the initial foundation of

Lagrangian relaxation laid by Everett [6], by recognizing that, when the carrying cost for

each item of inventory is equivalent, cj* can be computed directly. Lewis [25], later

echoed this same observation while clarifying the mathematics involved:

D = 1/2{ [(2RD 1D")+(2R2D2)"i/U ]} 2-C/2 (2-25)

Holt also presented the first of several techniques developed for obtaining approximate

Vb" values. By using a difference equation approach he established an approximate

linear expression for V. Differentiating a total cost equation by parts and then

simplifying, Holt obtained an expression for the differential of (D:

N N
= I 1/(Qi /8RDi)[8IQ - I Q/4DiDi]. (2-26)

i=1 i=l

By replacing each differential (80,81 and 8D) by finite differences, for example 54) = ) -

V, a linear expression for V) was obtained. This complicated process provided an

approximate value for (D' if a related 4D and its associated system were defined and the
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actual difference was relatively small.

Approximation techniques appear quit often in literature. Hadley and Whitin [13]

and Johnson and Montgomery [211 presented marginal cost solutions to Problem

(P4)) which called for the addition to inventory of items which had the largest marginal

cost. This process was continued until no addition could be made without violating

the imposed constraint. The most current of these approximation approaches are known

as "approximate formulation". Britran and Matsuo [3] added to the approximate

formulation techniques presented by Gavish [7]. Gavish sought to identify constrained

optimization problems which could be solved using known solution processes while

Britran sought to modify (P) into a form which could easily be solved.

Johnson and Montgomery [21] used the differentiability of (P(D) as a basis for the

solution they presented. This solution technique recognized that the average cost of an

N-item inventory system could be written as a function of the N decision variables, Q.

The optimal set of Q could, in turn, be determined by solving the N+1 equations in N+1

unknowns given by:

8L/8 = 0 and 8L/8Q = 0 i = 1,2 ......

Hadley and Whitin [13] along with Buchan and Koeningsberg [4] shifted from

these more direct, computationally difficult, solution methods to an iterative approach for

obtaining the desired 4)* value. Their computational procedure follows:

Step 1: Select some 4) > 0.

Step 2: Compute each Q using equation (2-11).
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Step 3: Compute Smax = I Qj i=l to n.

Step 4: If Smax > U select a larger (D and
go to Step 2.

Step 5: If Smax < U select a smaller (D and
go to Step 2.

Step 6: When Smax = U stop, the current
(D and Q values are optimal.

This process has become the classical solution method for the single constraint inventory

problem and is presented universally as the "suggested" or "preferred" solution

technique [4],[ 131,[ 161,[ 181,[191,[21 1,[25],[281,[291,[401.

Hadley and Whitin [13] incorporates this single constraint solution technique into

what appears to be the classical approach to handling the inventory problem on which

multiple constraints are imposed. This procedure, echoed by Buchan and Koeningsberg

[4] as well as Tersine [38], consist of the following steps:

Step 1: Attempt, using the KKT conditions, to solve one of the constraint lagrangian
multipliers in terms of the others. If this is possible, solve for each multiplier in-turn
using the classical single constraint solution procedure to obtain the needed initial
multiplier.

Hadley and Whitin [13, pp 57-58] effectively demonstrated this step when the maximum

dollar investment and the number of inventory orders placed in a year are constrained.

Step 2: If step 1 is not possible, as in the case of two linear constraints, solve the
inventory problem ignoring both constraints. If solution satisfies both constraints then that
solution is optimal, otherwise go to step 3.

Step 3: Include only the first constraint into the problem and solve using the
classical single constraint procedure. If this solution satisfies the second constraint then
the current solution is optimal, otherwise go to step 4.

Step 4: Repeat step 3 including only second constraint. If this solution also
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satisfies the first constraint then the current solution optimal, otherwise go to step 5.

Step 5: If both step 3 and step 4 fail then both constraints are active and both
multipliers must be greater than zero. Solve using a enumeration computer program.

2.4.2 Recent Research Efforts

A continued review of current publications reveals three active branches in the

search for improved solution techniques for Problem (P). As described by Rosenblatt and

Rothblum [33], these three branches of research differ primarily in the way each handles

the various re-order cycle times for item's comprising an N-item inventory system. Here

an inventory item's re-order cycle time is defined as that period of time between

successive re-order events.

One of these research branches is based on the idea that, regardless of what

individual re-order cycle times exist, a joint cycle can be determine. Within this joint

cycle, orders of individual items can then be phased so as not to violate any imposed con-

straints. A second branch has as its basis the idea that a 'base re-order cycle time' can

be identified of which each individual re-order cycle time is either an integer multiple or

a power of two multiples. The goal of this second effort is to first group the individual

re-order cycle times so that the stated condition holds and then phase the inventory orders

over the 'base re-order cycle' so as to again not violate any active constraint. The third

research branch is based on the idea that re-order cycle times are independent for each

item type carried in inventory. Since all of the item types carried in an inventory system

will eventually peak at the same time, it is the focus of this branch of inventory analysis

to insure that the imposed constraints are not violated at each of these critical junctures.
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The branch of research dealing with the joint re-order cycle, Krone [241, Maxwell

[27], Parsons [32], Homer [20], Goyal [10], Paul and Page [30], Silver [36], Zoller [42],

Hartley and Thomas [14,151, etc., appears in literature as early as 1964. The efforts

outlined by these authors attempt to move away from the classical lagrangian approach

by using an order time staggering process found to be effective in solving Problem (P)

when the number of items carried in inventory is less than three or when the joint re-

order cycle is extremely long. Paul and Page [30] provided a clear illustration of this

branch of research using their "equal order interval" constraint. This time interval (t) was

defined as follows:

N N
t = (2 1 R,/I Cini)1 2  (2-27)

i=1 i=1

The assumptions made for this process were that each item of inventory had a periodic

order cycle and that staggering of the resulting order times was always possible. The

policy under this scheme was to restore the aggregate inventory to a predetermined level

(M) where this level has been defined by

N N N
M = IAt{ I WiD i + I Wi2Di2/ £ WiD i} (2-28)

i=l i=1 i=1

at the end of each order interval. Wi and D, are defined as before. If the level

determined by equation (2-28) is less than the available inventory space then M is set

equal to U to determine the replenishment level necessary to satisfy the active constraint.
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An overall effect of such staggering is a reduction in the maximum level of aggregate

inventory held at any given time while maintaining the EOQ recommended stockage for

each individual item. When the number of items carried in inventory is large, however,

it is not likely that "Equal Order Intervals" exist. To account for this likelihood and to

reduce to total cost of operating such an inventory system, Paul and Page introduced an

algorithm which groups N items with unequal order intervals into K equal intervals,

where K _< N. With careful selection of the grouping intervals and when the number

of groups is small, this approach to the single space constraint inventory problem was

shown to often result in a lower total inventory cost than does the classical lagrangian

approach. The Paul/Page method, however, is only valid when the resource restriction

is on the maximum space consumption. Where the restriction is on the average inventory

resource consumption the lagrangian multiplier is optimal [5,37].

Both Goyal [10] and Zoller [42] added to the Page/Paul algorithm. Goyal

demonstrated an effective use of the grouping approach described by Page/Paul. Dealing

with a three item inventory system, he utilized an analogue approach to determine how

best to group the three items into two groups. Zoller addresses the issue of aggregate

stock levels more generally demonstrating that within a given time horizon that orders can

be phased so that it will never be necessary to have the maximum quantity of each item

on hand at the same time. The cost effectiveness of such staggering, however, must

quickly be questioned as the number of items carried in inventory grows. The attempt

in these papers to withdraw from the classical approach, therefore, was not completely

successful since in each case it is likely that a return to that proven approach will at times
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be necessary.

In a series of publications, Hartley and Thomas [14] and [15] recognized both the

limitations of the staggering process and the computational inaccuracy possible with the

Lagrangian multiplier approach which was demonstrated by White [401. They sought to

combine the two approaches for an improved algorithm. By examining a two item

version of Problem (P) and assuming that an order for product 1 had just been placed,

Hartley and Thomas showed that the maximum volume of stock will be minimized by

selecting an Optimal Displacement Interval (ODI). The ODI, which simply defines the

optimal time lag between ordering item one and item two, is computed as follows:

ODI = W2D2T/[n~n2(WID 1 + W2D2) (2-29)

while the maximum stockage level is given by:

Smax = WQ 1 + W2Q2 - [W1W2 D D2T/(WlD l + W2D2)n~n2

where T = nQl/Dl = n2Q2/D2 and

n, and n2 are positive integers. (2-30)

The optimal order quantities, under this approach, can be obtained by solving the

following mixed integer problem:

Min (R1n1 + R2n2)DI/Qlnl + Q1(C1 Dln 2 + C2D2n,)/2Dln,

Subject to:
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Q1[WlDlnl + W2D2n2 - W1W2 DD 2/(WD, + W2D2)] !5 UDln 2
(nl,n2)

To solve Problem Q(n , ,n2), Hartley and Thomas [15] defined an algorithm which first

required calculation of the D" value needed to optimize the Lagrangian formulation of

Problem (P). This value was then used in establishing bounds on the function Q(nl,n2).

In improving the original V value, Hartley and Thomas utilized the functional shape of

Q(n,,n2) and an iterative process to facilitate a solution process.

Literature which focuses on that branch of inventory research dealing with the

'base re-order cycles' dates back to the early 1970's. Goyal [9,10], Silver [36], Goyal

and Belton [12] as well as Kaspi and Rosenblatt [22] appear to have provided the primary

thrust into this research arena. In general this approach provides more flexibility than

seen in the joint cycle approach since by definition the base re-order cycle is greater than

or equal to the joint cycle. However, as noted by Rosenblatt and Rothblum [33], the

computational effort required is more extensive and implementation more difficult.

The third branch of research, identified in current literature focuses on the use of

lagrangian multipliers in attempting to solve inventory problem (P). Two recent efforts

have been identified which attempt to improve the classical solution process by

establishing effective bounds on the desired lagrangian multiplier V. The first of these

was presented by Ziegler [41] who provided an improvement to the Buchan/Koeningsberg

iterative process noting from the Karush-Kahn-Tucker conditions (2-6) and (2-8) for

problem (PO) that:

V " = DiR/Wi(Q'- C/(2W) i = 1,2.... (2-31)
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and Qj" = [2D1 R -(C + 2cI"Wi)]'2 i = 1,2,... (2-32)

Recognizing that an estimate (Q') for Q could always be found by using a linear

reduction process, Ziegler utilized the unconstrained Q defined by equation (1-2) to

define those estimates.

N
Qh = UQ / 7 Wi(Q)2. (2-34)

i=1

Incorporating these Q h estimates into equation (2-31) provided i estimates of V. The

largest and smallest of these cI" estimates were shown to be initial upper and lower

bounds respectively, for the desired 4" value. Applying these i estimates to equation

(2-3) produces both feasible and infeasible solutions. Ziegler demonstrated that the

maximum estimate of V" for which equation (2-3) is greater than U and the minimum

estimate of 4" for with equation (2-3) is less than U reflect improved lower and upper

bounds, respectively.

The second and most recent effort concerning effective bounding of the optimal

lagrangian multiplier for problem (P) focuses on the functional relationships which exist

between the lagrangian multiplier, 4D, and inventory system parameters: carrying costs,

reorder costs and demand rates. This research effort is reflected in Maloney [26], Klein,

Ventura, and Maloney [231, and Ventura and Klein [39]. In an initial effort, Maloney

[26], identified both linear and near linear functional relationships between the single

lagrangian multiplier associated with problem (PcD) and each of the system parameters

noted earlier. The lagrangian multiplier needed to optimize such randomly selected
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inventory systems were identified as each system parameter was to shift by discrete steps

away from its initial value. Focusing separately on each parameter and running statistical

tests on resulting parameter/multiplier pairs produced the indications of linearity shown

in Table 2-1.

Characteristic F-test C C

Carrying

Cl 110360 .9977
C2 4744 .9950

Both .885657 1.000

Recrder

RI 59706 .9995
R2 68048 .9996

Both 524610 .9999

Demand

DI 55214 .9994
D2 120841 .9997

Both 429619 .9999

Table 2-1 ( Hint of Linearity )

When only the first of two system carrying costs was shifted, this analysis

indicated a F-test value of 110360 and a correlation coefficient of .9977. When both

carrying cost parameters were shifted simultaneously F-test and Correlation Coefficient
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values of 3885657 and 1.000 were obtained respectively. Table 2-2 displays the resulting

correlation coefficients obtained when similar analysis was conducted on twenty random

systems. Graphic presentations of these functional

Characteristic Correlation Coefficients

smallest largest

C .9956 1.0000

R .9910 .9999

D .9902 .9999

Table 2-2 ( Summery of Correlation Data)

relationships can be viewed at appendix 1. Klein, Ventura, and Maloney [231 established

the linear relationships indicated in Tables 2-1 and 2-2 above.

Based on the indicated near linear relationships between V" and each of the single

variable situations Maloney [26] defined the following functional forms:

cD = fi(C) i = I or 2 (2-34)

= h(R) i = I or 2 (2-35)

D= pi(D) i = 1 or 2 (2-36)

where D was defined empirically via equation (2-12) as:

[(2RtDE)/(CI +- 24)1/ + [(2R2D2)/(C2 + 24D)1 12 = U (2-37)
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for the two-item inventory system. Detailed analysis of these relationships utilizing

inverse functional analysis where, for example,

C, = g(4)) = {4URID1 [2R2D] "2(C2 + 20))}

/[U(C 2 + 20)lf2 -(2R 2D2) rz2f -20 (2-38)

provided the following conclusions:

FUNCTIONAL DESCRIPTION

Function Convexity Monotonic Character

fi(Ci) convex decreasing

f1(Ri) concave increasing

fj(Dj) concave increasing

Table 2-3 ( Summary of Functional Analysis)

Armed with the above information Venture and Klein [39] formalized an effective

algorithm, first presented by Maloney [261, which can be used to establish tight bound

on the desired optimal multiplier value and which when applied recursively converges

rapidly to the optimal value.

Defining the gradient of (D = f1(C) as:
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N
[8g(()]- = {-5Wj2RDj 2 Wj[(2RDj)'1/(Cj+28) 3 ]

i#l

N
/[U - T W[2R D/(C1+28)]1t 13-2Wi}' (2-39)

i#l

the following three step recursive process was suggested:

Step 0) Compute initial bounds or 4" (1 L° and (uo using equation (3-1). (DLO

is computed using C = largest carrying cost in system while (uo is derived utilizing the

smallest cost. Set t = 0.

Step 1) Compute

dL'  = 02 + 5[fL(CL)](CL-C)

where C = g(4 t ) from equation (3-15).

(D U ,  = D 1L +

(Dt- (L +)[g((DLt )-CL.]

+ -----------------------
[g((DL'+) - g((Du)

Step 2) If ((Iut+' - 4L+')/ (1Lt+ - - (e is a small tolerance), set (D = (Iut"l

+ (IDL"+)/2, and stop. Otherwise, set C = g((1L'+l), let t = t+l and go to step 1.

The results of a comparative analysis of this algorithm with that presented by

Ziegler demonstrated that the Ventura/ Klein algorithm provided a tighter lower bound

78 percent of the time, a tighter upper bound 100 percent of the time, and a better

bounding interval 85 percent of the time. It should be noted, however, that this
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comparative analysis focused solely on two item inventory systems in which the system

parameter Wi (the amount of the budget or space consumed by each item of inventory)

was held at one. Application of this algorithm to the N-item inventory system as well

as to systems in which the weighing parameter is free to assume any value has yet to be

examined. It will be at this point that current efforts begin.



Chapter III

Extension of Original Empirical Study

3.1 Introduction

The purpose of this empirical study was to identify, if possible, consistent

relationships between the lagrangian multiplier (D needed to solve Problem (P!) and

various inventory system parameters not identified by the empirical study described in

[26]. Examined closely, the N-item single constrained inventory system has five

interactive parameters which combine to establish a required V" value for a selected

inventory system. These independent parameters include: carrying costs, Ci, re-order

costs, Ri, uniform demand rates, Di, and a resource consumption rate, Wi for each item

of inventory as well as the aggregate inventory constraint level, U. The empirical effort,

reported in [26], first identified several near-linear relationships between the system's

lagrangian multiplier and single parameter shifts and then focused on those cases where

each pair of parameters (ie. both carrying cost) in a two item system shifted simultaneous-

ly. The current study, on the other hand, seeks to examine fully the effects of multiple

parameter shifts within a N-item inventory system. This chapter will describe the

sensitivity analysis used to identify existing relationships, outline the results obtained and

draw several general conclusions concerning the inventory system under study.

3.2 Methodology

In order to gain an initial understanding of how V" was related to shifts in system

parameters while minimizing the magnitude of that study, the empirical work recorded

25
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in [26] considered as its primary focus single parameter shifts. In order to expand that

understanding, a full examination of multiple shifts was required. To accomplish this

goal a GW Basic program was developed and run on an IBM compatible PC to generate

systematic shifts in selected system parameters and then identify the needed Lagrangian

multiplier to optimize Problem (P).

For each randomly generated inventory system examined, the same parameter

shifting scheme was utilized. Consider the following inventory system parameter matrix:

Carrying Re-order Demand

Cost Cost Rate

A B C

D E F

G H I

where A - I represent randomly generated system parameters for a three item inventory

system. To generate each set of data points, the selected inventory system underwent

twenty systematic perturbations. For example, to generate an initial set of empirical data,

the carrying cost parameter, A, for the first item in inventory was repeatedly modified by

adding 1 to its previous value. Adherents to this shifting scheme generated the desired

twenty inventory systems in which parameter A assumed the values indicated below and

in which all remaining parameters remained constant.

A ---> A+I ---> A+2 ---> nt s> A+20

Continuing this shifting scheme, the next set of empirical data was generated by altering
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parameters A and B simultaneously so that:

A --- > A+1 --- > A+2 --- > ---- > A+20

B --- > B+1 --- > B+2 --- > ---- > B+20

While the next data set stemmed from the simultaneous shifting of parameters A, B and

C.

This gradual explosion of the initial inventory system continued until every

possible combination of parameter shifts had been examined. For each set of data the

slope of the line formed via a simple linear regression and the corresponding correlation

coefficient were computed.

3.3 Analysis Results

Carrying Re-order Demand

Cost Cost Rate

Item #1 89 41 87

Item #2 5 92 95

Item #3 5 29 52

Item #5 30 7 79

To illustrate this data generation procedure consider the above four item inventory

system. The analysis of an initial set of empirical data, generated by shifting the carrying

cost for Item #1 from 89 through 109 using unit steps, identifies a regression line which

displayed a -.0151 slope and a correlation coefficient (CC) of .9939. These results
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parallel those obtained by Maloney [26] for similar single parameter perturbations.

A summary of this analysis focusing on selected parameter shifts within the above

inventory system follows:

Shifting Correlation Initial Final
Parameters Slope Coefficient V V

C1 -.0151 .9939 9.687 9.007
C1,C2 -.1535 .9397 8.205 1.555

C1,C2,C3 -.4575 .9999 7.550 0.580
Cl,C2,C3,C4 -.5000 1.0000 7.300 2.291

R1 .0506 .9996 10.071 12.353
R1,R2 .1530 .9996 10.500 17.000

R1,R2,R3 .2565 1.0000 11.055 22.600
R1,R2,R3,R4 .5518 1.0000 12.000 31.880

D1 .0258 .9958 10.000 11.053
D1,D2 .1079 .9999 10.330 15.200

D1,D2,D3 .1729 1.0000 10.655 18.520
D1,D2,D3,D4 .1957 .9999 10.733 19.535

C1,R1 .0221 .9955 10.000 11.000

Rl,D1 .1000 .9981 10.216 15.760

Cl,RL,D1 .0592 1.0000 10.100 12.770

ALL .5163 .9715 10.615 33.810

Table 3-1 (Selected Data/Analysis For A Four-Item Inventory)

It should be noted that the notation "R1,R2,R3", for example, under the column headed

"Shifting Parameter" indicates those parameters undergoing change. All other system

parameters were held constant.
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Although Table 3-1 exhibits only a small portion of the data generated from the

above inventory system (see Appendix 3), several general attributes emerge. First, note

that the range exhibited by the computed CC values lie consistently close to 1.0000,

deviating by at most by .0061 in those cases where parameter shifts are all within the

same system characteristic and by .0285 when all system parameters were modified.

This observation suggest a near linear relationship between V" and multiple shifts in a

variety of system parameters.

A second attribute is that as additional parameters from the same cost category (ie.

carrying cost parameters 1,2,...) are folded into the analysis the resulting slope of the

regression line gradually grows. For example when perturbations are applied to only a

single carrying cost the regression slope is -.0151, however, as two, three and then all

four carrying cost are simultaneously altered, the resulting regression slope converges to -

.5000. This phenomena was observed during the earlier two-item inventory empirical

study [26] and appears to hold for the N-item case as well.

A third attribute is that when only carrying cost parameters are modified, the final

Lagrangian multiplier is always greater than the initial value obtained. This attribute is

mirrored when either the Re-order costs or the Demand rates become the focus of the

analysis. In such cases, however, the final Lagrangian multiplier is always less then the

initial value. An explanation of these phenomena can be seen by examining the

expression given in Chapter I for computing the unconstrained re-order quantity along

with those given in Chapter 1 for computing the constrained re-order quantity and in

defining the KKT condition of feasibility. These equation are restated below:
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Q = [2RD/C]' (1-2)

Qi =((2RiDi) /(Ci + 2Wi4 ))ln i = 1,2 ...... (2-11)

4 (EWiQ i - U )0 i = 1,2 ..... (2-8)

It is clear from equation (1-2) that when the carrying cost increases, the unconstrained re-

order quantity decreases. Similarly, when either the re-order cost or the demand rate

increases, the unconstrained re-order quantity increases. With these patterns in mind, the

combination of equations (2-8) and (2-11) implies that if a constraint is binding then at

the optimal solution the expression lWiQ'i must equal U in order to maintain feasibility

and 4( must be greater than or equal to zero. These factors suggest that, when a

constraint is active, any increase in Q caused by a decreased Ci, an increased Ri or an

increased Di must be offset by a corresponding increase in the related Lagrangian

multiplier. Similarly, any decrease in Q cause by an increased C, a decreased R, or a

decreased Di dictates a corresponding decrease in the resulting Lagrangian multiplier. The

truth of these last statements arises from the position (D holds in the constrained

expression for the re-order quantity, equation (2-11), and the necessity to maintain the

condition of feasibility shown in equation (2-8).

Since firm conclusions cannot be drawn solely from a single example, a total of

six randomly generated inventory systems were subjected to the analysis just described.

Table 3-2, which summarizes of the results obtained from examining two 2-item, one 3-

item, one 4-item and two 5 item inventory systems, suggest that the above attributes hold

in general. The arrows in the last column indicates whether 0I increases or decreases as

the selected set of parameters increase.
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Shifting Min Max
Parameters Slope Slope Min CC Max CC 4)

C1 -.0155 -.3878 .9783 .9999 ,[
C1,C2 -.1325 -.5000 .9379 1.0000 ,[,

C1,C2,C3, -.2557 -.5000 .9935 1.0000 4-
C1,C2,C3,C4 -.4680 -.5000 1.0000 1.0000 ,1

C1,C2,C3,C4,C5 -.5000 -.5000 1.0000 1.0000 ,1

RI .0506 1.6057 .9995 .9999 T
R1,R2 .1530 6.5093 .9996 .9999 T

R1,R2,R3 .2565 .5858 1.0000 1.0000 T
RI,R2,R3,R4 .5518 .6369 1.0000 1.0000 T

R1,R2,R3,R4,R5 .7696 .7696 1.0000 1.0000 1

D1 .0258 1.3913 .9958 .9999 T
D1,D2 .1079 1.7565 .9996 1.0000 T

D1,D2,D3 .1729 .7856 1.0000 1.0000 T
D1,D2,D3,D4 .1957 1.2057 .9999 .9999 T

D1,D2,D3,D4,D5 1.5811 1.5811 1.0000 1.0000 1

C1,R1 .0179 1.1910 .9913 .9998 1

R1,D1 .1008 5.1628 .9953 .9990 T

C1,R1,D1 .0592 3.7326 .9877 1.0000 1

ALL .5163 12.3557 .9715 .9958 1

Table 3-2 ( Selected Summary of All Data Runs)

In comparing the analysis results presented in Table 3-2 with those shown in Table

3-1 it should be noted that the correlation coefficient values remain close to one even

over a wide range of inventory systems. A review of all the data generated within this

study indicates that correlation coefficient values range between 1.000 and .7106.

However, it should be observed that of the 356 data sets analyzed, 89 % of the correlation
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coefficient values fall above .99 while more than 95 % fall above .98. In short, the same

near linear relationships which were found to exist between single parameter shifts within

a two-item system also exist when multiple parameter shifts occur in the N-item

inventory.

Before moving on to the functional analysis to be presented in Chapter IV, a

graphic examination of the empirical data provides a clear indication of the nature of the

relationships suggested by the above CC analysis. Figures 3-1 through 3-7 were

constructed using data collected from a randomly generated two-item inventory. Figures

3-1 through 3-3 depict cases where all possible parameters from a single system

characteristic undergo perturbation. Figures 3-4 through 3-6 reflect cases where two

different system characteristics are paired. Finally Figure 3-7 illustrates those cases when

all system characteristics of a single inventory item are shifted. For proofs of several of

the indicated linear relations see Appendix 3.

3.4 Conclusion

This chapter has described the sensitivity analysis used to identify existing

relationships between the optimal Lagrangian multiplier and multiple shifts in a single

constraint inventory system defined as Problem (P) in chapter II. The gradual explosion

of each randomly generated system provided a detailed look at the impact of every

possible parameter combination on the resulting Lagrangian multiplier.

The correlation coefficient and regression line slope analysis conducted on each

set of data identified three attributes which appear to be characteristic of all such

inventory systems. These attributes: a near-linear relationship between V" and any
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combination of system parameter shifts, an increasing regression line slope as additional

parameters from the same category are added to the analysis and the monotonic nature

of these functions were first identified while examining a single four-item inventory

system but were reinforced after examining the 356 different data sets obtained by

exploding six random inventory systems.

Finally near-linear relationships, found in the analysis described above, were

examined utilizing the graphics package STATGRAPHICS in order to gain a clear picture

of the actual nature of selected shifting patterns. The similarity of these plots to those

found in Appendix 1 strongly suggest possible improvements to the Ventura/Klein

algorithm [39].



Chapter IV

Single Constrained Inventory System Functional Analysis
(Multiple Parameter Perturbations)

4.1 Introduction

The basis for attempting to extend the research documented by [23], [26], and [39]

by considering multiple parameter shifts emanates from the difficulty encountered during

those efforts to isolate selected system parameters for analysis. Additionally, the results

of the empirical study involving multiple parameter perturbations, documented in Chapter

III, strongly suggest such a strategy. The approach utilized during previous research

efforts, as has been noted, was based on the condition of feasibility, equation (2-8), and

resulted in a capability to consider only single parameter shifts within the inventory

system. Equations (4-1) and (4-2), in turn, illustrate the condition of feasibility and a

resulting single carrying cost parameter function for the N-item inventory system.

N
I W[(2RDi)/(C + 2W14)]l 2 = U (4-1)

i=1

C = Gj((D) = 2RD/IU-X[(2Dj)/(C + 2Wb()] 1] 2 -2W4
where j * i (4-2)

Utilizing the inverse function of equation (4-2), Maloney [26] identified selected

functional relationships which were then used to construct the optimizing recursive

algorithm presented in [39] for the two item inventory system. To implement this

algorithm for a system in which multiple parameters vary, however, the entire algorithm

41
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must be applied separately to each shifting parameter. Clearly, as the number of such

parameters increases, the algorithm quickly becomes ineffective. In order to over come

this difficulty a method of handling multiple parameter perturbations had to be developed.

The functional analysis described in this chapter lays the foundation needed for such an

advancement.

This chapter discusses the reformulation of equation 4-1 that allows the weighting

factors, Wi, to assume any value. This was a major shortfall in the algorithm presented

in Ventura and Klein [39]. This reformulation is followed by a description of the analysis

performed on that modified equation from which both slope and convexity characteristics

for selected multi-parameter shifts were established. Finally, the results of this analysis

will be summarized in preparation for the algorithm presented in chapter V.

4.2 Reformulation

N
I [(2RD iW,)/(C/W + 2 -)

2 = U (4-3)
i=1

By dividing both the numerator and the denominator of equation 4-1 by W, (b is

freed from the influence Wi previously held. A careful examination of equation 4-1

reveals that, except when all Wi's are held at one, the true (D value is masked by these

variables. This masking effect causes the algorithm presented in Ventura and Klein [39]

to fail whenever W deviates from one.

Based on this observation, two approaches can be distinguished. First, by

removing the Wi linkage to D, these weighting factors can be considered constant system
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parameters and carried through the suggested analysis without dynamic impact. Second,

by keying on the ratio C,/W i as one of the system parameters subject to perturbation, the

results of the current empirical study continue to be valid.

4.3 An Implicit Approach

Fundamental to this analysis is the realization that equation (4-3) is a function

which cannot be solved explicitly for (D but from which (D can be determined as an

implicit function of the other system parameters [8]. This can be seen from the fact that

the function f(Ci,Ri,Di,4)), as defined by equation (4-3), is a monotonic function and is

differentiable with respect to each system parameter as well as with respect to 0 [26].

By approaching the problem as implicit rather than as explicit, a solution technique can

be developed which allows the desired multiple parameter movement.

The potential success of approaching the study of Problem (P(D) implicitly can be

demonstrated considering a two-item inventory system along with the results of the

empirical study documented by Maloney [26]. During that study, it was determined that

when both carrying cost parameters were allowed to shift concurrently, the resulting slope

of the linear regression line was always equal to - . The current empirical study also

suggest that as each ratio contained in a N-item inventory is in turn added to the analysis,

the resulting slope converges to - i.

Using the principle of implicit functions given by Goodman [81, the proof of this

observation becomes trivial. Considering the general case where the amount of space

consumed by each item carried in inventory, W,, can assume any positive value the follow

theorem holds.
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Theorem 4-1

Let A be an N-item inventory system consisting of carrying costs (C), reorder

costs (RI), demand rates (D,) and resource consumption rates (W,). When each of thtz

(C/.Wi) ratio shifts concurrently and uniformly away from their initial values, the slope

(M) of the function f(C/Wj,) is - .

