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Abstract

We derive an effective medium theory that predicts the bulk and
shear moduli of composite materials consisting of a matrix material
with soft or hard ellipsoidal inclusions. The theory predicts that disk-
shaped inclusions are most effective for softening or hardening a com-
posite material. The theory is applied to the design of materials with
highly absorptive acoustical properties.
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1 INTRODUCTION

The effect of impurities or inclusions on the elastic properties of oth-
erwise homogeneous materials is important in understanding the behavior
of natural (e.g., geological) materials and in developing synthetic compos-
ites for applications. Theoretical analyses have been developed to explain
the elastic behavior of porous rocks (Korringa, et al., 1979), to predict the
strengthening effect of thin fibers in composites (Hill, 1963), and to describe

the properties of polycrystalline materials (Zeller and Dederichs, 1973).

An exact calculation of the elastic properties is not possible unless the
precise distribution of the inclusions is given. Specialized placement of inclu-
sions, especially voids, can have major effects. However, for most purposes,
the inclusions can be treated statistically. Various approximation schemes
have been developed assuming a random distribution of inclusions. Einstein
(Einstein, 1906) considered the effect of a low concentration of spherical in-
clusions. Beginning with Wu ( Wu, 1966), a number of different approaches
were developed to extend the analysis to ellipsoidal inclusions and to rela-
tively higher densities. Wu'’s approach is a static derivation which treats the
composite as an effective medium for which modified or “effective” elastic
constants can be computed self-consistently. A second, dynamical approach
evaluates the diffraction of sound waves from a random distribution of ellip-
soidal inclusions in the limit of zero frequency (Berryman, 1980) to determine
the effective bulk and shear moduli. A third approach is to derive rigorous

bounds on the effective elastic constants based on variational principles ap-




plied to the strain energy (Hashin and Shtrikman, 1962). A review can by
found in Watt, Davies, and O’Connell, 1976.

In this paper, we derive a self-consistent effective medium theory for
ellipsoidal inclusions that is closely related to Wu’s. It is equally valid but
somewhat simpler than Wu’s in the limit of low concentration of inclusions,
which will be the case of interest here. The theory is used to show how the
softening (or hardening) of a material is effected by shape. In particular,
we find that, for the same fractional volume, disk-shaped voids or cracks are
significantly more effective in softening than needle-shaped or spherical voids.
As the aspect ratio of the disks or cracks approaches zero, an infinitessimal
concentration is sufficient to dramatically soften the material; the same is

not true for needle-shaped or spherical voids.

The results from the effective medium theory are used to suggest the
design of acoustic absorbing composite materials. This work is motivated
by an earlier JASON study of composite dielectric materials that may re-
duce light reflectivity (Nelson, 1990). Although many of the principles are
similar, we find interesting and important differences between the acoustical
and electromagnetic problem which suggest that thin accoustic absorption
coatings are more difficult to achieve than thin electromagnetic absorption

coatings.

The plan of the paper is as follows: In Section 2, we derive the effective
medium theory for a homogeneous matrix with ellipsoidal inclusions. The
effective bulk and shear moduli of the composite are computed in terms of

the elastic constants of the matrix and inclusions and the aspect ratio of




the inclusions. We analyze the results of the effective medium theory to
determine how the shape of the voided inclusions can dramatically effect the
degree to which they soften a material. In Section 3, we consider the reflection
of sound waves propagating in a liquid medium at the interface between the
liquid and the composite material. Based on the effective medium theory, we

discuss the conditions for composite material optimal for acoustic absorption.




2 EFFECTIVE MEDIUM THEORY FOR
THE ELASTIC PROPERTIES OF COM-
POSITE MATERIALS

In this section, we will develop an effective medium theory to determine
the effective bulk and shear moduli for a composite medium with a random
spatial and orientational distribution of identical ellipsoidal inclusions. The
composite can be treated as an effective medium for excitation frequencies

whose wavelength is large compared to the size of the inclusions.

2.1 The Strain Field in the Effective Medium

Consider a composite material under compression, d(z), and/or shear,
8;j(z); that is, the strain is
€ = d(z)
5(z) = 5(2) + 3(2);
where the usual summation convention for repeated indices is adopted. The

stress tensor is given by
2
U,'j = (K - EG)Ckk(sij + 2G€,‘j,

where K and G are the bulk and shear moduli, respectively. For the com-
posite material, K and G are spatially varying; we will treat K(z) and G(z)
as step functions assuming values K, and G,, in the matrix and values K;

and G; in the inclusions. We want to determine the effective bulk and shear
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moduli, K, and G,, in terms of K,,, G, K;, G;, the fractional volume oc-
cupied by the inclusions, f, and the aspect ratio of the ellipsoidal inclusions,

a.

