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NONLINEAR ANALYSIS OF A GRATING

FREE-ELECTRON LASER

I. Introduction

In a conventional free-electron laser (FEL) the radiation wavelength is given by

A = A/2-y,, where A, is the wiggler period and -t. = (1 v!/c)1/'is the relativistic

mass factor associated with the axial electron velocity v,. Based on this formula the

operation of a conventional FEL in the IR region of the spectrum necessitates the

use of multi-MV electron beams. In practice, for voltages in excess of 1 MV the

accelerator and the attendant shielding represent a large fraction of the cost and

bulk of a FEL. Consequently, alternative sources of IR (and shorter wavelength)

radiation are under consideration in a number of laboratories. An example of this

is a free-electron source of radiation based on the Smith-Purcell mechanism.1 In

this device an electron beam is made to pass in close proximity of the surface of

a metallic grating. Interaction of the electron beam with the slow-wave structure

of the grating leads to bunching of the beam and amplification of radiation.2 -2 0

Since only moderate energy (< few MeV) electron beams are required, the grating

FEL has the potential of developing into a truly compact, table-top source of IR

radiation.

At the Naval Research Laboratory a grating FEL experiment is underway whose

ultimate goal is the generation of high-power radiation in the near-IR windows in

the atmosphere. A key element of this experiment is the use of state-of-the-art,

high-brightness electron beams obtained from novel cathode materials and designs.

A schematic of the experimental set-up, also known as the orotron configuration 2,

is shown in Fig. 1. A virtue of this configuration is that the electron beam may be

Manuscript approved February 14. 1992.
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made to interact with a spatial harmonic whose group velocity is nearly zero and

consequently the energy drained from the radiation field is reduced. This is illus-

trated in Fig. 2 which indicates schematically one of the infinite set of dispersion

curves for an open resonator formed by two reflecting surfaces, one of which is a

plane mirror and the other is a periodic slow-wave structure such as a grating.

In this paper we shall formulate a nonlinear model of a grating FEL with al-

lowance for electron beam emittance and gyromotion in a guide magnetic field. We

shall make use of the model to obtain design parameters for experiments aimed at

the generation of 100 lim and of 10 jim radiation using mildly relativistic (< 1/2

MV) electron beams. The nonlinear extraction efficiency is determined by means

of numerical simulation of the grating FEL. A principal objective of this paper is

to explore the nonlinear stage of the interaction. To elucidate the nature of the

saturation mechanism, we shall describe in detail the simulation results for the ex-

amples of an infinitely-thin beam, a finite-thickness beam with laminar flow and a

finite-thickness beam with full transverse motion. It is found that, for a thick beam,

electron gyration leads to an enhancement of the extraction efficiency as compared

to the case with laminar electron flow. Assuming that at saturation the electrons

are trapped in the slow-wave structure of the grating, we obtain analytical estimates

for the efficiency which are in close agreement with the the numerical results.

There are trade-offs in utilizing a mildly relativistic (< 1/2 MV) beam to gen-

erate radiation by a grating FEL. To point out some of these, an example of 10 jim

radiation generated by a 5 MV beam is briefly discussed in the last section.
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II. Nonlinear Formulation

In this section we shall derive a set of equations that describe the motion the

electrons in the electromagnetic field inside the open resonator and in the presence

of an axial magnetic guide field. The orientation of the coordinate axes is indicated

in Fig. 1, with the origin of coordinates chosen such that the grooves ;n the grating

lie in the region z < 0. Region I denotes the space above the grating surface and

bounded by the upper mirror and region II denotes the space in the grating slots,

i.e, z < 0. It is assumed that the interaction of electrons with the z component of

the electric field is the dominant mechanism for amplification of the electromagnetic

field. Consequently, only TM modes will be considered herein. The dependence of

the fields on the y coordinate is assumed to be negligible.

A. Resonator Field

The z component of the resonator electric field can be written as

E. (Xz't) = Ez(z,z)exp(-iwt) + c.c., (1)

where w = 27r c/A is the frequency, A is the free-space wavelength and E,(X, z)

represents the spatial variation of the field. In region I, E, is expressible as a sum

of all the even spatial harmonics representing TMt, modes:

E.(z, z) = Eo sin[k.(D - x)] + E E, cos(27r n z/d) sinh[k,,(D - x)], (2)
n= 1

where d is the grating period and D is the distance between the upper surface of

the grating and the upper mirror. In Eq. (1), E0 is the amplitude of the n = 0
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(i.e., fundamental) spatial harmonic, with wavenumber k. and E, is the amplitude

of the nth spatial harmonic, with wavenumber kn. The wavenumbers k, and k,, will

be identified in the following.

