
R E PO R F,&" AioREPOAr %0%0%1 1 LiTATfM-iE0M ft. 0704-01M

(af f AD-A248 562 -&0"" " " -of
II IIwI uIISII III W vhk WI D C1111 " i l 1 111 11 11111 11111 1 1 RTi

1. AGENCY USE ONLY (Leav'ei-i3. REPRT TYPE ND DA D

Final:19 November 1991 to June 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Alsys, AlsyCOMP.047, Version 5.37, Sun
SPARCstation 2 (Host & Target), 911119A1.11231

6. AUTHOR(S)

AFNOR, Paris, FRANCE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

AFNOR REPORT NUMBER

Tour Europe, Cedex 7 AVF-VSR-AFNOR-91-01
7-92080 Paris La Defense
France

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONIAVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys, AlsyCOMP_047, Version 5.37, Paris La Defense, Sun SPARCstation 2 (Host & Target), ACVC 1.11

DTI
,PR1 3 I/

14. SUBJECT TERMS 1S. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Sndard Form 296, (Rev. 249)
Prmwrbed by ANSI Sid. 239-126

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 19 November 1991.

Compiler Name and Version: AlsyCOMP_047 Version 5.37

Host Computer System: Sun SPARCstation 2 under SunOS 4.1.1

Target Computer System: Sun SPARCstation 2 under SunOS 4.1.1

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate 911119A1.11231 is
awarded to Alsys. This certificate expires on 1993-06-01.

This report has been reviewed and is approved.

AFNOR
Philippe Alphonse
Tour Europe
Cedex 7
F-92049 Paris la D~fense

SDirec or 2C mputer & Software Engineering Division
Instituteo Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-AFNOR-91-01

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 911119A1.11231
Alsys

AlsyCOMP 047 Version 5.37
Sun SPARCstation 2

Prepared By:
AFNOR

Tour Europe
Cedex 7

F-92049 Paris la D6fense

92-09334

9 2 4 10 0 5 4 IilhIlflhI

DECLARATION OF CONFORMANCE

Customer: Alsys

Certificate Awardee: Alsys

Ada Validation Facility: AFNOR

ACVC Version: 1.11

Ada Implementation

Ada Compiler Name and Version: AlsyCOMP_047 Version 5.37

Host Computer System: Sun SPARCstation 2 under SunOS 4.1.1

Target Computer System: Sun SPARCstation 2 under SunOS 4.1.1

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A
ISO 8652-1987 in the implementation listed above.

Au

ean-Louis OLIE DateAlsys ooossion For

DTIC TAB C3
Uuanounced
Justificato j

By ...

Distrlbutto .

Availability Coae

I t 0141

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3--1-o
3.2 SUMMARY OF TEST RESULTS3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMKARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and' complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certaacro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Complianceof The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution.' A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration (Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
ains erroneous or illegal use of the Ada programming
language.

1-4

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J C35508M C35508N
C35702A C35702B B41308B C43004A C45114A C45346A C45612A C45612B
C45612C C45651A C46022A B49008A 849008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A 883026B C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B CB7004A CC1223A
BC1226A CC1226B BC3009B BDlB02B BDlB06A ADlB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D CD5111A
CD7004C ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A CE3411B
CE3412B CE3607B -Z3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by ISO and the AJPO known as Approved Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS

C24113L..Y C35705L..Y C35706L..Y C35707L..Y C35708L..Y C35802L..Z
C45241L..Y C45321L..Y C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C45641L..Y C46012L..Z

The following 20 tests check for predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C C45632C B52004D C55B07A
B55809C B86001W C86006C CD7101F

C35713D B86001Z check for a predefined floating-point type with a name
other than FLOAT, SHORTFLOAT or LONGFLOAT; for this implementation,
there is no such type.

2-1

IMPLEMENTATION DEPENDENCIES

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater; for this implementation, MAXMANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges o are the
same.

CD1009C checks whether a length clause car. specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPEISMALL; this implementation does
not support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and ADS011A use machine code
insertions; this implementation provides no package MACHINECODE.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported -for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECTIO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIA_1IO
CE2102Q RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INO-UT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-10
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT10
CE2102W RESET OUT-FILE DIRECT-IO
CE3102F RESET Any-Mode TEXT IO
CE3102G DELETE Any Mode TEXT IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

The tests listed in the following table are not apolicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL_10
CE2105B CREATE IN FILE DIPECT 10
CE3109A CREATE INFILE TEXTI0

CE2203A checks that WRITE raises USEERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2-403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USEERROR is raised. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2-3

IMPLEMENTATION DEPENDENCIES

CE2401H, E2401D and EE2401G use instantiations of DIRECT 10 with
unconstrained array and record types; this implementation raises
USEERROR on the attempt to create a file of such types.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B23004A B24007A B24009A B28003A B32202A B32202B B32202C B36307A
B37004A B61012A B62001B B74304B B74304C B74401F B74401R B91004A
B95032A B95069A B95069B BAl101B BC2001D BC3009C

BA2001E was graded passed by Evaluation Modification as directed by the AVO.
The test expects that duplicate names of subunits with a common ancestor will
be detected as compilation errors; this implementation detects the errors at
link time, and the AVO ruled that this behavior is acceptable.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is obeyed
for the invocation of a function in each of three contexts and that thus
three library units are made obsolete by the re-compilation of the inlined
function's body, or else the pragma is ignored completely. This
implementation obeys the pragma except when the invocation is within a
package specification. When the test's files are processed in the given
order, only two units are made obsolete; thus, the expected error at line 27
of file EA3004D6M is not valid and is not flagged. To confirm that indeed the
pragma is not obeyed in this one case, the test was also processed with the
files re-ordered so that the re-compilation follows only the package
declaration (and thus the other library units will not be made obsolete, as
they are compiled later); a "NOT APPLICABLE" result was produced, as
expected. The revised order of files was 0-1-4-5-2-3-6.

CD2A53A'ias graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of power-of-10 value as small for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE3202A was graded inapplicable by Evaluation Modification as directed by the
AVO. This test applies function NAME to the standard input file, which in
this implementation has no name; USE ERROR is raised but not handled, so the
test is aborted. The AVO ruled that this behavior is acceptable pending any
resolution of the issue by the ARG.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Jean Claude H6liard
Alsys SA
29, Avenue Lucien-Rene Duchesne
78170 La Celle Saint-Cloud
France

For a point of contact for sales information about this Ada implementation
system, see:

Bob Lamkin Nicolas Hadjidakis
Alsys Inc Alsys SA
67 South Bedford Street 29, Avenue Lucien-Rene Duchesne
Burlington 78170 La Celle Saint-Cloud
MA 01803-5152 France
U.S.A.