Proof: Let f(CW,,) =

N
I [(2RiDiWi)/(C/W.i + 2(I 2 = U (4-5)

i=1

By definition [8], the derivative of (D with respect to each CIVW, is:

E4' -8(CvW1 )
- -(4-6)

(IM) 801.

It follows that

_8f/8(Cj.Wi) = [2RDiWAC/W + 24)3] 112 (4-7)

for each CA, ratio and that

N
800 = 1 - [2RiD iW/(C/W + 20)311/2. (4-8)

i=1

Therefore, when each of the (C/.W1 ) ratios shift concurrently and uniformly away from

their initial values the slope becomes:
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N
I [2RiDjW/(C/W + 2cI) 3]1"

N 80 i=l
I - - ----------------------------- -------- (4-9)

i=1 8(C/Wj) N
I- [2R1DiWJ(C/W i + 2D)3]".

i=l1

It is clear from the above proof that any number and any combination of

parameters comprising f(Ci,R,,Di,A) can be analyzed to determine slope and functional

convexity information. Close examination of equation 4-9 indicates that Theorem 4-1 is

valid for any combination of Ci and or Wi shifts which produce the desired uniform

change in the C,/W ratios. It follows therefore that the theorem holds whether the

uniform movements among the ratios are generated by holding each C1 constant and

shifting the W's or by holding each W constant while shifting Cj's.

4.4 Implicit Function Analysis

Based on the near linear relationships between V" and the multiple variable

situations characterized in chapter III, the following functions are defined:

f,(c,C/W) i = 1,2,...and/or N (4-10)

f2((D,R,) i = 1,2,...and/or N (4-11)

f3(0,D) i = 1,2 .... and/or N (4-12)

f4(0,R,,Di) i = 1,2 .... and/or N (4-13)
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fs(C,C/ Wi,-,Di) i = 1,2,... or N (4-14)

For these functions, (D is implicitly defined by the combined effects exerted by each of

the other parameters which comprise the system. Notationally, the variables C./W,, R, and

Di, depict that set of parameters undergoing change. All remaining parameters remain

unchanged. For example, equation (4-10) describes the case where some combination of

the system's C/-WI ratios undergo perturbation while all other parameters remain

unchanged.

4.4.1 First Order Analysis

Building on the definition of the partial derivative of 4) with respect to selected

parameter shifts utilized in the proof of Theorem 4-1, an examination of the first order

derivative for each of these functions was conducted to determine the nature of the

corresponding functional slopes. The results of this analysis are contained in the

following theorems.

Theorem 4-2

The function defined implicitly between (D and the ratio C/W by f1(4),C/W,), i

= 1,2 ...... or N, is a strictly monotonically decreasing function.

Proof: Let f1(,C/W) -

N
I [(2RDiWi)/(C,/W + 24) )]lf - U (4-15)

i=1

Theorem 1 [8, pp 165] states that if the first derivative of a function is always less than
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zero then that function is a strictly monotonically decreasing function. Using the

definition for partial derivative [8] and WLOG letting i=l, the gradient of 0 with respect

to C,/Wj becomes:

8I0 - h[2RIDIW1/(C/W + 24)']ltz

- ----------------------------------- (4 -16 )
8(CjfWI) N

X [2RiDW/(CW i + 24I) ' r
i=1

Clearly, equation (4-16) is always less than zero since each of its terms are positive.

I
Following a similar approach Theorems 4-3 and 4-4 show that, when either a

single re-order cost or a single demand rate becomes the focus of analysis, the resulting

function is strictly monotonically increasing.

Theorem 4-3

The function defined implicitly between D and R, by fz(Cb,R), i = 1,2 ...... or N,

is a strictly monotonically increasing function.

Proof: Let f(O,R1 ) =

N
I [(2R.DiW,)/(C/Wi + 24 )]If 2 - U (4-17)

i=1

Theorem 1 [8,pp 1651 states that if the first derivative of a function is always greater than

zero then that function is a strictly monotonic increasing function. Again, WLOG, letting
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i=l and following the same technique utilized in proving Theorem 4-2 yields:

6 R, " [2DiW,/(Cl1W1 + 2(D)] 1/2

= --------------------------------------- - (4-18)
8RI N

I [2RI DW/(C/WI + 2ct) 3] 12.

i=l1

Since each element of equation (4-18) is positive the resulting differential is always

greater than zero and therefore any single re-order parameter shift produces a strictly

monotonically increasing function.

Theorem 4-4

The function defined implicitly between D and Di by f3(C1,Di), i= 1,2,...,or N, is

a strictly monotonically increasing function.

Proo;: Follows from proof of Theorem 4-3.

To extend each of these theorems to those cases in which multiple parameter shifts

are allowed, the contribution made by each shifting parameter must be considered. This

collective effect can be measured by summing each of the individual effects [8, pp 190].

In an N-item inventory where J represents the set of parameters from a single characteris-

tic category (ie. re-order cost or demand rate) which undergo change, the following partial

derivatives result:
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- I [2RiDiWI/(C/W i + 20)3]uz

0I) ieJ
------------ - ------------------------ - -- (4-19)

ieJ 8(C/W,) N
I [2R.DW(C,/Wi + 2D)' 2

i=1

I Rj [2DW/(CMW, + 2,D,)]/2
80 iEJ

------ ---- = ...---------------------------- -- (4-20)
ieJ 8Rj N

I [2R DiW./(C/W + 24))31']2
i=1

; X Di-% [2RPW.(C/W + 24)]1n
50) ir= J

- ---------------------- (4-21)
ieJ 5Dj N

I [2RD 1W/(Ci/W, + 2cD)311/2

i=1

Careful inspection of equations (4-19), (4-20) and (4-21) shows that even when multiple

parameters undergo changes, the results proven in Theorems 4-2, 4-3 and 4-4 hold.

Building on the results of Theorem 4-3 and Theorem 4-4 the following theorem

establishes the monotonic nature of the function where () is implicitly defined by any

combination of re-order and demand shifts.

Theorem 4-5

The function defined implicitly between 4 and both D, and R, by f4(b,R1 ,D,), i=

1,2,...,or/and N, is a strictly monotonically increasing function.

Proof: The first derivative of f4(CI,Ri,D,) equals the sum of the first partial derivatives
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[8, pp 190]. Therefore, from Theorem 4-3 and Theorem 4-4, f4(4D,R,,Di), i= 1,2,...,or/and

N is a strictly monotonically increasing function.

Noting that, within equation (4-5), the parameters R, and Di can be replaced,

WLOG, by the variable RD, an alternate statement of Theorem 4-5 follows:

Corollary 4-5-1

The function defined implicitly between D and RDI by f4(4,RDi), i= 1,2,...,or/and

N, is a strictly monotonically increasing function.

Proof: Following from Theorem 4-3 and Theorem 4-4 the first derivative of f4(4,RDi),

i= 1,2,...,or/and N can be stated as follows:

I 1h RDi-; [2W/(C/W, + 2 )]t2
ie j

S= --------------------------- (4-22)
ie J 5RD N

I [2RDiW/(CMIW, + 20)31 M

i=1

Now since each element comprising equation (4-22) is positive, the resulting differential

is always greater than zero and hence f4(Q,RD,), i= 1,2,...,or/and N is a strictly

monotonically increasing function. I

The results of the last four theorems establish those cases in which the monotonic

nature of the function does not vary. The nature of these functions combined with their

respective convexities, shown in the following section, provide the theoretical foundation

for the algorithm presented in chapter 5. However, before this analysis is complete the
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function, f5(4,CWi,R,Di) i = 1,2,... or N, must be examined. Theorem A4-1, shown in

Appendix 4, indicates that when (D is established by the combined effect of each

parameter from a single inventory item the function is monotonically increasing

(decreasing) if 4 _ (<) [(RiDi2(R,+Di)] - (C/Wi).

4.4.2 Second Order Analysis

Due to the complexity of the implicitly generated second order derivatives it is not

possible to determine the convexity of functions 4-10 through 4-14 by considering the

Hessian. Theorem 3.3.3 [1, pp 91], however, can be used to circumvent this difficulty.

This theorem simply states that, when X, and X2 are vectors, f is convex iff

f(X2) > f(X1) + Vf(X) t (X2-Xl)

and that f is concave iff

f(X2) - f(X1) + Vf(Xl)t (X2-X1 )

This result leads to the following theorems.

Theorem 4-6

The function ft(b,C/Wi), i = 1 to m, m < N, where D is defined implicitly by

C/W, is a convex function.

Proof: By Theorem 4-2 f,(i),C./W,) is a monotonically decreasing function. Then by

Theorem 3.3.3 [1], f(4,C-/W) i = 1 to m, m < N is a convex function if:
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f1(cI,,C/W~i+A) > f1 (4',C/W) + Vfl(4 2,C.C/W) t (C/-Wi+A-C/Wi) or if

f1(DcI,C/Wi) > fl(4 2,Cif/WiA) + Vf1(()2,CVi-A)t (CWV,-Cj!W+A) (4-23)

where WLOG A > 0 represents simultaneous and uniform shifts in selected C/WI

parameters. Focusing on the first of these expressions and recognizing that as long as

b > 0 such that the KKT condition of feasibility (2-8) is satisfied then

fj(1D 2,C/Wi) =fl((D,,C.i+A).

It follows therefore that f(4',C/'Wi) i = 1 to m, m < N is a convex if:

Vf1(D2,Ci/Wi) t (A) < 0. (4-24)

Now since each of the m elements of vector A are positive and since each of the m

elements of Vf1(2',C/VWi), via equation 4-16, are negative then clearly equation 4-24

holds and fl((Ib,C/Wi) is convex regardless of the value m < N assumes.

Theorem 4-7

The function f2(4,R) i = I to m, m 5 N, where (D is defined implicitly by R,, is

a concave function.

Proof: By Theorem 4-3 f2(Cb,R,) is a monotonically increasing function and by Theorem

3.3.3 [1], f,(4,R) i = 1 to m, m < N is a concave function if:

f2((D,Ri+A) < f2(4D,Ri) + Vf 2( 2,R.) t (Ri+A-R) or if
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f2(D1 ,Ri) < f2(4 2,Ri-A) + Vf2(4 2,Ri-A) t (R*-Rj+A) (4-25)

where WLOG A > 0 represents simultaneous and uniform shifts in selected R, parameters.

Focusing on the first of these expressions and recognizing that as long as 3 4 > 0 such

that KKT condition of feasibility (2-8) is satisfied then

f2( 2,Ri) = f2(¢,,R.+A).

It follows therefore that f2(4,R) i = 1 to m, m < N is a concave if:

Vf2 () 2,R1 .)t (A) > 0. (4-26)

Now since each of the m elements of vector A are positive and since each of the m

elements of Vf,(I 2,R1) via equation 4-18, are positive then clearly equation 4-26 holds

and f2(4,R) is concave regardless of the value m _ N assumes.

Theorem 4-8

The function f3(cb,Di) i = 1 to m, m _ N, where 4 is defined implicitly by Di, is

a concave function.

Proof: Follows from proof of Theorem 4-7.

Theorem 4-9

The function f4((b,R,,D,) i = 1 to m, m < N, where (D is defined implicitly by both

R and D,, is a concave function.

Proof: By Theorem 4-5 f4((I,R,D,) is a monotonically increasing function and by

Theorem 3.3.3 [1], f4((4,R,D) i = 1 to m, m < N is a concave function if:
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f4(41 ,Ri+A,Di+A) < f4(4D2,Ri,D) + Vf4((D2,Ri,Di)' [(Ri+A-R),(D+A-Di) or if

f4(41 ,Ri,Di) < f4(4 2,Ri-A,D-A) + Vf4(0 2,R,-A,D-A) t [(R1-Rj+A),(D,-Dj+A)] (4-27)

where WLOG A > 0 represents simultaneous and uniform shifts in selected R and Di

parameters. Focusing on the first of these expressions and recognizing that as long as 3

D > 0 such that KKT condition of feasibility (2-8) is satisfied then

f4(cD2,Ri,Di) = f4(41 ,Ri+A,Di+A).

It follows therefore that f4((D,R 1,Di) i = 1 to m, m < N is a concave if:

Vf4(cb2,RK,Di)t (A) > 0. (4-28)

Now since each of the m elements of vector A are positive and since each of the m

elements of Vf4(D2,Ri,D), via equation 4-22, are positive then clearly equation (4-28)

holds and f4(4D,R.,Di) is concave regardless of the value m < N assumes.

Corollary 4-9-1

The function f4(cI,RDi) i = 1 to m, m < N, where 4. is defined implicitly by RD,

is a concave function.

Proof: Follows from Corollary 4-5-1 and Theorem 4-7. See Theorem A4-3 in Appendix

4 for detailed proof.

As in section 4.4.1 the results of the last four theorems establish those cases in

which the convexity of the selected function does not vary. Theorem A4-2, shown in
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Appendix 4, indicates that when (D is established by the combined effect of each

parameter from a single inventory item, f5((D,C/Wi,Ri,Di) i = 1,2,..or N, that the function

is concave (convex) if 4 _ (<) [(R1D/2(R,+Di)] - (Cj2Wi).

4.5 Conclusions

The focus of this functional analysis has been on determining the effect on (D

generated by changes either in the C/.Wi ratios depicted by equation (4-10), in the reorder

rates (R) parameters characterize by equation (4-11) or in the demand rates (D)

represented by equation (4-12). In both an analysis of the first order derivatives of these

functions and the succeeding convexity study, the initial focus was on an establishment,

FUNCTIONAL DESCRIPTION

Function Convexity Monotonic Nature

fl(O,C/.W,) one parameter convex decreasing

fi(,CI/Wi .. C./W.) convex decreasing

f2(c1,R1) one parameter concave increasing

f2((d,R, .. Rm) concave increasing

f3(Cb,Di) one parameter concave increasing

f3(,D .. Di) concave increasing

f4(4D,Rl..R,,D..D,) concave increasing

f5((D,C/Wi,R,,D,) one item mixed mixed

Table 4-1 ( Summary of Functional Analysis)



56

using an implicit approach, of the functional descriptions of the single parameter functions

studied by Maloney [26]. The intent of this foundation analysis was to validate the

implicit approach to solving Problem (P4D). With this validation completed, focus

switched to authenticating the results of the empirical study where multi-parameters

changed within a give parameter category.

A summary of the obtained results is contained in Table 4-1. It is the latter,

multiple parameter relationships which ensure the effective extension, outlined in Chapter

V, of the Ventura and Klein algorithm.



Chapter V

An Improved Bounding Algorithm

5.1 Introduction

To this point several factors have been established concerning the N-item, single

constraint inventory system. The empirical study, considered in chapter III, identified

numerous near-linear relationships between c" and multiple parameter shifts. The

detailed functional analysis, summarized in chapter IV, provided both slope and convexity

information on those functions in which multiple parameters from the same system

category undergo simultaneous perturbations.

This chapter will build on the monotonically decreasing, convex nature of

fl (cI,C/-Wi), defined in chapter IV for i = 1,2,...and/or N, to develop a process which

provides, in closed form, an improved bounding algorithm for V. As was the case in

Ventura and Klein [39], it will be shown that this improved algorithm rapidly converges

from the lower of these bounds to an optimal Lagrangian value without the normal trial

and error process described in Chapter II. Finally a comparative analysis will be

presented. This analysis will indicate the relative efficiency of this algorithm to those

presented by Ventura and Klein [39] and Ziegler [41].

5.2 Modified Initial Bounds

Maloney [26] identified an initial set of bounds around the optimal Lagrangian

multiplier in Problem (P4D) utilizing an equation which allowed direct calculation of these

values. This calculation, formalized by Lewis [25], however, is only valid when the

57
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carrying costs, C,, for each item of inventory are equal. Ventura and Klein [39]

developed a similar expression for calculating initial bounds for the N-item inventory

system in which W, is free to assume any positive value. The following theorem

establishes that expression and is included here for completeness.

Theorem 5-1

Let A be a N-item inventory for which a single constraint is active and whose

C/Wi ratios are equal. Then 'D" can be computed directly by:

N
(D* = ' [ X (2RDW ) / U}2 - (C/W)} (5-1)

i=l

where each parameter is defined as in chapter II.

Proof: For the N-item inventory system in which W, is free to assume any positive value

it is known that Q" = [2RDj/(Cj+2W4D*)] from equation (2-11). Replacing Q* in

Problem (PO)'s condition of feasibility, equation (2-12), yields:

N
Wi [2RjDj(Cj+2WjO*)] = U. (5-2)

i=l1

Rearranging the terms of equation (5-2), replacing C/ W with a constant, C/W, and

solving for 4" results first in:

N
X {2RDW(C/W,)+2Z')] = U (5-3)

i=l1
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then in

N
J 12RDjW/[(C/W)+24*] }' = U, (5-4)

i=l1

and finally in equation (5-1).

It should be noted, in examining equation (5-3), that Wi, i= 1,2.... N, no longer

directly impacts 4" and that CA can replace C/W which is constant. Considering these

observations it must be concluded, as was reflected in Theorem 5-2, Corollary 5-2.1 and

Corollary 5-2.2 [26] and Theorem 1 [39], that when 8 is defined by equation (5-1) for CA

= Max (C/W) and when t is defined similarly as CA = Min (C/Wi) then 5 < (* <'r. It

follows, therefore, that 8 and t are initial bounds on V

5.3 Improved Bounds

With effective initial bounds identified Ventura and Klein [39] utilized equations

(4-1) and (4-2) to develop improved bounds on V. Failing to consider the influence

imposed by multiple items, however, the cord based upper bound generating portion of

the Ventura/Klein algorithm can only be guaranteed to identify a valid upper bound in the

two-item inventory case. This section provides the foundation needed to overcome this

shortfall and suggest the improved bounding algorithm, presented in the following section.

The following theorem establishes a methodology for this improvement which is based

on the monotonic, convex nature of the multiple C/W function, f,(0,C/W).
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Let A be an N-item inventory system subject to a single constraint. Let Si=C/Wi,

for i =1 ....... N and let A be arranged so that S, < S2 : <S3 < .... < SN. Notationally then

A can be represented as [ S1 , S 2, .3 .... S ]. Let V" > 0 be the optimal Lagrangian

multiplier related to A. Let Bi and b represent a series of inventory systems, related to

A, in which all except the Si ratios remain unchanged and where each set of Si ratios are

defined as follows:

B, - [ S2, S2 S3, 4.... S N]

B 2 -[S 3, S 3, S 3, S4 ..... S N ]

B 3  O [ 4, S 4, S4 S4 ..... IN

BN. [ SNI SN' SN, SN' ..... SN ]

b, -- [ , S1, S3, S4 ..... SN]

b2 S[ SO S S4 ..... SN]

b3 -- SI, SI, SI, S ..... SN]

bN._-I SI, SI, SI, S, ...... S, ]

When optimum Lagrangian multipliers IBi and Dbi exist for each of these systems, the

following relationships hold;

DbN > 4>bN- I > .... > (bl > ( * > (DBI > .... > BN-I > (DBN" (5-5)
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Proof: Consider first the lower bounds expressed in equation (5-5). Since the discussion

following Theorem 4-2 shows that f(C/.W,4)), i = 1,2 .... and/or N, is a monotonically

decreasing function, then, by definition, as C/,Wi increases (D decreases. It follows,

therefore, that since

S1 <S 2 < S3 < .... <SN clearly

XQA > YQl > IQB 2 
> .... > IQBN and

cI* > DBI > .... > 4 ) BN- > DBN.

In considering the upper bounds found in equation (5-5), a similar argument holds. Again

the monotonic nature of the function indicates that as C/-WI decreases (D increases. It

follows, therefore, that since

XQA< 1Qbl < 1Qb2 
< .... < YQbN then

(DbN > ODbN- 1 > .... > ON~b > (D*

and equation (5-5) holds.

The usefulness of the (N-i) sets of upper and lower bounds established by

Theorem 5-2 can be illustrated by considering Figure 5-1. In this figure, b3 and (DB3

represent the initial set of upper and lower bounds defined, by equation 5-1, from

inventory systems B3 and b3 in which all four C/W, ratios first assume the value of

CN/WN and then C,/W, respectively. By moving along the monotonically decreasing,
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convex function defined by holding C4/W4 constant while the first three ratios decrease

simultaneously, two new Lagrangian values can be identified. These values, 1 b2 and

b3

(I)b2 l

(BII

(B2 I --

I _ _ __ __ _

b3 b2 b, A B1  B 2  B 3

Inventory Systems
Figure 5-1 (Improved Bounds - A 4-Item Inventory Example)
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10B2, are linked to inventory systems b2 and B2 where the first three ratios each assume

the value of Cj/W1 and then C3/W3 respectively. These multipliers clearly represent

improvements to both the upper and lower initial bounds. Repeating this process with

inventory system B2 and its newly identified multiplier, 4B2, two new multipliers are

located which continue to tighten the existing bounds around 4'. These multipliers, Ob

and cDIl, are linked to inventory systems b, and B1 where the first two ratios each assume

the value of CI/Wj and then C2/W 2, respectively, while the remaining ratios are held at

their system A values. Repeated application of this methodology will identify ever

tightening bounds on 4" until only a single parameter remains to be shifted back to its

original value. In the above figure, this occurs when (b and C)BI have been located. An

improved upper bound can, at this point, be found utilizing the cord defined between (b,

(t b1) and (BI, (B1). In Figure 5-1, A,, depicts this final upper bound. Ventura and Klein

[39] utilized this method to locate their improved upper bound in the two-item inventory

system. It must be noted, however, that this cord based method can only be applied

during the final phase when multiple parameter shifts are considered. Application of this

method prior to that point may or may not identify an upper bound on V. To illustrate

this limitation consider the cord defined by connecting (b2, 4 'b2) with (B2, ('B2)" The

intersection of that cord with a vertical line through A, depicted by A2, identifies a

multiplier which is less than V'.

5.4 An Improved Bounding Algorithm

The four-item inventory system illustration given in section 5.3 suggests the four

step algorithm below. This algorithm identifies initial bounds and provides improvements
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to those bounds though a recursive process. A series of improved bounds are found

which quickly converge to V" for an N-item inventory system under a single resource

constraint.

Step (0) Initial Conditions

(a) Sort inventory system so that the C/W1 ratios are in ascending order.

(b) Set t=O and select e -> 0 as stopping criterion.

Step (1) Computation of Initial Bounds (DL' and (Dut

N
Lt= 5 (2RDWj) / U) 2 - (C1,/WN)}

i=l

N
OIut = 1/ { (2RiD iW i) / U1 2 _ (Ci/Wi)}

i=l1

where U is the constraint level while 91 L" and (Du- represents lower
and upper bounds on V" respectively.

Step (2) Improved Bounds

(a) Set Si = CN.)/WN., for i = 1 to N-t,

S= CN./WN-t,

(D = (4 Lt and

t = t + 1.
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Then set Z = CN-JWN-t and flag = 0

(b) Computation of improved bound

0= + N-t DO
X ----- (Z- S)

i 1 a(C/Wj1)

(c) Computation of Recursive Update

2
N-t
Y, [2R-DiWijl/2

iE 1
s = __ __- 2c1

N
U - I [2RiDiW/(Si + 2(D)'/2

i=N-t

Set Si = S for i = 1 to N-t. If (Z - S) > E then go

to 2(b). Otherwise continue.

(d) If t < N-2 and flag = 0 then set I) t =  , S i =

CN./WN-t for i = 1 to N-t, Z = C,/Wl, flag = 1 and go

to 2(b).

If t < N-2 and flag = 1 then set D,,' = 0, 0=

O4 g and go to 2(a).

Otherwise continue.
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Step (3) Optimizing Step

(a) If ((U\ - (L') <- E then

OA= (Du' - (-t/2 ) and stop, otherwise

(b) Evaluate estimate using

N
P = X { 2R1 DWI(C/W1)+2('A) 1' - U

1=1

If P > 0 then set ) Lt = ' and go to 3(a),

If P < 0 then set cDu' = and go to 30).

The apparent complexity of this algorithm, particularly in step (2), is misleading.

Using the convention followed in Theorem 5-2 to define B3, B2, b2 and b3, Figure 5-2

portrays the sequence of events accomplished in this step of the algorithm. Following the

identification of an initial lower bound, DL°, in step (1), step 2(b) generates the slope of

a tangent line at (B3,C)L° ) to the function defined by setting all C/W i ratios equal to

CN/W. and then simultaneously shifting all except the N' ratio back towards the original

value of the CNl/WNl ratio. An improved Lagrangian multiplier, 0s, is then identified

by the intersection of this tangent line with the vertical line passing through B2. Step 2(c)

utilizes (s, to determine the location of S, between B 3 and B2. When this sequence is

repeated until S, coincides with B2 , [step 2(d)], an improved lower bound, DL' = (DB2 is

identified in accordance with Theorem 5-2. With an improved lower bound established,

the algorithm continues to move along the defined convex function locating first
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(b2

OS2

I

OB2
I _ __ _

J _ _ _ _ _ j I F

b, b2  S 2  B 2  S, B 3

Figure 5-2 (Example of Bounding Algorithm)

S 2 and finally an improved upper bound, Ou' = 'b2. The algorithm identifies this new

upper bound when S2 coincides with b., again in accordance with Theorem 5-2.

Step (2) of this algorithm is repeated for each successive inventory system, B3, B?,

etc., until N-2 sets of improved bounds have been identified. At this point only a single

parameter remains to be considered. Step (3) utilizes this final set of bounding values and

a simple bi-section technique to drive quickly to V. It must be pointed out that simply

repeating steps 2(b) and 2(c) though one more recursion also drives to V. The suggested

bi-section approach, however, computationally converges more rapidly to V" over the
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small span which remains.

In concluding this section, note that while Theorem 5-2 proves the existence of

a series of Lagrangian multipliers which sequentially close around V; it is the

monotonically increasing, convex nature of the functions on which these values are found

that allows each subsequent multiplier to be identified. Utilizing the recursive process

described in Step 2, the identification of each pair of bounding values is guaranteed.

Note also that the bisection search method, implemented as the Optimizing Step, ensures

its convergence to V within any desired degree of accuracy. With , > 0 defining that

desired accuracy and the final set of bounding values, Ou" and OLNl, identified; ( )n <

e/(4ut - DLt) defines the number of bisection necessary for convergence to occur [1].

Combining this assurance of convergence with an expected tightness of UN-l and DLN -1

to V, the proposed algorithm should exhibit both speed and accuracy.

5.5 Numerical Example

To illustrate the computational efficiency of the above algorithm consider the

following four-item inventory system in which the C/W1 ratios are already arranged in

ascending order.

Carrying Re-order Demand Resource
Costs Costs Rates Required

2.5 64 94 96
15.75 71 95 100
5.0 73 46 25

23.5 87 35 51

Table 5-1 ( Example: 4-Item Inventory System)
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Utilizing the convention established by Theorem 5-2,

S, = C1/Wj = .2604167,
S2 = C2/W2 = .1575,
S3 = CIW3 = .2,
S4 = C4/W4 = .4607843,

and six related inventory systems are defined as follows:

B3 = { S, S4, S 4 54 )
B 2 = { S3, 53, S 3, S 4 }

B, = {S 2 SZ, S3, S4 S

b3 = { S S1 1 Si, S1
b2 = { S1, S1, 1, S4 }
b, = {S S1 S3, S4 }

Implementing the above algorithm on an IBM compatible personal computer using GW

Basic and considering systems b3 and B3 in Step (1) produced the follow initial bounds

for 4':

Bound C/W constant Value

Lower .4607843 3.7706
Upper .25604167 3.9880

Table 5-2 (Initial Bounds)

Armed with these initial bounds, Tables 5-3 and 5-4 summarize the (N-2)

iterations of step (2) needed to drive all but the final Ci/Wi ratios back to their original

values. The opening conditions from which a new set of improved bounds was

established [step 2(a)] are defined in the first line of Table 5-3. These conditions stem
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from system B 3 and its related initial lower bound. Similarly, the opening conditions

necessary for determining a second set of improved bounds are defined in the first line

of Table 5-4. These conditions come from system B2 and the improved lower bound

identified in Table 5-3. Simply put, Table 5-3 tracks the transition from system B3

through system B2 to

Target Updated
Trans t Ratio(Z) S Old (D New (D S

0 01 - .4607 - 3.7706 -

1 1 .2 .4607 3.7706 3.8783 .2010
2 .2 .2010 3.8783 3 .87 8 8L .2000

3 1 .02604 .2 3.8788 3.9512u- .2649

Table 5-3 (First Improvements to Bounds)

system b2 while Table 5-4 traces a similar transition from system B2 through system B,

and finally to system bl.

Target Updated

Trans t Ratio(Z) S Old 4) New 4) S

0 02 .2 - 3.8788 -

4 2 .1575 .2 3.8788 3.8937L .15754
5 2 .02604 .1575 3.8937 3.9401 .02655
6 2 .02604 .0265 3.9401 3.9403u .02604

Table 5-4 (Second Improvements to Bounds)
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The "new (" values, marked by JL, identified during transitions 2 and 4 represent

two subsequent improvements to the initial lower bound on VD. Similarly, those "New

4)" values marked by Of, determined following transitions 3 and 6, constitute the desired

upper bound improvements. After six transitions, the final bounds (italicized in Table 5-

4), represent a 78.5% reduction in the bounds around V" from the already tight initial

bounds listed in Table 5-2.

In preparing this numerical example, V) was determined to be 3.91625 using a

classical line search technique. Employing this value as a gage, the bi-section algorithm

(step (3)) converges rapidly. Starting with the final pair of improved bounds, 3.8937 and

3.9403, an approximate 4) value of 3.917 is obtained following a single bi-section. This

approximation represents an absolute error of less .00075 when compared to the actual

optimal value.

Several issues should be noted at this junction. First, no restriction need be placed

on the Lagrangian multiplier value identified for each subproblem, B3, B2, B1, b 3, b,, bl.