In the effective medium approximation, we have

<K(z)d(z)> = K. <d(z)>

<G(z)s(z)> = G. <s(z)> (2-1)
(where we have dropped tensor subscripts); consequently,
1-f)Kn—-K.)<d(z)>n +f(Ki-K.)<d(z)> = 0 (2-2)

(1- f)(Gm -G.) < S(l‘) >mn +f(G; - G.) <s(z)> = 0

<>, and <>; represent the averages over all matrix and inclusion regions,

respectively, which can be related to the average over the composite:

<d(z) >im) = tiem) <d(z)>

<8(z) >im) = Vim) < s(z) > . (2-3)

Here we have used the average spatial and orientational isotropy of the
medium to express the relations in terms of scalar strain factors, t and v.

Equation (2-1) can then be re-expressed as:

— (Q-NKmtm+fKiti
K' - (l-f)'m'f'f‘i
(2-4)
— (-f)Gmum+fGivi
G. - (1= f)vm+fui

2.2 Calculation of Strain Factors, ¢t and v

For our effective medium theory, we assume a low fractional volume of
inclusions, f < 1, in which case ¢, ® 1 and v,, = 1. The technical part of

the computation is to determine the strain factors, t; and v;. For this, we
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first consider the strain field, ¢;; in a single inclusion imbedded in the matrix
material. Eshelby (Eshelby, 1957) has shown that the strain in the ellipsoid

satisfies:
€; = e?j +/ d3x'G,'jkl(I - :E')Acklmn(l")fmn (2 - '5)

where e?j is the strain field for a completely homogenous medium under the

same stress conditions, G;;(z —z') is the homogeneous green’s function, and
Aciiu(z) = [K(z) — Ky — %(G(z) = Gm))bijbri + [G(z) — Gu)(8ikbji + babji)-
The homogeneous green’s function is

Giji(z —a') = i‘(ajalgik + 0:019;k + 0;0c9u1 + 0i0kg;1), (2 -6)

where g;;(z — z’) is the displacement at point z caused by a unit force in the

Jth direction at point z’' in the homogeneous medium:
p g

1

Z,r;

S
;s — — 4y — —
gJ(x) 327er(1+y) (5 y)|$—-1}’|+(1+4y)|x—$'|3 ’ (2 7)
and
3K,

In our approximation of treating K (z) and G(z) as a step-function, Ac;;(z)
is only non-zero within the inclusions. Eshelby has also shown that the strain
is spatially uniform within the ellipsoidal inclusion. Hence, the solution to

the integral equation can be written:
€i; = Tijuey (2-9)
where T;;); is a constant tensor. If we write

/ dszlGijkl(x - xl)Acklmn(I’)cmn = _Aijkl Acklrnnfmn3
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then the T;jx in Equation (2-9) can be written:
=[I+AAd™ (2-10)

The tensor A, the integral of —G over the volume of the ellipsoid, is the source
of the shape dependent contributions. The only non-zero elements of A are
A;ji; and A;jj, including A;;;, which are straightforward although tedious to
compute. There remains the even more tedious task of inverting I + A Ac
to obtain T', and then a.véraging over the orientations of the ellipsoid. The

average T is an isotropic tensor:
- 1 1
Tijm = g(ti —v;)8;; 61 + ‘z'vi(éik‘sjl + 6:b;k), (2-11)

from which one can read off the desired strain factors, ¢; and v;. A simplifica-
tion is that one can avoid the explicit average over orientations by employing

a theorem due to Kroner (Kroner, 1958), which states that

t;
v

1
3 Liikk

2-12
N Tukix — 3Tiik), ( )

where the tensors on the right-hand side are before orientational averaging.

With the aid of Mathematicaty, we have computed the strain factors
t; and v; by this method. For an ellipsoid with axes a3 = aa; = aa; (o is
the “aspect ratio” for the inclusions and a; and a, are held fixed), we obtain

o= {FE+k

) -1
-y 1(1k+y1)'2—‘ut]2(1 - a?)? [9 +asy -G+ @y +2)(1+ 2a2))J)] I

v = { Tyt t;
' Sl iF(-37++ DH1+202) )

. .

