
A I L-TR-1 991-011 8
~ ~ 4

AD-A2 48 762

;~k$;.APPLYING NEURAL NETWORi' o ,:
AAIR FODRCE -PERSONNEL ANAi'(SIS! y

.',rC

3833 Texas. Avenue, Suite 2,56,
Bryan, TXk 778012S -

G . ~SheeeK. FngtquitCpah U

w, > HUM AANRES.OURCE.S ,,DIRECTOPATE .-
MANPOW'ER AND PERSONE RESEAR§1" I DIVI iON*

Brooks AirForce Be- iTX' ME23- 600"1"~
W4 ,

2y~ ~ ~ m d M199e219

Aprvdfor pulcrlae dsrbto s niie

vu- -

I 4"4

* *92 4 16, 022 Cn

AIR FORCE SYSTEMS COMMAND
_BROOKS AIR FORCE BASE, TEXAS 78235-5000___



NOTICES

When Government drawIngs,.specifications, or!r tiar data are U66 jor anly
purpose othor Ithan in'connection wfth a dot InItoly G "$'oirnmont-rolated procure-

~<metth Uitd taesGoverfimorit incu~q' no r .nsibiity orr anyc'bflgation,
whatsoever. The tact that the Government 'may ha"V formulatod or In any way
supplied the sai drawings, specifications, or other diii, I s not 1o be regarded by,
Implication, or othorwiso inany manxner constnjed, as 'icensing the holder, or any
other person or corporation; or as conveying any right:; or perml~lslon tortnanufac-.
turn, use, or soil any patented Inv66t&'nthat may in any way b4 related tifiret6.

To e Ofieo Public Affairs Office has reviewed this report, and hIs roeasabI6,: *

informationoServlc&, whdre, It, w.it 60e,avalbetth

general public, including foreign nationals".

.This reothas been ,resequ aw iaproved for pubiicat"oL

R ENGOUIS, pUA WILLIAM E. At LEY, -i 8'h
OPJctcenI ~ apwer and Personnel~e S~

jKY~ ~ Chief, Manpower and Persnnel Re 0,;cteisin~4 ~

4,, 
j2

J .

8est AvatlbeCP



Form Approved

REPORT DOCUMENTATION PAGE 1 For v7-018

Public reporting burden for this collection of information is estimateo to average 1 hour per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and revewming the collection of information. Send comments regarding this burden estimate or any other asDect of ths
collection of information, including sugge tions for reducing this burden. to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPiRT TYPE AND DATES COVEREDMarch 1992 ia-Mr9-SW 1

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Applying Neural Networks to Air Force Personnel Analysis C - F41689-88-D-0251
PE - 62205F

PR - 7719
Vnc M ggins TA - 20
Sheree K. Engquist WU - 20
Larry T. Looper

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

RRC, Incorporated
3833 Texas Avenue, Suite 256
Bryan, TX 77802 AL-TR-1991-0118

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Armstrong Laboratory
Human Resources Directorate
Manpower and Personnel Research Division
Brooks Air Force Base, TX 78235-5000

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Capt Sheree K. Engquist, (512) 536-2257.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The principal objective of this task involved evaluating artificial neural networks for application to personnel
modeling by examining areas representative of many personnel models. The four areas chosen were airmen re-
enlistment, the determinants of reenlistment, and the effects of policy levers; pilot training and more specifically
the likelihood of candidates successfully completing Undergraduate Pilot Training; projection of aggregate time
series personnel flow rates; and productive capacity of airmen as it relates to aptitude and experience. In addition,
the productive capacity analysis was expanded into a working computer prototype allowing the user to examine
the effect of changing aptitude/experience mixes on productive capacity. Performance was compared against
traditional techniques such as regression analysis.

14. SUBJECT TERMS 15. NU/BER OF PAGES

Artificial neural networks Learning vector quantization Probabilistic networks 16. PRICE CODE

Back propagation Personnel system modeling

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
j Prscrbpd bv AfNil' Scdl 139-10



CONTENTS

Page

SUM MARY ................................................................................................................................ 1

INTRO DUCTIO N ...................................................................................................................... 2

AIRMAN REENLISTM ENT ............................................................................................... 3
The Reenlistm ent M odel and Data .......................................................................... 4
M odeling M ethods ....................................................................................................... 6

O rdinary Least Squares (O LS) .......................................................................... 6
Logit ............................................................................................................................... 8
Probit .............................................................................................................................. 8
Back Propagation .................................................................................................. 8
Probabilistic Neural Network ............................................................................ 10
Learning Vector Q uantization ............................................................................ 13

Reenlistm ent Results ............................................................................................... 13
Perform ance M easurem ent ............................................................................... 14
Variations on Back Propagation ....................................................................... 15
Results on Random Sam ples ............................................................................ 17
Results on Tem poral Sam ples .......................................................................... 18

PILOT TRAINING ................................................................................................................... 19
UPT Data .......................................................................................................................... 20
Additional M odeling M ethod (Stepwise Regression) .......................................... 23
UPT Em pirical Results ............................................................................................. 24

Porta-BAT and AFOO T Results .......................................................................... 25
Porta-BAT, AFOOT, UO R, and Training Results ............................................. 28
Results with Selected Variables ....................................................................... 29
Perform ance of Back Propagation .................................................................... 30
UPT Sum m ary .................................................................................................... 32

AGG REGATE ACCESSIO N AND RETENTIO N .......................................................... 32
Aggregate Tim e-series M odel and Data ............................................................... 33
Neural Network Approach ....................................................................................... 34
Em pirical Results on Aggregate Tim e Series ....................................................... 37
Neural Network Reenlistm ent Response Surfaces ............................................ 42
Aggregate Tim e-series Sum m ary ........................................................................... 45

PRO DUCTIVE CAPACITY ............................................................................................ 46
Productive Capacity M odel and Data ..................................................................... 47
Productive Capacity Results .................................................................................... 49

iii



Contents (Continued)

Page

C O N C LU S IO N S .................................................................................................................... 5 1

R E F E R E N C E S ....................................................................................................................... 5 4

List of Figures

Fig.
No.

1 Training path for back propagation ..................................................................... 10
2 Examples of PNN gaussian kernels .................................................................... 12
3 Decision boundaries formed by an LVQ network ............................................. 14
4 Actual and out-of-sample projections of first-term reenlistment rates

for January 1979 through September 1979 .................................................. 39
5 Actual and out-of-sample projections of first-term reenlistment rates

for October 1987 through September 1988 .................................................. 40
6 In- and out-of-sample simulation of the first-term reenlistment rate

using the OLS model ....................................................................................... 41
7 In- and out-of-sample simulation of the first-term reenlistment rate

using the neural network model .................................................................... 41
8 Response of first-term reenlistment rate to unemployment levels and

relative military to civilian wage ..................................................................... 43
9 Response of second-term reenlistment rate to unemployment levels and

relative military to civilian wage ..................................................................... 43
1 0 Response of the NPS accession rate to unemployment levels and relative

military to civilian wage .................................................................................... 44
11 Response of the PS accession rate to unemployment levels and relative

military to civilian wage .................................................................................... 45

List of Tables

Table
No,

1 Independent Variables Used in the Reenlistment Models ................................ 5
2 AFS Codes Examined in the Reenlistment Analysis .......................................... 6
3 Back Propagation Training Stopping Methods ................................................. 16

iv



List of Tables (Concluded)

Table
No. Page

4 Validation Sample Results Randomly Selected Validation Sample ............ 17
5 Validation Sample Results Temporal Validation Sample .............................. 19
6 Determinants of UPT Success ............................................................................ 20
7 Source of C om m ission ......................................................................................... 22
8 UPT Entrants on the Porta-BAT Data Set by Year ............................................ 23
9 OLS Results on Neuralbat Estimation Sample ............................................... 25

10 Estimation and Validation Sample Performance on 36 Porta-BAT and
AFO O T Variables .............................................................................................. 27

11 Estimation and Validation Sample Performance on All 53 Variables .......... 29
12 Estimation and Validation Sample Performance on 8 Selected Variables ....... 30
13 Stability of Back Propagation Performance Using Validation Sample RMSE

as a Training Stopping Criterion ................................................................... 31
14 Aggregate Accession Retention Model Dependent Variables ...................... 33
15 Aggregate Accession and Retention Model Equation Specification and

Independent Variables .................................................................................... 35
16 Training Stopping Methods for Time Series Data .......................................... 36
17 Validation Sample Performance (January 1979 through September 1979) .... 38
18 Validation Sample Performance (October 1987 through September 1988) .... 40
19 A S VA B Subtests .................................................................................................. .. 47
20 Air Force ASVAB Composites .............................................................................. 47
21 Career Fields With Walk-through Performance Test Data ............................. 49
22 Out-of-Sample Simulation R2 for Productive Capacity Models .................... 50

aVessl For
XTIS rRA& I
DTIC TA on

v A



PREFACE

This is the second task in a two-stage effort to assess the potential
for applying neural network methodologies to the Air Force personnel
field. The research is performed in support of the force management
programs of the Human Resources Directorate of the Armstrong Labora-
tory. Techniques and results developed in this task will serve as analysis
and decision tools in the Air Force and OASD force management and
policy analysis systems.

Three of the four personnel areas addressed in this research are
based on prior modeling and analysis efforts: Stone, Looper, &
McGarrity (1990); Stone, Saving, Turner, Looper & Engquist (1991); and
Faneuff, Valentine, Stone, Curry, & Hagemann (1990). The cocperation
of those researchers in providing background information involving
those efforts was essential to the completion of this task. In addition, the
authors wish to thank Ms. Kathryn Turner for assistance in preparing and
modifying this document, Ms. Phyllis Eddy for proofing, and Mr. Darryl
Hand for preparing much of the data.
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APPLYING NEURAL NETWORKS TO

AIR FORCE PERSONNEL ANALYSIS

SUMMARY

In this task, the performance of neural networks is compared against existing
models and traditional estimation techniques in 4 Air Force personnel areas: (1)
reenlistment analysis and projection, (2) Undergraduate Pilot Training (UPT)
selection, (3) aggregate personnel flow-rate projection, and (4) productive capacity
analysis. Some neural network architectures can be viewed as nonlinear estimation
techniques which derive the form of the final model directly from the relations found in
an estimation or training data set. Several extensions to basic neural network
architectures were developed during the task to address the requirements of
personnel analysis. Based on out-of-sample projections, the networks were found to
perform substantially better than existing models in 2 cases and produced similar
results in the other 2 personnel areas.

In projecting individual airmen reenlistment behavior, the network models were
superior to probit models across all 5 career fields tested. When projecting over an
out-of-sample period, the networks displayed a 35 to 100% improvement in simulation
R2 over the probit models. Similar improvement was found in comparisons on an
aggregate model of accession and retention. Neural network models projected a
series of "future" flow rates excluded from the estimation sample and the results were
much better than ordinary or generalized least squares models (5 to 105%
improvement in simulation R2). In addition, the response surfaces of the neural
networks indicated structure in the reenlistment model which is consistent with risk
averse behavior but difficult to specify in a standard model. These response surfaces
also indicated nonlinear structure which would have a dramatic impact on policy
decisions versus those implied by a linear model.

In the areas of UPT selection and productive capacity analysis, the networks
performed very similar to the standard regression techniques. In both of these cases,
the regression models displayed only moderate statistical significance in-sample and
obtained only marginal performance projecting out-of-sample behavior. In these
cases, the networks were unable to discover any nonlinear or interacting features
which improved significantly upon the regression models. This discovery could be
attributable to the weak statistical relation between the independent and dependent
variables or the fact that the underlying process being modeled is actually linear over
the observed range. Even in these cases, the networks were able to obtain models
with performance and response similar to the standard regression models. Overall,
the extended network architectures were found to be resistant to marginal data sets
and broadly applicable to personnel analysis.
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INTRODUCTION

The Human Resources Directorate of the Armstrong Laboratory and others in
the personnel management, training, and research areas have applied many
modeling and analytic techniques to quantify the decisions, behaviors, and flows
observed in personnel systems. In recent years artificial neural network (ANN)
techniques have demonstrated some impressive results in modeling other complex
systems and in classification tasks (Gorman and Sejnowski, 1988; Shea and Lin,
1989; Surkan and Singleton, 1990; Waibel, 1989; Josin, 1990; and others). A more
extensive review of neural network literature on problems similar or related to
personnel research is available in Wiggins (1990). The success of ANNs in these
areas and their potential for application to personnel modeling lies principally in their
ability to automatically detect nonlinear and interacting relations among the inputs and
output(s) of a system or observed behavior. Most personnel models require the
determination of a relation between a set of inputs (known characteristics or
conditions) and a target variable such as a decision, capability, flow, or stock.
Traditional analytic techniques require that the form of this relation be specified by an
analyst before the empirical estimation of the relationship. Often this form is chosen to
be linear by default. ANNs allow more complex relations to be developed directly
from observed behaviors of the system or group of individuals under analysis.

The principal objective of this task involves evaluating ANNs for application to
personnel modeling by examining 4 areas representative of many personnel models.
The first area involves airman reenlistment, the determinants of reenlistment, and the
effects of policy levers. The second area involves pilot training and more specifically
the likelihood of candidates successfully completing UPT. In the third area, projection
of aggregate time series personnel flow rates is examined. The final area addresses
the productive capacity of airmen as it relates to aptitude and experience. In addition,
the productive capacity analysis has been expanded into a working computer
prototype which allows a user to examine the effect on productive capacity of
changing aptitude/experience mixes.