Although the constraint is assumed to be binding for system A, that constraint does not

have to be active for each subproblem. When such inactivity occurs, a negative lower

bound will be identified. To establish valid bounds on V" in such cases the lower bound

simply is set to zero. Secondly, a comparison of the improved bounds contained in

Tables 5-3 and 5-4 with the initial set of bounds shows that most of the indicated reduc-

tion occurred during the first recursion of the algorithm. The bounds listed in Table 5-3

represent a 66.7% improvement while those listed in Table 5-4 provide only an additional

11.8% improvement. This uneven reduction in the span between the bounding values,
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however, was expected since with each recursion the horizontal distance which the algo-

rithm moves along the tangent line is diminished. Of particular note is the tightness of

these bounding sets to VD. This accuracy stems from the near linear nature of the

functions from which the tangent lines are generated and guarantees that the bounds, thus

computed, will fall consistently close to the '.

5.6 Comparative Analysis

This section summarizes a two phase analysis conducted to determine how the new

algorithm compares to the algorithms presented by Ventura and Klein [391 and Ziegler

[411, as well as with the classical solution approach. During phase one, the proposed

multiple parameter algorithm, Ml, was run setting each W, equal to one so that an

effective comparison could be made to the single parameter Ventura and Klein algorithm,

M2. During the second phase a more detailed analysis was made in which the weights

of algorithm M1 were allowed to assume any positive value. The focus of this second

analysis was to compare algorithm MI with both the Ziegler algorithm, M3, and the

origitial Classical approach, M4. The Ventura and Klein algorithm was dropped from

consideration during this phase since it is not effective for Wi * 1.

During phase one eight randomly generated inventory systems were examined.

Table 5-5, below, clearly indicates the increased efficiency obtained when multiple

parameter shifts are used to find V. As would be expected, the same multiplier was

found in each case by both algorithms. Note, however, that as the size of the inventory

increase, the CPU times differ at an increasing rate. In each case, the
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Inventory M2 M1 M2 Ml
Size 4" 4) CPU Time CPU Time

3 7.869 7.869 .828125 .71875
4 196.375 196.375 1.089844 .87890
4 127.629 127.629 2.261719 1.98828
5 248.247 248.247 1.210938 1.03906

10 241.004 241.004 4.054688 3.17578
15 277.434 277.434 6.039063 3.511719
20 292.309 292.308 9.5625 7.03125
30 299.687 99.687 19.82813 13.83984

Table 5-5 ( Current Algorithm Compared to Ventura/Klein )

algorithm M I required less CPU time to obtain 4D. For inventory systems which contain

more that ten items, this time savings was considerable.

With the results of phase one in mind, phase two of this analysis used the

classically determined 4)' to compare algorithms MI and M3 based on two criterion:

Best Lower Bound and Best Upper Bound. This part of the comparison was made by

determining the smallest absolute error between V" and the upper and lower bounds

generated by the respective algorithms. Specifically, the initial bounds produced by MI

were compared with the improved bounds provided by M3. Additional criterion used to

round out the comparison of these algorithms included the tightness of the their bounding

intervals, the average time each needed to determine those bounds and the average time

each algorithm required to determine an approximate V" value.

Utilizing the above criteria, 8400 randomly generated inventory systems were

evaluated using a four factor, two level experimental design. Each of the four factors:
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Ci, Ri, Di and Wi were generated from uniform distributions characterized as either High

Configuration C. R, D. W

1 Low Low Low Low
2 High High High High
3 High Low Low High
4 Low High High Low

Table 5-6 (42 Factor Experimental Design)

or Low based by the test configurations shown in Table 5-6. Each of these distribution

are defined in Table 5-7 below.

Parameter Low High

Ci (10,20) (20,50)
(50,80) (500,600)

Di (200,400) (4000,6000)
Wj (1,25) (50,400)

Table 5-7 ( Uniform Distributions of System Parameters)

For these test configurations, 100 inventory systems were evaluated for each

possible combination of three general constraint levels and seven inventory sizes. The

constraint levels utilized in this analysis were defined by U = a(IQ). A particular a

value was drawn randomly from one of three uniform distributions defined on (.1,.3),

(.3,.7) or (.7,.9). With constraint levels selected from these distinct ranges, the relative
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impact that constraint tightness has on the algorithms under study was measured.

Similarly, the effects related to inventory size were gaged using systems of 2, 4, 8, 16,

21, 26 and 31 items. The result of the ensuing analysis is presented in the Tables 5-8,

5-9 and 5-10.

I
N % Best Bound % Shortest Time Time Savings

Low Upper Inter Bounds 4? Class/Ziegler

2 97 100 100 95 99 .3862/.1302
4 78 93 94 100 99.5 .6734/.2365
8 55 82 74 100 100 1.3823/.5835

16 22 70 38 100 100 3.0152/1.8510
21 14 68 31 100 100 3.2708/3.0634
26 14 54 22 100 100 4.5700/4.2024
31 17 51 24 100 100 5.9561/5.2651

Table 5-8 ( Comparative Analysis for a Between .1 -Ad .3 )

N % Best Bound % Shortest Time Time Savings
Low Upper Inter Bounds (D Class/Ziegler

2 60 100 99 94 94 .3151/.0704
4 31 66 54 100 99 .6342/.1541
8 20 37 19 100 100 1.2714/.4451
16 14 15 7 100 100 2.7122/1.6223
21 0 5 0 100 100 3.4746/2.7075
26 0 3 0 100 100 4.4139/4.1606
31 15 1 1 100 100 6.1314/5.4431

Table 5-9 ( Comparative Analysis for a Between .3 and .7 )
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N % Best Bound % Shortest Time Time Savings
Low Upper Inter Bounds ci" Class/Ziegler

2 7 55 28 98 87 .3250/.0503
4 7 20 12 99 97 .6497/.1112
8 7 1 0 100 100 1.3559/.3567
16 9 0 0 100 100 3.1419/1.4474
21 10 0 0 100 100 3.8757/2.5746
26 10 0 0 100 100 4.8207/3.9654
31 0 0 0 100 100 5.9149/5.7060

Table 5-10 ( Comparative Analysis for a Between .7 and .9 )

Before drawing any conclusions concerning the results shown in these tables, note

that the numbers listed under "% Best Bound" reflect the proportion of inventory systems

for which the initial bounds obtained from algorithm MI were tighter than the improved

bound obtained by algorithm M3. Similarly, those figures specified under "% Shortest

Time" indicate the percentage of systems in which algorithm M1 required less CPU time

to obtain those bounds. The second column under this heading reflect the percentage of

systems in which MI required less CPU time to obtain V" utilizing those bounds.

Finally, values in the "Time Savings" column indicate the average CPU time saved by

utilizing algorithm MI to obtain '.

5.7 Comparative Analysis Conclusions

A number of conclusions can be drawn for the two part analysis described above.

The comparison made during part one of the analysis, between algorithms Ml and M2,

indicates that both algorithms converge effectively to V'. However, from the time

savings indicated in Table 5-6, MI proves to be the more efficient algorithm. An initial
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source of this improved efficiency rest in the simplified slope generating equation utilized

recursively in step (2b) of Ml. This direct computation of slope replaced a multi-step

procedure employed in M2. A second source of the indicated improvement is drawn from

Ml's ability to consider simultaneous multiple parameter movements. By moving

multiple parameters along the convex function to their original values rather than handling

each parameter in turn, the total number of transitions M1 needs to obtain 4" is greatly

reduced.

A careful review of the results obtained during the second phase of this

comparative analysis indicates three additional conclusions. The first of these conclusions

arise from the results contained in Tables 5-9 and 5-10 for the two-item inventory system.

Taken together these tables indicate that algorithm MI obtained a tighter bounding

interval 99.75 % of the time when a E (.1,.7). These results mirror those obtained by

Ventura and Klein [39] for a e (.2,.7). This similarity was expected since when N = 2

both MI and M2 are in effect single parameter algorithms.

The second and third conclusions to be drawn from this analysis involve the

impact that increased inventory size and constraint tightness have on algorithms MI and

M3. Examining, in turn, Tables 5-9, 5-10 and 5-11 reveals clearly that as the inventory

size increases the percentage of systems for which M 1 provides the best bounding interval

decreases. The magnitude of this decreased efficiency unquestionably increases as a

approaches one. For example consider the bounding intervals for the 8-item inventory

system. The 74 % efficiency obtained by M1 in Table 5-9, where a C (.1,.3), was

reduced to 19 % and then to 0 % in Tables 5-10 and 5-11 where a r (.3,.7) and a e
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(.7,.9) respectively. From this discussion it must be concluded that the proposed multiple

parameter algorithm provides better bounds on (" only when a e (.1,.7) and the

inventory size is less than 8.

AMRE ARE

N a Range M1 M3 M1 M3

1 .5368 11.9394 .0623 1.4074
2 2 1.6743 12.1314 .3974 1.5261

3 6.0589 14.0067 1.4634 1.6707

1 .7433 5.0469 .1302 .8263
4 2 1.9441 6.6377 .7241 .8311

3 4.0715 6.7434 2.2882 .8991

1 .8031 1.9262 .2104 .4205
8 2 1.7725 1.5626 .9578 .4690

3 4.3187 1.2181 2.2758 .3850

1 .8362 .8260 .3004 .2353
16 2 1.8210 .8417 1.0421 .2869

3 4.8195 .7882 2.3438 .2443

1 .8067 .4229 .2901 .1317
21 2 1.7598 .3866 1.1494 .1121

3 4.2896 .6629 2.3634 .2194

1 .7785 .3899 .3017 .1067
26 2 1.7842 .4031 1.1640 .1007

3 4.4579 .6478 2.4010 .1894

1 .8609 .5983 .3576 .1847
31 2 1.8135 .4863 1.2221 .2205

3 4.6908 .3008 2.3954 .0892

Table 5-11 ( Comparison of Relative Errors)
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This apparent limitation, however, must be viewed in light of each algorithm's

computational efficiency and the relative errors contained in Table 5-11. This table

provides an indication of how the initial bounds obtained by M 1 and the final bounds

derived from M3 are effected as an inventory's size is increased and when a -- 1. The

Average Maximum Relative Errors (AMRE), displayed in this table, were obtained by

summing the max [ 1( - (L) 1, I(cIu - (D) 1] values found for each test configuration

(Table 5-7) and then dividing by four. The Average Relative Errors, ARE, were

determined by summing the relative errors, [((Du - (L)/ cD*)], from a given test configura-

tion and dividing by the number of systems considered.

It should be evident from the ARE values displayed in this table that the

exceptionally narrow bounds achieved by algorithm M1 for inventories comprised of eight

or less items widen as N increases. This growth, however, appears to slow as the size

of the inventory expands so that both the ARE and AMRE for systems comprised of 16,

21, 26 and 31 items vary only slightly. Equally apparent, from Table 5-12, is a graduai

narrowing of the final bounds achieved by algorithm M3 as N increases. From these

observation it must be concluded that, although algorithm M3 provides the best br nding

interval for systems comprised of more than eight items, the bounds provided by

algorithm M1 continue to be fairly tight throughout. For this reason, the computational

efficiency of these algorithms, measured by the CPU times required by each, must be

considered.

In appraising these times, Fables 5-9 through 5-11 indicate that for over 99 % of

the 8400 inventory systems considered, algorithm M 1 found its bounds more rapidly than
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did algorithm M3. In obtaining estimates for 4', algorithm M l again out performed M3

acquiring those estimates more swiftly for 98.83% of the systems considered. It should

be noted that only for systems comprised of two and four items does algorithm M3 out

perform MI. This, however, occurred in less than 5% of such systems. The magnitude

of the time savings secured by utilizing algorithm Ml rather than either M3 or the

classical approach, M4, to determine the optimal Lagrangian multiplier related to Problem

(PD) is obvious from the plots shown in Figure 5-3.

To summarize, four conclusions must be drawn from the results of this

comparative analysis:

1) The proposed multiple parameter algorithm effectively extends the Ventura and

Klein single parameter algorithm to the N-item inventory system in which constraint

weights, W, are free to assume any positive value. The efficiency of the former effort

was also improved.

2) If the desired application of these algorithms is to obtain effective bounds on

4)" without regard to the CPU time required, then the proposed algorithm should only be

used when the imposed constraint is extremely tight [(oa E (.1,.7)] and when the

inventory's size is less than eight.

3) If, however, the desired application is to obtain those bounds when CPU time

is critical, then the proposed algorithm can be used effectively.

4) If the desired application is to locate 4" rather than its bounds, the proposed

algorithm should be favored over both the Ziegler algorithm and the Classical approach.



Chapter VI

A Multi-Period Application

6.1 Introduction

The success achieved using the Implicit Algorithm, described in chapter V, in

obtaining an optimal solution to the single period constrained inventory problem (P(D)

suggests that similar results can be secured when a multiple period constrained inventory

system is considered. Many authors have addressed the partially constrained multiple

period inventory problem applying, in most cases, some form of dynamic programming

to identify order quantities for each period in the horizon. The goal of such an approach

is to eliminate periods of constraint within the horizon by shifting peek demands into less

restricted adjacent periods. Of the algorithms recently presented, those most noted have

been developed by H.M. Wagner and T.M.Whitin as well as E.A. Silver [13,18,21, 29,38,

etc.]. These algorithms, however, are generally applied to production problems in which

a restricted production rate rather than storage and/or budget limitations is of concern.

Algorithms dealing with these latter constraints, represented by those presented by Paul

and Page [30], Kaspi and Rosenblatt [22], Ziegler [41] and Ventura and Klein [39], focus

solely on the single period problem. No consideration of those cases where constrained

conditions extend over multiple periods of the horizon or where established dynamic

programming algorithms fail to identify feasible solutions has been found.

Building on the theory established in chapter IV, this chapter presents an algorithm

which utilizes existing system parameters along with their related Lagrangian multiplier,

cb*, to forecast the multiplier, 0 needed to optimize constrained inventory systems

82
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defined when various system parameters shift from period to period. Applying this

algorithm recursively over the horizon of an inventory system can, therefore, identify a

series optimal solutions when constrained conditions extend over several consecutive

periods of the horizon. Additionally, the proposed algorithm can be employed to provide

an initial feasible solution when dynamic programming solutions are infeasible due to

prolonged system restrictions. A description of this algorithm and a simple numerical

example will be given. This is then followed by the results of a comparative analysis

conducted to determine the relative efficiency of the proposed Horizon algorithm to that

achieved by applying the Implicit Algorithm, Ziegler algorithm and the Classical solution

technique sequentially to each period of an inventory system's horizon.

6.2 A Theoretical Foundation

The results of the functional analysis, described in chapter IV, reveal that a

function defining 4" implicitly by any combination of CVi ratios is monotonically

decreasing and convex. Similarly, where (D is defined implicitly by a collection of R's,

an assortment of Di's or a combination of both Ri's and D,'s the resulting function is

monotonically increasing and concave. Considering these functional characteristics, upper

and lower bounds on Vnew can quickly be obtain when both cI* and the various parameter

shifts occurring within a given inventory system are known. Figures 6-1 and 6-2,

respectively depict, cases where parameter shifts occur only among a system's C/W

ratios and where those shifts occur only among the reorder costs. This illustrates the

theoretical foundation on which the Horizon algorithm will be based.

The solid curves in these figures represent functions in which 4 is defined
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implicitly by selected system parameters undergoing uniform and simultaneous shifts. For

example point A, in figure 6-1, is defined by uniformly shifting each selected C/Wj ratio

flew '~'M=-

'N _ _ Max(+4)

CD UI I _ _"_ _

- -- Min(-A,)
Max(-A,) --

CDL

Figure 6-1 (Bounds on Ci/Wi Shifts)

by A = Max [C/W-A,-C/Wj, the smallest shift occurring within the invent'rry system.

Similarly point B is identified by applying A = Min [C/Wj-A-C./Wj, the largest ratio shift

within the system, to the same C/W ratios. Thus defined, Theorem 5-2 establishes CDA

and CD1, respectively, as a lower and an upper bound on V' ,. The time consuming

double application of the Implicit algorithm required to obtain these values can, however,

be circumvented simply by utilizing the convex nature of the function and recalling from
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Theorem 4-1 that, when the C/WI ratio for each item carried in inventory are shifted

equally and simultaneously, the resulting function is a straight line with a slope of - .

These characteristics suggest that an effective lower bound, OL, on DA and thus on V,

can be quickly identified by projecting the tangent line, generated at Vt, a distance of

max[-A,] when system ratios decrease or a distance of max[+A] when those ratios

increase. Similarly, the function's convexity assures that V" provides the needed upper

bound on Vnew when shifting ratios increase and that a linear projection from V"

exhibiting a slope of - for a distance A = Min[-A,] provides the desired upper bound

when those parameters decrease.

V D

Min(-A) - , IL

,' Max(+A,)
new M."

eL --- (e

Figure 6-2 (Bounds On Reorder or Demand Shifts)
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Following the logic used above to establish effective bounds on V,," when

increasing or decreasing shifts occur in selected C/Wi ratios, the concave nature of those

functions defining (D implicitly by shifts in reorder costs and/or demand rates (Theorems

4-7, 4-8 and 4-9) assures the existence of similar bounding values when shifts occur in

these parameters. For shifts in reorder cost parameters, as depicted in Figure 6-2, an

effective upper bound, Du, on , can be quickly identified by simply projecting the

tangent line, generated at V), a distance of max[-AJ when system parameters decrease or

a distance of max[+A] when those parameters increase. The concavity of these functions

ensures that V" serves effectively as a lower bound on V., when those parameters

increase. Establishing an effective lower bound on 4)*ew when decreasing parameters are

encountered, however, requires some discussion since the function defined when all

reorder and/or all demand parameters shift uniformly and concurrently can not be shown

to be linear. On the surface, this non-linearity suggest that (DL= 0 is the only viable lower

bound when parameters decrease. The near linear nature of such functions displayed

during the empirical study documented in chapter III, however, suggest an alternate lower

bound. Correlation coefficient values ranging between .999 and 1.000 imply that

projecting a distance of A=Min (-A,) along a tangent line, generated at V" when all reorder

and/or demand parameters shift, will in most cases identify a lower bound on V,. Only

when shifts occur in all reorder and/or demand parameters will this approach fail to

provide the desired lower bound. In such cases, however, the near linear nature of the

function guarantees that this (DL will approximately equal 4)..,, as long as parameter shifts

are relatively small.
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6.3 Horizon Algorithm

The discussion detailed in section 6.2 provides the insight needed to develop

versions of the Horizon algorithm which can effectively solve multiple period inventory

systems in which a variety of parameter shifts occur. Horizon algorithm - Version one

identifies b*,,, when shifts occurring only in the C/W1 ratios on a N-item inventory.

Horizon algorithm - Version two obtains the desired optimal multiplier when those shifts

occur either in that system's reorder or demand parameters. Horizon algorithm - Version

three handles those cases where shifts occur simultaneously in both reorder and demand

parameters. Combining variation one recursively with variation three provides a means

of handling those systems in which shifts occur simultaneously among all three parameter

categories.

HORIZON ALGORITHM -- Variation 1 (C/.Wi Ratio Perturbations)

Step (0) Set N=# of periods in horizon, set i=O and compute cI)i utilizing the

Implicit algorithm (Chapter V).

Step (1) Set i=i+l, If C/-W, ratios decreasing go to step (3),

otherwise continue.

Step (2) Establish initial bounds on V',+i by setting:

Du = (4*i and

(DL = cb - Max(+A)*M

where A, = (C/Wi + A) - C/W1 and from equation (4-17)
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M= 0b

ie J a(C/W-i)

The set J contains the indices of those parameters undergoing change.

Go to step (4).

Step (3) Establish initial bounds on c'i. by setting:

DL = Vij + Max('A1)*M

Ou = V' + .5 * Min(-A)

where A, = C/W - (C/Wi - A) and M is defined as in step (2)

Step (4) Apply Bisection search to initial bounds established in steps (2) or (3) to

obtain 4D*, , and set i=i+l. If i < n go to step (1), otherwise stop.

HORIZON ALGORITHM -- Variation 2 (R, or Di Parameter Perturbations)

Step (0) Set N=# of periods in horizon, set i=1 and compute Vi utilizing the

Implicit algorithm (Chapter V).

Step (1) Set i=i+l, If parameters decreasing go to step (3),

otherwise continue.

Step (2) Establish initial bounds on Dm by setting:

DL = 0I% and

Du = V' + Max(+A1)*M

where, when reorder parameters shift, A, = (R, + A) - R1 and from equation (4-18)
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M= (I

iEJ a(R1 )

or when demand parameters shift, A, = (Di + A) - Di and from equation (4-19),

M =)(

iEJ a(D)

The set J contains the indices of those parameters undergoing change.

Go to step (4).

Step (3) Establish initial bounds on 4'*+ by setting:

o = Vi - Max(-A.)*M

(DL = (D-i - Min(-Ai)*Mm.,

where A, = Ri - (R1 - A) and as defined as in step (2),

M.= N a
- when reorder parameters shift or

i=1 a(R)

where A. = Di - (Di - Ai) and as defined as in step (2),

M.= N dD
- when demand parameter shift.

i=1 D(D)
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Step (4) If N
: 12RDiW[(C/W)+2'LI } < U

i=1

then set DL = 0

Step (5) Apply Bisection search to initial bounds established in steps (2) or (3) to

obtain *i and set i=i+l. If i < n go to step (1), otherwise stop.

HORIZON ALGORITHM -- Variation 3 (R, and Di Parameter Perturbations)

Step (0) Set N=# of periods in horizon, set i=l and compute Vi utilizing the

Implicit algorithm (Chapter V).

Step (1) Set i=i+l, If parameters decreasing go to step (3),

otherwise continue.

Step (2) Establish initial bounds on D*, , by setting:

DL = j and

Du = @*i + Max(+A1)*M

where,

A = (ARO)(At.) + Di(AR,) + R1(A,,) and from equation (4-19A)

M--
---

iE J a(R,D)

Go to step (4).
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Step (3) Establish initial bounds on (I*i+1 by setting:

(Du = Ti + Max(-A,)*M

(DL = (I*i + Min(-Ai)*Mmax

where A, = (ARI)(AD) - Di(AR) - Rj(AD) and from equation (4-19A)

M is defined as in step (2),

M.= N aO
I -----

i=1 a(R,D)

Step (4) If N
X {2R.DiWi/[(C/W)+2I] } < U

i=l1

then set (DL -- 0

Step (5) Apply Bisection search to initial bounds established in steps (2) or (3) to

obtain , and set i=i+l. If i < n go to step (1), otherwise stop.

With the bounding values on cD, identified by these algorithms at Steps 2 and 3,

assured by the monotonic convexity of each implicitly defined function, the convergence

of each algorithm is guaranteed by the bisection search method implemented at Step 5.

As explained in section 5.4, with e > 0 defining a desired degree of accuracy and (Du and

DL identified, ( )' < e/((Du - (DL) defines the number of bisection necessary for

convergence to occur [1]. Combining this assurance of convergence with an expected
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tightness of Ou and OL to V, the proposed algorithms should exhibit both speed and

accuracy.

6.4 Numerical Example

To illustrate the computational efficiency of the proposed Horizon algorithm

consider the four item inventory system, presented in Table 6-1, in which the carrying

cost parameters for the first three items shift during each interval of a two period horizon.

Carrying Re-order Demand Resource
Costs Costs Rates Required

17.0 536 4515 18
17.75 512 4204 18
20.0 584 5775 4
18.5 546 5061 2

Table 6-1 ( Example: 4-Item Inventory System)

If these system parameters decrease during the first period by 10, 13 and 10 respectively

and then increase by 17, 10 and 16 respectively during the second period, then the

Horizon algorithm yields the following results:

First Recursion

Step (0) N=2, Vo = 6.130301 (computed use Implicit algorithm)

Step (1) i=l, decreasing ratios

Step (3) Since Max(-A,) = -10/18 = -.5555, Min(-A,) = -10/4 = -2.5 and
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M = - { (2)(536)(45 15)(18)/[( 17/18)+(2)(6. 130301)1A3A .A5
- h {(2)(5 12)(4204)(1 8)/[( 17.75/1 8)+(2)(6. 130301 )]A3}A.5

- h {(2)(584)(5775)(4)/[(20/4)+(2)(6. 130301 )]A3}A.5

{ (2)(536)(45 15)( 18)/[( 17/1 8)+(2)(6. 130301 )]A3}A.5

{(2)(5 12)(4204)( 18)I[( 17.75/1 8)+(2)(6. 130301 )]A3}A.5

(2)(584)(5775)(4)/[(2014)+(2)(6. 130301 )]A3}A5

{ (2)(546)(506 1)(2)/[( 18.512)+(2)(6. 130301 )]A3}A.5

M = -225.0528 / 483.4303 = -.4655

Then initial bounds on Vnew are:

(L= 6.13030 1 + (-.5555)(-.4655) = 6.3889

(u= 6.130301 + (-.5)(-2.5) = 7.3803

Step (4) (D. = V,= 6.577886 (obtained via bisection search)

Second Recursion

Step (1) i=2, increasing ratios

Step (2) Since Max(-A,) = -10/18 = -.5555, Min(-A,) = -16/4 = -4.0 and

M = - { (2)(536)(45 15)( 18)/[(7/1 8)+(2)(6.577886)]A3}A.5
- h {(2)(5 12)(4204)( 18)/[(4.75/1 8)+(2)(6.577886)A3}A.5

- i {(2)(584)(5775)(4)/[( 10/4)+(2)(6.577886)1A3 }A .5

t (2)(536)(45 15)( 18)/[(7/l 8)+(2)(6.577886)A3 JA.5

{ (2)(5 12)(4204)(18)/[(4.75/18)+(2)(6.577886)A3}A.5
I (2)(584)(5775)(4)/[( 10/4)+(2)(6.577886)A3}A.5

I (2)(546)(506 1)(2)/[( 18.5/2)+(2)(6.577668)]A 3 JA.5

M = -225.0801 /481.5078 = -.46744
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Then initial bounds on Vneare:

(L = 6.577886 + (-4.0)(-.46744) = 4.70809

Ou = 6.577886

Step (4) I'new = (D'2= 5.9780 (obtained via bisection search)

Two things should be noted from this numerical example. First, recognize that the slope

of the tangent line at V" is calculated using system parameters prior to any shifts

occurring. For example, during the first recursion the tangent line at 04o is computed

using CI/W, = 17/18, CJ/W2 = 17.75/18 and C3/W3 = 20/4 rather than the shifted values

of 7/18, 4.75/18 and 10/4 respectively. Similarly, during the second recursion, that slope

is figured using values of 7/18, 4.75/18 and 10/4 rather than the altered values of 24/18,

14.75/18 and 26/4. The magnitudes in which parameters shift only come into play only

when determining the upper and lower bounds during steps 2 and 3 of the proposed

algorithm. Second, it should be noted that even when parameter shifts are large, the

relative error of the resulting bounds remains fairly tight. For example parameter

reductions, ranging from 50 to over 70 %, produced a relative error just over 15 %

following the initial recursion of the Horizon algorithm while augmentations ranging from

160 to over 240 % yielded an error of only 31 % during its second recursion. The

tightness of these relative errors, even when large shifts in system parameters occur,

suggest the efficiency which the proposed algorithm demonstrates in the following

comparative analysis.
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Four Inventory Sizes: 5, 15, 30 and 50

Three System Categories: C/W, R, and Di

Ten Inventory Horizons:
5 with less than %A parameters shifting
5 with more than % parameters shifting

Ten Periods in each Horizon

I*z, c*j and V c determined from
scratch for each period in an horizon

(D*H computed for period i from Vi-I and

known parameter shifts between period i-I and i

Figure 6-3 (Analysis Design)

6.5 Comparative Analysis

From the results displayed in the above numerical example, the proposed Horizon

algorithm seems to provide excellent bounds around each V., needed to solve a multiple

period inventory problem in which constrained conditions persist throughout the horizon.

The purpose of the ensuing analysis is to determine the relative efficiency of this

algorithm to the results obtained when the Implicit, Ziegler and Classical algorithms each

are used to determine V" separately for each constrained period of an extended horizon.

As shown in Figure 6-3, this analysis was conducted by examining ten multiple
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period inventory systems for each of the twelve inventory size and system category

combinations indicated. The initial inventory system for each of these horizons was

randomly generated using the LOW - HIGH - HIGH - LOW parameter configuration

defined in Tables 5-7 and 5-8. The ten inventory systems comprising each horizon were

then determined by applying, sequentially, 10 % shifts to each of the selected system

parameters. The increasing or decreasing nature of these perturbations was also randomly

determined. For example, if the number of carrying cost parameters undergoing change

were selected randomly from the first 1A of a 10 item inventory system, an initial horizon

might be determined from the following parameter values:

Parameter Init 1 2 3 4 5 6 7 8 9 10
1 17 15.3 13.77 14.87 13.38 14.72 16.19 17.81 19.59 17.63 15.86
2 20 18 16.2 17.82 16.03 17.64 19.40 21.34 23.48 21.13 19.02
3 18.5 16.65 14.98 16.48 14.83 16.32 17.95 19.74 21.72 19.54 17.58

when all other system parameters remain unchanged from period to period.

For each of the resulting 1200 inventory systems, the optimal Lagrangian

multiplier identified by the Ziegler algorithm, Dz, the Implicit algorithm, (D*1, and the

Classical algorithm, 'c, were each determined independently. The optimal Lagrangian

multiplier for the Horizon algorithm, I'H, however, was computed for each period using

both the V9 optimizing the previous period's system and the known parameter shifts

occurring during that period.

