
AD-A248 675

Technical Note 3-92

SYSTEM FOR GENERATING
DYNAMIC VIDEO IMAGERY FOR

HUMAN FACTORS RESEARCH

Dale R. Shires DTIC
Franklin F. Holly LECTi

C. Alec Chang APR 16 1992 .
Joseph Mazurczak

Salvatore P. Schipani
Phillip G. Hamden

February 1992
AMCMS Code 61110274A001 1

Approved for public release
distribution is unlimited. 92-09627

U.S. ARMY HUMAN ENGINEERING LABORATORY

Aberdeen Proving Ground, Maryland

®Apple is a registered trademark of Apple Computer, Incorporated.
TMMacintosh is a trademark of Apple Computer, Incorporated.
TMTHINK C is a trademark of Symantec Corporation.
TMNuVision is a trademark of Perceptics Corporation.

Destroy this report when no longer needed.
Do not return it to the originator.

The findings of this report are not to be construed as an official Department

of the Army position unless so designated by other authorized documents.

Use of trade names in this report does not constitute an official endorsement
or approval of the use of such commercial products.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

i a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Note 3-92

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if icus

Human Engineering Laboratory SLCHE

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, MD 21005-5001
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

6.11.02 L1161102B741
11. TITLE (Include Security Classification)

System for Generating Dynamic Video Imagery for Human Factors Research

12. PERSONAL AUTHOR(S)

Shires, D. R.; Holly, F. F.; Chang, C. A.; Mazurczak, J.; Schipani, S. P.; Harnden, P. G.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yer, Month. Day) 15. PAGE COUNT

Final FROM TO 1992, February 43

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identy by block number)

FIELD GROUP SUB-GROUP image processing computer graphics
dynamic imagery video systems

12 7 visual imagery human factors
14 2 real time

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A computer-controlled system was developed which provides the capability to gerile,-,'
processed dynamic imagery for human factors research. Processing of the video may involvC crCy
operation such as enhancing, degrading, or adding overlays. This system may also be uec
during experimental trials to perform data collection and score subject responses.

The system is comprised of several components: a computer, an image processor, two
lapse video cassette recorders, and a custom built VCR control circuit. When possible,
processing is performed as the video is being displayed to a subject. When processing
complexity is too great, the video is processed before experimentation. The input to the
system is imagery on a video tape. The imagery is processed frame by frame and the results
are stored on the output video tape. Processing appears to be performed in real time when
this resultant tape is played at the regular speed.

The flexibility and cost effectiveness of the system make it an ideal developmental to',
test-bed, and simulator for the processing of dynamic visual imagery. The hardware arji
software for implementing the system are discussed in detail.

20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0) SAME AS RPT. 0 DTIC USERS Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Technical Reports Office (301) 278-4478 SLCHE-SS-TSB

DD Form 1473, JUN 86 Preious editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED'

AMCMS Code 61110274A0011 Technical Note 3-92

SYSTEM FOR GENERATING
DYNAMIC VIDEO IMAGERY FOR

HUMAN FACTORS RESEARCH

Dale R. Shires
Franklin F. Holly

C. Alec Chang
Joseph Mazurczak

Salvatore P. Schipani
Phillip G. Hamden

February 1992

APPROVED:
T. K. H. WONG
LTC, TC
Acting Director
Human Engineering Laboratory

Approved for public release;
distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland 21005-5001

CONTENTS

INTRODUCTION ... 3

SYSTEM UTILITY AND LIMITATIONS .. 3

SYSTEM OVERVIEW .. 4

HARDWARE ... 4

Macintosh IIfx. ... 6
Perceptics NuVision Image Processor 6
JVC Time Lapse VCRs ... 6
Time Base Corrector ... 6
Custom-Built Control Circuit .. 7
Video Monitor .. 7

SOFTWARE ... 7

Video Processing and Tape Generation Control 10
System Use in Experimentation and Data Collection 11

EXPERIMENTAL PARADIGMS AND APPLICATIONS 13

APPENDIX

Source Code .. 15

FIGURES

1. System for Generating Processed Dynamic Imagery 5
2. Custom-Built VCR Control Circuit 8
3. Example Parameter Setting Dialog Box 9

Acoession For
NTIS GRA&I
DTIC TAB 0
Unannounced Q1
Justiftoatlon

By

Distributlon(

/Av&Le&b11iL'y Codes
Avail e*W&o

SYSTEM FOR GENERATING DYNAMIC VIDEO IMAGERY FOR HUMAN FACTORS RESEARCH

INTRODUCTION

The U.S. Army Human Engineering Laboratory has developed a computer-
controlled system designed for examining human performance in tasks that
require operators to extract information from moving images on visual
displays. This system was developed because of the frequent need to use
dynamic imagery rather than static imagery when performing human factors
research. This system has two major functions. The first paramount function
is to generate processed dynamic imagery that can be used in a wide range of
experiments designed to test human perception of nonstatic imagery. The
second function of the system is to act as the data-collection device during
experimentation.

Unfortunately, processing video imagery at real time rates (30 frames
per second) is computationally intense. When the worst case performance
profile of an algorithm running on a certain computer is greater than 1/30
second per video frame, real time or live processing is impossible. At times,
improved algorithms with lower time complexities or computers with tailored
architectures will allow for real time video processing. The problem with
customized systems is that they are very expensive and are not universal
enough to accommodate new algorithm development. Newly developed procedures
and functions will continually require extensive hardware modifications.

The computer-controlled system avoids inherent problems associated with
customized hardware by using a process known as zimulated real time
processing. In this procedure, a general purpose image processor and a
computer perform the desired operation on the dynamic imagery one frame at a
time. Only those video-processing operations not feasible in real time during
the actual experimentation are performed in this frame-by-frame manner. The
resultant frames are recorded frame by frame on an output videotape. When the
output tape is played at the regular 30-frames-per-second speed, the video
appears as if it is being processed in real time. During this frame-by-frame
process, computer-generated graphics and researcher-controlled stimuli, such
as hazard objects or targets, may be added to the video.