To assess the capability of ANNs in each of these areas, the performance of
each ANN model was compared against the performance of more traditional
techniques such as regression analysis. When possible the techniques were chosen
from prior studies in the same area and the same data sets were used. In this manner,
the original model can be reconstructed for comparison to the ANN model and both
models have access to the same information. In all possible cases the performance of
both traditional and ANN models was evaluated both in-sample and out-of-sample (on
a set of data or over a time period not covered by the sample on which the model was
developed).

While the ANN architectures employed in this research will be introduced, this
report will primarily address empirical results and comparisons between ANNs and
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other modeling methods. A basic introduction to ANNs with emphasis on personnel
problems can be found in Wiggins, Looper, & Engquist (1991 a) with other introductory
articles also available: Klimasauskas (1988), and Cowan and Sharp (1988). A more
detailed presentation and referencing of the ANN methods employed here can be
found in Wiggins, Looper, & Engquist (1991 b).

AIRMAN REENLISTMENT

The first personnel area examined is the reenlistment decision of first-term
airmen. Specifically, given an airman eligible to make a reenlistment decision, the
airman's demographic characteristics, Air Force policy, and economic conditions at
the time of the decision; what is the likelihood the airman will reenlist. A model
capturing this type of decision process serves as the cornerstone of most personnel
inventory models (see Carter, Skoller, Perring, and Sakaie, 1988; Michelson and
Rydell, 1989; Syllogistics and RRC, 1989; and Stone, Wortman, and Looper, 1989). In
addition, this area serves as a very good test bed for the capability of ANNs. As
reenlistment has historically been of critical planning importance to the Air Force, it
has engendered much research activity: Saving and Stone (1982); Saving, Stone,
Looper, and Taylor (1985); Kohler (1988); Carter, Murray, Arguden, Brauner,
Abrahamse, Greenberg, and Skoller (1987); and Stone, Looper, and McGarrity
(1990). Likewise, many reenlistment efforts have been focused on the other services:
Warner and Goldberg (1983); Lakhani, Gilroy, and Capps (1984); Terza and Warren
(1986); Lakhani (1987); and Smith, Sylvester, and Villa (1989).

While the reenlistment decision has been heavily researched, virtually all of the
models tested have been linear in their input terms. Many researchers have
employed logit or probit analysis which imposes a fixed nonlinearity on the output, but
still has no inherent flexibility. In a few cases, Stone et, al., (1990) and Carter et. al.,
(1987), 1 or 2 explicit nonlinear interaction terms were directly introduced into the
model to account for unexpected results with strictly linear terms. Still, these terms
were minimal changes and the form of the interaction and nonlinearity was pre-
specified by the researchers. We hope that the flexible form of the ANN models will
capture a more complex mapping from the known characteristics of the airman and
the decision environment onto the reenlist/separate decision.

In pattern recognition terminology, analysis of the reenlistment decision is a
classification problem. Given observable features (gender, marital status, grade, etc.),
which class will an airman fall into (reenlist, separate)? Although not in the personnel
decision context, classification problems have been 1 of the most active areas of
neural network research. Kohonen (1984), Specht (1988), and Moody and Darken
(1988) have developed ANN architectures expressly for the purpose of classification.
In addition, the back propagation architecture (Werbos, 1974) has been employed
extensively for classification: Odom and Sharda (1990); Kimoto, Asakawa, Yoda, and
Takeoka (1990); Atlas, Cole, Conner, EI-Sharkawi, Marks, Muthusamy, and Barnard
(1990); Leung and Zue (1989); and Denker, Gardner, Graf, Henderson, Howard,
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Hubbard, Jackel, Baird, and Guyon (1989). In all of these cases an exemplar is being
classified into 2 or more groups based on known information. Viewed from this
perspective, the reenlistment decision is fundamentally similar to other classification
problems. Based on the success of these researchers, there was reason to believe
that ANNs would perform well on the reenlistment decision.

The Reenlistment Model and Data

The reenlistment model chosen to be analyzed is taken from the research of
Stone et al. (1990). This model is particularly appropriate for ANN analysis because it
retains the inputs as separate components of the pecuniary factors: military
compensation, selective reenlistment bonus (SRB), and civilian wages. Many other
reenlistment models are based on the Average Cost of Leaving (ACOL) construct
which aggregates all pecuniary factors into a single ACOL term (see Warner and
Goldberg, 1983). Because the form of this aggregation is fixed, it prevents an ANN
from searching for potentially more useful methods of combining the pecuniary factors.

Stone et al. (1990) estimated their model over the January 1975 through March
1982 period and validated the resulting equations over the April 1982 through March
1986 period. Each of the major Air Force Specialties (AFSs) were modeled using a
separate probit equation estimated on individual level data for all airmen in an AFS
eligible to make a decision during the estimation sample time frame. The resulting
probit equations were used to predict the reenlistment decisions of airmen eligible to
make decisions over the validation sample time frame. The variables used in their
model (and also in the current research) are shown in Table 1. (More detailed
explanations of the variables can be found in Saving et al. (1985) with bfor, bpas,
atud, and employ2 more fully explained in Stone et al. 1990.) These variables reflect
a long-term refinement of the reenlistment model through 2 previous revisions (Saving
et al., 1982 and Saving et al., 1985) and the extensive out-of-sample testing
performed by Stone et al. These input variables and the functional form reflect a
mature model based on many years of research and extensive testing. In this sense, it
should provide a stringent benchmark against which ANNs can be compared.

The data used in the current analysis is exactly that used in estimating and
testing the Stone et al. model. As described in Saving et al. (1985) and Stone et al.
(1990) the primary data consist of records extracted from annual snapshots of the
Uniform Airmen Records (UAR), with transition data appended from the Airman Gain
Loss (AGL) file. Additi -nal information from Bureau of Labor Statistics and Bureau of
the Census tapes was used to derive employment rates and civilian wages.

Stone, Looper, and McGarrity (1990) followed the prior work of Saving et al. and
estimated probit equations for each 5-digit AFS ignoring the separation by skill level
(effectively a 4-digit AFS). In addition, they estimated models at the more aggregate
2-digit AFS level. For the current exploratory research, the analysis is restricted tc
three 4-digit career fields and two 2-digit career fields as seen in Table 2.
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TABLE 1. INDEPENDENT VARIABLES USED
IN THE REENLISTMENT MODELS

Independent
Variables Definitions

dnonwhit Indicator variable: 1 if non-white airmen, 0 otherwise.
ddep2up Indicator variable: 1 if 2 or more dependents, 0 otherwise.
dsingle Indicator variable: 1 if single, 0 otherwise.
dfemale Indicator variable: 1 if female, 0 otherwise.

Education
dhsup Indicator variable: 1 if completed high school or more education,

0 otherwise.

Aptitude
dafqtl 2 Indicator variable: 1 if Armed Forces Qualification Test (AFQT)

mental category I or II, 0 otherwise.

Pecuniar
bonus Sum of SRB payments discounted to the date of the decision.
bfor Bonus forward. Computed by subtracting next month's average

SRB from this month's average SRB.
bpas Bonus past. Computed by subtracting the previous month's

average SRB from the current month's.
rmc Present value of the expected earnings stream from regular

military compensation.
cwage Present value of the expected earnings from an income stream in

a civilian job similar to that performed in the AFS being analyzed.
employ Race and gender specific civilian employment rates.
employ2 The square of employ.

Other
taf ms Total active federal military service at date of decisions.
atud Constructed variable to reflect changing attitudes toward the

military during and after the Vietnam war. A pure function of time,
peaks in 1974 then declines.

dqtr2 Indicator variable: 1 if decision made in the 2nd quarter, 0
otherwise.

dqtr3 Indicator variable: 1 if decision made in the 3rd quarter, 0
otherwise.

dqtr4 Indicator variable: 1 if decision made in the 4th quarter, 0
otherwise.
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TABLE 2. AFS CODES EXAMINED IN

THE REENLISTMENT ANALYSIS

AFS Code Description

272X0 Air Traffic Control

316Xl Missile System Maintenance

426X2 Jet Engine Mechanic

30XXX Communications-Electronics Systems

47XXX Vehicle Maintenance

NOTE: AFS codes and descriptions are taken from the October 1984 Airman
Classification Structure Chart. Any relevant AFS changes over the time
frame of the sample have been mapped into or out of these codes.

Modeling Methods

In addition to probit analysis, logit analysis and ordinary least squares were
performed during the current work to provide alternate statistica! based comparisons.
The results from these statistical techniques were compared against 3 neural network
architectures: back propagation, probabilistic neural network (PNN), and learning
vector quantization (LVQ). All of the models were trained or estimated on the
individual level exemplars or observations from the estimation sample.

While the parametric techniques are better known, the neural network
techniques may require a brief introduction. The basic concept of neural networks
involves the application of many simple processing elements (neurons) in the solution
of a problem or task. While their inspiration and heritage stems from the biological
and neurological sciences, the steps to perform an ANN analysis are mathematical.
The simple processing elements are deployed into a network architecture which
allows communication between the elements. Rules are then-used to adapt or train
the network to its environment. The rules can implement either self-organization
(when the network does not have a specific goal) or supervised training (when the
network has a specific goal or set of goals). The organization of the processing
elements and the rules which govern them typically define the architecture of an ANN.

Ordinary Least Squares (OLS)

OLS is a frequently u--d technique in many disciplines and provides a baseline
for the other techniques. Despite terminology differences, OLS also provides the
same classification results as linear discriminant analysis (Ladd, 1986), When the
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dependent variable is binary or dichotomous (as it is in the reenlistment/separation
classification problem), the application of OLS is often referred to as the linear
probability model. In this context, the output of the linear probability model for a
specific airman is interpreted as the probability that the airman will reenlist. This can
be seen in Equation 1, which shows the probability of reenlisting for airman i as a
linear function of fixed coefficients (B1, 132, etc.) and the characteristics of airman i
(gender, dependents, etc.). The final component of the equation (ei) is the difference
between the probability predicted by the equatirn and the actual outcome (1 =
reenlist, 0 = separate) for the airman. As is well known, the OLS technique chooses
the coefficients such that the sum of squared errors (X-ei 2) over all candidates in the
estimation sample is minimized. Given the covariance matrix of the dependent and
independent variables, there is a closed form solution for this minimum sum of
squared error coefficients (see Kmenta, 1971 for details). Letting Pi represent the
probability candidate iwill reenlist:

Pi = a + 31gender i + 0dependenti + ...+ ei  (1)

or

Pi = CXi + ei (2)

Where:
C ;q the vector of coefficients (131, ... )

X, is the vector of inputs for airman i (genderi, ... )

The use of OLS on a dichotomous dependent variable (reenlist/separate) poses
2 problems, 1 conceptual and the other technical. The output of the OLS model can
vary between negative and positive infinity while the probability it represents is
restricted by definition to remain between 0 and 1. The problem, conceptually, is how
to interpret a model result (probability) below 0 or above 1. In practice,
results below 0 are assigned a probability of 0 and those above 1 are assigned a
probability of 1. While this is somewhat troublesome it does not invalidate the use of
OLS for dichotomous dependent variables. On a more technical front, OLS can be
shown to be inefficient when applied to dichotomous dependent variables (Maddala,
1985). Put simply, the binary nature of the dependent variable violates the OLS
efficiency assumption that the regression errors be normally distributed. Again, this
does not invalidate the use of OLS in this case; it merely points out that the reported
standard errors are larger than the actual standard errors and that all of the
information in the sample is not put to best use by the technique.
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Logit

Logit analysis addresses both the conceptual and technical problem with the
linear probability model (OLS). Logit is based on a maximum likelihood estimation
which does not have the same efficiency restrictions as OLS for binary dependent
variables. In addition, logit always produces an estimate between 0 and 1 which
conforms to the standard conception of probability. The solution of an estimated logit
equation has the closed form shown below (using the representations of Equation 2):

Pi = (3)

1 +e'CXi

The coefficients (C) of the equation are determined by maximizing the likelihood
of observing the actual reenlist/separate behaviors of the airman in the estimation
sample assuming the cumulative errors follow a logistic distribution (see Maddala,
1985).

Probit

Probit analysis is closely allied with logit; the sole distinction being the
assumption of a normal distribution of errors by probit. There is no simple closed form
solution for the probability of a probit estimation. The solution requires the integration
of the normal probability density function. Saving et al. (1985) and Stone et al. (1990)
employed the probit estimator in all of their work. In practice, the 2 techniques
produce very similar results and this study will sometimes employ only logit.

Back propagation

Back propagation is the most widely applied neural network architecture
developed to date. It is a supervised learning procedure in which the network adapts
to the inputs and desired outputs by error correction. While various error measures
can be used, the most common (and the 1 used in this study) involves minimizing the
sum of squared prediction errors over all of the training exemplars. This is the goal of
linear regression. However, in the case of back propagation, several nonlinear
processing elements (each having the same form as the logit function shown in
Equation 3) are applied to the problem. Use of multiple elements allows the network
to "discover" the underlying relationship between the inputs and the outputs. This
relationship is not constrained to linearity (as in OLS) and can in fact take on any non-
linear form (Hornik, Stinchcomebe, and White, 1989; Funahashi, 1989; Hecht-Nielson,
1987). This freedom to fit the data generally implies that back propagation will require
more information (usually more sample observations) than regression techniques to
find meaningful relationships. In standard regression analysis, the researcher
provides extra information to the model by specifying a fixed underlying functional
relationship. Implementation methods and the theoretical development of back
propagation within a personnel modeling context are discussed in W.]gins et al.
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(1991 b). The original development of back propagation can be found in Rumelhart
and McClelland (1986) and Werbos (1974).

