
AD-A248 753 ION PAGE Wft07-18

HoeftoWer Sim Holway. 8aMe 1204. hAm .VA 22202430Z wW lodg Office d kdownaon and Requisin Dhtk. Cube of

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3. REPR TYPE AND DATES COVERED

II Final 15 Octoberl1991 to 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Verdix Corporation, VADS Sun-4 SunOS => AMD 29K,
6.0 VAda-1 10-40525, Version 6.0, Sun-4/280 SPARC (SunOS 4.0.3)(Host) to Ironies
IV9001 board (AMD 29000)(bare machine)(Target), 910517W1 .1 1156
6. AUTHOR(S)

Wright-Paterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Blg. 676, Rm 135 AVF-VSR-471 -0491
Wright- Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Mdaximum 200 words)

Verdix Corporation, VADS Sun-4 SunOS .> AMD 29K, 6.0 VAda-1 10-40525, Version 6.0. Wright-Patterson AFB,
Sun-4/280 SPARC (SunOS 4.0.3)(Host) to Ironies IV9001 board (AMD 29000)(bare machine)(Target), ACVC 1. 11.

PR13Ig

14. SUBJECT TERMS - 15. NUMBER OF PAGES
Adaprgrmmig anuag, daComilr al.Sumay RpotAdaCopierVal. _ _____-____4 _

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF AB~sTRACT-
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED _________

NSN 7540-01-280550 5Sndard Form 298. (Rev. 2-89)
Preeribed by ANSI Sid. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 17 May 1991.

Compiler Name and Version: VADS Sun-4 SunOS -> AMD 29K, 6.0

VAda-110-40525, Versior 6.0

Host Computer System: Sun-4/280 SPARC (SunOS 4.0.3)

Target Computer System: Ironics IV9001 board (11D 29000) (bare machine)

Customer Agreement Number: 91-03-18-VRX

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910517W1.11156 is awarded to Verdix Corporation. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

Aa vaaio ailt
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Dire tor, ter & Software Engineering Division A Fo-
Insttute ? r Defense Analyses 32IS G-A&I
Alexandria VA 22311 DTIC TAB 0DTITA

Unarnnoed 0
J3at if tatton

By

a:Joint Program OfficeDiettbutio-
Dr. John Solomond, Director Avi1Obi111tY Codes
Department of Defense ---- *-

Washington DC 20301 let a a- / - -

Avi

AVF Control Number: AVF-VSR-471-0491
15-October-1991

91-03-18-VRx

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910517W1.11156
Verdix Corporation

VADS Sun-4 sunoS => AMD 29K, 6.0 VAda-l10-40525, Version 6.0
Sun-4/280 SPARC (SunOS 4.0.3) host and

Ironics IV9001 board (AMD 29000) (bare machine)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

92-09317

92 4 In 071. ~ U~hE

05JLATWI 07 C0ON azUAN

The folloing deuration Of conformance vg supplied by the euoner.

Dee."Action of Conformce

Customer: Verdiz Corporation

Ada Validation faoility, A=D8=L, WAn a 41435-6503

ACVC Versiont 1.11

Ada ?.plemmentation,

Ada Compiler Num and Versions VADS $un=. SunOS > M V IXt 6.0
VAdaAIO-405295, Version 6,0

lost Computer System: Sun-4/280 PARc (knOS 4.0.3)

Targt Computer Systems AN 19000, frontcs WV9001 board (bare mhine)

Declarati n,

(Z/v.1, the undersined, declare that (2/vJ hae no
kOlveldge Of 4eibeate deviations from the Ad
Standard AISLIL-D-12S.3A 180 0652-1987 in the lJAmSentation
listed above.

9ltl 1

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90J against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report-are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer & Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-ST--D- --,Feb u r-y 983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
O-ice, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list

of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>".

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 14 March 1991.

E28005C B28006C C34006D C35702A C35702B C35508I
C35508J C35508M C35508N B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D C83026A B83026B C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B BDlBO2B
BDlBO6A ADlBO8A BD2AO2A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A41E CD2A87A CD2B15C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8002A
BD8004C CD9005A CD9005B CDA201E CE2107I CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a giver Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONG-INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35713C, B86001U, and C86006G check for the predefined type LONG_FLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is-less than 47.

