-

-—’/

NPS- EC-92-004 AD A 248 620
IRV

NAVAL POSTGRADUATE SCHOOL

Monterey, California

¥LECTE @
apr20 192 8.

MULTIPLE-VALUED PROGRAMMABLE LOGIC ARRAY
MINIMIZATION BY SIMULATED ANNEALING

Gerard W. Dueck
Robert C. Earle
Parthasarathy Tirumalai
Jon T. Butler

February 10, 1992 ===

i
660-C6

Approved for Public Release: Distribution Unlimited

Prepared for: Naval Rescarch Laboratory
Washington, pC 20375

gy <+ 44 V09@

_./

NAVAL POSTGRADUATE SCHOOL
Monterey, CA 93943

Rear Admiral R.W. West, Jr. Professor H. Shull
Superintendent Provost

This report was prepared for the Naval Research Laboratory and
funded by the Naval Postgraduate School.
Reproduction of all or part of this report is authorized.

This report was prepared by: Prof. Gerhard W. Dueck, LT Robert C.
Earle, Dr. Parthasarathy Tirumalai and Prof. Jon T. Butler

A
44'4§:i:ui!a£a
JON T. BUTLER
ofessor of Electrical

& Computer Engineering

Reviewed by: Reviewed by:
-7 A0 ,,f . B .

[L Y largyen C RN Jrants

MICHAEL A. MORGAN PAUL TO

Chairman, Department of Dean Vof Research

Electrical and Computer Engineering

SECLP TV CLASSF LA™~ GF “n © BAC

o

Form Apprcved
REPORT DOCUMENTATION PAGE AN
ta REPORT SICURITY CLASSF CAT.ON 1o RESTRICTIVE MARKINGS
Unclassified
2a SECURITY CLASS m:ICATIGN AUTRORTY 3 DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release; distribution

2b DECLASSIFICATION : DOWNGRADING SCHEDULE is unlimited.
4 PERFORMING ORGAN ZATON REFORT NUMBER(S; S MONITORING ORGANIZATION REPCRT NUNMBER(S)

NPS-EC~92-004
6a NAME OF PERFORMING ORGANIZATION 6b OFF:Cz SYMSBOL 7a NAME OF MONITORING ORCANIZATICN

(If applicable)
Naval Postgraduate School EC/Bu Naval Research Laboratory
6c. ADDRESS {City, State, and ZiP Code) ‘o ADDRESS (City, State, and ZiP Code)
Monterey, CA 93943-5004 Washington, DC 20375

8a NAVE OF FUNDING. SPONSORNG 8b OF: (I SYMEOL |9 PROCLREVIENT NSTRUNMENT OB F LA 0N NUVBER

QORGANIZAT:ON (If applicable)
Naval Postgraduate School 0 & MN, Direct Funding
8c. ADDRESS (City, State, and ZIP Code) 0 SCLRCI CF SUAD LG N NREIS

2D I PAN SRTECT TASK NOFK UNT
Monterey, CA 93943 ELEVIENT 8O NO \O ACCESSION NO

11 TITLE (Inciude Security Ciassification)
Multiple-Valued Programmable Logic Array Minimization by Simulated Annealing

12 PERSONAL ALTRORS

Gerhard W. Dueck, Robert €. Earle, Parthasarathy Tirumalai and Jon T. Butler

13a TYPE QOF R-BIRT T3n TME COVERED 14 DATE QF REPORT (vear Month Day) |'S FaCi (CUNT
Technical Report zaow_7/91 -0.2/92 10 Februaryv 1992

16 SLPRPLEMENTARY NOTATON

V7 CI5a™ QDR 18 SUBJECT TE3NS {Continue on reverse if necessary and :(dentify by bicck number)

FE.0 GPOLP SL3-GROUP Computer-aided design tool, multiple-valued logic,

VLST design tool.

programmable logic array, heuristic minimization techniqug

‘9 ABSTRACT .Contirue on reverse if necessary and identify by block numoer)

We propose a solution to the minimization problem of multiple-valued programmable
logic arrays (PLA) that uses simulated annealing. The algorithm accepts a sum-of-produc
expression, divides and recombines the product terms, gradually progressing toward a
minimal solution. The input expression can be user~specified or one produced by another
heuristic. The process is termed simulated annealing because it has an analog in the
statistical mechanical model of annealing in solids. That is, the slow cooling of
certain solids results in a state of low energy, a crystalline state rather than an
amorphous state that results from fast cooling. In a PLA, the crystalline state is
analogous to a realization with a small number of product terms.

Unlike recently studied minimization techniques (which are classified as direct-
cover methods), our technique manipulates product terms directly, breaking them up and
joining them in different ways while reducing the total number of product terms

20 D'STRIBUT.ON-AVALAB L TY OF ABSTRACT 2 ABSTRACT SECURITY CLASSFCAT.ON
BoncLassieed unuvmed [savie as re” Oorcusess | Unclassified
228 NAME OF RESPUNS BoE 1NOIV DuAL 229 TELEFHONE (Include Area Coael | 22¢ OFF.(E SYMBO.L
Jon T. Butler 408-646-3299 LC/By
DD Form 1473, JUN 86 Previous editions are obsolete ECTY CLASSFCAT O DF THS PanE

S/N 0102-LF-014-6603

MULTIPLE-VALUED PROGRAMMABLE LOGIC ARRAY
MINIMIZATION BY SIMULATED ANNEALING*

by

Gerhard W. Dueckt, Robert C. Earlet, Parthasarathy Tirumalaif, and Jon T. Butlery

tDepartment of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5004

tHewlett-Packard Laboratories
Bldg. 3U-7, 1501 Page Mill Road
Palo Alto, CA 94304

October 22, 1991

* Research supported in part by the Naval Research Laboratory, Washington, DC
through direct funds at the Naval Postgraduate School, Monterey, CA and by a
National Research Council Research Associateship tenured at the Naval Post-
graduate School, Monterey, CA.

ABSTRACT

We propose a solution to the minimization problem of multiple-valued pro-
grammable logic arrays (PLA) that uses simulated annealing. The algorithm
accepts a sum-of-products expression, divides and recombines the product terms,
gradually progressing toward a minimal solution. The input expression can be
user-specified or one produced by another heuristic. The process is termed
'simulated annealing’ because it has an analog in the statistical mechanical
model of annealing in solids. That is, the slow cooling of certain sviids results
in a state of low energv, a crystalline state rather than an amorphous state that
results from fast cooling. In a PLA, the crvstalline state is analogous to a reali-
zation with a small number of product terms.

Unlike recently studied minimization techniques (which are classified as
direct-cover methods), our technique manipulates product terms directly, break-
ing them up and joining them in different ways while reducing the total number
of product terms. We show nwo mechanisms for recombining product terms and
compare the results with presently known heuristics. Specifically, we compare
both the number of product terms and the speed of execution. A unique feature
of simulated annealing is thar its execution time is controllable. allowing one to

tradeoff time for minimality. It has been incorporated in the HAMLET PLA
nunimization tool.