John Stewart Kurt Key
Alsys Ltd Alsys Gmbh
Partridge House Am RUppurer Schoss 7
Newtown Road D-7500 Karlsruhe 51
Henley-on-Thames Germany
Oxon,RG9 1EN
U.K. -

Jun Shimura Orjan Leringe
Alsys-KKE Co., Ltd Alys AB
Techno-Wave 16F Patron Pehr VAg 10
1-1-25 Shin-Urashima-cho Box 1085
kanagawa-ku 141 22 Huddinge
Yokohama #221 Stockholm
Japan Sweden

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system -- if none is supported (item d). All tests passe ,.
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3794
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 80
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 281 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A Data Cartridge Tape containing the customized test suite (see section 1.3)
was taken on-site by the validation team for processing. The contents of
the Data Cartridge Tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

For all tests, the compilation options were:

ERRORS-999: allow 999 errors before terminating compilation.
CALLS-INLINED: allow inline insertion of code for subprograms

and take pragma INLINE into account.
REDUCTION-PARTIAL: perform some high level optimizations on

checks and loops.
NOWARNING: Do not generate warning messages
NODETAIL: Do not include extra detail in error messages
FILEWIDTH-120: Listing file has 120 characters per line
NOFILELENGTH: Unpaginated listing file

For tests rejected at compile time, the two compilation options were used
additionally:

TEXT: Compilation listing including full source text (with
embedded error messages)

SHOW-NONE: No banner header on listing pages, no error
sunmary at end of listing.

For tests compiled without errors, the compilation option was used
additionally:

NOTEXT: Compilation listing including only source text for
lines containg errors
(i.e. empty listing if no errors)

For all tests, the binder options were:

NOWARNING: Do not generate warning messages
FILEWIDTH-80: Listing file has 80 characters per line
NOFILELENGTH: Unpaginated listing file
TASK-12: °The default programM stack size for all tasks

is 12k.bytes.

The binder use the following options of the UNIX linker Id

-dc -dp -e start -X -o $WD/$l /user/lib/crtO.o $WD/$l.o
$ALSYCOMPDIR/libada.a -lc

Test output, compiler linker listings, and job logs were captured on
Data Cartridge Tape and archived at the AVF. The listings examined on-site
by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG893. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
--

SMAXINLEN 255 -- Value of V

$BIGIDi (1. .V-l W>'A, V -> 1')

$BIG_1D2 (1. .V-l W>'A, V -> 2')

$BIG_1D3 (1. .V12 W A) 1 3' &
(l..V-l-V/2 -> A')

$BIG_1D4 (1. .V/2 -> 'A) 1 4' &

(1. .V-l-V/2 W>'A)

$BIGINTLIT (1. .V-3 -> 0') &"298"

$BIGREALLIT (1. .V-5 -> 0') &690.00

$BIGSTRINGi ' (1. .V/2 -> 'A) '"

$BIGSTRING2 ''&(1. .V-l-V/2 -> 'A) & 1' 1"

$BLANKS (1. .V-20 -

$MAXLENINTBASED_-LITERAL
"2:" & (1. .V-5 -> '0') a"11:"

SMAXLENREALBASED_-LITERAL
W16:' & (1. .V-7 -> '0') & F.E:"

$MAXSTRINGLITERAL 10' & (1. .V-2 -> 'A) & '

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters arnd their
respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGNMENT 2

$COUNTLAST 2147483647

SDEFAULTMEMSIZE 2**32

SDEFAULTSTORUNIT 8

$DEFAULTSYSNAME SPARC

SDELTADOC 2#1.0#E-31

SENTRYADDRESS INTERRUPT-ADDRESS

SENTRYADDRESS 1 INTERRUPTADDRESS 1

SENTRYADDRESS2 INTERRUPTADDRESS2

$FIELDLAST 255

SFILETERMINATOR CHARACTER' VAL(32)

SFIXEDNAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHANDURATION 100_000.0

SGREATERTHANDURATIONBASELAST 100_000_000.0

$GREATERTHANFLOATBASELAST 2.0E128

$GREATERTHANFLOATSAFELARGE 2#1.111111111111111111l1111fE127

A-2

$GREATERTHANSHORTFLOATSAFELARGE 2#1.11111111111111111111111#El27

$HIGHPRIORITY 10

SILLEGALEXTERNALFILENAMEl /-/*/f 1

$ILLEGALEXTERNALFILENAME2 /-/*/f 2

SINAPPROPRIATE LINE-LENGTH -1

$ INAPPROPRIATEPAGELENGTH -1

SINCLUDEPRAGMA1 PRAGMA INCLUDE (OA28006Dl.TST")

$INCLUDEPRAGMA2 PRAGHA INCLUDE ("B28006D1.TST")

$INTEGERFIRST -2147483648

SINTEGERLAST 2147483647

SINTEGERLASTPLUS_1 2_147_483_648

$ INTERFACELANGUAGE C

SLESSTHANDURATION -100 000.0

SLESSTHANDURATIONBASEFIRST -100_000_000.0

SLINETERMINATOR ASCII.LF

SLOWPRIORITY 1

SMACHINE CODE-STATEMENT NULL;

SMACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2_147_483_648

SMININT -2147483648

A-3

$NAME SHORTSHORTINTEGER

SNAMELIST I8OX86, 180386,MC68OXO,S370, TRANSPUTER, VAX, SPARC

$NAMESPECIFICATIONi /tmp/X2120A

$NAMESPECIFICATION2 /trup/X2120B

SNAMESPECIFICATION3 /tmp/X3119A

$NEGBASEDINT 16#FFFFFFFE#

$NEWHEMSIZE 2**32

SNEWSTORUNIT 8

SNEWSYSNAME SPARC

SPAGETERMINATOR ASCII.FF

$RECORDDEFINITION nxew INTEGER;

$RECORDNAME NO SUCHMACHINECODETYPE

STASICSIZE 32

STASKSTORAGESIZE 10240

$TICK 0.02

SVARIABLEADDRESS OBJECTADDRESS

$VARIABLEADDRESS1 OBJECTADDRESS1

SVARIABLEADDRESS2 OBJECTADDRESS2

$YQURPRAGMA INTERFACENAME

A- 4

APPENDIX B

OPTIONS

The options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

COMPILATION SYSTEM OPTIONS

This is the list of options. The default values are indicated.

COMPILE (SOURCE ->
LIBRARY -> ,

OPTIONS -> (ANNOTATE -> no_value,
ERRORS -> 50,
LEVEL -> UPDATE,
CHECKS -> ALL,
GENERICS -> INLINE,
MEMORY -> 500),

DISPLAY -> (OUTPUT -> SCREEN,
WARNING -> YES,
TEXT -> NO,
SHOW -> ALL,
DETAIL -> YES,
ASSEMBLY > NONE),

IMPROVE -> (CALLS > NORMAL,
REDUCTION > NONE,
EXPRESSIONS > NONE,
OBJECT > NONE),

KEEP -> (TREE > NO,
DEBUG > NO,
COPY > NO,
DIAGNOSTICS -> NO),

ALLOCATION -> (CONSTANT => 0,
GLOBAL -> 0));

B-1

BINDER OPTIONS

This is the list of options. The default values are indicated.