The freedom of a back propagation model to fit the inputs to the desired output is
directly related to the number of processing elements it employs and the number of
layers into which they are organized. Typically the complexity of a back propagation
solution is constrained by limiting the number of processing elements in the network

* (Karnin, 1990; Mozer and Smolensky, 1989; Ash, 1989; Sietsma and Dow, 1988).
This type of restriction is somewhat related to a specification search using regression
techniques. However, instead of imposing a fixed functional form, small numbers of
nonlinear processing elements limit the overall flexibility of the trained network.
Restrictions of this form are usually designed to enhance the generalization capability
(or out-of-sample performance) of a network.

Given the large stochastic component (statistical variation or noise) in most
personnel data sets, it is important to limit the complexity of the trained network model.
Without some constraint, it is quite likely that a back propagation network will simply
"memorize" all of the exemplar results without formulating a model which performs
well on individuals or exemplars with new combinations of characteristics. This
behavior is similar to the problem of over-fitting a data set using a high degree
polynomial and regression analysis.

An alternative to limiting the number of processing elements, is limiting the
amount of training time allowed. The back propagation method is adaptive and
requires many (often thousands) passes through a data set (epochs) before training is
complete. Several researchers (Rumelhart, 1990; and Kimoto et al., 1990) have
suggested stopping the training early as a means of improving out-of-sample
generalization. Using samples with known properties, Morgan and Bourlard (1990)
suggest that both network size and amount of training may be important in
determining generalization capability. An example of over-training on actual
reenlistment data can be seen in Figure 1. As training proceeds along the epoch axis,
both in- and out-of-sample performance improves -- root mean square error (RMSE)
declines. However, after a certain point during training, the in-sample performance
continues to improve while out-of-sample performance degrades substantially. This
portion of the training could be categorized as memorizing the noise in the training
sample rather than extracting relevant features from the sample. By watching the
network's performance on a hold-out sample on which training is not performed, the
training process can be terminated before this memorization process begins.

Stopping training early is the primary method employed in the current research
to improve generalization. Improving generalization by choosing the number of
processing elements is more of an art than a science and the early stopping methods
were found to be much more effective and less ad hoc in personnel analysis. In tests
with various network sizes, it was found that relatively small networks were required to
capture all of the structure in the personnel models examined in the current research.
Networks with 3 to 9 processing elements organized in a network with a single hidden
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layer proved sufficient for all analyses. Larger and more complicated networks were
unable to perform better than these simple networks.
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Figure 1. Training path for back propagation. Training sample (solid line)
and hold-out sample (dashed line) performance as the number
of training passes through the training data set increases.

Probabilistic Neural Network

The PNN is somewhat unusual among neural networks in that it directly
implements a version of a more traditional classification technique using neural
network concepts. As developed in Specht (1988 and 1990), the PNN forms a
separate, nonparametric, probability density function (PDF) for each of the classes or
categories to be separated (reenlist or separate for the current problem). Each of the
PDF's is multidimensional (as many dimensions as inputs) and by definition the area
under the PDF sums to 1. The neural network forms a PDF for a given class, such as
reenlisters, in the following manner. The inputs for each candidate in the estimation
sample who reenlists are stored in a separate processing element. As shown by
Parzen (1962) and Cacoullos (1966), these sample input values can
collectively be used to estimate the underlying population PDF for all candidates who
will ronlist. The process used in this study forms the PDF from small, multivariate
gaussian kernels centered on each airman in the estimation sample. Summin-
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across these kernels, as shown in Equation 4, provides a point estimate of the
probability density for an individual or point in the input space.

fl(X (R~pJ0p M2a 2(4)

Where:

p is the dimensionality of the input space (i.e., the number of inputs:
gender, dependents, etc.).

a is a "smoothing parameter" which determines the size or extent of

the gaussian kernel around each training exemplar.

N Number of training exemplars or observations.

X Vector of inputs at the point for which the density is to be
measured (or the vector for a new exemplar to be classified).

XR,0  Input vector for the reenlister training exemplar e.

t Matrix transpose operator.

While these component distributions are gaussian, the resulting PDF can
assume any continuous form. The only adjustable parameter in the PNN is a
smoothing factor which determines how smooth the generated PDF will be. As seen
in Figure 2, if the smoothing parameter is large, the generated PDF will approach a
multivariate normal distribution centered at the input means of all training exemplars
in a class (e.g., reenlisters). If it is very small, the PDF will consist of many small,
gaussian "bumps" centered at the inputs of each airman in the class. While the
smoothing parameter is usually fixed by the researcher, in this study the parameter is
allowed to be set based on the amount of noise in the training sample. The parameter
is chosen such that the RMSE across all training exemplars is minimized. When the
error for each exemplar is computed, it is withheld from the sample so that the
estimate of its class membership is based on all other exemplars in the training
sample (hold-one-out sampling). In this manner, an optimal (in terms of the RMSE)
smoothing parameter is chosen. It is also possible to choose separate input weights
using this same methodology such that the effective length of the input space is
compressed along some dimensions and accentuated along others. This process can
provide for more efficient use of the data if the training sample is small.
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Using the process just outlined, a PDF can be generated for candidates who re-
enlist and another for those who separate (using the estimation sample to construct
the PDFs). Once the PDFs of the 2 classes are known, a simple "Bayes strategy" can
be used to determine the most likely class of a new airman. Letting hr represent the
proportion of decision makers reenlisting in the estimation sample, fr(X) represent the
PDF of airmen reenlisting, and fs(X) represent the PDF of airmen separating (where
both PDFs are functions of all airmen's characteristics X); the Bayes rule becomes:

reenlist if: hrf,(X) > (1-hr)fg(X)
(5)

separate if: hrfX) < (1hr)fs(X)

As stated, this rule assumes the cost of a misclassification is the same whether
an airman who actually reer.sts is classified as a separator; or, an airman who
actually separates is classified as a reenlister. A slight modification to Equation 5
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provides for differential costs of misclassifying reenlisters or separators (see Specht,
1990). The probability an airman will reenlist can also be derived from the
components of Equation 5. It is merely the ratio of the 2 sides of either inequality.

Learning Vector Quantization

The LVQ technique was developed specifically to solve classification problems
(Kohonen, 1984). It operates in a manner similar to a nearest neighbor classifier
(Duda and Hart, 1973) in that an unknown candidate is classified according to the
behavior of a reference vector. In the simplest nearest neighbor classifiers, an airman
from the validation sample is assumed to behave the same as the airman from the
estimation sample whose inputs are nearest to his own. This nearness can be
measured in many ways, but is usually taken to be the Euclidean distance between
the validation airman's and the estimation airman's input vectors.

The LVQ method is somewhat analogous to the PNN except all of the estimation
airmen are not retained for comparison with each validation sample member. Instead,
a fixed number of reference vectors are allocated and each is assigned to a
processing element in the network. Each reference vector is assigned 1 of the 2 (or
more) classes (e.g., reenlist/separate). These vectors are then trained to the
estimation sample in the following manner. An estimation sample airman is presented
to the network and the distance from each of the reference vectors is computed. The
nearest reference vector then adapts itself to the candidates inputs. If the vector
correctly classifies the airman (it is a "reenlist vector and the airman reenlists or a
"separate vector" and the airman separates), the reference vector moves its weights
(reference inputs) toward those of the airman. If the vector incorrectly classifies the
airman, the weights are moved away from the airman's input values. After several
passes through the data set, a stable set of reference vectors are generated.' Airmen
from the validation sample are assumed to behave in the same manner as those from
the estimation sample who are captured by the same reference vector. Kohonen has
shown that this method can arbitrarily approximate complex decision rules by using
piecewise linear boundaries (Fig. 3).

Reenlistment Results

Several modeling techniques were tested on the reenlistment data using split
sampling methods to validate the models. The modeling techniques included the
linear probability model, probit, logit, LVQ, PNN, and several variations of back
propagation. Two different sample splits were used to assess the ability of the models
to generalize. In the first split, a random sample containing about one quarter of the
decision makers was held out during estimation or training. The second split was
made according to the period during which an airman was eligible to make a decision.

1 In work reported here, before this supervised training process begins, the weight vectors are allowed to
adapt without comparison to the actual class of the exemplar (reenlist/separate). This provides an initial
distribution of reference vectors which mirrors the PDF of the estimation data set (see Kohonen, 1989).
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Figure 3. Decision boundaries formed by an
LVQ network. A hypothetical distri-
bution of airmen at a reenlistment/
separation decision point and the
decision regions formed by applying
the LVQ architecture to this distribution.

The temporal split used in Stone et al. (1990) was also employed here (January 1975
through March 1982 for the estimation sample, April 1982 through March 1986 for the
validation sample). In each case, the models resulting from estimation or training on
the estimation sample were used to produce predictions of the decisions of those
airman in the hold-out sample.

Performance Measurement

The simulation R2 was employed to measure the performance of each model's
predictions. As seen in Equation 6, the computation of the simulation R2 directly
mirrors the computation of the coefficient of determination (R2) reported by most
regression packages. However, instead of generating the total variation in the
validation sample from the validation sample mean reenlistment rate, the mean from
the estimation sample is used. This mean is more appropriate for validation samples
because one does not know a priori the mean for an unseen sample.

14



n
7P-A.)2j

Simulation R 2= 1 -
n

, (AeA i) 2

i =1 1(6)
Where:

Pi is the predicted reenlistment probability for airman i.

Ai  is the actual reenlistment/separation decision for airman i.

Ae is the mean reenlistment rate over the estimation sample.

n is the number of observations in the validation sample.

Like the coefficient of determination, the simulation R2 has an upper bound of 1.0
which is achieved when every decision is perfectly predicted with a probability of 1.0
(e.g., all reenlisters are assigned a predicted reenlistment probability of 1.0). Rarely
does the measure approach 1.0 for problems such as reenlistment where the
dependent variable is binary. Unlike the coefficient of determination, it is possible for
the simulation R2 to be less than 0. If the modeling method fails to produce a
projection which is better than that produced by the in-sample mean reenlistment rate,
the simulation R2 will be negative.

When using neural network techniques, and in particular back propagation, it is
important to track out-of-sample performance. Because the back propagation
architecture is extremely flexible, it was possible with some network configurations to
train a network to have virtually no error on a training sample of decision makers.
However, this level of training results in very poor out-of-sample performance.

During testing, the proportion of correct decision predictions were also
computed. In this case, the model was forced to produce a definite reenlist/separate
decision rather than a probability. Comparisons between the models using this
proportion were very similar to comparisons using the simulation R2.

Variations on Back Propagation

As discussed earlier, it is possible to improve the out-of-sample performance of
back propagation networks by stopping training before the network has completely
stabilized. The simplest method involves tracking the performance of the network on
the actual validation sample during training. The training is stopped when the best
performance is achieved on the validation sample (BP Hold in Table 3). While
effective, this method utilizes some feedback information from the validation sample
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which is unavailable when making an actual projection over some new time horizon
or set of airmen. (If the distribution of errors and their correlation to the inputs does not
change from the estimation sample to the validation sample, this criticism does not
hold. However, in finite samples and particularly when the samples are drawn from
different periods, it is very unlikely that these error distributions will meet this criterion.)
Because standard regression techniques cannot take advantage of validation sample
information, 2 stopping methods which do not employ the validation sample were also
employed here. All 3 methods are outlined in Table 3. Note that only the first 2
methods are applicable to non-temporal split samples.

TABLE 3. BACK PROPAGATION TRAINING STOPPING METHODS

Method Description

BP Hold Compute the validation sample RMSE after each training pass
through the estimation sample. Choose the amount of training
which produces the smallest RMSE on the validation sample.

BP Tri-sample 1. Randomly split the original estimation sample into separate pre-
estimation and prevalidation samples. (in this case two-thirds of the
estimation sample was placed in the preestimation sample and one-
third in the prevalidation sample.)
2. Train only on the preestimation sample while tracking the RMSE
on the prevalidation and preestimation samples.
3. Save the preestimation RMSE at the training point where the
prevalidation RMSE is best.
4. Retrain the network on the original estimation sample (both the
preestimation and prevalidation samples). Stop training when the
RMSE from the preestimation sample matches the one saved in
Step 3.

BP Temporal 1. Split the original estimation sample into separate temporal pre-
estimation and prevalidation samples. (In this case the period Janu-
ary 1975 through March 1980 was used in the preestimation sample
and April 1980 through March 1982 in the prevalidation sample.)
2. Again, train only on the preestimation sample while tracking the
RMSE on the prevalidation and preestimation samples.
3. Save the preestimation RMSE at the training point where the
prevalidation RMSE is best.
4. Retrain the network on the original estimation sample (both the
preestimation and prevalidation samples). Stop training when the
RMSE from the preestimation sample matches the one saved in
Step 3.
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The BP Tri-sample approach avoids using the actual validation sample by
randomly generating its own validation sample from the estimation sample. This pre-
validation sample can then be used in a first pass to determine when training should
be stopped on the entire estimation sample. This method is applicable to both
random and temporal split samples. If a temporal data set contains temporally
unstable features which are relevant only during some periods, the BP Tri-sample
method may result in over training. Because the prevalidation and preestimation
samples span the same period, the network may be allowed to train to features which
exist over that period but disappear over the validation period. If there are underlying
stable features, the temporal subsampling used in the BP Temporal method may help
avoid over training.

Results on Random Samples

The validation performance on randomly selected hold-out samples which span
the entire time frame of the data sets are shown in Table 4. This random split-sample
measures each model's ability to extract information from an estimation sample that is
consistent with the validation sample. In keeping with the work of Saving et al. (1985)
and Stone et al. (1990), separate models were developed for each of the 4- and 2-
digit AFSs considered.