Aggeasion For .
TNTIS GRASI 7
DTIC TAB a

O

Unatnicnrnca?d
JustifTical i ot

BY-'* e - e ———————
Distridationd

Ava Llublll}! ‘Coit‘t
r__w P\m! 1 aadser
Dist Spochal

[\/‘

I. INTRODUCTION

The only known algorithm for finding a minimal sum-of-products expression is exhaus-
tive search. However, excessive computation tine makes this approach impractical. For
example, in a comparison of minimization algorithms on simple expressions [11], three days
of computation time were required to produce minimal expressions by exhaustive search,
while only three seconds were required for heuristic algorithms to produce negr minimal
expressions.

Sum-of-products expressions are interesting because of the ease with which they can be
implemented by programmable logic arrays (PLA’s). Implementation by PLA is easier than
by random logic because the circuit designer needs only provide a design for the row-column
intersection. This design appears throughout the PLA, where each occurrence is programmed
by the user. Recent progress in the implementation of multiple-valued PLA’s has occurred in
CCD [5]. Implementations have been proposed for current-mode CMOS [15].

Because of the computational complexity associated with minimal sum-of-products solu-
tions, there is considerable interest in heuristics. At least four are known; Pomper and
Armstrong [7]. Besslich [1], Dueck and Miller [3], and Yang and Wang [14]. All use the
direct cover method; that is, first a minterm is selected and then an implicant is chosen that
covers the minterm. This process is repeated until the given expression is covered. Using
search in conjunction with the direct cover method [15], improves the realizations but
increases the computation time. The increased computation time has inspired research into
parallel minimization algorithms [12, 13].

We propose an altemative to the direct cover method. Instead of creating implicants, our
algorithm manipulates existing implicants. That is, implicants are combined, reshaped, or
divided. Manipulation of implicants is not new; it is used in binary minimization [2]. and was
proposed for multiple-valued sum-of-products expressions [8]. What is new is the means of
manipulation. We do it nondeterministically. That is, randomly chosen implicants are ran-
domly combined, reshaped, or divided. The number of implicants in a cover of an expression
increases when an implicant is divided and during certain reshapings. However, this allows
one to go from a false minimum to a true minimum. The algorithm is essentially a series of
transitions from solution to solution in the solution space. As time goes on, the probability
decreases that a divide or reshape that increases the number of product terms is performed. In
so doing, the transitions among solutions become gradually biased towards solutions with
fewer product terms.

The process suggested above is similar to the slow cooling of metals or glass, which
allows the "melt” to reach a low energy state, a crystalline state. This is termed annealing,
and the corresponding optimization method is called simulated annealing. Slow cooling is
essential to the achievement of a minimal solution. On the contrary, in both the physical

system and the optimization model, rapid cooling or quenching yields nonminimal results.
With sufficiently slow cooling, simulated annealing can provide practical solutions to many
optimization problems [6]. It has the further advantage that if cartain conditions hold {9], the
probability of achieving a global minimum approaches 1.0. This is unlike deterministic
heuristic algorithms, in which nonminimal solutions can occur; indeed, our experience [11] is
that it is easy to find expressions for which a given heuristic does nor achieve the minimal
solution. The achievement of a global minimum with a probability that approaches 1.0 may
not be satisfactory if the probability is low after a reasonably long computation. However,
our experience suggests that improved results over all known heuristics are obtained with rea-
sonable computation times for large expressions.

The results of our research are reported in Sections IV and V. Section IV shows the
results of simulated annealing on a single expression. To illustrate this algorithm’s ability to
solve large problems, we choose an expression with 200 minterms and a best known solution
of about 90 product terms. We show tradeoffs that can be made between computation time
and the optimality of the final result. Section V shows a comparison with other minimization
heuristics. The basis is a set of specially selected expressions and a set of randomly gen-
erated expressions. Again, we compare the number of product terms and computation time.

II. THE SUM-OF-PRODUCTS MINIMIZATION PROBLEM

An r-valued function, f (v, x5, - -, x,), takes on a value from {0,1,..,r—-1}, for each
assignment of values to the variables, which are also r-valued; i.e. x; € {0,1,...,r=1}. r, the
radix, is the number of logic values in the systeni. Because of their widespread use, we
choose to represent a function in its sum-of-products form. Because the truncated sum is so
easily implemented in multiple-valued PLA’s, we choose to use it. A product term or impli-
cant is expressed as

abab_”ahb (l)

where ¢ € {1.2.....,r-1}, is a nonzero constant, where the literal function.
X," =r-1 ifainiSbi,

=90 otherwise.

and where concatenation is the min function; i.e. x ¥ = min(x, y). Since the literal function

a‘x,-b‘ takes on only values 0 and r — 1, the product (min) of literals ((1) without ¢) is either 0

or r —1, while the complete term (with ¢) takes on values 0 and c¢. Indeed, (1) is ¢ iff
a, Sx; <b,, foralli. Fortwo variable functions, it is convenient to represent a product term

as a rectangle of values of ¢ extending from x; =ajto.x; = b, and from x; = a; to x; = b,.

The sum-of-products expression for any function f(x,x,, - - x,) is some number of
product terms summed together using the truncated sum operation, shown as a + on the left-
hand side of

a+bhb = mn(r-1,a +b),

where the + on the right-hand side is ordinary addition with logic variables viewed as
integers. Thus, if this sum should exceed r ~1, the min operation will assign r —1 to the
logic expressiona + b.

Any function f(x;,x; - ,x,) can be represented in a sum-of-products form; for
example, each assignment of values to the variables that yields a nonzero value for
fx.xs - -, x,) can be represented as a product term that is O for all other assignments of

values. Such a product term is called a minterm. Summing all minterms. using the truncated
sum operation, yields the function f (v, x5, - -, X,).

We view a minimal sum-of-products expression as being any expression with the minimal
nuinver of product terms. While the problem of finding one sum-of-products expression for a
function is straightforward, as shown in the example immediately above, the problem of
finding a minimal expression is another matter altogether. The sum-of-products expression
minimization problem is to find a sum-of-products expression with the fewest product terms
for a given function f(x,,x;. - ,x,). As stated in the introduction, the only known algo-
rithm for solving this is exhaustive search.

III. SIMULATED ANNEALING

Simulated annealing has been introduced [6] as a means to solve large-scale optimization
problems. It is based on a principle in statistical mechanics. in which a low energy crystalline
state is achieved by first melting a substance and then slowly cooling it.

A. THE GENERAL PROCESS

A basic computation in simulated annealing is a move. A move is a transition from one
solution to another solution in the solution space. In the sum-of-products minimization prob-
lem, the solution space is the set of all sum-of-product expressions for some given function.
Associated with each solution is a cost. In the sum-of-products minimization problem, the
cost is the number of product terms. A move can either increase, decrease, and leave the cost
unchanged. Intuitively, one favors moves that decrease the cost, since this drives the system
to a minimal solution. However, in a solution space with false minima, the exclusive applica-
tion of cost-decreasing meves can produce nonoptimal solutions. Cost-increasing or hill-

climbing moves are also needed if the system is to recover from a local minima.