BIND (PROGRAM -> ,

LIBRARY -> ,

OPTIONS -> (LEVEL -> LINK,
OBJECT -> AUTOMATIC,
UNCALLED -> REMOVE,
SLICE -> NO,
BLOCKING -> AUTOMATIC),

STACK -> (MAIN -> 16,
TASK > 20,
HISTORY > MAIN),

INTERFACE -> (DIRECTIVES > novalue,
MODULES -> novalue,
SEARCH > no value),

DISPLAY -> (OUTPUT > SCREEN,
DATA > NONE,
WARNING > YES),

KEEP -> (DEBUG -> NO));

LINKER OPTIONS

The binder use the UNIX linker ld.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report.

Implementation-specific portions of the package STANDARD are presented
on page 16 of ti s Appendix.

C-1

Alsys Ada Compiler

APPENDIX F

for SPARC based Workstations and Servers under Unix

Version 5

Alsys S.A. Alsys GmbH& Co. KG
29, Avenue Lucien-Reni Duchesne Am Rappurrer SchloO 7
78170 La Celle St. Cloud, France D- 7500 Karl mihe 51, Germany

Alsys Inc. Alsys AB
67 South Bedford Street Patron Pehr Vag 10

Burlington, MA 01803-515Z US.A. Box 1085
14122 Huddinge, Stockhobn, Sweden

Alsys Ltd Alsys-KKE Co., Ltd
Partridge House, Newtown Road Techno- Wave 16F

Henley-on-Thames, 1-1-25 Shin-Urashima-cho
Oxon, RG9 1EN, UK kanagawa-ku

Yokohama #221, Japan

b

Copyright 1991 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: October 1, 1991

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

Sun Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T BELL LABORATORIES.
AdaKernel, AdaEcbo and AdaFile are trademarks of Alsys
Alys, AdaWorld, AdaProbe, AdaTune, AdaXref, AdaReformat, AdaMake, AdaVerify, AdaCount and
AdaSplit are registered trademarks of Alsys.

TABLE OF CONTENTS

PREFACE ii

1 IMPLEMENTATION-DEPENDENT PRAGMAS 1

1.1 The Pragma INTERFACE 1
1.2 The Pragma INTERFACE-NAME 1
1.3 The Pragma INLINE 2
1.4 The Pragma EXPORT 2
1.5 The Pragma EXTERNAL-NAME 3
1.6 The Pragma INDENT 4
1.7 The Pragma IMPROVE 4
1.8 The other Pragmas 4
1.9 Pragmas with no Effect 5

2 IMPLEMENTATION-DEPENDENT ATTRIBUTES 7

2.1 Attributes used in Record Representation Clauses 8
2.2 Limitations on the use of the Attribute ADDRESS 8
2.3 The Attribute IMPORT 8

3 THE PACKAGES SYSTEM AND STANDARD 11

4 TYPE REPRESENTATION CLAUSES 17

4.1 Enumeration Types 18
4.2 Integer Types 21
4.3 Floating Point Types 23
4.4 Fixed Point Types 25
4.5 Access Types 28
4.6 Task Types 29
4.7 Array Types 30
4.8 Record Types 34

Table of Contents iii

5 IMPLEMENTATION-DEPENDENT COMPONENTS 47

6 ADDRESS CLAUSES 49

6.1 Address Clauses for Objects 49
6.2 Address Clauses for Program Units 49
6.3 Address Clauses for Entries 49

7 UNCHECKED CONVERSIONS 51

8 INPUT-OUTPUT CHARACTERISTICS 53

8.1 Introduction 53
8.2 The Parameter FORM 54

INDEX 64

iv Appendix F Version 5

PREFACE

T'his is the 'Appendix F, Implementation-Dependent Characteristics' of the Reference
Manual for the Ada Programming Language, ISO/8652- 1987.

Preface Wn

iv Wpendir F Version 5

CHAPTER 1

IMPLEMENTATION-DEPENDENT PRAGMAS

1.1 The Pragma INTERFACE
Programs written in Ada can interface with external subprograms written in another.

language, by use of the pragma INTERFACE. The format of the pragma is:

pragma INTERFACE (language name, Ada subprogram name);

The language name may be Assembler, C or Fortran used (seeApplication
Developer's Guide).

The Ada subprogramname is the name by which the subprogram is known in Ada.

Interfacing the Ada language with other languages is detailed in the Application
Developer's Guide.

1.2 The Pragma INTERFACE-NAME

To name the external subprogram to which an Ada subprogram is interfaced, as defined
in the other language, may require the use of non-Ada naming conventions, such as
special characters, or case sensitivity. For this purpose the implementation-dependent
pragma INTERFACENAME may be used in conjunction with the pragma DITERFACE.

pragma INTERFACENAME (Ada subprogramname, name.swing);

The name string is a string, which denotes the name of the external subprogram as
defined in the other language. TheAda subprogramnjame is the name by which the
subprogram is known in Ada.

pD

Implementation-Dependent Pragmas I

The pragm INTERFACE NAME may be used anywhere in an Ada program where
INTERFACE is allowed (see [13.9]). It must occur after the corresponding pragma
INTERFACE and within the same declarative part or package specification.

1.3 The Pragma INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

Note that inlining facilities are also provided by use of the command COMPILE with the
option IMPROVE (see the User's Guide).

1.4 The Pragma EXPORT
The pragma EXPORT takes a language name and an Ada identifier as arguments. This
pragma allows an object defined in Ada to be visible to external programs written in the
specified language.

pragma EXPORT (language name, Ada-identifier)

Example:

package MYPACKAGE Is

THIS OBJECT: INTEGER;
pragma EXPORT (C, THISOBJECT);

end MY-PACKAGE;

* Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD 1815A, February 1983, includ-
ing Appendix F for this implementation.

2 Appendix F Version 5

Limitations on the use of pragma EXPORT

" This pragma must occur in a declarative part and applies only to objects declared in
this same declarative part, that is, generic instantiated objects or renamed objects
are excluded.

" The pragma is only to be used for objects with direct allocation mode, which are
declared in a library package. The ALSYS implementation gives indirect allocation
mode to dynamic objects (see Section 2.1 of the Application Developer's Guide).

1.5 The Pragma EXTERNALNAME

To name an exported Ada object as it is identified in the other language may require the
use of non-Ada naming conventions, such as special characters, or case sensitivity. For
this purpose the implementation-dependent pragma EXTERNALNAME may be used in
conjunction with the pragma EXPORT:

pragma EXTERNAL-NAME (Ada Jdenhfler, namesing);

The name jrng is a string which denotes the name of the identifier defined in the other
language. The Ada identdr denotes the exported Ada object.

The pragma EXTERNALNAME may be used anywhere in an Ada program where
pragma EXPORT is allowed. It must occur after the corresponding pragma EXPORT and
within the same library package.

Example:

package MY-PACKAGE Is

THIS OBJECT: INTEGER;
pragma EXPORT (C, THISOBJECT);

S- pragma EXTERNAL-NAME (THIS OBJECT, "ThisObject');

end MY-PACKAGE,

Implementation-Dependew Pragmas 3

1.6 The Pragma INDENT

This pragma is only used by AdaReformat. This tool offers the functionality of a pretty-
printer in an Ada environment.