C45624A..B (2 tests) check whether the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various~floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B8600IY uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATIONi DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the-given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT_10IO
CE2102F CREATE IN FILE DIRECT 10
CE2102I CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL O
CE21020 RESET IN-FILE SEQUENTIAL 10

CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE21020 RESET OUT-FILE SEQUENTIAL-IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXTI0
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external-direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for The external file; theie are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H B91001H BC1303F BC3005B BD2BO3A
BD2DO3A BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

CD1009A, CD1009I, CD1C03A, CD2A22J, CD2A24A, CD2A31A..C (3 tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LengthCheck, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LengthCheck--i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Mr Darrel Lee
Verdix Corporation
1600 NW Compton Drive #357
Aloha OR 97006-6905

For sales information about this Ada implementation, contact:

Mr Sam Quiring
Verdix Corporation
1600 NW Compton Drive #357
Aloha OR 97006-6905

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3807
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 69
d) Non-Processed I/ Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link of ethernet, and run. The results were
captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-w suppress generation of warning messages

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 499

$BIGIDI (l..V-l => 'A', V => '1')

$BIG ID2 (1..V-l => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-l-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 => 'A') & '"

$BIGSTRING2 '"' & (1..V-I-V/2 => 'A') & '1' & '"I

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-1

MACRO PARAMETERS

SMAXSTRINGLITERAL ''&(1..V-2 -> 'A') &'"

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_647

$DEFAULTMEMSIZE 16_/77216

$DEFAULTSTORUNIT 8

$DEFAULT SYS NAME SUN4 CROSS AM29000

$DELTADOC 0.0000000004656612873077392578125

$ENTRYADDRESS SYSTEM."+"(16*40t)

SENTRY ADDRESS1 SYSTEI4."+"(16#80#)

SENTRYADDRESS2 SYSTEJ."+"(16#100#)

SFIELDLAST 2_147_483_647

$FILETERMINATOR IF

SFIXED-NAME NO SUCHTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING"o

$FORM STRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATERTHANDURATION
100_000.0

$GREATERTHANDURATION BASE LAST
1o0oo0000

SGREATERTHAN-FLOAT-BASE LAST
1.9E+308

SGREATER-THAN-FLOAT SAFE LARGE
-535E307

A- 2

MACRO PARAMETERS

$GREATERTHANSHORTFLOAT SAFE LARGE
9.07E37-

$HIGHPRIORITY 99

$ ILLEGALEXTERNAL FILE NAME 1
W/illegal/file_name/2)JZ21O2c.dat"

$ILLEGALEXTERNAL FILE NAME2
Ur/illegal/file name/CE21O2C*.dat"

$INAPPROPRIATE LINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

SINCLUDEPRAGMAl PRAGMA INCLUDE (-A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE (-B28006Dl.TST")

$INTEGER-FIRST -2 147_483_648

$INTEGERLAST 2_147_483_647

$INTEGERLASTPLUS_1 2_147 483 648

S INTERFACELANGUAGE C

$LESSTHANDURATION -100_000.0

$LESSTANDURTION-BASE FIRST
-15_000_000.0

$LINETERMINATOR ASCII.LF & ASCII.FF

SLOWPRIORITY 0

-$MACHINECODESTATEMENT
CODEO'(OP .> NOP);

$MACHINECODETYPE CODE_0

$MANTISSA-DOC 31

$MAXDIGITS 15

SMAX INT 2_147 483 647

SMAXINTPLUS 1 2_147_483_648

$HININT -2_147_483_648

A- 3

MACRO PARAHEIERS

$NAME TINYINTEGER

$NAMELIST SUN4_CROSSAJ429000

$NAMESPECIFICATIONi /usr/acvcl. 11/c/e/X2120A

$NAMESPECIFICATION2 /usr/acvcl. 11/c/e/X2120B

$NAMESPECIFICATION3 /usr/acvcl. 11/c/e/X3119A

$NEGBASED INT 16#FOOOOOOE#

$NEWHEMSIZE 16_777_216

$NEWSTOR UNIT 8

$NEWSYSNAME SUN4_CROSSAM29000

$PAGETERMINATOR ASCII.FF

SRECORDDEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORDNAME CODE 0

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VAR_1ADDRESS

$VARIABLEADDRESS1 VAR_2'ADDRESS

$VARIABLEADDRESS2 VAR_3'ADDRESS

$YOURPRAGMA PRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to compiler documentation and
not to this report.

ada - invoke the Ada compiler

SYNTAX

ada [options] [sourcefile]... [objectfile.o]...