In simulated annealing, prospective moves are chosen at random. If a move decreases the
cost, it is always accepted (taken). If it increases the cost, it is treated probabilistically. That
is, a cost-increasing move is accepted with probability P(AE) = ¢ AEkeT
constant, the Boltzmann constant (which we choose as 1), T is the temperature, and AE is the
increase in cost as the result of making the move. When a cost-increasing move is rejected,
another prospective move is randomly chosen and the process repeated. Initially, a high tem-
perature is chosen, in which case P(AE) is high. Here, almost all moves are accepted,
regardless of whether they increase or decrease the cost. A system that is held in this state
for a sufficiently long time is considered to be melred. In the melted state, there is no pro-

gress toward a minimal solution; rather the system undergoes random changes and is typically

, where kp is a

far from a minimal solution.

Once the system has persisted in this state, the temperature is reduced and the process
repeated. However, the probability of accepting a cost-increasing move is now slightly lower.
This process continues, as the decreasing temperature gradually decreases the probability of
accepting cost-increasing moves. The result is slow progress toward an optimal state. Even-
tually, the system reaches a point where there is no further improvement. The system is con-
sidered to be frozen.

The temperature reduction process is called the annealing schedule. It is critical to the
attainment of a global minimum. When the temperature is rapidly reduced, a process called
quenching, the result is often far from optimal. Therefore, a slow decline is preferred, even
though this requires more computation time. A typical annealing schedule, and one that we
use, is described by

T

n - aTn-l'

where a is between 0.80 and 0.99. Here, the temperature at each stage is a large (but con-
stant) fraction of its former value. Values of o less than 0.80 are considered quenching.

The making of a move in the minimum sum-of-products minimization problem is a two-
step process. First, a pair of product terms is randomly chosen. Second, a test is applied to
determine if they are equivalent to a single product term. If so, they are replaced by the
equivalent product term. Otherwise, they are replaced by a set of two or more product terms.
We describe these two steps in the next sections.

B. CHOOSING A PAIR OF PRODUCT TERMS

For two completely separate product terms, there is no prospect of combining them, and
such product terms are not considered. The algorithm only considers adjacent product terms.
Two product terms are adjacent if and only if a minterm of one is either coincident or

4

adjacent to a minterm of the other. For example, Fig. 1 below shows a function with four
pairs of adjacent product terms, 1-2, 3-4, 5-6, and 7-8. Two product terms combine if they
can be replaced by a single product term. For example, of the four adjacent product terms in
Fig. 1, three combine. The pair 3-4 combine to the single product term 3 (3 is said to absorb
4), 5-6 combine because these are equivalent to a single product term consisting of a pair of
(horizontal) 2's, and 7-8 combine because these are equivalent to a single product term con-
sisting of a pair of (vertical) 2’s.

X 1 5

Figure 1. Example of a Function to Be Minimized.

C. OPERATIONS ON A PAIR OF PRODUCT TERMS

We consider two moves, cut-and-combine and reshape. Both choose a pair of product
terms, as described above. While, both combine the pair in the same way, each executes the
replacement in different ways. Our motivation in investigating two types of moves is the
insight gained on how the efficiency of simulated annealing depends on the sophistication of
the move.

1. THE CUT-AND-COMBINE MOVE

In the cut-and-combine move, the two product terms are combined, if possible, as
explained above. However, if not, a cut is performed, as follows. One of the two products is
chosen randomly and with equal probability (0.50). If the chosen product term is a minterm
of value 1, the move is rejected and another pair of adjacent product terms is chosen. How-
ever, if the chosen product term is not a 1 minterm, it is divided. A division can occur along
the logic value, in which case, two product terms are formed each with the same literals as

S

the original product terms, but with coefficients that sum to the coefficient of the original pro-
duct term. For example, in a 4-valued system, if a product term with coefficient 2 is cut, it is
replaced by two product terms each with coefficient 1. If the original product term coefficient
is r — 1, then the coefficients of the divided terms can be anything as long as their truncated
sum is r —1. A product term divided in such a way is said tc undergo a logical divide. For
example, in a 4-valued system, if a minterm with coefficient 3 is cut, it can be replaced by
two minterms each with coefficient 2. A product term can also be divided geometrically. In
this case, a variable value with a literal range of two or more is chosen and two product terms
with the coefficient of the original product terms but divided along that variable are chosen.
Of the ways to divide a product term, including all logical and all geometrical divides, one is
chosen with a probability that is equivalent to all others (i.e., uniform probability).

2. THE RESHAPE MOVE

The cut-and-combine move is basic. It provides a fundamental cost-increasing move, the
cut, where a single product term is converted into two product terms. It also provides a cost-
decreasing move, the combine, where two product terms are converted into a single product
term. The reshape move, like the cut-and-combine, operates on a randomly chosen pair of
product terms. Also like the cut-and-combine, it combines the two product terms if a com-
bine is possible. However, for noncombinable product terms, the reshape move proceeds
differently.

First, the consensus operation is applied. That is, if the two product terms overlap, the
consensus of the two product terms is a product term situated at the intersection of the two
terms with a coefficient that is the truncated sum of the coefficients of the two product terms.
If the two product terms do not overlap, then they must be strictly adjacent. In this case, the
consensus is a single product term that is a part of both terms with a coefficient that is the
minimum of the coefficient of the two product terms. The part of each product term that con-
tributes to the consensus of the two is the "face" of the intersection that extends along the
whole of the variable across which the two product terms are adjacent. Fig. 2 shows an
example of the two subcases of the consensus operation. The consensus is indicated by the
hatched area. Fig. 2a shows the co.usensus in the case of overlapping product terms, while
Fig. 2b shows the consensus in the case of disjoint product terms. For each of the two pro-
duct terms, the consensus is subtracted. Of what is left, there are several ways to divide the
remaining product terms. Tig. 2 shows one way. From the ways that result in the fewest pro-
duct terms. one is chosen randomly. Unlike the cut-and-combine move, the reshape move can
produce three or more product terms from the original two. Indeed even two diferent

<aSBen
N
\JKV\2/
T T

anei

0

1 2 3
N0
A0z
: [R
s A

~

(b)

Figure 2. Example of the Consensus Operation.

product terms can result. An example of the latter occurs in the case of product term 2 in
Fig. 1 and product term 1 replaced by a 1 minterm. The application of the reshape move
yields a product term consisting of a vertical pair of 1's plus a 1 minterm. In this example,
the consensus term is the vertical pair of 1’s, 1 ox? O t.

The reshape move suffers from a disadvantage. For example, in a 4-valued system, con-
sider a minimal sum-of-products expression consisting of two product terms with coefficient 2
in the form of a cross. At the intersection, the coefficient is 3. Given an initial solution con-
sisting of five disjoint parts of the cross, there is no path that will allow the reshape move to
achieve the minimal solution. That is, the reshape move, while able to form one half of the
cross in combination with combines, is unable to form the other half. The best solution is
with three implicants. Unlike the cut-and-combine move, the reshape move does not create

product terms that oversum. In this example, as in others, this ability is necessary to achieve
a minimal solution.