In an effort to determine if the number of parameters undergoing change impact

the results obtained by the various algorithms under consideration while providing the
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means needed to compare the efficiency exhibited by each, the Average Time to Optimal,

the Average Maximum Error (AME) and the Average Relative Error (ARE) were

computed for each algorithm utilizing the following expressions:

50
Average Time to Optimal = [Y Time to cI),] / 5

1=1

50
AME = { Max[(Qt" - (DL),(O U - (I*)] }/50

i=1

50
ARE = [I ((Du - (g) / (i]/50

i=1

For each of the noted inventory size and system category combinations these statistics

were established first for five Lower Range Horizons in which less than 1% of the system

parameters underwent change and then for five Higher Range Horizons in which more

than % of the parameters were modified. The Average Time to Optimal statistic,

therefore, measures the average time required by these algorithms to establish the

complete set of solutions needed to optimize each horizon within these Lower or Higher

Range Horizon sets. The AME and ARE statistics, on the other hand, gauge the average

error which was encountered as bounds were established around those Lagrangian

multipliers needed to optimize each of the 50 systems constituting those same horizon

sets. Clearly that algorithm achieving the smallest ARE while exhibiting the narrowest

AME in the shortest CPU time must be considered the most efficient.
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6.6 Analysis Results and Conclusions

LOWER RANGE
N P CLASSICAL ZIEGLER IMPLICIT HORIZON

5 1 13.22813 10.92813 8.431249 5.04375
3 12.77188 10.23125 8.725001 7.223438
4 14.86719 10.60313 8.014063 7.76875

15 1 41.77031 36.46719 23.95781 13.80625
3 44.75157 38.63906 23.78594 20.49844
4 47.79405 37.14936 23.37493 21.85731

30 1 83.80205 101.9279 47.18601 27.75811
3 79.1921 104.0385 46.90156 39.99444
4 79.57188 102.4519 46.09209 40.28213

50 1 118.7525 229.7293 75.00332 45.47129
3 137.2934 233.5248 78.6295 66.23145
4 155.0195 236.484 78.6957 68.99961

HIGHER RANGE
N P CLASSICAL ZIEGLER IMPLICIT HORIZON

5 1 12.89219 11.03281 8.082813 6.607813
3 13.66406 10.94219 8.096875 7.845313
4 15.7 11.39688 8.782812 8.748438

15 1 39.02031 38.02344 23.8375 18.90469
3 42.82032 38.39844 24.28438 21.44531
4 37.38398 36.97001 23.62403 21.71398

30 1 76.43828 103.3676 47.75415 37.30401
3 96.16982 103.896 48.26612 43.66612
4 74.67891 97.2418 44.23047 40.54922

50 1 126.5617 229.5254 77.74434 62.19707
3 137.6395 237.9875 78.21328 70.6043
4 153.8551 239.4485 79.40352 74.24805

Table 6-2 (CPU Time to Optimal Solution Comparison)
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LOWER RANGE

N P ZIEGLER IMPLICIT HORIZON

5 1 3.080632 1.58994 .3054634
3 1.2047 2.613391 .1665774
4 2.145741 1.299445 .4286291

15 1 .4993691 3.845297 .0159614
3 1.100063 3.416093 .4894976
4 2.165528 2.635204 .8400979

30 1 .4439501 4.110094 .0193058
3 .5036907 3.573534 .3863216
4 .3457469 3.341647 .322058

50 1 .1264408 2.38723 .0235899
3 .4299531 5.75841 .383842
4 .4790868 4.853921 .5428595

HIGHER RANGE

N P ZIEGLER IMPLICIT HORIZON

5 1 2.572356 .9914414 .0665258
3 2.268833 1.522478 .4069725
4 4.6392 3.12515 1.162146

15 1 1.2827 3.733086 .1670194
3 2.031989 4.217268 .6066523
4 .3113536 2.499456 .3506118

30 1 .9994894 5.250293 .2556258
3 1.441224 5.569216 .8428677
4 .2022089 1.836559 .2474792

50 1 .4721026 3.9761 .1960983
3 .617644 3.956522 .5482505
4 .7908976 5.453927 .9146324

Table 6-3 ( Bounding Interval - Average Maximum Error Comparison )
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LOWER RANGE

N P ZIEGLER IMPLICIT HORIZON

5 1 .6469662 .4501467 .0031258
3 .4649393 1.162966 .0646857
4 .4043682 .2264123 .0651284

15 1 .1166436 .9722205 .0053985
3 .3343205 1.01634 .0672408
4 .1743851 .5740883 .0698297

30 1 .1007918 .9145961 .0054767
3 .1506514 .8631471 .0660557
4 .1165651 .9041912 .0879659

50 1 .0711698 1.193059 .0098275
3 .0567860 1.048549 .0681019
4 .0711860 .8698786 .0841274

HIGHER RANGE

N P ZIEGLER IMPLICIT HORIZON

5 1 .7333079 .8095734 .026282
3 .4190447 1.528829 .059291
4 .4923482 .8489205 .112727

15 1 .1966155 1.580501 .0271217
3 .180413 1.732007 .0857475
4 .1881088 1.623098 .137754

30 1 .0986909 1.896508 .0512733
3 .0827869 1.664853 .0780258
4 .0828171 2.040882 .1535839

50 1 .0391378 2.054192 .0776186
3 .0806787 1.725076 .0778811
4 .1060811 1.720387 .128317

Table 6-4( Bounding Interval - Average Relative Error Comparison )
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Tables 6-2, 6-3 and 6-4 exhibit the efficiency characteristic of the proposed

Horizon algorithm when uniform shifts occur in a single system parameter category. The

CPU times achieved by the Horizon algorithm are significantly faster, on average, than

those exhibited by the Classical, Ziegler and Implicit algorithms.

In considering Tables 6-3 and 6-4 note that both the AME and ARE values

obtained for the Horizon algorithm are consistently smaller than those errors exhibited by

either the Ziegler or Implicit algorithms. AME values, ranging between [.0159,

1.162146], for the Horizon algorithm reflect maximum errors which are generally 2.57

and 4.158 times smaller than those errors generated, respectively, by the Ziegler and

Implicit algorithms. Similarly, ARE values, fluctuating between [.003125,.137754], for

the Horizon algorithm reflect relative errors which are 5.15 and 13.57 times tighter than

the other two algorithms. The effectiveness of the proposed algorithm, suggested by the

compactness of these errors, is strengthened by the realization that even in the four

instances (once during the Lower Range horizons) that the Ziegler algorithm achieved

better AME or ARE values than did the proposed algorithm, the differences between

those results averaged only .068 and .036 respectively.

After further examination of Tables 6-2, 6-3 and 6-4, it must be concluded that,

some degradation in the efficiency of the proposed algorithm occurs as both the number

of shifting parameters and the inventory size increase. The impact of this degradation is

clearly displayed in Table 6-5. Note that, when the inventory size was less than 30, the

Horizon algorithm achieved the best bounding interval over 85 % of the time. If,

however, the inventory size was greater than 15 that efficiency dropped to less than 60%.
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LOWER RANGE
N ZIEGLER IMPLICIT HORIZON

5 9 2 139

15 21 6 123

30 33 0 117

50 55 0 95

HIGHER RANGE
N ZIEGLER IMPLICIT HORIZON

5 0 11 139

15 37 0 113

30 77 4 79

50 82 0 68

Table 6-5 ( Best Bounding Interval)

Similarly, the 79 % efficiency obtained by the proposed algorithm when the number of

shifting parameters was low decreased to 66.5 % when the number of shifting parameters

was high. In those cases where both the inventory size and the number of shifting

parameters was large, the Horizon algorithm achieved the best bounds only 49 % of the

time. The apparent magnitude of this reduced efficiency can, however, be minimized

considering the ARE and AME values obtained when the Horizon algorithm failed to

identify the best bounds. In such cases, judging from these statistics, the Horizon

algorithm identified only slightly expanded bounds while the CPU time it required to

obtain those bounds was greatly reduced.
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It must be concluded from the above discussion that, although some degradation

occurred, the proposed Horizon algorithm provides an efficient means for solving a

multiple period inventory system in which parameter shifts occur in only one parameter

category. Before concluding this analysis, however, consideration must be given to those

cases where random shifts occur concurrently in more than one parameter category. To

gauge the algorithm's efficiency under such circumstances, an analysis paralleling that

described in section 6-3 was run in which random shifts occurred simultaneously in both

reorder and demand parameters utilizing Version 3 of the proposed algorithm. The results

of this analysis, displayed in Appendix 5, suggest that the proposed algorithm continues

to provide an effective means for handling the multiple period inventory system with CPU

times 2.54 and 1.059 times better than the Ziegler and Implicit algorithms respectively.

This apparent effectiveness is again strengthened by the realization that when the Ziegler

algorithm achieved better AME or ARE values than did the proposed algorithm, the

differences between those results continue to be minimal, averaging only .809 and .1103

respectively.

By comparing the results obtained when random shifts occur concurrently in both

reorder and demand parameters with those results produced when shifts occurred only in

a single parameter category, the following conclusions can be made:

1) When the desire is to identify effective bounds around each of the needed cI"

values when shifts occur either in a single system category or in both the reorder and

demand categories, the Horizon algorithm can be effectively used when N < 30 and when
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less than 1/ of the parameters shift. When N > 15 and more than % of the parameters

shift then the Ziegler algorithm provides the tightest bound. However, when effective

bounds are needed and CPU time is restricted, utilizing the Horizon algorithm should be

sufficient.

2) When parameter shifts occur simultaneously in all three system categories

(carrying cost, reorder cost and Demand) a sequential application of the Implicit algorithm

provides the most efficient means for obtaining the desired V" values. Although not

analyzed here, it is projected, considering the CPU time presented in Tables 6-1 and A5-

1, that the proposed application of both version 1 and 3 of the Horizon algorithm will

consistently require more CPU than does the Implicit algorithm for this scenario.

3) When parameter shifts occur only in a single system category of a constrained

multiple period inventory system then versions one and two of the Horizon algorithm

effectively obtain that set of V" values needed to optimize the system. Neither the

inventory size nor number of shifting parameters degrade this efficiency to a significant

degree.

4) When parameter shifts occur concurrently in both the reorder and demand

parameter categories of a constrained multiple period inventory system then Version three

of the Horizon algorithm effectively obtains that set of V" values needed to optimize the

system. In such cases, the noted decline in the bounding efficiency of the Horizon

algorithm, although more pronounced, continues to be insignificant.



Chapter VII

A Multiple Constraint Inventory Problem

The Dual Constraint Case

7.1 Introduction

With Chapters IV, V and VI presenting first the theory and then the resulting

algorithms needed to effectively handle the single constraint inventory problem (PCI), this

chapter begins an examination of the multiple constraint inventory problem P(4,O).

Recognizing the potential complexity of such problems, the focus of this initial research

will again be on the fundamental EOQ inventory model defined by equation (2-1). Here,

however, both a carrying cost constraint and a storage space restriction are imposed.

7.1.1 Selection of Initial Constraint Set

In selecting these constraints as the basis for this initial study, two concerns were

satisfied:

1) Problem Realism: The desire during this study was to examine as

realistic a problem as possible while minimizing the complexity of the computa-

tional effort. The linear nature and the general applicability of these two

constraints within most real-world inventory systems satisfy both these concerns.

2) Potential for Expansion: As a foundation study, the desire was to select

an initial constraint set which exhibited a good potential for extension. The

combination of both a budget and a space constraints satisfy this concern in two

ways. First, their linear nature suggest that a direct extension from the two linear

105



106

constraint case to those cases involving three or more linear constraints might be

possible. Second, since the Lagrangian multiplier associated with a non-linear

constraint can often be stated in terms of one or more of a system's linear

constraints [12],[201,[37], it may also be possible to deal initially with the linear

portion of the constraint set and then calculate directly the Lagrangian multiplier

associated with the non-linear constraint. In either case, the initial examination

of a multiple constraint inventory system in which both a carrying cost limitation

and a storage space restriction imposed should provide desired potential for

expansion.

7.1.2 Re-statement of Dual Constraint Problem

Recall from Chapter II that such an inventory system can be stated as follows:

N
(P) Min TC = 1 (1/2 biQ + RD/Qi) (7-1)

i=1

Subject To:

N
Y WQj , W (7-2)

i=1

N
I biQ <_ B (7-3)

i=1

-Q < 0 i=1,2....N (7-4)

where W, defines the storage space required per unit of inventory and where b, defines
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the cost associated with holding each item in inventory. As before, W and B set limits

on the maximum inventory space available and the inventory budget allowed respectively.

Letting (D and 19 be nonnegative Lagrangian multipliers for equation (7-2) and (7-3),

respectively, the Lagrangian function associated with Problem (P) can be restated as:

N N N
P(ci,O) = Y(1/2 bjQj + RiD/Qi) + (1WQj - W) + e(1bjQ - B).

i=1 i=l i=l

In considering problem P(ci,O), it should be recalled, again from Chapter II, that

the classical solution procedure presented by Buchan and Koeningsberg [41 as well as

Tersine [38], entails a five step process which assumes, with equal probability, that either

none, one or both of the constraints imposed on the inventory system will be binding at

the optimal solution. With no means available to predict which of these situations will

occur, the classical algorithm must consider, in turn, each possible case in order to ensure

that the resulting solution is optimal. With this deficiency in mind, the goal for Chapter

VII is to establish an algorithm which can effectively determine that portion of the

constraint set which will be binding at the optimal solution of problem P(0,0). In those

cases where only one constraint remains active, this algorithm will identify that binding

restriction and then use the single constraint Implicit algorithm to obtain the optimal

solution. In those cases where both constraints are active, this algorithm will effectively

estimate the Lagrangian multipliers needed to solve problem P(cb,O).

Following a description of the data collection procedure, a presentation of the

results for an empirical study conducted in support of this research effort is given in
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Section 7.2. Section 7.3 will establish the necessary theoretical foundation and Section

7.3 provides a detailed description of the proposed Dual Constraint algorithm. Since the

efficiency exhibited by the Implicit algorithm has been well established in the preceding

chapters, the effectiveness of the proposed algorithm will be measured, in section 7.6, by

determining how well the resulting V" and O" estimates match the Lagrangian multipliers

needed to optimize Problem P(ct,G) when both constraints are binding.

7.2 Empirical Study - Dual Constraints

In order to provide a solid foundation for the Dual Constraint algorithm, an

empirical study was used to examine the changes generated in the Lagrangian multipliers,

(D and (, when shifts occurred either in the budget constraint level, B, or the space

constraint level, W. Since the results obtained when B was modified mirrored the results

obtained when W was shifted, this section will present only that portion of the study in

which the space constraint was held constant while the budget constraint level was

systematically modified. As will be shown, these results provided the insight needed to

establish a theoretical basis on which the proposed algorithm was developed. In order to

minimize the magnitude of the computational effort required while still providing a clear

picture of the desired functional relationships, the ensuing investigation was limited to 3-

item inventory systems. The constraint levels, B and W, associated with each of these

systems were established utilizing the following equations:

W=P* Y WiQi fori= I toN and (7-5)

B = P2 * I bjQ for i = 1 to N (7-6)



109

where Y, b,Qj and I WQ represented, respectively, the inventory budget and storage

space required to hold equations (7-2) and (7-3) as equalities. The reduction factors, P

and P2, were defined between [0,1]. Once P, and P2 were selected, equations (7-5) and

(7-6) clearly specified the pressure exerted on Problem P(0,1) by each of its associated

constraints. For example, when both P, and P2 were each set equal to one, problem

P(QD,E) became unconstrained with both (D and E equal zero. If, on the other hand, P1

and P2 each assumed values close to zero, then problem P(0,0) is severely constrained

and either (D and/or 0 take on values much greater than zero.

As a basis for this study, initial inventory systems were randomly generated for

each of the four test configurations defined in Tables 7-1 and 7-2. The initial reduction

Configuration C1  R., Di  Wi

1 Low Low Low Low
2 High High High High
3 High Low Low High
4 Low High High Low

Table 7-1 (Test Configurations)

Parameter Low High

C, (10,20) (20,50)
(50,80) (500,600)

Di (200,400) (4000,6000)
Wi  (1,25) (50,400)

Table 7-2 (Uniform Distributions of System Parameters)



110

factors, P1 and P,, needed to fully define these constrained inventory systems were

identified by randomly selecting an initial reduction factor, P, E [.1,.9] for each and then

setting P1 = P2 = PI. From each of these initial inventory systems, the empirical data

needed to identify those relationships which exist between the associated Lagrangian

multipliers and shifts which occur in the system's budget constraint level were collected

utilizing a data generating process comprised of a System Generation Step, a System

Solution Step and a Function Refinement Step.

The System Generation step of this process produced nine related inventory

systems by systematically modifying the reduction factors, P, and P,, assigned to an initial

inventory system following the scheme displayed in Table 7-3. Note that, in defining

each of these systems, the space constraint level W remained constant at its initial level

while the pressure imposed on Problem P(c1.,O) by the budget constraint gradually

decreased.

SYSTEM 1 2 3 4 5 6 7 8 9

P P > P
P2  .1 .2 .3 .4 .5 .6 .7 .8 .9

Table 7-3 (Phase I System Generation Scheme)

Once defined, each of these nine related systems were solved utilizing the General

Interactive Optimizer, Super GENO, during the System Solution Step. By focusing not

only on the desired optimal Lagrangian multipliers, V" and 0% but also on the slack
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generated within each system constraint, an initial picture of the resulting functional

relationships was obtained. As will be seen, the data generated during this step

tentatively identified a critical range of P2 values in which both of the constraints

associated with P(0,0) remain binding at the optimal solution.

In order to refine this initial picture of the desired functional relationships,

additional inventory systems are generated from within the critical range of P, values

identified by the System Solution Step. Reducing the step size used to generate these

systems from. 1 to .02, the Function Refinement Step effectively pinpointed the P2 values,

P2L and P2u between which both of the constraints associated with P(0,0) were always

binding at the optimal solution. By employing this data generation scheme to specify P,

r [P2L,PZu], the three distinct regions which comprise the desired functional relationships

were clearly defined.

Realizing that "a picture is worth a thousand words" and the benefit that an

example can at times provide, consider the implementation of the above data generation

process displayed in Tables 7-5, 7-6 and 7-7 for the randomly selected inventory system

displayed in Table 7-4 for which P was set at .4.

Carry Reorder Demand Space
Cost Cost Rate Consumed

18.25 57 360 16
13.5 72 217 10
16 58 395 1

Table 7-4 (Sample Low-Low-Low-Low 3-Item Inventory System)
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Following the shifting scheme shown in Table 7-3, Table 7-5 displays the space

and budget constraint levels used to define the nine inventory systems formed during the

System Generating Step. Note that in defining these nine systems, the space constraint

SYSTEM 1 2 3 4 5 6 7 8 9

W 555.22 > 555.22
B 237.11 474.23 711.34 948.46 1185.57 1422.69 1659.81 1896.92 2134.04

Table 7-5 (Example of the Shifts Generated In Constraint Levels During Phase I)

level, W, was held constant at 555.22. In accordance with equation (7-5), this constraint

level was determined by applying the initial reduction factor, P, =.4, to an unconstrained

space requirement of 1388.05. Similarly the budget constraint level, identified for system

1 as 237.11, was computed by multiplying the unconstrained budget requirement of

2371. 10 by the reduction factor P2 =. 1.

Reduction Factors

Space Budget O B Slack W Slaic

.4 .1 49.4998 0 0 425.882
1 .2 11.9999 0 0 296.545
I .3 5.0555 0 0 167.209
I .4 2.6249 0 0 37.873
I .5 .5896 2.1207 0 0
I .6 0 2.9979 68.019 0
I .7 0 I 305.134 0
I .8 0 I 542.250 0

.4 .9 0 2.9979 779.366 0

Table 7-6 ( Step 2 Results For Low-Low-Low-Low Inventory System)
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Table 7-6 displays both the Lagrangian multipliers and slack values obtained as

the nine systems defined in Table 7-5 were evaluated during the System Solution Step.

The V" and 0" values, displayed in this table, clearly illustrate the three distinct functional

relations which exist between these multipliers and the indicated shifts applied to both the

budget and space constraint levels imposed on Problem P((D,O). In this specific example,

P2 r (.4,.6) defines a critical region in which either one or both of the constraints

imposed on Problem P(D,e) remained binding. Clearly, where P2 
< .4, only the budget

constraint exerts pressure on the optimal solution while for P2 -- .6, only the space

constraint defines that solution. Clearly when the reduction factor, P2, falls below the

indicated critical region, the c" value producing a budget slack equal to zero also satisfies

the space constraint. Similarly, when P2 lies beyond thaL critical region, the e* value

optimizing the space constraint also satisfies the budget constraint. The data generated

by step two of this process can, therefore, be used to effectively describe the desired

functional relationships as long as P2 does not fall within an inventory system's critical

region. Further investigation, however, was needed in order to describe the functional

relationships which exist within that region.

Table 7-7 presents the Lagrangian multipliers and slack values obtained when the

Function Refinement Step was applied to the critical region identified in Table 7-6. Here

it should be noted that the tentative Critical Region has been reduced from P2 r [.4,.6]

to a range of P2 values r (.4,.58) in which no slack was generated in either the budget

constraint or the space constraint. Note also that the V" needed to optimize P(4,O)

gradually decreased from its single budget constraint value of 2.6249 to zero while the
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Reduction Factors

Space Budget (Do 00 B Slack W Slack

.4 .4 2.6249 0 0 37.873
.42 2.3344 .2742 0 0

.44 1.8216 .4966 0 0

.46 1.2709 1.2069 0 0

.48 .8787 1.7260 0 0

.5 .5896 2.1207 0 0

.52 .3702 2.4314 0 0

.54 .1998 2.6825 0 0

.56 .0645 2.8934 0 0

.58 0 2.9979 20.595 0
.4 .6 0 2.9979 68.019 0

Table 7-7 ( Step 3 Results For Low-Low-Low-Low Inventory System )

0* steadily increased from zero to its single space constraint value of 2.9979.

Before attempting to draw any general conclusions concerning the functional

relationships in the empirical data, consideration must be given to the other system

configurations examined. Utilizing the graphics package, STATGRAPHIC, the data

generated for initial inventory systems from each configuration produced the plots given

in the following pages. In each of these graphs, the solid line depicts the Lagrangian

multiplier, O', associated with the budget constraint while the dashed line represents the

Lagrangian multiplier, ct*, related to the space constraint of the selected inventory system.

Plotting the EY and V' values shown in Tables 7-6 and 7-7 against their corresponding

reduction factors, Figure 7-1, for example, clearly displays the three distinct functional

regions noted earlier.
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In view of Figures 7-1 through 7-4 and the supporting empirical data displayed

in Tables 7-4 and 7-5 as well as in Tables A6-1, A6-2 and A6-3 presented in Appendix

6, it can be concluded that the functional relationships which exist between a shifting

budget constraint level and the resulting (D and O" values exhibit the same choacteristics

regardless of the range from which system parameters are selected. Several general

conclusion can, therefore, be made concerning the constrained problem P((I,O).

1) The size of the Critical Region is small. With the proportion of inventory

systems falling into the Critical Regions exhibited in the above figures ranging from 4 %

for the LHHL system configuration to 16 % for the LLLL system configuration, it is

apparent that in most cases either the V" for problem P(4') or the 0* problem P(G) will

optimize problem P(ct,0).

2) As suggested by Tersine [38], when both c" and 0" greater than zero comprise

an optimal solution, these values fall consistently close to zero. For the 22 systems which

fell within the indicated Critical Regions of this empirical study, the value of these

multipliers ranged between zero and 2.8934 while the average V" and G3 values were

only .6106 and .6997, respectively.

3) Within the Critical Region of an inventory system both constraints are active

and hence the inequalities defined by equations (7-2) and (7-3) become strict equalities.

4) Within the Critical Region of an inventory system, 4" decreases from its single

budget constraint solution obtained at the region's lower bound to zero at its upper bound

while 0 simultaneously increases from zero to the single space constraint solution. The

apparent near linear nature of these partial functions also suggest that effective estimates
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of both V" and O" may be obtained using a simple linear approximation.

5) When P, < P,, the single budget constraint solution to problem (P4) is optimal

for problem P(4',O). It is apparent, in this study, that the lower bound of the critical

region occurs when P2 = P.

6) When P2 > P, the single space constraint solution to Problem (PO) is usually

optimal for Problem P(4),0). The exact P2 value which defines the upper bound of an

inventory system's Critical Region, however, is dynamically determined by the parameters

of that specific system.

7) Stemming from conclusion (5) and the slack values displayed in this study, the

following conditions hold at the lower bound of an inventory system's Critical Region:

O" > 0, 0* = 0 and

N
I WQ i = W

i=1

N
2bQ =B
i=1

8) Similarly, at the upper bound of an inventory system's Critical Region the

following conditions hold : = 0, 0* > 0 and as indicated above both budget and space

constraints are equalities.

7.3 Theoretical Foundation

Combining the results of the above dual constraint empirical study with the KKT
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conditions identified in section 2.3, this section establishes the following assertions

concerning the constrained inventory problem P(I,0) when P1, P2 and P e [0,1]:

1) When P. < P, the single budget constraint solution to Problem (PO) is optimal
for Problem P(4,O),

2) When P2 
> P the single space constraint solution to Problem (PO) is optimal

for Problem P(4,0) and

3) When P, < P2 < P, Problem P(cI,0) is minimized only if M" V- 0 and O" >
0.

Let: Q represent the unconstrained order quantity of the i inventory item
defined by equation (1-2),

Qic represent the constrained order quantity of the it inventory item defined

by equation (2-24),

Qjb represent the constrained order quantity for the i' inventory item
defined by equation (2-24) utilizing the c* optimizing the
single budget constraint problem P(c1) and setting 0* = 0,

and Qj9 represent the constrained order quantity for the i'" inventory item
defined by equation (2-24) utilizing the 0' optimizing the single
space constraint problem P(O) while setting (1" = 0.

The following proofs are based on the recognition that, in accordance with the KKT

conditions of feasibility:

N
4D I I bQic - C }= 0 (7-7)

i=1
and

N
I{ XWAQc - w} =0, (7-8)

i=1
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only one of the following situations can exist when the constrained Problem P(4',O) is

minimized.

A) (D=0and9=0while biQc - C<0and IWQ c- W<0 ,

B) (>_0andO=0whileY bjQc - C=0and YWiQ c- W < 0,

C) 4=0andO>0while biQ.c - C<0and YWQ - W=0,

D) (D>20andO0while biQc - C= 0 and IWiQc - W= 0 .

Theorem 7-1 (Assertion one)

Let P and P2 E [0,1] be reduction factors 3 the constraint set of Problem P(4,E)

becomes:

I WiQic < W = P { IWiQ and (7-9)

I bQ C < C = P2  bQ } (7-10)

for i= 1 to N. If 3 V > 0 3 equation (7-10) holds as an equality then when P2 
< PI, e"

must equal 0.

Proof: Using the direct calculation suggested by Rosenblatt [33], the V* > 0 holding

equation (7-10) as an equality can be stated as follows:

V = (l/C)[ I b1Q ]12 - . (7-11)

From equation (7-10), C = P2  Y , bQj }, and equation (7-11) can be restated as:

( = [(1/P2) 2 -1]. (7-12)
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Substituting this latter expression for V" into equation (7-9) yields:

I WQic < I = X. W [2RD/C,(1/P)2 = P 2 { 1 WQ1 ) < W = PI { X WQ }.
(7-13)

If, therefore, P, < P, then I WQ.c < W and following from situation (B), 0* 0 provides

the desired optimal solution. U

Note that with V" > 0 fixed via equation (7-12), then equation (7-10) holds as an

equality. The introduction of any e9" > 0 decreases the reorder quantities associated with

the constrained problem P(0,0) inducing increased slack values in both the budget and

space constraint. It follows, therefore, that when P2 
< P such solutions, although feasible,

are not optimal.

Theorem 7-2 (Assertion 2)

Let P1, P2 and P E [0,1] be reduction factors and let the constraint set of Problem

P(0,0) be defined by equations (7-9) and (7-10). If 3 0* > 0 3 equation (7-9) holds as

an equality and P is defined such that

P I bQi = I biQie, for i=1 to N (7-14)

then when P2  - P, V" must equal 0.

Proof: From equation (7-10) and KKT condition (7-7) it follows that when P(0,9) is

constrained:

I bQjc < Y bjQje = P (b Q } < C = P2{ bjQ } (7-15)
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in order to maintain feasibility. If, therefore P2 -- P then X CiQ c < C and following from

situation (C), V a 0 provides an optimal solution.

In considering the proof of Theorem 7-2, recognize the validity of equation (7-14).

Since at the upper bound of the Critical Region for P(c1,O) 3 0 > 0 3 when (D = 0 both

equation (7-9) and (7-10) hold as equalities then at this point QC = Q8. It follows,

therefore, from equation (7-9) that 3 P2 = P 3 P I bjQj = I bQj. Note also that with 0"

> 0 fixed so that equation (7-9) holds as an equality, the introduction of any V) > 0

decreases the reorder quantities associated with the constrained Problem P((I,O)

introducing increased slack values into both the budget and space constraints. It follows,

therefore, that when P2 
-> P such solutions, although feasible, are again not optimal.

Theorem 7-3 (Assertion 3)

Let P,, P2 and P e [0,1] be reduction factors. Let P be defined by equation (7-14)

and let the constraint set of Problem P(c,G) be defined by equations (7-9) and (7-10).

If P, < P2 < P then 3 0" > 0 and V' > 0 3 both equation (7-9) and equation (7-10) hold

as equalities.

Proof: From equation (7-13), defined in the proof of Theorem 7-1, when P2> P, and 3

C > 0 such that equation (7-10) holds as an equality:

I WiQc< I WiQP 2 (}WQ >P I I W } =W. (7-16)

In such cases, since in equation (7-16) 1 WQc must be less than or equal to W in order
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to maintain feasibility, clearly 0* = 0 defines an infeasible solution. This being the case,

situation (B) can be eliminated from consideration. Similarly, from equation (7-15),

defined in the proof of Theorem 7-2, when P2 < P and 3 0" > 0 such that equation (7-9)

holds as an equality:

I biQic 5 Y biQi = P I I bjQ } > P2 { b.Q} = C (7-17)

Here, since Y, bQjc must be less than or equal to C in order to maintain feasibility, clearly

(I) = 0 defines an infeasible solution. This again being the case, situation (C) can also

be eliminated from consideration. Therefore, by elimination situations (B) and (C) from

consideration, when P1 < P2 < P either problem P(cI,0) is unconstrained with both 4" and

0* equal to zero following from situation (A) or, following from situation (D), 3 0* > 0

and V" > 0 3 both equation (7-9) and equation (7-10) hold as equalities.

Collectively, these proofs not only establish:

1) That the single budget constraint solution, V , to Problem (P4)) is

optimal for the constrained problem P(4),O) when P2 -- P1,

2) That the single space constraint solution, G, to Problem (PE) is

optimal for the constrained problem P(4,0), when P2 -> P and

3) That 4" > 0 and 0* > 0 define the optimal solution for the constrained

problem P(40,O) when P < P2 < P;

but also specify P2 = P, and P2 = P as the lower and upper bounds of the Critical Region
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needed to predict when one or both of the constraints imposed on problem P(0,19) will

be binding at the optimal solution.