In order to simplify the analysis it will be assumed herein that in region Il the

field corresponds to that of a TEM standing wave in each slot:

E.(x) = A0 sin[k(x + b)]sin(k~b)'(3

where b is the depth of each groove. The assumption of a TEM mode in region II

is strictly valid for s < d, where a is the groove width.

In writing Eqs. (2) and (3) the fields have been expressed in such a way as to

automatically satisfy the boundary condition E, = 0 at the metallic boundaries,

i.e. at the bottom of each slot and at the surface of the upper mirror. The other

relevant components of the electromagnetic field (i.e., B. and E.,) may be obtained

from Maxwell's equations. It follows from the wa-'c equation that k_ = w/c and

k, = [(27rn/d)2 - (w/c)2] 1 / ', (n = 1,2,3,...).

From the continuity condition on E, one obtains

En = 2 Eosin(7rn s /d) sin(kTD) (4)
7rns/d sinh(k,,D)'

and from the continuity condition on By one obtains the dispersion relation

cot(k,,D = d cot(k2 b) + 2Z k th(kD) [sin(7rl/d) (5)

ki7r18/dJ()
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In the following it will be assumed that only the n = 1 spatial harmonic is

resonant with the electrons and therefore the only relevant component of the slow-

wave structure. That is, A/d - 1//#,, where /3 = v./c is the ratio of the axial

electron velocity to the speed of light. All other spatial harmonics are assumed to

be nonresonant.

B. Trajectories, Beam Emittance and Energy Spread

The equations of motion of the jth electron, of charge -ej and rest mass m, inter-

acting with the n = 1 spatial harmonic represented in Eq. (2) are given by

di, - = 2cp3,j/d- w, (6)dt

d _j - eIEi/3., sinh[ki(D - zj)] exp(itij) + c.c., (7)
dt 2mc

where ikb = 27rzj/d - wt.

To analyze the motion of electrons in the z - y plane it will be assumed that the

motion in this plane is unaffected by the radiation field. The forces in the transverse

plane arse from the self-electric and the self-magnetic fields plus that due to the

axial guide magnetic field, B0 . For a strip beam the equations of motion of an

electron are

d2 - , = -[lo d (8)
dt 2  b dt

d 2y dz
dt2 = no -, (9)

where 00 = IeIBo/ 7 mc is the relativistic gyrofrequency in the guide field, - =

(1 - v 2/c 2 )- /2 , Ob = (47rnbleI2/yy M) 1/ 2 is the relativistic plasma frequency and
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nb is the beam density. We assume herein that the electrons are emitted from the

surface of a field-free cathode with no velocity along the y axis. Therefore, setting

the canonical momentum equal to zero, i.e., P = ym(dy/dt - floa) = 0, Eq. (8)

simplifies to

dr x + f12 = 0, (10)

where n2 = -1 f. To solve Eq. (10) we put22

z(t) = CX(t)exp[iOb(t) + 8], (11)

and substitute in to obtain equations for X(t) and 0b(t). It must be emphasized

that in Eq. (11) X and 0 are the same for all the electrons and that 0 < < 1 and

0 < 6 < 27r are parameters that may be chosen to represent any desired distribution

of electrons. The equations for X and 4b are

dt-  _-  \d, 2 +  n X  = 0, (12)

xt dqS

dO= EV,. (13)

In Eq. (13) e is a constant that may be shown to equal the beam emittance as

follows. Examination of Eq. (11) reveals that the trajectories in the plane (x, dx/dt)

are clliptical, with a maximum area of 7revz. This allows one to immediately identify

E as the (unnormalized) emittance of the electron beam and Eq. (12) then takes

the form of the well-known envelope equation 22 :

d 2X 
2 V2_d+ f12X 0' . (14)

dt 2  X 3
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For a matched electron beam X(t) = Xb = constant and Eq. (14) may be solved to

obtain Xb = (Cv./fj) 1/ 2. Making use of this, the motion in the z - y plane is found

to be given by

(!, 1/2 Sfl,= - j ) cos( t + ), (15)

y* sin(t + 0). (16)