OPTIONS

-# identifier type value (define) Define an identifier of a
specified type and value. See VADS ADA PREPROCESSOR REFERENCE.

-A (disassemble) disassemble the units in the source file after
compiling them. -A can be followed by arguments that further define
the disassembly display (e.g. -Aa, -Ab, -Ad, -Af, -Al, -As):

a add hexadecimal display of instruction bytes to disassembly
listing

b disassemble the unit body [default]
d print the data section (if present) as well
f " Use the alternative format for output
1 put the disassembly output in file "file name.das"
s disassemble the unit spec

-a file name (archive) Treat file name as an object
archive-file created by ar. Since some archive files end
vith .a, -a is used to distinguish archive files from Ada
source files.

-DG (debug flag) Force front end to vrite out the gnrx.lib
file in ASCII format. To use this option, you must
compile a file that changes the gnrx.lib file.

-d (dependencies) Analyze for dependencies only. Do not do

B-1

COMPILATION SYSTEM OPTIONS

semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.

-e (error) Process compilation error messages using a.error
and send it to standard output. Only the source lines
containing errors are listed. Only one -e or -E option
should be used.

-E
-E file
-E directory (error output) Without a file or directory
argument, ada processes error messages using a.error and
directs a brief output to standard output; the raw error
messages are left in ada source.err. If a file pathname is
given, the raw error messages are placed in that file. If a
directory argument is supplied, the raw error output is
placed in dir/source.err. The file of raw error messages can
be used as input to a.error

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-El
-El file
-El directory (error listing) Same as the -E option, except
that source listing with errors is produced.

-ev (error vi(1)) Process syntax error messages using
a.error, embed them in the source file, and call the
environment editor ERROR EDITOR. (If ERROR EDITOR is
defined, the environment-variable ERROR PATTERN should also
be defined. ERROR PATTERN is an editor search command that
locates the first occurrence of '###' in the error file.) If
no editor is specified, vi(l) is invoked.

-K (keep) Keep the intermediate language (IL) file
produced by the compiler front end. The IL file will be
place[in the .objects directory, with the file name
Ada source.i

-L library name (library) Operate in VADS library
library_name [Default: current working directory)

-1file abbreviation (library search) This is an option
passed to the UNIX linker, ld(l) telling it to search the
specified library file. (No space between the -1 and the
file abbreviation.)

For a description of the file abbreviations, see also
Operating system documentation, ld(l).

-M unit-name (main) Produce an executable program by

B-2

COMPILATION SYSTEM OPTIONS

linking the named unit as the main program. unit name must
already be compiled. It must be either a parameterless
procedure or a parameterless function returning an integer.
The executable program will be named a.out unless overridden
with the -o option.

-M source file (main) Produce an executable program by
compiling and linking source file. The main unit of the
program is assumed to be the-root name of the .a file (for
foo.a the unit is foo). Only one .a file may be preceded by
-M. The executable program will be named a.out (self-hosted) or
a.vox (cross-development) unless overridden with the -o option.

-o executable file (output) This option is to be used in
conjunction with the -M option. executable file is the name
of the executable rather than the default a.out.

-0[0-91 (optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

-0 full optimization
-00 prevents optimization
-01 no hoisting
-02 no hoisting but more passes
-03 no hoisting but even more passes
-04 hoisting from loops
-05 hoisting from loops but more passes (and instruction

scheduling, if available)
-06 hoisting from loops with maximum passes (and instruction

scheduling, if available)
-07 hoisting from loops and branches (and instruction)

scheduling, if available)
-08 hoisting from loops and branches, more passes (and

instruction scheduling, if available)
-09 hoisting from loops and branches, maximum passes (and

instruction scheduling, if available)

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

For more information about optimization, see COMPILING ADA
PROGRAMS, Compiler Optimizations. See also pragma
OPTIMIZECODE(OFF).

