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1 Proposed Research Objectives

The main objectives of this three year research effort were the design and analysis of feed-
back algorithms in adaptive and in nonlinear control. In adaptive control, the principal
focuses included adaptive control of distributed parameter systems using fairly simple, low
dimensional controllers. An important preliminary to the design of such adaptive algo-
rithms is the design of low dimensional compensators, capable of achieving stabilization
or tracking desired trajectories, in the more classical case where the distributed parameter
system coefficients are known, modelling for example systems with flexible appendages
or components undergoing a slewing maneuver. Research Tasks 2.1-2.8 address specific
research tasks which were proposed as part of the long term research effort in adaptive
control. Research Tasks 2.1-2,2 proposed the formulation and derivation of (algorithm
independent) necessary conditions for the existence of adaptive stabilization and adap-
tive tracking schemes for distributed parameter systems. Research Task 2.3 focused on
the explicit design and analysis of adaptively stabilizing controllers for minimum phase
distributed parameter systems with relative degree r. Research Task 2.4 proposes the im-
portant extension of Task 2.3 consisting of the analysis and design of adaptive controllers,
for the same class of distributed parameter systems, capable of achieving asymptotic dis-
turbance attenuation and of tracking desired reference trajectories. Tasks 2.3-2.4 have
focused on analysis and design of adaptive controllers for scalar-input, scalar output dis-
tributed parameter systems, while some important applications have access to and require
the use of several simultaneous control mechanisms. A challenging problem even in the
lumped case, the analysis and design of adaptive controllers for multi-input, multi-output
systems, based on the research effort described in Tasks 2.3 -2.4, is proposed in Research
Task 2.5. Research Task 2.6 proposed developing systematic methods for modifying the
controllers, designed in the research effort required for Tasks 2.3-2.5, to meet specific im-
plementation requirements, such as saturation of feedback gains, guaranteed wind-down,
etc.

The sequence of research efforts described in Tasks 2.3-2.6 require the very important
preliminary solution of the corresponding design problems for distributed systems whose
parameters are unknown. For example, Tasks 2.3-2.4 involve designing adaptive feedback
laws capable of stabilization or tracking for minimum phase distributed parameter systems;
i.e. for systems whose transmission zeroes lie in the left half complex plane. Research Task
2.7 proposed a research effort leading to the rigorous development of a basic (geometric)
theory of transmission zeroes for multi-input, multi-output linear systems, including an
intrinsic, coordinate-free characterization of zero dynamics, which have proved so useful

I



in nonlinear feedback design. The application of the theory of transmission zeroes in the
design of feedback laws achieving asymptotic stabilization and output regulation of dis-
tributed parameter systems, a fundamental preliminary to adaptive control, was proposed
in the final specific research task on adaptive control, Research Task 2,8, Another of
the long term research goals of this research effort is the control of nonlinear, distributed
parameter systems. For nonlinear systems, control problems such as stabilization about
equilibria, stabilization about limit cycles or asymptotic tracking of desired reference tra-
jectories have been largely open problems even for lumped, or finite dimensional, nonlinear
systems. Research tasks 3.1-3.5 proposed specific research which focused primarily on pro-
posed efforts directed towards solving such fundamental problems for finite dimensional
systems.

Research Task 3.1 proposed a research effort in feedback stabilization of nonlinear con-
trol systems. Explicitly, the analysis and design of feedback laws achieving bounded-input,
bounded-output stability, a somewhat stronger but highly desirable form of asymptotic sta-
bilization, is proposed. Research Task 3.2 focused on the development of feedback design
methods leading to the solution of asymptotic tracking, of stabilization and of linear model
matching for nonlinear systems. Research Task 3.3 proposed research directed toward a
solution of the nonlinear regulator problem, i.e. the design of a feedback compensator
simultaneously achieving asymptotic tracking and disturbance attenuation. There is of
course a direct connection between nonlinear systems and adaptive control, since adaptive
control schemes themselves are typically nonlinear systems. Past research has shown that
stability mechanisms underlying convergence of simple adaptive stabilization schemes is
in fact dictated by the stability results for a special class of nonlinear autonomous sys-
tems, time varying linear systems. Thus Research Task 3.4 proposed the development of
a systematic geometric design methodology for solving problems such as feedback stabi-
lization, disturbance rejection, etc. for linear time- varying systems. Finally, much of the
early research on problems such as feedback stabilization or tracking required that certain
regularity conditions be satisfied. It is rather typical, however, for special system configu-
rations that these regularity conditions can be violated. Research Task 3.5 addressed this
problem, proposing a systematic research effort in the regularization of singular problems
arising in nonlinear control.
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2 Status of the Research Effort

(References cited are from Section 3)

In our three year effort we have made substantial progress in our research on the
control of distributed parameter systems (DPS) and enjoyed several unanticipated major
breakthroughs in our research on feedback control of nonlinear systems. The research
effort on the control of DPS is a fundamental preliminary to our overall proposed effort
in adaptive control; in particular, to the specific research goals delineated in Tasks 2.1-2.8
as described in section 1 and in the proposal. Our work in nonlinear control addresses
the specific research goals delineated in the specific Research Tasks 3.1-3.5, which are
benchmarks in our longer-term research effort to develop a systematic methodology for
the design of feedback laws for nonlinear systems, similar in scope and effectiveness to
classical linear system design.