TABLE 4. VALIDATION SAMPLE RESULTS RANDOMLY
SELECTED VALIDATION SAMPLE

Simulation R2 by modeling technique Sample observations

BP BP Tri-
AFS Probit Hold Sample LVQ Estimation Validation

272X0 .158 .311 .322 .272 4,315 1,455

316X1 .041 .120 .068 .046 844 282

426X2 .274 .385 .382 .324 7,170 2,363

30XXX .153 .311 .306 .233 20,849 6,929

47XXX .211 .311 .307 .264 3,637 1,151
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As can be seen in Table 4, the 3 neural network techniques performed better
than probit on all 5 AFSs. The results for OLS and logit were virtually identical to
probit and are therefore not reported. While the LVQ method consistently exceeded
the out-of-sample performance of probit, the back propagation method (using either
sampling approach) provided the best performance in all cases. For the reported LVQ
results 1 PE (or reference vector) was allocated for every 30 observations in the AFS's
estimation sample. Other numbers of PEs were tested and this rule produced the best
results in most cases. Comparing the 2 back propagation approaches on this sample,
the extra information gained by tracking the actual validation sample (BP Hold results)
did not substantially affect the results. When compared to probit, both back
propagation methods projected very well, explaining 40 to 100% more of the variation
in an AFS's validation sample.

Results on Temporal Samples

The random split-sample results obscure 2 possible confounding factors when
attempting to predict over periods not included in an estimation sample. First, as
mentioned earlier, it is possible the decision process contains features which change
over time. These features would be important over some periods and irrelevant, less
important, or different over other periods. Second, the ranges and variation in the
inputs may differ across periods. In this case, a model estimated over 1 period must
extrapolate along its response surface when asked to predict results for input ranges
outside those in the estimation sample. Both of these factors could substantially affect
out-of-sample performance. With flexible model structures, the effect would be similar
to over-fitting the sample data. Such a model might consider features no longer
present or place too much confidence in the expected range of inputs. To evaluate the
impact of these factors, the temporal split-samples employed by Stone et al. (1990)
were used and the results are reported in Table 5.

For the temporal split-sample, the LVQ technique was replaced by the PNN. The
PNN uses the hold-l-out method discussed earlier on the estimation sample to
choose an optimum smoothing parameter. Again, the back propagation methods
generally produced the best out-of-sample predictions. As expected, when back
propagation was able to track performance on the validation sample (BP Hold), it
produced the best projections. However, the temporal subsampling method (BP
Temporal) produced comparable results on all AFSs except 316X1. The results of
tracking a random estimation subsample (BP) Tri-sample were mixed. For jet engine
mechanics (426X2), the performance was actually worse than probit while good
projections were obtained for 30XXX. Apparently some of the AFSs have
experienced some changes from unmodeled inputs or temporally unstable relations
which caused the BP Tri-sample method to over-fit the estimation sample. For the
AFSs analyzed, the BP Temporal method appears quite resistant to these problems.

18



TABLE 5. VALIDATION SAMPLE RESULTS TEMPORAL VALIDATION
SAMPLE (APRIL 1982 THROUGH MARCH 1986)

Simulation R2 by modeling technique Sample observations

BP BP Tri- BP
AFS Probit Hold Sample Temporal PNN Estimation Validation

272X0 .139 .222 .154 .205 .120 3,663 2,107

316X1 -. 194 .116 -. 173 -.035 -.023 1,010 116

426X2 .269 .368 .141 .365 .173 5,785 3,750

30XXX .155 .244 .241 .316 * 18,001 9,777

47XXX .198 .331 .300 .312 .214 3,144 1,644

*The PNN training could not be completed on AFS 30XXX due to the excessive computations required

by the hold-one-out training technique and the large size of the career field.

In the case of 316Xls, the small validation sample enhanced the effectiveness
of tracking the sample. Still, the BP Hold result indicated that sufficient information
existed in the estimation sample to produce reasonable projections if a proper
stopping point was chosen during training. Despite performing worse than the mean
estimation reenlistment rate, the BP Temporal method far exceeded the performance
of the probit analysis on 316X1.

Overall, the back propagation network performed quite well compared to an
established model of Air Force reenlistment. The subsample training stopping
heuristics proved critical in improving the performance of back propagation,
particularly the BP Temporal method on the temporal split-sample. When large
samples are available to serve as training exemplars, back propagation appears to be
a viable option for model development.

PILOT TRAINING

In this phase of the research neural network and more standard statistical
techniques were applied to the classification of UPT candidates. In particular, UPT
candidates were classified on their ability to successfully complete the training
program. The principal goal in this phase was to identify successful (and
unsuccessful) UPT candidates based on easily obtained information from the Portable
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Basic Attributes Test (Porta-BAT) and the Air Force Officer Qualifying Test (AFOOT). As
was the case with the reenlistment model, only the binary pass/fail UPT criterion was
used to determine candidate success. Grades and other ordinal or continuous
measures of success were not explored in this study. Again, the disposition of
candidates into pass/fail categores can be viewed as a typical classification problem
and all of the techniques employed in the reenlistment problem are applicable.

UPT Data

The primary data for this analysis were based primarily on Porta-BAT results and
consists of records for 885 candidates for UPT. The fields in this data set contain the
UPT final outcome (pass/fail), the candidate's age, 16 AFOOT subtest scores, and 19
scores and composites from the Porta-BAT. A complete listing of these fields is
contained in Table 6 where they are identified by Neuralbat in the source column.

Additional training data (UPT entry date, UPT completion date, courses taken,
etc.) was obtained by matching the social security numbers of candidates from the
original file against the Flying Training UPT/UNT file in the Air Force Human
Resources Laboratory (AFHRL) 2 computer system. All 885 candidates were success-
fully matched against this file. Several binary v' .. . s reflecting the year and quarter
the candidate entered UPT were generpta,: from these data elements and were
included in some of the analyses. /.gain, the complete list of fields used is in Table 6.

Finally, each candidate's socia: sculitv a-"ount number was matched against
tri-annual snapshots of the Uniform Officer Records (UOR) over the period from the
third quarter 1982 through the third quarter 1989 (21 snapshots in all). For each
candidate, their first occurring UOR was excerpted and appended to the original data
set. Eighty-five of the candidates could not be matched to the UOR, presumably
because they "washed out" of UPT between snapshots or returned to reserve units
without appearing on the UOR. In fact, 63 of the 85 unmatched candidates were found
on Air Force reserve files. Of the 22 remaining unlocated candidates, 18 were UPT
failures and the disposition of the remaining 4 could not be determined. UOR data
were used to construct binary variables reflecting a candidate's individual and
demographic characteristics: gender, number of dependents, education level, etc.
The UOR variables used in the analyses are also listed in Table 6.

Several important characteristics of the data set should be noted. First, the
Porta-BAT was not given to graduates of the Air Force Academy. Since Porta-BAT was
a primary source of data, Academy graduates are excluded from the study. Likewise,
many Reserve Officers Training Corps (ROTC) candidates are also excluded because
they took the Flight Screening Program (FSP) at their respective colleges. Most of the
candidates on the original (Neuralbat) data set were Officer Training School (OTS)
graduates with some ROTC graduates from smaller ROTC programs. Table 7 contains
a breakdown of the UPT candidates by source of commission.

2 AFHRL has been redesignated Human Resources Directorate, Armstrong Laboratory.
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TABLE 6. DETERMINANTS OF UPT SUCCESS

Variable Description Source

AGE The UPT candidates age Neuralbat
VA2 AFOQT subtest, verbal analogies Neuralbat
AR2 AFOOT subtest, arithmetic reasoning Neuralbat
RC2 AFOOT subtest, reading comprehension Neuralbat
D12 AFOQT subtest, data interpretation Neuralbat
WK2 AFOOT subtest, work knowledge Neuralbat
MK2 AFOQT subtest, math knowledge Neuralbat
MC2 AFOOT subtest, mechanical comprehension Neuralbat
EM2 AFOOT subtest, electrical maze Neuralbat
SR2 AFOOT subtest, scale reading Neuralbat
IC2 AFOQT subtest, instrument comprehension Neuralbat
BC2 AFOOT subtest, block counting Neuralbat
TR2 AFOQT subtest, table reading Neuralbat
A12 AFOOT subtest, aviation information Neuralbat
RB2 AFOQT subtest, rotated biock Neuralbat
G2 AFOOT subtest, general science Neuralbat
HF2 AFOOT subtest, hidden figures Neuralbat
PS2X1 S Standardized two hand coordination X score Neuralbat
PS2X2S Standardized complex coordination X score Neuralbat
PS2Y2S Standardized complex coordination Y score Neuralbat
PS2Z2S Standardized complex coordination Z score Neuralbat
ENCRTS Encoding speed, avg. response time, correct responses Neuralbat
FNCPERS Encoding speed, percent correct Neuralbat
MRTRTS Mental rotation, avg. response time, correct responses Neuralbat
MRTPERS Mental rotation, percent correct Neuralbat
ITMRTS Item recognition, avg. response time, correct responses Neuralbat
ITMPERS Item recognition, percent correct Neuralbat
TMSSLPS Time sharing, slope level of difficulty, min. 3-10, Neuralbat

learning rate
TMSICPS Time sharing, intercept level of diff., min. 3-10, Neuralbat

learning rate
TMSDIFS Time sharing, average level of difficulty, min. 11-10 Neuralbat
TMSRTS Time sharing, average response time, correct responses Neuralbat
WKARTS Word knowledge, average response time, dual task Neuralbat
WKAPERS Word knowledge, average response time, Neuralbat

correct responses
WKABETS Word knowledge, percent correct Neuralbat
AIAHIRS Activities interest inventory, number of high risk choices Neuralbat
AIARTS Activities interest inventory, average response time Neuralbat
DUPT85 Binary, 1 if candidate entered UPT in 1985 Flytrain
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TABLE 6 (CONCLUDED)

Variable Description Source

DUPT86 Binary, 1 if candidate entered UPT in 1986 Flytrain
DUPT87 Binary, 1 if candidate entered UPT in 1987 Flytrain
DUPTQTR2 Binary, 1 if candidate entered UPT in the 2nd quarter Flytrain
DUPTQTR3 Binary, 1 if candidate entered UPT in the 3rd quarter Flytrain
DUPTQTR4 Binary, 1 if candidate entered UPT in the 4th quarter Flytrain
DBLACK Binary, 1 if candidate is black UOR
DRACEOTH Binary, 1 if candidate is a non-black minority UOR
DMARRIED Binary, 1 if candidate is married UOR
DDIVORCE Binary, 1 if candidate is divorced UOR
DOTSDIST Binary, 1 if candidate is a distinguished OTS graduate UOR
DMASTERS Binary, 1 if candidate has completed a master degree UOR
DACAD3 Binary, 1 if college major is biological or UOR

agricultural science
DACAD4 Binary, 1 if college major is math UOR
DACAD6 Binary, 1 if college major is social science UOR
DACAD9 Binary, 1 if college major is engineering UOR
DDEP2UP Binary, 1 if candidate has 2 or more dependents UOR

Sources: Neuralbat Original Porta-BAT data set provided by AFHRL/MOEA.
Flytrain Flying training UPT/UNT file.
UOR Uniform Officer Records.

TABLE 7. SOURCE OF COMMISSION

Source of Commission Candidates Percentage

Officer training school 625 70 6
OTS distinguished graduate 83 9.4
ROTC from UOR field 58 6.6
ROTC from on ROTC files 63 7.1
Unknown from UOR field 34 3.8
Not found on UOR or ROTC 22 2.5

Total 885 100.0
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A second restriction in the data involves the year the candidate entered UPT. As
seen in Table 8, there is a very uneven distribution of candidates over the sample's 6-
year span. As mentioned earlier, these counts are a small proportion of all UPT
entrants. A particular anomaly occurred for the 1988 entrants: all 21 failed UPT. In all
other years, at least 60% of the entrants passed UPT. Unless there were some
mitigating circumstances, the odds of all 21 entrants failing UPT in 1988 is
infinitesimally small. For this reason, the 1988 entrants were left out of the analyses.

TABLE 8. UPT ENTRANTS ON THE PORTA-BAT
DATA SET BY YEAR

Year Entrants Percentage

1982 2 .2
1984 123 13.9
1985 228 25.8
1986 346 39.1
1987 165 18.6
1988 21 2.4

The original Neuralbat data set was divided into 2 nearly equal size samples of
442 and 443 candidates with the intent that the first sample be used to estimate the
models and the second sample be held out to validate the models. Each model
considered was estimated and validated on those complete samples. When data
elements from the UOR were included in an analysis, 102 candidates were dropped
from the analysis. Eighty-five candidates were dropped because they could not be
found on the UOR and the remaining 1988 entrants (17) were dropped because their
observed results were extremely unlikely (as discussed earlier). This decreased the
original samples to 396 for the estimation sample and 387 for the validation sample.

All of the continuous variables in the data set (i.e., those whose names do not
begin with a d) were standardized to mean 0.0 and standard deviation 1.0 based on
the 396 candidates in the estimation sample. This adjustment helped the
performance of the LVQ and PNN networks by preventing any variable from
dominating the distance computations required by the networks. The adjustment has
little or no effect on any of the other techniques tested.

Additional Modeling Method (Stepwise Regression)

Given the large number of potential inputs and the small size of the samples,
some method of selecting "important" inputs for a regression would be helpful for the
UPT problem. Stepwise regression is a simple, data driven method of performing this
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function. While the application of stepwise regression always causes some problems
when making inferences from the resulting equation and standard errors (Leamer,
1978), the use of a hold-out or validation sample mitigated these problems in this
case.

