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CAUSAL MODELS IN THE ACQUISITION AND
INSTRUCTION OF PROGRAMMING SKILLS

1 Introduction and Overview

Individualized instruction is often thought to be the most effective form of instruc-
tion, particularly for problem solving domains (e.g., Bloom, 1984; Cohen, Kulik, &
Kulik, 1982). The promise of modern educational computing is the opportunity to

deliver the benefits of individualized instruction to students via computers. There
are a number of different approaches embodied in current forms of computer instruc-
tion. For example, some have argued that the best use of computers in instruction is
to provide a context in which students can explore a domain and learn by discovering
its principles (Papert, 1980; Schank & Farrell, 1987; Schwartz, 1989). Others have
argued that systems should provide more directive feedback during learning (e.g.,
Anderson, Boyle, & Reiser, 1985; Genesereth, 1982; Kimball, 1982). While there
is no general agreement about which instructional model holds the most promise
for computer-based instruction, the effectiveness of expert teachers in one-on-one
tutoring settings suggests that it is a profitable methodology to emulate (Carbonell,
1970; Collins, Warnock, & Passafiume, 1975).

Is it possible to capture the instructional benefits of individualized tutoring in a
computer system? This project investigates how an interactive learning environment
can support students' learning and acquisition of mental models when acquiring a
target cognitive skill. In particular, the research program explores how graphical
representations and intelligent guidance can facilitate students' learning in a new
domain.

Our approach is to construct an intelligent interactive learning environment and
to use the learning environment to conduct pedagogical experiments on skill acqui-
sition. We have constructed an intelligent tutoring system called GIL (Graphical
Instruction in LISP), which teaches students to program in LISP. GIL functions
in both a guided tutoring mode and as a more open-ended exploratory learning
environment. In its guided tutoring mode, GIL provides explanatory feedback in
response to student errors or requests for hints by continually comparing the stu-
dent's solution as he or she constructs it to the range of solutions suggested by
its problem solver. In its exploratory mode, GIL provides support for students to
articulate their hypotheses about how a program will behave and tools for test-
ing their hypotheses. In this report, we review our research on GIL, including the
knowledge representations and graphical techniques employed and the empirical
studies of students' learning performed using these systems. Our results suggest
that both the graphical representation and the causal explanations provided by the
system account for GIL's pedagogical effectiveness. The graphical representations
and causal explanations work together to help students build and capitalize on an
effective mental model for programming.

We present results from two sets of studies that explore how GIL facilitates



students' learning:

" how a gr.phical representation facilitates reasoning about devices.

" how model tracing guidance helps students learn by repairing their own errors.

2 GIL: An Intelligent Tutoring System for Pro-

gramming That Explains Its Reasoning

Human tutors carefully monitor students' problem solving and provide frequent

feedback that can be very subtle (Merrill, Reiser, Ranney, & Trafton, 1991). Can

this type of reasoning be modeled in a computer tutor? In this section, we discuss

how GIL is designed to support students' problem solving.
What capabilities would be required to achieve some of the pedagogical benefits

of a human tutor in an intelligent tutoring system? At a minimum, a system must

be able to follow students' reasoning and detect when they have made an error or

embarked on a bad strategy. The system should also be able to provide suggestions in

these situations and give hints when students are stuck. Intelligent tutoring systems

typically achieve these goals by using three distinct types of knowledge. First, the

system should be able to solve the problems in the target area. Expert problem

solving plans and rules are often used to represent this domain knowledge (Anderson,
Boyle, & Reiser, 1985; Clancey, 1987). Second, the system needs to represent its
view of the student's understanding of the domain. This representation is typically

called the student model. The third type of knowledge implements pedagogical
strategies.

In the model tracing methodology, the tutor follows students' solutions and iden-
tifies errors by matching the students' problem solving steps with the reasoning of

an underlying rule-based domain expert (Anderson, Boyle, Corbett, & Lewis, 1990;
Anderson, Boyle, Farrell, & Reiser, 1987; Anderson et al., 1985). This matching
is used as the basis for providing ongoing feedback to students while they progress
through a problem. The general strategy in model tracing systems is to present
a problem for the student to solve, track the student's progress step by step, and
intervene with explanatory feedback upon an error or a request for help. For exam-
ple, an incorrect use of a programming concept might trigger a brief explanatory
message associated with the buggy problem solving rule that captures the miscon-
ception. In this situation, the feedback helps the student diagnose the error and
suggest a way to approach its repair. A model tracing system may also respond to
an error by finding a correct rule embodying an appropriate action in the current

problem solving context. In this case, the tutor guides the student toward a correct
replacement step for the error. In contrast to these situations, if the student's step

2



is one that would be produced by executing one of the correct rules considered by
the system, the tutor silently follows the student's path through the problem. The
model tracing methodology has formed the basis for a number of intelligent tutors
that teach computer programming (Anderson, Conrad, & Corbett, 1989; Anderson
& Reiser, 1985; Reiser, Anderson, & Farrell, 1985), proof construction in geome-
try (Anderson, Boyle, & Yost, 1986), solving algebraic equations (Milson, Lewis, &
Anderson, 1990), and calculus (Singley, 1990).

GIL (Graphical Instruction in LISP) is an intelligent tutoring system that sup-
ports novice students' problem solving as they learn computer programming in LISP
(Reiser, Friedmann, Kimberg, & Ranney, 1988; Reiser, Kimberg, Lovett, & Ranney,
1991). The goal of our research on GIL is to investigate how to facilitate students'
understanding of a new domain as they learn to solve problems. We are investi-
gating two ways in which a tutor can facilitate reasoning. A first research goal is
how to simplify problem solving in complex domains with a graphical representa-
tion that provides better scaffolding for students' reasoning than traditional (i.e.,
text) representations (Ranney & Reiser, 1989; Reiser, Friedmann, Gevins, Kimberg,
Ranney, & Romero, 1988). A second research issue is how a tutor's explanations
can guide students' reasoning and help them learn more effectively from their im-
passes, errors, and successes (Reiser, Friedmann, Kimberg, & Ranney, 1988; Reiser,
Kimberg, Lovett, & Ranney, 1991).