SYSTEM UTILITY AND LIMITATIONS

Use of the computer-controlled system is appropriate whenever one wishes
to study the perceptual ability of subjects while viewing imagery having a
fixed path and speed. In a typical application of this system, real world
dynamic video imagery is generated by mounting a video camera on a moving
vehicle and then recording the imagery onto videotape. Synthetically created
imagery of objects, such as targets or hazards, may then be overlaid onto the
videotape and, if required, other image-processing operations can be performed
to enhance or degrade video resolution. Use of this system is not appropriate
when the subject is required to affect the imagery (e.g., to change its path,
speed, etc.) in real time.

This system provides a cost-effective way to generate processed dynamic
imagery. The total cost for all parts of the system is approximately $40,000.
The system is also extremely flexible. New processing features may be added
in software, thus eliminating the need for hardware modifications.

3

Simulation in perception experiments using this system has some
advantages compared with field research. First, confounding factors can be
excluded so that experiments can focus on the parameters to be studied.
Second, true values can be known for validation and experimental result
scoring purposes jas opposed to the errors inherent in attempting to obtain
"ground truth" data in field experiments).

In addition to its utility for the human factors research community,
this system may be used by design engineers to examine what processed imagery
would look like before going to the expense of developing special purpose
computer hardware to run proposed algorithms in true real time. After using
this system to determine the correct algorithm and optimal processing schema,
engineers may develop appropriate architectures for real time processing.

When the complexity of an algorithm is sufficiently great, the
controlling computer may not be able to complete video processing in an
acceptable period of time. In this case, this system can be modified to
digitize and store all frames of the input video in advance. These files may
then be processed by another computer with greater computational power. The
system may then be configured to read the resultant processed files and to
place them on the output videotape.

This system is designed to work only with gray scale images. Color
processing would require composite-red, green, blue (RGB) video
encoders/decoders and extensive revisions of existing software.

SYSTEM OVERVIEW

The system is controlled by an Apple Macintosh IIfx computer running
under C and includes the following additional components:

1. A NuVision image processor from Perceptics Corporation.

2. Two Victor Company of Jap-n (JVC) time lapse video cassette
recorders (VCRs) model BR-9000U. One VCR is for video playback and the other
VCR is for video recording.

3. A digital time base corrector, model FA-300, from FOR-A
Corporation.

4. A custom-made circuit for Macintosh control over VCR frame
advance.

5. A video monitor.

HARDWARE

Figure 1 illustrates the system components and hardware connections.
"Video out" from the playing VCR is connected to "video in" on the time base
corrector. Video out from the time base corrector is connected to the video
in terminal No. 1 on the NuVision system. The green video out port on the
NuVision system is connected to video in on the recording VCR. Video out from
the recording VCR is connected to the video in terminal on the monitor. Pin 1
from the mini 8-pin connector on the Macintosh printer serial port is

4

0

0 ~0

00
x

CL~~5 0.0 0
55 0 c

CLS.

0e 0.

4-.0.. p

E 0w
(U)

0 0I 0
>0 It

Li 0 cc-

0 0

>00 0 .

Vr > w>c
0 I

OL O

0 L1
C300 0033.

00

L0

zr
54

connected to the input on one circuit. The output from this circuit is
connected to the one-shot record terminal on the back of the playing VCR. Pin
1 from the mini 8-pin connector on the Macintosh modem serial port is
connected to the input of the other circuit. The output from this circuit is
connected to the one-shot record terminal on the back of the recording VCR.

Macintosh IIfx

The computer controlling this system is a Macintosh IIfx manufactured by
Apple computer. The image processor used in this system is designed to work
in conjunction with any Macintosh II family computer to form an imaging work
station. The computer has 8 megabytes (MB) of memory and a 40-MHz clock speed
and was chosen because it is the most advanced computer in the Macintosh II
line. Memory capacity and speed should be important considerations when
selecting the controlling computer since it must perform all operations not
available on the image processor. Even marginal increases in computer
efficiency will dramatically reduce the total time required to complete frame-
by-frame video processing.

Perceptics NuVision Image Processor

The image processor contains general purpose digital signal processors
(DSPs) and can perform some functions, such as gray scaling, in real time.
The optional pixel processor board is required to perform these real time
operations. The image processor is controlled from the Macintosh computer by
making calls to the C software library provided with the image processor. All
analog-to-digital and digital-to-analog video conversions are performed using
the image processor.

The output video signal of the image processor must be configured to RS-
170 format for compatibility with the VCRs. This is accomplished by changing
the jumper on the video interface board from RGB to RS-170. Details about
performing this jumper change can be found in the NuVision manual.

JVC Time Lapse VCRs

The JVC time lapse VCRs offer many different record and play speeds.
For this system, the one-shot record and play are used. An internal switch
(SW301) must be set for one-shot record and play to function. Refer to the
VCR service manual for more information about this procedure. The record and
play modes on both VCRs must be set to the "manual" position. The playing VCR
is set to play, and the recording VCR is set to record. The VCRs will remain
inactive until receiving control signals from the custom circuit interface.

Time Base Corrector

A time base corrector is used to stabilize the video signal coming from
the playback VCR and to provide a clean synchronization signal to the image
processor. This allows the image processor to complete frame digitization.

6

Custom-Built Control Circuit

A diagram of the custom-built control circuit is shown in Figure 2. Two
custom-built control circuits are required, one for the recording VCR and one
for the playing VCR. This circuit provides a momentary closure to ground
which activates the one-shot record and playback on the VCRs. The closure
duration should not exceed 1/30 second to avoid recording or playing more than
one frame of video.

Input to this circuit comes from the Macintosh computer serial ports.
The data terminal ready (DTR) signal output (pin 1 on the mini 8-pin
connector) provides the control command to the VCR. Asserting the DTR on
instruction (see the VCRControl.c file in the appendix) initiates a short
duration pulse (approximately 30 ms) to advance the indicated VCR by one
frame.

The HCPL-2211 optocoupler logic gate provides circuit isolation because
of electrical incompatibility between the Macintosh computer and the VCR. The
N74123 sets the momentary closure duration. The N7407 is used as the closure
driver buffer for the VCR and a visual light emitting diode (LED) closure
duration indicator.

Video Monitor

A composite video monitor is used to observe the actual frame-by-frame
.image processing. The standard RGB monitor supplied with the NuVision system
may be used during experimental trials.