The pragma is placed in the source file and interpreted by AdaReformat.

pragma INDENT(OFF) causes AdaReformat not to modify the source lines after
this pragma.

pragm INDENT(ON) causes AdaReformat to resume its action after this pragma.

1.7 The Pragma IMPROVE

This pragma is used to suppress implicit components from a record type.

pragma IMPROVE (TIME I SPACE, [ON = >] simple-name);

See Section 4.8, Record Types, for the complete description.

1.8 The other Pragmas

Pragma PACK is discussed in detail in the section on representation clauses and records
(Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than every defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given
compilation by the use of the Compiler option CHECKS. (See Chapter 4 of the User's
Guide.)

4 Appendi F Version 5

1.9 Pragmas with no Effect
The following pragmas have no effect:

CONTROLLEDF
MEMORY-SIZE
STORAGE UNIT
SYSTEM NAME
OPTIIZE

For optimization, certain facilities are provided through use of the command COMPILE
with the option WMROVE (see the User's Guide).

Implementation-Dependent Pragmas 5

6 Appendir F Version 5

CHAPTER 2

IMPLEMENTATION-DEPENDENT ATTRIBUTES

Throughout this chapter and the remaining chapters of this document three special types
of integer are used in the text. They are used where the number of bits used to store the
integer is important.

The three types used are defined as:

INTEGER 8; an integer stored in 8 bits,

INTEGER16; an integer stored in 16 bits,

INTEGER32; an integer stored in 32 bits.

and can be respectively declared, with representation clauses, thus:

type INTEGER.8 Is new INTEGER range -2**7 .. 2**7 -1;
for INTEGER 8'SIZE use 8;

type INTEGER-16 is new INTEGER range -2'15 .. 2'15 -1;
for INTEGER 16'SIZE use 16;

type INTEGER.32 Is new INTEGER range -2"31 .. 2"31 -1;
for INTEGER.32'SIZE use 32;

The user gains complete control over the data storage by using these forms of
declaration, as opposed to those defined in package STANDARD over which the user
has no control. (Refer to Chapter 3 of this document.)

Note: The user may omit the representation clauses in the above examples as the current
implemetation of the compiler uses these sizes by default.

Implementation Dependent Attributes 7

2.1 Attributes used in Record Representation Clauses
In addition to the Representation Attributes of [13.7.21 and 113.7.31, the following five
attributes are used to form names of indirect and implicit components for use in record
representation clauses, as described in Section 4.&

'OFFSET
'RECORD SIZE
'VARIANT-INDEX
'ARRAY DESCRIPTOR
'RECORDDESCRIPTOR

2.2 Limitations on the use of the Attribute ADDRESS
The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.

Note: The value returned by the attribute ADDRESS changes after the elaboration of the
subprogram body (when 'ADDRESS is applied to a subprogram).

The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

" A constant that is implemented as an immediate value, i.e., does not have any space

allocated for it

" A package specification that is not a library unit

" A package body that is not a library unit or subunit

" A function that renames an enumeration literal.

.. 2.3 The Attribute IMPORT
This attribute is a function which takes two literal strings as arguments; the first one
denotes a language name and the second one denotes an external symbol name. It yields
the address of this external symbol. The prefix of this at,, ibute must be
SYSTEM.ADDRESS. The value of this attribute is of the type SYSTEM.ADDRESS. The
syntax is:

SYSTENLADDRESS'IMPORT ('Language name', "evaenaLsnboname')

8 Appendir F Version 5

Following are two examples which illustrate the use of this attribute.

Example 1:

SYSTEM.ADDRESS'IMPORT is used in an address clause in order to access a global
object defined in a C library:

For the language C:

int errno;

For the language Ada:

package MY-PACK Is

ERROR NO: INTEGER 32;
for ERRORNO use at SYSTEM.ADDRESS'IMPORT ('C', errno");

end MYPACK;

Note that implicit initializations are performed on the declaration of objects; objects of
type access are implicitly initialized to null.

Example 2

The second example shows another use of 'IMPORT which avoids implicit
initializations.

SYSTEM.ADDRESS'IMPORT is used in a renaming declaration to give a new name to an

external object:

For the language C:

struct record c {
short iI;
short i2

}rec

Implementation-Dependent Attributes 9

For the language Ada:

type RECORD C is
record

II: INTEGER 16;
12: INTEGER_16;

end record;

type ACCESS RECORD Is access RECORDC;
function CONVERTTO ACCESSRECORD is new

UNCHECKED-CONVERSION
(SYSTEM.ADDRESS, ACCESSRECORD);

X: RECORD C renames CONVERT TO ACCESS RECORD
(SYSTEM.ADDRESS'IMPORT("C', "rec)).all;

In this example, no implicit initialization is done on the renamed object X.

Note that the object is actually defined in the external world and is only referenced in the
Ada world.

10 Appendir F Version 5

CHAPTER 3

THE PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

" a complete listing of the visible part of the specification of the package SYSTEM

" a list of the implementation-dependent declarations in the package STANDARD.

package SYSTEM is

-- Standard Ada definitions

type NAME Is (180X86, 180386, MC68OX0, S370,TRANSPUTER, VAX, SPARC);
SYSTEM NAME : constant NAME := SPARC;
STORAGE-UNIT : constant := 8;
MEMORY SIZL : constant := 2"'32;
MININT :constant := -(2"'31),
MAX INT : constant := 2"'31-1;
MAXDIGITS : constant := 15;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 2#1.0#e-31;
TICK :constant:= 0.02;

type ADDRESS Is private;
NULL-ADDRESS : constant ADDRESS;

subtype PRIORITY Is INTEGER range 1.. 10,

The Packages system and standard 11

-- Address operations

function VALUE (LEFT: in STRING) return ADDRESS;

- Converts a string into an address.
- The string can represent either an unsigned address ie.
-- 16#XXX3XXXX#" where XXXXXXXX is in the range
-- O..FFFFFFFF, or a signed address ie.
-- -16#XXXXXXXX#0 where XXXXXXXX is in the range
- O..7FFFFFFF.
-- A CONSTRAINT-ERROR is raised if the string does not conform to
-- this syntax

subtype ADDRESS STRING is STRING(I..8);

function IMAGE(LEFT: in ADDRESS) return ADDRESS-STRING;

Converts an address to a string. The syntax of the returned string is
-- described in the VALUE function above. Refer to the unsigned
-- representation.

type OFFSET is range -2*31 .. 2"31 -1;
-- This type is used to measure a number of storage units (bytes).
-- The type is an Ada integer type.

function SAME-SEGMENT (LEFT, RIGHT: in ADDRESS) return BOOLEAN;
--.-. ..--.-.--.---.--.....---.------------------- On a segmented architecture

the function returns TRUE if the two
-- addresses have the same segment value. On a non-segmented
-- architecture it always returns TRUE.

