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1.0 INTRODUCTION

The Parametric Analysis of Radiation effects software development efforts at Vanderbilt
University are given the general title PARA. The PARA efforts were started at North
Carolina State University by Dr. Sherra Kerns. The initial version of PARA was developed
to help design engineers, test engineers, and other interested engineers determine the
vulnerability of a circuit to total-dose radiation. At first, the software was developed in a
supporting role to verify the experimental results. However, with the ever increasing cost
of radiation experiments, the roles of the software and experiments were reversed. The
PARA software is being used to predict the operating performance of ICs in radiation
environments and the simulation results are verified through experimentation.

However, as with all other software packages, the simnulation results from PARA must be
thoroughly verified. Also, to make a software useful to the engineers, the developers must
present the software through a user-friendly interface. If the software is wonderful but
very difficult to master, very few engineers will use it.

Below is a brief description of PARA along with the shortcomings of the previous versions
and the proposed improvements. This is followed by the accomplishments of the past year
and future possibilities. In the discussions that follow, no distinction is made between the
numerous earlier versions of PARA. The earlier codes consisted of research versions and
were never released. The general description of earlier PARA shortcomings summarizes

the totality of earlier research results.

1.1 PARA

PARA is a switch-level tool capable of identifying the principle failure mode caused by
the design methodology for a CMOS digital IC. The field-oxide-leakage failure is not
considered a part of this failure mechanism as it is controlled by the fabrication process
parameters and not the circuit design. The principle failure mechanisms for the PARA
simulation were mainly divided into three categories: static failure, dynamic failure, and
power-related failures.

Static failure is considered a stuck-at type of failure which occurs only at a node in the
circuit. This type of failure causes the node voltage to be out of the digital logic range
for a 1 or a 0 (i.e., the voltage for the node is neither HIGH nor LOW but somewhere
in between). The subsequent logic circuits do not recognize this voltage and the overall
circuit operation fails. This type of failure is caused by the increased leakage current

of n-channel devices combined with decreased current driving capabilities of p-channel
devices. This type of performance degradation is highly bias dependent.




Dynamic failure occurs over a path consisting of a sequence of gates rather than a single
node. Due to the decreased p-channel pull up current and increased n-channel leakage,
less current is available for a node to charge the capacitance. This results in a longer
delay for the signal to rise to its final value. The cumulative effect of individual increase
in propagation delays at nodes can amount to a significant increase in delay over a path
causing a timing failure. This is especially true in case of synchronous circuits where
timing is a critical issue. Such failures are highly dependent on the bias conditions during
and after irradiations.

Power-related failure refers to the case when the leakage through the circuit nodes causes
the standby current to increase beyond the system specifications, giving rise to a failure.
This type of failure, thus, involves all gates on an IC. The large number of such gates on
a VLSI circuit indicates that the individual dependence on bias conditions for each gate
has no overall effect on the final degradation.

PARA uses switch-level simulation algorithms along with RC-delay estimation techniques
to speed up the simulation process with acceptable accuracy. PARA has been tested on
many digital logic circuits consisting of simple logic gates. However, digital circuits where
logic functions are implemented through the use of pass gates, mainly used for generating
XOR or XNOR functions, cannot be modeled by the switch level algorithms in PARA due
to its analog nature (accurate delays through such a gate can be obtained only through
analog circuit simulators). Switch-level simulation techniques do not accurately estimate
the delays through such a gate, and hence PARA, in its current form, cannot simulate

such a circuit.

The simulation results from PARA have been verified through exhaustive simulation
through accurate circuit simulators, such as SPICE. The final results were within 10
percent of each other. Circuit simulation times were much smaller for PARA than for
SPICE, with the actual improvement factor dependent on the size of the circuit. For small
circuits containing less than 10 transistors the improvement is small. For large circuits
having several hundred transistors improvements of 3 orders of magnitude have been
observed. However, the simulation speed and accuracy were still not optimal.

For a detailed descriptions of the algorithms used in PARA and other details, refer to the
published literature.

1.2 PROPOSED TASKS FOR 1990-1991

The main object for the PARA project for 1990-1991 was to improve the software in
whatever manner possible and prepare it for a public release. The main tasks for the year
1990-1991 were decided as follows:




1.2.1 Decrease Overhead Processing

To make PARA useful, many small things had to be incorporated in the PARA software.
For example, PARA accepted node names instead of numbers. This increases overhead as
all the node names must be compared to find a match. If node numbers were accepted,
only two numbers need to be compared. Comparing two strings of characters (a node
name) takes much more computer time than comparing two integers. Similar trivial things
made PARA really slow for very large circuits with a large number of nodes. Processing
overheads had to be reduced.

1.2.2 Add Resistive Elements

PARA, in its original form, did not accept any interconnect resistances. As PARA
translates all the transistor network into an RC-network, the interconnect resistances were
assumed to be much smaller than the device resistances and were ignored. However, it
was suggested that addition of interconnect resistive elements will improve the accuracy.
The interconnect resistance was assumed to be the resistance between logic gates and not
within the logic gates.

1.2.3  Accept Hierarchy of Cells

Previous versions of PARA did not accept hierarchical description of circuits to facilitate
creation of a data base. However, generating a flattened list of devices for large files
from software requires large chunks of memory and that was deemed inconvenient. It was
decided to develop a preprocessor to accept hierarchical description of circuits. As PARA
operates on individual devices, this hierarchical description has to be converted eventually
into a flattened listing. The proposed preprocessor was expected to accomplish this.

1.2.4 Improve Standby Current Estimation Algorithm

Originally PARA accepted only one value of leakage currents for n-channel devices to

perform the power-related failure analysis. However, with this approach, some accuracy
was lost due to the different leakage mechanisms involved. For example, there are three
different leakage mechanisms involved for radiation environments: channel leakage, edge
leakage, and back-gate leakage for Silicon on Sapphire (SOS) and Silicon on Insulator

(SOI) technologies. Modifications proposed for PARA were to accept all these leakage
mechanisms and give an accurate estimation of standby power requirements.




1.2.5 Design of Test ICs

For verification purposes, a proposal was made to design a medium-scale integration (MSI)
level IC and have it fabricated at one of the commercial houses. This finished product
was to be used for testing and verification purposes.

1.2.6 Enhanced User Interface

PARA was developed without any user-friendly interface. It was decided that an improved
user interface would encourage engineers to adapt it into the design and test cycle faster.
An X-Window based, mouse-driven interface for PARA and all other related software was
proposed.

1.2.7 Path Properties

It was proposed that path properties for all the worst-case paths be reported to the user.
The path properties are the statistics of the path under consideration, such as number

of NAND, NOR and inverter gates, a path with maximum number of NAND gates, etc.
Such data could be used to identify many things.

1.2.8 Data Base Accessibility

PARA was expected to be incorporated into the existing design structure. To accomplish
that, software engineers required a window into the PARA data base to acquire whatever
information is needed. It was proposed that a window into the data base similar to the
one developed by Cadence Design Systems Inc. software be developed.