7.4 The Dual Constraint Algorithm

Based on the theoretical foundation developed in section 7.3, the following three

step algorithm effectively determines that portion of the constraint set which is binding

at the optimal solution of the constrained problem P(4D,0) and then either solves directly

for or estimates the needed Lagrangian multipliers.

Step 1) Determine the reduction factors P, and P:

P, = W/7WQj fori=l toN
P2 =B/X biQ for i=l toN

If both P, and P2 -> 1 Stop. Problem P(0?,1) is unconstrained.

If only P2 
< 1 Stop. Problem P(4',0) a P(4) and V" = 1A [ (1/P2)2 - 11 is optimal,

If only P, < 1 Stop. Problem P(cb,0) a P(1) and 0" computed using the

Implicit algorithm described in Chapter V is optimal.

If both P1 and P2 
< 1 and if P2 

< P, stop,

V = ti [ (1/P2) 2 - 1 ] and G" = 0 are optimal,

Otherwise go to Step (2).

Step 2a) Compute the single space constraint solution, V3, to Problem (PE)

using the Implicit algorithm described in Chapter V.

2b) Compute
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P b.Qe I b.Q

where 1I2RDi / [i + Mwe'] "

2c) If P2  : P then stop, E) alone is optimal,

Otherwise go to Step 3.

0.34.

I zsX)M PACTaNS CPR)

Figure 7-5 (Expanded Critical Region)
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Step 3a) Compute 4D'pl = [ (1/P1 )2 - 1] and set E;p = E'.

3b) Compute Critical Region slopes:

M, = cbOP1 / (P - P)

M2 = -O!v / (PI - P)

3c) Compute Lagrangian multiplier estimates, cJ*,, and ', using:

Ve* = M, (P2 - PI) +  Vp and

0*e = M 2 (P 2 " P) + O*

Stop.

The potential effectiveness of the Lagrangian multiplier estimating portion of this

algorithm, Step 3, can be seen by the near linear nature of the partial functions identified

during the foregoing empirical study. Figure 7-5 depicts the generation of these estimated

values.

7.5 Numerical Example

To illustrate the Dual Constraint algorithm consider, again, the inventory system

displayed in Table 7-4 in which a space constraint level was set at 555.2183. By letting

the budget constraint level be set first at 474.2317, then at 1659.8111 and finally at

1233.0025, the ability of the proposed algorithm to effectively determine that portion of

the constraint set which will be binding at the optimal solution of the constrained problem

P(Q19,) will be demonstrated. Note here that the unconstrained space resource, defined

by I WQ, equal 1388.0459; while the unconstrained budget requirement, defined by I

bQ, equals 2371.1588. With these totals in mind, implementing the Dual Constraint
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Algorithm for each of the defined budget constraint levels produced the following results:

Example 1 (W = 555.2183 and B =474.2317)

Step 1) P1 = W I WQ1  555.2183 / 1388.0459 = .4

P2 = B I bjQj 474.2317 / 2371.1588 = .2

Since here P2  g P1 stop, cj 1h [ (1/.2)2 _ 11 12 and 03* = 0 are optimal.

Example 2 (W = 555.2183 and B =1659.8111)

Step 1) P1 = W /XWjQj = 555.2183 /1388.0459 =.4

P2 = B bQ = 1659.8111 2371.1588 .7

Here P2 > P, so Step (2) is needed.

Step 2a) Utilizing the Implicit algorithm G3 2.99799.

2b) Where Q10 = [2(57)(360)/(18.25 + 2(16)(2.99799))]" 18.9584,

Q0= [2(72)(217)/(13.5 + 2(10)(2.99799))]" = 20.6248 and

Qe= [2(58)(395)/(16 + 2(l)(2.99799))]" = 45.6412; then

P = [(18.25)(18.9584) + (13.5)(20.6248) + (16)(45.6412)] / 2371.1588=

1354.6883/2371.1588 = .5713

2c) Since P2 = .7 2t P then stop, E3* =2.99799 and V~ = 0 are optimal,
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Example 3 (W = 555.2183 and B = 1233.0025)

Step 1) P1 = W / WjQ = 555.2183 / 1388.0459 - .4

P2 = B / bjQj = 1233.0025 / 2371.1588 = .52

Here P2 > P1 so Step (2) is needed.

Step 2a) Utilizing the Implicit algorithm 0" = 2.99799.

2b) P = 1354.6883/2371.1588 = .5713

2c) Since P. = .52 < P then Step (3) is needed.

Step 3a) Vp, = h [(1/.4)2 - 1] = 2.625 and O'p = 2.99799.

3b) Compute Critical Region slopes:

M, = 2.625 / (.4 - .5713) = -15.3239

M 2 = -2.99799 / (.4 - .5713) = 17.5014

3c) Compute Lagrangian multiplier estimates, Vest and e*':

Vt (-15.3239)(.52 - .4) + 2.625 = .7861

Wen = (17.5014)(.52 - .5713) + 2.99799 = 2.1001

Stop.

7.6 Evaluation of the Dual Constraint Algorithm

Displaying the Lagrangian multipliers obtained in section 7.5 along side the

optimal multipliers identified using Super GENO, Table 7.8 illustrates the potential

effectiveness of the Dual Constraint algorithm. With the required Lagrangian multipliers
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either calculated in closed form or accuracy obtained utilizing the Implicit algorithm

presented in Chapter V, the proposed algorithm precisely optimizes problem P(4,0) when

only a single constraint remained binding. The overall effectiveness of the Dual

Proposed GENA BSlack/
Example Algorithm Solution WSlacks

1= 12 0 = 11.9999 0
G = 0 0 = 0 - 296.545

2 =0 (=0 - 20.595
E) = 2.9979 0 = 2.9979 0

3 (en= .7861 (D = .3702 - 105.9647
0,, = 2.1001 0 = 2.4314 - 18.2416

Table 7-8 (Example Dual Constraint Algorithm - GENA Solution Comparison)

Constraint algorithm, however, can be measured only by determining the amount of error

Vest and O"est introduce. To gage the magnitude of such errors, the relative error statistics

defined by equations (7-17) and (7-18) for the budget and space constants were employed.

N
REudg, I biQic - B )/B (7-17)

i=l

N
REstP, e WiQc- W )/W (7-18)

i=1

With relative errors of -.0859 and -.0328 thus calculated from the estimated Lagrangian

multipliers shown in Table 7-8, the effectiveness of the proposed algorithm seems certain.
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To fully evaluate the usefulness of these estimated Lagrangian multipliers, the

relative errors introduced into 800 randomly generated inventory systems were examined.

To strengthen the results of this analysis one hundred 5-item and one hundred 30-item

inventory systems were randomly generated for each of the test configurations shown in

Table 7-1. For each of these systems: first P E (0,1) was selected randomly, then P

was determined utilizing equation (7-14) and finally P2 E (Pj,P) was selected randomly;

so that in each case CDe*t and e®et values were required. A sample of the resulting

relative errors as well as the extent of each system's Critical Region is exhibited in

System Inv Maximum Average Average Region Size
Type Size Error REwget RE~pe Min Max

LLLL 5 -. 1154 -.02110 -.00893 .0019 .1498
30 -.1114 -.02512 -.00944 .0192 .1161

HHHH 5 -.0806 -.01409 -.00873 .0046 .' 152
30 -.0555 -.01272 -.00767 .0143 .0943

HLLH 5 -.0571 -.00854 -.00572 .0048 .1376
30 -.0664 -.01531 -.00948 .0135 .0704

LHHL 5 -.0963 -.01663 -.00783 .0018 .1500
30 -.1246 -.02079 -.00817 .0206 .1159

Table 7-9 (Relative Error Analysis and Critical Region Size)

Appendix 7. The Maximum Relative Error generated as systems from each type and size

were examined along with the Average Relative Errors introduced within both the budget

and space constraints and the span over which the Critical Regions for these systems
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extended are summarized in Table 7-9. With every relative error less than zero and with

more than 93 % of the 800 inventory systems displaying errors of less than .5%, it would

appear that the estimated Lagrangian multipliers, CI'est and E)*e, are both near optimal and

feasible. It is also apparent, from the errors displayed in Table 7-9, that the size of the

inventory system has little impact. Observe further that the maximum span of P, values

within which both Lagrangian multiplier estimates are needed is negligible. In fact 95

% of all examined inventory systems exhibited Critical Regions spanning less than .1.

With these observations in mind, it can be concluded that the overall efficiency of the

proposed algorithm is excellent.

7.7 The Dual Constraint Algorithm Extended

As stated the proposed algorithm effectively handles the problem P(1',G) when its

constraint set is comprised of a budget and a space constraint. Before concluding this

chapter, the necessary modifications for this algorithm to effectively deal with P(c,E)

when its constraint set is comprised of either two budget or two space constraints will be

addressed.

When two budget restrictions constitute the constraint set only a single

modification is required. Since, in such cases, the second budget constraint's optimal

Lagrangian multiplier can now be calculated directly simply by replacing the Implicit

algorithm's generation of 0" with the direct calculation, 0" = [ (I/Pl)2 - 1], in Step 2a.

All other steps of the algorithm remain unchanged.

When, however, two storage space restrictions constitute the constraint set

modifications are needed in Steps 1 and 3a. Since the direct calculation of V" is no
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longer possible, when P2 5 P,, the Implicit algorithm must be used to obtain the desired

single space constraint solution in Step 1. Similarly, when P < P2 < P, the direct

calculation of Dp ,, in Step 3a, must also be obtained utilizing the Implicit algorithm. In

implementing this single constraint algorithm, the constraint level associated with the first

space constraint must be set equal to the constraint level associated with the second in

order to identify the lower bound of the system's critical region.

7.8 Summary

With the stated goal of this chapter to provide a realistic foundation on which an

expanded examination of the multiple constraint inventory problem could be made, the

focus of this study was on an inventory within which both a carrying cost limitation and

a storage space restriction were imposed. In establishing this foundation, five milestones

were reached:

1) The three distinct regions characteristic of the functional relationships which

exist between a shifting budget constraint level and the resulting 0* and

V values associated with problem P(0,1) have been identified and

illustrated,

2) The theoretical foundation needed to effectively define these regions for any

system in which two linear constraints are imposed was establish,

3) A methodology for effectively determining that portion of the constraint set

which is binding at the optimal solution was developed,

4) A procedure was formulated to quickly obtain 4' t and 0%,e when both

constraints are found to be binding at the optimal solution of problem
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(0,O), and

5) The proposed Dual Constraint algorithm was developed, demonstrated and

evaluated.

The effectiveness displayed by this algorithm, in section 7.6, and its adaptability to a

variety of linear constraint combinations, shown in section 7.7, clearly demonstrate the

potential value of the proposed Dual Constraint algorithm.



Chapter VIII

A Real World Application

8.1 Introduction

The purpose of this chapter is to summarize the efforts made to implement the

Dual Constraint Algorithm proposed in chapter VII within Tyree Parts & Hardware, a

small hardware company located at 2126 East Business Loop, Columbia Missouri. In

accomplishing this goal, section 8.2 will describe the two-bin inventory system currently

used within this company to maintain an inventory system comprised of over 15000 line

items. The overall ineffectiveness of this system will be illustrated by tracing its impact

on 32 large volume items from 1988 through 1990. Section 8.3 will outline the steps

necessary to identify both the carrying and re-order cost parameters needed to implement

an unconstrained EOQ model within this system. By tracking its impact on the same 32

items examined in section 8.2, the savings potential of the EOQ model will be

highlighted. Building on these results, section 8.4 will define both a budget and a space

constraint which the management of Tyree Parts & Hardware wished to imposed on this

segment of its inventory. With these constraint level specified, the potential benefit

gained from the implementation of the Dual Constraint Algorithm will then be

demonstrated. Finally, section 8.5 will summarize both the conclusions and

recommendations which grew out of this effort.

8.2 A Two-Bin Inventory System

As has been mentioned, Tyree Parts & Hardware currently utilizes a two bin

136
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inventory system to determine both the size and frequency of replenishment orders for

each of its 15000 line items. As a basis of this system, Tyree's management employs a

six month review period and vendor recommended stockage levels. These stockage

levels, established considering such factors as minimum order levels and price breaks,

govern the resulting replenishment pattern for each item carried in inventory. During

each semiannual review, an order for a given line item is placed when the number of

those items remaining on-hand falls to less than half its recommended stockage level.

These vendor recommended levels, therefore, not only define the size but also establish

the frequency of those replenishments. If, for example, the vendor recommended

stockage level for a type 1 water heater is 25, then upon review, an order for 25 of these

heaters is placed only when the quantity on-hand falls below 13. If, on the other hand,

the quantity on-hand at the time of review is greater than 13 then no order is placed.

As should be expected, the management of Tyree Parts & Hardware has found this

two-bin inventory system particularly effective for low dollar items which individually

consume little inventory space such as clamps, screws or bolts. This efficiency, however,

does not hold when the aggregate inventory is considered. Historical records reveal that,

from 1986 through 1990, this simple inventory policy produced a 59 % increase in the

aggregate inventory investment. With more than $ 623,000 tied up in its inventory at the

end of 1990, Tyree Parts & Hardware has increased its aggregate investment in inventory

by over $ 254,000 in just four years. During this same period, a marked increase in the

total space needed to house the resulting inventory quickly consumed all available

inventory space. At present, approximately 70 % of those items which consume large
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Item # WATER HEATERS Space Suggested Desired
Re-Order Safety

1 ZER6STR 6,601.6 4 2
2 ZER10STR 6,733.6 4 2
3 ZER21STR 9,240.8 8 2
4 ZEFU 90-30 STR 16,832.8 10 2
5 ZHEFR 90-32 STR 16,599.9 10 2
6 ZHEFR 90-42 DTR 20,802.4 5 2
7 ZHEFR 90-52 DTR 25,059.4 3 2
8 ZMHG 90-333T NAT 21,617.3 15 4
9 ZMHG 90-333T LP 21,617.3 20 10
10 ZMHG 90-433T NAT 28,497.0 5 2
11 ZMHG 90-433T LP 27,213.8 10 2
12 EQF 250 QUICK FLO 3,811.5 5 2
13 EQF 400 QUICK FLO 3,811.5 4 2
14 SP 1-6C 5,132.9 4 2
15 SP 1-10C 7,596.5 7 2
16 SP 1-17C 10,086.0 7 2
17 SP 1-20C 12,054.0 13 2

MISCELLANEOUS

18 HYDRANT 1,675.0 5 2
19 LS2 48 3,189.4 3 2
20 LS2 410 3,937.5 2 2
21 Q1PC 100G 810.0 10 10
22 Q2PC 10OG 1,587.0 10 10
23 Q3PC 100G 2,500.0 20 10
24 Q4PC 100G 3,920.0 20 10

BATH TUBS

25 T2470-00 23,256.0 1 1
26 T2473-00 22,134.0 2 1
27 T2472-06 23,256.0 1 1
28 T2473-06 22,848.0 2 1
29 T2300-00 27,608.0 10 1
30 T2301-00 28,985.0 16 4
31 T2300-06 28,985.0 5 1
32 T2301-06 29,837.5 10 4

Table 8-1 (Inventory Space Required In Cubic Inches)
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volumes of inventory space must be held in temporary external storage areas. As a result,

an average annual loss approaching $ 6,000 or 1 % of the aggregate inventory investment

has been incurred from pilferage and weather damage. With these annual losses in mind,

the needed to reduce both the aggregate inventory investment and size has been

recognized.

In order to provide a comparative basis with which to evaluated an implementation

of the EOQ based Dual Constraint Algorithm while highlighting the actual ineffectiveness

of the current two-bin inventory system, the thirty two large volume inventory items listed

in Table 8-1 were identified. Utilizing historical records of the product costs, Table A8- 1,

and periodic demands, Table A8-2, associated with these inventory items, Tables A8-3

through A8-8 (displayed in Appendix 8) depict the inventory activity which occurred

during the six period horizon between the Spring of 1988 and the Fall of 1990. In

reconstructing this inventory activity it was assumed that the "Suggested Re-order"

quantities indicated in Table 8-1 were initially on-hand.

Historical Demand Current System

Min Space Min Budget Space Budget
Period Requirement Requirement Requirement Requirement

Spring 88 2811180.5 813.0 6647761.2 1017.9
Fall 88 1553270.0 521.9 5917018.4 886.7
Spring 89 3646354.5 1106.0 7764004.9 1303.4
Fall 89 1415732.1 742.4 5865409.5 1126.5
Spring 90 2396377.2 1020.2 7356772.6 1309.6
Fall 90 911420.4 661.5 5942650.6 1120.0

Table 8-2 (A Basic Resource Requirement Comparison)
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Tracking the maximum inventory space required and computing the total cost of

maintaining these 32 line items using equation (2-1), Table 8-2 exhibits these

requirements along with the minimum budget and storage space resources necessary to

satisfy exactly each line item's historical demand pattern. In comparing these budget and

space requirements, it should be observed that a substantial excess inventory was

maintained throughout the horizon. With these excesses consuming, on average, 67.75

% of the currently required inventory space and 28.07 % of the inventory investment,

clearly there exist the potential for implementing an improved system for handling large

volume line items.

8.3 Unconstrained EOQ Model Implemented

Before implementing the proposed Dual Constraint Algorithm within the indicated

large volume portion of Tyree Parts and Hardware's inventory, a conversion had to be

made from the current two-bin system to the unconstrained EOQ model defined in

Chapter 1. By projecting an unconstrained EOQ based inventory policy over the same

historical horizon examined in section 8.2, some reduction in both the inventory's size

and budget investment should be realized. To accomplish this transformation, both the

carrying cost and the re-order cost parameters associated with each inventory line item

had to be specified. In designating a carrying cost fraction, to be applied uniformly to

each of these inventory items, consideration was given: the cost of money tied up in

inventory, the cost of inventory storage, the taxes paid on inventory, the losses due to

damage or theft and the cost of inventory insurance as suggested by Naddor [28].

Distributing these costs, which in 1990 totaled approximately $ 31,474, over an inventory
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which exceeds 650,000 individual items suggested a carrying cost fraction of .05 per unit

time. With this fraction identified, the carrying cost associated with each inventory item

was computed by simply multiplying the vendor cost of each item by .05.

In defining the re-order cost parameters, consideration was given to both the

clerical and administrative costs, the transportation costs and the general labor costs

associated with the replenishment of those items needed to maintain an effective

inventory. For the 32 line items displayed in Table 8-1, Table 8-3 shows the cost

elements which jointly establish the "fixed" portion of these parameters.

Average Labor Average Admin Total +
Unload Costs @ Admin Cost @ Drop Charge

Line Item Time $ 4.5/hr Time $ 12.5/hr (If Any)

Heaters 2 hrs $ 9.00 3 hrs $ 37.50 $ 96.50

Tubing 1 hr $ 4.50 2 hrs $ 25.00 $ 29.50

Hydrants 1 hr $ 4.50 1 hr $ 12.50 $ 17.00

LS Sheets 1.5 hrs $ 6.75 2 hrs $ 25.00 $ 31.75

Tubs 3 hrs $ 13.50 3 hrs $ 37.50 $ 101.00

Table 8-3 (Fixed Re-Order Cost Elements)

At each semiannual review, these "fixed" re-order costs were equally distributed to each

related line item for which an order was to be placed. The actual re-order cost parameter

was then determined by adding to these values a "variable" transportation cost defined as

15 % of each item's vendor cost.
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To illustrate the calculation of both the carrying and re-order cost parameters as

well as the desired unconstrained EOQ values, consider the inventory activity generated

using the historical demands from the spring of 1988 for the 17 hot water heaters listed

in Table 8-1. The carrying cost parameter of $ 3.2425, displayed in Table 8-4 for

inventory item 1, simply represents 5 % of the $ 64.85 cost incurred by Tyree Parts and

Hardware to obtain each ZER6STR hot water heater (See Table A8-1 for vendor costs).

Inventory Carrying Re-Order Demand Unconstrained!
Item Cost Cost Rate Space EOQ

1 3.2425 16.6203 1.0000 6,601.6 3.0
2 3.5670 17.5938 0.0000 6,733.6 0.0
3 4.0870 19.1538 4.0000 9,240.8 6.0
4 4.5685 20.5983 5.0000 16,832.8 7.0
5 4.5685 20.5983 5.0000 16,599.9 7.0
6 4.8250 21.3678 1.0000 20,802.4 3.0
7 6.5135 26.4333 1.0000 25,059.4 3.0
8 5.4720 23.3088 8.0000 21,617.3 8.0
9 5.4720 23.3088 25.000 21617.3 15.0
10 6.1695 25.4013 8.0000 28497.0 8.0
11 6.2875 25.7553 4.0000 27213.8 6.0
12 4.3625 19.9803 0.0000 3811.5 0.0
13 4.6250 20.7678 0.0000 3811.5 0.0
14 2.9430 15.7218 1.0000 5132.9 3.0
15 3.0950 16.1778 4.0000 7596.5 6.0
16 3.2970 16.7838 3.0000 10086.0 6.0
17 3.5125 17.4303 5.0000 12054.0 7.0

Table 8-4 (Results of Unconstrained Application of EOQ Model to Spring 1988 Data)

The re-order cost parameter associated with this line item combined 15 % of the heater's

$ 64.85 vendor cost with a fix cost of $ 96.50 distributed over the 14 heaters types which
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comprised that spring's replenishment order. It follows, therefore, that the re-order cost

parameter for item 1 during the Spring of 1988 was ($ 96.5 + 14) + [.15 (64.85)] or the

indicated $ 16.6203. Substituting these parameters into equation (1-2) yielded a re-order

quantity of 3.2018 which when rounded to the nearest whole number defined the indicated

unconstrained EOQ value. The results obtained by repeating this process for each of the

indicated line items are reflected in Table 8-4.

Incorporating these unconstrained EOQ values into an inventory policy which

assumed no inventory shortages, an instantaneous replenishment rate and which

maintained the management defined safety stock levels indicated in Table 8-1; projections

of the inventory activity during the six period horizon between the Spring of 1988 and

the Fall of 1990 were made. Displaying these projections, Tables A9-1 through A9-6 can

be view in Appendix 9 along with a detailed explanation of this EOQ based inventory

policy.

Unconstrained EOQ Current Two-Bin System

Space Budget Space Budget
Period Requirement Requirement Requirement Requirement

Spring 88 4480032.7 802.1 6647761.2 1017.9
Fall 88 3172713.8 606.6 5917018.4 886.7

Spring 89 4738885.4 1008.2 7764004.9 1303.4
Fall 89 2922055.7 769.6 5865409.5 1126.5

Spring 90 4213090.2 969.3 7356772.6 1309.6
Fall 90 2890925.1 720.6 5942650.6 1120.0

Table 8-5 (Unconstrained EOQ Verses Two-Bin Resource Requirement Comparison)
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Tracking the maximum inventory space required and computing the total cost

incurred by the resulting replenishment pattern, again using equation (2-1), Table 8-5

exhibits these requirements for both the two-bin inventory system and the suggested

unconstrained EOQ based policy. In comparing these resource requirements, it should

be observed that a substantial decrease in both inventory size and operating cost was

achieved by implementing the suggested policy. Representing a 43.23 % reduction in the

average size of inventory and a 27.91 % investment savings, implementation of this

policy can be recommended as an initial step in effectively controlling this run away

inventory.

8.4 Implementation of Dual Constraint Algorithm

The marked reductions achieved by implementing the suggested unconstrained

EOQ based inventory policy, however, were not sufficient to eliminate completely the

inventory excesses experienced over the last three years. In an effort to further minimize

the annual loss incurred from the external storage of inventory items, a 3,333,618 cubic

inch volume of internal space was reserved for the indicated 32 line item, large volume

inventory. Simultaneous, in an effort to lessen its rapidly growing inventory investment,

Tyree's management established a $ 500 limit on the carrying cost associated with the

replenishments made during any single inventory period.

The degree to which these selected constraint levels impact the suggested

unconstrained inventory policy is displayed in Table 8-6. In considering this table, note

that the values listed as the "Total Projected Space Requirement" reflect the maximum

storage space required by this large volume inventory; while those shown as the
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"Projected EOQ Budget Requirement" track only the additional carrying cost incurred

from the EOQ defined replenishments during each period. With space and budget

Total Projected Space Budget
Projected Space EOQ Budget Reduction Reduction

Period Requirement Requirement Factor Factor

Spring 88 4480032.7 716.7 .744 .697
Fall 88 3172713.8 420.2 1.051 1.189
Spring 89 4738885.4 801.4 .703 .623
Fall 89 2922055.7 609.5 1.140 .820
Spring .90 4213090.2 763.3 .791 .655
Fall 90 2890925.1 440.2 1.153 1.135

Table 8-6 (Unconstrained EOQ Based Policy - Constraint Pattern)

constraint reduction factors, computed by dividing the 3,333,618 cubic inch storage space

constraint by each projected space requirement and the $ 500 investment limit by each

projected budget requirement, the pressure imposed by these constraints becomes evident.

Where reduction factors less than one identify those constraints which remain unsatisfied,

clearly the unconstrained EOQ solutions are infeasible for four of the six periods

examined.

In order to determine the constrained EOQ values needed to optimize this

inventory horizon, the Dual Constraint algorithm was incorporated into step 4 of the EOQ

based inventory policy described in appendix 9. Stepping sequentially through the six

periods of this horizon, appendix 10 displays both a detail explanation of the necessary

computations and the projected inventory activity which would be expected. Table 8-7
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begins a summary of these computations by displayed the effective constraint levels,

unconstrained resource requirements and the 0* defined budget requirements needed

compute the reduction factors (PI, P2 and P) utilized within the Dual Constraint algorithm

Effective Constraint Unconstrained Resource Total Budget
Levels Requirement Requirement

Period Budget Space Budget Space (Single Space Constraint)

Spring 88 500 2141679 716.7 3286917 483.772
Fall 88 500 1953931 416.1 1444668
Spring 89 500 1769915 809.32 3238372 488.829
Fall 89 500 1945398 575.6 1509993
Spring 90 500 1786877 719.95 2699965 509.004
Fall 90 500 1854839 440.3 1007181

Table 8-7 (Effective Constraint Levels Verses Resource requirements)

to determine whether none, one or both of the imposed constraints define the desired

optimal solutions.

The "Effective Space Constraint Levels", shown in this table, represent that

portion of the 3,333,618 cubic inch space restriction not consumed either by the inventory

on-hand at the end of each period or those replenishments made to restore each safety

stock to its desired level. The effective space constraint shown for the spring 1988 as

2,141,676 cubic inches, for example, was derived by subtraction the 1,191,939 cubic

inches needed to handle the management defined safety stock from the total available

inventory space.

The indicated "Unconstrained Resource Requirements" specify the resources
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needed satisfy each period's projected unconstrained EOQ. In determining the size of

each unconstrained replenishment order, only that demand not satisfied by the non-safety

stock, on-hand inventory from the previous period was considered. When, for example,

the inventory on-hand at the end of a period exceeded the required safety stock level by

4 and the historical demand for the next period was 6; then an adjusted demand of 2 was

utilized in equation (1-2) to compute the desired unconstrained EOQs. Thus computed

these order quantities were then incorporated into equations (2-13) and (2-14) to obtain

the values shown.

Finally, the "Total Budget Requirements" reflect the budget resources required to

handle the resulting inventory when only the imposed space constraint was considered.

These values were defined such that:

N
Total Budget Requirement = I biQ9

i=1

where Q9o = {2RD, / [bi + 2WO] } .

As may be recalled from chapter VII, these 0" defined totals, in conjunction with the

unconstrained budget requirements, determine whether the single space constraint or both

the space and budget constraint impact a period's optimal solution.

Incorporating these resource requirements and constraint levels into the Dual

Constraint algorithm, Table 8-8 first presents the resulting reduction factors: P1, P2 and

P. In considering these values, note that the reduction factors P and P2 were computed
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by dividing the indicated "Effective Constraint Levels" by their corresponding

"Unconstrained Resource Requirements" while, when needed, the reduction factor P was

determined by dividing the period's "Total Budget Requirement" by its "Unconstrained

Budget Resource Requirement". To illustrate the ease of these calculations, consider the

reduction factors displayed for the Spring of 1988. The reduction factor P1, shown as

.651, was derived by simply dividing the 2,141,679 cubic inches of inventory space

available at the start of that review period by the 3,286,917 cubic inches needed to store

the unconstrained EOQ replenishments stemming from the adjusted demand pattern of

that period. Similarly, the reduction factor P,, shown as .698, was obtain by dividing the

management imposed $ 500 budget constraint by the $ 716.7 investment needed to

maintain those same unconstrained EOQ replenishments. Finally, the reduction factor P,

shown as .675, was acquired by dividing the 9" defined total budget requirement of $

483.772 by the indicated $ 716.79 unconstrained budget requirement.

Reduction Binding Optimal Lagrangian
Factors Constraints Values

Period P1  P2  P G" ("

Spring 88 .651 .698 .675 Space .0001370858 0
Fall 88 1.352 1.20 ---- None 0 0
Spring 89 .546 .617 .604 Space .0002534664 0
Fall 89 1.288 .868 ---- Budget 0 .16268351
Spring 90 .661 .694 .707 Both .000104013 .18748288
Fall 90 1.849 1.13 ---- None 0 0

Table 8-8 (The Dual Constraint Algorithm - Implemented)
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Armed with these reduction factors, both the binding constraint(s) and the optimal

Lagrangian multipliers, also shown in Table 8-8, were obtained. In considering the

indicated binding constraints and the sequentially calculated V" and O" values, recall from

the Dual Constraint algorithm that if:

a. only P2 
< 1 then Problem P(4,E) - P(4) so that V" = [ (1/P2 )2 - 1]

is optimal,

b. only P, < 1 then Problem P(0,1) E P(O) so that E" computed using the
Implicit algorithm described in Chapter V is optimal,

c. both P1 and P2 
< 1 when P2 

< P, then 4* = [ (1/P 2)2 - 1 ] and 0* = 0
are optimal,

d. both P1 and P2 
< 1 when P2 > P then E" alone is optimal while if

e. P1 < P2 < P then both V" and 0" greater than zero impact the optimal
solution.