SOFTWARE

All software for this system is written in C. The THINK C version 3.01
development environment from Symantec, Incorporated is used. All code written
using this programming environment may take full advantage of the Macintosh
graphical interface. Code for the NuVision program is included with the image
processor and is copyrighted by Perceptics, Incorporated.

The modules for simulated dynamic video production and experimental data
collection and scoring are designed as "hooks" into the main NuVision
software. They are invoked by way of a "Special" menu in the NuVision
interface. This menu is designed to allow user written functions to be easily
called from the NuVision interface. Programs called from the "Special" menu
are designed to be more or less independent from other NuVision routines, but
may call i.pon other image processing modules and libraries for functions they
may require. For example, if a function added to the "Special" menu requires
the ability to do a frame digitization, it may use the DoGrab(...) function
located in the Digitize.c file supplied with the NuVision system.

Full details about software integration methodology using the NuVision
system are included in the NuVision system manual. The methods used to set
certain parameters in this system, such as the number of frames to process,
are not described. Most often, these inputs to functions will be specified
through the use of standard Macintosh interfaces such as controls and dialog
boxes. A sample dialog box used to set parameters for one implementation of
this system is shown in Figure 3.

7

w U

U-)

+ C:K--
to)

>>

-00

>Z

CIC

oco M'

C)L

+ 0U

II)C

8-

Pixels: Convolution Masks:

032H32 0 31,3 05x55

064H64 @)7H7 0 9H9
@)128x128 0Sell151

o0256H256 O Special 15-I
0512H512 O None

Frame Grabs:
0 I 1rob I1001riilIl: I I:I)11trol
0 Grab EHternal/No 1CR Control
@) Use Input Image

Frames/Sec 30

Frames To Process

Start Cancel

Figure 3. Example parameter setting dialog box.

Example code for this system is included in the Appendix. There are

seven modules in the Appendix. The modules and their contents are in
lexicographical order:

1. DataCollection - This contains the main controlling function
for data collection during experimentation.

2. ImageDegradation - This contains a routine to degrade video

The example function used reduces video quality by reducing the grid sample
size on a 512 x 512 pixel digital image.

3. MacintoshHeaders - This contains the most commonly used

declarations and definitions for Macintosh programming.

4. MiscUtilities - This contains miscellaneous utilities for

video sampling, Macintosh computer to NuVision data transfer, and so forth.

5. SystemDefines - This contains basic definitions for image size
and gray scale bit depth.

6. VCRControl - This contains the code that controls the VCRs.

All VCR control is effected by making state changes on the serial ports of the
Macintosh computer.

7. VideoGeneration - This contains the main controlling function
for processing video frame by frame.

9

Each function is preceded by a documentation block that details function
purpose, input and output, and variable usage.

Video Processing and Tape Generation Control

The function GenerateVideo() in the VideoGeneration module is a typical
main controlling function for processed video generation. There are two
parameters passed to the function. The parameter numberOfFrames specifies how
many video frames are to be processed from the input tape. The sampleSize
parameter indicates the grid sampling size to use for degrading the video
frames.

The process control of the function is straightforward:

1. A call is made to SwitchToRS170() to switch the video output
signal from RGB to RS-170 format.

2. VCRs are prepared for use by a call to InitializeVCRsO. This
function opens the serial ports connected to thE VCR control circuit.

3. Memory is allocated for image storage with the call to
AllocateMemory(...).

4. The main processing loop is entered. This loop is executed
for each frame to be processed.

5. The GrabAnImageo) function digitizes the video frame on the
playing VCR.

6. The image intensity values in the video buffer on the NuVision
are copied into the Macintosh computer memory with the call to
ReadImageIntensityValues(...).

7. The playing VCR is advanced by one frame with the call to
AdvanceVCR(...). This procedure toggles the DTR on and off which directs the
control circuit to advance the VCR one frame.

8. The image read from the NuVision system is degraded with a
call to BlockyImage(...).

9. The processed image is written back into the NuVision video
buffer with a call to WriteImageIntensityValues(...).

10. The recording VCR records the processed image and advances
one frame with the call to AdvanceVCR(...).

11. Control returns to Step 4 if there are more frames to
process.

12. All memory used for image storage is released with the call
to FreeMemory(...).

13. VCR control is terminated with the call to CloseVCRsO.
This closes the serial ports connected to the VCR control circuit.

10

System Use in Experimentation and Data Collection

A typical experiment using this system will require a subject to
indicate where and when one perceives some object on processed dynamic video.
Obtaining this information is relatively easy because of the graphical
inter-'ace of the Macintosh computer. A cursor is placed on the screen which
the subject can move with a mouse. The subject then places the cursor at a
desired position and presses the button on the mouse. This action generates
an interrupt known as a "mouse down" event. The computer passes two pieces of
information to the controlling software during one of these events: (1) the
time the mouse button was pressed, and (2) the position of the cursor on the
screen at the time the button was pressed. The cursor location is specified
in horizontal and vertical screen coordinates (x,y) relative to the
transparent overlay window on the monitor connected to the NuVision system.
The time the button was pressed is given in the number of ticks since the
computer was powered on. The tick counter is the heartbeat of the Macintosh
computer and is controlled by the vertical retrace hardware. When the
Macintosh computer is first started, the tick counter is set to 0. The
monitor on the Macintosh computer is refreshed 60 times a second (60 Hz).
Each time the video beam is moved from the bottom to the top of the screen, an
interrupt is gcnerated. The tick counter is incremented by 1 at each
interrupt.

In scoring subject response data, the time returned by a mouse down
event must be corrected since it relates only to the elapsed time since the
system was powered on. Both subject response data elements and the truth
tables with which they are compared must be based on a time relative to the
start of each experimental test. The following method was devised to ensure a
common base time for all experimental trials. This base time can also be used
to determine a video frame count since the NuVision system does not provide
this feature.

During video production, a series of black frames (i.e., in 8-bit gray
scale video all pixels are set to 0) is recorded on the output tape. A 5-
second lead of black video is usually desirable. At the end of these frames,
a white frame (all pixels set to 255) is recorded. The video imagery on the
input tape is then processed, and the frames are recorded after the white
frame on the output tape.