-P Invoke the Ada Preprocessor. See VADS ADA PREPROCESSOR
REFERENCE.

-R VADS library (recompile instantiation) Force analysis
of all generic instantiations, causing reinstantiation of
any that are out of date.

B-3

COMPILATION SYSTEM OPTIONS

-S (suppress) Apply pragma SUPPRESS to the entire
compilation for all suppressible checks. (See also pragma
SUPPRESS(ALLCHECKS).

-sh (show) Display the name of the tool executable but do

not execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time
of compilation, name of file compiled, command input line,
total compilation time, and error summary line. Storage
usage information about the object file is provided.

-w (warnings) Suppress warning diagnostics.

DESCRIPTION

The command ada executes the Ada compiler and compiles the
named Ada source file, ending with the .a suffix. The file
must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

By default, ada produces only object and net files. If the
-M option is used, the compiler automatically invokes a.ld
and builds a complete program with the named library unit as
the main program.

Non-Ada object files (.o files produced by a compiler for
another language) may be given as arguments to ada. These
files will be passed on to the linker and will be linked
with the specified Ada object files.

Command line options may be specified in any order, but the
order of compilation and the order of the files to be passed
to the linker can be significant.

Several VADS compilers may be simultaneously available on a
single system. Because the ada command in any
VADS location/bin on a system will execute the correct
compiler components based upon visible library directives,
the option -sh is provided to print the name of the
components actually executed.

Program listings with a disassembly of machine code
instructions are generated by a.db or a.das.

See also a.das, a.db, a.error, a.ld, a.mklib, and Operating

System reference documentation for the ld(l) utility.

DIAGNOSTICS

The diagnostics produced by the VADS compiler are intended

B-4

COMPILATION SYSTEM OPTIONS

to be self-explanatory. Most refer to the RM. Each RM
reference includes a section number and optionally, a paragraph
number enclosed in parentheses.

B-5

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

a.ld - prelinker

SYNTAX

a.ld [options] unitname [ld_options]

OPTIONS

-DX (debug) Debug memory overflow (use in cases where
linking a large number of units causes the error message
local symbol overflow" to occur).

-E unit name (elaborate) Elaborate unit name as early in
the elaSoration order as possible.

-F (files) Print a list of dependent files in order and
suppress linking.

-L libraryname (library) Operate in VADS library
library_name (the current working directory is the default).

-o executable file (output) Use the specified file name as
the name of the output rather than the default, a.out.

-sh (show) Display the name of the tool executable but do
not execute it.

-U (units) Print a list of dependent units in order and

suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command but suppress
execution.

DESCRIPTION

a.ld collects the object files needed to make unit name a main
program and calls the UNIX linker ld(1) to link together all Ada
and other language objects required to produce an executable image
in a.out (self-hosted) or a.vox (cross- development), unit name is
the main program and must name a non-generic subprogram. If-unit name
is a function, it must return a value of the type STANDARD.INTEGER.
This integer result will be passed back to the UNIX shell as the status
code of the execution. The utility uses the net files produced by the Ada
compiler to check dependency information. a.ld produces an exception

B-6

COMPILATION SYSTEM OPTIONS

mapping table and a unit elaboration table and passes this information
to the linker. The elaboration list generated by a.ld does not include
library level packages that do not need elaboration. In addition,
packages that contain no code that can raise an exception will no longer
have exception tables.

a.ld reads instructions for generating executables from the ada.lib file
in the VADS libraries on the search list. Besides information generated
by the compiler, these directives also include WITHn directives that
allow the automatic linking of object modules compiled from other
languages or Ada object modules not named in context clauses in the Ada
source. Pny number of WITHn directives may be placed into a library, but
they must be numbered contiguously beginning at WITH1. The directives
are recorded in the library's ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2:LINK:archive file:

WITHn directives may be placed in the local Ada libraries or in any
VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the library
search list will hide the same numbered WITHn directive in a library
later in the library search list.