2.1 Components of the GIL Tutor

The current version as of the end of this contract (8/90) is GIL 1.4. GIL is written
in LOOPS and the Interlisp dialect of LISP and runs on Xerox LISP workstations.
We are currently porting GIL to Common LISP on Macintosh computers. This
port should be completed during the first year of the next contract (Graphical Rep-
resentations and Causal Models in Intelligent Interactive Learning Environments,
Contract MDA903-90-C-0123 to Princeton University).

The diagram in Figure 1 displays the modules that comprise GIL and the knowl-
edge representations they use. GIL follows the model tracing methodology used in
the tutors built by Anderson and his group (Anderson et al., 1985; Anderson et al.,
1990; Reiser et al., 1985) but it contains a different type of problem solving model
designed to make explicit the causal knowledge about programming operations, and
an explanation component that constructs hints and error feedback directly from
the content of its problem solving knowledge.

GIL understands each student step as it is generated. A step in GIL consists
of selecting a LISP function and specifying the function's input and output. GIL
consists of four main modules: a graphical interface, a response manager, a prob-
lem solver, and an explainer. The graphical interface is a graphical programming

3
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NetStdeps

Input

Figure 1: The architecture of the GIL programming tutor. The four shaded boxes
represent GIL's four modules. The rounded boxes represent the knowledge bases
used in model tracing, and the ovals represent data structures that GIL constructs
as the student builds a solution.
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environment in which students construct LISP programs. The response manager
implements the model tracing process, drawing upon the problem solver and ex-
plainer. GIL processes each step taken by the student and determines whether it
is on the path toward a solution or is an error. The analysis is performed by com-
paring the student step with the steps suggested by the problem solver. If an error
is found, the explainer analyzes the discrepancies between the student's step and
the closest matching correct rule and offers suggestions to the student about how to
improve the step. Explanations may draw upon the problem solving rule, general
knowledge about the operator being used, and the higher-level plan of which the
step is a part.

2.2 The GIL Curriculum

The curriculum covered by GIL 1.4 is displayed in Table 1. The course is an
introductory programming course, designed for novices. No prior programming
experience is required to master the material in the curriculum.

The eight sections in the curriculum cover the material in the first three chapters
of the textbook on which the curriculum is loosely based, Essential LISP by Ander-
son, Corbett, and Reiser (1987). In sections 1-2, students learn to write programs
using a concrete example for each program. These programs construct and manipu-
late lists. In section 3, students learn to use variables, and to run their programs on
new examples to test and debug them. Section 4 introduces arithmetic functions.
Sections 5-8 cover conditional processing in programs. The concept of conditional
processing is explained in section 5, and predicates for testing properties of data are
introduced in section 6. Then, section 7 presents the LISP conditional structure,
cond. Finally, logical functions are introduced in section 8.

At the completion of these 8 sections, students have learned how to create pro-
grams, test them on particular examples, and run them on new data. They have
learned how to write programs that manipulate lists, and programs that behave
conditionally depending on the characteristics of the input. They have learned a
number of important programming techniques, including how to order the tests for
a set of possibilities that are not mutually exclusive, how to use logical functions to
specify complex contingencies, and how to design programs that exhaustively cover
the set of possibilities.

In total, students have learned to use 24 LISP functions: 7 functions for manip-
ulating lists (cons, append, list, first, rest, last, reverse), 4 arithmetic functions (+, -,
*, /), 9 predicates (listp, atom, null, numberp, equal, member, zerop, <, >), 3 logical
functions (and, or, not), and the conditional construct (cond).

The following two sections describe the principles employed in the design of
GIL's graphical representation and in its model tracing guidance.
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Table 1: The Curriculum Implemented in GIL 1.4

1 Introduction to LISP
1.1 Programming in LISP
1.2 Getting Started: Functions
1.3 Atoms and Lists
1.4 Balancing Lists
1.5 Functions for Operating on Lists
1.6 Extracting Information From Lists: first and rest
1.7 Combining Functions

2 Manipulating Lists
2.1 Building Lists: cons, list and append
2.2 Specifying More Than One Input for a Function
2.3 Why Create Functions?
2.4 Looking at Lists from the Back End
2.5 Using Input Data More Than Once
2.6 Making Your Programs General

3 Writing Programs With Variables
3.1 Input and Output Data
3.2 Building A Program Graph With Variables
3.3 Running a Program
3.4 Creating Variables
3.5 Creating and Editing Your Graph

4 Arithmetic Functions

5 Conditional Processing

6 Predicates

7 Conditionals
7.1 The Cond Structure
7.2 Building a Cond Structure on the Computer

8 Logical Functions

6



2.3 GIL's Graphical Programming Interface

GIL's graphical programming interface is designed to be congruent with the reason-

ing required in programming tasks. GIL students build a program by connecting

icons representing program constructs in a graph, rather than by defining LISP func-
tions in the traditional text form. In the early GIL curriculum, GIL students work

out their algorithms by reasoning about the behavior of the program on a particular

example. GIL students take a step by selecting a LISP function and specifying its

input and output data, thereby making predictions about the changing state of the

program's data. Figure 2 shows a partially completed solution to one of the rr- re
difficult list manipulation problems in the first two lessons of the GIL curriculum.

A first advantage of the graphical interface is that it provides a representation
that makes the behavior of the program more visible. Students include each of the

intermediate results in the program by specifying how the output for one function
becomes the input for another. Thus, when a program in GIL is complete, it specifies
how a chain of LISP functions transforms the original input data to achieve some
particular target output. The internal states of the program - the data computed
by the program on the steps between the initial input and final output - are
invisible in the traditional text representation. In GIL's graphical representation,
they are rendered explicit. Reasoning about dynamic objects such as the motion of
physical objects, electricity in a circuit, or the behavior of machines and computer
programs requires being able to propagate causes and effects to predict the states
that occur between the initial and final states (e.g., Bayman & Mayer, 1988; de
Kleer & Brown, 1983; White & Frederiksen, 1990; Young, 1981). Helping students
understand and reason about these internal states can be crucial for helping novices
learn to construct computer programs (Bayman & Mayer, 1988; du Boulay, O'Shea,
& Monk, 1981).