During experimentation, video is played at normal speed through the
image processor. The image pro'essor is configured to pass all incoming video
through the pixel processor. The accumulator section of the pixel processor
continually monitors all incoming video frames. The total value of all pixel
intensities in a frame is stored in registers dedicated to the accumulator. A
small function polls these registers comparing their contents to a preset
threshold value that indicates a frame of "white" pixels. The function stops
polling the registers when this value is reached. The data collection
software then records the tick count at the time the white frame occurred.
This tick count becomes the base time or time = 0 for the experimental trial.
All subsequent times of subject responses are in tick counts but are relative
to the time the white frame occurred.

For example, if the white frame occurred at tick count - 179361 and the
subject clicked the mouse button at time - 183000, then the subject clicked
the mouse 3639 ticks or 60.65 seconds after the white frame base time. Use of
this white frame gives a common time by which all experimental trials may be
judged.

11

Frame counts are also easily obtained if base time is known. Simply
multiply the time from the white frame by 0.5 since there are 30 frames for
every 60 ticks. In the previous example, 3639 ticks = frame 1819 from the
base white frame.

The function CollectData() demonstrates how subject responses are
recorded during experimentation.

1. Memory for storing subject responses is allocated by the call to
AllocateMemory(...).

2. The processed video being played on the input VCR is displayed live
to the subject with the call to StartLiveVideoo).

3. The WaitForWhiteFrame() function is then called. This function
will wait until the white frame on the video is reached.

4. The base time is recorded as soon as the white frame passes.

5. The main loop is entered. Each time the subject clicks the mouse
button, the location of the cursor and the time relative to the base time are
recorded. The loop exits and data collection ends when the experimenter
presses any key.

6. Live video display is cancelled with the call to StopLiveVideo().

7. Subject responses may now be scored or saved to file for later
scoring.

8. All memory used is released with the call to FreeMemory(...).

Truth tables for judging experimental performance are also constructed
using this base time concept. Time in these tables may be expressed in frame
counts or tick counts. Truth table construction for computer-generated
objects is straightforward since screen positions and frame counts are already
known. Truth table generation for other objects having fixed paths and speeds
in the video is more complicated but can be done very accurately using the
following method.

The experimenter makes two passes through the unprocessed videotape. In
pass one, the experimenter views the tape and clicks the mouse when the object
in question is distant from the camera. The software freezes the picture on
the screen allowing one to accurately position the cursor exactly in the
center of the object. A subsequent mouse click records the position of the
object on the screen and reactivates the live video. The procedure is
repeated throughout the length of the video for each object of interest in the
study. The same procedure is used in pass two except this time, the objects
are allowed to come closer to the camera. The equation describing the slope
of the path traversed by the object can now be written since two locations are
known. These equations, in conjunction with equations relating world distance
to screen location, can be used to accurately calculate the coordinates of the
object in all intervening frames in which it appears.

12

The function CollectData() will allow experimenters to gather data for
truth table generation. Only a few minor changes are required. On the first
mouse down event, the function StopLiveVideo() is now called and the time is
recorded. The experimenter then moves the cursor to the appropriate position.
The second mouse down event records the position of the cursor and reactivates
live video with a call to StartLiveVideo(). All subsequent pairs of mouse
down events would be handled in this manner.

EXPERIMENTAL PARADIGMS AND APPLICATIONS

This system has proved useful in two research areas. First, target
recognition and identification have been studied using this system. Video
imagery of a highway with rounded cones or mounds randomly placed on it was
processed to degrade resolution. During processing, computer-generated
confusion objects were added to the video. These objects were similar to the
mounds, but were created to appear and behave like flat objects on the road.
Subjects were then presented the video that was further degraded in real time
by reducing gray levels. Their task was to position the cursor on the hazards
that they recognized as three dimensional and then click the button on the
mouse. Their performance was then scored by comparing their responses with
predefined truth tables.

Second, reduced data transmission techniques using simulated optic flow
are being studied. Simulated optic flow attempts to simulate a series of
video frames based on one frame. One frame of motion video for every 90
frames is digitized from the playing VCR. Based on the imaging geometry of
the camera system used during recording, equations were written to approximate
how the next subsequent 90 frames of video would appear. This system uses
these equations to generate and record each of these simulated frames. The
resultant video indicates the correctness of the model and suggests which
parameters may need adjustment. Minute changes to fine tune these parameters
are effected through software changes only, and a new output video is
generated for each change. Model optimization is ongoing.

13

APPENDIX

SOURCE CODE

15

/* Module: DataCollection.h

This module contains the prototypes for functions available in
the DataCollection.c library.

Prototypes are listed in lexicographical order.

*/

/* Record subject actions during experimenxal trial */
void CollectData(void);

17

/* Module: DataCollection.c

This module contains the main routine that controls data collection
during experimentation. A structure is also defined in which
information about the subject's responses can be stored.

Functions are listed in lexicographical order.

*/

#define MAXSUBJECTRESPONSES 2000 /* Allow up to 2000 responses */

#include "MacintoshHeaders.h"
#include "SystemDefines.h"
#include "DataCollection.h"

/* This is the structure that will store subject responses during
the experiment. */

typedef struct

Point mouseClickWhere; /* record mouse location */
long mouseClickTime; /* record mouse click time */
} SubjectResponse;

/* Local function prototypes (in lexicographical order):

static void AllocateMemory(SubjectResponse *subjectClicks);

static void FreeMemory(SubjectResponse *subjectClicks);

/* external global variables */

extern WindowPtr overlayWindow;

Function AllocateMemory

1. Purpose: Allocate memory in which to store subject responses.
2. Inputs: None.
3. Returned values:

subjectClicks - An array of records for storing subject
responses.

4. Local variables:
None.

5. Global variables (and how modified):
None.

static void AllocateMemory(subjectClicks)
SubjectResponse *subjectClicks;

18

subjectClicks - (SubjectResponse *)malloc(MAX_SUBJECTRESPONSES *
sizeof(SubjectResponse));

/* end AllocateMemory */

/***
Function CollectData

**** * **** ****** ******* ********** ****** ***** ************ *

1. Purpose: Display a tape to the subject and record his or her actions.
The video is passed through the image processor and the
base time is recorded when a white frame is recognized.
A subject response is initiated by pressing the button on the
mouse. The experimenter ends the study by pressing any key.