In a stepwise regression, inputs are either added to or removed from the
equation based on some statistical test of their marginal significance. The measure
used in this study is the partial-F statistic of the input to be added or dropped from the
equation (see Koutsoyiannis, 1977). Several variations exist on the stepwise
regression procedure. The method employed here starts with only a constant term
and inputs are added 1 at a time if they pass the partial-F test (for implementation
details see Computing Resource Center, 1989). In addition, each added input was
retested on each pass to insure it still passed the partial-F test. While several
significance levels were tested, the result reported here required an input to have a
partial-F of 4.0 to enter or remain in the equation. This fairly restrictive level reduced
the number of inputs actually used to between 5 and 8.

UPT Empirical Results

Seven modeling techniques were applied to 3 sets of input variables or
determinants: (1) all of the variables on the Neuralbat data set; (2) all of the Neuralbat
variables, temporal indicators from the Flytrain data set, and candidate characteristic
indicators from the UOR (i.e., all variables in Table 6); and (3) a selected set of 8 inputs
(listed in the footnote to Table 12). As mentioned in the data section, the second and
third sets of variables required reduction of the sample sizes to 396 for the estimation
sample and 387 for the validation sample due to candidates who could not be
matched to the UORs. The initial goal of this phase was to employ only the Neuralbat
data in classifying candidates; it was hoped the addition of temporal and candidate
indicators from the Flytrain and UOR files would improve the lackluster performance of
the original models. The third set of variables stemmed from the recognition that the
limited number of observations would not support the large number of variables in the
data set.

The modeling techniques used were basically the same as those applied to the
reenlistment problem. Probit was not used and stepwise regression was added for
the reasons just discussed. In addition 2 forms of back propagation training were
employed: the early stopping method outlined in the reenlistment section and the
more traditional training to stability (until the network weights stop changing and the
network has stopped adapting). With such a small data set, the stopping criterion
used here was always the performance of the actual validation sample.

Porta-BAT and AFOOT Results

Table 9 shows the results of estimating linear probability (OLS) and logit models
for all of the AFOQT subtest and Porta-BAT scores (Neuralbat variables) for
candidates in the estimation sample. The estimation results from this model support
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several early concerns about the application of this small data set to the pass/fail UPT
problem. Looking at the t-statistic column of the table for both OLS and logit
estimation, only 4 of the 36 (not counting the constant) variables are statistically
different from 0.0 at the .05 level of significance. Given the .05 significance level and
the 36 variables in the equation, one would expect to find 1.8 (or about 2) significant
variables even if each of the variables were generated by uncorrelated random
processes. Finding only 4 significant variables is not much better than what would be
expected from a data set of purely random noise. There is little reason to place much
confidence in this model.

TABLE 9. OLS RESULTS ON NEURALBAT ESTIMATION SAMPLE

Ordinary Least Squares Logit
Variable Coefficient t-statistic Coefficient t-statistic

AGE -.001 -0.044 .009 0.068
VA2 .020 0.746 .123 0.870
AR2 -.000 -0.011 -.009 -0.059
RC2 -.023 -0.728 -.135 -0.817
D12 .001 0.049 .007 0.049
WK2 -.029 -0.841 .150 -0.813
MK2 .038 1.274 .212 1.383
MC2 -.018 -0.642 -.117 -0.811
EM2 .001 0.038 .009 0.071
SR2 .008 0.307 .056 0.416
IC2 .051 2.017* .277 2.150*
BC2 -.015 -0.591 -.085 -0.632
TR2 .048 1.917 .245 1.935
A12 .064 2.603 .343 2.682
RB2 -.019 -0.767 -.112 -0.856
GS2 -.042 -1.530 -.229 -1.599
HF2 -.034 -1.398 -.186 -1.459
PS2X1 S -.044 -1.618 -.218 -1.612
PS2X2S -.036 -1.072 -.195 -1.159
PS2Y2S -.058 -2.119 -.283 -2.055
PS2Z2S .004 0.127 .017 0.106
ENCRTS .032 1.021 .177 1.084
ENCPERS .003 0.124 .025 0.187
MRTRTS .010 0.377 .070 0.499
MRTPERS .031 1.290 .167 1.366
ITMRTS -.069 -2.403 -.368 -2.500
ITMPERS .001 0.056 -.000 -0.002
TMSSLPS -.034 -0.676 -.151 -0.585
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TABLE 9 (CONCLUDED)

Ordinary Least Sauares Logit
Variable Coefficient t-statistic Coefficient t-statistic

TMSICPS -.005 -0.096 .015 0.052
TMSDIFS .225 0.623 .095 0.506
TMSRTS -.017 -0.688 -.112 -0.853
WKARTS .034 1.221 .182 1.261
WKAPERS .019 0.609 .109 0.671
WKABETS .004 0.144 .003 0.023
AIAHIRS -.023 -1.009 -.112 -0.927
AIARTS -.014 -0.554 -.058 -0.422
CONSTANT .672 31.429 .849 7.369

Number of obs: 442 Number of obs: 442
F-test (36, 405): 2.15 Log Likelihood: 241.9
Prob > F: 0.0002 chi 2: 75.54
R2: 0.1602 Prob > chi 2: 0.0001

95% probability the coefficient is different from 0 using a 2-tailed Student's t-test.

Several factors contribute to these weak results. First, the dependent variable is
a binary (pass/fail) measure of success in UPT. Binary dependent variables do not
provide as much information as continuous variables that might measure a level of
success, such as UPT grades or performance as a pilot. This finding leads to the
second factor -- small sample size. While 442 observations are often more than suffi-
cient with a continuous dependent variable, several thousand observations are often
required in the case of binary dependent variables. The third factor is the homoge-
neous nature of the candidates. All of the candidates on this sample attended UPT
and had already successfully completed a Flight Screening Program. They were also
required to meet other aptitude profiles. In general, there is very little difference along
the input variables between those who pass and those who fail UPT. The first
and third factors could be overcome in the absence of the second factor. If sufficient
observations about each candidate were available, the binary dependent variable will
provide enough feedback for a relationship to be established. The same is true for the
homogeneous candidate pool. If there are even tenuous relationships between the
input variables and UPT success, they can be found with sufficient examples of the
relationship (and a correctly specified model).

Table 10 displays the in- and out-of-sample (estimation sample and validation
sample) performance of the parametric and neural network techniques. For these
models only the 36 variables from the Porta-BAT and AFOOT listed as Neuralbat in
Table 6 were used as inputs. The simulation R2 measure is again used to compare
the performance of the models. As with the reenlistment problem, the validation
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sample performance was considered most important. It measures the modeling
technique's ability to extract relevant features from the estimation sample and
generalize those results to classify candidates with new input vectors. Alternately, the
estimation sample R2 measures the modeling technique's ability to summarize the
information in the data provided for estimation or training.

Looking at Table 10, one can see that estimation and validation sample
performance did not correlate well for most of the techniques. While the regression
techniques and standard back propagation seemed to capture some of the behavior
in the estimation sample, this performance did not extend to the validation sample.
This poor validation sample performance sustains the earlier conjecture that the
regression models might be inadequate given the insignificance of their coefficients.
In addition, back propagation (when trained to stability) performed worse than using
the mean pass rate from the estimation sample. The modified back propagation (BP
Hold, described earlier) performed best out-of-sample with LVQ a somewhat distant
second and stepwise regression showing at least some ability out-of-sample. In
general, the in-sample performance of the 3 network models was less misleading than
the regression based models (with the exception of stepwise regression). Still, none
of the methods used performed well on the validation sample.

TABLE 10. ESTIMATION AND VALIDATION SAMPLE PERFORMANCE
ON 36 PORTA-BAT AND AFOQT VARIABLES

,. R 2

Modeling Technique Estimation Sample Validation Sample

Linear Probability Model (OLS) .163 .008
Logit .167 .004
Stepwise regressions'. 2  .104 .017
Back propagation, trained to stability .436 -.253
Back propagation, BP Hold .116 .054
Learning vector quantization (LVQ) .063 .021
Probabilistic neural network (PNN) .059 .000

Uses the forward stepwise model and requires partial F-value > 4 for a variable to remain in the model.
2Final stepwise variables: TR2, A12, PS2X1S, PS2Y2S, ITMRTS.

The worst validation performance was obtained by the model which best fit the
estimation sample data -- back propagation trained to stability. Given the flexibility of
the back propagation method, this result is not surprising. Even with the simple
network architecture employed (only 4 processing elements), the network was still
able to generate a model which captured much of the information in the estimation
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sample (.436 R2). Tests using slightly more complicated architectures (12 to 21
processing elements) showed that back propagation could obtain an estimation
sample R2 of .98 to .99. However, in the UPT case, the validation performance
decreased in direct proportion to the estimation sample performance. As discussed
earlier, this result stems from the ability of a highly flexible architecture to "memorize"
the noise or stochastic components in the estimation sample to the detriment of its
ability to generalize. This behavior can also be seen in the OLS regression model.
With 36 inputs, the model is able to obtain a .163 R2. However, the model is virtually
useless outside the estimation sample (.001 R2). While the linear model cannot
change the form of the relationships, it can misidentify the linear impact of inputs
based on the stochastic components of the estimation sample. Fortunately, with
regression techniques, the standard errors of the coefficients give a good indication of
the ability to generalize. However, the overall equation F-test is a weak test of
significance (it merely requires that any coefficient in the model to statistically different
from 0). In many cases (including the UPT problem) the F-test is not a good indicator
of out-of-sample performance.

Stepwise regression was introduced as a simple selection technique to combat
the multitude of input variables and tendency to over-fit with such a small data set.
While stepwise performed better out-of-sample than the other regression techniques,
the improvement over the linear probability model was minimal. In keeping with the
earlier discussion, the estimation sample performance declined as inputs were
removed from the model. The stepwise results are based on a 4.0 partial-F criterion
which is very stringent and excludes most of the variables. Less restrictive partial-F
tests were employed, but decreased the ability of the stepwise model to perform on
the validation sample.

Early stopping of back propagation training proved the most effective technique
for out-of-sample prediction. While the validation performance was still relatively poor,
it was substantially better than any of the other models tested. As seen in the
reenlistment results, stopping the back propagation training early helped the network
to capture only those features from the data which were useful for generalization. As
expected, estimation sample performance was much lower than unconstrained back
propagation training but was much more indicative of validation performance.

Porta-BAT, AFOQT, UOR, and Training Results

The poor performance of all the models on the original set of variables possibly
reflected the absence of some important determinants of UPT success. By matching
the candidates to the UOR, several demographic and educational characteristics were
determined. In addition, a match to the flying training data sets allowed generation of
annual and quarterly indicator variables to account (in a simple manner) for
institutional changes over the time period. Collectively, and with the original
Neuralbat data set, this produced 53 variables for each candidate (all listed in Table
6). Table 11 shows the results of applying the 7 modeling techniques to these
variables. Almost every technique performed better on this data set, both in-

28



(estimation) and out-of-sample (validation). Aside from the first back propagation and
the PNN each method displayed increased estimation and validation R2. Still, with the
exception of back propagation with early stopping and stepwise regression,
estimation sample performance is not indicative of predictive power.

TABLE 11. ESTIMATION AND VALIDATION SAMPLE
PERFORMANCE ON ALL 53 VARIABLES

Modeling Technique Estimation Sample Validation Sample

Linear Probability Model (OLS) .242 .025
Logit .253 .017
Stepwise regressions1 ,2  .149 .050
Back propagation, trained to stability .686 -.352
Back propagation, BP Hold .165 .071
Learning vector quantization (LVQ) .080 .013
Probabilistic neural network (PNN) .047 .013

1 Uses the forward stepwise model and requires partial F-value > 4 for a variable to remain in the model.
2Final stepwise variables: WK2, IC2, PS2Y2S, DUPT86, DBLACK, DMARRIED, DOTSDIST, DACAD4.

The modified back propagation network continued to perform best out-of-sample
and stepwise regression improved most on the validation sample. As can be seen in
Table 11, stepwise chose 5 of its 8 variables from the UOR matched variables which
were not available on the initial data set. Despite the continuing mediocre
performance of even the best models, all of the empirical results indicated that some
of the additional variables were important determinants of UPT success. Apparently,
the modified back propagation method is best at extracting relevant information from
the numerous inputs.

Results with Selected Variables

The large number of inputs was a concern for all of the models discussed so far.
The somewhat superior performance of stepwise regression and modified back
propagation indicated that a reduction in the number of variables might provide
models that perform better out-of-sample. Eight variables were selected from the 53
available based on their consistent performance in several logit models. These 8
variables were then used to form models using all of the techniques except stepwise
regression (with a reduced model already selected, stepwise was unnecessary). As
seen in Table 12, all of the techniques performed better on the validation sample than
they had with the 2 larger sets of inputs. The linear probability model, logit, and
modified back propagation had identical validation performance. Even so, it was
difficult to demonstrate that any of the models performed better than the mean pass
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rate from the estimation sample. A test of the validation RMSE between the logit
model and the estimation sample mean showed no difference at the .10 significance
level (Steel & Torrie, 1960).

TABLE 12. ESTIMATION AND VALIDATION SAMPLE
PERFORMANCE ON 8 SELECTED VARIABLES*

2.

Modeling Technique Estimation Sample Validation Sample

Linear Probability Model (OLS) .133 .079
Logit .141 .079
Back propagation, trained to stability .253 .021
Back propagation, BP Hold .161 .079
Learning vector quantization (LVQ) .080 .004
Probabilistic neural network (P";N) .059 .067

Variables used: WK2, ICe r- _X2S, ITMRTS, DUPT86, DMARRIED, DOTSDIST, DACAD4.