It is convenient to relate the half-width of the electron beam, Xb = (EV./1) 1/ 2 ,

to the effective spread in the axial energy on the beam, < 6-y., > mc 2, where <>

indicates an average over the electron distribution. To do this, we first note that

V2 V2 _ (v2 + v2), where v is the electron speed, v. = dx/dt, vy, dy/dt and

5 7z =/i3,6/i3 , where b/3, is the spread in 8,. From the first of these relations it

follows that I < 6v" > I< (V. + v2) > /2v. Next, evaluating v_ and v. with the

aid of Eqs. (15) and (16) one obtains

b-1 = _- 1 _+ 2,(17)

where it has been assumed that is uniformly distributed in the interval [0,1]. This

spread in energy will contribute to the inhomogeneous broadening of the radiation

from the electron beam.

Equations (6), (7), (15) and (16) form a closed system of equations for the

analysis of the electron dynamics of a grating FEL. They form the basis for the

numerical results presented in Sec. III. It is useful at this point to derive the

'pendulum' equation2 1 for the phase by neglecting the motion in the x - y plane.



Setting v, - 0, v% = 0 and -y = -y,, Eqs. (6) and (7) can be combined into a single

equation for 0j:

dt__- 7rjmeEi sinh[ki(D - z,)] exp(ioj) + c.c. (18)

Equation (18) shows that the motion of an electron consists of synchrotron oscilla-

tions which, in the case of the grating FEL, take place in the potential well formed

by the electric field of the spatial harmonic.

C. Radiated Power in the Small-Signal Regime

The small-signal analysis of Eq. (18) proceeds by taking E1 and -Y as constants

and solving the equation iteratively, assuming that the right-hand side is a small

term. Since this analysis is standard we shall not repeat it here. From the small-

signal analysis of Eq. (18) the power radiated by an electron beam of thickness 2Xb

passing at a distance b above the grating is given by13'20

____d _j~ 12___ (b ___L"3 in(k cosh[2k,(D - Xb - b)] -I] g(e),
dt 16 Fo ,tz/ 2kXbI

(19)

where Io = 1.7 x 10, Ib[A] is the beam current in Amperes, g(O) d(sin 0/Q)2 /dO,

and

9~ (20)

and L. is the interaction length along the z axis.
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D. Start-Oscillation Condition and Gain of Grating FEL

In the configuration indicated in Fig. 1 a mirror is placed above the grating to form

an open resonator for the oscillator. If Q denotes the effective quality factor of the

resonator, the start-oscillation condition is expressed by

dF-.d W
=- ,ad, (21)dt Q

where Ead, the total radiation energy stored in the optical cavity, is given by

AD EE2 2 [(2n7r )~2 sinh(2knD) (\ 211 (24.d0= - + (k. (22)
47 n=1 2 knd.J 2kn D ± n

where A is the cross-sectional area of the optical cavity. In writing Eq. (22) the

contribution of the field energy in the grating slots has been omitted. According to

our earlier assumptions only the n = 1 spatial harmonic is excited by the electron

beam. Noting that kD > 1, with the aid of Eq. (4) we identify the first term in

Eq. (21) as the predominant contribution to the expression for £,od. Making use

of Eqs. (4), (18), (21) and (22) one obtains an estimate for the start-oscillation

current which is expressible in the form

Ib[A2 2kXb exp[2k,(Xb + 6)1. (23)
L sin (k.D) sin(7rs/d)J sinh(2kXb)

In writing Eq. (23) the maximum value of g(O), defined prior to Eq. (20), is taken

to be equal to 0.54. Additionally, the effective reflectivity R of the optical cavity

has been introduced by making use of the formula relating the reflectivity to the

cavity quality factor, 23 i.e., Q = wD/c(- In R).