A related second advantage of GIL's graphical interfacL is that it leads students
to make their own reasoning explicit. By providing the intermediate results the

program will compute, students articulate their predictions about how the program
will behave while they are constructing it. In contrast, when students construct a
text program they need only specify a sequence of operations, without articulating
the input and result of each operation. GIL provides a natural medium for students
to articulate their reasoning while progressing through a problem. Focusing students
on the reasoning processes involved in solving problems rather than on the results
is an important component of effective instruction (Brown, 1985; Collins & Stevens,
1982; Collins, Brown, & Newman, 1989). Such a system may also facilitate the
students' own monitoring of their problem solving progress. Furthermore, the tutor
can better provide feedback when students indicate what they expect will occur as
the program runs. The GIL representation can be contrasted with the standard text
representation in which only the final results of the students' reasoning are evident.
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Write a program to take a list as an
argument and construct a new list with
the last element rotated to the front of
the list. For example. (a b c d) would

_ _ become (d a b c)

d
You need to eventually connect to
(abc). (abc) contains the first few
elements of (a b c d).

FIRST You might start by using a function that
iM givesyou(dcba). You can use

I S f "C(d c b a) to eventually extract (a b c).
(d c b a) is a list with the reverse of
(abc) attheend.

(on..) (d)

E11I (a bc d)

Figure 2: Solving a problem in GIL. The student has requested a hint about how
to proceed.
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Figure 3 shows a completed solution in GIL and the corresponding text form of this
program.

A third advantage of the graphical representation is that it provides a closer
fit with the structure of the student's reasoning. For example, reasoning chains in
a GIL problem solution are represented by branches of the graph that converge to
eventually achieve the final goal. Thus, translating a student's plan into components
to be added to a GIL solution is simplified, and the plan's structure is preserved by
the graph. In addition, the structure itself is more readily discernible in the graph
than it is in the text representation, in which it must be extracted from more subtle
cues such as indentation and number of parentheses. Graphical representations often
facilitate inferences about the structure of a problem that are difficult with verbal
descriptions (Fuson & Willis, 1989; Larkin, 1989; Larkin & Simon, 1987). Thus,
students can more easily keep track of the current status of their solution plan and
more easily monitor their solution progress. Furthermore, the closer correspondence
of the graph with the structure of the student's reasoning allows students to focus less
on syntactic details and more on the semantics of the constructs, and on combining
operations to construct a plan.

Finally, the interface allows students to focus problem solving on individual
solution components. Students can construct larger structures by first building and
testing simple components. Students can break a problem into subgoals, such as two
branches of a graph or different conditional cases, and then focus on one subgoal,
obtaining feedback about the behavior of that portion of the graph. In addition, GIL
allows students to make reasoning steps in whatever order they find natural, even
though the order of these steps may not match the order in which the components
appear in the final surface form of the solution (Reiser, Ranney, Lovett, & Kimberg,
1989; Trafton & Reiser, 1991).

One potential danger of the graphical representation is its potential limitations
for representing complex problems. A tutor that uses a graphical representation
can require a large workspace even for simple problems; as problems become more
complex, such a detailed representation might overwhelm students and lead them
to focus more than necessary on small aspects of the solution. One way to counter
this problem is to modify the representation as the curriculum progresses. In the
early lessons with GIL, for example, students are required to enter the intermediate
products for each function they use. While helpful for beginners, more advanced
students may find this distracting. Also, more complex problems would be unwieldy
to write and debug since they would require so much workspace. As we shall see,
in the later part of the GIL curriculum, students can skip these intermediate prod-
ucts. Similarly, when students move on to iterative functions the representation
for conditional expressions becomes more concise.' Thus, the constructs learned in

'The additions to the GIL interface for the iteration lesson are now designed, and construction
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d (ab C)
(defum rotater (lis)

FEUM (cons (first (last lis))

FIRST (reverse (rest (reverse lis)))))

(c b a)

(d) REST

(d c b a)

LIMT

(a b c d)

Figure 3: A completed program graph and the corresponding LISP code.
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earlier lessons become more compact as students move on to new topics to allow
more complex programs to be written.

2.4 Providing Guidance and Support for Students' Prob-

lem Solving

GIL's explanatory feedback and guidance is also designed to help students learn
more effectively as they solve problems. GIL employs the model tracing technique to
follow students' reasoning, offer assistance when requested, and determine feedback
upon errors. GIL can follow any correct solution to the assigned problems. Most
problems have many different possible solutions. For example, the problems in
section 2 contain up to 14 unique solution graphs each, and up to 1720 different
paths or different sequences of steps that a student can take in each problem.

GIL's problem solver contains knowledge about the behavior of the various LISP
programming constructs, including how each LISP operator transforms data and
what each accomplishes. In addition, the problem solver contains strategic knowl-
edge, encoded as plans, enabling it to reason about how to assemble programming
constructs to accomplish desired goals. Thus, the system can not only construct a
sequence of LISP operators, but can also convey why each component is useful in
a given situation. Figure 4 shows GIL's response to a legal error in the early cur-
riculum; the step in the program does not correctly manipulate the selected data.
In these situations, GIL explains how the student's step differs from LISP's actual
behavior in that situation. In addition, the feedback contains strategic information
- GIL suggests modifications of a step that will not only make the step legal, but
also help in solving the current problem. GIL also responds to a second type of error
called a strategic error, in which the chosen step is a legal LISP operation but does
not appear to be part of any plan that correctly satisfies the problem constraints.
GIL's feedback on strategic errors suggests modifications in the solution plan. An
example of GIL's response to a strategic error is shown in Figure 5.

GIL provides two levels of help for most errors. The first level points out the
nature of the error. The second level, provided only if requested by the student,
offers a specific suggestion and explains why this suggestion would be effective. In
this way, the first level of feedback provides an opportunity for students to figure
out how to fix the step or to request more directive feedback (by asking for a further
hint).