These tasks were generated with consultation from U.S. Army Harry Diamond Laboratories
(HDL) and Mission Research Corporation (MRC) personnel. These tasks were carried
out at Vanderbilt University. The software was developed on UNIX based systems. The
programming language used was C. The software was made platform independent to
avoid any problems later on.

1.3 SUMMARY OF RESULTS

All of the above mentioned tasks were completed except the Enhanced User Interface.
In addition to these tasks, other tasks were also carried out to make PARA useful to
the radiation effects community. These tasks were development of a BICMOS circuit
simulator, a statistical circuit simulator, a test vector generator for total dose testing, and
a circuit syr.ihesizer.




With all these improvements, PARA is ready for distribution. The aim for the next year,
following the present effort, is to develop a user interface combining all of the software
to generate a generalized radiation effects simulator. The simulation algorithms for all
these simulators should be able to handle large circuits very easily. However, no circuit
simulator can be considered complete in this age of rapid advancements. PARA can be
improved in many ways. However, the first priority should be to develop a user interface
to attract users to PARA. Many good software programs have failed due to an inadequate
user interface. PARA will face the same fate unless it is made very user friendly. Another
improvement should be incorporation of acceptance of analog-type circuits. There are
many ways PARA can be improved for the next generation of ICs. However, it is complete

in its current form.




2.0 ALGORITHMS

PARA converts a given circuit into a resistive and capacitive network. The MOS devices
are converted into resistances and parasitic capacitances are added later on to model the
delays and power requirements. Brief descriptions of the modeling of MOS devices as
resistances and the actual simulation algorithms follow. The next section describes the
shortcomings of the last version of PARA and the improvements made to overcome those
shortcomings.

2.1 ALGORITHMS

2.1.1 Resistance Estimation

PARA estimates the ON postirradiation resistances of devices for all cases (ON during
irradiation, OFF during irradiation) by running SPICE simulations on a chain of four
inverters. The time elapsed between the input of an inverter rising/falling to 2.5 V and
the output of the inverter falling/rising to 2.5 V is found to be the most suitable time
constant for resistance calculation for circuits with VDD — VSS = 5 V. Circuits using
other supplies can be analyzed with minor modifications. In order to suppress the effect
of internal node and gate capacitances, large capacitances (10 pF) are added at each
node. These capacitances determine the time constants, rather than the internal device
capacitances. The time constants when divided by these capacitances result in the average
resistance of the transistor (p or n, as the case may be).

2.1.2 Static Failure

The static failure can be simulated by estimating the minimum p-channel current sourcing
capabilities and the corresponding maximum n-channel current sinking capabilities at the
node. The ratio of p-channel drive divided by the n-channel drive provides an estimate
of the vulnerability of the node for such a degradation under extreme conditions. The
smaller the ratio, the more vulnerable the node is. Any other leakage paths, such as
through pass transistors need to be added to the denominator for calculating the ratio.

By sorting the nodes in ascending order of ratios, the nodes with decreasing vulnerability
can be obtained. The minimum pull up current can also be translated to maximum pull
up resistance for switch level simulations. Minimum pull down resistance can also be

used instead of the maximum pull down current. Maximum pull up resistance is usually
offered by the longest path of series p-channel transistors from the node to Vdd. The

bias conditions that provide the worst value of the ratio are established so as to provide
minimum pull up and maximum pull down currents, i.e. p-channel devices to be turned




OFF and n-channel devices to be turned ON. This requnres that inputs to the p-path
(and n-path) devices be at HIGH logic level.

2.1.3 Dynamic Failure

This involves the evaluation of maximum timing delays through all the circuit paths.
Delays at individual nodes in the paths are calculated by taking maximum RC delays.
The maximum resistance can be obtained by extracting the maximum pull up resistance
path as in the previous case for the signals rising from LOW to HIGH. For the falling
signals, the maximum resistance pull down path through n-channel transistors is used.
This normally is the maximam number of series n-channel transistors from the node to
ground for properly designed circuits. For calculating the maximum delays, the delays
need to be calculated for all possible input bias cenditions during irradiation (while the
parameters are shifting) and after irradiation (after the parameters have shifted). Th.
four cases that form an exhaustive set of bias conditions, for a particular path, are the
following.

e Input HIGH during irradiation, going from LOW to HIGH after irradiation
e Input HIGH during irradiation, going from HIGH to LOW after irradiation
e Input LOW during irradiation, going from HIGH to LOW after irradiation

e Input LOW during irradiation, going from LOW to HIGH after irradiation

The paths that show maximum delays form the critical paths and are most vulnerable to
dynamic failure. The values of path degradation are, in general, a function of the rate of
irradiation.

PARA first of all identifies all the input nodes. The circuit is traversed for any one of
the input nodes until an output node is reached. This is a depth-first approach where all
fanouts are neglected and only one signal path is considered. After reaching the output
node, PARA calculates the delays associated with this path by starting at the output
gate and moving backward. This process is repeated until all the paths associated with
this input node are taken care of. At this point, only the worst-case paths for this input
node are stored in memory. The same process is repeated for all the input nodes. As the
number of nodes and signal paths in fast RAM is small, the revised PARA is much faster
than the previous versions.

While the above discussions are in terms of positive logic, PARA can also be applied to
negative logic. The only difference between positive and negative logic is the notation
used for HIGH and LOW levels. PARA operates with the two voltage levels {i.e., 5V




and 0 V) and does not care what the designer calls HIGH and LOW. Currently PARA
assumes positive logic while generating out in terms of HIGH and LOW states. If negative
logic is used, the designer can interchange the HIGH and LOW state labels in the output
results.

2.1.4 Chip-Level Failure

The chip-level failure calculation involves the determination of maximum leakage at nodes
with logic level HIGH. The leakage at nodes with logic LOW do not have significant
leakage. In addition, all the nodes are never HIGH at the same time. Therefore randomly
selected nodes are needed for average standby current calculation. The leakage can be
estimated by extracting the maximum leakage path through the n-channel transistors
connected between the node and ground. Monte Carlo strategy is used to estimate the
average standby current for the whole chip. The algorithm takes the following form. Fifty
percent of the nodes with logic level HIGH are selected randomly and the standby current
is estimated. This process is repeated a number of times to arrive at an objective average
estimate.

The final average value is obtained from all average leakage values obtained through the
above repetitions. The individual leakage currents of a device are categorized into edge
leakage and channel leakage. Edge leakage depends inversely on the length of the device
while channel leakage depends on the width of the device. Provisions for a third type of
leakage, back-gate leakage, for SOS/SOI devices is also provided. If SOS/SOI technology
is not used, this leakage parameter is set to zero.

2.2 THE KEED FOR IMPROVEMENT

The need for improvements in PARA version 2.0 was obvious in many areas. These have
been described briefly in the first section. Here a detailed description for each of the
problems along with the solutions used is presented.