Use the tool a.info to change or report library directives in the
current library.

All arguments after unit name are passed on to the linker. These may
be options for it, archive libraries, library abbreviations, or
object files.

VADS location/bin/a.ld is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This
permits multiple VADS compilers to exist on the same host. The -sh
option prints the name of the actual executable file.

FILES AND DIRECTORIES

a.out/a.vox default output file
.nets Ada DIANA net files directory
.objects/* Ada object files
VADS location/standard/* startup and standard library routines

DIAGNOSTICS

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced by the UNIX linker ld.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648..2147483647;
type FLOAT is digits 15 range

-1.79769313486232E+308. .1.79769313486232E+308;
type DURATION is delta 0.06 range -214748.3648..214748.3647;

type SHORTINTEGER is range -32768..32767;
type SHORTFLOAT is digits 6 range -3.40282E+38..3.40282E+38;

type TINYINTEGER is range -128..127;

END standard;

C-1

APPENDIX F OF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma INLINE, indicates
to the compiler that the subprogram must always be inlined. This pragma
also suppresses the generation of a callable version of the routine which saves
code space. If a user erroneously makes an INLINE ONLY subprogram recursive,
a warning message will be emitted and an PROGRAM ERROR will be raised at run
time.

1.2. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single argument.
This pragma is only allowed within a library-level package spec or body.
It specifies that all objects in the package be initialized as requested
by the pragma (i.e., statically or dynamically). Only library-level objects
are subject to static initialization; all objects within procedures are always
(by definition) dynamic. If pragma INITIALIZE(STATIC) is used, and an object
cannot be initialized statically, code will be generated to initialize the
object and a warning message will be generated.

1.3. BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some predefined
Ada packages, but provides no user access. It is used only to implement
code bodies for which no actual Ada body can be provided, for example
the MACHINECODE package.

1.4. SHARECODE Pragma

The SHARE CODE pragma takes the name of a generic instantiation or
a generic unit as the first argument and one of the identifiers TRUE or
FALSE as the second argument. This pragma is only allowed immediately at
the place of a declarative item in a declarative part or package specification,
or after a library unit in a compilation, but before any subsequent compilation
unit.

When the first argument is a generic unit the pragma applies to all
instantiations of that generic. When the first argument is the name of a
generic instantiation the pragma applies only to the specified
instantiation, or overloaded instantiations.

If the second argument is TRUE, the compiler will try to share code
generated for a generic instantiation with code generated for other
instantiations of the same generic. When the second argument is FALSE,
each instantiation will get a unique copy of the generated code. The
extent to which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared for the

C-2

APPENDIX F OF THE Ada STANDARD

generic unit.

The name pragma SHARE BODY is also recognized by the implementation and
has the same effect as SHARE_CODE. It is included for compatability with
earlier versions of VADS.

1.5. NO IMAGE Pragma

The pragma suppresses the generation of the image array used for the
IMAGE attribute of enumeration types. This eliminates the overhead
required to store the array in the executable image. An attempt to use
the IMAGE attribute on a type whose image array has been suppressed will
result in a compilation warning and PROGRAM ERROR raised at run time.

1.6. EXTERNAL-NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or variable
defined in A~a and allows the user to specify a different external name
that may be used to reference the entity from other languages. The
pragma is allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the same
package specification.

1.7. INTERFACE-NAME Pragma

The INTERFACE NAME pragma takes the name of a variable or subprogram
defined in another language and allows it to be referenced directly in
Ada. The pragma will replace all occurrences of the variable or
subprogram name with an external reference to the second, link-argument.
The pragma is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram declared earlier
in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the
following:

a loop variable,
a -constant,
an initialized variable,
an array, or
a record.

1.8. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This
pragma is only allowed within a machine code procedure. It specifies
that implicit code generated by the compiler be allowed or disallowed. A
warning is issued if OFF is used and any implicit code needs to be
generated. The default is ON.