The degree of GIL's support varies with the student's progress through the cur-
riculum. In early lessons, the focus of instruction is on learning the basic functions
for manipulating lists. The student specifies a step in a solution by selecting a
function and specifying its input and output data, using the example original input

should begin on this lesson in the first year of the next contract.
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Write a program that takes one list as an
argument and produces as output a list
Containing the first and last element of
that argument. For example, if the
argument were (a b c d) then the
output would be (a d).

Using LAST on (a b c d) to construct
something is a good idea. However, d is
not what LAST will produce. The
correct output should be a list.

(d) is a list containing the last element
of (a b c c. Try using (d) as the
output.

INew Output I  New Step

ad

FIRST LAST

(a b c d)

Figure 4: An explanation constructed by GIL in response to a legal error. Two
levels of help are shown.
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Write a program that takes one list as an

argument and produces as output a list
containing the first and last element of
that argument. For example, if the
argument were (a b c d) then theEBoutput would be (a d).

OK. I think I see wha-" you are trying to
do. Are you trying to use RESTs on
(a b c d) to get the list (d)? It's not a bad
idea, but unfortunately it won't be a
very general solution. Remember that
your program should work for an input
Nst of any length, not just for (a b c c).

New Step IMoren Ino

(bcd)

REST

Figure 5: An explanation constructed by GIL in response to a strategic error.
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and target output provided for the program (see Figures 2-5). These intermediate
products help students work out their algorithms. In addition, these intermediate
results provide an example around which GIL can structure its feedback.

In later lessons, the focus is on learning how to use predicates and logical func-
tions to test properties of data, performing actions contingent upon these tests. In
these later lessons, students see intermediate results on a more global level - the
results of this conditional processing rather than of the list manipulation occurring
within a given test or action. At this point in the curriculum, students are not re-
quired to supply the intermediate products of list manipulation (although they are
available from GIL on request), because these subskills should be well learned from
the previous chapters. Accordingly, GIL's model tracing feedback begins to con-
centrate on a more strategic level. GIL provides feedback when students misorder
components of the conditional part of a program or when it becomes apparent they
are pursuing inappropriate solution plans, such as an erroneous implementation of
a desired test.

2.5 Providing Support for Students' Exploration

GIL also contains facilities for students to test their programs to determine whether
they behave as expected. Using these facilities, rather than solely on GIL's model
tracing feedback, students can take more of the responsibility for determining whether
the program satisfies the problem constraints and, if not, which components are at
fault.

Students can work with GIL in two different pedagogical modes. In one mode,
GIL performs model tracing, intervening to point out errors or offer hints as students
solve problems. The testing facilities GIL contains also makes it possible for students
to learn successfully without model tracing. In this exploratory mode, GIL provides
the graphical programming interface and testing facilities but leaves students free to
explore and construct and repair their solutions without GIL's active intervention.
When students work with GIL in this exploratory mode, they must find and repair
their mistakes without GIL's model tracing guidance. Thus, students are allowed
to explore, and can test their programs themselves when they want feedback.

GIL's testing facilities enable students to test any portion of a partially complete
program. When students test a portion of a program, GIL reports whether the
intermediate products in that part of the graph are correct. An example of a student
learning in the exploratory version of GIL is shown in Figure 6. Here, the student
tested the branch of the graph ending with the data (b). Notice that the error
detected by GIL in the test was committed in a part of the program the student
had completed earlier. Notice also that in contrast to GIL's model tracing response
shown in Figures 4 and 5, the exploratory environment merely points out how LISP's

14



Write a program that produces a list of
the first two elements of a list. For
example, if the list were (a b c d e)
then the result would be (a b)

LSorry, 

your output is wrong. The result
of LAST here will not be (b c d e).

(-ago)) b LAST acting on (a b c d ) will give you
the result (e).

_ _ _ _ FIRST

E3 M~ (b cd e)

Figure 6: Testing a partial program in the exploratory version of GIL
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behavior would be different from the student's program but does not explain the
most strategic way to fix the error for this problem (which in this case would be to
retain the output but replace the function).

Students can also test their programs, when complete, by running the program
on new data, replacing the original input data. In this situation, the intermediate
products and resulting output based on the new data are calculated by the system.
Each node in the graph blinks as it is processed in the order that LISP would
evaluate the expression. As it reaches each data node, GIL enters the value of the
intermediate result that the function would return. Figure 7 shows an example of a
student in the process of running the completed program on new data.

GIL can also enable students to explore freely on tasks of their own choosing,
rather than working on assigned problems. Students can construct, test, and run
whatever program graphs they wish. When students have constructed something
of interest, they can then print the result and clear the screen to begin a new
graph. Figure 8 displays a student saving the results of some exploration of the
LISP functions she had been studying.

In the later part of the curriculum (sections 3-8), students use variables in their
programs instead of writing a program with a particular example, and can run their
programs at any point in their construction, providing input data for each variable.
A button is provided in the menu for each variable the problem will require. The
first time the student selects each of the variable buttons, he or she will be prompted
to provide a name for that variable, given a description of its role in the problem
(e.g., "the target item," "the list being searched").

The conditionals curriculum (sections 5-8) is a major step forward in the power
of the programs students write. The conditional function, along with predicates and
logical functions, enables students to write programs that perform different actions
depending on the nature of the input. Conditionals are represented as one or more
test and action boxes, assembled by the student in each problem. A partial solution
to a problem from the conditionals curriculum is shown in Figure 9. In this problem,
called successor, the student has named the two variables targ and lis to hold the
target item and the list being searched, respectively. After the student names a
variable, the name appears on the button. The problem also requires the use of
two constants, the atoms no and end, so buttons are provided for these constants.
In addition, the widely used constants t and nil are provided for every problem.
Variable buttons are labeled with the word "Var" and the name entered by the
student; constant buttons are labeled with the word "Const" and the value of the
constant. In the solution shown in Figure 9, the student has used both variables in
the first and second test, and has used the constants end and no in the second and
third actions, respectively.