Research Tasks 2.3-2.6 call for the design of explicit, low dimensional adaptive con-
trollers for distributed parameter systems, which should be designed on the basis of fairly
intuitive, physical properties of the DPS, particularly frequency domain properties such
as system stability (e.g. damping or dissipation) or stability of a system inverse, i.e. the
minimum phase property. Research Task 2.1-2.2 thus represent the longer term goal of
deriving algorithm independent necessary conditions for the existence of finite-dimensional
adaptive controllers for DPS. A very important preliminary to the design of adaptive con-
trollers as envisioned in Research Tasks 2.3-2.6 is a systematic methodology for the design
of such feedback strategies, when the system parameters are known. Indeed, Tasks 2.7-2.8,
which represent our initial goals in this overall research effort, involve the development of
a dynamical systems formulation of the classical concept of systems transmission zeroes
and minimum phase properties in terms of which rigorous "geometric" root-locus methods
can be developed as a tool for feedback design.

In [8], by developing the notion of "zero dynamics" of a DPS, we sketched an enhance-
ment of root-locus design methods, resolving to a large extent the research problem posed
in Task 2.7. In [8], [41], we then applied the concept of "zero dynamics" of a DPS to
the design of some explicit feedback laws for stabilization and set-point boundary control
for certain problems of heat conduction or wave propagation. Elementary examples [8]
also show that a direct generalization of classical root-locus plots fails, even in the case of
self-adjoint boundary conditions. This combination of examples showed that while one can
be optimistic about the development of a feedback design theory as envisioned in Research
Task 2.8, such a theory will be far more subtle than in the classical. lumped parameter
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case. Nonetheless, as we sketched for one spatial dimension in [19], with sufficient care one
can develop a rigorous, fairly complete enhancement of root-locus design.

The underlying analysis reposes on two new ingredients. The first is based on the
discovery that, although the high-frequency gain of a DPS does not exist, its time-domain
counterpart - the system instantaneous gain - does of course exist and can be explicitly
computed. It is worth noting that the sign of the instantaneous gain is all that is needed
to determine the asymptotic behavior of the root-locus plot. In particular, new and even
simpler formulas have been found for the instantaneous gain. These new formulas apply
to the cases considered in [24], [34] but are also valid for a larger class of control problems
including the case of noncolocated actuators and sensors. One special feature of these
formulas is that they depend only on the order and coefficients of the highest order terms
in the input and output boundary operators rather than the more complicated determinant
condition first announced in [34].

The second ingredient, novel to research in DPS, is the application of the classical
work by G. D. Birkhoff which enables us to analyze discreteness of the appropriate spectra
and completeness of the appropriate eigenfunction expansions, even in the absence of the
standard self-adjointness restrictions on the class of boundary controls. These two tech-
nical advances, taken together, enabled us to develop a fairly complete root-locus design
methodology for parabolic distributed parameter systems, as is described in the forthcom-
ing full-length paper [33]. Furthermore, by using the Dirichlet principle, we have recently
found a promising extension of these design techniques to higher spatial dimensions, by
appealing to methods from the calculus of variations.

As an example of the scope of the root-locus methods developed for DPS, in [24.,33,34]
it is shown that, in general, for these DPS all but finitely many of the open loop poles and
zeros are real and interlace on the negative real axis. This together with the Hadamard
factorization theorem has enabled us to obtain analogs of many other important geometric
tools from the finite dimensional root locus theory. For example, the "phase" and "mag-
nitude" criteria from the finite dimensional case also hold in this case . This allows us to
obtain such conclusions as a "real axis loci" result from the finite dimensional case: For
k > 0, points of the root-locus on the real axis lie to the left of an odd number of finite
poles and zeroes and for k < 0, points of the root-locus on the real axis lie to the left of
an even number of finite poles and zeroes.

Also during this period we extended these results to one dimensional hyberbolic prob-
lems [50]. For wave and beam problems on a finite interval, we have established boundary
feedback control laws using the same tools that were applied in the parabolic case. The
problems here are somewhat more interesting since the closed loop poles typically tend to
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vertical asymptotes and exponential stability is thus harder to establish, One important
tool here has been the use of boundary feedback to render the system equivalent to a
dissipative system.