2. Preconditions:
An output tile must be selected.

3. Inputs: None.
4. Returned values:

None.
5. Local variables:

done - TRUE if the experimenter presses a key, FALSE otherwise.
baseTime - Time at which the white frame occurs.
theEvent - Data on what event has occurred.
numberResponses - Counter to keep track of number of subject

responses.
subjectClicks - An array of records to keep track of all

subject responses.
6. Global variables (and how modified):

None.
*** * ********* ** ******** **** *** **** ********* ****** ******

void CollectData()
I
SubjectResponse *subjectClicks;
Boolean done - FALSE;
long baseTime;
EventRecord theEvent;
int numberResponses - 0;
GrafPtr savePort;

/* set the current port to the subject's monitor *1

GetPort(&savePort);

SetPort(overlayWindow); /* allows us to get local mouse coordinates */

SwitchToRS1700;

AllocateMemory(subjectClicks);

StartLiveVideo 0;

WaitForWhiteFrameC);
baseTime - TickCount 0;
while (!done)

19

if (GetNextEvent (everyEvent, &theEvent))

switch (theEvent .what)

case mouseDown:
GetMouse (&mouseLocat ion);
subjectClicks [numberResponses) .mouseClickwhere=

mouseLocat ion;
subjectClicks (numberResponses) .mouseClickTime

TickCount() - baseTime;
++numberResponses;
break;

case autoKey:
case keyDown:

done - TRUE;
break;

default:
break;

StopLiveVideo 0;

/* Subject responses are stored in the array. These responses may

now be written to a file or scored here. */

/* Free the memory used by the subject clicks *

FreeMemory(subjectClicks);

1* reset the current port *

SetPort (savePort);

/* end CollectData *

Function FreeMemory

1. Purpose: Release memory used to store subject responses.
2. Inputs: subjectClicks - The array of subject response records.
3. Returned values:

None.
4. Local variables:

None.
5. Global variables (and how modified):

None.

static void FreeMemory(subjectClicks)
SubjectResponse *subjectClicks;

free (subjectClicks);
/* end FreeMemory *

20

/* Module: ImageDegradation.h

This module contains the prototypes for functions available in
the ImageDegradation.c library.

Prototypes are listed in lexicographical order.

*/

#include "SystemDefines.h"

/* Degrade an image by reducing sampling-grid size *1
void BlockyImage(Pixel *sourceImage[IMAGEHEIGHT], Pixel
*destImage[IMAGEHEIGHT],

int sampleSize);

21

/* Module: ImageDegradation.c

This module contains the routines that will allow an image to be
degraded.

Functions are listed in lexicographical order.

*/

#include "MacintoshHeaders.h"
#include "SystemDefines.h"
#include "ImageDegradation.h"

/**

BlockyImage

1. Purpose: Take an IMAGE HEIGHT x IMAGEWIDTH image and change its sample
grid size according to the value specified in sampleSize. The
sample size of the image is reduced by averaging blocks of pixels
under the sample grid. For example, with a 512 x 512 image and a
sampleSize value of 32, every 16 x 16 block of pixels are added
together and the average value is placed into the 16 x 16
corresponding block in the destination image. The resulting
destination image is still 512 x 512, but with only 32 x 32 large
pixels.

Preconditions:
IMAGE-HEIGHT = IMAGEWIDTH = 2^n for n = (8, 9, 10)
sampleSize = 2^n, where 4 <= sampleSize <= IMAGEHEIGHT

3. Inputs: sourceImage - The intensity values of the source image.
sampleSize - The number of pixels the degraded image is to have.

4. Returned values:
destImage - The intensity values of the resultant image.

5. Local variables:
blockWidthHeight - The height and width of the large pixel block.
pixelsPerBlock - Computed once for averaging.
rowCounter, colCounter - Counter variables.
subRowCounter, subColCounter - Counter variables.
totalPixelValue - Sum of the pixels in the large pixel block.
averagePixelValue - Average of the pixels in the large pixel
block.

6. Global variables (and how modified):
None.

void BlockyImage(sourceImage, destImage, sampleSize)
Pixel *sourceImage(IMAGEHEIGHT];
Pixel *destImage[IMAGE_HEIGHT);
int sampleSize;

int blockWidthHeight;
int pixelsPerBlock;
register int rowCounter, colCounter;
register int subRowCounter, subColCounter;
unsigned int totalPixelValue;
unsigned int averagePixelValue;

blockWidthHeight = IMAGE HEIGHT / sampleSize;
pixelsPerBlock = blockWidthHeight * blockWidthHeight;

22

for (rowCounter - 0; rowCounter < IMAGE-HEIGHT; rowCouriter +

blockWidthHeight)
for (colCouriter = 0; colCounter < IMAGE-WIDTH; colCounter +=

blockWidthHeight)

totalPixelValue w0;

for (subRowCounter = rowCounter; subRowCounter < rowCounter +
blockwidthHeight; subRowCounter++)
for (subColCounter - colCounter; subColCounter < colCounter +

blockWidthHeight; subColCounter++)
totalPixelValue +-

sourcelmage [subRowCounterl [subColCounter);

averagePixelValue =totalPixelValue / pixeisPerBlock;

for (subRowCounter -rowCounter; subRowCounter < rowCounter +
blockWidthHeight; subRowCounter++)
for (subColCounter - colCounter; subColCounter < colCounter +

blockWidthHeight; subColCounter++)
destlmage fsubRowCounter) [subColCounterI

averagePixelValue;

/* end BlockyImage *

23

1* Module: MacintoshHeaders.h

This module contains all the #includes for the most commuonly used
declarations during Mac-ntosh programming. For speed during
compilation, this header file should be precompiled.