2.2.1 Decrease Overhead Processing

The need for improvement in this area of PARA version 1.0 was obvious from the start.
The old algorithms for PARA were the ones developed at North Carolina State University.
These were mainly developed to demonstrate the feasibility of such a simulator. The
complexity and unstructured nature of the source code made this first version difficult
to distribute to various vendors and manufacturers. A second version, PARA 2.0, was
proposed with a machine independent software package for distribution. In addition,
for PARA 2.0, a data base was designed to suit the algorithms in terms of accessibility,
efficiency, modularity, and speed. This ensured the ease of any modifications for the




inclusion of technologies other than CMOS, e.g. Bipolar or nMOS. However, the memory
requirements of PARA were ignored in the hope that bigger computers would nave enough
memory to handle large circuits. This assumption was proven false as the circuit size
increased exponentially while the computer RAM memories did not. The insufficient
RAM availability in computers caused PARA to use virtual memory (virtual memory
means PARA ran out of fast RAM and had to write data onto the disk). Whenever PARA
needed data from virtual memory, it had to wait for the computer to access the disk and
transfer data to the RAM. This slowed PARA down for extremely large circuits. The
data base requirements had to be changed to stop PARA from using up all of the fast
RAM.

The second main problem with PARA was that it allowed names (instead of numbers) for
a given node. This increased the flexibility of PARA from a designer’s point of view but
increased the overhead processing by orders of magnitude. As PARA uses R-C networking
during simulation, it looks for the nodes which are connected by comparing all node names
and selecting the ones with identical names. In a circuit with 5000 node names (a very
small circuit by today’s standard) and 100 signal nodes, PARA would have to compare
500,000 names. As name comparison takes longer than number comparison (number
comparison checks to see if two numbers are equal by checking their binary equivalent: for
comparing names, the binary equivalent of each character in the name must be checked),
PARA started to become slower for large circuits with thousands of node names.

For the latest version of PARA, it became evident that to avoid high memory requirements,
the data base would have to be changed. The most memory was taken up by the variables
storing all the characteristics of paths and gates. This variable was changed and the
most memory consuming data were removed. The data which were deleted stored the
characteristics of each and every path in the circuit (such as the nodes, gates, delays,
etc). The new version of PARA calculates all these variables dynamically (meaning they
are obtained whenever needed). This increases the processing overhead but reduces the
memory requirements by orders of magnitude enabling PARA to remain in fast RAM.

The second improvement was made in the way PARA stores the data base. Originally,
all the nodes were stored as simple variables. To find a node with a given name, PARA
compared all the node names to identify the gate to which the node belonged. This was
a very time consuming operation. For the latest version of PARA, hash table techniques
were used. For this technique, all the node names are passed through a hash function
which converts the name of the node into a number. This number is used as an address to
store the data. Whenever a node is required, its name is passed through the hash function
to obtain the address at which the data are stored. This is a faster operation than the
string compare method used in the earlier versions.




PARA now has the following variables.

e The Device Array

All the MOS transistor declarations in the input file are stored in this array. Each
of the components of the array represents one transistor and all its attributes.
The attributes constitute identifiers for the four transistor terminals, transistor
dimensions and SPICE model parameters to be used while computing device
characteristics.

Current versions of PARA take the four terminals as the drain, gate, source and
substrate. PARA does not differentiate between SOS, SOI or Bulk technologies.
The specific technology is implicit in the model parameters supplied by the designer.

The model parameters are simply those required by the designers preferred version
of SPICE. PARA itself does not have a transistor model and only uses the resistance
values from a SPICE analysis of a delay chain.

e The Resistor-Capacitor Arrays

PARA stores all the resistors and capacitors in individual arrays. An individual
element of these arrays would be a capacitor or a resistor with its attributes. The
attributes here comprise identifiers for the two terminals and the component value.

e The Model Parameters

The model parameters provided by the user are placed in a separate array. Each of
the transistors has a pointer to one of the elements of the model array. Each model
parameter assumes a default value unless it receives a definite value from the circuit
description file or “.res” file.

e Signal Node List

The list of signal nodes forms a key data structure on which PARA operates
frequently. A signal node essentially is an output node of a gate. For digital circuits,
this node is the only node of interest in a gate, except for the input nodes which are
assumed to form the output nodes of other gates. The signal nodes are extracted
from the circuit description and saved in an array. The array element, therefore, is
a single signal node with all the associated information. The kind of information,
besides the name, appended to each node constitutes the following.

— The path of n-channel transistors

Every CMOS gate has a series of n-channel transistors forming paths from signal
node to ground. PARA stores all identifiers for those n-channel transistors
which form a path between the signal node and ground in an exact topology

10
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as they appear in the circuit. Dynamic allocation of memory is used to
accommodate as many transistors as appear in a path, the limit determined
only by the memory available.

— The path of p-channel transistors

For every n-channel transistor in a gate, a p-channel transistor exists. Therefore,
PARA stores paths of p-channel transistors exactly in the same fashion as n-
channel paths.

— Capacitance

The total capacitance at a node is the sum of all the gate capacitances, all the
node (junction) capacitances, and all the externally connected capacitances
attached to that node. These capacitances are not to be confused with the 10
pF capacitances used for estimating the device resistances. These capacitances,
used for calculating delays at individual circuit nodes, are the actual capacitance
values obtained from the circuit description.

e The Hash Table

The hash table is a block in memory specially reserved for storing data by PARA.
The size of this block can be changed on the fly as required. A hash function is
also generated which converts a given string of characters into a number which falls
within the size of the memory block. The hash function can be any function. A
simple hash function just adds the ASCII values of all the characters in the given
string to produce a number. This number is converted to a modulo n number where
n is the size of the memory block. A more complicated hash function was used in
this simuation.

The hash functions may have collision problems, meaning, two character strings
may have the same hash address. In this case, the conflict must be resolved and the
data stored to facilitate fast retrieval. One way to achieve this is to use pointers and
cellars. A cellar is a block of memory locations reserved for such collisions and this
block resides within the hash memory block. If two names happen to have the same
address, one of them is stored in the address determined by the hash function and a
pointer is attached to that memory location indicating that another name with the
same address is stored at the location.

For the PARA hash tables, the drain, source, and gate nodes of each transistor were
stored. At each address, three memory locations are reserved, one for the gate,
one for the drain/source, and one for the pointer. Only one location is used for
drain/source as they are treated as equivalent. The memory location actually stores
the number of the transistor to which the nodes belong. For example, if the gate
node of transistor # 14 has hash address of 127 and the drain node of transistor
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# 34 has the same address, then the first eight bits at memory location 127 will

contain the number 14, the second eight bits will contain 34, and the remaining 16
bits will contain either the address of the conflicting data (if a collision occurs) or
nothing (if there are no conflicts).

These hash tables are used during the simulation process to identify the signal flow
for a given input. The identification of the next stage is done dynamically. For
the given input node, all transistors with the gate connected to each are identified
through the use of gate-hash table. Next, a signal node list is used to identify the
output of each logic gate. This output node now becomes the input node for the
next stage and the same process is repeated until a circuit output node is reached.
This process of dynamic identification of the next logic gate is very fast and the

storing of all the signal paths is not necessary easing the memory requirements and
keeping PARA within RAM.