In addition to considering hyperbolic problems on a finite domain we have considered
examples on unbounded domains. In this case, quite pathological behavior can be observed
even for very simple examples associated with the wave equation. In particular, for the
wave equation on a half line [49] with Neumann boundary control, colocated displacement
output and a PD control law, we found the unexpected behavior that the point spectrum
is empty for all values of the gain parameter except one. At this exceptional value the
point spectrum consists of the entire left half plane. Yet the problem remains maximal
dissipative with no eigenvalues on the imaginary axis. For this problem, with the absolutely
continuous spectrum taken as essential spectrum (cf the classic texts by Kato, or Simon
and Reed), this example demonstrates the instability of the essential spectrum subject to
compact perturbations. In [49] it is shown that the boundary control effects a rank one
perturbation of the spatial operator.

The boundary feedback control laws derived above are in essence output feedback laws,
which have the advantage of only requiring on-line processing with just a finite dimensional
quantity in memory, as opposed to feedback strategies which need to have access to the en-
tire (infinite-dimensional) state of the DPS. However, even for lumped parameter systems,
the problem of determining the extent to which linear system behavior can :.e influenced
by output feedback is open and challenging. Recent techniques and advances in these
output feedback problems are the subject of our recent survey 10], an invited paper in
honor of J. C. Willems. The references [10] and [25], [30) contain new contributions to this
longstanding problem, obtained by using somewhat novel applications of algebraic geom-
etry and Lie theory, respectively. When output measurements do not contain sufficient
data to stabilize a DPS, there are several alternatives to obtain enough information about
the system state to achieve stabilization. Classical techniques would involve filtering the
output to recover the entire (infinite dimensional) state, but the techniques of sampling
and multirate sampling can give this kind of information approximately in an on-line man-
ner. References (4], [35]-[40] contain our initial efforts on this inverse problem, giving fairly
general results for heat conduction and more general parabolic systems.

Our effort in nonlinear feedback control has concentrated on the research goals outlined
in Tasks 3.1-3.5. Task 3.1 is concerned with the design of nonlinear feedback laws which
stabilize a given nonlinear control system in the bounded-input, bounded-output (BIBO)
sense. The starting point for this research effort effort is our recent design methodology for
asymptotic stabilization ([5,9,26]), based on a nonlinear dynamics extension of the concept
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of system transmission zeroes - the notion of "zero dynamics." In [20) we used methods
from nonsmooth analysis to give a general existence result for zero dynamics in which the
control enters in an afline form. From this existence theorem, which seems to be of interest
in its own right, we also derived a new necessary condition for feedback stabilization of
nonlinear systems (20), stated in terms of an intuitive criterion involving the system zero
dynamics. Based on these techniques, we derived in [18] BIBO stabilizing laws for certain
broad classes of nonlinear systems.

The underlying methods, consisting of a synthesis of techniques drawn from geometry
and nonlinear dynamics, have also been applied to resolve a longstanding problem con-
cerning attitude stabilization of rigid spacecraft, controlled by pairs of gas jets ([23], see
(7) simulations). Also, in this direction, we have begun [12) to research the very important
problem of designing stabilizing feedback laws so that they are also robust against unmod-
elled high frequency dynamics. As it turned out the concept of (nonlinear) zero dynamics
proved to be as versatile an approach to nonlinear feedback design problems as transmis-
sion zeros are for linear automatic control (cf. the survey article [11]). More recently, in
[22], we also applied the concept of zero dynamics to the problem of exact linearization of
a nonlinear control system by dynamic feedback. Exact linearization of a nonlinear control
system by static feedback had been one of the principal methods for designing stabilizing
feedback laws for nonlinear systems, although it was well-known that the conditions for
exact linearization are very stringent and consequently do not apply to a broad class of
nonlinear systems.

Our interest in BIBO stabilization stems from the desire to not only asymptotically
stabilize a system, but to maintain Lyapunov stability when the system is required to
asymptotically track a bounded reference signal. This problem of non-equilibrium stabi-
lization, i.e. about a bounded but nonconvergent trajectory rather than an equilibrium, lies
at the heart of Research Tasks 3.2 and 3.3. Research Task 3.2 focused on the development
of feedback design methods leading to the solution of asymptotic tracking, of stabilization
and of exact linear model matching for nonlinear systems. As we have cited, our success
in Task 3.1 reposed on our successful efforts in developing a fairly general methodology for
designing feedback laws which asymptotically stabilize nonlinear systems, as proposed in
Task 3.2. An unanticipated solution of both the exact and the asymptotic tracking prob-
lems for nonlinear systems, valid near an equilibrium, is given in [3,13,17) and is based
on the local solution of the nonlinear regulator problem proposed in Research Task 3.3.
Asymptotic tracking in the non-equilibrium case is, however, also of interest , e.g. in the
use of tracking a stable limit cycle to enhance BIBO stability in the absence of a stable
equilibrium. Preliminary results on this class of problems are given in [15,32], wherein
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feedback schemes for tracking limit cycles with sufficiently small amplitude are derived
using the methods described above in conjunction with the Hopf Bifurcation Theorem.