Collectively, these five rules eliminate the trial and error normally encountered with such

dual constrained inventories by identifying the binding constraint(s) for each period of the

horizon.

To illustrate the efficiency of these rules consider the reduction factors shown for

the Spring of 1988. Since during this period P2 was greater than P then, according to rule

(d), the period's sole binding constraint was its space limitation. It follows therefore that

®" = .0001370858, used to derive the period's reduction factor P, also defined the

constrained EOQ values needed to optimize this initial period of the inventory horizon.

Similarly, consider the reduction factors shown for the Fall of 1989. Since during this

period P2 was less than P, then, according to rule (a), the period's budget restriction was

its sole binding constraint thereby allowing the direct computation of V" = .16268351.
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For a detailed accounting of the computations underlying Table 8-8 see section A 10.2 in

appendix 10. A review of this computational effort underscores the potential efficiency

of the Dual Constraint algorithm. For all but one of the horizon's four constrained

periods, highlighted in Table 8-8, only a single multiplier had to be identified.

Recognizing, that the identification of as many as eight multipliers may have been

required to optimize this horizon utilizing the classical solution technique described in

chapter II and that even then the optimal multipliers needed during period five would still

not be known the potential efficiency of the Dual Constraint algorithm is apparent.

8.5 Conclusions and Recommendations

The effectiveness of the inventory pattern displayed in Tables A 10-1 through A 10-

6, however, must be gauged first by how well the imposed constraint levels were met

during the four constrained periods encountered within this horizon and then by the total

cost incurred by its operation. In addressing the first of these gauges consider the

maximum inventory space requirements and the additional budget investments displayed

in Table 8-9. With relative errors ranging from .18% to only 1.38% it appears that by

incorporating the Dual Constraint algorithm within the EOQ based inventory policy noted

in section 8.3, both the budget and space constraints imposed in this inventory horizon

have been effectively satisfied. Closer examination of the resulting constrained EOQ

requirements, however, reveals that the constrained space requirement of 3,340,245.1

cubic inches shown for Spring of 1989 and the constrained budget requirement of $ 501.1

shown for the Fall of 1989 actually exceed the stated constraint levels by 6,627.1 cubic

inches and $ 1.1 respectively. These excesses, representing only .19% and .22% relative
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errors, stem from the discrete nature of this inventory problem and were generated by the

Constrained EOQ
Dual Constraint Algorithm

Space Budget
Period Requirement Requirement

Spring 88 3324742.6 484.9
Fall 88 2814331.0 415.1

Spring 89 3340245.1 485.6
Fall 89 2736061.8 501.1

Spring 90 3327465.8 493.7
Fall 90 2479635.8 437.1

Table 8-9 (Summary of Constrained EOQ Resource Requirements)

simple rounding technique used convert each computed EOQ values to its nearest whole

number. With care these minor excesses can be eliminated.

In addressing the cost effectiveness of implementing the Constrained EOQ based

policy within this large volume inventory, consider the average total costs displayed in

Table 8-10 for each of the three inventory systems examined in this chapter. Reflecting

not only the operating costs of each system, computed using equation (2-1), but also their

estimated theft and shortage losses, these average total costs indicate a potential 75 % cost

savings by implementing the Constrained EOQ based policy.

In projecting this potential cost savings note that the $ 3,000.00 semiannual theft

loss shown for the Two-bin system reflects the estimated $6,000.00 annual loss noted

earlier while the loss of $ 803.10 shown for the Unconstrained EOQ based policy reflects

the 43.23% reduction in inventory size achieved by implementing that inventory system.
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Note also that the "Ave Shortage Losses" shown in this table reflect the 30 % profit

Inventory Two-Bin Unconstrained Constrained
Period System EOQ Based Sys EOQ Based Sys

Operating Costs

Spring 88 1017.90 802.10 782.20
Fall 88 886.70 606.60 575.90
Spring 89 1303.40 1008.20 979.20
Fall 89 1126.50 769.60 747.10
Spring 90 1309.60 969.30 922.10
Fall 90 1120.00 720.60 677.30

Ave Oper Costs 1127.36 812.73 780.62
Theft Losses 3000.00 803.10 0.00
Ave Shortage Loss 0.00 46.91 264.58

Average Total Cost 4127.36 1662.74 1045.19

Table 8-10 (Average Total Cost Comparisons)

margin maintained by Tyree Parts & Hardware. Inventory shortages which occurred

while implementing the unconstrained EOQ based inventory policy amounted to a total

loss of only $ 281.46 the over the entire horizon. However, as was expected, profit losses

encountered as the constrained EOQ based policy was implemented were larger;

amounting to $ 1587.48. In considering these potential losses, it should be noted that

each is far overshadowed by the $ 3000 loss currently being experienced due to pilferage

and weather damage each period.

In view of the effectiveness displayed by the Dual Constraint algorithm in

identifying the constrained EOQs needed to optimize an inventory system and the
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potential cost savings indicated by the last two paragraphs, the following

recommendations were made to the management of Tyree Parts & Hardware:

1) Utilize the EOQ based inventory policy described in appendix 9 to

control the its unconstrained inventory. Judging from the average total costs,

shown Table 8-10 for the 32 item large volume inventory, a cost savings of 40%

can be expected. The current two-bin system should continued for all bulk items

such as screw, bolts and brackets.

2) Incorporate the Dual Constraint algorithm as step 4 of the EOQ based

inventory policy to control the constrained portion of its inventory. Tracking the

various costs which comprise both the replenishment and carrying cost defined in

section 8.3 should dictate periodic adjustments to the system parameter. As the

EOQ defined inventory stabilizes the need for the currently defined safety stock

level should diminish.

3) Use both the constrained and unconstrained EOQ based polices only as

planning tools since the EOQ model underlying both these policy considers only

a few of the pressures which impact a small business's inventory system. Noting

the modification made in the recommended EOQs at the time an order is placed

should allow ample planning time to adequately handle the resulting excess

inventory.



Chapter IX

Summary and Future Research

9.1 Summary

The ground covered within this research effort has been considerable. As that

ground was crossed a number of important discoveries were made. To begin, the linear

relationships found during the multi-parameter empirical study, described in chapter III,

established conditions under which an optimal Lagrangian multiplier, V), can be obtained

directly from system parameters. When multiple parameters change within a known

inventory system, in accordance with those conditions, the corresponding change in V"

can be obtained in closed form.

The functional analysis conducted in chapter IV provided both shape and character

to the near-linear, multi-variable functions noted during this empirical study in which (I*

is implicitly defined by the cost and demand parameters of an inventory system. From

this information the Implicit algorithm was developed. This algorithm rapidly establishes

effective bounds on the 4D needed to optimize the N-item, single constraint inventory

problem (PCD). A recursive process was also uncovered which converges to V) without

the usual guess work. A comparative analysis indicated that the proposed Implicit

algorithm both obtains its bounds on cI" and converges more rapidly than the algorithms

presented by Venture and Klein [391, Ziegler [41] and the classical solution technique.

The initial goal of obtaining an improved process for locating V for the multi-item single

constraint inventory problem has, therefore, been reached.

Building on the theoretical foundation underlying the Implicit algorithm, the

154
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Horizon algorithm was also developed. Rather than assuming no knowledge of an

inventory system, this algorithm utilizes both the system parameters and VI of an existing

inventory to obtain the multiplier, 0',, associated with an inventory defined when

various parameters within the initial system shift. The recursive application of this

algorithm proved effective in identifying the series of Lagrangian multipliers needed to

optimize multi-period inventory horizons when constrained conditions extend over several

consecutive periods. This algorithm proved particularly useful when the inventory was

comprised of less than 30 line items or when less than one third of the system parameters

shift.

With the second goal of this study completed, research focused on the dual

constraint problem P(c,G). The empirical study, presented in section 7.2, found that

three distinct functional relationships emerge as the constraint levels of an inventory

system shift. These relationships were used to establish the Dual Constraint algorithm

which:

1) Determines directly that portion of a linear constraint set which defines the

Lagrangian multipliers needed to optimize the dual constraint problem,

2) Obtains quickly the optimal multiplier when only a single constraint is found

binding and

3) Effectively identifies V" and G) estimates when both constraints remain active.

By allowing the dual constraint problem P(4',E) to be solved directly without using the

trial and error method inherent within the classical approach, this algorithm accomplishes
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the third goal set for this research effort.

To conclude this study, a real world application of the algorithms developed

during this study was attempted. Selecting a thirty two item, large volume portion of the

inventory maintained by Tyree Parts & Hardware of Columbia Missouri and tracking its

historical activity from 1988 through 1990, the potential benefit to be gained by

implementing these algorithms was demonstrated. Displaying an approximate cost

savings of 75 %, while effectively satisfying both an investment limitation and a storage

space restriction imposed over a six period horizon, the advantages to be gained by

implementing the results of this study were shown to be substantial.

9.2 Future Research

Two major areas of future research are suggested by the success achieved during

the current research effort. First an extension of both the Implicit and Horizon algorithms

should be made to more complex inventory models. Examination of those EOQ models

which exhibit non-instantaneous replenishment and\or shortages costs, for example, would

substantially expand the usefulness of these algorithms within real world inventory

systems. Preliminary investigation of an EOQ model which includes inventory shortage

costs indicates that near-linear relationships again emerge as various system parameters

undergo change. The existence of these functional relationships strongly suggest the

potential for success within this area of research.

A second area of future study is the expansion of the Dual Constraint algorithm.

Considering the redundant nature which can be exhibited when multiple linear constraint

are imposed on an inventory system and the dominance often exerted by one of several
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constraints, this extension should deal first with the dual constraint problem in which

linear and non-linear constraints are paired. Since, when such constraints are active, the

non-linear constraint's multiplier can often be express in term of the linear constraint's

multiplier; this extension could follow directly from the work displayed in chapter VII.

If successful, the foundation needed to extend the Dual Constraint algorithm to the N-

constraint cases would be solidified.
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APPENDIX I

The purpose of this appendix is to display plot showing the near-linear nature of

the functional relationships found by Maloney [261 between V" and selected single

parameter shifts within a two item inventory system.
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APPENDIX 2

The purpose of this appendix is to provide the data generated from a randomly

selected four-item inventory system during the empirical study conducted for the single

constraint Problem (P(I). The data contained in the next two pages illustrates the system

explosion described in chapter III. Each row represents a different data run in which

twenty related systems were generated and analysis by adding one sequentially to each

perturbed parameter. The column titled 'KEY' identifies those parameters shifted during

each run. For example, in the run designated by (R 1 1 C 1 1 ) only item one's

carrying cost was changed while all other system parameters were held constant. During

the run designated by (R 1 4 C 1 2 ), however, all four carrying costs and all four re-

order costs under went simultaneous changes while the remaining parameters were held

constant.



167

HOLDING REORDER DEMAND

Item #1 41 87 55
Item #2 5 92 95
Item #3 4 29 52
Item #4 30 7 79

CONSTRAINT SET AT 50.80544

KEY SLOPE CORR COEFF INITIAL L FINAL L
(R 1 1 C 1 1) -0.0151 0.9939 9.6870 9.0070
(R 1 1 C 1 2) 0.0221 0.9954 10.0000 11.0000
(R 1 1 C 1 2) 0.0592 1.0000 10.1000 12.7700
(R 1 1 C 2 2) 0.0506 0.9996 10.0710 12.3530
(R 1 1 C 2 3) 0.1008 0.9981 10.2160 14.7600
(R 1 1 C 3 3) 0.0248 0.9948 10.0000 11.0530
(R 1 2 C 1 1) -0.1435 0.9397 8.2040 1.5550
(R 1 2 C 1 2) -0.0868 0.9596 8.8860 4.8820
(R 1 2 C 1 3) 0.0406 0.8046 9.4470 11.1700
(R 1 2 C 2 2) 0.1430 0.9996 10.5000 17.0000
(R 1 2 C 2 3) 0.3432 0.9957 11.0730 26.5230
(R 1 2 C 3 3) 0.1079 0.9999 10.3300 15.2000
(R 1 3 C 1 1) -0.4574 0.9999 7.4400 0.5800
(R 1 3 C 1 2) -0.1831 0.9975 8.7070 0.4710
(R 1 3 C 1 3) 0.1812 0.9294 9.6570 17.7700
(R 1 3 C 2 2) 0.2565 1.0000 11.0550 22.6000
(R 1 3 C 2 3) 0.6383 0.9940 12.0040 40.7300
(R 1 3 C 3 3) 0.1729 1.0000 10.6440 18.4200
(R 1 4 C 1 1) -0.5009 1.0000 7.3000 2.2910
(R 1 4 C 1 2) -0.0582 0.9971 9.4900 6.8800
(R 1 4 C 1 3) 0.5163 0.9715 10.6150 33.8100
(R 1 4 C 2 2) 0.4418 1.0000 12.0000 31.8800
(R 1 4 C 2 3) 1.0160 0.9925 13.1150 58.8100
(R 1 4 C 3 3) 0.1957 0.9999 10.7330 19.5340
(R 2 2 C 1 1) -0.1341 0.9433 8.3120 2.0980
(R 2 2 C 1 2) -0.1056 0.9593 8.7120 3.8500
(R 2 2 C 1 3) -0.0466 0.8978 9.1170 6.9260
(R 2 2 C 2 2) 0.0788 0.9998 10.2060 13.7530
(R 2 2 C 2 3) 0.1893 0.9991 10.6250 19.1400
(R 2 3 C 1 1) -0.4309 0.9999 7.5510 1.0900
(R 2 3 C 1 2) -0.2284 0.9989 8.5240 0.5460
(R 2 3 C 2 2) 0.1784 0.9997 10.7600 18.7700
(R 2 3 C 2 3) 0.4320 0.9976 11.5310 31.0000
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KEY SLOPE CORR COEFF INITIAL L FINAL L
(R 2 3 C 3 3) 0.1361 0.9997 10.5050 16.6500
(R 2 4 C 1 1 ) -0.4735 1.0000 7.4020 0.3000
(R 2 4 C 1 2) -0.1154 0.9999 9.3000 4.1300
(R 2 4 C 1 3) 0.2922 0.9710 10.2330 23.3400
(R 2 4 C 2 2) 0.3367 0.9997 11.6700 26.8640
(R 2 4 C 2 3) 0.7430 0.9961 12.6060 46.0300
(R 2 4 C 3 3) 0.1572 1.0000 10.6000 17.6800
(R 3 3 C 1 1) -0.0518 0.9567 9.1700 6.7520
(R 3 3 C 1 2) -0.0087 0.9487 9.6800 9.2740
(R 3 3 C 1 3 ) 0.0568 0.9975 10.0000 12.5100
(R 3 3 C 2 2) 0.0886 0.9982 10.3350 14.3100
(R 3 3 C 2 3) 0.1951 0.9994 10.6740 19.4600
(R 3 3 C 3 3) 0.0533 0.9986 10.1000 12.5100
(R 3 4 C 1 1) -0.0665 0.9601 9.0400 5.9500
(R 3 4 C 1 2) 0.0601 0.9787 10.4050 13.1620
(R 3 4 C 1 3 ) 0.2174 0.9992 10.8560 20.7100
(R 3 4 C 2 2) 0.2258 0.9985 11.2300 21.4530
(R 3 4 C 2 3 ) 0.4451 0.9980 11.7060 31.7600
(R 3 4 C 3 3) 0.0709 0.9992 10.1850 13.4000
(R 4 4 C 1 1 ) -0.0145 0.9822 9.6630 9.0000
(R 4 4 C 1 2) 0.0549 0.9649 10.4900 13.0500
(R 4 4 C 1 3 ) 0.1017 0.9949 10.6000 15.2500
(R 4 4 C 2 2) 0.1135 0.9956 10.6600 15.8320
(R 4 4 C 2 3 ) 0.1824 0.9998 10.7800 19.0340
(R 4 4 C 3 3) 0.0151 0.9973 9.8760 10.5700
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APPENDIX 3

The purpose of this appendix is to provide extensions of the three proofs of

linearity given by Maloney [26] to the N-item inventory case. Each of these proofs deal

with restricted cases. The first considers the case where all C/WI ratios within a system

are equal while the latter two consider cases where, in addition R1 = R and D, = D.
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Theorem A3-1

Let SA and SB be two inventory systems such that

SA = S(C/W,Ri,Di) for i = 1 to N

SB = S(C/W + A,R,Di) for i = 1 to N

Let SA and SB be subject to an active constraint U and let the Lagrangian multipliers D

and 0 exist for system SA and SB respectively. Then for all values a linear relationship

between (D and 0 exist.

Proof: Let qAi and qi be the EOQs for item i (i=l to N) in systems SA and SB

respectively. Then from equation (4-5) and KKT condition of feasibility equation (2-8)

it follows that:

I -qAi = I ql so that,

N
I [(2R1DiWi)/(C/W + 2(4)]12 =

i=1 N
I [(2RDiW,)/(C/W + A + 20)]"2,
i= 1

N
1/(C/W + 2(4)]112 I (2R1DiW i)"2 =

i=1 N
1/(C/W + A + 20)' 2 (2R1DiW) ' /2,

i=1

[1/(C/W + 2b)]"'2 = [1/(C/W + A + 2cD)]1
'.

Which yields the linear relationship

0 = - A. U.
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Theorem A3-2

Let SA and SB be two inventory systems such that

SA = S(C/W,R,D) for i = I to N

SB = S(C/W,R + A,D) for i = 1 to N

Let SA and SB be subject to an active constraint U and let the Lagrangian multipliers 4)

and 0 exist for system SA and SB respectively. Then for all values a linear relationship

between 4) and 0 exist.

Proof: The proof is similar to that of Theorem A3-1. This time, however,

0 = 0 (R + A)/R + (C/W)A/R

Theorem A3-3

Let SA and SB be two inventory systems such that

SA= S(C/W,R,D) for i = 1 to N

SB= S(C/W,R,D + A) for i = 1 to N

Let SA and SB be subject to an active constraint U and let the Lagrangian multipliers (D

and 0 exist for system SA and SB respectively. Then for all values a linear relationship

between 4D and 0 exist.

Proof: The proof is similar to that of Theorem A3-1. This time, however,

0 = (D(D + A)/D + (CiW)A/D
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APPENDIX 4

The purpose of this appendix is to complete the Implicit function analysis begun

in section 4.4 by providing the following detailed proofs of:

the monotonic nature of f5(4,C/Wi,R,,Di), i = 1, 2,.., or N, Theorem A4-1

the convexity displayed by f5((I,C/.Wi,R.,Di), i = 1, 2, .... or N Theorem A4-2

and

the monotonic nature of f4(@,RDi), i = 1 to m, m < N. Theorem A4-3
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Theorem A4-1

The function defined implicitly between 0 and each parameter of a single

inventory item as f5(4),CWj,R1 ,Dj), i=1,2....,or N is monotonically increasing (decreasing)

if (D > (<) [R1D,/2(Ri+Di)] - (CJ/2W).

Proof: Let f5(4),C/W,R,,Dj) =

N
I [(2RiDiWi)/(CIW i + 20)] 2 - U. (A4-1)
i=1

The summation of 80I1(CW1), 64l/5Rj and SO/5 1) for the i' item of inventory becomes:

- [2R,DW/(C/Wi + 2(D)3]12 + Ri- [2DjWV(C/Wj + 24) )]lf +

16 Dj [2R1W/(CIWl + 24))]12
--------------------------------------------------------------------------

N
I [2RPDW/1(C,/W1 + 2 )3]uz

i=1 (A4-2)

From Theorem 1 [8, pp 165] function f5 is monotonically increasing (decreasing) if

equation (A4-2) is _> (5) zero. It follows, therefore, f5 is monotonically increasing

(decreasing) when:

-[2Ri 2D.2W]' 2 + [2Di2Wj(C-/W + 2 ) )2]ln + [2Ri 2Wj(C/W + 20))2111" > (_5) 0. (A4-3)

Simplifying and rearranging equation (A4-3) reveals that function f5 is monotonically

increasing (decreasing) when:
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(D > (5) [RD/2(R.+Di)] - (C1/2W). U

Theorem A4-2

The function defined implicitly between (D and each parameter of a single

inventory item as f5(4,CQWi,R,,Di), i=1,2....,or N is concave (convex) if:

4) _ (5) [R1D,/2(R1+Di)] - (C/2Wj).

Proof: For f5(4),C/iWi,Rj,D), i=1,2 ..... or N to be concave (convex), applying Theorem

3.3.3 [1],

f5(4),,C/W,+A,RI+A,DI+A) < (>) f5((D2,C1/W1,R1 ,Dl) +

Vf5((D2,C,/WI,R,,D,)t(C,/W,+A-Cl/W,,R,+A-R,,D,+A-DI)

where WLOG i-l and A > 0. Recognizing that as along as 3 4) > 0 such that KKT

condition (2-8) is satisfied then

f5(4)1 ,C,1W1+A,R 1+A,DI+A) = f5( 2,C/W,R,,D1).

It follows, therefore that f5(qD,Cj/Wj,R.,Dj), i=1,2....,or N is concave (convex) if:

Vf5(()2,C1/W1,R,Dj)t (A,A,A) - (5) 0 so that

A(4)D/a(Cj/Wj) + d4)/aR1 + d4/aD1 ) _> (<) 0 (A4-4)

From the proof of Theorem A4-1 note that when 4D >- [RD/2(R1 +Di)] - (Cj/2W), equation

(A4-2) is greater than zero. It follows, therefore, that the summation of partial derivatives

which comprise each element of equation (A4-4) must also be greater than zero so that
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function f5 is concave when (D _ [RiD/2(Ri+Di)] - (C1/2Wi). From the proof of Theorem

A4-1 note also that when (D < [R1D/2(R+Di)] - (C/2W,), equation (A4-2) is less than

zero. It follows, therefore, that the summation of partial derivatives which constitute each

element of equation (A4-4) must be less than zero so that function f5 is convex when (D

< [R1DJ2(R1+D)l - kC,/2Wi). M

Theorem A4-3

The function f4(4),RD,) i = 1 to m, m < N, where 4D is defined implicitly by RD,,

is a concave function.

Proof: Since from Corollary 4-5-1 f4(4),RD,) is a monotonically increasing function

then, following Theorem 3.3.3 [1], f4(4),RD) i = 1 to m, m < N is a concave function

if:

f4(4)1,RDi+A) <_ f4(4)2,RDi) + Vf4 (I) 2,RDi)t [(RDi+A-RDi)] or if

f4(4)1,RDs) < f4(4) 2,RD-A) + Vf4(02,RDi-A)t [(RD1-RD+A)] (A4-5)

where WLOG A > 0 represents simultaneous and uniform shifts in selected RD,

parameters. Focusing on the first of these expressions and recognizing that as long as 3

4) > 0 such that KKT condition of feasibility (2-8) is satisfied then

f4(4) 2,RDs) = f4(4) 1,RDs+A).

It follows therefore that f4(4),RD,) i = 1 to m, m < N is a concave if:
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Vf4(4 2,RDi) t (A) > 0. (A4-6)

Now since each of the m elements of vector A are positive and since each of the m

elements of Vf4( 2,RD) via Corollary 4-5 are positive then clearly equation 4-25 holds

and f4(4D,RDi) is concave regardless of the value m < N assumes.
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Appendix 5

The purpose of this appendix is first to exhibit the validity of the Horizon

algorithm by displaying the resulting optimal Lagrangian multipliers generated by each

of the compared algorithms when inventory sizes were set at 15. The second part of this

appendix presents the results obtained when Version 3 of the Horizon algorithm was used

to solve inventory horizons in which shifts occurred simultaneously in both reorder and

demand parameters.
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Optimal Lagrangian Multipliers

INVENTORY SIZE AT 15 CATEGORY (Reorder)
SEED WAS 84573 ALPHA .2009115

H CLASSIC IMPLICIT ZIEGLER HORIZON P Max Slope

8.090002 8.099552 8.099546 8.09953 3 1.704985E-02
8.420502 8.420479 8.420489 8.420478 4 1.705447E-02
8.155405 8.155365 8.155371 8.155369 3 1.705312E-02
7.8199 7.819886 7.819885 7.819896 4 1.708034E-02
7.963331 7.963328 7.963319 7.963312 2 1.712086E-02
7.881161 7.881137 7.881152 7.881168 1 1.709319E-02
8.107661 8.10764 8.107649 8.107663 3 1.710963E-02
7.775441 7.775433 7.775425 7.77545 4 1.707291E-02
8.075005 8.074954 8.074942 8.074948 4 1.711625E-02
7.744901 7.744946 7.744949 7.744962 4 1.707615E-02

2
27.64979 27.64977 27.64976 27.64977 1 5.153254E-02
28.6426 28.64257 28.64259 28.64258 4 5.153917E-02
27.54879 27.54876 27.54876 27.54876 4 5.156199E-02
27.2816 27.28158 27.28155 27.28154 1 5.153992E-02
27.02929 27.02923 27.02923 27.02921 1 5.153525E-02
26.79001 26.79089 26.79088 26.7909 1 5.155383E-02
25.8238 25.82375 25.82378 25.82378 4 5.159381E-02
25.36389 25.36384 25.36381 25.36382 2 5.168929E-02
25.7787 25.77868 25.77867 25.77866 2 5.180486E-02
26.21729 26.21724 26.21722 26.21724 2 5.169843E-02

3
2.45046 2.450482 2.450473 2.450464 2 5.625628E-03
2.487528 2.487531 2.487537 2.487507 1 5.629097E-03
2.446669 2.446653 2.446674 2.446666 1 5.633128E-03
2.483529 2.483519 2.483508 2.483512 1 5.628831E-03
2.347 2.347008 2.347005 2.346985 4 5.632586E-03
2.416628 2.416631 2.416621 2.416639 2 5.634216E-03
2.309359 2.309338 2.309367 2.309373 3 5.640303E-03
2.34518 2.345163 2.345174 2.345166 1 5.640355E-03
2.382939 2.38294 2.382932 2.382953 1 5.64467E-03
2.277868 2.277873 2.277864 2.277848 3 5.651552E-03

4
1.334484 1.33449 1.334472 1.334506 2 .0042274
1.25359 1.253577 1.253596 1.253567 3 4.233917E-03
1.227642 1.227648 1.227638 1.227632 1 4.242852E-03
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H CLASSIC IMPLICIT ZIEGLER HORIZON P Max Slope
1.27513 1.275112 1.275125 1.27515 2 4.250387E-03
1.1979 1.197941 1.197941 1.197943 3 4.23816E-03
1.22114 1.221131 1.221128 1.221132 1 4.251457E-03
1.29211 1.292119 1.292104 1.292122 3 4.244626E-03
1.38703 1.387033 1.387017 1.387023 4 4.234039E-03
1.488162 1.488151 1.488161 1.488174 4 4.230773E-03
1.427661 1.427669 1.427664 1.427676 2 4.232964E-03

5
2.602019 2.602039 2.602011 2.602015 4 5.772888E-03
2.664928 2.664912 2.664921 2.66493 2 5.769477E-03
2.700601 2.700577 2.700613 2.700591 1 5.772477E-03
2.73819 2.738182 2.738195 2.738173 1 5.775409E-03
2.878818 2.878825 2.878805 2.87881 4 5.780795E-03
2.723899 2.723894 2.723876 2.723899 4 5.790914E-03
2.763233 2.763214 2.76322 2.76322 1 5.780137E-03
2.719861 2.719858 2.719875 2.719863 1 5.787778E-03
2.789918 2.789896 2.789921 2.789927 2 5.779458E-03
2.831319 2.831331 2.83131 2.831334 1 5.790524E-03

6
23.11679 23.11669 23.11669 23.11669 13 3.893094E-02
25.1821 25.18203 25.18203 25.18204 12 3.894497E-02
22.7787 22.77863 22.77863 22.77864 13 3.898167E-02
24.9 24.94211 24.94212 24.94211 13 3.895525E-02
27.17869 27.17864 27.17863 27.17864 12 3.891558E-02
29.76569 29.76563 29.76564 29.76563 13 .039037
27.06779 27.06769 27.0677 27.0677 12 3.908768E-02
24.6238 24.62374 24.62374 24.62372 12 3.901038E-02
22.5534 22.55339 22.55337 22.55336 11 3.895743E-02
20.2763 20.27622 20.27623 20.27622 14 3.894312E-02

7
2.155913 2.155927 2.155907 20.27631 13 3.705458E-02
1.9 1.9169 1.916896 1.916877 11 4.299146E-03
1.677216 1.677226 1.67721 1.677208 14 4.265847E-03
1.87086 1.870843 1.870861 1.870867 11 4.286413E-03
1.638174 1.638172 1.638158 1.638178 13 4.289148E-03
1.427051 1.427057 1.427054 1.427046 14 4.279929E-03
1.615217 1.615202 1.615214 1.615238 13 4.268135E-03
1.814411 1.814423 1.814418 1.814421 12 4.277573E-03
1.587471 1.587475 1.587458 1.58748 13 4.284005E-03
1.400012 1.400005 1.399995 1.400018 11 4.274182E-03

8
1.293139 1.293147 1.293147 1.400025 14 3.646981E-03
1.13279 1.132811 1.132811 1.13279 12 3.139841E-03
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H CLASSIC IMPLICIT ZIEGLER HORIZON P Max Slope
.9000001 .9805597 .9805686 .9805691 13 3.140208E-03
1.10271 1.102701 1.102705 1.028498 11 2.967404E-03

8 1.244524 1.244524 1.244519 1.244505 12 3.134354E-03
1.081808 1.081815 1.0818 1.08179 13 3.138085E-03
1.228289 1.228293 1.228292 1.228274 13 3.134999E-03
1.0829 1.082919 1.082927 1.082927 11 3.137757E-03
.9000001 .9505266 .9505393 .9505541 11 3.138307E-03
.8156463 .8156376 .8156641 .779619 13 3.032382E-03

9
15.1349 15.13484 15.13485 15.13483 13 3.158994E-02
13.59 13.59187 13.59191 13.59189 14 3.160791E-02
14.79001 14.79887 14.79889 14.79886 11 .0316121
13.28901 13.28961 13.28961 13.28963 14 .0315705
14.47761 14.47759 14.47759 14.4776 11 .0315955
13.1018 13.10175 13.10174 13.10177 12 3.158474E-02
14.4417 14.44164 14.44164 14.44162 14 3.160241E-02
13.14183 13.14183 13.14181 13.14184 11 3.159443E-02
14.37901 14.37993 14.37991 14.37993 12 3.162122E-02
15.66002 15.66003 15.66002 15.66001 11 3.159142E-02