Several other models were estimated (or trained) and validated. In some of
these mode!s, groups of the AFOQT and Porta-BAT test scores were aggregated. As
few as 2 aggregate variables were tried as input in some models. In addition, the
entire data set was resampled to produce an estimation sample of 632 candidates
and a validation sample of 151 candidates. Many of the techniques were attempted
on these samples. The results of these variables and sample choices produced
models whose performance was similar to those already reported. None of these
models were superior to those estimated on the hand picked variables used in the last
set of models.

Performance of Back Propagation

Despite the somewhat weak results of all the models, a comparison between the
best models from Table 12 and the modified back propagation model in Table 11
demonstrates an interesting result. By stopping the back propagation training early
when using all 53 variables, this method wqs able to nearly equal the validation
performance of the other methods on the best "hand-picked" set of variables. This set
of variables is a potentially useful facility when approaching a problem where the
relations between the determinants and output variable(s) are difficult to establish.

Given that back propagation networks were initialized to a random starting point
before training and the dynamics of back propagation training are not at all well
understood, it is difficult to say if this performance is repeatable. While the question
remains open, theoretically, an empirical examination of many networks using the
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UPT data indicates some interesting results. Table 13 shows the results of applying
various back propagation architectures to the 8 and 53 input UPT data sets. As seen
in the hidden processing elements (PEs) column, the number of hidden neurons
ranged from 0 to 18. A hidden PE arrangement of 9,9 indicates a network with 2
layers of hidden elements each containing 9 PEs. Each PE in the first hidden layer is
connected by an individual weight to each input. Each PE in the second layer is con-
nected by a separate weight to each PE in the first hidden layer. The 9 PEs in the
second layer are connected to a single output PE which produces the probability of
UPT success. Likewise a 6,6,6 arrangement utilizes 3 hidden layers with 6 PEs in
each layer.

In addition to changing the number and arrangement of PEs in each network, 2
different training rates were used. As seen in the last column, all of the networks pro-
duced virtually indistinguishable results on the data sets with 8 selected inputs. More
importantly, all of the networks produced very similar results using all 53 input
variables (except the network with no hidden units which essentially implements an
adaptive version of logit analysis). In addition, the validation performance was very
similar between the networks using 8 inputs and those using 53 inputs. Despite the
limitations of the UPT data set, the modified back propagation method was able to
seek a model which performs as well as any of the models from the hand-selected
data.

TABLE 13. STABILITY OF BACK PROPAGATION PERFORMANCE
USING VALIDATION SAMPLE RMSE AS A
TRAINING STOPPING CRITERION

Hidden Validation
Number of Processing Learning Training Sample
Inputs Elements Rate Epochs Simulation R2

8 (selected) 0 .01 77 .075
8 (selected) 3 .10 164 .079
8 (selected) 3 .01 640 .079
8 (selected) 18 .10 99 .079
8 (selected) 18 .01 855 .079
8 (selected) 9,9 .01 2,351 .079
8 (selected) 6,6,6 .10 589 .075
53 (all) 0 .01 12 .058
53 (all) 3 .10 11 .071
53 (all) 3 .01 114 .075
53 (all) 18 .10 8 .068
53 (all) 18 .01 83 .071
53 (all) 9,9 .01 560 .075
53 (all) 6,6,6 .10 305 .079
Logit on 8 selected inputs .079
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UPT Summary

The pass/fail classification of UPT candidates posed particularly difficult
problems. The candidates had very similar characteristics and those with nearly
identical characteristics often had different outcomes. Very fine distinctions were
required among essentially similar candidates to determine a single output (pass/fail).
While some of the possible determinants displayed the ability to form some distinction
among the candidates, the separations were tenuous. This sample was particularly
problematic for most of the neural network techniques which tried to discover and
establish nonlinear relationships between the input and outputs. There appears to be
too little information to conclusively establish even linear relationships. The current
sample appears insufficiently large to establish distinctions among similar candidates.
Some objective or subjective measure of eventual pilot performance, grades during
UPT, or even the binary outcomes from further training would provide more
information when trying to distinguish the best UPT candidates. This additional
criterion information would assist in forming relationships even with the limited
number of observations available from the Porta-BAT.

One encouraging aspect of this phase was the performance of the modified
back propagation network when training was stopped early. This method was able to
develop good models from an extensive list of variables which, based on the other
results, appears to include superfluous and relatively unimportant factors. The
modified back propagation method was able to produce models which performed as
well out-of-sample as the best hand selected models using all of the 53 available
input variables.

AGGREGATE ACCESSION AND RETENTION

A third area addressed in this task involves the estimation and projection of
aggregate time-series personnel flow rates of the enlisted corps. As mentioned in the
second section, these rates often serve as components of inventory flow models. On
an aggregate level, the Air Force personnel system has 3 major flows: non-prior
service (NPS) accessions, prior service (PS) accessions, and separations.
Separations can be further broken down into voluntary separations by term of
enlistment, involuntary separations, and retirements.

Of the aggregate flow rates, NPS accession has received the most attention
from researchers (e.g., Ash, Udis, and McNown, 1983; DeVany, Saving, & Shugart,
1978; DeVany and Saving, 1982). However; Stone, Saving, Turner, Looper &
Engquist (1991) considered a more complete aggregate model. As with prior
research on individual reenlistment, all of these aggregate models employed
regression techniques and structural relations which could be made linear in the
regression inputs.
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Aggregate Time-series Model and Data

The Stone et al. (1991) model included more aggregate flows as dependent
variables and served as the basis for developing neural network models. In addition,
this model was extensively tested over out-of-sample periods and proved far superior
to the rather poor accession results obtained by Ash et al. As described in Table 14,
the model includes 4 dependent or output variables: NPS accession rate, PS
accession rate, first-term reenlistment rate, and second-term reenlistment rate. (The
breakdown of first- and second-term reenlistment rates comprises a necessary
disaggregation of the model because these rates reflect fundamentally different
underlying decisions.) The model is structural in the sense that each dependent
variable has an equation with a specified form and set of independent variables.
Theoretical background on the selection of the dependent variables and form of the
structural equations is provided in Stone et al. (1991).

TABLE 14. AGGREGATE ACCESSION RETENTION MODEL
DEPENDENT VARIABLES

Variable Definition

NPSRT Non-prior service (NPS) accession rate (with respect to the 16- to
19-year-old population.

PSRT Prior service (PS) accession rate (with respect to total population
of eligible separators).

RELRT1 First-term reenlistment rate (with respect to eligible-to-reenlist first-
term airmen).

RELRT2 Second-term reenlistment rate (with respect to eligible-to-reenlist-
second-term airmen).

The model lacks 2 rates required to make it internally complete for aggregate
inventory simulation. It does not address term extension rates and reenlistment
eligibility rates required by the model itself to develop some of its inputs. Much of the
burden for maintaining the eligibility rates would normally fall to the dynamic
simulation portion of an inventory model and not the estimation portion. In addition,
the researchers were evaluating system estimators, not developing an inventory
model. Career-term reenlistment rates and retirement rates are also not considered.
Still, the model considers 4 of the principle flow rates and provides far more ground for
comparison than the aggregate accession models.

The specific form of the 4 equations estimated by Stone et al. is shown in Table
15. The researchers employed 2 regression based techniques to estimate the
structural form of the model, ordinary least squares (OLS) and generalized least
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squares (GLS). The OLS estimator was applied to each equation separately while the
specific GLS estimator employed allowed for cross correlation among the errors from
all 4 equations.

Stone et al. estimated the equations over 1 period and validated their
performance over 2 periods -- the period directly preceding the estimation period and
the period directly after the estimation period. All estimations and validations
were performed on a series of monthly data developed from the Historical Airman
Data (HAD) base, military enlistment processing station (MEPS) files, and Bureau of
Labor (BLS) sources. The models were estimated on the monthly data spanning the
October 1979 through September 1987 period (96 observations). One validation
sample consisted of the 9 monthly observations from January 1979 through October
1979. The second validation sample ran on the 12 observations from October 1987
through September 1988 - fiscal year (FY) 1988. For the purposes of this study, the
OLS results were reproduced to verify the data set and the GLS results are taken
directly from Stone et al. (1991).

Neural Network Approach

The back propagation architecture described earlier was applied to the monthly
data just described. The principal method involved creating a separate network for
each of the 4 aggregate flow rates considered by Stone et al. Given the minimal
differences between the out-of-sample capabilities of GLS and OLS found by the prior
researchers separate networks seemed appropriate. Each network employed the
inputs from the appropriate equation. For example, first-term reenlistment used
RLEMP1, RLWR1, RECR, PSGOAL, QTR1, QTR3, and QTR4 as inputs to the network.
In addition, extensive testing was performed with joint networks using all 4 flow rates
as outputs and all independent variables as inputs. However, due to the differing
training requirements (length of training) of the 4 outputs, these networks did not
produce stable results for all of the outputs.

Following the work of the previous researchers, the networks were trained over
the October 1979 through September 1987 period (FY 79 - 87). Out-of-sample
projections were then made over the 2 validation periods from the previous work. In
all cases, the out-of-sample performance of the methods was used to compare results
and the simulation R2 described earlier served as the primary metric for measuring
performance.

As discussed earlier, back propagation is capable of over-training networks to
the extent that their out-of-sample performance deteriorates That discussion extends
to the current model. With sufficient training, back propagation networks with only a
few neurons were capable of reproducing the estimation sample (FY 79 - FY 87) with
almost no error. However, the out-of-sample performance of these networks was very
poor. (Comparison of in-sample performance between the highly flexible networks
and regression techniques would be unfair and fruitless.) As with the individual
reenlistment problem, heuristics were employed with the time series data during
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TABLE 15. AGGREGATE ACCESSION AND RETENTION MODEL
EQUATION SPECIFICATION AND INDEPENDENT
VARIABLES

Variabie Definition

Equation 1: NPS Accession Rate (NPSRT)

QUAL Ratio of AFQT category 1-2 accessions to category 3-8 accessions.
WAIT Average time spent in the Delayed Enlistment Program (DEP).
EMP Age specific civilian non-institutional employment rate.
WR Relative military wage to age specific civilian wage.
RECR Number of Air Force production recruiters.
FLGOAL Ratio of current month's force level to Fiscal Year force level goal.
NPSGOAL Ratio of monthly accession rate to the rate required to meet NPS

accession goal.

Equation 2: PS Accession Rate (PSRT)

PSEMP Age specific civilian non-instatutional employment rate.
RLWR1 Relative military wage to age specific civilian wage.
RECR Number of Air Force production recruiters.
PSGOAL Ratio of monthly prior accession rate to the rate required to meet PS

accession goal.

Equation 3: First-term Reenlistment Rate (RELRT1)

RLEMP1 Age specific civilian non-institutional employment rate.
RLWR1 Relative military wage to age specific civilian wage.
DECM1 Ratio of eligible to ineligible first-term airmen.
EOUTS1 Number of first-term early outs.

Equation 4: Second-term reenlistment rate (RELRT2)

RLEMP1 Age specific civilian non-institutional employment rate.
RLWR2 Relative military wage to age specific civilian wage.
DECM2 Ratio of eligible f'- :neligible second-term airmen.
EOUTS2 Number of second-term early outs.

Independent variables in all equations

QTR1 Indicator: 1 in 1st FY quarter, 0 otherwise
QTR3 Indicator: 1 in 3rd FY quarter, 0 otherwise
QTR4 Indicator: 1 in 4th FY quarter, 0 otherwise
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training to stop the process before excessive over-fitting could occur. Table 16
outlines the 3 methods used for stopping the back propagation training.

TABLE 16. TRAINING STOPPING METHODS FOR TIME SERIES DATA

Method Description

BP (79 hold-out) Choose the amount of training that produces the best out-of-
sample performance on the January 1979 through September
1979 (most of FY 1979) sample.

BP (88 hold-out) Choose the amount of training that produces the best out-of-
sample performance on the October 1987 through September
1988 (FY 1988) sample.

BP (inflections) Stop training at the second negative to positive inflection in the
RMSE of the in-sample training path. No information outside of
the training sample used.

As can be seen in Table 16, 2 of the methods rely on additional information from
outside the estimation sample to determine when training has concluded. The BP (79
hold-out) and BP (88 hold-out) methods monitor the performance over 1 cf the 2
validation samples, and select the amount of training which optimizes performance
over the monitored sample. This sample is the only information gained from the
selected validation sample and no training is performed on the observations from
either validation sample. When out-of-sample validation metrics are being computed
on the same sample as the monitoring process (e.g., both monitoring and validating
the FY 88 sample), this is directly analogous with the BP Hold process employed in
the individual reenlistment problem. This is a best case scenario; it is the best that the
network being trained can perform on the validation sample given the data in the
estimations sample. No point in the training path can perform better out-of-sample.
When the opposite validation sample is monitored while computing metrics on 1
validation sample (e.g., monitor FY 88 while validating January 1979 through
September 1979), the method is closer to the BP Tri-sample method without the
additional training. In this case, no information is obtained over the validation sample
being used to validate the out-of-sample performance.

The third training heuristic, BP (inflection), utilizes no information from outside
the training sample. For this problem, it was felt the training sample was too small to
support a further split during any phase of training. The BP (inflection) method does
not split the estimation sample as required by the BP Temporal methods used earlier.
Rather it makes use of an empirical observation about the training path of back
propagation made by Rumelhart (1990). Specifically, the best out-of-sample
performance typically appears near an inflection point in the training path. When the
second derivative of the in-sample RMSE with respect to the training epoch switches
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from negative to positive an inflection has occurred. While the dynamics of back
propagation training are not well understood, this co-occurrence of inflection with
good generalization was common enough to warrant examination in this context. The
specific inflection point used in these analyses is the second negative to positive
occurrence. This inflection point is the 1 most commonly aligned with best out-of-
sample performance. Examination of many networks has indicated that the first
inflection usually occurs at the point where linear relationships have been established
and very often the network mirrors OLS results when examined at this point. The
second negative to positive inflection is usually associated with the "discovery" of
nonlinear features in the sample.