#define _MC68881_ /* enabled for math coprocessor use with the
Macintosh II family *

#include <Quickdraw.h>
#include <MenuMgr h>
#include <FontMgr.h
#include <WindowMgr h>
#include <TextEdit .h>
#inclutle <EventMgr.h>
#include <DeskMgr .h>
#include <ControlMgr~h
#include <ResourceMgr h>
#include <DialogMgr .h>
#include <PackageMgr h>
#include <OSUtil .h>
#include <Color.h>
#include <ColorToolbox.h>
#include <ToolboxUtil .h>
#include <StdFilePkg.h>
#include <FileMgr .h>
#include <SlotMgr h>
#include <VRetraceMgr .h
include <PrintMgr.h>
#include "proto.h" /* include all library function prototypes *
#include <unix.h>
#include <stdio.h>
#include <ctype.h>
#include <strings .h>
#include <math.h>
#include <pascal.h>
#include <storage h>

24

/* Module: MiscUtilities.h

This module contains the prototypes for functions available in
the MiscUtilities.c library.

Prototypes are listed in lexicographical order.

*/

#include "SystemDefines.h"

/* Digitize the image on video in port #1 on the NuVision system */
void GrabAnImage(void);

/* Transfer data from the NuVision to the Macintosh system. */
void ReadImageIntensityData(Pixel *theImage[IMAGEHEIGHT]);

/* Start digitizing the video coming from port #1 and pass it through
the Pixel Processor */

void StartLiveDisplay(void);

/* End live digitization */
void StopLiveDisplay(void);

/* Output NuVision video in RS170 format */
void SwitchToRSl70(void);

/* Continually poll accumulator until a 'white' frame is reached */
void WaitForWhiteFrame(void);

/* Transfer data from the Macintosh into the NuVision system */
void WriteImageIntensityData(Pixel *theImage(IMAGEHEIGHT]);

25

/* Module: MiscUtilities.c

This module contains miscellaneous interface and control functions for
the Macintosh and NuVision systems.

Functions are listed in lexicographical order.

*/

#include "MacintoshHeaders.h"
#include "SystemDefines.h"
#include "MiscUtilities.h"
#include "nhErrors.h"
#include "Actions.h"
#include "nhBits.h"
#include "Memory.h"
#include "nhGeneral.h"
#include "Main.h"
#include "List.h"
#include "Digitize.h"
#include "nhMEM.h"
#include "nlPixelRows.h"

/* external variables */

extern ImageList outputImages; /* Imagps spler-ted as output images */
extern ImageList inputImages; /* Tmages selected as input images */

/***************************** *****************************

Function GrabAnImage

1. Purpose: Digitize an image from the video in terminal No. I on the NuVision
system and store it in the input image tile selected by the user.

2. Inputs: None.
3. Returned values:

None.
4. Local variables:

grabImage - The input tile selected by the user to grab into.
byteSwap - TRUE if swap bytes on input, FALSE otherwise.
currentBusIn - The current data bus grabImage reads from.

5. Global variables (and how modified):
None.

void GrabAnImage()

Image *grabImage;
unsigned short currentBusIn;
Boolean byteSwap;

/* take all memories off of OPB and AR buses before proceeding */

nfTakeMEMOffBus(ARDATA I ARDATA, OPERANDSYNC I RESULTSYNC, 0, NULL);

/* set up the sync to 480 lines */

26

nhWriteModReg (nvSYN, 0, 1, SYNRiPLLOSC I SYNRiPLLPROG I
SYNRiALTFRAME, -1);

/* set the digitizer to input from the selected input device and
output on the A result bus. */

nhWriteModReg(nvDIG, 0, 2., DIGRI._IN-MON01 I DIGRiARENA, -1);

/* select the image to grab into */

grablmage - & (thelmages->image tinputlmages .image (0]));

/* earab image data from the A result bus *

nhGetMEMlnput (grablmage->unit, ¤tBus In, &byteSwap);
nhSetMEMlnput(grablmage->unit, ARDATA, byteSwap);

nfHomeMEM (grablmage->unit, grablmage->horizontal, grablmage->column,
grablmage->row, 1);

nhSetMEMGrab (grablmage->unit, GRABHIGH, 1);

nhWaitMEMGrab (grablmage->unit);

DisplayImage (&input Images);

/* end GrabAnlmage *

Function ReadlmagelntensityValues

1. Purpose: Take the image data from the NuVision memory space and store
it in memory on the Macintosh. Data is taken from the input tile
that was selected by the user.

2. Inputs: None.
3. Returned values:

thelmage - Where to store image intensity data from the NuVision
system.

4. Local variables:
rowCounter - Counter variable.

5. Global variables (and how modified):
None.

void ReadlmagelntensityValues (thelmage)
Pixel *thelmage[IM.AGEHEIGHT];

register mnt rowCounter;
Image which Image;

whichlmage - thelmages->image (inputlmages .image [0]];

for (rowCounter - 0; rowCounter < IMAGEHEIGHT; rowCounter++)
nlReadPixels(whichlmage.unit, row-Counter, 0, IMAGE_WIDTH, HiBytes,

thelmagefrowCounterJ);

/* end Readlmageintensityvalues *

27

Function StartLiveDisplay

1. Purpose: Display the video connected to the video in port No. 1 on the
NuVision system. The video is displayed through the output image
tile selected by the user. The video is passed through the pixel
processor's accumulator so the white frame test may be performed.

2. Preconditions:
An output video tile is selected.

3. Inputs: None.
4. Returned values:

None.
5. Local variables:

grabImage - The output image tile selected by the user to grab
into byteSwap - TRUE if swap bytes on input, FALSE otherwise.
currentBusIn - The current data bus grabImage reads from.