The student in Figure 9 has constructed a solution in the exploratory mode of
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Write a program that produces a list of
the first two elements of a list. For
example, if the list were (a b c d e).
then the result would be (a b)

aTesting this graph first.

Type in the new value you want to use
(dY (sm-)~ as input. You can click below to return

CO.. O) ? the graph to the version bef ore this
A RUN.

7?7 rMST Return Previous Gra

Figure 7: Exploring the behavior of a program by running it on new data. After
the student types in new input data into the empty input node at the bottom of the
screen, the u???" place-holders will be replaced by the new intermediate products
and the new final result.
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This will save your graph and start you
on a fresh screen. Click below if this is

Ra -ig-Y- )what you want to do.

(a) (ffggy7.)

Gaa

Figure 8: A student saving the results of exploration in GIL.
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GIL. When a solution is submitted in this mode, it is evaluated by running the
constructed program on a set of test cases. This student's program runs on the
tests cases (that is, it does not perform any illegal operations on the data), but it
does not produce the correct result.

In some situations GIL suggests sample data to run. In response to the submitted
solution in Figure 9, GIL demonstrates the incorrect behavior of the program by
running it on one of its test cases. As shown in Figure 10, GIL enters the value a
for the variable targ and (c b a) for the variable lis. When running a program with
variables students can assign particular data to each variable and then observe the
propagation of data through the program. The values entered for the variable are
shown in each occurrence of the variable box in the program.

When running a program involving conditionals, GIL displays the most impor-
tant intermediate results (the result of each test and action considered) on the title
bar of the corresponding window. The result of the first test, (a), is shown on the
title bar of that test box, and the result of the action taken is shown on the title bar
of the associated action box (above the test). No other test or action boxes contain
results, because the cond terminates upon the first successful test. The final result
of the program, nil, is displayed on its title bar of the cornd. Thus, in addition to the
dynamic displaying of control, students can also see the record of the path through
the program. For this example, only the first test has a result, because the second
and third tests were never processed. In Figure 11, the first test fails, so the second
test is considered. This test succeeds, and so the second action is taken. Hence
results are displayed on the title bar for the first and second tests and for the second
action.

In addition to observing the intermediate results of each test and action, students
can obtain more detailed results by examining the data passed along any connection
in the program. Students can click on any darkened link between functions to see the
data that passed between them, e.g., the output of member that becomes the input
of rest in the first action in Figure 10. Clicking on the connection between these two
functions would cause a box that contains the data (a) to "pop up" on top of the
line. In this way, this interface conveys the advantages of intermediate products of
the simpler list manipulation interface used in earlier chapters, while also providing
the opportunity for students to use variables directly in their program, and see the
program run with different input values.

Based on understanding why the test case produced the wrong result in Figure 10
the student then modified the program, switching the first and second test-action
pair. In addition to re-trying the test data suggested by GIL in Figure 10, the
student also tries other runs of the program. One such run is shown in Figure 11.
The student then submits the new program, shown in Figure 12, which is now
accepted by GIL.
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Define a function called successor. It Your graph runs.
takes two arguments, a target and a Click on the Submit button again, if
list. If the target is not in the list, the However you do not have a complete you want to see it run.
function returns NO. If the target is the solution for the problem successor
last item in the list, the function returns yet. If you run successor with the
END. Otherwise, it returns the item that arguments sand (c b a), the final
immediately follows the the target in result should be END.
the list. Your graph returns NL* -@ IINE:

_ _ _ _ REST

Figure 9: A partially completed solution to a problem involving conditionals.
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Define a function called successor. It Ok, your program runs and produces situation.
takes two arguments, a target and a the result NIL But this is not the right
list. If the target is not in the list, the result. successor given the the
function returns NO. If the target is the arguments a and (c b a) should have
last item in the list, the function returns returned END instead of NIL
END. Otherwise, it returns the item that
immediately follows the the target in To complete the problem, you have to
the list. change your graph to handle this

.. .... . .. ... ...._____NIL =_ ... . .

F711

lond NIL _ _ _ _ _

ff)~~~~ ff 
NLC.rRM

~~REST

EULB

(a bba)

Figure 10: The run of the student's program on test data reveals that the program
produces the wrong result.
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Define a function called successor. It This run was succesful.
takes two arguments, a target and a
list. If thetarget is not in the list, the The value of the COND is b.
function returns NO. If the target isthe
last item in the list, the function returns
END. Otherwise, it returns the item that
immediately follows the the target in

the list.

mmnm
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Define a function called successor. It Your solution of problem successor is
takes two arguments, a target and a correct.
list. If the target is not in the list, the
function returns NO. If the target is the This is the last problem.
last item in the list, the function returns
END. Otherwise, it returns the item that
immediately follows the the target in
the list.

Functions Contro

Figure9 12 Tecopeedstion to cticon as pr ono acetdb

GIL.
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Currently, the instructional mode, either model tracing or exploratory, is set by

the instructor. In future research, we plan to investigate strategies by which GIL

can determine whether it should intervene upon an error or allow the student more
freedom to diagnose and repair the error; this decision would be contingent upon
the severity of the error and the student's previous successes or difficulties. Dynam-
ically selecting the appropriate pedagogical strategy promises to be an important
improvement in the flexibility of interactive learning environments (Lesgold, Lajoie,
Logan, & Eggan, 1990; Murray, 1989; Spensley et al., 1990).

In summary, GIL employs a graphical interface and model tracing feedback de-
signed to work together to support students' reasoning. The graphical representation
helps students articulate their reasoning and provides a better representation of the
structure of the solution. GIL's model tracer structures its feedback around this
elaborated visual representation. If GIL is successful, students will learn the con-
structs and strategies of a programming language more easily using the graphical
support, and they will find it easier to recover from obstacles and errors with GIL's
explanatory feedback.

3 Formative Empirical Evaluation of GIL

In an initial study, we compared students learning to program using GIL with stu-
dents working without assistance in a standard LISP programming environment
consisting of a textbook, a simple editor, and an interactive LISP interpreter (Reiser
et al., 1989). The GIL system appears to be effective in tutoring students through
the first few chapters of an introductory LISP curriculum. Students using GIL
learned the material more quickly and with less difficulty than students using the
standard environment.