9



As illustrative examples, Tables 1 and 2 list sets of parameters for grating FELs

using a 100 kV electron beam to generate radiation at A = 1001im and a 1/2

MV electron beam to generate radiation at A = 101im. Several points should

be noted in coDnection with these tables. First, the start-oscillation current is

determined from Eq. (23) by inserting the value of k. obtained from a solution of

the dispersion relation in Eq. (5). Equation (5) generally has an infinite number

of roots corresponding to all the discrete modes in the open resonator. The entries

in Tables 1 and 2 indicate the lowest start-oscillation currents corresponding to the

roots of Eq. (5) that fulfil the resonance condition A/d ; 1/,,. Second, the Q

value has been chosen so that the cavity fill-time is reasonably short compared to

the expected duration of the electron beam pulse. Third, the relative energy spread

is evaluated with the aid of Eq. (17). Fourth, The function g(1), defined prior to

Eq. (20), is the well-known derivative of the spontaneous line shape, (sin 0/0)2.

The predominant region of gain is limited to the range 0 < 0 < 7r. Evaluation of

O0/0A at fixed v, (for homogeneous broadening) allows one to estimate the spread

in the wavelengths, 6A, of the emitted radiation. That is

,A/A = ,,(A/L,).

Fifth, the output power is given by i7l'V, where 17 is the extraction efficiency and

V is the beam voltage. The extraction efficiency is obtained from the numerical

results presented in Sec. III. Finally, the gain per pass, defined by

L, dEad/ dt
V~ 4 ad

is also indicated in Tables 1 and 2.
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III. Extraction Efficiency : Numerical Simula-
tions and Analytical Estimates

The extraction efficiency q, defined as the fraction of the electron beam kinetic

energy that is converted into electromagnetic radiation energy, is a key figure-of-

merit of any source of high-power radiation. An estimate for the extraction efficiency

is obtained by considering the maximum tolerable spread, bv,, in the axial velocity

and the corresponding spread in the detuning, j601, where 0 is defined in Eq. (20).

As usual, the requirement that 1601 be less than 7r leads to an upper bound for the

extraction efficiency, which can be expressed in the form

A (7_ - 1)3/2

77 = , /Z(24)

An estimate of the energy spread on the electron beam may be made by using

Eq. (17). The gain in Tables 1 and 2, which is based on the model of a cold,

monoenergetic beam, is achieved provided this relative energy spread is small com-

pared to the extraction efficiency indicated in Eq. (24). The numerical results to

be presented verify this assumption.

In this section we shall discuss the results for the efficiency obtained from a

numerical solution of Eqs. (6), (7) and (15) for the electrons comprising the beam

and compare the results with analytical estimates. In subsection A a 100 kl"

beam is used to generate 100 um radiation and in subsection B a 1/2 MV beam

is employed to generate 10 p&m radiation. Each subsection is divided into two

parts. In i) we discuss the example of an infinitely-thin beam (i.e., Xb -* 0). The

11



example of a finite-thickness electron beam is, of course, more important since it

is closer to reality. Besides this, however, numerical simulations and analytical

calculations allow us to explore and gain a deeper understanding of the nonlinear

stage of the interaction. The beam with finite thickness is examined in ii), with

Case (a) presenting the results in the case of laminar flow and Case (b) presenting

the results in the case of the beam with full transverse electron motion.

A. Radiation wavelength A = 100 pm

i) Infinitely-Thin Beam

Figure 3 (a) shows the efficiency of generation of 100 pm radiation as a func-

tion of the electric field amplitude of the fundamental spatial harmonic for a cold,

infinitely thin electron beam. The efficiency in this case has been optimized with

respect to the detuning 0 defined in Eq. (20) to obtain the maximum extraction.

For the idealized case of a monoenergetic, infinitely-thin beam, space-charge effects

are eliminated by using a very small beam current. Inserting the corresponding

numerical values, the efficiency according to Eq. (24) is 0.72%, which is to be

compared with the code result of 0.63% indicated in Fig. 3 (a).

Following Eq. (18) we have noted that the motion of the electrons in the ra-

diation field is in the form of synchrotron oscillations in the potential well formed

by the slow-wave corresponding to the n - 1 spatial harmonic. The saturation

mechanism in this process is similar to that in the conventional FEL. That is, the

maximum extraction efficiency is obtained when an electron loses all its initial ki-

netic energy in the potential well and, in the moving frame, its initial velocity is

12



reversed. The reversal in velocity is attained after a time -7 /r/fl sO, where Ono is

the synchrotron frequency. From Eq. (18),

21aynO 2 jejEj sinh[k,(D - X 0)J (25)

d m~yj

In Eq. (25), X0 is the x coordinate of the beam centroid. In the examples where

the beam is taken to be infinitely-thin, X 0 is, of course, the x coordinate of the

beam, i.e., the distance of the beam from the grating surface.