Research Task 3.3 is concerned with the important problems of asymptotic disturbance
rejection and asymptotic tracking, which when taken together form one of the major tools
of control system design, the regulator problem. Thus, the nonlinear regulator problem is
the problem of designing a feedback compensator which will ensure that the system to be
controlled asymptotically tracks a desired reference signal or trajectory, while at the same
time asymptotically rejecting a corrupting disturbance signal which if unattenuated would
compromise system performance. Rather unexpectedly, we discovered [13,17,47] necessary
and sufficient conditions for local solvability of the nonlinear regulator problem. In [46],
these results are illustrated in the feedback design for hover control of a planar model
of a vertical take-off and landing aircraft (VTOL). The results on nonlinear regulation
contained in reference [17] pertain to systems which are affine in the control variable, which
is typical but not universal for applications. In [13] we announce a complete solution of
the regulator problems for general nonlinear control systems. Reference [14) shows, by
means of analysis and examples, that the solutions to the linear regulator problem is not
robust with respect to nonlinear perturbations and, in particular do not solve the output
regulation problem for nonlinear systems. The condition is a nonlinear enhancement,
using zero dynamics, of an observation in classical automatic control, viz. one can track a
sinusoid which oscillates at any frequency which is not a system zero. One important aspect
of the results in nonlinear output regulation is explicit construction of the feedback laws
derived in the solution of the regulator problem. In particular the nonlinear coefficients
or "gains" may be determined "off-line" as the solutions of a nonlinear PDE [26]. This
structure is somewhat reminiscent of solutions obtained in the linear quadratic regulator
problem, a fact which motivated our recent solution of a class of nonlinear optimal control
problems by feedback laws which involve the "off-line" solution of a "Riccati PDE". This
is described in [42] for nonlinear systems with quadratic performance measures and in [43]
for nonlinear systems with nonlinear but convex performance measures.

The importance of the regulator problem and some of the motivating applications are
discussed in Sections 6 and 7. The global solvability of the regulator problem, which
is of interest for tracking limit cycles or trajectories over a larger spatial interval, will
certainly involve developing more powerful mechanisms for ensuring boundedness of system
state trajectories. In our work on altitude stabilization [7,23] and on global asymptotic
disturbance rejection [6], a common stability mechanism has emerged, viz., the existence
of bounded attractors in the system zero dynamics can be taken advantage of to ensure
Lyapunov stability of the closed-loop system. We are currently pursuing this method of
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feedback stabilization about attractors [6) as a potential new tool for nonlinear regulation.
We have also researched an alternative approach. In [27) we combine the geometric methods
described above with the concept of passivity, which has long been a mainstay of stability
analysis for nonlinear circuits and which, for the case of lumped linear systems, has a
profound frequency domain interpretation easily related to system poles and zeros. Using
this combination of techniques, we have developed some apparently powerful, new stability
criteria based on a solution to a problem which is a more robust version of feedback
equivalence to a linear system, viz. feedback equivalence to a nonlinear passive system.
We are currently pursuing this method of feedback equivalence to a passive system as a
new tool for nonlinear regulation.

The Ph.D. dissertation completed by S. Pinzoni in the second year of this research
effort gives a fairly complete treatment of the research program outlined in Research Task
3.4, which proposed the development of a systematic geometric design methodology for
solving problems such as feedback stabilization, disturbance rejection, etc. for linear time-
varying systems. Indeed, in his thesis Pinzoni develops the geometric notions of controlled
invariant subspace, zero-dynamics, relative degree and instantaneous gain, applying them
to the solution of the fundamental problems of disturbance decoupling (DDP), stabilization
by static and dynamic output feedback and disturbance decoupling with stability (DDPS).

Research Task 3.5 addresses the fact that it is rather typical that the regularity condi-
tions assumed in much of the early research on problems - such as feedback stabilization or
tracking - can be violated for special system configurations. References [20], [21] and [2S]
document the initial phase of our systematic research effort in the regularization of singular
problems arising in nonlinear control. In [20], using methods from nonsmooth analysis,
we are able to define and prove the existence of zero dynamics for nonlinear systems in
which the control enters in an affine form, a result which has already shown to be of some
importance in nonlinear feedback design. In [21] we apply techniques from singular per-
turbation theory to analyze, in the scalar input-scalar output case, the singular behavior
of zero dynamics when the system relative degree changes as a function of a parameter.
Reference [28) treats this problem in detail in the multivariable case.