IV. EXPERIMENTAL RESULTS OF SIMULATED ANNEALING

Untike previous analyses, which considered expressions with few preduct terms, we con-
sider, in this section, an expression with significantly more product terms. Fig. 3 shows the
result of simulated annealing using the two types of moves, cut-and-combine (a) and reshape
(b) applied to a randomly chosen 4-variable 4-valued function with 200 minterms. Prior to
the annealing process, this function was minimized using the Dueck and Miller heuristic [3],
resulting in a solution of 96 product terms. In both graphs, the number of product terms is
plotted horizontally with larger numbers to the right. The temperature is plotted in the axis
perpendicular to the page, with higher temperatures in the front. The number of times a visit
is made to a solution with some number of prouuct terms is plotted along the vertical axis.
Vertical "slices” represent a histogram of the number of times the system is in a solution with
the corresponding number of product terms specified along the horizontal axis. Each slice
represents one temperature. The slice in the very front represents the highest and starting
temperature. It shows how melting takes place. For this temperature, moves transform the
initial 96 product term solution into solutions with approximately 275 product terms. The
progression goes from left to right, along the front edge of the diagram. Melting occurs
quickly; that is, the progression toward solutions with more product terms is seen as a minor
vertical deviation until the melted state. This is because, initially, the majority of adjacent
pairs of product terms cannot combine. As a result, most moves in the beginning are cost-
increasing moves. There is a steady progression to solutions with more product terms, and so
solutions with few product terms are visited infrequently. The vertical deviation for such
numbers is thus small. However, as the number of solutions increases, more pairs can com-
bine, and, thus, there are more cost-decreasing moves. The mix of cost-increasing and cost-
decreasing moves becomes balanced. As a result, visits to states with the same number of
product terms become more frequent, and there is a corresponding larger vertical deviation.
At the temperature just below the melted state, almost all of the solutions have nearly the
same number of product terms, and the vertical deviation is larger than at the initial tempera-
ture.

It is interesting that the total number of product terms in the melted state is greater than
the number of minterms. In the cut-and-combine move, there are solutions in the melted state
that have approximately 275 product terms. This exceeds the 200 nonzero minterms in the
initial specification of the expression because of a property of the cut-and-combine move:
Given a product term, it is possible to cut it into two product terms identical to the initial pro-
duct term except that the coefficients of the latter sum to the coefficient of the former.

Number of Visits o a Solution Wigh
the Specified Number of Product
Terms at the Specified Temperature

Frozen state —
lemp = 0.16)

E T
Bl

g ot L

o eovemilyy,

. Melted stare
(temp = 0. 0

Temperature :
(a)
Number of Visits to a Solution With

the Specified Number of Product
Terms at the Specified Temperature

[]

Annealing process: RESHAPE Number nf Product Termse

Frozen state . !

P

ftemp = (.09) o
e —1‘\ ﬁw"’:‘;‘_‘t
e ﬁ?ﬁ =
i ‘\m\@\, “’\:‘x\\{\'n"{.‘;:%ﬁ_ — Melird s1g1e
SRR o o (tcmp - 070
Figure 3. Simulated Annealing Using the (a) Cut-and-combine and the (b, Reshape Moves
Indeed,

if the coefficien: of the inijtjy) product term is » — 1,
¢an occur becayse

of oversumming (e g when r = 4, there

9

reshape move. For example. consider a two-variable 4-valued function consisting two 3's at
the opposite comers of a 2 by 3 rectangle with a pair of adjacent 2’s in between. This func-
tion can yield five product terms by a sequence of reshape moves starting from four minterms.
That is, starting with three product terms, two 3 minterms and the pair of 2’s, there is a
sequence of reshape moves that will produce a five product term solution where each 3 min-
term is replaced by a 2 and a 1 minterm.

3, versus only one way to form the sum of 2). A similar phenomenon occurs with the

Once the melted state has been reached, there is a gradual trend toward fewer product
terms as the temperature decreases. The temperature axis is logarithmic. That is, every
equally spaced temperature slice represents some fraction o of the slice closer to the front. In
the case of the cut-and-combine move, o is 0.99, and in the case of the reshape, a is 0.93.
The slow migration towards solutions with fewer product terms is evident. As the tempera-
ture decreases (moving toward the origin), there is a gradual shift to solutions with fewer pro-
duct terms, until eventually all transitions are among solutions with very few product terms.
In the case of cut-and-combine. a solution of 87 product terms is achieved. while in the case
of the reshape. a solution of 84 product terms is achieved. It is interesting that cut-and-
combine with a slower rate of temperature decline produced a solution with more product
terms than the reshape. The values for o were chosen carefully to provide good solutions
with reasonable execution times.

-

The cut-and-combine requires a total of 91.4 minutes of computation time were required
on a Solbourne Series 4 workstation (equivalent to a Sun 110) for the cut-and-combine, while
3.98 minutes were required for the reshape. This illustrates the relation between the annealing
schedule and the computation time. With o = 0.99. the cut-and-combine exhibits a slower
rate of decline in temperature than the reshape move. where o = 0.93. Compensating for the
large number of temperatures in the cut-and-combine move is the additional time required by
the reshape to manipulate the product terms.

A more complete understanding of simulated annealing is gained by plotting the solutions
against various parameters. Fig. 4 shows how the solutions depend on different choices for
the starting temperature, the cooling rate, and the number of moves made at each temperature.
Fig. 4a shows these parameters for the case of the cut-and-combine move, while Fig. 4b
shows the parameters for the reshape move.

This data shows an interesting independence on initial temperature. That is, the number
of product terms in the final solution tends to be approximately independent on the initial tem-
perature. For each starting temperature, there is a clear period of meuing, in which the initial
96 product term solution increases rapidly at the first few temperatures. That is, in these
diagrams the heurnistic begins at a high temperature and a reasonably small number of product

10

r TYTTTIT TTTY T T TAvvv‘rq
, J
600 - Initial temperature -’l}{ . ,'fl B
! FE Y
,[joow \
E 00 J .
-4 [} “
¥ :
\ 4 s
200{- ! o
! i
. s I N EEE I RN 1 1oLl
E 100 100 101
temperature
250 r r ——r
200(» Max Moves 4
I
|
n l
E 150 J
b4 \
j .
100 - : y’:}{ .
,_ -
[' PR L 1 it 1 S U
b 100
temperature
R . rrr
k| , g
250 - Initial temperature i
200- .
g ['1 |
: |
T s s i
100~ 7 ‘ Py
: |
| !
s LAl 1 JEE . 1 i
s 1071 100 10!
temperature
200' T
180 -
! Max Mowves
]60)"
E 140 -
]
120-
!
100
i . ‘.
I SO S B L St 3 w1
qu')’ o 100
temperature

terms

(a

terms

(b)

250'— —r T T F T TT7TT
150
wol T
1 1 N W
T 107
temperature

(P
Legend: Varying parameters
CUT & COMBINE
Minkmized 200 mirterm schuion from Dueck & Miien)
Inltel wmperahrs Cool et Maxdmum Moves
—— wmp=07 cool M08 Max Movess2000
BMpa70 cool el 05 Max Moves= 4000
tomp=0.07 cool relp=05 Max Moves=200