In optimizing the detuning 9 [defined in Eq. (20)] for an infinitely-thin beam we

are, in effect, choosing the frequency w such that the electrons at X = X0 undergo

1/2 of a synchrotron oscillation in the interaction length Lz. The discrepancy

between the value for the efficiency calculated from Eq. (24) and the peak value

in Fig. 3 (a) is a reflection of the fact that the electrons are somewhat smeared

in the potential well in which they are trapped. Since they do not oscillate in the

potential well as a 'macroparticle', we expect a reduction in the extraction efficiency

compared to the the upper bound given in Eq. (24). This is consistent with our

results.

ii) Finite-Thickness Beam

Case (a) Electron Beam with Laminar Flow

Figure 3 (b) shows the efficiency for a finite-thickness beam with the gyration

of the electrons artificially suppressed in the numerical code. This figure indicates

a peak efficiency of 0.36%, which is smaller than the value for the case of the

infinitely-thin beam shown in Fig. 3 (a).

13



For a thick beam the synchrotron frequency varies according to the z coordinate

of the electrons. Consequently the inner electrons experience a field that is larger

than the optimal value and they execute more than 1/2 of a synchrotron oscillation.

The outer electrons, on the other hand, experience a smaller field than the optimal

value and thus do not complete the 1/2-synchrotron motion necessary to completely

transfer their energy to the radiation field. It is simple to obtain an estimate of the

factor by which the extraction efficiency is reduced. The frequency fOyo is greater

than the mean synchrotron frequency of electrons located at x > X 0 by

F+- yno
< flyn >

where

n' i = 27r IeIEj sinhki(D - x)] 1 (26)d T

is the synchrotron frequency of electrons at a distance x from the grating surface,

fl'no is defined in Eq. (25) and <> indicates an average over the interval X0  < z K

2Xb. The quantity F+ may be viewed as the the amount by which the interaction

length L. in Eq. (24) is effectively increased, thus leading to a reduction in the

extraction from the electrons located at z > X 0. Similarly, for electrons with

z < Xo the extraction is also reduced. For these electrons the mean synchrotron

frequency is greater than flaVO by

F_ < Q,yn >

where < 1,y > is the average, over the interval 0 < x < X0 , of the synchrotron

frequency defined Eq. (26). Considering both groups of electrons together, the

14



extraction efficiency is expected to be reduced, relative to the infinitely-thin beam

case, by 1/F, where

F - (F+ + F_).

Inserting the appropriate values, we find F = 1.8. This is fairly close to the value

of 0.63/0.36 = 1.7 for the ratio of the peak efficiencies in Figs. 3 (a) and 3 (b).

Case (b) Electron Beam with Full Transverse Motion

Figure 3 (c) shows the extraction efficiency for a warm, finite-thickness electron

beam (Xb = 25 tim). (See Table 1 for other parameters in this example.) The peak

efficiency indicated in Fig. 3 (c), 17 = 0.46%, is observed to be smaller than the

peak efficiency for the infinitely-thin beam example in Fig. 3 (a) but higher than

that for a thick beam with laminar flow. This is an important result which we shall

discuss further.

For a thick beam the synchrotron frequency varies according to the X coordinate
I

of the electrons. As a consequence of their gyromotion, however, the electrons rotate

about the beam axis and sample the transverse profile of the electric field as they

cross the interaction region. This tends to restore, to some extent, the extraction

to the value obtained in the case of an infinitely-thin beam. To assess the effect

of electron gyration on the extraction quantitatively, Eq. (15) may be substituted

into the pendulum equation, Eq. (18), to obtain

- - d_= (kl.Xb)[(-1 ) exp(4) - exp(-))]exp(iV', ) + c.c., (27)
dt2  2-,mdr

where 4P = ki(D - Xo) + ir(Oit + 6) and Ir is the modified Bessel function of the

first kind of order r. Equation (27) may be simplified by noting that the electrons
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gyrate many times as they transit the interaction region; i.e., fl/fl,, > 1, where