In the course of our research program we have also researched some of the more basic
aspects of nonlinear systems and control, which we feel are or will soon be important to
fundamental problems of estimation and control. In [1] we investigated a novel use of
harmonic analysis to study the problem of observability, i.e. recoverability of the system
state from system observations, for a certain class of ergodic systems. State recovery in a
noisy environment has been solved for linear systems by the method of Kalman Filtering,
provided of course the observations are truly generated by an underlying linear system of
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the correct dimension. When the system which generates the observation data is nonlinear
or of higher dimension (e.g. a DPS), the asymptotic behavior of the Kalman Filter is
not understood. In references [2], [16] and [29], [31] we apply methods from nonlinear
dynamics to obtain some rather precise information about the steady-state behavior of the
Kalman Filter, as a nonlinear dynamical system, in these cases. Reference [16] addresses
the problem of parameterizing those shaping filters, of a fixed dimension, which could
produce observed signals having an a priori set of statistics, e.g. a fixed number of given
correlation coefficients.
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5 Scientific Interactions

September 1988

Uniformly bounded-input, bounded output stability, Department of Mathemat-
ics, Texas Tech University.

October 1988

Geometric methods for feedback design for nonlinear control system, (Plenary
lecture), Midwest Symposium on Differential Equations, Iowa State University,
Ames, Iowa

November 1988

Feedback stabilization about attractors, Department of Systems and Decision
Sciences, International Institute for Applied Systems Analysis, Laxenburg, Aus-
tria.

Feedback stabilization about attractors, Department of Electrical Engineering,
University of Padova, Padova, Italy.

December 19S8

Feedback stabilization about attractors and asymptotic disturbance rejection
for nonlinear systems. Invited lecture, 28th IEEE Conference on Decision and
Control, Austin Texas.

Attitude stabilization of rigid spacecraft: stability and instability near attrac-
tors, Invited lecture, 28th IEEE Conference on Decision and Control, Austin,
Texas.

Asymptotic properties of root-loci for distributed parameter systems, Invited
lecture presented by Dr. David Gilliam at 2Sth IEEE Conference on Decision
and Control.

January 1989

Feedback stabilization about attractors, Department of Mathematics, Univer-
sity of Paris-Dauphine, Paris, France.

Feedback stabilization about attractors, Laboratory for Signals and Systems,
CNRS, Gif-sur-Yvetter, France.
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March 19S9

Geometric methods for nonlinear feedback systems, ESA Lecture Series (three
lectures) Texas Tech University, Lubbock, Texas.

April 19S9

Feedback stabilization about attractors, Nonliner Sciences Institute, University
of California-Davis, Davis, California.

Output regulation for nonlinear systems, Department of Mathematics, Montana
State University, Bozeman, Montana.

May 1989

Asymptotic stabilization of nonlinear minimum phase systems, SIAM conference
on Control in the 90's, San Francisco, California.

Geometric methods for nonlinear feedback design, a short course (5 lectures)
Department of Optimization and Systems Theory, Royal Institute of Technol-
ogy, Stockholm, Sweden.

June 1989

Steady-state response and asymtotic tracking for nonlinear systems, IIASA Con-
ference on Nonlinear Synthesis, Sopron, Hungary.

Output regulation for nonlinear systems, Plenary lecture, IFAC Symposium on
Nonlinear Control Systems, Capri, Italy.

Asymptotic tracking and disturbance rejection for non-affine nonlinear control
systems. Invited lecture, 1989 International Symposium on Mathematical The-
ory of Networks and Systems, Amsterdam, The Netherlands.

The cohomology of moduli spaces of controllable linear systems, Invited lec-
ture 1989 International Symposium on Mathematical Theory of Networks and
Systems, Amsterdam, The Netherlands.

Output regulation of nonlinear systems, 1989 International Symposium on Math-
ematical Theory of Networks and Systems, Amsterdam, The Netherlands. In-
vited lecture presented by Dr. A. Isidori.
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Boundary feedback stabilization of distributed parameter systems, Invited lec-
ture presented by Dr. David Gilliam at 19S9 International Symposium on Math-
ematical Theory of Networks and Systems, Amsterdam, The Netherlands.

September 1989

Geometric Methods for the Design of Nonlinear Feedback Systems, International
Conference on Optimization and Optimal Control, Baikal, USSR. Plenary Lec-
ture.