If an interactive learning environment does indeed facilitate learning, it is im-
portant to determine exactly which aspects of the environment are responsible for
the benefits. As described in the previous section, our current research investigates
whether graphical interfaces and explanatory feedback do indeed produce pedagog-

ical benefits, using GIL as an experimental testbed. In the following sections we
present evidence relevant to each class of benefits and argue that the graphical in-
terface and the explanatory feedback work in concert to produce GIL's pedagogical
benefits.
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4 GIL Facilitates Reasoning with Congruent Rep-

resentations

In this section, we consider to what extent the benefits exhibited by GIL students
arise from GIL's graphical representation. We expect that students using a visual
representation for solutions in complex domains will learn to solve problems more
easily than students using traditional representations.

The potential benefits of GIL's graphical representations have several compo-
nents. The representation renders the behavior of the program more visible and
leads students to make their reasoning explicit in the program. It is also designed
to match more closely the structure of students' reasoning, and to make it simpler
for students to decompose a problem into subgoals and work on those subgoals in
whatever order they find natural. These aspects of GIL are designed to work to-
gether to minimize the discrepancies between the student's plan and the way in
which the solution is communicated. First, we discuss a comparison of students
learning with GIL (without its model tracing feedback) with other students learn-
ing with traditional text-based representations. Then, we review a study that begins
to examine one of the benefits of GIL's representation, the way in which it allows
students to reason in a more natural direction.

We have examined a group of students using GIL without its model tracing while
working through the first two sections of the curriculum (Reiser, Copen, Ranney,
Hamid, & Kimberg, 1991). Recall that when GIL operates without model tracing, it
contains the graphical interface and facilities for testing whether a program is correct
and for running the program on new input data. In this experiment, students learned
sections 1 and 2 in the curriculum (see Table 1). Students work with a concrete
example in these problems, specifying intermediate products (as in Figures 2-6).

This exploratory version of GIL was developed primarily to allow a comparison
with the full model tracing version of GIL, in order to examine the benefits of model
tracing feedback (Reiser, Copen, Ranney, Hamid, & Kimberg, 1991). For our current
purpose, however, we can also compare these learning sessions with a control group
of students who learned LISP in a standard programming environment containing a
simple editor and an interactive LISP interpreter (Merrill et al., 1991). Interestingly,
the GIL students solved the problems in the curriculum in approximately half the
time required by students using the standard programming environment. Thus,
even without model tracing feedback, students using GIL's graphical representation
solve problems more easily than students working with the text-based language.

This study showed that GIL offers significant advantages over standard text
LISP. The GIL group generally constructed their solutions requiring fewer modi-
fications to their programs, and their modifications were focused almost primarily
on semantic and algorithmic changes rather than syntactic changes. In general,
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the results suggest that the GIL students were able to construct their solutions
more easily, and that they achieved a better understanding of the programs they
constructed.

One advantage of GIL's design is that it allows students to work on the compo-
nents of a solution in whatever order they find most natural. The next experiment
examines whether this freedom helps students acquire the target skills with less dif-
ficulty. In the early curriculum, when GIL students build a program graph using a
particular example and are required to specify all the intermediate products, they
are free to reason in whatever direction they find natural. Students can reason either
from the inputs toward the goal data (a forward step) or backward from the goal
data toward the original inputs. For example, consider again the problem shown in
Figure 2. Suppose the first step the student took was to use the function cons on
inputs d and (a b c) to obtain (d a b c). This would be a backward step, because
the student used a function on new inputs to obtain the goal. Suppose the student
then used last on (a b c d) to produce (d). This function used given data (the
original input) to produce new data as output, and thus constitutes a forward step.
Students are free in GIL to work on any part of the problem at any point, combining
forward and backward reasoning as desired.

Reiser et al. (1989) found that novice programmers strongly preferred to take
forward steps in their solutions, suggesting that novices can reason more easily
about the behavior of programs by working forward from the input data rather
than backward from the goal. Interestingly, the order of reasoning exhibited by
GIL subjects is the opposite of the surface form of the solution - the first function
encountered in the body of the text form is in fact the last component of the solution
assembled by GIL subjects (see Figure 3). If this reliance on forward steps in GIL
accurately represents students' reasoning, then one advantage of GIL's graphical
system may be that it offers students a way to reason in a more natural order than
students who are led to assemble a solution in the order in which the components
appear in the text form of the solution (Ranney & Reiser, 1989; Reiser et al., 1989).

We investigated this idea in an experiment which manipulated the type of steps
students were allowed to use in constructing solutions (Trafton & Reiser, 1991).
Each of three groups of subjects received a different version of GIL. The free sub-
jects were sho-vn both forward and backward steps and were told they could work
on any portion of the graph using either type of step. The forward step subjects
were required to reason using only forward steps from the input to the goal, while
backward step subjects were required to use only steps that chained from the goal
toward the original inputs. We found an overwhelming preference for forward work-
ing steps in the subjects in the free condition (95% of the steps), replicating our
earlier findings about students' judgments of what type of reasoning is more natural
(Reiser et al., 1989). These students' preferences appear well founded. Subjects re-

26



quired to reason using backward steps took approximately 50% longer to solve the
assigned problems than subjects who worked using forward reasoning. In addition,
the backward working subjects spent more time understanding and correcting er-
rors than the forward working subjects, suggesting that they found it more difficult
to reason about their errors. They also spent more time deleting correct portions
of their solutions than forward working subjects, suggesting they reached impasses
more frequently. These effects are stronger in the lower ability students than the
higher ability stuonuts.

Students programming in standard text LISP are generally led to enter a LISP
function in backward order, like the backward condition of GIL. We postulate that
when novice programmers are forced to enter a LISP function in this backward order,
they are reasoning with forward steps until a goal is reached and then entering the
program with the required backward steps. Forward reasoning may be simpler in
this domain because it is more consistent with the naive models students construct
about how functions behave and because the search space of options is smaller when
reasoning forward (because the output of a function is uniquely determined from
its input, but not vice versa). As students become more familiar with the behavior
of LISP functions and the particular programming constructs, they begin to learn
patterns of code and can work more easily in the backward direction if necessary.