Remainiry paramelors: Diwlsust parameters.
Mex sfiempied movet = 400,000 iniel emp=0.7
Lowest temperature =0.01 Cool rets = 0.99
Max Fresn =58 Max Moves = 2000

)

220 . ———— e
| Cool Rate |
200r : -
| d
1805— {14 :
160 - o -
I !
140 - . / i
i S !
120+ . f ‘ S
w0~ S -
oo feRp |
! i N U RN [s
%‘7 100 100
temperature

(A
Legend: Varying parameters
AESHAFE
{Mirimizad 200 minterm sokuion fom Dueck & Mifter)
Iniiel mmpershre Cocl rete Maximum Moves
—— tmp=07 cool mB=063 Mex Moves= 800

...... tomp=?0 cool reew00 Max Moves = 4000
______ amp=0.07 cool mee0S Max Moves =200
Mex sliermpied moves = 20,000 el terrp=0.7
Lowest temperature =0.01 Cool rele=0.69
Mex Fromne$ Max Moves =800

Figure 4. The Number of Product Terms As a Function of Starting Temperature,
Cooling Rate, and Number of Moves Made at Each Temperature.

11

terms. There is a rapid increase in the number of product terms as the temperature decreases,
followed by a gradual decrease in the number of product terms going towards the left. This
course, as shown in Fig. 4, is relatively unaffected by the starting temperature. This observa-
tion applies to large start temperatures. For very low start temperatures, there is a depen-
dence, indeed a degradation in the final solution when the start temperature is low.

A similar statement is not true of the effect of cooling rate. For both the cut-and-
combine and reshape move, the quality of the final solution is dependent on the cooling rate.
The fastest cooling rate, corresponding to a = 0.5, results in solutions that are far from
optunal. This is quenching. The plots also show a dependence on the number of moves at
each temperature, which is analogous to the time spent at each temperature. Especially, when
the maximum number of moves is restricted to a low of 200, there is a clear degradation in
the algorithm’'s performance.

V. COMPARISON OF SIMULATED ANNEALING WITH OTHER
MINIMIZATION ALGORITHMS

To achieve a fair comparison of simulated annealing with other heuristic minimization
methods, we consider two types of test functions. The first consists of individual functions
selected for their unique characteristics. The second consists of functions randomly generated
by the HAMLET CAD tool.

In the first set, there are three functions. Test! is a randomly chosen 4-valued 3-variable
function with 50 minterms. An exhaustive search in HAMLET shows that the exact minimal
solution contained 21 product terms. The Dueck and Miller heuristic [3] in HAMLET results
in a solution of 24 product terms. This is the form put into the simulated annealing program.
After 104.4 minutes of computation time on a Solboume Series 4 Workstation, cut-and-
combine produced a (minimal) solution of 21 product terms, while reshape produced a solu-
tion of 21 product terms, but within 2.5 minutes. Test2 is a 4-valued 4-variable symmetric
function with 176 minterms and a minimal solution of 6 product terms. The minimal sum-
of-products expression for this is

P20 203 O O 1200 %P 2d O+ 13 0%) W+

“~

10\,321210‘4...10'%210112‘4+1010'¥2‘;2

X X2 X3 3 X5 X4 -

Its special characteristic is that it is difficult to minimize by cut-and-combine. That is, the
minimal solution exists among many nonminimal solutions that are easily produced by the
random cutting of product terms. The random nature of cut-and-combine makes it difficult to
converge to the minimal solution from among the many nonminimal solutions. Reshape, on
the other hand, tends to maintain group integrity, and will not introduce miscellaneous logical
cuts that tend to move away from the minimal solution. Test3 is a 4-valued 2-variable

12

function that was chosen because reshape does not find the minimal solution for it. Test3 is
shown in Fig. 5. This function requires oversumming where the truncated sum indeed

PR
—
2 a0

Figure 5. Test3, a Test Function.

truncates. Because of this, reshape does not achieve a minimal solution. It is relatively sim-
ple. and so cut-and-combine finds the solution easily. Table I shows the results of various
algorithms on the three test functions. Qur expectation of the relative merits of cut-and-

Heuristic Testl Test2 Test3
in | out | time | in | out time in | out | time
Cut-&-combine 24 | 21 [6264 || 14 | 19 | 21254 || 5 4 207+
Reshape 24 | 21 147 | 14 7 71.0 5 S 4.6
Dueck & Miller 24 | 24 0.9 14 6 5.7 S 5 0.03
Pomper & Armstrong || 24 | 24 04 14 | 10 30 S 5 0.01
Yang & Wang 24 | 22 8.6 14 | 10 93 5 4 0.12

*This is the total time. The minimal solution was first found in 4.2 secs..

Table I. Number of Product Terms and Computation Time For Three Test Functions
As Produced by Five Heuristics.

combine and reshape on Test2 and Test3 are borne out. Interestingly, only the Dueck and
Miller heuristic found the minimal solution on Tesr2, while cut-and-combine produced a

13

solution quite far from optimal. For Test3, only the cut-and-combine and the heuristic by
Yang and Wang [11] achieved the minimal solution.

The second group of tests consists of randomly chosen functions. For this test case, nine
ensembles of ten functions each were chosen. Each ensemble consists of 4-valued 4-variable
functions with the same number of minterms, a value that ranged from 50 to 250. Fig. 6

shows the results.

Cut-and-combine performed best in ensembles having fewer minterms,

Heuristic Comparison

Average Number of Product Terms in Minimized Output

100 _
90 _
80 _
70.1
60
50

~cCo~c O

: | : Cut & Combine
% Reshape
W Yang & Wang

i Dueck & Miller
. Pomper & Armstrong

‘WM//I«///&(///' :

P
e e T e e e ety

3 0] ey B35 HHBHS8H i B
e tarrirbicldin
e T NIy o T T A

LI S I S P I LI PRSI S S 2L IR L prba 241 14
//IW_IWMW_I{/#////ﬂ’/////////({////////M////

Lk ik e A R

ORISR LR oA P A
WA AN AR I IR PRt

3 N

75 100125 150 175 200 22
Number of Minterms Input

Figure 6. Comparison of Number of Product Terms Produced by Various Heuristics
Versus the Number of Minterms Over Random Functions.

while reshape had the best performance on the remaining functions. Fig. 7 shows the execu-
tion time of the various heuristics. This shows that the increased "intelligence” exhibited by
reshape results in an improved solution, as well as reduced computation time. Both simulated

annealing heunstics,

on the average, outperformed the other heuristics. This improved

14

Heuristic Comparison
Cpu Time Required to Minimize One Expression

0
800 _ .
700 _ T i
S 600 ﬁ]’ \ , ;r 1 ' | __ Cut & Combine®
g 5004 . . ‘ | i {1 : Reshape
O 400 | o S T Yang & Wang
N oagol o | £ Dueck & Miller
g 200 | B Pomper & Armstrong
100 f *Time scaled down by
1 N 5 3 a factor of ten.
0lF 2 & B T Jw il 2B :3
50 75 100125 150175200225250

Number of Minterms Input

Figure 7. Comparison of Execution Time Required by the Various Heuristics
Versus the Number of Minterms Over Random Functions.

performance is not without a price. Computation times are higher.