12 Appendix F Version 5

ADDRESS-ERROR : exception;

-- This exception is raised by 0<', "<=', 0>', ">=8 and "-" if the two
- addresses do not have the same segment value. This exception is
-- never raised on a non-segmented machine.
-- The exception CONSTRAINT-ERROR can be raised by "+" and '-'.

function +" (LEFT: In OFFSET; RIGHT: In ADDRESS) return ADDRESS;
function +" (LEFT: in ADDRESS; RIGHT: In OFFSET) return i-DDRESS;
function -" (LEFT: in ADDRESS; RIGHT: in OFFSET) return ADDAESS;

-- These routines provide support to perform address computations. The
-- meaning of the "+" and *-" operators is architecture dependent. For
-- example on a segmented machine the OFFSET parameter is added to,
-- or subtracted from the offset part of the address, the segment
-- remaining unaltered.

function '-* (LEFT: In ADDRESS; RIGHT: in ADDRESS) return OFFSET;

-- Returns the distance between the given addresses. The result is
-- signed. The exception ADDRESS-ERROR is raised on a segmented
-- architecture if the two addresses do not have the same segment value.

function < (LEFT, RIGHT : In ADDRESS) return BOOLEAN;
function '<=" (LEFT, RIGHT: In ADDRESS) return BOOLEAN;
function '>" (LEFT, RIGHT: In ADDRESS) return BOOLEAN;

fI

The Packages system and standard 13

function '>=" (LEFT, RIGHT: In ADDRESS) return BOOLEAN;

-- Perform a comparison on addresses, or on the offset part of addresses
-- for a segmented machine. The comparison is unsigned on all
- machines except the Transputer.

function "mod' (LEFT: In ADDRESS; RIGHT: in POSITIVE)
return NATURAL,

-- Returns the offset of LEFT relative to the memory block immediately
-- below it starting at a multiple of RIGHT storage units. On a
- segmented machine, the segment part is ignored.

type ROUNDDIRECTION Is (DOWN, UP);

function ROUND (VALUE: In ADDRESS;
DIRECTION: In ROUND DIRECTION;
MODULUS: In POSITIVE) return ADDRESS;

-- Returns the given address rounded to a specific value.

generic
type TARGET Is private;

function FETCHFROMADDRESS (A: in ADDRESS) return TARGET;
generic

type TARGET Is private;
procedure ASSIGNTOADDRESS (A: in ADDRESS; T: in TARGET);

-- These routines are provided to perform READ/WRITE operations in
- -- memory. These routines may give unexpected results if used with

-- unconstrained types.

14 Appendix F Version 5

type OBJECTLENGTH is range 0.. 2"'31 - 1;
-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO: In ADDRESS;
FROM: in ADDRESS;
LENGTH: in OBJECTLENGTH);

-- Copies LENGTH storage units starting at the address FROM to the
-- address TO. The source and destination may overlap.
-- Use of this procedure with optimizers may lead to unexpected
-- results.

private

-- private part of the system

end SYSTEM

The Packages ystem and standard 15

The pckate STANDARD

The following are the implementation-dependent declarations in the package
STANDARD:

type SHORT SHORT INTEGER is range -2'7.2"'7 -1;
type SHORT INTEGER Is rng -2"15.. 2"15 -1;
type INTEGER Is rame -2"31 . 20031 -1;

type SHORT-FLOAT Is digits 6 range
-2#Llll 1111 1111 1111 1111 1111#E+ 127..
2#1.1 1111-1111-111111111111#E+ 127

type FLOAT Is digits 6 range
-2#1.111 1111 1111 1111 1 11#E+12..
2@#1.-U11-11- U11111111#E + 127

type LONG FLOAT Is digits 15 range
-2#1.11A1 1111 1111 1111 1111 1111 1111 1111 1111 1111

1111 1111-1111-#E+1023..
2#L111 111 1111 1111 1111 1111 1111 1111 1111 1111
1111 111 111#E+-1023 -

type DURATION Is delta 2#0.000 000 000 000 O1# range
-2.0*17 .. 2.0"'17-1.0;

- Thcmadmum precision allowed for this ranger 2.000(14)

16 Appendir F Va3im 5

CHAPTER 4

TYPE REPRESENTATION CLAUSES

The aim of this section is to explain how objects are represented and allocated by the
Alsys Ada compiler for SPARC machines and how it is possible to control this using

representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

Type Representation Clauses 17

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2,.., n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.31. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an

enumeration representation clause must be in the range -231 .. 231 -1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

When an enumeration type is not a boolean type or is a boolean type with an
enumeration representation clause, binary code is used to represent internal codes.
Negative codes are then represented using two's complement.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m >- 0, L is the
smallest positive integer such that M < = 2L-1. For m < 0, L is the smallest positive
integer such that -21-1 < = m and M < = 2- -1.

18 Appendix F Version 5

typ COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
- The minimum size of COLOR is 3 bits.

subtype BLACK AND WHITE is COLOR range BLACK.. WHITE,
- The minimum size of BLACK AND WHITE is 2 bits.

subtype BLACKORWHrTE I BLACKANDwHITE range X..
- Assuming that X is not static, the minimum size of BLACKORWHITE is
- 2 bits (the same as the minimum size of its type mark BLACKANDWHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed or unsigned machine
integers. The machine provides 8, 16 and 32 bit signed integers, and 8 or 16 bit unsigned
integers. The compiler automatically selects the smallest machine integer which can
hold each of the internal codes of the enumeration type. The size of the enumeration
type and of any of its subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

ryqe Represemnon Clauses 19

type EXTENDED is
(-- The usual American ASCII characters.

NUL, SOH, STX, ETX EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCI, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,99, 9!,9, Poo, 9#9, '$,, 9%9, 9&,, ",,

T .' 0 * , 9+ ', ',l , 1- , V., If ,
V0, pt, '2', I3T, 149, '5", '6', 7,

* ,

To, V9', ..., ,, ;, , , ,,, ?.,

1@', IAN, 'B', Oct, *Do, 'E', OF, -OG',
'Hot T, To' OK' ILV, 'M', 'No, '0',
:P', 'Q', ORO, 'So, "T, "U', o V', W,

x', ' ', " ' '[', , TO'1',"d, 'a,, vb', 'c', 'dt, 'e', If, 1g',
'h', fil "i', Yk, T1, 'mo, In., 'o',
I"p' 'oq', Oro, vs., 'to, 'u', 'v, Awl,

, y, 'z I f, ', '', ", DEL,
-- Extended characters
LEFTARROW,
RIGHT ARROW,
UPPER7ARROW,
LOWER ARROW,
UPPER LEFT CORNER,
UPPERRIGHT CORNER,
LOWER RIGHT CORNER,
LOWERLEFTCORNER

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
L object of an enumeration subtype has the same size as its subtype.

20 Appendir F Version 5

Alignment of the objects of an enumeration subtype

An object of an enumeration subtype is byte aligned if the size of the object is less than
or equal to 8 bits, it is otherwise even byte aligned if its size is less than or equal to 16.
Otherwise it is word (4 byte) aligned.

4.2 Integer Types

Predeflned integer types

There are three predefined integer types in the Alsys implementation for SPARC -
machines:

type SHORTSHORT INTEGER Is range -2*7.. 27 -1;
type SHORT-INTEGER is range -2"*15.. 2'15 -1;
type INTEGER is range -2"'31..2*31 -1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L.. R;

is implicitly derived from the INTEGER predefined type.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum size of an Integer subtype

The minimum size of an integer subtype is the mim:aum number of bits that is necessary
for representing the internal codes of the subtype values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m >- 0, L is the smallest positive integer such that M < = 2L-1. For m <
0, L is the smallest positive integer that .21,-1 < - m and M < 2,-1 -1.