2.2.2 Add Resistive Element

In today’s ICs with a million transistors, the problem of interconnect resistances is
becoming increasingly evident. This is mainly caused by the lengths of the interconnects.
In PARA 2.0, the interconnect resistances were assumed to be much smaller than the
device resistances, and therefore were ignored. However, for future technologies, and for
some of the present day designs, the interconnect resistances may not be negligible. For
these reasons, it was decided that interconnect resistances should be one of the elements.
The interconnect resistance will be used for failure analysis.

PARA 3.0 allows interconnect resistances in between two logic gates. However, intercon-
nect resistances inside a logic gate are not allowed. The resistances outside are merged
with the resistance values of the devices inside the logic gate and a final resistance value
generated to obtain a delay.

As these interconnect resistances are on the order of hundreds of ohms and the transistor
resistances modelled in the thousands of ohms, the simulation results will not be influenced
very strongly by interconnect resistances. However, for cases where it may contribute

significantly to signal delay, the new models should prove adequate enough for simulation.

2.2.3  Accept Hierarchy of Cells

For Very Large Scale Integration (VLSI) and beyond technologies, the requirement that a
circuit be described in a flattened format is too restrictive. The generation of the circuit
description will take a long time. However, as PARA operates on individual devices, a

flattened description is needed at some point in the simulation process. A separate routine
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acting as preprocessor for circuit descriptions has been developed. This preprocessor
flattens the design and prepares a flattened file for PARA. As many software packages
require this flattened format, a separate routine seemed to be the best approach. This
routine has been developed using general guidelines for cell hierarchy so as to facilitate its
usage by all of the software without running into any technology-related problems.

The preprocessor first takes all the sub-circuits in a given design and flattei.s them by

adding a character at the end of all the node names. For example, if a node in a sub-circuit
is named outl, it will be changed to outla when flattened for one level of hierarchy. If
the same cell is encountered second time, the node name will be changed to outlb. The
whole alphabet is used repetitively, i.e., after encountering 26th instance of a cell, the next
one will contain outlaa. This type of flattening is very fast and does not require a lot of
computing time. The final flattened file is passed on to whichever software is being used
or stored in a file for future use.

2.2.4 Improve Standby Current Estimation Algorithms

The previous versions of PARA estimated the standby current through the use of
normalized leakage currents for each device. This leakage current was not further divided
into different categories. However, for many technologies, such as SOS/SOI where back-
gate leakage occurs, the simple modeling of leakage current as just one parameter does
not yield accurate simulation results.

It was proposed by MRC personnel that at least three different types of leakage currents
for each device be accommodated. These currents were defined as channel leakage, edge
leakage, and back-gate leakage. The channel leakage is the current passing between
the drain and source of a device under the gate oxide. This type of leakage is directly
proportional to the width and inversely proportional to the length of the device. The edge
leakage is the current passing between the drain and the source around the edges of the
channel. This type of current does not depend on the width but is inversely proportional
to the length of a given device. The back-gate leakage is the current occurring mostly
in SOI/SOS type technologies. The insulator under the channel traps enough charges to
create an electric field that support a leakage. This type of leakage is directly proportional
to the width and inversely proportional to the length of a device.

For the latest version of PARA, the standby current estimation routine recognizes all these
types of leakage currents and calculates the total power requirements for the chip using
the relationships mentioned earlier. The main problem encountered for this improvement
was the merging of parallel transistors. Sometimes, to increase efficiency, the designer
breaks down a big transistor into smaller parallel transistors. The sum of these transistors
will have different leakage current than a big transistor due to the dependence of these
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leakage currents on total widths and lengths of the devices. The hash table routines were
modified to accommodate this problem.

2.2.5 Design of Test ICs

PARA simulation results were compared with results obtained from other accurate,
conventional simulators, such as SPICE. The PARA results deviated from the accurate
simulation results by <10 percent with three orders of magnitude savings in simulation
time for large circuits. However, the simulations results still needed to be verified against
experimental data. To accomplish this, a moderately complex IC was designed. The design
chosen was a 4-bit parallel multiplier. This design contains around 600 transistors and
has total number of possible signal paths in the millions. This layout was first generated
using simple rectangular devices with single metal technology. This IC was fabricated by
MOS Implementation System (MOSIS) using their n-well, CMOS, nonhardened, 2.0 p
process. The first set of ICs was functionaly operative in pre-irradiation testing and were
sent to MRC for radiation exposure. However, it was discovered that the nonhardened
technology of MOSIS was capable of only withstanding <100 Rads(Si). With <100
Rads(Si) exposure, the IC showed an extremely high standby current requirement. There
were four parts from MOSIS and all showed similar characteristics. Such high leakage per
transistor was attributed to edge leakage currents. This lot was fabricated using money
provided by MRC.

The next multiplier design was accomplished through the use of donut devices and guard
rings. The donut devices are round devices and have no edges between the drain and
the source. It was hoped that this would prevent the increase in leakage currents which
caused the first set of ICs to fail. However, this set of ICs had a design error in them.
The first bit and fourth bit of Y inputs were shorted together through a design error.
This error was discovered only after the ICs were fabricated. The verification of the logic
system was not carried out due to the inability of the software to recognize donut devices.
Berkeley tools were used to extract a device-level description of the circuit but MAGIC is
not capable of extracting donut devices and so no logic checks were performed. The cost
of the fabrication was not borne by MRC.

The error in the previous version of the design was corrected and the new design sent
to MOSIS in late May of 1991. This last version also had an error in it which was not
discovered until later. This error seems to have come from transferring the design from
one data base to another. At one point, a via contact was transformed into a poly contact.
This error was next to the P2 (third least significant bit) output. During simulation, it
was found out that P2 is not included in the worst-case path list from PARA, so this
error was considered as a noncritical one. The experiment will be continued without any
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trouble. Also, MOSIS indicated that they can sell 10 additional parts at $15 each. These
parts will be ordered and used in the final experiment. '

2.2.6 User Interface

Current work is developing a user interface based on the X-Windows system. The
interface will be mouse driven and will also incorporate other programs from Vanderbilt.
The designers will have pull down menus for ease of use. The first pull down menu
will determine the program to be run (i.e., PARA, TODO, PARASTAT, others). For
PARA, the second pull down menu will perform the file functions (for example editing,
viewing, specifying data files, etc). The third pull down menu will have the simulation
results viewing choices (for example, choosing the third most critical dynamic failure
characteristics will show the sub-circuit responsible for failure along with bias conditions
and delays). The fourth menu will have the test vector generation functions. These menus
will be changed as time progresses but their main features will probably remain the same.