Feedback Stabilization of Nonlinear Systems, International Conference on Op-
timization and Optimal Control, Baikal, USSR. Plenary Lecture.

Geometric Methods for the Design of Nonlinear Feedback Systems, Institute for
Problems of Control, Moscow, USSR. Invited Colloquium.

Geometric Methods for the Design of Nonlinear Feedback Systems, Steklov In-
stitute of Mathematics, Moscow, USSR. Invited Colloquium.

Geometric Methods for the Design of Nonlinear Feedback Systems, Glushkov
Institute for Cybernetics, Kiev, USSR. Invited Colloquium.

November 1989

Discrete Observability for Parabolic Systems, Society of Industrial and Applied
Mathematics, Conference on Control in the 90's, San Francisco, 19S9. Invited
paper, presented by Dr. D.S. Gilliam

Output Regulation of Nonlinear Systems, Department of Electrical and Com-
puter Engineering, Univ. of Texas -Austin. Invited Colloquium.

December 1989

Asymptotic Tracking and Disturbance Attenuation for Nonlinear Systems, 7th
Southwest Symposium on Systems and Control, Lubbock, Texas. Invited Paper.

Root Locus for Distributed Parameter Systems, 7th Southwest Symposium
on Systems and Control, Lubbock, Texas. Invited Paper, presented by Dr.
D.S.Gilliam.

Steady-state Response and Asymptotic Tracking for Nonlinear Systems, 2Sth
IEEE Conf. on Dec. and Contr., Ft. Lauderdale. Invited Paper.
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January 1990

Steady-state Response and Asymptotic Tracking for Nonlinear Systems, Dept.
of Optimization and System Theory, Royal Institute of Technology, Sweden.
Invited Colloquium.

February 1990

Output Regulation of Nonlinear Systems, Center for Systems Science and En-
gineering Research, Arizona State University. Invited Colloquium.

March 1990

Technical Briefing on Nonlinear Aspects of Flight Control Systems and Com-
putational Fluid Dynamics, McDonnell-Douglas Aircraft Co., St. Louis.

Output Regulation of Nonlinear Systems, LADSEB-CNR, Padova, Italy. In-
vited Colloquium.

Root Locus Methods for Boundary Feedback Stabilization of Parabolic Dis-
tributed Parameter Systems, Universiti di Padova, Dipartimento di Elettronica
e Informatica. Invited Colloquium presented by D.S. Gilliam.

Root Locus .Methods for Boundary Feedback Stabilization of Parabolic Dis-
tributed Parameter Systems, Universith di Roma, "La Sapienza", Dipartimento
di Informatica e Sistemistica. Invited Colloquium presented by D.S. Gilliam.

April 1990

An Invitation to Nonlinear Control, Dept. of Electrical and Computer Engi-
neering, Univ. of Illinois. Invited Address in the Graduate Colloquium Series.

Output Regulation of Nonlinear Systems, Coordinated Sciences Laboratory,
Univ. of Illinois. Invited Colloquium.

May 1990

A Riccati Partial Differential Equation for Nonlinear Optimal Control, Dept.
of Optimization and System Theory, Royal Institute of Technology, Sweden.
Invited Colloquium.

Output Regulation of Nonlinear Systems, Dept. of Electrical and Computer
Engineering, Univ. of Link6ping, Sweden. Invited Colloquium.
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June 1990

Controlled Invariance, Zero Dynamics, and Viability Domains for Nonlinear
Control Systems, 7th INRIA Conf. on Analysis and Optimization of Systems,
Anibes, France. Invited Paper.

July 1990

An Introduction to Nonlinear Control, Summer Institute of the Chalmers Uni-
versity, Stockholm, Sweden. Invited Short Course.

Passive, Positive Real and Minimum Phase Nonlinear Systems, Conference on
Nonlinear Control Systems, Lyons, France. Plenary Lecture.

Necessary Conditions for Feedback Stabilization of Nonlinear Control Systems,
Conference on New Trends in System Theory, Genova, Italy. Invited Paper.

August 1990

Partial Differential Equations Arising in Nonlinear Control, 2nd Conference on
Computation and Control, Bozeman, Montana. Plenary Lecture.

Root Locus Methods for Boundary Feedback Stabilization of a Parabolic Dis-
tributed Parameter Systems, Conference on Computation and Control, Boze-
man, Montana. Invited lecture presented by Dr. D.S. Gilliam.

September 1990

Stable, Unstable and Center Manifolds for Fast Filtering Algorithm, IIASA
Conference on the Modeling and Control of Uncertain Systems, Soporn, Hun-
gary. Plenary Lecture.

October 1990

Partial Differential Equations Arising in Nonlinear Control, Mathematics Insti-
tute, Universiteit Groningen, The Netherlands, Invited Colloquium.