V1. CONCLUDING REMARKS

This investigation of the use of simulated annealing in finding minimal sum-of-products
expressions has been encouraging. First, the time of computation is easily controlled; one can
choose a slow annealing schedule, and, in so doing, achieve a solution that tends to be closer
to optimum, or a fast schedule with less likelihood of achieving the optimum. Second, simu-
lated annealing has general applicability, and there is the prospect of applying it to further
problems in multiple-valued logic circuit design, e.g. layout and routing. Indeed, it may be
represent the means to go on to more complex structures than PLA's, thereby achieving even

15

more compact circuits.

We have shown two algorithms, the simple cut-and-combine and the reshape. The latter
requires more computation time doing an individual move, but yields good solutions with less
computation time overall than the cut-and-combine. However, for expressions representing
few minterms, the cut-and-combine move is superior. Both represent improvements to all
known heuristics.

REFERENCES

[1] P. W. Besslich, "Heuristic minimization of MVL functions: A direct cover approach,”
IEEE Trans. on Comput., February 1986, pp. 134-144.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Svnthesis, Kluwer Academic, Boston 1984.

[3] G. W. Dueck and D. M. Miller, "A direct cover MVL minimization using the truncated
sum,” Proc. of the 17th Inter. Symp. on Multiple-Valued Logic, May 1987, pp. 221-227.

{4] D. L. Isaacson and R. W. Madsen, Markov chains: theory and applications, John Wiley &
Sons, New York, London, Sydney, and Toronto, 1976.

[S5] H. G. Kerkhoff and J. T. Butler, "Design of a high-radix programmable logic array using
piofiled peristaltic charge-coupled devices," Proceedings of the 16th International Svm-
posium on Multiple-Valued Logic, May 1986, pp. 100-103.

6] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing,”
Science, vol. 220, No. 4598, 13 May 1983, pp. 671-680.

[7] G. Pomper and J. A. Armstrong, "Representation of multivalued functions using the direct
cover method,” IEEE Trans. on Comput. Sept. 1981, pp. 674-679.

[8] D. L. Ostapko. R. G. Cain, and S. J. Hong, "A practical approach to two-level minimiza-
tion of multiple-valued logic,” Proc. of the Inter. Svmp. on Multiple-Valued Logic, May
1974, pp. 168-182.

{9] F. Romeo and A. Sangiovanni-Vincentelli, "Probabilistic hill climbing algorithms: proper-

ties and applications,” ERL, College of Engineering, University of California-Berkeley,
CA, March 1984,

16

[10] T. Sasao, "On the optimal design of multiple-valued PLA’s," Proc. of the Inter. Symp. on
Multiple-Valued Logic May 1986 pp. 214-223.

(11] P. P. Tirumalai and J. T. Butler, "Minimization algorithms for multipie-valued pro-
grammable logic arrays”, IEEE Transactions on Computers, Feb. 1991, pp. 167-177.

[12] P. P. Tirumalai and V. G. Vadakkencherry, "Parallel algorithms for minimizing multiple-
valued programmable arrays, Proceedings of the 2lst International Svmposium on
Multiple-Valued Logic, May 1991, pp. 287-295.

[13] C. Yang and O. Oral, "Experiences of parallel processing with direct cover algorithms
for multiple-valued logic minimization,” preprint.

{14] C. Yang and Y.-M. Wang, "A neighborhood decoupling algorithm for truncated sum
minimization.” Proceedings of the 20th International Symposium on Multiple-Valued
Logic, May 1990, pp. 153-160.

[15] J. Yurchak and J. T. Butler, "HAMLET - An expression compiler/optimizer for the
implementation of heuristics to minimize multiple-valued programmable logic arrays”,
Proceedings of the 20th International Svmposium on Multiple-Valued Logic. May 1990,
pp. 144-152.

17

APPENDIX A: FORMAL SPECIFICATION OF THE PROGRAM TO
SOLVE THE MINIMAL SUM-OF-PRODUCTS PROBLEM BY
SIMULATED ANNEALING

The following is a formal description of the application of simulated annealing to the
minimization of a multiple-valued sum-of-products expression. The input is a set of product
terms, ProductTermSet, that sum to the given function. The output is a minimized set of
product terms that is returned as ProductTermSet.

algorithm SimulatedAnnealing(ProductTermSet);

/* Minimize a multiple-valued expression, ProductTermSet, by simulated annealing with
the following global constraints. Default values are shown in parentheses. All such
values can be overridden by the user. Typical ranges are indicated by brackets.

InitialTemp - T, temperature at which simulated annealing begins (0.7) [0.5 -
10.0}.

LowestTemp - The lowest temperature below which simulated annealing is no
longer applied (0.01).

MoveType - Type of move taken at each attempted move (Cut-and-Combine)
[Cut-and-Combine or Reshape!.

MaxMoves - Maximum allowed number of moves completed at each temperature
{Cut-and-Combine: 13 x number of minterms. Reshape: 4 X number of min-
terms.).

MaxAttemptedMoves - Largest number of attempted moves made before the
current temperature is abandoned (Cut-and-Combine: 210 x MaxMoves.
Reshape: 25 x MaxMoves.).

MaxFrozen - Longest sequence of temperatures at which the number of
attempted moves is MaxAttemptedMoves (4) [2-10]. At this temperature,
many attempted moves are needed to achieve completed moves, and the
solution is considered to be frozen. The simulated annealing is stopped.
since little progress is achieved with continued computational effort.

CooiRate - «, the factor used to determine the next temperature, ie.
T, = aT,_; (Cut-and-Combine: 0.99. Reshape: 0.93.). [0.50 - 0.99].

*/

BestProductTermSet « ProductTermSet;
CunTemp « InitialTemp;
Frozen « 0;
while (Frozen < MaxFrozen) and (CurrTemp > LowestTemp) do;
begin
AttemptedMoves « 0,

18

Moves « 0,
while (Moves < MaxMoves) and (AttemptedMoves < MaxAttemptedMoves)
and (there are adjacent pairs in ProductTermSet) do;
begin
ChooseAdjacentProductTerms(ProductTermSet, PT1, PT2),
AttemptaMove(PT1, PT2, CurrTemp, MoveType, PT1plusPT2, MoveMade);
AntemptedMoves « AttemptedMoves + 1;
if (MoveMade) then
Moves « Moves + |;
ProductTermSet « ProductTermSet - PT1 - PT2 () PTlplusPT2;
if (| ProductTermSet | < |BestProductTermSet |) then
BestProductTermSet « ProductTermSet;
end.
end;
end;
if (AttemptedMoves > MaxAttemptedMoves) then Frozen « Frozen + 1;
else Frozen « 0,
CurrTemp « CoolRate x CurrTemp;
end;
end;
ProductTennSet « BestProductTermSet;
stop;

procedure AttemptaMove(PT1, PT2, CurrTemp, MoveType, PT1plusPT2, MoveMade),

/* Attempt a move at the CurrTemp
PT1plusPT2 - Set of product terms equivalent to PT1 + PT2 (If a combine is
possible, for example, PT1plusPT2 contains the single equivalent product
term).
MoveMade - Indicates whether or not an attempted move was completed (true or
false).
*/
MoveMade « false;
if (PT1 and PT2 combine) then
Combine(PT1, PT2, PT1plusPT2),
MoveMade « true;
else if (MoveType = Reshape) then
Reshape(CurrTemp, PT1, PT2, PT1plusPT2, MoveMade);
else if (MoveType = Cut-and-Combine) then

19

Cut(CurrTemp, PT1, PT2, PTlplusPT2, MoveMade),
end;
return,

procedure Combine(PT1, PT2, PT1plusPT2),

/* Combine PT1 and PT2 into a single product term.