2.2.7 Path Properties

It was proposed that path properties for all the worst-case paths be reported to the
user. The path properties means the statistics of the path under consideration, such as
number of NAND, NOR and inverter gates, a path with maximum number of NAND
gates, etc. However, it was later decided that all the information requested above may
not be suitable for PARA to calculate. Because PARA operates at the individual device
level and not at the logic-level, it was decided to output the characteristic of each gate
instead of outputting characteristics of each signal path. These output characteristics of
each gate are used for test vector generation also. The output data are stored in a file.
The format used is:

gate gate_number
output_name
rising_delay falling_delay
minterm input_1 input_2
minterm input_3 input_4
gate gate_number

where, gate_number is a number assigned by the designer (or software) and is only
for accounting purposes, output_name is the name of the output node for the gate,
rising_delay and falling_delay are the delays associated with the gate only. These delays
can be viewed as the RC-delay of the gate. The minterms are represented in SOP format
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with negation. For the above example, the function of the gate is represented by

input_1 input_2 + input_3 input_4

A blank line is the delimiter for the gates (a blank line indicates the end of the definition
for a gate). An * at the start of a line indicates a comment line and is to be ignored. This
same format is used for the test vector generation routines.

2.2.8 Data Base Accessibility

As the data base with the information that was required by MRC personnel had been
removed, this task was not finished.
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3.0 CONCLUSION

All the proposed tasks for the PARA project are finished. The data base was modified to
accommodate very large circuits for fast simulation. The simulation algorithms were also
modified around this data base. A hash table was developed to avoid computationally
expensive searches through the data base. Resistive elements were added and leakage
current algorithms modified. Overall, the new PARA is ready for distribution after the
user interface is completed. However, this will not be a requirement for distribution.
PARA can be distributed as it stands now. The main challenge now seems to be the
verification of PARA through experimentation. The software will be delivered to MRC in
its final form for testing in August 1991. Also PARA will be used for a VLSI Design class
at Vanderbilt University during the Fall 1991 semester. This class requires a design and
simulation of VLSI-level class project. This will be a good test for PARA to see if it can
correctly identify the worst-case signal paths in the circuit. Also, it will be useful to learn
how this information is used by the students to improve their designs.

To obtain a copy of PARA, the user simply needs to contact either Dr. Bharat Bhuva or
Dr. Shera Kerns at Vanderbilt University. The user will be sent a Vanderbilt University
copyright form, for signature, which states that the code will not be distributed outside
the requesting organization. The code will then be provided at a nominal handling charge.
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APPENDIX A
THE USER MANUAL FOR PARA

This section describes all the necessary commands and the files that the user needs to
know about before using PARA. Various input and output options and the file formats
are presented. Several example problems are included on the PARA release tape. The
files on the tape, too lengthy to reproduce here, illustrate the formats presented.

A.l  GETTING STARTED

PARA can be executed by using one of the following command forms.

para intInterval circuitFile
para circuitFile

In the above two cases, the circuitFile refers to the circuit description file. The description
is essentially the same 3s the SPICE description with some modifications and will be
discussed in the following section. The intInterval provides the interpolation interval to be
chosen for the doses that are present in a file containing transistor parameters at various
dose levels. The use of this interval is described in the following sections.

PARA reports all output information on its standard output. In case the output needs to

be filed, it can be redirected into the desired output file. The above commands in such
cases can be modified to the following:

para intlnterval circuitFile > outputFile
para circuitFile > outputFile

A.2 INPUT FILES

PARA needs several kinds of input files. These files contain information about the circuit
and the parameter shifts of its devices caused by radiation. The various files required by
PARA are the following:

Circuit description file
.model file

.res file

-int.res file

inverter file
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The various files are described below.

A.2.1 Circuit Description File

This file contains details of the circuit which PARA is supposed to test. The input file
format is the same as the SPICE format with a few additions.

A.2.1.1 Transistor Declaration. As in SPICE, transistors are represented by a string
starting with the letter ‘m’ or ‘M’. The rest of the word is immaterial and is ignored by
PARA. The string can be used by the user to distinguish between the various transistors.
A general form of the transistor declaration is shown below.

MpullUp drain gate source substrate modelName [w = 10u] [l = 2uy]
[as = 10e-15] [ad = 10e-15]

where “drain” is the node name of the drain of the transistor, MpullUp; “source” is the
node name of the source of the transistor, MpullUp; “gate” is the node name of the gate
of the transistor, MpullUp; and “substrate” is the node name of the substrate of the
transistor, MpullUp.

All of the above PARA node names are strings; SPICE nodes are designated
numerically. The names "VDD" and "vdd" are reserved for the supply voltage. Similarly,
"GND" and "gnd" are reserved for the ground. All reserved words can be used either in
uppercase or lowercase, but not in a combination of upper and lower cases, i.e., vDD,
Vdd, GnD etc., are not allowed.

“modelName” refers to the name of the model associated with the transistor, MpullUp.
The model itself can be defined anywhere in the circuit file. All the other variables
existing in the declaration are optional. Default values are used if any variables are left
unspecified.
An example of the transistor declaration is shown below.

MpassTran output input vdd vdd cmosp w=10u 1=2u
A maximum of two lines for the transistor declaration is allowed. The second line should
begin with a ‘+’ in the first column in order to represent continuation from the first line.

The above example if extended to two lines would look like the following.

MpassTran output input vdd vdd cmosp w=10u + 1=2u
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A.2.1.2 Resistor and Capacitor Declarations. A typical resistor declaration starts with
an ‘r’ or ‘R’ and has the following form:

RpullUp vdd output 10K

This represents a resistor between “vdd” and “output” nodes with value 10 k2. A
capacitor has a similar form except that it starts with a ‘¢’ or ‘C’.

A.2.2 .inputs CARD

.inputs CARD specifies all the inputs of the circuit. PARA performs the delay calculations
only through the paths -ontaining these inputs. Therefore, the user has the flexibility of
specifying a part of the circuit for delay calculations. A typics! input declaration looks
like the following:

.inputs inpl clock controll

Here inpl, clock and controll are the input nodes to be considered.

A.2.3 .model CARD

.model CARD specifies the model to be used with the transistors declared above. The

modelNames associated with transistors are defined in the .model CARD. This is similar
to SPICE .model card.

A.2.4 .mod File

.mod file contains the SPICE model parameters at each dose level along with other
parameters desired for failure calculation. PARA uses this file, along with SPICE and an
inverter chain file (described later) to calculate the equivalent ON and OFF resistance
values at each dose level. This file should exist in a subdirectory, PARAfiles, and there
has to be one .mod file for all fabrication processes. For example, if the given circuit is to
be analyzed using the Sandia fabrication process, a file PAR Afiles/Sandia.mod should be
present. The format for the file is as follows. The first line contains the keyword “.dose”
and the corresponding dose value. The second line contains the keyword “.leakage” and
the resistances of the n-channel transistors for edge, channel, and back-gate leakage. These
resistance values are actually the inverse values of leakage currents for transistors with a
W /L ratio of 1. These resistances effectively represent the leakage through the transistors
when the node voltage is going HIGH. An example of a .leakage line is given below.

.Jleakage 1.0ell 1.0el10 1.0el2
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This means that for a transistor with W/L ratio of 1, the edge leakage is 1.0e-11, channel
leakage is 1.0e-10 and back-gate leakage is 1.0e-12. All these leakage values are for a
supply voltage of 1.0 V.

The next few lines describe the SPICE model parameters for all the desired conditions, i.e.,
p-channel transistor parameters if it was ON during radiation and OFF during radiation.
The same holds for the n-channel transistors. The last line should necessarily begin with
an asterisk to mark the end of the dose parameters. After every dose level, a line with the
asterisk is essential.