This study suggests that GIL simplifies the task of learning programming by
allowing students to work in a direction that is more congruent with the reasoning
they do in this domain. The construction of a program graph mirrors the problem
solving that students perform to arrive at the final solution. Students working in GIL
do not need to reason several steps ahead, as novice students working in text LISP
may need to do, which simplifies the planning component of the task. Furthermore,
this simplification serves to minimize the amount of information students must keep
in memory, helping to reduce the cost of errors (Anderson & Jeffries, 1985) and
leaving more memory resources available for acquiring the new skill (Sweller, 1988).

In summary, the graphical representation appears to provide support for stu-
dents' reasoning. By minimizing the demands of the lower level syntactic details of
the programming language, GIL allows students to focus on the more central con-
ceptual issues in the domain. In addition, GIL students easily employ the readily
available state information provided by the graphical representation. The closer fit
between the structure of a solution in GIL and the students' planning helps them
to understand their programs more clearly as they construct them and to focus on
the modifications required to repair errors. Finally, GIL enables students to reason
in a more natural direction than students using the text form of the language. In
general, GIL leads students to consider how their programs behave as they construct
them, rather than simply assisting students in assembling correct programs.
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5 GIL Facilitates Reasoning with Model Tracing

Feedback

Human tutors intervene to help students find their errors and repair them, although

in many cases this intervention is very subtle (Fox, 1988; Lepper & Chabay, 1988;
Merrill et al., 1991). Furthermore, tutors manage to provide a degree of guidance
while leaving much of the control in the hands of their students. Earlier we char-
acterized how GIL can follow students' reasoning and intervene when they make
mistakes or pursue a poor strategy. Is this more directive and less subtle form of

guidance effective? Are there potential drawbacks to this kind of intervention?
In the previous section, we discussed how GIL supports students' reasoning

through its graphical interface. In a series of experiments, we have examined whether
the model tracing feedback provided in GIL provides pedagogical benefits beyond
those of the graphical interface. In this section, we summarize an experiment that
examines the effects of GIL's intervention strategy, as well as a series of experi-
ments examining whether explanatory feedback facilitates reasoning to a greater
extent than simply drawing students' attention to errors that have occurred.

We compared students learning to program using the model tracing version of
GIL with students using the exploratory version of GIL (without model tracing).
This comparison allowed us to examine the costs and benefits of freedom to explore
versus the guidance of model tracing feedback (Reiser, Copen, Ranney, Hamid, &

Kimberg, 1991). As described earlier, both versions share the same graphical inter-
face, but the exploratory students work without model tracing guidance and have
the freedom to make any step, including illegal steps or steps that represent poor
strategies. To heighten the contrast, in this study the facilities for testing and run-
ning programs were available only to the exploratory subjects, not to the model
tracing subjects. Thus, the model tracing students relied on GIL's explanatory
guidance, whereas exploratory students received feedback only on request. Further-
more, since the exploratory version is designed to allow students more freedom in
solving the problems, it responds only to legal errors when the student requests a
test of the graph and does not comment on the student's solution strategy.

The exploratory subjects were able to solve the assigned problems correctly
by working on their own, using only the system's testing facilities to get feedback.
Approximately one-half of the cases in which a student deleted or replaced a portion
of a graph were initiated after the student's test of that graph revealed an error.
In these cases, the student built a portion of the program, tested it, found an
error, and then tried to repair it. Thus, these students appeared to profitably use
the greater freedom provided to manage their own errors. Students constructed a
partial solution which they expected to behave in a particular way, tested it and

found that it did not behave as predicted, and then began to modify the solution
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based upon this information.
Self-initiated modifications of solutions are another important type of problem

solving behavior. In one-third of the cases in which the exploratory students deleted
or replaced portions of a program, they initiated these modifications without re-
questing any feedback. These episodes suggest that students are often able to find
their own errors and repair them, an activity some theorists argue is central to
learning by doing (Collins & Brown, 1988; Schank & Farrell, 1987; Schank & Jona,
1991; Schwartz, 1989).

The learning outcomes of the two groups were not identical. Not surprisingly, the
subjects left free to explore took almost twice as long to solve the assigned problems
as the model tracing subjects, who received feedback as soon as they committed
errors. Both groups learned to construct programs approximately equally well, as
evidenced by their performance on a posttest. However, the groups differed in their
abilities to debug programs containing errors. The exploration subjects were better
able to find errors in buggy programs than the model tracing subjects. This suggests
that the exploratory subjects' more active role in finding and fixing their own bugs,
although leading to longer learning times, paid off in superior error recovery skills.

The groups also differed in their motivational outcomes, but the nature of the
motivational consequences appeared to depend upon the relative ability of the stu-
dent. High ability students exhibited more positive opinions of their abilities and of
programming when given the freedom to explore rather than the more constraining
model tracing environment. The pattern was reversed for lower ability students.
Lower ability students, who encountered substantially more errors and required
much more time in the exploratory condition, exhibited more negative judgments
about the domain and held lower opinions of their abilities than comparable stu-
dents who received more active guidance from the model tracing system. These
results are consistent with Snow and Lohman's (1984) review of learning outcomes,
in which they suggest that structure and guidance are more important for low ability
learners. Although the interaction of motivational outcome with ability in our study
is based on relatively small samples at each ability level, the results do suggest that
there is no uniform motivational cost or benefit of either pedagogical style. Instead,
the greater freedom of the exploratory system yields benefits for students who can
capitalize on that freedom, but may lead to negative consequences for students who
have more difficulty solving the problems without a tutor's guidance. Interestingly,
the model tracing group results also suggest that tutoring can overcome negative
attitudes often found in lower ability students, who rated their enjoyment of the
learning and their own abilities as highly as the high ability students did. These
results support the claims made by Lepper and his colleagues (Lepper et al., 1990;
Lepper & Chabay, 1988) about the potential for positive motivational outcomes of
tutoring for students who encounter difficulty in a domain.
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GIL's model tracing feedback does help students solve the problems more easily,
and for some students this appears to lead to positive motivational outcomes. The

next issue to examine is the content of the feedback. GIL intervenes upon errors,
offering an explanation of what is wrong with the student's step or how it might

be improved. Is the intervention itself sufficient to focus students' attention on
the occurrence and location of errors, or do students indeed rely on the content of

the explanations to understand their errors and repair them? Human tutors often
simply focus students' attention on problematic portions of a solution, helping them
realize that something is wrong, rather than providing detailed explanations of why
the solution is incorrect (Merrill et al., 1991). Do students successfully use the more
direct explanatory feedback offered by intelligent tutoring systems to learn from
their errors?