6. Global variables (and how modified):
None.

void StartLiveDisplay()
I
Image *grabImage;
unsigned short currentBusIn;
Boolean byteSwap;

/* take all memories off of OPB and AR buses before proceeding */

nfTakeMEMOffBus(OPBDATA I ARDATA I OPADATA, OPERANDSYNC I
RESULTSYNC, 0, NULL);

/* set up the sync to 480 lines */

nhWriteModReg(nvSYN, 0, 1, SYNR1_PLLOSC I SYNRiPLLPROG I
SYNRlALTFRAME, -1);

/* set the digitizer to input from video in port #1 and output
on the A operand bus. */

nhWriteModReg(nvDIG, 0, 1, DIG Ri IN MONO I DIG RIOPAENA, -1);
nhWriteModReg(nvIPP, 0, 3, IPPR3_OUTPUT_ENA, -1);

/* OR the output video so it passes through unaltered */

nhWriteModReg(nvIPP, 0, 7, IPPR7 OR, -1);
nhWriteModReg(nvIPP, 0, 11, IPP RII OR I I IPP RII OR 2, -1);

grabImage - &(thelmages->image(outputlmages.image(0]]);

/* video comes out of the pixel processor on the A result bus */

nhGetMEMInput(grabImage->unit, ¤tBusIn, &byteSwap);
nhSetMEMInput(grabImage->unit, ARDATA, byteSwap);

nfHomeMEM(grabImage->unit, grabImage->horizontal, grabImage->column,
grabImage->row, 1);

28

nhSetMEMGrab(grabImage->unit, GRABHIGH, 0);

DisplayLive(&outputImages);

/* end StartLiveDisplay */

/* *** *********** *********** ******************************* *

Function StopLiveDisplay

1. Purpose: End live video display. The frame grab in process is completed
and the result stored in the output video tile selected by the
user.

2. Inputs: None.
3. Returned values:

None.
4. Local variables: grabImage - The output image tile selected by the user to

grab into.
5. Global variables (and how modified):

None.

void StopLiveDisplay()

Image *grabImage;

grabImage - &(theImages->image(outputImages.image[0]));

nhSetMEMGrab(grabImage->unit, GRABHIGH, 1);

nhWaitMEMGrab(grabImage->unit);

/* end StopLiveDisplay */

/**
Function SwitchToRS170

1. Purpose: Switch the output video signal to RS170 format. Note: The
hardware jumper change from RGB to RS170 format described in the
NuVision must be performed prior to calling this function.

2. Inputs: None.
3. Returned values:

None.
4. Local variables:

None.
5. Global variables (and how modified):

None.

void SwitchToRSl70()

nhWriteModReg(nvDIS, 0, 2, DIS R2 RGB DIS I DISR2_OLAYENA
DISR2_RGBDIS I DISR2_OLAYENA);

/* end SwitchToRSl70 */

29

Function WaitForWhiteFrame

1. Purpose: Continually poll all incoming video looking for a shift from a
series of black (gray scale - 0) frames to a white (gray scale =
255) frame. The accumulator reads 16 bits per pixel instead of 8,
therefore all 8 bit gray scale intensities are left shifted 8
places prior to summation. When the accumulated value of all
pixel intensities reaches 8.589 x lOV9, the function will
complete. This value corresponds to a 512 x 512 image with all
pixels set to 128 intensity. Note: This function will run to
infinity if a white frame is not encountered.

2. Preconditions:
This function is hard-coded for a 512x512 image only.

3. Inputs: None.
4. Returned values:

None.
5. Local variables:

done - TRUE when the white frame has been encountered, FALSE
otherwise.
registerContents - Contents of register 15 on the pixel processor.
Holds the most significant bits of the accumulation.

6. Global variables (and how modified):
None.

**

void WaitForWhiteFrame()

unsigned short registerContents;
Boolean done = FALSE;

WatchCursor();

/* Keep checking accumulator for a value greater than or equal to 8.589
x 10^9. This is our 'white frame' indicator. The value corresponds to
a 512 x 512 image with all pixels set at 128 intensity. */

while (!done)

nhWriteModReg(nvIPP, 0, 1, IPP R1 NEXTINTRVL I IPPR1_GO I
IPPR1_ACCUMENA, IPP_R1_NEXTINTRVL I IPPR1_GO I
IPP_ RIACCUMENA);

nhReadModReg(nvIPP, 0, 15, ®isterContents);
if (registerContents >= 0x0002)

done = TRUE;

InitCursor(;
SysBeep(i);

/* end WaitForWhiteFrame */

30

Function WriteImageIntensityValues

1. Purpose: Take the image data from the Macintosh memory space and write it
into the memory space of the NuVision system. Data is written to
the output tile selected by the user.

2. Inputs: theImage - The image intensity data to write to the NuVision
system.

3. Returned values:
None.

4. Local variables:
rowCounter - Counter variable.
whichImage - Which image tile on the NuVision system in which

to write the image data.
5. Global variables (and how modified):

None.

void WriteImageIntensityValues(theImage)
Pixel *theImage[IMAGEHEIGHT);I
register int rowCounter;
Image whichImage;

whichImage - theImages->image[outputImages.image(0));

for (rowCounter - 0; rowCounter < IMAGEHEIGHT; rowCounter++)
nlWritePixels(whichImage.unit, rowCounter, 0, IMAGEWIDTH,
HiBytes, theImage[rowCounter]);

/* end WriteImageIntensityValues */

31

/* Module: SystemDefines.h

This module contains the definitions for the screen size and the
data type for a pixel.

*/

#define NULL OL /* NULL is a 0 pointer */

#define IMAGE HEIGHT 512 /* number of pixels per column */
#define IMAGE-WIDTH 512 /* number of pixels per row */

typedef enum { false, true, FALSE = 0, TRUE) Boolean;

typedef unsigned char Pixel; /* pixels are 8 bit gray scale */

32

/* Module: VCRControl.h

This module contains the prototyper for functions available in the
VCRControl.c library. Also, the assignment of VCRs to serial ports is
made here. Currently, the playing VCR must be connected to the printer
serial port and the recording VCR must be connected to the modem serial
port.

Prototypes are listed in lexicographical order.

*/

#include <SerialDvr.h>

#define PLAYVCR sPortB /* The playing VCR needs to be connected
to the

printer port. */
#define RECORDVCR sPortA /* The recording VCR needs to be connected
to the

modem port. */

/* Advance the specified VCR by one frame */
void AdvanceVCR(SPortSel whichVCR);

/* Close all serial ports connected to the VCRs */
void CloseVCRs(void);

/* Open all serial ports connected to the VCRs
void InitializeVCRs(void);

33

/* Module: VCRControl.c

This module contains routines that control the VCRs connected to the
Macintosh serial ports.

Functions are listed in lexicographical order.