*/
if (PT2 absorbs PT1) then
PTiplusPT2 « PT2;
else if (PT1 absorbs PT2) then
PT1plusPT2 « PTI;
else if (PT1 and PT2 overlap) then
PT1plusPT?2 is assigned the same literal structure as PT1 and PT2;
Coef(PT1plusPT2) « Coef(PT1) + Coef(PT2);
else if (PT1 and PT2 are disjoint) then
PT1plusPT2 is assigned the same literal structure as PT1 and PT2 except for the
variable over which they are disjoint;
literal(PT1plusPT2) « literal(PT1) (literal(PT2), where the literal coincides
with the variable over which PT1 and PT2 are disjoint;
end;
return;

procedure Reshape(CurrTemp, PT1, PT2, PT1plusPT2, MoveMade),

/* Attempt to reshape the product terms.

Random() - Produces a random number between 0.0 and 1.0.

RandomSharp(PT, PTConsensus, P) - A routine that accepts two product
terms, PT and PTConsensus, where Coef(PT) 2 Coef(PTConsensus)
retumns a set of product terms, P. P consists of a minimal set of product
terms that covers all minterms in PT ~ PTConsensus each having a
coefficient of value, Coef(PT) - Coef(PTConsensus), (if that value is
greater than zero) and all minterms in PT but not in PTConsensus each
having a coefficient of value Coef(PT). From all choices of a minimal
set, one is chosen randomly and with uniform probability.

*/

MoveMade « false;
if (Random() > e—ReshapeCosl(PT1.PT2)/CurrTemp) then return:

20

else if (PT1 overlaps PT2) then
PTConsensus « A product term consisting of minterrns common to PT1 and PT2
with a coefncient that is the (truncated) sum of the coefficients of PT1 and
PT2,
else if (PT1 and PT2 are adjacent but have no common minterms) then
PTConsensus « A product term consisting of minterms included in the face of
the adjacency and extending in the variable perpendicular to the adjacency
with a coefficient that is the minimum of the coefficients of PT1 and PT2;
end;
RandomSharp(PT1, PTConsensus, P1),
RandomSharp(PT2. PTConsensus, P2);
PT1plusPT2 « PTConsensus _y P1 () P2;
MoveMade « true;
return;

procedure Cut(CurrTemp, PT1, PT2, PTIplusPT2. MoveMade);
/* Attempt to divide one of the product terms. */

MoveMade « false:
if (Random() > ¢~VC“"Temp) then return;
else if (Random() < 0.5) then
RandomDivide(PT1, PTDivided, MoveMade);
PT1plusPT2 = PTDivided _y PT2:
else RandomDivide(PT2, PTDivided, MoveMade):
PT1plusPT2 = PT1) PTDivided,
end;
return;

procedure RandomDivide(PT, PTDivided, MoveMade);
/* A function that accepts a product term. PT, and creates two product terms, PTA and
PTB, such that PTDivided = {PTA, PTB}. Let

a, b, a, b a b
PT=C 'xl' ZXZZ "x, "

n

where ¢ € {1.2,...,r=1}, is a nonzero constant and a; < b,.

This routine computes the number of ways a product term can be cut and chooses
one randomly with uniform probability. It returns with MoveMade set to true.

21

When PT is a minterm with coefficient 1, there is no way to cut it, and a return is
executed with MoveMade set to false.

*/

MoveMade « false;

if (c <r - 1) then LogicalCuts « {—;—}

else if (c = r - 1) then LogicalCuts « {—;—1 {Lﬂ] -1,

end;
n

GeometricalCuts « Z a; - b;;
i=1

TotalCuts « LogicalCuts + GeometricalCuts;
if (TotalCuts = 0) then return;
else if (Random() < LogicalCuts/TotalCuts) then
Perform the cormresponding logical cut, creating PTA and PTB;
else
Perform the correspondine scometrical cut, creating PTA and PTB;
end;
PTDivided « {PTA, PTB
MoveMade « true;
return;

22

APPENDIX B: VERIFICATION OF THE PROGRAM

Because the simulated annealing program is probabilistic, it is difficult to verify its
correctness. However, for small problems, we can derive the probability that the program will
achieve various solutions. Then, if the program is run for a sufficiently long time, we can
derive experimental values for the expected values of the probability that the program has
achieved a specific solution. Comparing calculated values with experimental values can pro-
vide a sense for the program’s correctness.

Simulated annealing is a Markov chain, where states in the chain correspond to some
configuration of product terms, i.e. a solution. As an example, consider the two product
terms, 1 and 2, in Fig. 1. Viewing these as a single expression, there are only six product
terms that cover this. However, there are only five ways these can be combined to form the
function. These are shown as five circles in Fig. 8 below. For example, the circle shown on
the left. State 1, corresponds to the unique minimal sum-of-products expression for this func-

Figure 8. State Transitions in the Markov Chain Model of Simulated Annealing.

tion. It has two product terms. The circle on the right corresponds to the sum-of-products
expression with the largest number of product terms. It has four product terms. Arcs
between states correspond to transition probabilities in the melted state, when cost-increasing
moves are accepted with probability 1.0. For example, in State 3, there are two possible
moves, one to State 1 and one to State 2. The configuration of product terms corresponding
to State 1 consists of two single 1 product terms which sum to form the 2 of the function and
a pair of adjacent 1's. There are three pairs of product terms, all of which are chosen with

23

probability % If the pair of single 1's are chosen, they combine into a single 2, and there is

a transition to State 1. If cither of the other two pairs are chosen, a combination ts not possi-
ble and one of the implicants involved is chosen with probability 0.5. If the chosen implicant
is the pair of 1's (in each case), it is divided, and there is a transition to State 2. However, if

the single 1 is chosen, then the choice of pairs is repeated. The probability that the move is
1

. 3 . e
to State 1 is T 11" % while the probability that the
~ 2= °
,1 13 32
move is to State 2 is 3 f = % These probabilities are shown as weights to the arcs
— 4+ 2= =
2 32

from State 3. The probabilities of other state transitions are shown.