7)e Representation Clauses 21

subtype S is INTEGER range 0.. 7;
- The minimum size of S is 3 bits.

subtype D is S range X.. Y;
-- Assuming that X and Y are not static, the minimum size of
- D is 3 bits (the same as the minimum size of its type mark S).

Size of an Integer subtype

The sizes of the predefined integer types SHORTSHORTINTEGER, -
SHORT-INTEGER and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the minimum of 8, 16 or 32 which is
larger than or equal to its minimum size. For example:

type S Is range 80.. 100;,
-- S is derived from the predefined 32 bit integer, its size is 8 bits.

type J Is range 0 .. 255;
- J is derived from the predefined 32 bit integer and has a normal size of 8,
- therefore has a size of 8 bits.

type N is new J range 80.. 100,
N is indirectly derived from the predefined 32 bit integer, its nominal size is 8,

-- therefore its size is 8 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S s range 80.. 100;,
for S'SIZE use 32;
- S is derived from the 32 bit integer and should have a size of 8 bits, but its size is
-- 32 bits because of the size specification.

22 Appendix F Version 5

The Alsys compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects ofan Integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of an object of an integer subtype

An object of an integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, otherwise it is even byte aligned if its size is smaller than or equal to 16
bits, otherwise it is word (4 byte) aligned.

4.3 Floating Point Types
Predeflned floating point types

There are three predefined floating point types in the Alsys implementation for SPARC
machines:

type SHORTFLOAT Is
digits 6 range -(2.0 - 2.0"*(-23))'2.0* *127.. (2.0 - 2.00*(-23))'2.0"* 127;

type FLOAT is
digits 6 range -(2.0 - 2.0"*(-23))02.0" *127.. (2.0 - 2.0"*(-23))'2.o *127;

type LONG-FLOAT is
digits 15 range -(2.0 -2.0""(-SA)'20"1023 .. (2.0- 2.0..(-5)).2.0..1023;

2. 2.

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T Is digits D [range L .. R];

7YX Representation Clauses 23

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG-FLOAT are represented using the double float
format. The values of any other floating point type are represented in the same way as
the values of the predefined type from which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT; it is 64 bits if its base type is LONG-FLOAT or a type
derived from LONG-FLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG-FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

Size of the objects ofa floating point subtype

An object of a floating point subtype has the same size as its subtype.

24 Appendir F Version 5

Alignment of an object of a floating point subtype

An object of a floating point subtype is word aligned if its size is 32 bits, otherwise it is
double word aligned.

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.9]. -

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys compiler for SPARC machines uses an
anonymous predefined type of the form:

type FIXED 32 Is delta D range (-2**31-1) *S.. 2"31 *S;
for FIXED_32'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fI-.ed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a specification of small:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

7)pe Rep-esemtaton Clauses 25

Encoding o flxed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of the
base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I < = 2L-1. For i < 0, L is the smallest positive integer such that -

2L-1 < = i and I<= 3.- -1.

type F is delta 2.0 range 0.0 .. 500.0;,
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0.. 250.0,
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

26 Appendir F Version 5

Size of a fixed point subtype

The size of the predefined fixed point type FLXED_32 is 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the minimum of 8, 16 or 32 bits larger or
equal to the minimum size. For example:

type S Is delta 0.01 range 0.8.. 1.0,
- S is 8 bits.

type F is delta 0.01 range 0.0.. 2.0;
-- Fis 8 bits.

type N is new F range 0.8.. 1.0,
-- N is 8 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8.. 1.0
for S'SIZE use 32;
-- S is 32 bits because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
-- F is 8 bits because of the size specification.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

7ye Representation Clauses 27

Alignment of an object of a fixed point subtype

An object of a fixed point subtype is byte aligned if its size is less than or equal to 8 bits,
otherwise it is even byte aligned if its size is less than or equal to 16 bits, otherwise it is
word aligned.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage spaceis"
reserved for its collection, and the value of the attribute STORAGE-SIZE is then 0.

As described in [13.21, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys compiler fully
implements this kind of specification.

Encoding of access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

28 Appendix F Version 5

Alignment of an object of an access subtype.

An object of an access subtype is always word aligned except if a record representation
clause or a pragma PACK forces some other alignment.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Encoding of task values.

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

7e Representation Clauses 29

Alignment of an object of a task subtype

An object of a task subtype is always word aligned.

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

I = ml
Coaanhnt Gap ca onent Gap Caqnent Gap

* Components

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A Is array (1.. 8) of BOOLEAN;
-- The size of the components of A is the size of objects of the type BOOLEAN:
-- 8 bits.

type DECIMALDIGIT Is range 0.. 9;
for DECIMALDIGIT'SIZE use 4;

type BINARYCODEDDECIMAL is
array (INTEGER range < >) of DECIMAL DIGIT;

-- The size of the type DECIMALDIGIT is 4 bits. Thus in an array of
- type BINARYCODEDDECIMAL each component will be represented on
-4 bits as in the usual BCD representation.

30 Appendix F Version 5

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (1.. 8) of BOOLEAN;
pragma PACK(A);

The size of the components of A is the minimum size of the type BOOLEAN:
- 1 bit.

type DECIMAL-DIGIT is range 0.. 9;
for DECIMAL DIGIT'SIZE use 32;
type BINARY-CODEDDECIMAL Is

array (INTEGER range < >) of DECIMALDIGIT; -
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMAL-DIGIT is 32 bits, but, as

BINARYCODEDDECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

* Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R Is
record

K: INTEGER_16; .- integer is even byte aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A s array (1.. 10) of R;
-- A gap of one byte is inserted after each component in order to respect the
- alignment of type R. The size of an array of type A will be 320 bits.

7)pe Representation Clauses 31

Component Cap Compnent Gap CM~AqianatGa

Array of tMe A each subcomnonent K has an even offset

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is
record

K: INTEGER 16;
B : BOOLEAN;

end record;

type A Is army (1 .. 10) of R;
pragm PACK(A);
-. There is no gap in an array of type A because
-- A is packed.

The size of an object of type A will be 240 bits.

type NR Is new R,
for NR'SIZE use 24;

type B is array (1.. 10) of NR;
- There is no gap in an array of type B because
-- NR has a size specification.
-The size of an object of type B will be 24Q bits.

Component Component Component

Array of an A or B: a subcomRonent K can have an odd offet

32 Appendix F Veion 5

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. Thie consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the alignment of its components.

R,

7)qpe Representation Clauses 33

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is the largest
of word, halfword, byte or bit which is still a divider of the size of the packed component.

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is even when its subtype is even byte aligned.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.41. In the Alsys implementation
for SPARC machines there is no restriction on the position that can be specified for a
component of a record. If a component is of an enumeration, integer or fixed point type,
its size can be any size from the minimum size of its subtype to 32 bits. If a component is
of another class of type, its size must be the size of its subtype.