+[( (v + )+(;y+1—§— a)'])ﬁ%'*'zg]
1 _ 1 2J _] -1

+ 2(1+y)y+2 (y+2+ya) + 39 b

(2 —13)




where

= Gi
g—Gm’
K;
k:'—R:’
J= 1 4 3a _cos“a
T 1-a? 21 -a?)p? @ (1_a2)%
and
=3Km
Y=1G,.

From the strain factors computed in the previous subsection, the effec-
tive bulk and shear moduli can be determined from Equation (2-4). Note
that the assumption of a small density of inclusions affects the computation
in two ways. First, we assume that t,, = 1; that is, the average strain in
the matrix is nearly identical to what it would have been if the medium were
homogeneous. Second, the computation of ¢; relied on the strain field for a
single inclusion imbedded in a matrix whose elastic constants we took to be
K., and G,,; consequently, Equation (2-4) is an explicit expression for K.
and G. in terms of the elastic constants of the homogeneous materials. By
contrast, Wu (Wu, 1963) and others take the external elastic constants to
be K, and G.. Equation (2-4) is then an implicit, self-consistent equation
which can be solved for K. and G.. The two approaches agree in the limit
of small inclusion concentration (f < 1), the limit of interest for this paper,
but our explicit expression is simpler to analyze. Neither approach is valid
in the limit of very high inclusion concentration since inclusion interactions

are ignored in either case.




2.3 Dependence of Effective Elastic Constants on In-
clusion Shape

The general expressions for the effective elastic constants obtained by
combining Equations (2-4) and (2-13) are complex, but the basic behavior
can be appreciated by taking the limit of inclusions that are soft (compared
with the matrix material), K; < K,, and G; € G,,. We will use the results
to show that thin-disk inclusions are the most effective in altering the elastic

constants of composite materials.

For a spherical inclusion (a =1 and J = 1/5), the strain factors are:

—_ y+1
ts)y = ky+1

(2 — 14)

= Sy+5
v(s) 9(2y+3)+3y+2

where g and y are as defined below Equation (2-13) at the end of the previous
subsection. In the limit of a disk-like inclusion (o < 1), the strain factors

are:
— dy+4

3K, +4G; , 3ra(y+¢)
2o, srel )

y+1

t(p)

(2 - 15)
Yp) = %[1 + —ﬁ’%%w—l;

g+
1+3k'.'ZGm
+ i o)l

In the limit of needle-shaped inclusions (a 3> 1), the strain factors are:

_ (1+y)(3+4y)
tyy = 343y+2ky+2ky

_ 1[4 16(145) 41 +ky) (2 - 16)
YNy = 3['{1} + l+4y+g(3{0—4y) + 3+4y+1;gt(N]

Note that the strain factors for needle-like and sphere-like inclusions ap-

proach non-zero constant values in the limit of soft inclusions (e.g., inclusions
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filled with air), K; — 0 and G; — 0 or, equivalently, ¥ — 0 and ¢ — 0. By
Equation (2-4), K. and G. only approach K; and G;, respectively, as f — 1.
That is, the composite soften’s only if the fractional volume of soft inclusions

is nearly unity.

For the disk-like inclusions, ¢(p) and v(p) are proportional to 1/a in the
limit £k — 0 and g — 0; consequently, even if the fractional volume occupied
by the inclusions is very small, their effect on the elastic constants of the
composite can be very big in the limit of thin-disks @« — 0 (e.g., cracks).
As the disks become thinner, the strain factors t(py amd v(p) diverge and

Equation (2-4) implies

QX
2 2

(2 - 17)

»
i
+
[
=
s

(recall K; = G; =0).

One might also consider inclusions with small G; but non-negligible
K; (e.g., inclusions of liquid). In this case, v(p) diverges and G. x aGn;

however, K. is not significantly altered.

To properly understand these conclusions, some attention has to be
given as to the order of limits. Consider now the case of non-zero but small
K; and G; in Equation (2-15). We wish to consider the limit where the a-
dependent contribution to the denominator of ¢p) and to the denominator of
the second and third terms of vp) dominates over the K;- or G;-dependent
terms, and yet remain small compared to unity. Hence, the more precise
statement of our conclusion is as follows: The shear modulus diverges in the

limit that Gy, a — 0 provided a > (8/37)G,/Gn; the bulk modulus diverges

11




in the limit a, K;, G; — 0 provided a > (47 /3)(3K; + 4G;)/Gn.