0I is the gyration frequency defined following Eq. (10) and Soy0 is the synchrotron

frequency defined in Eq. (25). Assume that Obj = *j + &bO, where %Pj is slowly

varying and bj is small and rapidly varying. Upon inserting this into Eq. (27) and

averaging with respect to the rapid oscillations, we obtain

dI - P--- (k--a Xb)sinh[k1(D - Xo)]exp(i *') + O(E2) + c.c., (28)

where the Fj is the slowly-varying part of the relativistic factor. Equation (28)

shows that for an electron (with given > 0) the synchrotron frequency is not

identical to that for an electron located on the beam axis, i.e., the frequency given

by Eq. (25). Since Io > 1, the synchrotron frequency is effectively increased by

V/Io. This implies that the electron undergoes more than 1/2 of a synchrotron os-

cillation in the interaction length, thus transferring less energy to the radiation and

reducing the overall extraction. For the beam as a whole, the extraction efficiency

is expected to be reduced by < I 1/ 2(kl Xb) >-', where <> indicates an average

over the random variable . Inserting the appropriate numerical values we find

< I /2 (kXb) >= 1.24, which is close to the ratio of the peak efficiencies in Figs.

3 (a) and 3 (c), i.e., 0.63/0.46 = 1.37.

B. Radiation wavelength A = 10 im

i) Infinitely-Thin Beam

Next we examine an example of 10 jim radiation generated by a 1/2 AlV electron

beam. Table 2 shows the parameters for this example. Again, for comparison
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purposes it is useful to know the extraction efficiency for the case of the infinitely

thin beam. The peak extraction efficiency in this case is 0.11%, as indicated in Fig.

4 (a), which is to be compared to the value of 0.13% as determined from Eq. (24).

ii) Finite-Thickness Beam

Case (a) Electron Beam with Laminar Flow

Figure 4 (b) shows the extraction efficiency for the case of a finite-thickness

beam with the gyration of the electrons artificially eliminated. The peak efficiency

is observed to be 0.068%. In this case, F = 1.6, which is in good agreement with

the ratio of the peak efficiencies in Figs. 4 (a) and 4 (b), namely, 0.11/0.068 = 1.6.

Case (b) Electron Beam with Full Transverse Motion

Finally, in Fig. 4 (c) we show that the extraction efficiency for the case of the

finite-thickness beam with full transverse motion is 0.093%. Inserting the appropri-

ate numerical values, we find < I' 2 (klXb) >= 1.14, which is in close agreement

with the ratio of the peak efficiencies in Figs. 4 (a) and 4 (c), i.e., 0.11/0.093 = 1.18.
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IV. Discussion and Concluding Remarks

The grating FEL has the potential of developing into a truly compact, table-top free-

electron source of IR radiation. In this paper we have presented a preliminary study

of a possible set of design parameters for a source utilizing a 100 kV electron beam

to generate 100 Am radiation and one utilizing a 1/2 MV beam to generate 10/tm

radiation. The design parameters have been obtained from a small-signal analysis

of the pendulum equation. This equation describes the synchrotron oscillations of

electrons in the slow-wave structure associated with the grating.

In this paper we emphasize the use of mildly relativistic (_ 1/2 AIV) beams,

primarily to avoid the bulk and expense associated with multi-MV beams. This

entails certain trade-offs that point to the wide latitude available in designing a

grating FEL. To illustrate this, Table 3 presents an example of a 5 MV beam

employed to generate 10 Am radiation. The start-oscillation current in this case is

kept reasonably low by using a long-thin grating and assuming a somewhat higher

effective reflectivity. Compared to the design parameters in Table 2, the 5 MV

system is characterized with higher output power and gain, the strength of the guide

magnetic field is relatively modest and an electron beam with a larger relative energy

spread can be accommodated. As far as the nonlinear saturation is concerned, the

5 MV beam illustrates an interesting point. Although the beam is 5 wavelengths

thick, the extraction efficiency is nearly equal to that for an infinitely-thin beam.

This result is in quantitative agreement with the analysis presented in Sec. III.
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The nonlinear evolution of the grating FEL has been analyzed with the aid of

a particle simulation code. This code follows the motion of electrons through given

fields and allows an accurate estimation of the nonlinear extraction efficiency to

be made. We have made use of a novel method of following the transverse motion

of the electrons in the presence of an axial guide magnetic field and the self-fields

which naturally incorporates the effects associated with the finite emittance of the

electron beam.