Example:

type INTERRUPTMASK Is array (0.. 2) of BOOLEAN;
pragma PACK(INTERRUPTMASK);
-- The size of INTERRUPT-MASK is 3 bits.

type CONDITIONCODE Is 0.. 1;
-- The size of CONDITIONCODE is 8 bits, its minimum size is 1 bit.

type STATUS-BIT Is new BOOLEAN;
for STATUS BIT'SIZE use 1;
-- The size and the minimum size of STATUS BIT are I bit.

SYSTEM : constant := 0,
USER :mstant:= 1;

34 Appendir F Version 5

type STATUSREGISTER Is
record

T : STATUSBIT; - Trace
S : STATUSBIT; - Supervisor
I : INTERRUPT MASK; - Interrupt mask
X : CONDITION CODE; - Extend
N : CONDITIONCODE; - Negative
Z : CONDITION CODE; - Zero
V : CONDITION CODE; - Overflow
C : CONDITIONCODE; - Carry

end record;
-- This type can be used to map the status register of a MC68000 processor:

for STATUS-REGISTER use
record at mod 2;

T at SYSTEM range 0.. 0;
S at SYSTEM range 2..2
I at SYSTEM range 5.. 7;
X atUSER range 3..3;
N atUSER range 4.. 4;
Z atUSER range 5..5;
V atUSER range 6..6;
C atUSER range 7..7;

end record,

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of its

. natural alignemnt. Moreover, the compiler chooses the position of the component so as
to reduce the number of gaps and thus the size of the record objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for the
components in a record object.

rype Represenuaion Clauses 35

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is

said to be indirect while other components are said to be direct:

Begiming of the record

CMPite tioe offset
DIRECT

Compile time offset
OFFSET

Run tim offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

Example:

type DEVICE is (SCREEN, PRINTER);

type COLOR Is (GREEN, RED, BLUE);

type SERIES is army (POSITIVE unge < >) of INTEGER

36 Appendir F Verion 5

typ GRAPH (L: NATURAL) Is
record

X: SERIES(I.. L); - The size of X depends on L
Y: SERIES(I .. L); - The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL, D : DEVICE) Is
record

F: GRAPH(N); -- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
cae D is

when SCREEN = >
C: COLOR;

when PRINTER = >
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

Type Representation Clauses 37

D * SCREEN D a PRINTER
1182 NaI

Begiming of the record
S OFFSET S OFFSET

Compf te tfm offsets
F OFFSET OFFSET

NN

Run time offsets

"/ F
S

- S

The record tvDU PICTURE: F and S are Dlaced at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

38 Appendir F Version 5

Begiming of the record
Y OFFSET

Compile time offset
L

= I-Compile time offset

X Size deperdent on discriminent L

Run time offset

Y Size depaeidefit on discriminant L

The record type GRAPH: the dynamic comnonent X is a direct comioent.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0.. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name COFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called
implicit components.

Type Representation Clauses 39

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before _ny variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD-SIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

* RECORD-SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.
If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

VARIANT INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT INDEX.

40 Appendix F Venion 5

Example:

type VEHICLE Is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR = >
WHEELS: INTEGER;
case KIND Is

when AIRCRAFT = > -- 1
WINGSPAN: INTEGER,

when others = > -- 2
null;

end case;
when BOAT = > -- 3

STEAM : BOOLEAN;
when ROCKET = > -- 4

STAGES: INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Type Representation Clauses 41

Campo Wt Interval

KIND
SPEED --
WHEELS 1 ..2
WINGSPAN 1 I
STEM 3 .. 3
STAGES 4 4

The implicit component VARIANTINDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is 1 .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_..INDEX

e ARRAY DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY-DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAY-DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be denoted
in a component clause by the implementation generated name
CARRAYDESCRIPTOR.

* RECORD-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

42 Appendir F Version 5

The structure of an implicit component of kind RECORD-DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD-DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORD DESCRIPTOR.

Suppression of Implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD SIZE and/or VARIANTINDEX from a record type. This can
be done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME I SPACE, [ON =>] simple-name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANTINDEX or a
RECORDSIZE component if this component appears in a record representation
clause that applies to the record type. A record representation clause can thus be used to
keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

Type Representation Clauses 43

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Never,'.eless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size ef the subtype is greater than this, the object has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype takes the
stronger alignment of its components.

When a record representation clause that does not contain an alignment clause applies
to its base type, the subtype alignment is the largest of word, halfword, byte or bit which
is a divider of the position of one of the components.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause, an alignment
clause can specify that a record type is byte, halfword or word aligned.

44 Appendix F Version 5

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

Type Representation Clauses 45

46 Appendir F Version 5

CHAPTER 5

IMPLEMENTATION-DEPENDENT COMPONENTS

The following forms of implementation-generated names 113.4(8)1 are used to denote
implementation-dependent record components, as described in Section 4.8 in the
paragraph on indirect and implicit components:

C'OFFSET
R'RECORD SIZE
RI'VARLANT INDEX
R'ARRAY DESCRIPTORs
R'RECORD DESCRIPTORs

where C is the name of a record component and R the name of a record type.

46

Implementation -Dependent Components 47

48 Appendir F Version 5

CHAPTER 6

ADDRESS CLAUSES

An address clause can be used to specify the address of an object, a program unit or an
entry.

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the compiler. The program accesses the object by using the address
specified in the clause.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb, or for a constant.

Note that the function SYSTEM.VALUE, defined in the package SYSTEM, is available to
convert a STRING value into a value of type SYSTEM.ADDRESS, also, the IMPORT
attribute is available to provide the address of an external symbol. (Refer to Chapter 3
and section 2.3)

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

An address clause may be used to associate an entry with a UNIX signal. (SeeApplicaton
Developer's Guide for detailed information.)

Address Clauses 49

50 Appendi F Vernion 5

CHAPTER 7

UNCHECKED CONVERSIONS

Unchecked type conversions are described in [13.10.21. The following restrictions apply
to their use.

Unconstrained arrays are not allowed as target types. Unconstrained record types
without defaulted discriminants are not allowed as target types. Access types to
unconstrained arrays are not allowed as target or source types. Note also that
UNCHECKED CONVERSION cannot be used for an access to an unconstrained
string.

However, if the source and the target types are each scalar or access types, the sizes of the
objects of the source and target types must be equal.

If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy.

If an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand.
The result has the size of the source.

* If an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand. The
result has the size of the target.

Unchecked Conversions 51

52 Appendir F Version 5

CHAPTER 8

INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the
input-output system are described.

8.1 Introduction

In Ada, input-output operations are considered to be performed on objects of
a certain file type rather than being performed directly on external files. An
external file is anything external to the program that can produce a value to
be read -eive a value to be written. Values transferred for a given file
must be , one type.

Generally, in Ada documentation, the term file refers to an object of a
certain file type, whereas a physical manifestation is known as an eaemal
file. An external file is characterized by

" its NAME, which is a string defining a legal path name under the current
version of the operating system

" its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and tL-- FORM appear explicitly as parameters of the Ada
procedures CREATE and OPEN. Though a file is an object of a certain file

pe, ultimately the object has to correspond to an external file. Both CREATE
andOPEN associate aNAME of an external file (of a certain FORM) with a
program file object.