Figure 2-1 shows the predicted strain factors, ¢(p) and v(p), for thin-
disks as a function of the aspect ratio, a, where we have taken K; = G; = 0
with K,, = G,, = 1. In Figure 2-2, we show the effective medium predictions
for the bulk modulus as a function of fractional volume of inclusions, f,
for (a) disk-like (@ = 0.001), (b) sphere-like (@ = 1), and (c) needle-like
(e = 1000.) inclusions. In all three cases, the bulk modulus approaches
zero (or, more generally, the bulk modulus of the inclusion, k;) in the limit
that f — 1. However, a tiny fraction of disk-like inclusions is sufficient to
dramatically soften the composite. (The same effective medium expressions
can be used to show that hard disks are most effective in hardening materials,
as well, although the difference is less dramatic. In real applications, hard
disks have the disadvantage that, while they may effectively increase the bulk
modulus, they also increase the susceptibility to cracking; hence, needle-like
fibers rather than disk-like inclusions are introduced for hardening purposes.)
Figure 2-3 shows how the bulk, shear and Young’s moduli, E = [9KG /(3K +

G)], change with aspect ratio in the limit of disk-like inclusions (a < 1).

2.4 Comparison with Effective Medium Theory for
Dielectrics

The effective medium theory for the elastic behavior of composites de-
veloped here is motivated by a similar effective medium theory for describing

the dielectric behavior of composites. For the dielectric problem, one con-
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Figure 2-2. Effective bulk modulus, K., as a function of fractional inclusion volume,
f, for disk-like, sphere-like, and needle-like inclusions.
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siders a matrix with dielectric constant e, with ellipsoidal inclusions with
dielectric constant ¢;; an effective medium approximation is used to deter-
mine an effective dielectric constant €, as a function of the dielectric constants
of the component materials and the fractional volume and aspect ratio of the
inclusions. It is instructive to consider some of the similarities and differences

between the two effective medium theories.

The effective medium theory for elasticity developed here is analogous to
the Maxwell-Garnett (Mazwell-Garnett, 1904) effective medium approxima-
tion for dielectrics. In the Maxwell-Garnett theory, one begins by considering
the electric field for a single ellipsoidal inclusion in an otherwise homogeneous
matrix. A key simplification is that the electric field is spatially uniform
within the ellipsoidal inclusion; this is analogous to Eshelby’s result used in
the elasticity argument that the strain field is spatially uniform within an
ellipsoidal inclusion. The electric field inside the inclusion is related to the

average electric field in the composite by
E,‘ = t,’ E,.

Here the factor ¢; plays the same role as the strain factor ¢; in the elasticity
theory. In principle, a similar relation can be written to relate the electric
field in the matrix to the average field in the composite (leading to a sec-
ond factor, t,,). However, in the Maxwell-Garnett approximation, a small
fractional volume of inclusions is assumed such that t,, =~ 1. Also, ¢, is com-
puted in terms of the dielectric constant in the inclusion and the dielectric
constant in the composite; in the limit of small fractional volume of inclu-
sions, the dielectric constant of the matrix is substituted for the dielectric

constant of the composite. These approximations are completely analogous
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to the approximations in the effective medium theory discussed here.

As a function of aspect ratio, we have found that the most dramatic
effect on the elastic behavior of solids occurs in the limit of soft (K; = 0,
G; =~ 0) disk-like inclusions. A similar dramatic effect occurs for dielectrics
occurs in the limit of conducting (¢; — oo) needle-like inclusions. The ef-
fective dielectric constant of the medium diverges for any finite fractional
volume of conducting inclusions as the aspect ratio of the conducting in-
clusions increases. An expression similar to Equation (2-4) can be derived,

except with the elastic constant replaced by the dielectric constant.