It is convenient to represent the state transition diagram of Fig. 8 as a matrix, the fransi-
rion marrix. This is a complete representation of the probabilities of transition among the
various states. Specifically, element p;, is the probability of going from State i to State j.
Because the transition prchabilities from each state must sum to 1.0, 3 p;, = 1.0. For the

!
state transitions shown in Fig. 8, we have the transition matrix §, as follows:

r h

00<L1lo
RN
4 4
Ss=|YYY000
2
;35000
101 0 0 0
If P=[pyp, " ,ps) is a row matrix, where p, is the probability of State i initially,

then P S represents the probabilities after one transition. Similarly, P S* represents the pro-
babilities after & transitions. For example, % is

0412 0412 0 0 0 |
0.588 0.588 0 0 0

$%0 = 0 0 0.353 0.353 0.353
0 0 0353 0.353 0.353
| 0 0 0.294 0.294 0.294 |

The form of this matrix shows a consistency in the final state. For example, if the initial state
is either 1 or 2 (either p, = 1.0 or p, = 1.0), after 20 transitions. the probability of State 1 or
2 is 0.412 or 0.588, respectively. If the initial state is 3, 4, or S (either p3 = 1.0, py = 1.0 or
p4 = 1.0), then the probability of States 3, 4, or 5 is 0.353, 0.353, or 0.294, respectively. This
independence of start state is common in Markov chains. We can apply a formal analysis.
By applying a standard matrix transformation {4, pp. 127-132], § can be expressed as

24

S = LTAL,

where the rows of L are the left eigenvectors x,x,, - - - ,x,, of S, corresponding to eigen-
values A, A, - ,A,, respectively, and A is a diagonal matrix with entries
AL A -+, A,. Furher, S* can be expressed as

m
St = LT'AL = Y Afy'ix;,
(=}
where x; is the i-th row of L and y’; is the i-th column of L~!. Using MACSYMA, an
algebraic and symbolic manipulation package, we find the cigenvalues for S to be
AM=-22 =2 A3=-1, A= I, and A5=0. Let B ~ A* mean lim bla = I,

1= 7 1 I

for every element b in square matrix B and for the corresponding element @ in square matrix

AX. Then, we can write
k koo r
ST~ (=D yhaxa + yiaxg

¥Y'3. x3. ¥y, and xy can be calculated from the eigenvectors of S, as produced by
MACSYMA, and we have, for even k.

H o 000
a5 000
sk -~ 0 0 12 1210
4 34 34 |°
0 o 12 12 10
4 4 4
12 12 10
00 % % =
while for odd &,
0 0 12 12 0]
4 34 M4
12 12 10
0 & % =
k 14 14
Sk - | = 5000
14 14
% 3 0 00
14 14
w5 000

Recognizing that for an arbitrary &, the probability that it is even or odd is 0.5, we can obtain
the probabilities of specific states as follows:

25

Probability
State of
the State

0.206
0.294
0.176
0.176
0.147

Wil | Wl] -

Table II. Probability of Various States After Many Transitions.

This shows that, in the melted state, where moves that increase the number of product terms
are all accepted, the probability of the minimal state, State I, after many transitions is 20.6%.
The most likely state, however, corresponds to the largest number of product terms. It is
interesting that the "false minimum" state, State 5, has a lower probability than the true
minimum.

This analysis corresponds to the highest temperature, where all moves are accepted. At
lower temperatures, moves that increase the cost by AE are accepted with probability
P(AE) = ¢ AE T In our case, there is only one positive value of AE, 1, and we denote
the probability of accepting such a move as p. The calculation of the probabilities of transi-
tion from the various states is straightforward. The corresponding transition matrix is

- "

0o 0 L1Llo0
0 0 i3
1 1
Sl’: 121 121 000
RS TR
2 1
231 231000
%3P 35
0 I 00 0]

In an analysis similar to that performed above on the melted state, the probabilities that the
system is in a specific state, can be calculated to determine their dependence on p (by com-
puting S%). The following table shows the results. It can be seen that, as p decreases, the
probability of State 1 approaches 0.5, while the probability of State 5 decreases to 0.0.
Because a transition is required after each state, the probability of any one state cannot exceed
0.5. Thus, the probability of State 1 approaches the maximum value as p approaches 0.0.
This also shows that the probability of the false minimum state, State S, approaches 0.0 as p

26

decreases to 0.0.

p Probability of State
1 2 3 4 S

1.0 0.206(0.206) | 0.294(0.294) | 0.176(0.175) | 0.176(0.176) | 0.147(0.148) |
0.5 0.289(0.294) | 0.211(0.206) | 0.197(0.198) | 0.197(0.200) | 0.105(0.102)
0.25 0.365(0.364) | 0.135(0.136) | 0.217(0.217) | 0.217(0.215) | 0.067(0.068)
0.125 0.422(0.421) { 0.078(0.079) | 0.230(0.228) | 0.230(0.232) | 0.039(0.040)
0.0625 0.457(0.456) 0.043(0.0427‘ 0.239(0.241) | 0.239(0.237) | 0.021(0.022)
0.03125 0.478(0.477) | 0.022(0.023) | 0.244(0.245) | 0.244(0.244) | 0.012(0.01D)
0.015625 | 0.489(0.489) | 0.011(0.011) | 0.247(0.245) | 0.247(0.249) | 0.005(0.005)
0.0078125 || 0.494(0.495) | 0.006(0.004) | 0.249(0.248) | 0.249(0.250» | 0.003(0.001)

Table III. Probability of Various States After Many Transitions
as a Function of p, the Probability of Accepting a Cost-Increasing Move.

Shown in parenthesis are experimentally derived values for the probabilities of the vari-
ous states. These were obtained by running the simulated annealing with the temperatures
shown for 100.000 moves. As can be seen, the experimental values match closely the derived
values. That is. in the worst case, the difference between the experimental value and the cal-
culated value is 0.5%. for State 2 with p = 0.5.

27

INITIAL DISTRIBUTION LIST

Dr. George Abraham, Code 1005
Office of Research and Technology
Naval Research Laboratories

4555 Overlook Ave., N.W,
Washington. DC 20375

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Research Administration, Code 012
Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center
Cameron Station
Alexandria. VA 22304-6145

Prof Jon T. Butler

Department of Electrical and Computer Eng.
Naval Postgraduate School

Monterey, CA 93943-5004

LCDR John N Yurchak
R.D. #6, P.O. Box 268
Muncy, PA 17756a

Dr. Robert Williams
Naval Air Development Center. Code 5005
Warminster, PA 18974-5000

Prof. Michael A. Morgan, Chairman
Department of Electrical and Computer Eng.
Naval Postgraduate School

Monterey, CA 93943-5004

Dr. James Gault

U.S. Anny Research Office

P.O Box 12211

Research Triangle Park, NC 27709

19.

20.

21.

Dr. Clifford Lau

Office of Naval Research
1030 E. Green Str.
Pasadena. CA 91106-2485

Dr. Jolin Neff
DARPA/DSO

1400 Wilson Blvd.
Arlington. VA 22209

Dr. William Miceli
Office of Naval Research
495 Summer St.

Boston. MA 02210-2109

Dr. Harold Szu

Naval Research Laboratories
Code 5750

4555 Overlook Ave.. N.W.
Washington, DC 20375

Dr. Matthew Kabrisky
Deparunent of Electrical Engineering
Air Force Institute of Technology

Wright-Patterson AFB. OH 45433-6583

Dr. James Suttle

U.S. Arnny Research Office
PO.Box 12211

Research Triangle Park, NC 27709