November 1990

Output Regulation of Nonlinear Systems, Honweywell, Minneapolis, Invited
Lecture,
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Passive, Positive Real and Minimum Phase Nonlinear Systems, University of

Minnesota, Invited Colloquium.

December 1990

Stabilization and Output Regulation of Nonlinear Systems in the Large, 29th
IEEE Conference on Decision and Control, Honolulu, Invited paper.

Stabilization of Certain Distributed Parameter Systems by Low Dimensional
Controllers: A Root Locus Approach, 29th IEEE Conference n Decision and
Control, Invited Paper delivered by Dr. Gilliam.

Exact Linearization of Zero Dynamics, 29th IEEE Conference on Decision and
Control, Honolulu, Invited Paper delivered by Dr. Isidori.

February 1991

Partial Differential Equations Arising in Nonlinear Control, Center for Systems
Science and Engineering Research, Arizona State University. Invited Collo-
quium.

March 1991

Partial Differential Equations Arising in Nonlinear Control, LADSEB-CNR,
Padova, Italy. Invited Colloquium.

April 1991

Recent Advances in Nonlinear Control, AFOSR. Workshop on Turbulence and

Flow Control, Ohio State University, Plenary Lecture.

Partial Differential Equations Arising in Nonlinear Control, Department of Elec-
trical Engineering, Link6ping University, Sweden. Invited Colloquium.

May 1991

Partial Differential Equations Arising in Nonlinear Control, Ecole-Normale Su-
perieure, Paris. Invited Colloquium.

Partial Differential Equations Arising in Nonlinear Control, CNS Laboratory,
Fontainbleu. Invited Colloquium,
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June 1991

Hover Control of a PVTOL Aircraft, ACC, Boston. Invited paper given by
coauthor, Mr. John Roltgen (MDC).

Partial Differential Equations Arising in Nonlinear Control, Laboratiore des
Signaux et Systernes, CNRS, Gif-sur-Vette. Invited Colloquium.

Partial Differential Equations Arising in Nonlinear Control, INRIA-Antibes.
Invited Colloquium.

Robust Output Regulation of Nonlinear Systems, MTNS-91, Kobe, Japan. Ple-
nary lecture delivered by Dr. Isidori

July 1991

New Methods for Nonlinear Optimal Control, 1st European Control Conference,
Grenoble. Invited Paper.

Passive, Positive Real and Minimum Phase Nonlinear Systems, Department of

Optimization and System Theory, Royal Institute for Technology, Stockholm.
Invited Colloquium.

Robust Output Regulation of Nonlinear Systems, Ist European Control Con-
ference, Grenoble. Plenary lecture delivered by Dr. Isidori

22



6 New Discoveries

During the first year of this research program, significant progress was made principally
on two research fronts, boundary feedback control of distributed parameter systems and
feedback control of nonlinear systems. Motivating applications from our work on the
control of distributed parameter systems include the stabilization of a rigid body with
flexible appendages undergoing a slewing maneuver. In this area, the research developed
so far has uncovered the theoretical underpinnings of root-locus plots and root-locus design
methods, which are graphical stability and design criteria used quite freely in aerospace
engineering. It has often been noted that such root-locus methods do not always work for
distributed parameter systems as they do for classical lumped parameter systems. For this
reason, there is a real need for a rigorous understanding of and a clear delineation of the
scope of these potentially very powerful, intuitive graphical tools for analysis and design of
distributed parameter systems. The underlying analysis reposes on two new ingredients.
The first is based on the discovery that, although the high-frequency gain of a DPS does
not exist, its time-domain counterpart - the system instantaneous gain - does of course
exist and can be explicitly computed. It is worth noting that the sign of the instantaneous
gain is all that is needed to determine the asymptotic behavior of the root-locus plot. To
this end, fairly simple formulas have been found for the instantaneous gain which apply
to the cases considered in [24], [34] but are also valid for a larger class of control problems
including the case of noncolocated actuators and sensors. One special feature of these
formulas is that they depend only on the order and coefficients of the highest order terms
in the input and output boundary operators rather than the more complicated determinant
condition first announced in [34].

The second ingredient, novel to research in DPS, is the application of the classical work
at the beginning of this century by G. D. Birkhoff which enables us to analyze discreteness
of the appropriate spectra and completeness of the appropriate eigenfunction expansions,
even in the absence of the standard self-adjointness restrictions on the class of boundary
controls. These two technical advances, taken together, enabled us to develop a fairly
complete root-locus design methodology for parabolic distributed parameter systems, as
is described in the forthcoming full-length paper [33].