As a further note on the back propagation architecture used in this analysis, a
different transfer function was used by the processing elements in the network.
Instead of the sigmoid function used earlier, a hyperbolic tangent function was used in
its place (Fahlman, 1988). The hyperbolic tangent is just a symmetric version of the
sigmoid ranging from -1 to +1. Work on the time series data and productivity data
(discussed later) showed that networks with hyperbolic tangents could be more
consistently trained to obtain similar results with similar training epochs. The
hyperbolic transfer function required scaling of the output variables between -1 and 1.
This linear transformation has no effect on the reported simulation R2. In addition, all
of the inputs to the neural networks were scaled to lie between -1 and 1 using the
same transformations applied to the output variables.

Empirical Results on Aggregate Time Series

A comparison of the out-of-sample performance of the 2 regression techniques
and 3 variations on back propagation are presented in Table 17. In general, all of the
models performed very well on the 1979 validation sample. NPS accessions proved
to be the most difficult rate to project, but every model was able to explain more than
50% of the variation in the NPS accession rate. Despite the ability to explain the
overall level of all rates, predicting changes in the rates was more elusive. Neither of
the regression based projections could be shown to be correlated with actual NPS
accessions or PS accessions at the .05 significance level (however all projections
were correlated at the .10 level). The BP (79 hold-out) and BP (88 hold-out) PS
accession rate projections were correlated with the actual rates at the .05 level. All
reenlistment projections were correlated with the actual rates at the .05 level or better.
As reported in Stone et al. (1991), little difference could be found between the 2
regression based techniques across any of the rate projections.

Using this validation sample, the neural networks were clearly superior in
projecting only 2 of the 4 rates -- PS accessions and first-term reenlistment. In the
case of NPS accessions, back propagation could perform better than the 2 regression
techniques, but only by "peeking" at its performance on the validation sample --
technique BP (79 hold-out). In all cases, the networks which monitored performance
of the validation sample performed best. While this monitoring cannot be performed in
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practice when the validation sample is truly unknown, it provides an upper bound on
the performance of back propagation on the problem.

TABLE 17. VALIDATION SAMPLE PERFORMANCE
(JANUARY 1979 THROUGH SEPTEMBER 1979)

Simulation R2
NPS PS First-term Second-term
Accession Accession Reenlistment Reenlistment

Modeling Technique Rate Rate Rate Rate

Ordinary Least Squares .522 .828 .848 .988
Generalized Least Squares .540 .797 .853 .988
BP (79 hold-out) .552 .926 .966 .982
BP (88 hold-out) .512 .905 .923 .982
BP (inflection) .506 .831 .912 .950

Based on validation sample projections, the BP (inflection) method had a
tendency to stop training too early. In particular for PS accession rates and second-
term reenlistment rates, the other 2 stopping methods trained over 100 times longer
than the BP (inflection) method. Overall, the BP (inflection) method displayed the
worst performance among the neural network techniques.

The actual projections of the OLS equation and a back propagation method (BP
inflection) are shown in Figure 4. While the BP (inflection) results are the worst on
reenlistment of the 3 networks, it provides a model which can be applied to both
validation samples without having capitalized on any information for the validation
sample. The OLS projection captures the major turning points for the period better
than the back propagation projection; however, the OLS projection is biased
downward by about 10%.

The 1979 validation sample of 9 observations is rather small, and 1 is not often
asked to project the past. The comparison of the methods was extended to the FY 88
validation sample. In this case, the same networks and regression models used to
produce the projections for Table 17 were utilized for the FY 88 period to produce the
results shown in Table 18.

For this latter period, the improvement of the neural network techniques over the
regression methods was quite striking. With the exception of NPS accessions, the BP
(79 hold-out) and BP (88 hold-out) models explained more than twice the out-of-
sample variations as either OLS or GLS. Two of the 3 BP methods also performed
slightly b. '9r on the NPS accession rate. Although not typically as strong as the other
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2 BP training methods, BP (inflection) outperformed the regression techniques in all
cases except OLS on second-term reenlistment.

Reenlistment Rate
0.45
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0.25

0.2 i i I I
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I 3979
Date

Actual - OLS - - Back propagation

Figure 4. Actual and out-of-sample projections of first-term
reenlistment rates for January 1979 through
September 1979, ordinary least squares and BP
(inflection) models.

Mirroring the 1979 validation sample results, neither regression technique
produced accession rate projections (NPS or PS) which were correlated with the
actuals at the .05 level of significance (although the NPS projections were correlated
at the .10 level). While no network projections were correlated with NPS accessions
beyond the .05 level, all network projections of PS accessions, first-term reenlistment,
and second-term reenlistment were highly (well beyond .05) correlated with their
appropriate actual rates.

Figure 5 displays the FY 88 out-of-sample projections of OLS and BP
(inflection). While both project well, the OLS projection misses the upswing in
reenlistment by a month, the downturn by 2 months, and projects rates in excess of
100% for 2 months. The back propagation projection captures both the onset and
downturn in the reenlistment rate quite accurately.

Projections over the entire estimation and validation sample frames are
presented in Figure 6 for OLS and Figure 7 for BP (inflection). As seen in the figures,
the BP model has smaller bias over most periods and more accurately reflects the
turning points in the reenlistment rate. In particular, the network is better at projecting
the rapid swings in the rate.
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TABLE 18. VALIDATION SAMPLE PERFORMANCE
(OCTOBER 1987 THROUGH SEPTEMBER 1988)

Simulation R2

NPS PS First-term Second-term
Accession Accession Reenlistment Reenlistment

Modeling Technique Rate Rate Rate Rate

Ordinary Least Squares .618 .378 .288 .569
Generalized Least Squares .606 .317 .237 .323
BP (79 hold-out) .487 .633 .683 .736
BP (88 hold-out) .647 .633 .774 .736
BP (inflection) .644 .550 .772 .436
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Figure 5. Actual and out-of-sample projections of first-term
reenlistment rates for October 1987 through
September 1988, OLS and BP (inflection) models.
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Figure 6. In- and out-of sample simulation of the first-term
reenlistment rate using the OLS model.
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Neural Network Reenlistment Response Surfaces

Given the ability demonstrated by back propagation networks in out-of-sample
projections, it is interesting to analyze the factors which set the networks apart from the
regression techniques. In particular, the networks must be capable of capturing
relationships between the independent variables and aggregate rates not specified in
the regression models. Two of the principal inputs in each rate equation are a
measure of the civilian employment level and relative military to civilian wage. In fact,
other than the number of recruiters, most of the other independent variables primarily
capture temporal fluctuations in the system which affect distance from goals on the
accession side and the content of the decision making pool on the reenlistment side.

The impacts of employment and relative wages on each of the aggregate rates,
as modeled by neural networks, are presented in Figures 8 through 11. As outlined in
Table 15, each of the relative wages and employment rates was specific to the age of
the relevant group for each for the aggregate rate (e.g., 18- to 23-year olds for
accessions). An exception to this is the employment rate which uses the sample
employment measure for first- and second-term airmen. In addition, the employment
rate was converted to an unemployment rate to make the relaticns easier to visualize.

The impact of unemployment levels and relative wages on first-term reenlist-
ment is displayed in Figure 8. To allow this impact to be primarily decision-maker
driven, the other 2 independent variables were set to levels which would allow the
modeled pool to retain most of the eligible decision makers. Specifically, the ratio of
eligible to ineligible first-term airmen (DECMi1) was set to its highest value obtained
over the sample time frame. This number put the largest proportion of first-term
airmen in the eligible decision maker pool. Conversely, the number of first-term
early outs was set to 0. Early outs reflect negative decision makers who are no longer
in the pool, i.e. their decision is not included in the denominator of the reenlistment
rate. The values of the 3 quarterly indicators were set to their mean values over the
entire sample.

The figure displays 2 nonlinear but essentially noninteracting impacts. Looking
strictly along the unemployment axis, there are 2 relatively flat surfaces where
changes in unemployment have little effect on the reenlistment rate. These surfaces
occur below 6% unemployment and above 8.5% unemployment. Increases in
unemployment above 8.5% do not substantially affect reenlistment; likewise,
decreases below 6% have almost no impact. As modeled by the network, the greatest
impact of unemployment on first-term reenlistment is between the 6 and 8.5% levels of
unemployment.

The relation between relative wages and first-term reenlistment is also nonlinear
but of a different form. When military compensation exceeds the civilian wage by less
than 10%, changes which keep the relative wage below that level have virtually no
effect. As relative wages move from 1.1 to 1.3 level, the effect of a given change in
relative wage produces steadily larger changes in the reenlistment rate. Beyond the
1.3 level, a given change in relative wage has a high but constant impact on first-term
reenlistment.
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Figure 8. Response of first-term reenlistment rate
to unemployment levels and relative
military to civilian wage, estimated by the
BP (inflect) neural network model.

In addition, it can be seen that the impacts of the 2 factors do not interact. The
relation between relative wages and reenlistment is unchanged by shifts in the
unemployment rate. While higher unemployment shifts the relation between relative
wages and reenlistment up, it does not affect the form. All of the civilian wage impact
lines are basically parallel.

Figure 9. Response of second-term reenlistment rate
to unemployment levels and relative military
to civilian wage, estimated by the BP (hold-
out 88) neural network.
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Figure 9 presents the network modeled response of second-term reenlistment to
unemployment and relative wage (Fig. 9 is kept on the same scale as Fig. 8 to
facilitate comparison). As with first-term reenlistment, the eligible ratio and number of
second term early outs are set to the maximum and 0 respectively. A soft threshold
phenomenon can again be seen relating reenlistment and unemployment. Below 5%
and especially above 7.5% unemployment, changes in the unemployment rate have
minimal effect on second-term reenlistment. Again the greatest impact of the civilian
unemployment rate is expressed over a 2.5% range in the unemployment level. For
second-term reenlistment, the range has shifted down 1% from the transition range
observed for first-term reenlistment. This shift reflects an increased risk-aversion
exhibited by the older group. As expected, and supported by other research (Saving
et al., 1982), the reenlistment rate for second-term decision makers is consistently
high and relatively unaffected by changes in military compensation.

060'

AO

056.

Figure 10. Response of the NPS accession rate to unemploy-
ment levels and relative military to civilian wage,
estimated by the BP (inflect) neural network. (large
values on the unemployment scale reflect the high
unemployment rate for the youth population).

Figure 10 displays the impact of unemployment and relative military to civilian
wages on NPS accessions. For the purposes of this graph, the other 5 dependent
variables and the 3 quarterly indicators were set to their mepn values over the entire
sample. The graph displays 2 linear, noninteracting but important impacts from the 2
variables. This result is to be expected given the relative performance of the neural
network and regressions models. Of the 4 modeled rates, the out-of-sample results
were most similar for NPS accessions. Essentially, the neural network has reinforced
the original modelers implicit assumption that no nonlinear features were present in
the NPS accessions model.
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The modeled response of PS accessions to the levels of the same 2
independent variables is considered in Figure 11. As with NPS accessions, the
values of the other variables were fixed at their sample means. Unlike the prior
figures, this figure displays considerable interaction between unemployment rate and
relative wage in determining PS accession rates. The unemployment level has a
dramatic impact on how potential PS accessions respond to changes in relative
military to civilian wages. As can be seen in the figure, when unemployment is very
low, changes in military compensation have little effect until the military wage exceeds
its civilian counterpart by over 20%. However, with high unemployment, the impact of
military compensation begins before the relative difference is 10%. In addition, the
impact of changing military compensation is much larger and increases faster at low
relative wages and high unemployment rates. This is precisely the type of behavior
one would expect from a labor group already entrenched in the work-force. High
relative wages and changes in those relative wages have much less effect on those
who already hold jobs.

Figure 11. Response of the PS accession rate
to unemployment levels and relative
military to civilian wage, estimated
by the BP (inflect) neural network.

Aggregate Time-series Summary

The out-of-sample performance of the neural network models when projecting
aggregate personnel flow rates was quite impressive. In particular, the networks
performed much better on the 12 months in the FY 1988 validation sample. A method
of stopping the back propagation training was essential to this performance.
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Preliminary networks developed without these methods invariably performed very well
on the training sample and very poorly on the validation samples.

An examination of some of the response surfaces generated by the network
model indicates where improvements over a linear specification were "discovered" by
the network architecture. Some of these nonlinear and interacting features were in
stark contrast to the linear assumptions made in regression analysis. Most of these
features were poorly approximated by the constant effects constraint of linear models
or the constant elasticity of log-log models. Although the network was relatively
unconstrained in its ability to fit the training data, the features developed were well
behaved and extrapolate smoothly. This network model was also in contrast to the
nonlinearities generated when high-degree polynomial estimates are used to fit
nonlinear surfaces. In most applications, polynomials consistently exhibited strong
and unpredictable swings outside the boundaries of the estimation sample. In each
case, the nonlinear and interacting features "postulated" by the network model were
extremely plausible and often more intuitively appealing than constant or constant
elasticity effects over the entire range of an input variable.