1.9. OPTIMIZE-CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This

C-3

APPENDIX F OF THE Ada STANDARD

pragma is only allowed within a machine code procedure. It specifies
whether the code should be optimized by the compiler. The default is ON.
When OFF is specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada
subprograms can be either functions or procedures. The types of
parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN.
Record and array objects can be passed by reference using the ADDRESS
attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY SIZE

This pragma is recognized by the implementation. The implementation
does not allow SYSTEM to be modified by means of pragmas; the SYSTEM
package must be recompiled.

2.7. NONREENTRANT

This pragma takes one argument which can be the name of either a library
subprogram or a subprogram declared immediately within a library package
spec or body. It indicates to the compile: that the subprogram will not
be called recursively allowing the compiler to perform specific
optimizations. The pragma can be applied to a subprogram or a set of
overloaded subprograms within a package spec or package body.

2.8. NOTELABORATED

This pragma can only appear in a library package specification. It
indicates that the package will not be elaborated because it is either
part of the RTS, a configuration package or an Ada package that is

C-4

APPENDIX F OF THE Ada STANDARD

referenced from a language other than Ada. The presence of this pragma
suppresses the generation of elaboration code and issues warnings if
elaboration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned representation
for composite types. It will not cause objects to be packed at the bit
level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE

The pragma has three forms

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task type
declared immediately within a library package spec or body. The pragma
directs the compiler to optimize certain tasking operations. It is
possible that the statements in a task body will prevent the intended
optimization. In these cases a warning will be generated at compile time
and will raise TASKING ERROR at run time.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no effect.

2.15. STORAGE-UNIT

This pragma is recognized by the implementation. The implementation
does not allow SYSTEM to be modified by means of pragmas, the SYSTEM
package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that DIVISION CHECK and
in some cases OVERFLOW CHECK cannot be supressed.

C-5

APPENDIX F OF THE Ada STANDARD

2.17. SYSTEMNAME

This pragma is recognized by the implementation. The implementation
does not allow SYSTEM to be modified by means of pragmas, the SYSTEM
package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label,
or an entry:

This attribute denotes the effective address of the first of the storage
units allocated to P. For a subprogram, package, task unit, or label, it
refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address
clause has been given, it refers to the corresponding hardware
interrupt. The attribute is of the type OPERAND defined in the package
MACHINE CODE. The attribute is only allowed within a machine code
procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique task id
associated with a task. The value of this attribute is of the type
ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

with UNSIGNED TYPES;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(EXCEPTIONTABLES);
pragma not-elaborated;

type NAME is (SUN4 CROSS AM29000);

SYSTEM NAME : constant NAME := SUN4_CROSS AM29000;

STORAGE UNIT : constant :- 8;
MEMORY_SIZE : constant := 16_777_216;

- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;

C-6

APPENDIX F OF THE Ada STANDARD

MAX INT : constant := 2 147 483_647;
MAX-DIGITS : constant :=15; --
MAX-MANTISSA : constant :- 31;
FINE DELTA : constant :-2.0*(-31);
TICK-- : constant :-0.01;

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer :- 1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNSIGNEDTYPES.UNSIGNED INTEGER) return ADDRESS renames "+";

NOADDR : constant ADDRESS;

type TASK ID is private;
NOTASK_ID : constant TASKID;

type PROGRAM ID is private;
NOPROGRAM ID : constant PROGRAM ID;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNED_INTEGER;

NO ADDR : constant ADDRESS :- 0;

pragma BUILT IN(">");
pragma BUILT IN("<");
pragma BUILT IN(">-");
pragma BUILT IN("<-");
pragma BUILT-IN("-");
pragma BUILT-IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NOTASKID : constant TASKID :- 0;

type PROGRAMID is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

C-7

APPENDIX F OF THE Ada STANDARD

NO PROGRAM ID : constant PROGRAM ID := 0;

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK, record components are padded so as to
provide for efficient access by the target hardware. Pragma PACK applied
to a record eliminates the padding where possible. Pragma PACK has no
other effect on the storage allocated for record components a record
representation is required.