A.2.5 .res File

This file, present in the subdirectory PARAfiles, is created by PARA only if it is not
already present. PARA uses the information in the .mod file and runs SPICE on the
inverter chain (inverter file is described later) and extracts the resistance values. The
ON resistances of n- and p-channel transistors for the particular fabrication process are
generated and placed in this file. The initial two lines are the same as in the .mod file
but the next line contaias “non” “noff” “pon” “poff”. “non” and “noff” mean n-channel
ON resistance if it was ON during irradiation and n-channel ON resistance if it was OFF
during irradiation, respectively. “pon” and “poff” have similar meanings. The last line,
which represents the end of all the parameters for the particular dose level starts with an
asterisk.

This file can either be created by PARA or by the user simply by editing the file in the
appropriate format. Once the file is present in PARAfiles, PARA does not recreate it for
other circuits. The same parameters are valid for all the circuits which are to be fabricate *
by the same technology. For Sandia.mod, the .res file should be Sandia.res.

A.2.6 -int.res File

In case the user provides the option of interpolation with a specified interpolation interval,
PARA creates -int.res file from .res file using linear interpolation. In case the interpolation
option is given by the user, PARA creates this file even if it is present in the subdirectory
PARAfiles, since the interpolation interval may be different. If the .res file present is
Sandia.res, the corresponding file generated is Sandia-int.res. The file can alternatively be
generated by the user simply by editing the file using the same format as the .res file.

A.2.7 inverter File

This file is needed at the initial point when .res file is to be generated from the .mod file.
This file is to be present and should always be named as invchain. PARA runs SPICE on
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the inverter file to generate the various resistances using different models in the .mod file.
This essentially means that for the first run on a circuit with a new technology, PARA
is going to be slow, since SPICE is to run for all the sets of model parameters in the
.mod file. All other runs, on different circuits but using the same technology (fabrication
process) will take less time. The inverter file is always the same and is provided with
PARA. Also, at the beginning, the user should make sure that SPICE can be run from
the directory where PARA resides, i.e., an executable version of SPICE is to be present in
the directory or an appropriate path should be set.

A.2.8 Output Files

PARA does not generate an output file directly. All the output information is printed

on the standard output. In order to file the output, redirection of the output to a file

can be requested. PARA then prints out the node degradations, path degradations, and
power-supply degradation for each dose level. The percentage variation from the zero

dose level is specified and it is left to the user to determine if the degradations are large
enough for the failure to occur.

A.29 Input Options

Several options are available based on the kind of data files that are available. During the
first run on a circuit using a particular technology, the .res file is normally not present.

The user therefore has the flexibility of either providing the .mod file which can be used
by PARA to generate the .res file or editing the file manually filling all the data required
in the .res file. PARA checks to see if the .res file exists in the PAR Afiles directory. If the
file is present, then PARA uses it directly, else PARA first tries to generate the file using
SPICE, .mod file, and the inverter file, and then uses it on the input circuit. For all the
subsequent runs on different circuits, but using the same technology (e.g.Sandia), it uses
the .res file generated.

In case the -int.res file is present in the directory PARAfiles, this file is given preference
over .res file; i.e., -int.res file is used rather than .res file. The user has the flexibility of
providing the interpolation intervals as desired. Whenever the interpolation intervals are
provided in the command line, the PARA uses the interpolation on .res file to generate
-int.res file regardless of whether -int.res file is already present in PAR Afiles. Therefore, if
the user wants to preserve a number of -int.res files with different interpolation intervals,
he or she needs to rename the files with different file names before providing the new
interpolation interval to PARA. In case the -int.res file is absent and no interpolation
option is given in the command line, the .res file would be used. As with the other files,
the user can edit the -int.res file himself, keeping in mind the appropriate format. By
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the interpolation options and the combination of various files, a number of input options
are possible. :

A.2.10 Limitations

There are some restrictions on the kind of circuits that the current version of PARA can
handle. Only CMOS Digital circuits can currently be analyzed. These include all the
gates, latches and pass transistors (transmission gates). The circuits that are out of the
PARA domain are the ones that do not have an equal number of complementary p- and
n-channel transistors. Any form of analog circuitry which may occur in digital circuits,
including sense amplifiers and dynamic RAMs, are not handled. External resistances are
not handled in the current version. In addition, the capacitances at nodes other than
signal nodes are ignored.

PARA provides accurate delay values for most cases. For cases when a very slow element
is present in series with a sequence of fast elements, PARA does not provide very accurate
delay values, but correctly identifies the critical path. As in any other switch-level
simulator, PARA sums up the delays at individual gate nodes to obtain the total value. In
actuality, two consecutive gates have an overlap of real time during which they approach
their final value. Therefore, the addition of delays to get the total delay is not precise.
The error introduced by this summation is very small for most cases, except for the circuit
paths having extremely slow elements. Such paths are therefore not handled properly
by PARA. PARA provides higher delay values in such cases and hence is pessimistic
in nature. This situation can be seen more clearly, if it is assumed that the external
capacitance at a node in a circuit being simulated has a value 10 uF instead of 10 pF. In
this case, that node rises to a HIGH level (5 V, say) very slowly as compared to other
nodes. As it rises to 2.5 V, it starts affecting the next gate and therefore the output of
that gate starts falling to LOW level simultaneously. The possibility of this output node
reaching the LOW level before original reaches the HIGH level cannot be ruled out. This
clearly indicates that the total delay in this case cannot be the sum of the delays at these
nodes. PARA does add up the delays and provide a higher value of total delay.

PARA carries out a linear interpolation of the parameters for the intermediate dose values.
This is not very accurate if the data points available are far apart. Accurate results are
expected if the parameters in .res file are available at small dose intervals.

PARA does not simulate failures due to field-oxide leakage.

A.3 SOURCE CODE FILES

Important source code files are briefly described here.
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A.3.1 Main File

The main file that controls the sequence of operations and contains the main function is
para.c.

A.3.2 Include Files

These files are included in most of the other source code files. They contain all the data
declarations and constant definitions.

A.3.2.1 constant.i. This file defines all the constants used in all .c files.

A.3.2.2 struc.i.  All the structures for devices, capacitances, signal nodes and signal
paths are defined here.

A.3.2.3 def strl.i & def str2.i. These define some of the default values for device
parameters and are easily changeable.

A.3.3 Input Interface Files

These files control the front end and interact with SPICE for the extraction of relevant
parameters.

A.3.3.1 resistors.c. The ON resistance values of the devices are calculated by this file.

A.3.3.2 modifyres.c.  This function in this file changes the resistances of the devices
after each run for a dose.

A.3.3.3 interpol.c. Interpolation of the resistance values is carried out by the function
defined in this file.

A.3.4 Data Base Generator Files

These files parse the input circuit description file and generate the data base for subsequent
failure simulations.

A.3.4.1 getdevice.c. All the resistor and capacitor declarations are scanned and placed
into appropriate data structure.