We have studied the extraction efficiency of the grating FEL in detail for three

examples. The example of the infinitely-thin beam is found to have the highest

extraction and the example of a thick beam with laminar flow is found to have the

smallest extraction. We have found the remarkable result that for a thick beam,

gyration of the the electrons about the beam axis leads to an enhancement of the

extraction efficiency as compared to the case with laminar flow. This is due to the

fact that electron gyration tends to effectively reduce the variation of the slow-wave

electric field normal to the grating surface.
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Table 1: Design parameters for a grating FEL Oscillator operating at 100 Um using a

100 kV electron beam.

Wavelength A 100 /M
Voltage V 100 kV
Current Ib 125 mA
Output Power 57.5 W
Gain/Pass G 4 %
Extraction Efficiency 77 0.46
Interaction Length L, 2 cm

Guide Magnetic Field B 0  3 T
Beam Thickness o,, = 2Xb 50 Pm

Beam-Grating Gap 6 0 im

Grating Period d 55 #m
Groove Width s 27.5 Im
Groove Depth b 27.5 zm
Grating-Mirror Separation D 1 cm
Cavity Cross-Sectional Area A 1 cm 2

Effective Reflectivity R -99 %
Cavity Quality Factor Q 6 x 104

Relative Energy Spread 6 yz/(-y - 1) 0.2 %
Relative Wavelengt.i Spread 8A! N 0.3 %
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Table 2: Design parameters for a grating FEL Oscillator operating at 10 jm using a

1/2 MV electron beam.

Wavelength A 10 'm

Voltage V 1/2 MVI
Current Ib 400 mA
Output Power 186 W

Gain/Pass G 47 %
Extraction Efficiency 17 0.093 1
Interaction Length L, 4 cm

Guide Magnetic Field B 0  10 T
Beam Thickness o0, = 2Xb 10 /Im
Beam-Grating Gap 6 0 Im

Grating Period d 9 Im

Groove Width s 4.5 Jm

Groove Depth b 4.5 #m
Grating-Mirror Separation D 1 mm

Cavity Cross-Sectional Area A 1 cm 2

Effective Reflectivity R 99 %

Cavity Quality Factor Q 6 x 10'
Relative Energy Spread 6bz/(7y - 1) 0.03 %
Relative Wavelength Spread /A/A 0.02 %
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Table 3: Design parameters for a grating FEL Oscillator operating at 10 Am using a 5

MV electron beam.

Wavelength A 10 /m
Voltage V 5 MV

Current b 100 mA
Output Power 3 kW
Gain/Pass G 7 81 %
Extraction Efficiency 7 0.61 %
Interaction Length L. 16 cm
Guide Magnetic Field B 0  1 T

Beam Thickness a_ = 2Xb 50 Am

Beam-Grating Gap 6 0 Am

Grating Period d 10 Am
Groove Width s 5 Am

Groove Depth b 5 Am
Grating-Mirror Separation D 1 mm

Cavity Cross-Sectional Area A 1 cm 2

Effective Reflectivity R 99.5 %
Cavity Quality Factor Q 1.3 x 106
Relative Energy Spread b-yz/(-y - 1) 0.5 %
Relative Wavelength Spread 6A/A i 6.2 x 10 - 3 %
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Figure 3: Extraction efficiency, q7, versus amplitude of fundamental spatial harmonic,

E0 , for A = 100 Am radiation using a 100 kV beam. Beam axis is 25 pm above

grating surface. (a) Infinitely-thin beam. (b) Finite-thickness beam with

laminar flow (Xb = 25 jim). (c) Finite-thickness beam with full transverse

motion (Xb = 25 pm).
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Figure 4: Extraction efficiency, 17, versus amplitude of fundamental spatial harmonic,

E0 , for A = 1Opm radiation using a 1/2 MV beam. Beam axis is 5 um

above grating surface. (a) Infinitely-thin beam. (b) Finite-thickness beam

with laminar flow (Xb = 5 pm). (c) Finite-thickness beam with full transverse

motion (Xb = 5pom). 30