5.2. Size Clauses

For scalar types a representation claus;e will pack to the number of bits
required to represent the range of the subtype. A size clause applied to
a record type will not cause packing of components; an explicit record
representation clause must be given to specify the packing of the
components. A size clause applied to a record type will cause packing
of components only when the component type is a discrete type. An error
will be issued if there is insufficient space allocated. The SIZE
attribute is not supported for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since default
initialization of a variable requires evaluation of the variable address
elaboration ordering requirements prohibit inititalization of
variables which have address clauses. The specified address indicates
the physical address associated with the variable.

5.4. Interrupts

Interrupt entries are supported with the following interpretation and
restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries must always
be trying to accept each interrupt entry, unless it is handling the
interrupt. The task must be executing either an accept for the entry
(if there is only one) or a select statement where the interrupt entry
accept alternative is open as defined by Ada RM 9.7.1(4). This is not
a restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a conditional entry call in that interrupts are not
queued (see the last sentence of Ada RM 13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select statement containing
both a terminate alternative and an accept alternative for an interrupt

C-8

APPENDIX F OF THE Ada STANDARD

entry (see Ada RM 13.5.1(3)).

Direct calls to an interrupt entry from another task are allowed and are
treated as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify the priority
of the interrupt. It simply specifies the interrupt vector number. For
passive ISRs, the nnn of the passive(interrupt,nnn) pragma specifies the
interrupt priority of the task.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides an assembly
language interface for the target machine. It-provides the necessary
record type(s) needed in the code statement, an enumeration type of all
the opcode mneumonics, a set of register definitions, and a set of
addressing mode functions.

The general syntax of a machine code statement is as follows:

CODE-n'(opcode, operand {, operand});

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate.
The format is as follows:

CODEN'(opcode, (operand {, operand)));

For those opcodes that require no operands, named notation must be
used (cf. RM 4.3(4)).

CODE0'(op -> opcode);

The opcode must be an enumeration literal (i.e., it cannot be an
object, attribute, or a rename).

An operand can only be an entity defined in MACHINE-CODE or the 'REF

C-9

APPENDIX F OF THE Ada STANDARD

attribute.

The arguments to any of the functions defined in MACHINE CODE must be
static expressions, string literals, or the functions de-fined in MACHINE CODE.
The 'REF attribute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as Dhysical
addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as the record
size (expressed in STORAGE UNITS) when the siz-e o!f ELEMENT TYPE exceeds
that value. For example fo? unconstrained arrays such as string where
ELEMENT TYPE'SIZE is very large, MAX EC SIZE is used instead.
MAX RECORD SIZE is defined in SYSTEM-and-can be changed by a program
before insEantiating DIRECT 10 to provide an upper limit on the record
size. In any case the maximum size supported is 1024 x 1024 x
STORAGE -!NIT bits. DIRECT 10 will raise USE ERROR if MAX ECSIZE
exceeds-this absolute limTt. - - -

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as the record
size (expressed in STORAGE UNITS) when the size o! EL1ENT TYPE exceeds
that value. For example foE unconstrained arrays such as string where
ELEMENT TYPE'SIZE is very large, MAX REC SIZE is used instead.
MAX RECORD SIZE is defined in SYSTEU-and-can be changed by a program
before instantiating INTEGER 10 to provide an upper limit on the record
size. SEQUENTIALIO imposes no limit on MAXRECSIZE.

11.1 Implementation Limits

The following limits are actually enforced by the implementation. It is
not intended to imply that resources up to or even near these limits are
available to every program.

C-10

APPENDIX F OF THE Ada STANDARD

11.1. Line Length

The implementation supports a maximum line length of 500 characters
including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x
STORAGE UNITS. The maximum size of a statically sized record type is
4,000,060 x STORAGE UNITS. A record type or array type declaration that
exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specification every
task except the main program is allocated a fixed size stack of 10,240
STORAGE UNITS. This is the value returned by T'STORAGESIZE for a task
type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute the default
collection size for an access type is-100 times the size of the
designated type. This is the value returned by T'STORAGE SI7E for an
access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for objects
declared statically within a compilation unit. If-this value is exceeded
the compiler will terminate the compilation of the unit with a FATAL
error message.

C-1I