10
7.91887 7.918875 7.918879 7.918866 11 1.461637E-02
8.766445 8.766439 8.766445 8.766444 14 1.461773E-02
9.590004 9.591376 9.591371 9.591368 11 1.462773E-02
10.58102 10.58104 10.58103 10.58102 13 1.463621E-02
9.584907 9.584879 9.584884 9.584873 11 1.464852E-02
10.53641 10.5364 10.5364 10.5364 12 1.463453E-02
9.451904 9.451885 9.451881 9.451905 13 1.464279E-02
8.451642 8.451641 8.451619 8.451628 14 .0146318
7.600701 7.600678 7.600678 7.600687 12 1.462018E-02
6.83122 6.831219 6.831224 6.831232 12 .0146154
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LOWER RANGE

N STATISTIC ZIEGLER IMPLICIT HORIZON

5 TIME 11.48203 8.990626 8.353907
AME 6.941858 3.4828 .9217744
ARE .876054 .9584746 .1101018

15 TIME 37.20937 23.28516 21.05
AME .60551 1.93297 .4455682
ARE .2079338 1.017191 .1614291

30 TIME 104.4781 48.96641 45.10704
AME .6636105 5.618967 1.121334
ARE .0955780 .8126926 .1460536

50 TIME 237.4266 81.05781 75.16719
AME .6614721 6.034627 1.377409
ARE .0463952 .8043341 .1379604

HIGHER RANGE

N STATISTIC ZIEGLER IMPLICIT HORIZON

5 TIME 10.74141 8.582812 8.449219
AME 3.517806 2.770939 .6564563
ARE .6304057 1.587542 .1700051

15 TIME 39.34375 24.51328 22.96406
AME 1.606574 3.5807 .7560912
ARE .3233844 1.922109 .1862562

30 TIME 102.1328 48.1875 45.7
AME .2499031 4.043327 .7131383
ARE .0712604 1.740208 .2084213

50 TIME 239.8563 81.82188 80.39844
AME 1.054366 6.604976 2.6561
ARE .048452 1.55747 .2108463

Table A5-1 (Statistics for Dual Parameter Category Shifts - Reorder and Demand)
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Appendix 6

The purpose of this appendix is to display the results of the empirical study

described in section 7-2. Mirroring the information presented in Tables 7-5, 7-6, and 7-7

for the LLLL system configuration, the following tables exhibit data concerning the

HHHH, HLLH and LHHL system configurations.
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Reduction Factors

Space Budget (o 00 B Slack W Slak

.6 .1 49.4998 0 0 1 63
1 .2 11.9999 0 0 99Ci661
1 .3 5.0555 0 0 74277.46
1 .4 2.6249 0 0 4951831
1 .5 1.4999 0 0 24759.16

.6 .8888 0 0 0

.62 .6919 .0208 0 0

.64 .5210 .0401 0 0

.66 .3708 .0583 0 0

.68 .2372 .0758 0 0

.7 .1171 .0928 0 0

.72 .0076 .1096 0 0

.74 0 .1108 838.388 0
I .76 0 I 1742.795 0
I .78 0 I 2647.205 0
I .8 0 I 3551.624 0

.6 .9 0 .1108 8073.674 0

Table A6-1 (Empirical Data for High-High-High-High System Configuration)
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Reduction Factors

Space Budget (" 0" B Slack W SlaI

.5 .1 49.4998 0 0 7759.66,
.2 11.9999 0 0 5819.74'
.3 5.0555 0 0 3879.83

1 .4 2.6249 0 0 1939.91
I .48 1.6701 0 0 387.981

.5 1.4999 0 0 0

.51 1.2520 .0304 0 0

.52 1.0274 .0591 0 0

.54 .6367 .1125 0 0

.56 .3091 .1615 0 0

.58 .0302 .2074 0 0

.59 0 .2127 25.696 0

.6 0 I 59.342 0
1 .7 0 I 395.801 0

.8 0 I 735.261 0
.5 .9 0 .2127 1068.720 0

Table A6-2 ( Empirical Data for High-Low-Low-High System Configuration)

Reduction Factors

Space Budget 4" 0" B Slack W Slack

.7 .1 49.4998 0 0 2000934
I .2 11.9999 0 0 16691.12
I .3 5.0555 0 0 13372.89
I .4 2.6249 0 0 100547
I .5 1.4999 0 0 673644
I .6 .8888 0 0 3418.22
I .7 .5204 0 0 99.99
I .71 .3878 .0869 0 0
I .72 .2285 .2016 0 0
I .73 .0870 .3064 0 0
I .74 0 .3726 88.614 0
I .8 0 I 1729.327 0

.7 .9 0 .3726 4463.848 0

Table A6-3 ( Empirical Data for Low-High-High-Low System Configuration)
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Appendix 7

Sample Data Generated for LLLL System Configuration

SLACKB/% ERROR SLACKS/% ERROR P2 LOC/CRSZ

1 -18.24463000 -3.23718300 0.34704340
-0.00710312 -0.00174632 0.06134045

2 -7.50488300 -3.56231700 0.88591540
-0.01362607 -0.00771277 0.01572226

3 -34.13477000 -12.30774000 0.44831400
-0.05273898 -0.02130336 0.03186712

4 -51.43384000 -20.07349000 0.36802910
-0.03493412 -0.01511391 0.07763645

5 -60.77161000 -14.46906000 0.24409660
-0.04050860 -0.01679874 0.10706670

6 -13.11328000 -3.75097700 0.67292650
-0.00471682 -0.00138799 0.03497058

7 -1.41992200 -1.58422900 0.95359840
-0.00128927 -0.00148536 0.01349986

8 -86.74682000 -11.13696000 0.83754100
-0.06672071 -0.01354558 0.07826117

9 -16.49341000 -4.31475900 0.08642373
-0.01433119 -0.00560480 0.07160386

10 -8.45019600 -10.81421000 0.41223690
-0.00351205 -0.00321693 0.02443934

11 -0.92114260 -0.65002450 0.92951410
-0.00087872 -0.00071955 0.00575659

12 -108.82300000 -17.73651000 0.75356250
-0.06183699 -0.01844615 0.14303030



186

Appendix 8

Tyree Parts and Hardware - Historical Data

The initial purpose of this appendix is to display both the vendor costs incurred

and the demand pattern experienced by Tyree Parts & Hardware during the six period

horizon from the spring of 1988 through the fall of 1990 for the 32 large volume

inventory item shown in Table 8-1. This historical data is presented in Tables A8-1 and

A8-2 respectively. Table A8-3 through A8-8 exhibit the actual inventory activity

experienced by this small hardware company during that same period utilizing it current

two bin inventory system. These tables track the initial inventory on-hand, the size of

each replenishment order and the final inventory on-hand for each of these six periods.

The maximum space requirements encountered during each period is also
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S88 F88 S89 F89 S90 F90
Water Heaters

ZER6STR 64.9 64.9 68.1 68.1 67.8 73.5
ZER1OSTR 71.3 71.3 71.3 71.3 71.3 71.3
ZER21STR 81.7 81.7 80.2 80.2 80.2 80.2
ZEFU 90-30 STR 91.4 85.4 89.7 89.7 89.7 89.7
ZHEFR 90-32 STR 91.4 85.4 89.7 89.7 89.7 98.6
ZHEFR 90-42 DTR 96.5 96.5 101.3 101.3 114.7 115.8
ZHEFR 90-52 DTR 130.3 130.3 130.3 127.8 138.6 138.6
ZMHG 90-333T NAT 109.4 102.3 117.3 157.3 1.59.3 159.3
ZMHG 90-333T LP 109.4 102.3 117.3 157.3 159.3 159.3
ZMHG 90-433T NAT 123.4 123.4 132.5 172.5 171.8 171.8
ZMHG 90-433T LP 125.8 117.5 132.5 172.5 171.8 171.8
EQF 250 QUICK FLO 87.3 87.3 87.3 87.3 87.3 92.0
EQF 400 QUICK FLO 92.5 92.5 92.5 92.5 97.0 97.0
SP 1-6C 58.9 58.9 58.9 58.9 62.4 62.4
SP 1-10C 61.9 64.9 61.9 61.9 65.6 65.6
SP 1-17C 65.9 65.9 65.9 65.9 69.9 69.9
SP 1-20C 70.3 70.3 70.3 70.3 74.5 74.5

MISCELLANEOUS

HYDRANT 71.4 71.4 71.4 71.4 71.4 74.3
LS2 48 29.2 29.2 29.2 29.2 29.2 30.1
LS2 410 32.6 32.6 32.6 32.6 32.6 32.6
Q1PC 100G 24.4 24.4 28.5 28.5 28.5 28.5
Q2PC IOOG 32.2 32.2 31.8 31.8 33.7 33.7
Q3PC 100G 30.4 35.4 35.4 35.4 37.6 37.6
Q4PC 100G 55.5 55.5 64.8 64.7 64.7 64.7

BATH TUBS

T2470-00 84.6 84.6 85.6 85.6 89.1 89.1
T2473-00 84.6 84.6 85.6 85.6 89.1 89.1
T2472-06 94.2 94.2 94.2 94.2 98.0 98.0
T2473-06 90.0 90.0 98.0 98.0 98.0 98.0
T2300-00 80.6 80.6 81.6 81.6 85.0 85.0
T2301-00 80.6 80.6 80.6 80.6 85.0 85.0
T2300-06 85.7 85.7 89.8 89.8 89.8 89.8
T2301-06 85.7 85.7 89.8 89.8 89.8 89.8

Table A8-1 (Product Cost Data - 1988 through 1990)
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S88 F88 S89 F89 $90 F90
WATER HEATERS

ZER6STR 1.0000 2.0000 4.0000 2.0000 1.0000 3.0000
ZERIOSTR 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
ZER21STR 4.0000 5.0000 4.0000 2.0000 3.0000 1.0000
ZEFU 90-30 STR 5.0000 3.0000 3.0000 5.0000 2.0000 1.0000
ZHEFR 90-32 STR 5.0000 4.0000 9.0000 7.0000 6.0000 0.0000
ZHEFR 90-42 DTR 1.0000 1.0000 3.0000 4.0000 4.0000 0.0000
ZHEFR 90-52 DTR 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
ZMHG 90-333T NAT 8.0000 16.000 13.000 11.000 5.0000 7.0000
ZMHG 90-333T LP 25.000 25.000 35.000 15.000 15.000 6.0000
ZMHG 90-433T NAT 8.0000 5.0000 5.0000 3.0000 4.0000 2.0000
ZMHG 90-433T LP 4.0000 4.0000 1.0000 2.0000 2.0000 5.0000
EQF 250 QUICK FLO 0.0000 0.0000 1.0000 2.0000 1.0000 2.0000
EQF 400 QUICK FLO 0.0000 0.0000 1.0000 2.0000 1.0000 2.0000
SP 1-6C 1.0000 1.0000 3.0000 2.0000 1,0000 4.0000
SP 1-10C 4.0000 5.0000 3.0000 4.0000 4.0000 3.0000
SP 1-17C 3.0000 6.0000 5.0000 7.0000 5.0000 6.0000
SP 1-20C 5.0000 3.0000 7.0000 8.0000 4.0000 6.0000

MISCELLANEOUS

HYDRANT 0.0000 0.0000 1.0000 4.0000 3.0000 0.0000
LS2 48 0.0000 0.0000 2.0000 4.0000 7.0000 11.000
LS2 410 0.0000 0.0000 2.0000 4.0000 6.0000 4.0000
Q1PC 100G 0.0000 0.0000 5.0000 4.0000 5.0000 6.0000
Q2PC IOOG 0.0000 6.0000 9.0000 7.0000 6.0000 14.000
Q3PC 100G 19.000 12.000 23.000 20.000 24.000 22.000
Q4PC 10OG 0.0000 10.000 17.000 13.000 11.000 5.0000

BATH TUBS

T2470-00 1.0000 0.0000 2.0000 0.0000 3.0000 0.0000
T2473-00 3.0000 0.0000 2.0000 0.0000 3.0000 0.0000
T2472-06 3.0000 0.0000 2.0000 0.0000 3.0000 0.0000
T2473-06 3.0000 0.0000 2.0000 0.0000 2.0000 0.0000
T2300-00 7.0000 0.0000 14.000 0.0000 4.0000 0.0000
T2301-00 11.000 0.0000 16.000 0.0000 17.000 0.0000
T2300-06 7.0000 0.0000 8.0000 0.0000 3.0000 0.0000
T2301-06 13.000 0.0000 16.000 0.0000 9.0000 0.0000

Table A8-2 (Historical Demand From 1988 through 1990)
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Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 4.0 0.0 4.0 3.0

2 4.0 0.0 4.0 4.0
3 8.0 8.0 16.0 12.0
4 10.0 3.0 13.0 8.0
5 10.0 4.0 14.0 9.0
6 5.0 0.0 5.0 4.0
7 3.0 1.0 4.0 3.0
8 15.0 15.0 30.0 22.0
9 20.0 20.0 40.0 15.0

10 5.0 10.0 15.0 7.0
11 10.0 3.0 13.0 9.0
12 5.0 0.0 5.0 5.0
13 4.0 0.0 4.0 4.0
14 4.0 0.0 4.0 3.0
15 7.0 4.0 11.0 7.0
16 7.0 3.0 10.0 7.0
17 13.0 5.0 18.0 13.0
18 5.0 0.0 5.0 5.0
19 3.0 0.0 3.0 3.0
20 2.0 0.0 2.0 2.0
21 10.0 15.0 25.0 25.0
22 10.0 0.0 10.0 10.0
23 20.0 20.0 40.0 21.0
24 20.0 0.0 20.0 20.0
25 1.0 2.0 3.0 2.0
26 2.0 3.0 5.0 2.0
27 1.0 4.0 5.0 2.0
28 2.0 4.0 6.0 3.0
29 10.0 10.0 20.0 13.0
30 16.0 16.0 32.0 21.0
31 5.0 5.0 10.0 3.0
32 10.0 10.0 20.0 7.0

Total Inventory Space Required 6,647,761

Table A8-3 (Results of Current Two-Bin Inventory System - Spring 1988)
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Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 3.0 4.0 7.0 5.0
2 4.0 0.0 4.0 4.0
3 12.0 0.0 12.0 7.0
4 8.0 3.0 11.0 8.0
5 9.0 8.0 17.0 13.0
6 4.0 2.0 6.0 5.0
7 3.0 0.0 3.0 3.0
8 22.0 10.0 32.0 16.0
9 15.0 35.0 50.0 25.0

10 7.0 10.0 17.0 12.0
11 9.0 10.0 19.0 15.0
12 5.0 0.0 5.0 5.0
13 4.0 0.0 4.0 4.0
14 3.0 2.0 5.0 4.0
15 7.0 7.0 14.0 9.0
16 7.0 7.0 14.0 8.0
17 13.0 3.0 16.0 13.0
18 5.0 0.0 5.0 5.0
19 3.0 0.0 3.0 3.0
20 2.0 0.0 2.0 2.0
21 25.0 10.0 35.0 35.0
22 10.0 20.0 30.0 24.0
23 21.0 20.0 41.0 29.0
24 20.0 10.0 30.0 20.0
25 2.0 0.0 2.0 2.0
26 2.0 0.0 2.0 2.0
27 2.0 0.0 2.0 2.0
28 3.0 0.0 3.0 3.0
29 13.0 0.0 13.0 13.0
30 21.0 0.0 21.0 21.0
31 3.0 0.0 3.0 3.0
32 7.0 0.0 7.0 7.0

Total Inventory Space Required 5917018.4

Table A8-4 (Results of Current Two-Bin Inventory System - Fall 1988)
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Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 5.0 4.0000 9.0000 5.0
2 4.0 3.0000 7.0000 6.0
3 7.0 8.0000 15.0000 11.0
4 8.0 5.0000 13.0000 10.0
5 13.0 8.0000 21.0000 12.0
6 5.0 5.0000 10.0000 7.0
7 3.0 0.0000 3.0000 2.0
8 16.0 15.0000 31.0000 18.0
9 25.0 20.0000 45.0000 10.0

10 12.0 3.0000 15.0000 10.0
11 15.0 2.0000 17.0000 16.0
12 5.0 1.0000 6.0000 5.0
13 4.0 1.0000 5.0000 4.0
14 4.0 4.0000 8.0000 5.0
15 9.0 1.0000 10.0000 7.0
16 8.0 7.0000 15.0000 10.0
17 13.0 13.0000 26.0000 19.0
18 5.0 1.0000 6.0000 5.0
19 3.0 3.0000 6.0000 4.0
20 2.0 2.0000 4.0000 2.0
21 35.0 20.0000 55.0000 50.0
22 24.0 3.0000 27.0000 18.0
23 29.0 22.0000 51.0000 28.0
24 20.0 20.0000 40.0000 23.0
25 2.0 2.0000 4.0000 2.0
26 2.0 3.0000 5.0000 3.0
27 2.0 3.0000 5.0000 3.0
28 3.0 2.0000 5.0000 3.0
29 13.0 8.0000 21.0000 7.0
30 21.0 14.0000 35.0000 19.0
31 3.0 6.0000 9.0000 1.0
32 7.0 20.0000 27.0000 11.0

Total Inventory Space Required 7764004.9

Table A8-5 (Results of Current Two-Bin Inventory System - Spring 1989)



192

Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 5.0 1.0000 6.0000 4.0
2 6.0 0.0000 6.0000 6.0
3 11.0 0.0000 11.0000 9.0
4 10.0 7.0000 17.0000 12.0
5 12.0 4.0000 16.0000 9.0
6 7.0 2.0000 9.0000 5.0
7 2.0 5.0000 7.0000 6.0
8 18.0 2.0000 20.0000 9.0
9 10.0 5.0000 15.0000 0.0
10 10.0 25.0000 35.0000 32.0
11 16.0 1.0000 17.0000 15.0
12 5.0 2.0000 7.0000 5.0
13 4.0 2.0000 6.0000 4.0
14 5.0 2.0000 7.0000 5.0
15 7.0 2.0000 9.0000 5.0
16 10.0 4.0000 14.0000 7.0
17 19.0 4.0000 23.0000 15.0
18 5.0 2.0000 7.0000 3.0
19 4.0 4.0000 8.0000 4.0
20 2.0 6.0000 8.0000 4.0
21 50.0 4.0000 54.0000 50.0
22 18.0 10.0000 28.0000 21.0
23 28.0 0.0000 28.0000 8.0
24 23.0 20.0000 43.0000 30.0
25 2.0 10.0000 12.0000 12.0
26 3.0 0.0000 3.0000 3.0
27 3.0 0.0000 3.0000 3.0
28 3.0 0.0000 3.0000 3.0
29 7.0 0.0000 7.0000 7.0
30 19.0 0.0000 19.0000 19.0
31 1.0 0.0000 1.0000 1.0
32 11.0 0.0000 11.0000 11.0

Total Inventory Space Required 5865409.7

Table A8-6 (Results of Current Two-Bin Inventory System - Fall 1989)
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Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 4.0 1.0000 5.0000 0.0
2 6.0 0.0000 6.0000 6.0
3 9.0 0.0000 9.0000 6.0
4 12.0 0.0000 12.009 10.0
5 9.0 0.0000 9.0000 3.0
6 5.0 1.0000 6.0000 2.0
7 6.0 0.0000 6.0000 5.0
8 9.0 7.0000 16.0000 11.0
9 0.0 21.0000 21.0000 6.0
10 32.0 1.0000 33.0000 29.0
11 15.0 3.0000 18.0000 16.0
12 5.0 0.0000 5.0000 4.0
13 4.0 1.0000 5.0000 4.0
14 5.0 1.0000 6.0000 5.0
15 5.0 7.0000 12.0000 8.0
16 7.0 7.0000 14.0000 9.0
17 15.0 5.0000 20.0000 16.0
18 3.0 3.0000 6.0000 3.0
19 4.0 10.0000 14.0000 7.0
20 4.0 10.0000 14.0000 8.0
21 50.0 0.0000 50.0000 45.0
22 21.0 10.0000 31.0000 25.0
23 8.0 20.0000 28.0000 4.0
24 30.0 20.0000 50.0000 39.0
25 12.0 5.0000 17.0000 14.0
26 3.0 5.0000 8.0000 5.0
27 3.0 5.0000 8.0000 5.0
28 3.0 5.0000 8.0000 6.0
29 7.0 13.0000 20.0000 16.0
30 19.0 18.0000 37.0000 20.0
31 1.0 6.0000 7.0000 4.0
32 11.0 8.0000 19.0000 10.0

Total Inventory Space Required 7356772.6

Table A8-7 (Results of Current Two-Bin Inventory System - Spring 1990)
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Inventory Initial Final
Item On-Hand Ordered TOTAL On-Hand

1 4.0 6.0000 10.0000 7.0
2 6.0 0.0000 6.0000 6.0
3 6.0 0.0000 6.0000 5.0
4 10.0 0.0000 10.0000 9.0
5 3.0 20.0000 23.0000 23.0
6 2.0 5.0000 7.0000 6.0
7 5.0 5.0000 10.0000 9.0
8 11.0 0.0000 11.0000 4.0
9 6.0 0.0000 6.0000 0.0

10 29.0 0.0000 29.0000 27.0
11 16.0 0.0000 16.0000 11.0
12 4.0 5.0000 9.0000 7.0
13 4.0 2.0000 6.0000 4.0
14 5.0 4.0000 9.0000 5.0
15 8.0 0.0000 8.0000 5.0
16 9.0 5.0000 14.0000 8.0
17 16.0 10.0000 26.0000 20.0
18 3.0 20.0000 23.0000 22.0
19 7.0 20.0000 27.0000 16.0
20 8.0 0.0000 8.0000 4.0
21 45.0 0.0000 45.0000 39.0
22 25.0 10.0000 35.0000 21.0
23 4.0 20.0000 24.0000 2.0
24 39.0 0.0000 39.0000 34.0
25 14.0 0.0000 14.0000 14.0
26 5.0 0.0000 5.0000 5.0
27 5.0 0.0000 5.0000 5.0
28 6.0 0.0000 6.0000 6.0
29 16.0 0.0000 16.0000 16.0
30 20.0 0.0000 20.0000 20.0
31 4.0 0.0000 4.0000 4.0
32 10.0 0.0000 10.0000 10.0

Total Inventory Space Required 5942650.6 5031230.3

Table A8-8 (Results of Current Two-Bin Inventory System - Fall 1990)
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Appendix 9

The purpose of this appendix is two fold. First, the unconstrained EOQ based

inventory policy implemented in section 8.3 will be explained. Second, the projected

inventory activity generated based on the historical demand pattern from 1988 through

1990 will be presented.

Unconstrained EOQ Based Inventory Policy

This policy, which assumes no inventory shortages, an instantaneous replenishment

rate and which maintains the management defined safety stock levels indicated in Table

8-1, utilizes the following steps in determining each items inventory activity during any

given period of an horizon. In implementing this policy it is assumed that the desired

safety stocks are in place at the beginning of the first period so that S' = Safety Stock and

Final OH = 0 for each inventory item.

Step 1) Determine amount of replenishment, S , needed to return each

item's safety stock to its desire level at the end of a period.

S = Safety Stock - Final OH inventory

where S < 0 set S+ = 0, no safety stock replenishment needed.

Step 2) Determine effective on-hand inventory, I, such that

I = Final OH + S - Safety Stock

where I, < 0 set I, = 0, no inventory on-hand.

Step 3) Compute the effective demand, Dff.
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Def = Historical Demand - Io,

where Dff < 0 set Dff = 0, no replenishment is made.

Step 4) Calculate size of replenishment order.

Order = unconstrained EOQ + S'

where the EOQ is computed using (1-2) and Deff.

Step 5) Compute maximum inventory level, Total, for each item.

Total = EOQ + Final OH + S+

Step 6) Determine new Final OH inventory.

Final OH = Total - Historical Demand

where Final OH < 0 set Final OH = 0.

To illustrate this inventory policy consider the values shown in Tables A9-1 and

A9-2 for item #4. Where the desired safety stock level for this item is set at 2, the

inventory activity during periods one and two of this horizon follows:

Period One Period Two
Historical Demand = 5 Historical Demand = 3

Step 1) S =2-0=2 Step 1) S+=2-4=-2-0

Step2) Io,=0+2-2=0 Step2) I4=4+0-2=2

Step 3) Deff=5-0=5 Step 3) D,ff=3-2=l

Step 4) Order= 7 + 0 7 Step 4) Order = 3 + 0 = 3

Step 5) Total=7+0+2=9 Step 5) Total=3+4+0=7

Step 6) Final OH= 9-5=4 Step 6) Final OH = 7 - 3 = 4
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Note that an EOQ for each item will be computed at step 4 only if the inventory on=hand

at the start of the period does not cover that period's demand. Note also that the actual

replenishment order combines both the EOQ and S' so that at the start of each period

the safety stock levels are fully restocked.

Projected Unconstrained EOQ Inventory Activity

Tracking the resulting inventory activity, Tables A9-1 through A9-6 display the

Carrying cost (C), Re-order cost (R), Effective demand (D), the EOQ determined

replenishment size (Order), maximum inventory level (Total) and the final on-hand

inventory (Final OH) projected for each period of this horizon. The total inventory space

needed to handle the maximum inventory projected for each period, along with the

inventory investment demanded solely by each period's replenishment are also presented.
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Inventory Final
Item C R D Space Order Total OH

1 3.2425 16.6203 1.0000 6,601.6 3.0 5.0 4.0
2 3.5670 17.5938 0.0000 6,733.6 0.0 2.0 2.0
3 4.0870 19.1538 4.0000 9,240.8 6.0 8.0 4.0
4 4.5685 20.5983 5.0000 16,832.8 7.0 9.0 4.0
5 4.5685 20.5983 5.0000 16,599.9 7.0 9.0 4.0
6 4.8250 21.3678 1.0000 20,802.4 3.0 5.0 4.0
7 6.5135 26.4333 1.0000 25,059.4 3.0 5.0 4.0
8 5.4720 23.3088 8.0000 21,617.3 8.0 12.0 4.0
9 5.4720 23.3088 25.000 21617.3 15.0 25.0 0.0
10 6.1695 25.4013 8.0000 28497.0 8.0 10.0 2.0
11 6.2875 25.7553 4.0000 27213.8 6.0 8.0 4.0
12 4.3625 19.9803 0.0000 3811.5 0.0 2.0 2.0
13 4.6250 20.7678 0.0000 3811.5 0.0 2.0 2.0
14 2.9430 15.7218 1.0000 5132.9 3.0 5.0 4.0
15 3.0950 16.1778 4.0000 7596.5 6.0 8.0 4.0
16 3.2970 16.7838 3.0000 10086.0 6.0 8.0 5.0
17 3.5125 17.4303 5.0000 12054.0 7.0 9.0 4.0
18 3.5700 27.7100 0.0000 1675.0 0.0 2.0 2.0
19 1.4600 20.2550 0.0000 3189.4 0.0 2.0 2.0
20 1.6305 20.7665 0.0000 3937.5 0.0 2.0 2.0
21 1.2210 16.4130 0.0000 810.0 0.0 10.0 10.0
22 1.6110 12.2080 0.0000 1587.0 0.0 10.0 10.0
23 1.5185 17.3855 19.000 2500.0 21.0 31.0 12.0
24 2.7750 15.7000 0.0000 3920.0 0.0 10.0 10.0
25 4.2300 25.3150 1.0000 23,256.0 3.0 4.0 3.0
26 4.2300 25.3150 3.0000 22,134.0 6.0 7.0 4.0
27 4.7075 26.7475 3.0000 23,256.0 6.0 7.0 4.0
28 4.5000 26.1250 3.0000 22,848.0 6.0 7.0 4.0
29 4.0300 24.7150 7.0000 27,608.0 9.0 10.0 3.0
30 4.0300 24.7150 11.000 28,985.0 12.0 16.0 5.0
31 4.2850 25.4800 7.0000 28,985.0 9.0 10.0 3.0
32 4.2850 25.4800 13.000 29,837.5 12.0 16.0 3.0

TOTAL SPACE REQUIREMENT 3288093.4 4480032.7
(BUDGET) (716.7)

Table A9-1 (Results of Unconstrained Application of EOQ Model to Spring 1988 Data)
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Inventory Final
Item C R D Space Order Total OH

1 3.2425 17.1505 0.0 6,601.6 0.0000 4.0 2.0
2 3.5670 17.5938 0.0 6,733.6 0.0000 2.0 2.0
3 4.0870 19.6840 3.0 9,240.8 5.0000 9.0 4.0
4 4.2700 20.2330 1.0 16,832.8 3.0000 7.0 4.0
5 4.2700 20.2330 2.0 16,599.9 4.0000 8.0 4.0
6 4.8250 21.8980 0.0 20,802.4 0.0000 4.0 3.0
7 6.5135 26.4333 0.0 25,059.4 0.0000 4.0 4.0
8 5.1140 22.7650 16.0 21,617.3 12.0000 16.0 0.0
9 5.1140 22.7650 25.0 21,617.3 15.0000 25.0 0.0

10 6.1695 25.9315 5.0 28,497.0 6.0000 8.0 3.0
11 5.8760 25.0510 2.0 27,213.8 4.0000 8.0 4.0
12 4.3625 19.9803 0.0 3,811.5 0.0000 2.0 2.0
13 4.6250 20.7678 0.0 3,811.5 0.0000 2.0 2.0
14 2.9430 16.2490 0.0 5,132.9 0.0000 4.0 3.0
15 3.2450 17.1580 3.0 7,596.5 6.0000 10.0 5.0
16 3.2970 17.3147 3.0 10,086.0 6.0000 11.0 5.0
17 3.5125 17.9605 1.0 12,054.0 3.0000 7.0 4.0
18 3.5700 27.7100 0.0 1,675.0 0.0000 2.0 2.0
19 1.4600 20.2550 0.0 3,189.4 0.0000 2.0 2.0
20 1.6305 20.6665 0.0 3,937.5 0.0000 2.0 2.0
21 1.2210 16.4130 0.0 810.0 0.0000 10.0 10.0
22 1.6110 12.2080 6.0 1,587.0 10.0000 20.0 14.0
23 1.7720 12.6910 10.0 2,500.0 12.0000 24.0 12.0
24 2.7750 15.7000 10.0 3,920.0 11.0000 21.0 11.0
25 4.2300 25.3150 0.0 23,256.0 0.0000 3.0 3.0
26 4.2300 25.3150 0.0 22,134.0 0.0000 4.0 4.0
27 4.7075 26.7475 0.0 23,256.0 0.0000 4.0 4.0
28 4.5000 26.1250 0.0 22,848.0 0.0000 4.0 4.0
29 4.0300 24.7150 0.0 27,608.0 0.0000 3.0 3.0
30 4.0300 24.7150 0.0 28,985.0 0.0000 5.0 5.0
31 4.2850 25.4800 0.0 28,985.0 0.0000 3.0 3.0
32 4.2850 25.4800 0.0 29,837.5 0.0000 4.0 4.0