A.3.4.2 getr.c. The transistor declarations are read and stored.
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A.3.4.3 putmodel.c. The models corresponding to the transistors stored are attached
to the transistor descriptions. ‘

A.3.4.4 inputs.c. .inputs card is read and the input nodes are stored for subsequent
signal flow generation.

A.3.4.5 getnode.c. All the signal nodes are extracted and the transistors associated
with them are stored along with them.

A.3.4.6 sig cap.c. The node capacitances are calculated and attached to the description
of the corresponding node.

A.3.4.7 sigflow.c. The signal paths are generated for dynamic failure calculations.

A.3.5 Failure Detection Files

The failure simulation algorithms are implemented in these files.

A.3.5.1 minpath.c. The n-channel and p-channel resistances for static failure deter-

mination are calculated in this file. Power supply related failure is also handled in this
file.

A.3.5.2 delay.c. Dynamic failure calculations are done by the functions defined in this
file. The individual delays at each nodes are calculated and added to form the total delay.

A.3.6 Other Files
These files do not fall into any special category.

A.3.6.1 loads.c. This file loads a single line from a file into a buffer.

A.3.6.2 getword.c. This file allows a word to be loaded into a buffer from a line stored
in another buffer.

A.3.6.3 makefile. This file generates PARA for execution.
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APPENDIX B

TEST VECTOR GENERATION FOR WORST-CASE TESTING
OF CMOS ICs IN TOTAL DOSE ENVIRONMENT

B.1 INTRODUCTION

This appendix presents algorithms along with experimental verification to automatically
generate input vectors to verify the radiation tolerance for a given CMOS IC. The
tolerance is estimated through worst-case bias conditions to induce maximum shift in
circuit parameters causing earliest operational failure. The software generates the global
input test vectors to induce these worst-case bias conditions at individual signal nodes for
testing the ICs.

It has been shown that the operational failure of ICs in total dose environments is bias-
dependent. The circuit-level parameters causing failure (such as delay, power, etc) are
dependent on individual transistor characteristics which, in turn, are bias- and radiation-
dependent. With bias-dependent transistor parameter shifts, it is possible that for some
bias conditions the circuit parameters will exhibit greater degradation. For example, for
an inverter, if the input is held HIGH (or LOW) during irradiation, p-channel devices will
experience shifts corresponding to that for an OFF (or ON) device and n-channel devices
will experience shifts corresponding to that for ON (or OFF) device. This inverter will
exhibit higher gate delay and power for the case where input was held HIGH than for the
case where input was held LOW due to higher p-channel threshold voltage and n-channel
leakage. Thus, bias-dependency of the device parameters shifts indicates the existence
of worst-case bias conditions for which the degradation in circuit performance is greater
than other bias conditions. For accurately estimating the operational life of an IC, these
worst-case conditions must be used to test for the earliest operational failure.

However, usually the test engineers use arbitrary input vectors to test a given design. This
will not yield an accurate estimation of the radiation tolerance of the given ICs. Also,

in comparing two different designs for the same function (internal designs of the ICs are
different but they perform the same function), the use of identical test vectors may not

yield an accurate estimation of the operational lifetime. To compare two different parts,
one must use individual worst-case test vectors. If the test vector chosen happens to be
worst-case for design A and not for design B, then design B may exhibit better radiation
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tolerance. However, design A may prove to be better if individual worst-cases were used
for testing.

The task of identifying the worst-case test vectors can be divided into two subtasks;
(1) identification of worst-case bias conditions for individual transistors in the circuit,
and (2) identification of worst-case test vectors based on these bias conditions. For the
first task, software which has the capability of identifying the worst-case bias conditions
for individual transistors using switch-level simulation along with RC-delay estimation
techniques has been developed. For the second task, software capable of using back-
tracking and back-tracing techniques to identify the worst-case test vectors for a given
design has been developed. This report deals mainly with the software algorithms for the
second task and the results of the experiments carried out to verify these algorithms.

B.2 ALGORITHMS

The software developed for the first task identifies the worst-case bias conditions for all
devices responsible for causing the failure. For a given circuit, the number of critical
devices or the size of the critical sub-circuit is usually much smaller than the whole circuit.
As only the worst-case for the critical sub-circuit is known, the bias conditions still have to
be identified for the rest of the devices and these conditions extended to obtain a valid test
vector for testing. For example, for an arbitrary circuit with worst-case bias conditions
for delay testing as shown in Figure B-1, the node voltages at nodes A, B, C, D, and E
must be identified to induce the worst-case conditions for testing. Looking at the design,
it is evident that the node F must be LOW to cause output node to remain HIGH. To
obtain a LOW at node F, node E or node D or both must be at HIGH. As only the
critical sub-circuit (consisting of logic gates 1, 2, 3, and 4) is of interest, any one of the
above three choices for node E and D will induce the required worst-case conditions for
critical sub-circuit. This process of obtaining unknown node voltages can be repeated until
all node voltages are known to identify a test vector. Such a process can be performed
manually for small circuits, but for large circuits, computer-aided test vector generation
techniques must be used.

The software developed to generate such test vectors for large CMOS circuits use back-
tracing and back-tracking techniques. During back-tracing techniques, the software
propagates the worst-case conditions from output towards inputs just as in the above
example from output to F to E/D nodes. This back-tracing technique alone is not enough
to obtain the test vectors as conflicts will arise. A conflict arises when a single node is
forced to have a HIGH and a LOW value at the same time. For example, for an arbitrary
circuit in Figure B-2, to induce the worst-case, the output HIGH logic level was traced
to a LOW for node G. And subsequently, a HIGH for node B. However, a HIGH at
node F requires that node B be assigned a LOW. This is a conflict. For such a case, the
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Figure B-2. A simple example to show conflict in test vector generation.
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assignment would be a LOW for B, a HIGH for E, and LOWSs for C and D. For this simple
example, the conflict resolution was easy. However, for complex circuits, such manual
resolution may not be possible. For such cases, use back-tracking techniques. During
back-tracking, go back toward an output node until another assignment for the conflicting
node can be found. For example, propagate forward in the above example after conflict
at node B is found to reach node G. To obtain a LOW at this node, there can be an
alternative assignment for node B, namely a HIGH for node E and a LOW for B. Then,
this assignment is propagated using back-tracing as discussed above until another conflict
is found. At that time the whole process of back-tracking and back-tracing is repeated.

B.3 RESULTS

The test vector generator software has been tested on many designs including 4-bit
carry look-ahead, 4-bit multiplier, Binary-Coded-Decimal and many other designs. In
all cases, the software found the worst-case paths and the test vectors to induce the
worst-case degradations. The simulation results were verified through circuit simulation
from conventional simulators, such as SPICE. The results obtained from SPICE exactly
matched those obtained from these simulators. However, the simulation time for each
circuit was reduced by two to three orders of magnitude. For example, carry-look-ahead
example took less than 2 minutes of CPU time on a SUN 3/50 while SPICE took
hours along with user interventions to obtain the same results. The simulation time for
multipliers was measured in days for SPICE while this software takes <1 minute for each
test vector.