Although there are these similarities in the dielectric and elastic prob-
lems, some differences arise as well. First, the dielectric constant diverges
in the limit of conducting inclusions, whereas the elastic constants approach
zero in the limit of soft inclusions. Also, one finds that ¢{; — 0 in the limit
of conducting needles, whereas we found ¢; diverges in the limit of soft disks.
Consequently, the behavior of Equation (2-4) is different in the dielectric
analogue. Whereas the denominator on the right-hand-side diverges for the
elastic case (forcing the elastic constants to soften), the denominator is ir-
relevant and the numerator diverges in the dielectric problem (forcing the

dielectric constant to diverge).

Beyond these technical differences, there is the qualtitative difference
in the dependence on aspect ratio, which can be understood intuitively in
terms of the difference between the vector-like electric field versus tensor-like
stress field. For the dielectric problem, the dielectric constant is large in

a medium in which it is “easy” to separate charge. Thin conducting nee-

17




dles can separate charge most effectively as a function of their volume. In
particular, a single thin needle stretching across the entire composite (from
contact to contact) forms a conducting bridge that makes the effective di-
electric constant diverge. Presumably, a conducting thin disk would have the
same effect. By contrast, a needle-like air or void inclusion in a solid does
not dramatically alter the elastic properties far from the inclusion; instead, a
planar or disk-like layer is more effective. In particular, a single disk stretch-
ing across the composite forms a soft layer that causes the elastic constant of
the composite to dramatically shrink. The results of our technical analysis

seem more plausible in light of these remarks.
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3 APPLICATION OF COMPOSITES FOR
ACOUSTIC ABSORPTION

In this Section, we show how the effective medium theory for the elastic
behavior of composites can be used to suggest the design of composite materi-
als that reduce acoustic reflection. We consider the reflection of plane sounds
waves from a liquid medium (which we will take to be water) impinging on
a planar surface of a semi-infinite composite material. The calculation is
relevant for wavelengths short compared to the dimensions of the composite

slab but long compared to the size of the inclusions.

3.1 Reflection Coefficient for Scattering at a Liquid-
Solid Interface

The geometry is shown in Figure 3-1. The incident and reflected sound
waves in the liquid (water) are longitudinal waves. (We assume the reflected
transverse wave in the water is negligible.) The angle of incidence is equal
to the angle of reflection. Both longitudinal and transverse refracted waves
are generated in the composite. The angles for propagation of the refracted
waves satisfy

sin @ cw

@3-1

sin, ¢y
where cy is the speed of sound, 8 is the angle of incidence, 6, ; is the refraction
wave of the longitudinal and transverse wave, respectively, and cie 1s the

effective longitudinal and transverse sound speed in the composite.
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Water Composite

Figure 3-1. Geometry for acoustic wave reflecting from and refracting through
a semi-infinite composite slab. The subscript 1 (t) refers to longitudinal
(transverse) waves.
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The reflection and refraction of the sound wave is computed applying
the boundary condition that the normal components of the stress and dis-
placement must be continuous across the boundary and that the tangential
component of the stress in the composite is zero. (See derivation in Waves
in Layered Media, L. Brekhovskikh, Ch. 1.) The reflection coefficient can

be expressed in terms of the angular-dependent acoustic impedances:

Iw = ﬂgf‘gﬁ = acoustic impedance of the water
Z; = ¢ osc0| = longitudinal impedance of the composite (3-2)
Zy = f£&3 = transverse impedance of the composite,

where pwc is the density of water and the composite, respectively. The

reflection coefficient is, then,

_ Zycos’ 0, + Z, sin? 0, — Zw
" Zycos? 20, + Z, sin® 20, + Zw

(3-3)

|R|? is the fraction of the acoustic energy that is scattered at the interface.

3.2 Conditions for Reduction of Acoustic Reflection

Suppose the goal is to design a composite that enables the reduction
of reflected acoustic energy and the absorption of the transmitted energy
for long wavelength incoming sound waves. The reflection coefficient should
be minimized and the wavelength of the transmitted wave should shrunk to

enable efficient absorption. We discuss two design approaches below.
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.

3.2.1 Matching 7, and Zy

One approach for optimizing acoustic absorption is to match the longi-

tudinal impedance of the composite to the impedance of water but reduce
the wavelength of the refracted beam compared to the incidence beam. For

a smooth surface, this approach works for normal incidence.