/* VCR/serial port defines */

#define MODEMPORTID -7 /* reference number for modem port */
#define PRINTER PORTID -9 /* reference number for printer port */
#define DTR ON 17 /* DTR pin activate signal */
#define DTROFF 18 /* DTR pin deactivate signal */

#include "MacintoshHeaders.h"
#include <SerialDvr.h>
#include "VCRControl.h"

/***
Function AdvanceVCR

1. Purpose: Advance the specified VCR by one frame. The DTR signal is toggled
between on and off. This action directs the VCR control circuit
to short the 1 shot record terminal on the VCR causing it to
advance 1 frame.

2. Inputs: whichVCR - Which VCR to advance, the playing VCR (PLAYVCR) or the
recording VCR (RECORDVCR).

3. Returned values:
None.

4. Local variables:
None.

5. Global variables (and how modified):
None.

void AdvanceVCR(whichVCR)
SPortSel whichVCR;

switch (whichVCR)

case PLAY VCR:
Control(MODEMPORTID, DTRON, NULL);
Control(MODEMPORTID, DTROFF, NULL);
break;

case RECORD VCR:
Control(PRINTERPORTID, DTRON, NULL);
Control(PRINTERPORTID, DTROFF, NULL);
break;

default:
break;

/* end AdvanceVCR */

34

Function CloseVCRs

1. Purpose: Close the modem and printer serial ports connected to the
VCR control circuit.

2. Inputs: None.
3. Returned values:

None.
4. Local variables:

None.
5. Global variables (and how modified):

None.

void CloseVCRs()

RAMSDClose (PLAYVCR);
RAMSDClose (RECORDVCR);

/* end CloseVCRs */

Function InitializeVCRs

1. Purpose: Open the modem and printer serial ports connected to the
VCR control circuit.

2. Inputs: None.
3. Returned values:

None.
4. Local variables:

None.
5. Global variables (and how modified):

None.

void InitializeVCRs()
I

RAMSDOpen(PLAYVCR);
RAMSDOpen(RECORDVCR);

/* end InitializeVCRs */

35

/* Module: VideoGeneration.h

This module contains the prototypes for functions available in
the VideoGeneration.c library.

Prototypes are listed in lexicographical order.

*,!

/* Advance the playing VCR frame by frame, process each frame, and
record the result frames on another VCR. */

void GenerateVideo(int numberOfFrames, int sampleSize);

36

1* module: VideoGeneration.c

This module contains the routines that control the production of

simulated real time video.

Functions are listed in lexicographical order.

#include "MacintoshHeaders .h"
#include "SystemDefines .h"
#include "VideoGeneration .h"
#include "MiscUtilities.h
#include "ImageDegradation.h"

/* Local function prototypes (in lexicographical order) :

static void AllocateMemory(Pixel *inputlmage [IMAGEHEIGHT),
Pixel *outputlmage(IMAGEHEIGHT]);

static void FreeMemory(Pixel *inputlmage[IMAGEHEIGHTJ,
Pixel *outputlmage[IMAGEHEIGHT));

Function AllocateMemory

1. Purpose: To allocate memory in the Macintosh to store 2 images, one for
input the other for output, of size IMAGE-HEIGHT x IMAGE-WIDTH.
Each array element stores one Pixel.

2. Inputs: None.
3. Returned values:

inputlmage - Memory space for storing the input image.
outputlmage - Memory space for storing the result image.

4. Local variables:
rowCounter - Counter variable.

5. Global variables (and how modified):
None.

static void AllocateMemory(inputlmage, outputlmage)
Pixel *inputlmage [IMAGEHEIGHTJ, *outputlmage [IMAGEHEIGHT);

register mnt rowCounter;

for (rowCounter - 0; rowCounter < IMAGEHEIGHT; rowCounter++)
inputlmage~rowCounter) - (Pixel *)malloc(sizeof(Pixel)*
IMAGEWIDTH);

for (rowCounter - 0; rowCounter < IMAGEHEIGHT; rowCounter++)
outputlmage(rowCounterJ (Pixel *)malloc(sizeof(Pixel)*
IMAGEWIDTH);

/* end AllocateMemory *

37

/ **** *********************** ****************************** *

Function FreeMemory

1. Purpose: To release all memory used for image storage.
2. Inputs: inputImage - Memory for the original image storage.

outputImage - Memory for the result image storage.
3. Returned values:

None.
4. Local variables:

rowCounter - Counter variable.
5. Global variables (and how modified):

None.

static void FreeMemory(inputImage, outputImage)
Pixel *inputImage(IMAGE_HEIGHT], *outputImage(IMAGE HEIGHT);

register int rowCounter;

for (rowCounter = 0; rowCounter < IMAGE HEIGHT; rowCounter++)

free (input Image (rowCounter]);
free(outputImage[rowCounter]);

/* end FreeMemory */

Function GenerateVideo

1. Purpose: Allocate memory in the Macintosh to store 2 images, one for input
the other for output, of size IMAGEHEIGHT x IMAGE-WIDTH.

2. Preconditions:
An output and input image tile must be selected.

3. Inputs: numberOfFrames - Number of frames to process.
sampleSize - Degrade the image by reducing its sampling grid size
to this amount.

4. Returned values:
None.

5. Local variables:
frameCounter - Counter variable.
inputImage - The original, unprocessed image.
outputImage - The processed image.

6. Global variables (and how modified):
None.

void GenerateVideo(numberOfFrames, sampleSize)
int numberOfFrames;
int sampleSize;

int frameCounter = 1;
Pixel *inputImage[IMAGE_HEIGHT], *outputImage(IMAGEHEIGHT];

SwitchToRSl70(0;

InitializeVCRs(;

38

AllocateMemory(inputlmage, outputlmage);

while (frameCounter <- numberOfFrames)

/* digitize an image into the NuVision system *

GrabAnlmageo;

/* read image into Macintosh memory from the NuVision system *

ReadlrnagelntensityValues (inputlmage);

/* advance playing VCR to next frame ~

AdvanceVCR(PLAYVCR);

/* Perform operations on input image *

BlockyImage (inputlmage, outputlmage, sampleSize);

/* display the resultant image by writing it into the NuVision
memory */

Write ImagelntensityValues (output Image);

/* advance recording VCR to record result image ~

AdvanceVCR(RECORDVCR);

++frameCounter;

I * end while *

FreeMernory(iriput Image, output Image);

CloseVCRsOC;

/* end GenerateVideo *

39