To investigate this issue, we conducted a series of experiments that examine

how different content in GIL's feedback can affect students' learning (Reiser, Con-
nelly, Ranney, & Ritter, in preparation). We constructed two variants of GIL that
provided different types of feedback upon students' errors. The minimal feedback
version provided information only regarding whether the step was correct or not;
it also provided students the opportunity to request the correct step, without an
explanation of either the error or the correct step. The location feedback version
provided information about which part of the step was incorrect; again, it indicated
how to fix the step upon request, but without any explanation of the repair. The
third condition was GIL with its explanatory feedback. To ensure that students
relied on the explanatory feedback, we did not provide any testing facilities n these
experiments. In a first experiment, subjects in the minimal and location feedback
conditions relied more on the second level of help, more frequently "giving up" and
asking for the correct step. These subjects also exhibited longer error-fixing episodes
and poorer performance on posttests than subjects receiving explanatory feedback
upon errors. In two additional experiments comparing minimal and explanatory
feedback groups, the "More Info" option was removed, to investigate whether the
differences in learning session time and learning outcomes were simply due to the
passive learning strategy used by the minimal feedback subjects. Not surprisingly,
removing the option of being told the answer resulted in generally longer learn-
ing times and more errors. However, in these experiments, subjects in the minimal
feedback condition also showed poorer performance during the learning sessions and
on posttests than subjects receiving explanatory feedback, replicating the results of
the earlier experiment. The minimal feedback subjects made many more errors,
deleted more of their correct steps, took longer to solve the assigned problems, and
performed more poorly on some of the posttests.

These results suggest that explanatory feedback provided in a model tracing
tutor can speed learning. It reduces error recovery attempts, reduces overall learning
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time, and reduces the frequency of deleting partial solutions. Students who receive
only minimal feedback upon errors appear to encounter more difficulties and master
the material less well than students who are given hints and can construct their own
explanations. Furthermore, if students can ask for the right answer, then reduced
feedback may lead to a strategy of relying too heavily on the feedback rather than
engaging in the reasoning to construct answers themselves, which is generally viewed
as a less effective learning strategy (e.g., Bangert-Drowns, Kulik, Kulik, & Morgan,
1991; Kulhavy, 1977).

In summary, these studies suggest that GIL's facilitation of students' learning is
not merely due to providing feedback on the correctness of the steps nor in leading
students to a solution by telling them the answer. Rather, the positive effects of GIL
lie in the way the explanations enable students to correct their errors and understand
why their repairs are successful. These results suggest that explanatory feedback

can help students understand how their programs actually work as they learn to
construct programs, rather than merely learning correct sequences of programming
constructs that achieve particular purposes.

6 Conclusions

We have seen that GIL can achieve some of the success of human tutors, even though
its behavior is somewhat less subtle. A computer tutor built according to principles
like those embodied in GIL can assist students in several key aspects of learning by
doing. Students are left free to handle as much of the problem solving effort as they
can. When necessary, the tutor can provide guidance to help prevent floundering and
help students detect, understand, and repair errors. Thus, the tutor ensures that
the problem solving stays on a productive track. Such a tutor can assist students in
solving problems that might otherwise be beyond their competence, providing help
only when needed, so that students can eventually master the skills and solve the
problems on their own.

Our results suggest that GIL facilitates learning by helping students build a more
complete understanding of the domain as they solve problems. GIL achieves this
through its explanatory feedback and graphical representations. The explanatory
feedback assists students in building an elaborated model - students are not only
able to assemble components together to achieve a task, but they are encouraged
to explain why that collection of components behaves as it does. An important
aspect of GIL's support in this learning lies in its graphical representations. The
graphical representation requires students to make explicit predictions about the
internal states of the devices they are constructing and provides a better match
with students' reasoning than the more cumbersome text representation.

These results also have implications for the nature of effective problem solv-
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ing knowledge. The results suggest the importance of an underlying understanding
or mental model in addition to the acquisition of rule and plan-based procedures.
Much research in machine and human learning has focused on the acquisition and
modification of procedures (Anderson, 1983; Newell, 1990). Although expert knowl-
edge may ultimately consist primarily of well learned compiled procedures, our work
emphasizes the importance of supporting novices' acquisition of explanatory models
that can be used to reason prior to well-learned procedures. Novices must be able
to reason about possible causes and effects of an action in order to select the next
step in a solution. GIL's graphical representation helps scaffold reasoning within
such a model, and its causal explanations help guide students as they attempt to
employ the model to make predictions.

We believe that the tutoring methodologies employed in our GIL research would
be useful for domains other than computer programming. The characteristics of
the domain important for the benefits of GIL's design are that students have to
build objects or analyze their behavior. A generalization of the techniques clearly
offers promise for domains in which students must analyze devices, such as electron-
ics or mechanical troubleshooting. Furthermore, many scientific domains may be
modeled as the behavior of causally interacting objects. Our research suggests the
potential benefits of employing causal explanations and graphical representations to
help students understand the behavior of objects in the target domain. Graphical
representations might be employed to provide support for students as they construct
a model of the target system. If students could be led to make predictions about
the states at various points, the system could then offer causal explanations based
on these representations. In general, the results indicate the exciting potentials for
a computerized tutor to support and guide students' reasoning in these types of
problem solving domains.
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