A common complaint among researchers modeling time series data involves
changes in model structure. When an equation is estimated over one period, its
coefficients may substantially differ from those obtained over a different period. A
"change in structure" is usually blamed for these differences; however, a glance at
Figure 8 will show that a linear model estimated over a period of high unemployment
would produce a substantially different result than one estimated over a period of
moderate unemployment. A model estimated over both periods would produce a
linear average between the two. While this is typically considered a change in
structure over time and is the bane of effective projection, the neural network model
suggests an alternate interpretation. The model structure has remained constant; it
merely contains a richer, more nonlinear structure, than the original estimator was
capable of capturing. When networks can capture some of this richer structure, they
can be expected to perform significantly better than reg*ession techniques.

PRODUCTIVE CAPACITY

The final area examined in this task was the productive capacity of airmen in the
enlisted force. More specifically relations were sought between Air Force experience,
aptitude, and productive capacity. This relation serves as a major component in
several recently developed models for allocation of personnel (Faneuff, Valentine,
Stone, Curry, and Hageman (1990); Stone, Turner, Fast, Curry, Looper and Engquist,
1991). While these researchers focused on the aggregation of productive capacity
over time and its allocation effects, the emphasis in this study was determination of
productive capacity at any point during active duty service. Any model which
produces this result can serve as input to the Faneuff et al. and Stone et al.
aggregation and allocation models.
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Productive Capacity Model and Data

The specific model of productive capacity examined was pen ,i n.arily from
Fauneff et al. (1990) and based on the prior work of Carpenter, Monaco, O'Mara, and
Teachout (1989). Experience was measured by months of total active federal military
service (TAFMS). Aptitude was measured using the subtest scores from the Armed
Services Vocational Aptitude Battery (ASVAB) (see Table 1C I'U! a listing of scores).
The raw ASVAB subtest scores were rebased to norms from the 1980 Youth
Population and standardized to a mean of 50 and a standard deviation of 10.

TABLE 19. ASVAB SUBTESTS

Subtest Mnemonic Subtest Name

GS General Science
AR Arithmetic Reasoning
WK Word Knowledge
PC Paragraph Comprehension
NO Numerical Operations
CS Coding Speed
AS Auto Shop Information
MK Mathematics Knowledge
MC Mechanical Comprehension
El Electronics Information

The Air Force normally employs 4 composites of these 10 subtests when
evaluating recruits: Mechanical (M), Administrative (A), General (G), and Electronic
(E). These composites (see Table 20) are collectively referred to as the MAGE scores.
Admission to each career field is currently based on performance on one or two of
these MAGE composites and an overall composite designated the AFQT.

TABLE 20. AIR FORCE ASVAB COMPOSITES

Mnemonic Composite Name Composite Computation

M Mechanical MC + GS + 2AS
A Administrative NO + CS + WK + PC
G General WK + PC + AR
E Electronic AR+MK+EI+GS
AFQT Armed Forces Qualification Test 2(WK + PC) + AR + MK
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Prior research has focused on these composites as measures of aptitude. The
ability to evaluate the effect of changes in the construction of the composite scores
would allow much broader latitude for policy analysis. If more effective composite
scores or more selective criterion could be developed it would have considerable
implications for personnel allocation. To evaluate this problem, models must be
developed which relate individual subtest scores to performance or productive
capacity.

Productive capacity was measured using objective Walk-through Performance
Test (WTPT) measures (Hedge and Teachout, 1986). The WTPT includes hands-on
measures involving the observation of airmen actually performing tasks and interview
measures which evaluate task knowledge. The measure used in Stone et al. (1991)
and employed in the current research is a composite of hands-on and interview test
scores -- total WTPT score (TWTPT). The separate hands-on and interview scores
were also analyzed and found to behave similar to the TWTPT score. In addition,
various supervisor ratings were evaluated, but also found to produce little difference in
the results. WTPT data has been gathered on 8 Air Force career fields, 6 of which had
been completed at the time of this research. As seen in Table 21, the 6 career fields
span all 4 MAGE composites.

TABLE 21. CAREER FIELDS WITH WALK-THROUGH
PERFORMANCE TEST DATA

AFS Career Composition Useful
Code Field Title for Admission Observations

122X0 Aircrew Life Support G 176
272X0 Air Traffic Control G 174
328X0 Avionic Communications E 68
423X5 Aerospace Ground Equipment M,E 235
426X2 Jet Engine Mechanic M 201
492X1 Information Systems Operator A 201

Following the work of Faneuff et al., the TWTPT score was normalized in each
career field to a base considered to be a fully productive airman. For this research, a
fully productive person was defined as the median TWTPT score for airmen from an
AFS with between 37 and 48 months of service. This median score served as a basis
for computing the productive capacity of all other airman in an AFS as shown in
Equation 7.
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Where:

Pi is productive capacity for airman i

Ti is the TWTPT score for airman i

T is the median TWTPT score for airmen in an AFS with 37 to 48
months of service

Both prior research efforts in this area used a single MAGE score and TAFMS as
the independent variables of OLS regressions with productive capacity as the
dependent variable3 . Various functional forms have been employed to estimate the
productive capacity function. Carpenter et al., used a logistic function while Faneuff et
al., found a linear form with a log TAFMS term to best fit the productive capacity data.
Linear, logistic, and log-linear forms were employed in the current analysis as a basis
for comparison to network results.

Productive Capacity Results

Four different regression models were estimated for each of the career fields
considered: OLS with linear input terms, OLS with log input terms, and two logistic
regressions. The logistic regression suggested by Carpenter et al. requires a
nonlinear transformation of the dependent variable to obtain an S-shaped relation
between the independent variables and the output variable. This functional form is
defined only over the region between 0 and 1 for the dependent variable and is not
invariant under linear transformations of the variable. In one of the logistic
regressions, productive capacity was rescaled to lie between .02 and .98 before
applying the logistic transformation. In the other regression, the productive capacity
was simply divided by a constant such that the maximum value obtained before the
transformation was .95, with the lower bound allowed to fall in proportion to the
constant. Two variations on the back propagation architecture were employed; the BP
Hold and BP Inflection methods discussed earlier. Due to the relatively small sample
size available in each AFS, the more complicated split-sampling approaches were
inappropriate.

Two different sets of inputs (or independent variables) were tested for each
model on each AFS. To replicate the Carpenter et al. and Stone et al. (1991) models,
only the relevant MAGE score for accession selection and job placement was used (in

3Sometimes skill level was also included in the regressions.
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conjunction with TAFMS). In a second series of models, all 10 ASVAB subtests were
entered as inputs to the model with TAFMS.

Each of the AFS samples was randomly divided into an estimation sample
containing two-thirds of the observations and a validation sample consisting of the
remaining one-third. The models were estimated or trained on the estimation sample
with out-of-sample performance based on the validation sample. The simulation R2

for the performance of each model on the validation sample is presented in Table 22.

TABLE 22. OUT-OF-SAMPLE SIMULATION R2 FOR
PRODUCTIVE CAPACITY MODELS

Air Force Specialty Code (AFSC)
Modeling
Technique 122X0 272X0 328X0 423X5 426X2 492X1

Model with only the admissions MAGE composite and TAFMS as input5

OLS, all linear terms .114 .057 .235 .139 .136 .154
OLS, log input terms .138 .075 .281 .143 .122 .218
Logistic (.02 to .98) .111 .055 .148 .092 .122 .167
Logistic (X to .95) .101 .049 .241 .150 .099 .216
BP Hold .076 .064 .299 .164 .125 .176
BP Inflection .073 .053 .259 .158 .125 .176

Models using all ASVAB subtests and TAFMS as inputs

OLS, all linear terms .039 .077 .465 .127 .086 .110
OLS, log input terms .064 .125 .457 .127 .090 .194
Logistic (.02 to .95) -.054 .038 .393 .092 .015 .026
Logistic (X to .95) .000 .078 .430 .131 .054 .132
BP Hold .085 .105 .487 .176 .128 .155
BP Inflection .052 .078 .477 .150 .084 .058

For AFS 423X5, only the Mechanical (M) composite is used in the first set of models.

No clear pattern emerges from these results which would indicate a superior
method of modeling the productive capacity function. It is unclear from these results
whether the addition of all subtest scores significantly improved a model's predictive
performance. Only the 328X0 results using all subtests was significantly different from
the much simpler models using a single MAGE score to represent aptitude. The only
model to consistently perform well on most of the AFSs was the BP Hold neural
network which was best or second best in all cases except 122X0. (In this case it was
still the best of the models developed using the ten ASVAB subtests.) As was
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demonstrated in the UPT analysis, the neural networks appear to be able to extract
relevant information from small samples with large numbers of input variables. The
mediocre performance of the BP Inflection method indicates that finding appropriate
stopping points for back propagation poses particular problems with small samples.

The regression models were inconsistent when comparing results between the
MAGE and subtest inputs, yet the BP Hold network consistently performed better when
given more aptitude information (with the exception of AFS 492X1). Within this
context, the BP Hold performance suggests that additional structure is present if
appropriate training stopping points can be determined. The subtest models
estimated on the WTPT data lack the strength to be applicable in their current form to
provide a basis for evaluating new composite scores. However, the consistent BP
Hold results indicate that additional data combined with nonlinear analysis might
provide a more detailed understanding of the interplay between aptitude, experience,
and productive capacity.

CONCLUSIONS

During the course of this task neural networks were compared with traditional
estimation techniques and existing models in 4 areas of the Air Force personnel
system. In all cases, comparisons among the models were made on the basis of
performance over periods or of individuals which were excluded from the samples
used to develop the models. This stringent criterion accounts for the inherent ability of
neural networks to perform well in-sample.

In 2 of the areas analyzed, the reenlistment of airmen and the projection of
aggregate personnel flow rates, the neural network techniques displayed distinct and
substantial improvements over existing models. Using the simulation R2 as a criterion,
the improvement was sometimes two- or three-fold over the existing model on the
groups tested. These 2 areas offered very different problem domains: a time-series
analysis of continuous rates with relatively small samples; and, a dichotomous
decision problem with extensive data available. In both cases, the ability of neural
networks to derive nonlinear features from the set of training observations proved
crucial in the network's superior performance. All of the techniques used in the UPT
pass rate and productive capacity research were hindered by the limited and
homogeneous nature of the data samples. In both cases, the samples available were
small and the individuals in the samples had been previously screened by existing
selection criteria. These 2 samples offered much more tenuous examples relating the
input factors to the modeled behavior. With these 2 problems, the networks performed
as well as the other methods tested and were able to perform better when provided no
guidance from the researcher (in the form of selecting specific variables for inclusion
or deletion from the analysis). In this sense, the networks performed very well as
"model seekers" when confronted with less than ideal data.
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Overall, neural networks have demonstrated the ability to significantly improve
on the performance of some existing models. This ability is directly related to the
amount of nonlinear or complex structure in the system being estimated. A critical
concern to anyone conducting research on personnel or other highly stochastic
: stems is to prevent over-fitting of data. The heuristics employed in this research
proved very successful at stopping training before the network was able to generalize
outside the estimation. Prevention of over-fitting is an area which has received limited
attention in the literature and many refinements are possible. In spite of the extremely
successful results obtained in some areas of this study, care must be taken to avoid
over-training the networks.

The results on individual reenlistment indicate that any future work in that area
should consider the use of back propagation or one of its variants as a modeling
technique. The reenlistment problem has shown itself to contain significant structure
which is not captured by the current regression based techniques, but is amenable to
being modeled with neural networks. Substantial benefits in the ability to evaluate the
impact of changes in policy or economic conditions would result from the more
detailed relations captured by the networks. Likewise, the results on aggregate rate
estimation were extremely encouraging. The model developed by Stone et al. (1991)
had already exhibited very good out-of-sample performance. The additional structure
realized in the network models proved important for both the projection and analysis
of the underlying impact of the factors contributing to the rates. Because of the richer
modeling environment offered by neural networks they should be considered for many
problems where sufficient data exists to extract relations between known factors and
observed behaviors.

Most of the work performed during this research centered on testing the validity
of neural networks for personnel data analysis. This work primarily involved testing
the performance of trained networks under new combinations of conditions. Clearly
the out-of-sample performance of the networks has strongly indicated their relevance
in personnel research and modeling. Perhaps more important is the insight that can
be gained into decision making and other processes as demonstrated by the
response surfaces for the aggregate reenlistment rate. In lieu of the constant impact
or constant elasticity of most regression methods, a successfully trained network offers
more insight into the structure of the problem. For example, the effect of a change in
the unemployment rate depends on the current rate; or, assumptions about the impact
of a change in military compensation must be made in the context of the current
unemployment rate. While the wealth of information available from a rich model such
as one developed by a neural network can be difficult to analyze, ignoring and
obscuring important features by forcing them to fit a preconceived functional relation
seems more dangerous. With the proper tools, the interrelation and features
developed by a network can be made available as a more realistic model of the
process being analyzed. This task merely served as a test-bed for approaching such
problems as rate projection, decision making, and selection in the Air Force personnel
context. In at least 2 of the areas examined, networks have proven to be ready for
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more extensive application. Many personnel management tasks and problems can
be approached using the tools tested in this research.

Several of the methods employed in the current research were developed and
implemented in software specifically for this task. In particular, the refinements to
prevent over-training of neural networks are not currently available in commercial
neural network software. For neural networks to be useful in the personnel context,
easily used systems to develop networks using the procedures outlined in this
document must be implemented. Additional tools are also required to elucidate the
relationships developed by a trained neural network model. Contrary to popular
opinion, the impact of input factors in a neural network model can be analyzed; as
shown in Figures 8 through 11. However, for this process to be widely applicable,
methods of automatically exploring the response surface of a network must be made
available. With the development of these 2 tools, neural networks should become
widely applicable in personnel research.
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