B.4 CONCLUSIONS

An Automatic Test vector Generation procedure has been developed to compute the
vectors necessary for generating the worst-case conditions for an IC for testing it against
earliest failure in a total dose environment. Such a software is necessary for accurately
estimating the radiation tolerance of a given design and for comparing two different
designs representing the same logic function.
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APPENDIX C
EVALUATION OF PARA PREDICTIONS

C.1 INTRODUCTION

An independent, experimental verification of PARA predictions was planned as part of
the development effort documented in this report. A 4-bit multiplier designed by the staff
at Vanderbilt University was the vehicle selected for the verification demonstration. The
plan was to fabricate the design through MOSIS (MOS Implementation System), and
then perform pre-irradiation and post-irradiation characterization of test transistors and
multiplier circuits contained on the same die. The transistor characteristics were to be
used to parameterize the PARA model to predict worst case propagation paths. The pre-
and post-irradiation propagation delays for the multiplier were measured as a function
of input vector to determine empirical values. The intent was to compare the PARA
predictions with the empirical results in terms of the value of the propagation delay and
the test vector ranking for worst case propagation delay.

C.2 SUMMARY OF RESULTS

The empirical verification of PARA was not achieved. Problems were encountered in
both the experimental and analytical portions of the effort. They are summarized in the
following paragraphs.

C.2.1 Initial Multiplier Lot

The first lot of multipliers was fabricated by MOSIS and resulted in eight packaged
parts. The parts were electrically characterized at MRC, and five units were found to be
appropriate for testing. Several of the MOS test transistors were found to have ruptured
gates, presumably from electrostatic discharge (ESD) damage during packaging. The parts
were shipped in conductive foam and ESD handling precautions were taken at Vanderbilt
and MRC. In the five good units, there were enough test transistors to provide “on” and
“off” bias conditions for both NMOS and PMOS transistors. Typical drain characteristics
for NMOS and PMOS devices are shown in Figures C-1 and C-2, respectively. The
multipliers were found to be functional, but they were extremely sensitive to latchup.
However, with careful handling (i.e., input current limited by 10 k() resistors and power
supply current limited by 210 k{2 resistor), they could be tested to determine propagation
delays as a function of test vector. The results of these measurements for unit 7 are shown
in Figure C-3.
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Irradiations were conducted at the Phillips Laboratory industrial X-ray source with an
energy of 20 keV and a dose rate of 600 Rad(Si)/min. The first device (unit 7) was found
to have failed when interrogated after 1 minute of irradiation. Failure was due to power
supply current increasing to 12 pA (pretest value was 20 nA) and consequently dropping
too much voltage across the current limiting resistor. Unit number 8 was then tested at
a reduced energy (15 keV) and dose rate (80 Rad(Si)/min) and monitored continuously
during the irradiation. The device was fully functional after 45 seconds of irradiation. At
that time, the supply current began a monotonic increase, and the device failed after 1.3
minutes due to excessive supply current. The mechanism for the failure was determined
to be source-to-drain edge leakage as shown by the subthreshold characteristic of the
irradiated NMOS transistor in Figure C~4. With the body and source of the transistor at
the same potential, the subthreshold current has increased over five orders of magnitude
from its pre-irradiation value. If the body voltage is increased to 2.5 V, the pre-irri diation
value of the subthreshold current can be maintained. This behavior is symptomatic of
radiation induced edge leakage.

The failure from edge leakage at such low doses precluded any evaluation of total dose
induced propagation delay variations. Although edge leakage had been anticipated as a
problem, it was not expected to cause failure until 10 krad to 100 krad. Unfortunately,
the commercial MOSIS process was softer than anticipated, and the experimental effort
was terminated.

An atterapt was made to test the remaining devices at elevated temperature to produce
a change in transistor characteristics and related change in propagation delay. The high
temperature transistor characteristics could have been used as inputs to the PARA model
to predict high temperature path delays. Unfortunately, the devices were so susceptible
to latchup at elevated temperatures that power could not be applied without latchup
occurring. No further effort was expended on this lot to conserve program resources.

C.2.2 Hughes 8-Bit Multiplier

An attempt was made to locate a radiation hardened device which could be simulated with
PARA and radiation tested. A Hughes 8-bit multiplier was identified, and eight sample
devices were acquired from U.S. Army Harry Diamond Laboratory. A schematic was
acquired from Hughes and sent to Vanderbilt. Unfortunately, PARA could not simulate
the Hughes multiplier, because it used a noncomplementary, 2-phase clocked gate design.
Modifying PARA to handle such designs would have been a major change. Therefore, no
additional effort was expended on the Hughes multiplier All other radiation hardened
microcircuits considered were too large for simulation.
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C.2.3 Second Multiplier Lot

Since radiation-induced edge leakage was the failure mechanism for the first lot, Vanderbilt
personnel redesigned the multiplier to use closed geometry transistors (i.e., drains
surrounded by annular gate and source) to eliminate the source-to-drain edge. Channel
stop implants were also used in the P-wells to reduce leakage under the field oxide. The
input protection structures were redesigned to reduce latchup susceptibility. Unfortunately,
there was a design error which caused the lot to yield zero.

C.2.4 Third Multiplier Lot

Vanderbilt personnel corrected the design error from the second lot and submitted a
new low to MOSIS. A new design error caused the P2 output to be disconnected. No
propagation path involving P2 could be evaluated. However, 19 devices were acquired
to support testing in case the PARA predictions indicated worst case paths that did not
involve P2. The verification would be partially compromised since the effect of P2 on
propagation delay could not be observed. However, the measured and predicted values of
delay for other test vector/output combinations could be compared. These measurements
were not attempted for the reasons noted in the following paragraph.

C.2.5 PARA Predictions for 4-Bit Multiplier

PARA’s predictions are made for connectivity paths as defined in the netlist. It identifies
bias conditions at nodes which would result in worst case path delay. It does not consider
whether or not the bias conditions can be physically achieved. Neither does it consider
whether or not the path can physically propagate a signal. A test vector generation
program is required to identify false paths and indicate the input vectors corresponding
to the worst case physical path. The PARA path predictions were used as inputs to a
test vector generation program developed at Vanderbilt. The initial attempt considered
the 8000 worst paths, and a subsequent attempt considered 80,000 paths. No physically
realizable propagation path could be found by the test vector program. It is unclear
whether PARA or the test vector program is at fault. There were insufficient resources
left to identify and correct the problem. Since the object of the experimental effort was to
verify PARA predictions, no additional effort was expended.

C.3 CONCLUSIONS

The demonstration of the accuracy of PARA in predicting worst case test vectors and
quantitative post-irradiation propagation delay remains the key issue in its application
to radiation hardened design and testing problems. The pacing item is the development
of a method to yield valid test vectors from the PARA path information. If this can

36




be done, the design error in the 4-bit multiplier could be corrected and a new MOSIS

lot fabricated for less than $1000. The test instrumentation was fully developed on this
program. A complete test could be fielded and the data reduced within two weeks. Thus.
the verification effort is minimal, but the eflort required for the PARA /test vector solution

is unknown at this time.
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