For normal incidence (§ = 0, = 8, = 0), the shear waves are not excited
and we obtain the same expression as for the reflection from the boundary

of two liquids:
2= 2w
21+ Zw

The reflection coeflicient is minimized if the impedances are matched, Z; =

R -4
Zw or
pwew = pccl- (3-35)
To shrink the wavelength, which is proportional to the sound speed, we
require:
a << ew. (3-6)
Since the longitudinal sound speed can be expressed in terms of the bulk and

shear moduli,

2 3K +4G
Clong. = 3 -
P
the conditions in Equations (3-5) and (3-6) can be rewritten:
pc(3]\’. + 4G.) = pw(31\’w)
3-7) i

3K.+4G. < 3Rhw
oc

pw

where the subscript s are effective values in the composite and Ky is the

bulk modulus of the water.

22
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[The conditions in Equation (3-7) are similar to conditions for reducing
the reflection of electromagnetic waves by a dielectric medium. In the dielec-
tric analogue, the impedance is the square root of the magnetic permeability,
u', divided by the dielectric constant, ¢’. The speed of light in the medium is

cof/ /€y, where c is the speed in vacuo. Hence, the analogous conditions are

V l‘l’lel = I‘OGO (3 - 8)
Ve > \fapo,

where the subscript 0 designates values in vacuo. To satisfy the conditions
for the dielectric medium, both the dielectric constant and the magnetic
permeability need to be increased in the composite but their ratio needs to

remain equal to their ratio in vacuo.]

As the incoming waves move away from normal incidence, shear waves
are excited. From Equation (3-3), it appears at first that perfect reflection
can be obtained provided both the longitudinal and shear impedances of the
composite are matched to the impedance of water: Z;, = Z; = Zw. However,
here one can show there is a no-go theorem. Matching the longitudinal and

transverse impedances in the composite requires ¢; = ¢;. Yet, the longitu-

dinal sound speed is ¢; = \/(31( + 4G)/3p and the transverse sound speed
is ¢ = \/G—/p Consequently, ¢;/¢, > /4/3 for any positive K and G, and
the impedance condition is necessarily violated. Therefore, the conditions in
Equation (3-7) are only effective for normal incidence; away from normal inci-
dence, the excitation of shear waves results in non-zero reflection coefficients

proportional to 62.

The #-dependence can be reduced by applying the composite on a “lo-

cally reactive” surface (see, for example, Brekhovskikh, 1960). Consider, for
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example, a surface with a high density of open vertical pores whose mean size
and separation are small compared to the wavelength of the incident sound
wave (see Figure 3-2). In this case, the the scattering is determined by the

local acoustic pressure and is not dependent on the scattering angle.

3.2.2 Matching Z, and Zy

In the first design, we took advantage of the fact that shear waves are
not excited near normal incidence. If Z; is matched to Zw, longitudinal waves
only are refracted; the wavelength is shrunk assuming that one can obtain a

material that effectively absorbs short wavelength longitudinal excitations.

In this second design, the approach is to excite shear waves rather than

longitudinal waves in the composite. If the angle of incidence is

ocrit = Sin_l (\;;—VC¢) ’ (3 - 9)

Equation (3-1) then implies 6§, = 7/4. According to Equation (3-3), the

reflection coefficient is
_ Zt - ZW

= —— 3-10
Ze+ Zw ( )

No longitudinal waves are excited and the reflection coefficient is independent

of Z;. To optimize absorption, one requires Z, = Zy or
pcce = pwew [\/2 — (c/ct)? (3-11)
and, to shrink the wavelength,

¢ K ew (3 ~12)
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Figure 3-2. Possible geometry for a locally reactive surface that leads to 6 independent
scattering.
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Since ¢; = \/G./pc and ew = \/Kw/pw, the latter condition reduces to:

G./pc < G./pw (3-13)

For normal incidence on a surface, one can imagine coating the surface
with a layer of material satisfying the above conditions and shaping the
surface as shown in Figure 3-3. However, there is a fundamental limitation
in the degree of wavelength shrinkage. Suppose the wavelength is to be
shrunk by a factor of o > 1: i.e., cw/c; = 0. From the impedance matching

condition, Equation (3-11), there is the condition

pc _ o _
ow - oot (3-14)

Consequently, the maximum wavelength shrinkage is by o = /2.

The advantage of this approach is that the incident longitudinal wave is
transformed into a pure shear wave in the composite, which might be easily

absorbed. The disadvantage is the marginal wavelength reduction.