TOTAL SPACE REQUIREMENT 1820880.2 3172713.8
(Budget) (420.2)

Table A9-2 (Results of Unconstrained Application of EOQ Model to Fall 1988 Data)
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Inventory Final
Item C R D Space Order Total OH

1 3.4045 15.8899 4.0 6,601.6 6.0 8.0 4.0
2 3.5670 16.4044 1.0 6,733.6 3.0 5.0 4.0
3 4.0110 17.7094 2.0 9,240.8 4.0 8.0 4.0 1
4 4.4835 19.1269 1.0 16,832.8 3.0 7.0 4.0
5 4.4825 19.1269 7.0 16,599.9 8.0 12.0 3.0
6 5.0660 20.8744 2.0 20,802.4 4.0 7.0 4.0
7 6.5135 25.2169 0.0 25,059.4 0.0 4.0 3.0
8 5.8640 23.2684 13.0 21,617.3 10.0 14.0 1.0
9 5.8640 23.2684 35.0 21,617.3 17.0 27.0 0.0 1

10 6.6260 25.5544 4.0 28,497.0 6.0 9.0 4.0
11 6.6260 25.5544 0.0 27,213.8 0.0 4.0 3.0
12 4.3625 18.7639 1.0 3,811.5 3.0 5.0 4.0
13 4.6250 19.5514 1.0 3,811.5 3.0 5.0 4.0
14 2.9430 14.5024 2.0 5,132.9 4.0 7.0 4.0
15 3.0950 14.9614 0.0 7,596.5 0.0 5.0 2.0
16 3.2970 15.5674 2.0 10,086.0 4.0 9.0 4.0
17 3.5125 16.2139 5.0 12,054.0 7.0 11.0 4.0
18 3.5700 27.7100 1.0 1,675.0 4.0 6.0 5.0
19 1.4600 20.2550 2.0 3,189.4 .7.0 9.0 7.0
20 1.6305 20.7665 2.0 3,937.5 0.0 2.0 0.0
21 1.4250 11.6500 5.0 810.0 9.0 19.0 4.0
22 1.5905 12.1465 5.0 1,587.0 9.0 23.0 4.0
23 1.7720 12.6910 21.0 2,500.0 17.0 29.0 6.0
24 3.2380 17.0890 16.0 3,920.0 13.0 24.0 7.0
25 4.2800 25.4650 0.0 23,256.0 0.0 3.0 1.0
26 4.2800 25.4650 0.0 22,134.0 0.0 4.0 2.0
27 4.7075 26.7475 0.0 23,256.0 0.0 4.0 2.0
28 4.9000 27.3250 0.0 22,848.0 0.0 4.0 2.0
29 4.0800 24.8650 12.0 27,608.0 12.0 15.0 1.0
30 4.0300 24.7150 15.0 28,985.0 14.0 19.0 3.0
31 4.4875 26.0875 6.0 28,985.0 8.0 11.0 3.0
32 4.4875 26.0875 16.0 29,837.5 14.0 18.0 2.0

TOTAL SPACE REQUIREMENT 2816800.1 4738885.4
(Budget) (801.4)

Table A9-3 (Results of Unconstrained Application of EOQ Model to Spring 1989 Data)
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Inventory Final
Item C R D Space Order Total OH

1 3.4045 16.2447 0.0 6,601.6 0.0 4.0 2.0
2 3.5670 16.4044 2.0 6,733.6 4.0 8.0 8.0
3 4.0110 18.0642 0.0 9,240.8 0.0 4.0 2.0
4 4.4835 19.4817 3.0 16,832.8 5.0 9.0 4.0
5 4.4835 19.4817 6.0 16,599.9 7.0 10.0 3.0
6 5.0660 21.2292 2.0 20,802.4 4.0 8.0 4.0
7 6.3915 25.2057 0.0 25,059.4 0.0 3.0 2.0
8 7.8640 29.6232 11.0 21,617.3 9.0 13.0 2.0
9 7.8640 29.6232 15.0 21617.3 11.0 21.0 6.0

10 8.6260 21.9092 1.0 28497.0 3.0 7.0 4.0
11 8.6260 31.9092 1.0 27213.8 3.0 6.0 4.0
12 4.3625 19.1188 0.0 3811.5 0.0 4.0 2.0
13 4.6250 19.9062 0.0 3811.5 0.0 4.0 2.0
14 2.9430 14.8572 0.0 5132.9 0.0 4.0 2.0
15 3.0950 15.3162 4.0 7596.5 6.0 8.0 4.0
16 3.2950 15.91o2 5.0 10086.0 7.0 11.0 4.0
17 3.5125 16.5687 6.0 12054.0 7.0 11.0 3.0
18 3.5700 27.7100 1.0 1675.0 4.0 9.0 5.0
19 1.4600 20.2550 0.0 3189.4 0.0 7.0 3.0
20 1.6305 20.7665 4.0 3937.5 10.0 12.0 8.0
21 1.4250 11.6500 0.0 810.0 0.0 14.0 10.0
22 1.5905 12.1465 3.0 1587.0 7.0 21.0 14.0
23 1.7720 12.6910 20.0 2500.0 17.0 27.0 7.0
24 3.2350 17.0890 13.0 3920.0 12.0 22.0 9.0
25 4.2800 25.4650 0.0 23,256.0 0.0 1.0 1.0
26 4.2800 25.4650 0.0 22,134.0 0.0 2.0 2.0
27 4.7075 26.7475 0.0 23,256.0 0.0 2.0 2.0
28 4.9000 27.3250 0.0 22,848.0 0.0 2.0 2.0
29 4.0800 24.8650 0.0 27,608.0 0.0 1.0 1.0
30 4.0300 24.7150 0.0 28,985.0 0.0 4.0 4.0
31 4.4875 26.0875 0.0 28,985.0 0.0 3.0 3.0
32 4.4875 26.0875 0.0 29,837.5 0.0 4.0 4.0

TOTAL SPACE REQUIREMENT 1257267.5 2922055.7
(Budget) (609.5)

Table A9-4 (Results of Unconstrained Application of EOQ Model to Fall 1989 Data)
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Inventory Final
Item C R D Space Order Total OH

1 3.3875 16.1937 1.0 6,601.6 3.0000 5.0 4.0
2 3.5670 16.4044 0.0 6,733.6 0.0000 8.0 8.0
3 4.0110 18.0642 3.0 9,240.8 5.0000 7.0 4.0
4 4.4835 19.4817 0.0 16,832.8 0.0000 4.0 2.0
5 4.4835 19.4817 5.0 16,599.9 7.0000 10.0 4.0
6 5.7365 23.2407 2.0 20,802.4 4.0000 8.0 4.0
7 6.9275 26.8137 1.0 25,059.4 3.0000 5.0 4.0
8 7.9625 29.9187 5.0 21,617.3 6.0000 10.0 5.0
9 7.9625 29.9187 15.0 21617.3 11.0000 21.0 6.0

10 8.5875 31.7937 2.0 28497.0 4.0000 8.0 4.0
11 8.5875 31.7937 0.0 27213.8 0.0000 4.0 2.0
12 4.3625 19.1188 1.0 3811.5 3.0000 5.0 4.0
13 4.8500 20.5812 1.0 3811.5 3.0000 5.0 4.0
14 3.1195 15.3897 1.0 5132.9 3.0000 5.0 4.0
15 3.2805 15.8727 2.0 7596.5 4.0000 8.0 4.0
16 3.4945 16.5147 3.0 10086.0 5.0000 9.0 4.0
17 3.7230 17.2002 3.0 12054.0 5.0000 8.0 4.0
18 3.5700 27.7100 0.0 1675 " ,.0000 5.0 2.0
19 1.4600 20.2550 6.0 31o9.4 13.0000 16.0 9.0
20 1.6305 20.7665 0.0 3937.5 0.0000 8.0 2.0
21 1.4250 11.6500 5.0 810.0 9.0000 19.0 4.0
22 1.6860 12.4330 2.0 1587.0 5.0000 19.0 3.0
23 1.8785 13.0105 24.0 2500.0 18.0000 28.0 4.0
24 3.2325 17.0725 11.0 3920.0 11.0000 21.0 10.0
25 4.4550 25.9900 3.0 23,256.0 6.0000 7.0 4.0
26 4.4550 25.9900 2.0 22,134.0 5.0000 7.0 4.0
27 4.9000 27.3250 2.0 23,256.0 5.0000 7.0 4.0
28 4.9000 27.3250 1.0 22,848.0 3.0000 5.0 3.0
29 4.2500 25.3750 4.0 27,608.0 7.0000 8.0 4.0
30 4.2500 25.3750 17.0 28,985.0 14.0000 18.0 1.0
31 4.4875 26.0875 1.0 28,985.0 3.0000 6.0 3.0
32 4.4875 26.0875 9.0 29,837.5 10.0000 14.0 5.0

TOTAL SPACE REQUIREMENT 2565643.2 4213090.2

(Budget) (763.3)

Table A9-5 (Results of Unconstrained Application of EOQ Model to Spring 1990 Data)
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Inventory Final
Item C R D Space Order Total OH

1 3.6770 17.4643 1.0 6,601.6 3.0000 7.0 4.0
2 3.5670 17.1343 0.0 6,733.6 0.0000 8.0 8.0
3 4.0110 18.4663 0.0 9,240.8 0.0000 4.0 3.0
4 4.4835 19.8838 1.0 16,832.8 3.0000 5.0 4.0
5 4.9320 21.2293 0.0 16,599.9 0.0000 4.0 4.0
6 5.7920 23.8093 0.0 20,802.4 0.0000 4.0 3.0
7 6.9275 27.2158 0.0 25,059.4 0.0000 4.0 3.0
8 7.9625 30.3208 6.0 21,617.3 7.0000 12.0 5.0
9 7.9625 30.3208 6.0 21617.3 7.0000 17.0 11.0

10 8.5875 32.1958 0.0 28497.0 0.0000 4.X 2.0
11 8.5875 32.1958 5.0 27213.8 6.0000 8.0 3.0
12 4.6000 20.2333 0.0 3811.5 0.0000 4.0 2.0
13 4.8500 20.9833 0.0 3811.5 0.0000 4.0 2.0
14 3.1195 15.7918 2.0 5132.9 4.0000 8.0 4.0
15 3.2805 16.2748 1.0 7596.5 3.0000 7.0 4.0
16 3.4945 16.9168 4.0 10086.0 6.0000 10.0 4.0
17 3.7230 17.6023 4.0 12054.0 6.0000 10.0 4.0
18 3.7130 28.1390 1.0 1675.0 4.0000 6.0 5.0
19 1.5035 20.3855 4.0 3189.4 10.0000 19.0 8.0
20 1.6305 20.7665 4.0 3937.5 10.0000 12.0 8.0
21 1.4250 11.6500 2.0 810.0 6.0000 20.0 4.0
22 1.6860 12.4330 11.0 1587.0 13.0000 26.0 2.0
23 1.8785 13.0105 22.0 2500.0 17.0000 27.0 2.0
24 3.2325 17.0725 5.0 3920.0 7.0000 17.0 2.0
25 4.4550 25.9900 0.0 23,256.0 0.0000 4.0 4.0
26 4.4550 25.9900 0.0 22,134.0 0.0000 4.0 4.0
27 4.9000 27.3250 0.0 23,256.0 0.0000 4.0 4.0
28 4.9000 27.3250 0.0 22,848.0 0.0000 3.0 3.0
29 4.2500 25.3750 0.0 27,608.0 0.0000 4.0 4.0
30 4.2500 25.3750 0.0 28,985.0 0.0000 4.0 4.0
31 4.4875 26.0875 0.0 28,985.0 0.0000 3.0 3.0
32 4.4875 26.0875 0.0 29,837.5 0.0000 5.0 5.0

TOTAL SPACE REQUIREMENT 813197.7 2890925.1
(Budget) (440.2)

Table A9-6 (Results of Unconstrained Application of EOQ Model to Fall 1990 Data)



204

Appendix 10

A1O.1 Purpose

The purpose of this appendix is first to provide, in detail, the computations

necessary to implement the Dual Constraint algorithm within the large volume inventory

carried by Tyree Parts & Hardware from 1988 through 1990 as identified in Chapter VIII.

In presenting these calculations, each period's effective space constraint level, W, was

determined by subtracting both the space required to handle the final inventory on-hand

at the end of a period and any replenishment needed to return the management specified

safety stocks to their desired levels from the 3,333,618 cubic inches of total inventory

space. With these constraint levels identified, the second portion of this appendix will

exhibit the projected inventory active.

A10.2 Detailed Calculations

With initial constraint levels set at 3,333,618 cubic inches and $500.00 for the "pace

and budget constraints, respectively, and the management designated stockages levels

assumed to be initially on-hand, the calculations needed to implement the Dual Constraint

algorithm defined in section 7.4 follows:

a) Spring 1988

Step 1) Determine the reduction factors P, and P2:

P1 = W / X WiQi = 2,141,679 / 3,286,917 = .651
P2 = B / X bQ i = 500 / 716.7 = .698.

Since Both reduction factors are less than one and P2 > P then must go
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to step 2.

Note that since the safety stock consumes 1,191,939 of the 3,333,618 cubic inches

of storage space available, here W = 2,141,679. Note also that the 3,286,917 cubic inch

space and the $ 716.70 budget requirements, computed using equations (2-13) and (2-14)

respectively, represent the projected unconstrained resource requirements for this period.

Step 2a) 0* = .0001370858. Implicit algorithm used to identify this
multiplier.

Step 2b)
N N

P = X biQie I X biQi = 483.77 / 716.7 = .675
i=l i=l

where Y biQi@ = I bI 2RDi / [bi + 2WiE)] }

Since P2 > P then stop 0e alone is optimal.

Incorporating (" into step 4 of the EOQ based inventory policy defined in appendix

9, Table A10-1 displays the resulting inventory activity. Note, from this table, that the

766,403.3 cubic inches required to house the remaining inventory at the end of period one

combined with the space needed to handle the inventory needed to replenish the safety

stocks prior to the start of period two specifies an effective space constraint level of

1,953,931 cubic inches for period two.

b) Fall 1988

Step 1) Determine the reduction factors P, and P2:

P = W / I WiQ = 1,953,931 / 1,444,668 = 1.352
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P2 = B / = bQ, - 500 / 416.1 = 1.20.

Since both reduction factors are greater than one stop. Inventory during

this period not constrained. The resulting inventory activity, shown in Table A10-2,

suggests a 1,769,915 cubic inch space constraint level for period three of this horizon.

c) Spring 1989

Step 1) Determine the reduction factors P and P2:

P1 = W / WQ = 1,769,915 / 3,238,372 = .546
P2 = B / X bjQi = 500 / 809.32 = .617.

Since both reduction factors are less than one and P2 > P then must

go to step 2.

Step 2a) 0* = .0002534664. Implicit algorithm used to identify this
multiplier.

Step 2b)
N N

P = X bQ 8  I X bQj = 488.82 / 809.32 = .675
i=l i=l

where Y, biQie = bI{2R.D / [bi + 2W 1 01]}*

Since P2 > P then stop e" alone is optimal.

The resulting inventory activity, shown in Table A10-3, suggests a 1,945,398 cubic

inch space constraint level for period four of this horizon.
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d) Fall 1989

Step 1) Determine the reduction factors P, and P2:

P = W / X W1Q = 1,945,398 / 1,509,993 = 1.288

P2 = B / X biQ = 500 / 575.6 = .86865.

Since only P2 
< 1 Stop. Problem P('1,O) - P(D) and

D = [ (1/P) 2 - 1 = [ (1/.868)2 - I I = .1626 alone is optimal.

The resulting inventory activity, shown in Table A 10-4, suggests a 1,786,877 cubic

inch space constraint level for period five of this horizon.

e) Spring 1990

Step 1) Determine the reduction factors P and P2:

P = W / X WjQ = 1,786,877 / 2,699,965 = .661814875
P2 = B / X bQj = 500 / 719.95 = .694483702.

Since both reduction factors are less than one and P2 > P, then must

go to step 2.

Step 2a) O* = .0001469606. Implicit algorithm used to identify this
multiplier.

Step 2b)
N N

P = X bQe 7, bQ = 508.79 / 719.95 = .7079724
i=1 i=1

where I bjQj = X bi I 2RjDj / [b + 2We.V] }
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Since P2 < P then must go to step 3 of algorithm.

Step 3a) Compute 4D*P -=! [ (/Pl) 2  1 i [ (1/.661)2 _ 11 = .641555303

and set E®'1 = .0001469606.

Step 3b) Compute Critical Region slopes:

M, = 4'Pl / (PI - P) = .641555303 / (.661814875 - .7079724)

= -13.89925702.

M2 = -O'p / (PI - P) = -.0001469606 / (.661814875 - .7079724)

= .003183879.

3c) Compute Lagrangian multiplier estimates, cI*t and 0%., using:

Vest = M, (P2 - PI) + 4Dpl = -13.89925702 (.694483702 - .661814875)

+.641555303 =.18748288 and

O'*e = M 2 (P2 - P) + O'p = .003183879 (.694483702 - .7079724)

+ .0001469606 = .000104013.

The resulting inventory activity obtained by utilizing these Lagrangian multiplier

estimates, shown in Table A10-5, suggests a 1,854,839 cubic inch space constraint level

for period six of this horizon.

f) Fall 1990

Step 1) Determine the reduction factors P, and P2:

P1 = W / = WQ, - 1,854,839 / 1,007,181 = 1.849
P2 = B / bQ, = 500 / 440.3 = 1.13.
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Since both reduction factors are greater than one stop. Inventory during

this period not constrained. The resulting inventory activity is shown in Table A10-6.

A10.3 Projected Inventory Activity

Table A1O-1 through A10-6 display the projected inventory activity resulting from

the incorporation of the proposed Dual Constraint algorithm into step 4 of the EOQ based

inventory policy described in appendix 9. In considering these tables note that the

effective demand, Eff Demand, represents the period's demand not met by the non-safety

stock on-hand at the end of previous period. The Lost Sales represent those historical

demands not met during each period.
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Effect Init Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 1.0 2.0 3.0 5.0 4.0
2 0.0 2.0 0.0 2.0 2.0
3 4.0 2.0 5.0 7.0 3.0
4 5.0 2.0 5.0 7.0 2.0
5 5.0 2.0 5.0 7.0 2.0
6 1.0 2.0 2.0 4.0 3.0
7 1.0 2.0 2.0 4.0 3.0
8 8.0 4.0 6.0 10.0 2.0
9 25.0 10.0 10.0 20.0 0.0 -5

10 8.0 2.0 5.0 7.0 0.0 -1
11 4.0 2.0 4.0 6.0 2.0
12 0.0 2.0 0.0 2.0 2.0
13 0.0 2.0 0.0 2.0 2.0
14 1.0 2.0 3.0 5.0 4.0
15 4.0 2.0 5.0 7.0 3.0
16 3.0 2.0 4.0 6.0 3.0
17 5.0 2.0 5.0 7.0 2.0
18 0.0 2.0 0.0 2.0 2.0
19 0.0 2.0 0.0 2.0 2.0
20 0.0 2.0 0.0 2.0 2.0
21 0.0 10.0 0.0 10.0 10.0
22 0.0 10.0 0.0 10.0 10.0
23 19.0 10.0 17.0 27.0 8.0
24 0.0 10.0 0.0 10.0 10.0
25 1.0 1.0 2.0 3.0 2.0
26 3.0 1.0 4.0 5.0 2.0
27 3.0 1.0 4.0 5.0 2.0
28 3.0 1.0 4.0 5.0 2.0
29 7.0 1.0 5.0 6.0 0.0 -1
30 11.0 4.0 7.0 11.0 0.0
31 7.0 1.0 5.0 6.0 0.0 -1
32 13.0 4.0 7.0 11.0 0.0 -2

Total Space Requirement 2132793.3 3324732.6 766403.3
Total Budget Requirement 484.9 836.7 281.0

Table A10-1 ( Results of Dual Constraint Algorithm - Spring 88 )
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Eff Init Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 0.0 4.0 0.0 4.0 2.0
2 0.0 2.0 0.0 2.0 2.0
3 4.0 3.0 6.0 9.0 4.0
4 3.0 2.0 5.0 7.0 4.0
5 4.0 2.0 6.0 8.0 4.0
6 0.0 3.0 0.0 3.0 2.0
7 0.0 3.0 0.0 3.0 3.0
8 16.0 2.0 12.0 16.0 0.0
9 25.0 0.0 15.0 25.0 0.0

10 5.0 0.0 6.0 8.0 3.0
11 4.0 2.0 6.0 8.0 4.0
12 0.0 2.0 0.0 2.0 2.0
13 0.0 2.0 0.0 2.0 2.0
14 0.0 4.0 0.0 4.0 3.0
15 4.0 3.0 7.0 10.0 5.0
16 4.0 3.0 6.0 9.0 3.0
17 3.0 2.0 6.0 8.0 5.0
18 0.0 2.0 0.0 2.0 2.0
19 0.0 2.0 0.0 2.0 2.0
20 0.0 2.0 0.0 2.0 2.0
21 0.0 10.0 0.0 10.0 10.0
22 6.0 10.0 10.0 20.0 14.0
23 12.0 8.0 13.0 23.0 11.0
24 10.0 10.0 11.0 21.0 11.0
25 0.0 2.0 0.0 2.0 2.0
26 0.0 2.0 0.0 2.0 2.0
27 0.0 2.0 0.0 2.0 2.0
28 0.0 2.0 0.0 2.0 2.0
29 0.0 0.0 0.0 1.0 1.0
30 0.0 0.0 0.0 4.0 4.0
31 0.0 0.0 0.0 1.0 1.0
32 0.0 0.0 0.0 4.0 4.0

Total Space Requirement 1434643.8 2814331.1 1261061.1

Total Budget Requirement 415.1 814.7 380.8

Table 10-2 ( Results of Dual Constraint Algorithm - Fall 88 Quantity)
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Eff Init Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 4 2.0 4.0 6.0 2.0
2 1 2.0 2.0 4.0 3.0
3 2 4.0 3.0 7.0 3.0
4 1 4.0 2.0 6.0 3.0
5 7 4.0 4.0 8.0 0.0 -1
6 3 2.0 3.0 5.0 2.0
7 0 3.0 0.0 3.0 2.0
8 13 0.0 6.0 10.0 0.0 -3
9 35 0.0 10.0 20.0 0.0 -10

10 4 3.0 3.0 6.0 1.0 -15
11 0 4.0 0.0 4.0 3.0
12 1 2.0 2.0 4.0 3.0
13 1 2.0 2.0 4.0 3.0
14 2 3.0 3.0 6.0 3.0
15 G 5.0 0.0 5.0 2.0
16 3.0 4.0 7.0 2.0
17 4 5.0 3.0 8.0 1.0
18 1 2.0 4.0 6.0 5.0
19 2 2.0 5.0 7.0 5.0
20 2 2.0 5.0 7.0 5.0
21 5 10.0 8.0 18.0 13.0
22 5 14.0 7.0 21.0 12.0
23 22 11.0 13.0 24.0 1.0
24 16 11.0 10.0 21.0 4.0
25 1 2.0 2.0 4.0 2.0
26 1 2.0 2.0 4.0 2.0
27 1 2.0 2.0 4.0 2.0
28 1 2.0 2.0 4.0 2.0
29 14 1.0 6.0 7.0 0.0 -7
30 16 4.0 6.0 10.0 0.0 -6
31 8 1.0 5.0 6.0 0.0 -2
32 16 4.0 7.0 11.0 0.0 -5

Total Space Requirements 1776542.5 3330245.1 673924.5
Total Budget Requirements 485.6 963.3 266.7

Table 10-3 ( Results of Dual Constraint Algorithm - Spring 1989)
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Eff lnit Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 2.0 2.0 4.0 6.0 4.0
2 0.0 3.0 0.0 3.0 3.0
3 1.0 3.0 3.0 6.0 4.0
4 4.0 3.0 5.0 8.0 3.0
5 7.0 0.0 7.0 9.0 2.0
6 4.0 2.0 5.0 8.0 4.0
7 1.0 2.0 2.0 5.0 4.0
8 11.0 0.0 8.0 12.0 1.0
9 15.0 0.0 9.0 19.0 4.0

10 3.0 1.0 4.0 6.0 3.0
11 1.0 3.0 2.0 5.0 3.0
12 1.0 3.0 3.0 6.0 4.0
13 1.0 3.0 3.0 6.0 4.0
14 1.0 3.0 3.0 6.0 4.0
15 1.0 2.0 3.0 5.0 1.0
16 7.0 2.0 7.0 9.0 2.0
17 8.0 1.0 8.0 10.0 2.0
18 1.0 5.0 3.0 8.0 4.0
19 1.0 5.0 5.0 10.0 6.0
20 1.0 5.0 4.0 9.0 5.0
21 1.0 13.0 4.0 17.0 13.0
22 5.0 12.0 8.0 20.0 13.0
23 20.0 1.0 15.0 25.0 5.0
24 13.0 4.0 10.0 20.0 7.0
25 0.0 2.0 0.0 2.0 2.0
26 0.0 2.0 0.0 2.0 2.0
27 0.0 2.0 0.0 2.0 2.0
28 0.0 2.0 0.0 2.0 2.0
29 0.0 0.0 0.0 1.0 1.0
30 0.0 0.0 0.0 4.0 4.0
31 0.0 0.0 0.0 1.0 1.0
32 0.0 0.0 0.0 4.0 4.0

Total Budget Requirements 501.1 996.2 445.0

Total Space Requirements 1301980.3 2736061.8 1320329.6

Table 10-4 ( Results of Dual Constraint Algorithm - Spring 1989)



214

Eff Init Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 0.0 2.0 0.0 4.0 3.0
2 0.0 3.0 0.0 3.0 3.0
3 1.0 4.0 2.0 6.0 3.0
4 1.0 3.0 2.0 5.0 3.0
5 6.0 2.0 5.0 7.0 1.0
6 2.0 4.0 3.0 7.0 3.0
7 0.0 4.0 0.0 4.0 3.0
8 5.0 1.0 4.0 8.0 3.0
9 15.0 4.0 8.0 18.0 3.0
10 3.0 3.0 3.0 6.0 2.0
11 1.0 3.0 2.0 5.0 3.0
12 0.0 4.0 0.0 4.0 3.0
13 0.0 4.0 0.0 4.0 3.0
14 0.0 4.0 0.0 4.0 3.0
15 4.0 1.0 5.0 7.0 3.0
16 5.0 2.0 5.0 7.0 2.0
17 4.0 2.0 4.0 6.0 2.0
18 1.0 4.0 3.0 7.0 4.0
19 3.0 6.0 7.0 13.0 6.0
20 3.0 5.0 6.0 11.0 5.0
21 2.0 13.0 5.0 18.0 13.0
22 3.0 13.0 5.0 18.0 12.0
23 24.0 5.0 14.0 24.0 0.0
24 11.0 7.0 8.0 18.0 7.0
25 2.0 2.0 3.0 5.0 2.0
26 2.0 2.0 3.0 5.0 2.0
27 2.0 2.0 3.0 5.0 2.0
28 1.0 2.0 2.0 4.0 2.0
29 4.0 1.0 4.0 5.0 1.0
30 17.0 4.0 9.v 13.0 0.0 -4
31 3.0 1.0 4.0 5.0 2.0
32 9.0 4.0 6.0 10.0 1.0

Total Space Requirements 1780724.4 3327465.8 1047028.6
Total Budget Requirements 493.7 1044.2 388.5

Table 10-5 ( Result of Dual Constraint Algorithm - Fall 1989 )



215

Eff Init Size of Final Lost
Item # Demand Safe Stk Order Total On Sales

1 2 3.0 4.0 7.0 4.0
2 0 3.0 0.0 3.0 3.0
3 0 3.0 0.0 3.0 2.0
4 0 3.0 0.0 3.0 2.0
5 0 1.0 0.0 2.0 2.0
6 0 3.0 0.0 3.0 2.0
7 0 2.0 0.0 3.0 2.0
8 7 3.0 7.0 11.0 4.0
9 6 3.0 7.0 17.0 11.0

10 2 2.0 4.0 6.0 4.0
11 4 3.0 5.0 8.0 3.0
12 1 3.0 3.0 6.0 4.0
13 1 3.0 3.0 6.0 4.0
14 3 3.0 6.0 9.0 5.0
15 2 3.0 4.0 7.0 4.0
16 6 2.0 8.0 10.0 4.0
17 6 2.0 8.0 10.0 4.0
18 0 4.0 0.0 4.0 3.0
19 7 6.0 14.0 20.0 9.0
20 1 5.0 5.0 10.0 6.0
21 3 13.0 7.0 20.0 14.0
22 12 12.0 13.0 25.0 11.0
23 22 0.0 17.0 27.0 5.0
24 5 7.0 7.0 17.0 12.0
25 0 2.0 0.0 2.0 2.0
26 0 2.0 0.0 2.0 2.0
27 0 2.0 0.0 2.0 2.0
28 0 2.0 0.0 2.0 2.0
29 0 1.0 0.0 1.0 1.0
30 0 0.0 0.0 4.0 4.0
31 0 1.0 0.0 2.0 2.0
32 0 1.0 0.0 4.0 4.0

Total Space Requirements 1000856.8 2479635.8 1568215.5
Total Budget Requirements 437.1 956.2 559.4

Table 10-6 (Results of Dual Constraint Algorithm - Fall 1989)
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