In the second area, we have enjoyed an unanticipated solution of one of the major
problems in nonlinear control, a solution of the nonlinear regulation problem. This is
the problem of designing a feedback compensator which will enable the system to be
controlled to asymptotically track a desired reference signal or trajectory, while at the
same time asymptotically rejecting an unwanted disturbance signal which if unattenuated
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would severely compromise system performance. Mathematically, simple system theoretic
necessary and sufficient conditions for the solution of the nonlinear regulator problem have
been determined, valid for local deviations from an equilibrium.

From a feedback design point of view, beyond the rigorous solution of the nonlinear
regulator problem, a very important component of this advance is the actual form of the
feedback compensation, which appears to be computationally tractable. In close analogy
with the linear case, the structure of the feedback law is that a nonlinear proportional error
compensator where the nonlinear feedback "gains" can be computed "off-line" by solving
a nonlinear partial differential equation, quite similar to very important roles played by
the Riccati equation in linear systems design. This structure is somewhat reminiscent of
solutions obtained in the linear quadratic regulator problem, a fact which motivated our
second advance in nonlinear feedback design - our recent solution of a class of nonlinear
optimal control problems by feedback laws which involve the "off-line" solution of a "Riccati
PDE". This is described in [42] for nonlinear systems with quadratic performance measures
and in [43] for nonlinear systems with nonlinear but convex performance measures.

The basic research on the regulator problem and on the solvability of steady-state
Riccati PDE's also provided the starting point for our third significant breakthrough in
nonlinear control system design - the development of nonlinear H' robust control tech-
niques.
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7 Additional Information

As described in Section 1 and the specific research tasks described in our proposal, our
work on distributed parameter control is a preliminary to one of our longer range research
goals, the adaptive control of linear and nonlinear distributed parameter systems. Even

for lumped systems, serious problems remain to be researched before adaptive control
can be used with confidence for high performance DOD systems, despite the remarkable
commercial success of adaptive controllers for slower systems such as those arising in
process control applications. One of the motivating applications for our basic research in

adaptive and nonlinear control is flow control, e.g. the control of fluid flow across an airfoil
using thermal actuators, and related topics such as combustion and noise control currently

being researched in experimental laboratories in the United States and Japan. Here , more
complicated dynamical behavior is exhibited in both the process to be controlled and the
actuator. While there is a definite need, for the purpose of control, for the development
of specific alternative models to the Navier Stokes equations, it is extremely likely that

simplified models exhibiting some of the complicated behavior encountered in turbulent

fluid flow will involve nonlinear and also infinite dimensional systems. Indeed, the recent
"Fleming Report" on Future Directions in Control Theory emphasized research on flow
control as an important research need for the future of American technology.

The problems of stabilizing and controlling nonlinear systems are limiting factors in
the design of several DOD systems. For example, there is current research and devel-
opment effort in the aerospace industry dedicated toward stabilization and control of
high performance aircraft operating in nonlinear flight conditions involving agility and
high angles-of-attack. Because linear systems exhibit much more predictable and well-
understood behavior, the control of linear systems has been more highly developed than
the control of nonlinear systems. For this reason, current approaches to flight control in
the presence of nonlinear effects, e.g. "gain scheduling", have typically involved finding

an "equivalent" linear system, for which a controller is then designed using existing linear
methods. However, for more highly nonlinear maneuvers involving increased agility and
higher angle-of-attack, the limitations of conventional design methods stem from the lack
of a reasonable "equivalent" linear system which incorporates in some way the increasingly
dominant nonlinear effects. This research effort in nonlinear stabilization and control is
aimed at developing a systematic methodology to overcome some of these limitations. The
Fleming Report also emphasized the importance of basic problems such as nonlinear feed-
back stabilization to the future of the American research effort in control, underscoring
the earlier consensus of the 19S6 IEEE Santa Clara meeting which stated that "nonlinear
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feedback stabilization is by far... the most important open problem in nonlinear control."
The recent success of this research effort in the local solution of the nonlinear regulator

problem relies heavily on our earlier AFOSR sponsored research on the problem of non-
linear feedback stabilization. In fact, in 1989, the principal investigator was honored as a
Fellow of the IEEE for his "contributions to the feedback stabilization and the control of
linear and nonlinear systems," an honor limited to a small fraction of the IEEE member-
ship. The research on the nonlinear regulator problem, and an application to hover control

for a simplified model of a vertical take-off and landing aircraft, were highlighted in the
1991 publication of the AFOSR Research Accomplishments reviews. Since that time, the

foundational paper on output regulation, which was published in the IEEE Transactions on

Automatic Control was nominated for the George Axelby Award for the best paper pub-
lished in the Transactions in the years 1989-1990, an award the paper subsequently won
in December 1991 at the IEEE Conference on Decision and Control in Brighton, England.
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