3.3 Effective Medium Theory and Reduction of Acous-
tic Reflection

Effective medium theory suggests the optimal strategy to design com-
posite materials that reduce acoustic reflection at normal incidence, say. Con-
sider the first (and probably preferable) design approach above. According to
Equation (3-7), a material with K. = Kw, G. < K., and K./p, € Kw/p

has acoustic impedance matched to the water but a much smaller sound
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Figure 3-3. Geometry for optimal acoustic absorption for materials in which Z, = Z .
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speed. The bulk (and shear) modulus of solid materials are normally much
greater than the bulk modulus of a liquid. To meet the necessary conditions,

one wants to make a material that is very soft but very dense.

The eftective medium theory shows that a tiny fractional volume of soft
disk-like inclusions of air, say (e.g., to obtain a small bulk and shear modulus)
can dramatically soften a material. In Figure 3-4, we have computed the
sound speed for a material with disk-like and sphere-like inclusions of gas
(Ki = 0, G; ==~ 0, ¢; = 0). Sphere-like inclusions only modestly affect
the sound speed.! Disk-like inclusions dramatically reduce the sound speed
even for relatively small fractional volumes. If a material contains cracks
occupied by air, say, it will behave similar to the soft disk inclusion limit. The
fact that the cracks occupy a small fractional volume means that the mean
density in the composite can remain high. Consequently, the wavelength of
the refracted waves can be shrunk. If the wavelength is to be shrunk by a
factor o, but the impedance is to be matched, we require p, = p/o. From
this, we can see that the fundamental limitation is the density. Even if the
cracks occupy negligible fractional volume, it is difficult to obtain a material

such that o > 10, say.

In the second design approach (Figure 3-3), it is sufficient to obtain
a material with a small shear modulus only. From Equation (2-17), one

observes that thin-disk inclusions of liquid (which have small shear modulus)

"Note that our expressions, Equations (2-4) and (2-14), predict the sound speed for the
case of spherical inclusions that does not approach zero even when the fractional volume
of inclusions approaches unity. This illustrates that our effective medium approximation
breaks down as the inclusion volume approaches unity. Our thin-disk results apply in the
limit of small inclusion volume where the theory should be valid.
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Figure 3-4. Sound speed f versus fractional inclusion volume f for disk-like and

sphere-like inclusions.
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is sufficient to effectively reduce the shear modulus of the composite and
maintain high density. However, as shown by Equation (3-14), the maximal

wavelength shrinkage is a factor of /2.
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4 CONCLUSIONS

Effective medium theory can be used to determine the effect of a random
distribution of impurities or inclusions on the elastic properties of an other-
wise homogeneous material. The effect is characterized in terms of modified

or “effective” bulk and shear moduli of the composite material.

The effective medium theory has been developed here for a spatially and
orientational isotropic distribution of ellipsoidal inclusions and the effective
elastic constants have been computed as a function of the concentration
and aspect ratio of the inclusions. The theory is valid in the limit of small

fractional volume of inclusions. The basic conclusions are:

e Thin-disk or crack-like inclusions are the most effective means of soft-
ening (or hardening) a composite material. Even a small fractional
volume of air inclusions dramatically suppresses the bulk and shear

moduli as the width of the disks becomes small.

o The effect of needle-like inclusions is comparable to that of sphere-
like inclusions. In either case, significant hardening or softening of the
composite occurs only if the inclusions occupy a substantial fractional

volume.

e Composites with thin-disk inclusions of air may be effective materials
for acoustic absorption. The composite can be impedance matched to

an external liquid medium (water, say) such that refracted waves have
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reduced wavelength. The wavelength reduction is by a factor equal to
the ratio of the composite density to water density, which is a significant

limitation.

In the discussion of acoustic absorption, semi-infinite slabs consisting
of macroscopically homogeneous composites have been considered. In
practice, multi-layered coatings can be applied with elastic behavior
that varies from layer to layer. Here, too, effective medium theory can
be a useful guide. However, our approximation is only valid when the

slab thickness is much greater than the acoustic wavelength.

We note that this analysis has focussed only on impedance matching
and wavelength shrinkage, but does not directly address materials de-
sign for effective attenuation. Since the maximal wavelength shrinkage
was shown to be by only a factor of 10 or so, effective attenuation is
very difficult to achieve in thin coatings. By comparison, electromag-
netic wavelenth can be shrunk by many orders of magnitude so that

thin, absorptive coatings for electromagnetic waves are more feasible.
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