Ada input-output operations are provided by means of standard packages

(1141):

Inpu-a.pu:l~ Chracteriis 53

SEQUENTIALIO A generic package for sequential files of a single

element type.

DIRECTIO A generic package for direct (random) access files.

TEXT_1O A generic package for human-readable files (text,
ASCII).

(Please note that trying to apply TEXTJO.NAME or
TEXTIO.FORM toSTANDARDINPUT or
STANDARD OUTPUT will raise USE-ERROR. Though ia
may surprise the user, [14.4(5)J allows this behavior.)

10EXCEPTIONS A package which defines the exceptions needed by the

above three packages.

The generic package LOWLEVEL_1O is not implemented in this version.

The upper bound for index values in DIRECT 10 and for line, column and
page numbers in TEXT-1O is given by

COUNT'LAST = 2"31 -1

The upper bound for field widths in TEXTJO is given by

FIELD'LAST = 255

8.2 The Parameter FORM

The parameter FORM of both the procedures CREATE and OPEN in Ada
specifies the characteristics of the external rile involved.

The procedure CREATE establishes a new external file, of a given NAME and
FORM, and associates it with a specified program file object. The external file
is created (and the file object set) with a specified (or default) file mode. If
the external file already exists, the file will be erased. The exception
USE-ERROR is raised if the file mode is INFILE.

54 Appendix F Version 5

Example-

CREATE(F, OUT FILE, NAME = > 'MYFILE',
FORM = >
'WORLD => READ, OWNER = > READ-WRITE');

The procedure OPEN associates an existing external file, of a given NAME
and FORM, with a specified program file object. The procedure also sets the
current file mode. If there is an inadmissible change of mode, then the
exception USE-ERROR is raised.

The parameter FORM is a string, formed from a list of attributes, with - -

attributes separated by commas. The string is not case sensitive (so that, for
example, HERE and here are treated alike). (FORM attributes are distinct
from Ada attributes.) The attributes specify:

" File protection

" File sharing

" File structure

" Buffering

" Appending

" Blocking

" Terminal input

The general form of each attribute is a keyword followed by = > and then a qualifier. The
arrow and qualifier may sometimes be omitted. The format for an attribute specifier is
thus either of

KEYWORD

KEYWORD -> QUALIFIER

We will discuss each attribute in turn.

Input-Output Characteistics 55

File Protecton

These attributes are only meaningful for a call to the procedure CREATE.

File protection involves two independent classifications. The first
classification is related to who may access the file and is specified by the
keywords:

OWNER Only the owner of the directory may access this file.

GROUP Only the members of a predefined group of users may access
this file.

WORLD Any user may access this file.

For each type of user who may access a file there are various access right and this forms
the basis for the second classification. In general, there are four types of access right,
specified by the qualifiers:

READ The user may read from the external file.

WR/TE The user may write to the external file.

EXECUTE The user may execute programs stored in the external file.

NONE The user has no access rights to the external file. (This access
right negates any prior privileges.)

More than one access right may be relevant for a particular file, in which case the
qualifiers are linked with underscores ().

Eor example, suppose that the WORLD may execute a program in an external file, but
only the OWNER may modify the file.

WORLD = >
EXECUTE,

OWNVER = >
READ-WR=T -EXECUTE

b

56 Appendir F Venion 5

Repetition of the same qualifier within the attributes is illegal:

WORLD =>
EXECUTE EXECU"TT -- NOT legal

but repetition of the entire attribute is allowed:

WORLD = >
EXECUTE

WORLD = >
EXECUTE, - Legal

File Sharing

An external file can be shared, which means associated simultaneously with several
logical file objects created by the procedures OPEN and CREATE.

The file sharing attribute may restrict or suppress this capability by specifying one of the
following access modes:

NOT SHARED Exclusive access -no other logical file may be associated

with the external file

SHARED = > READERS Only logical files opened with mode IN are allowed

SHARED = > SINGLE WRITER
Only logical files opened with mode IN and at most one
with mode INOUT or OUT are allowed

SHARED = > ANY No restriction

The exception USEERROR is raised if, for an external file already associated with an
Ada file object

" a further OPEN or CREATE specifies a file sharing attribute different from the
current one

" a further OPEN, CREATE or RESET violates the conditions imposed by the current
file sharing attribute.

Input-Output Characteristics 57

The restrictions imposed by the file sharing attribute disappear when the last logical file
object linked to the external file is closed.

The file sharing attribute provides control over multiple accesses within the program to a
given external file. This control does not extend to the whole system.

The default value for the file sharing attribute is SHARED = > ANY.

File Structure

(a) Text Files

There is no FORM attribute to define the structure of text files.

A text file consists of a sequence of bytes holding the ASCII codes of characters.

The representation of Ada terminators depends on the file's mode (IN or OUT) and
whether it is associated with a terminal device or a mass storage file; the terminators are
implicit in some cases, the characters present explicitly being as follows:

" Mass storage files and terminal device with mode OUT

end of line: ASCII.LF
end of page: ASCILLF ASCI.FF

end of file: ASCII.EOT

The file length determines implicit page and file terminators at the end.

" Terminal device with mode IN

end of line: ASCII.LF
end of page: ASCII.FF
end of file: The UNIX default value (for instance

ASCILEOT)

The FF implies a line terminator; the end of file character implies both line and
page terminators.

58 Appendir F Version 5

(b) Binary Files

Two FORM attributes, RECORD-SIZE and RECORDUNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:

I HEADER I OBJECT [UNUSED-PART J
and it is formed from up to three items:

" An OBJECT with exactly the same binary representation as the Ada object in the
executable program, possibly including an object descriptor

" A HEADER consisting of two fields (each of 32 bits):

- the length of the object in bytes (except for the length of unconstrained arrays
which is in bits)

- the length of the descriptor in bytes which is always set to 0

" An UNUSED-PART of variable size to permit full control of the record's size.

The HEADER is implemented only if the actual parameter of the instantiation of the
input-output package is unconstrained.

The file structure attributes take the form:

RECORD-SIZE => size inbytes

RECORD-UNIT => size in bytes

Their meaning depends on the object's type (constrained or not) and the file access mode
(sequential or direct access):

Inpt-Output Characteristics 59

a) If the object's type is constrained:

. The attribute RECORD UNIT is illegal

. If the attribute RECORD SIZE i omitted, no UNUSED PART will be
implemented: the default RECORD SIZE is the object's size

- If present, the attribute RECORD-SIZE must specify a record size greater
than or equal to the object's size, otherwise the exception USE-ERROR will
be raised

b) If the object's type is unconstrained and the file access mode is direct:

- The attribute RECORDUNIT is illegal

- The attribute RECORD-SIZE has no default value, and if it is not specified,
USE ERROR will be raised

- An attempt to input or output an object larger than the given RIECORDSIZE
will raise the exception DATAERROR

c) If the object's type is unconstrained and the file access mode is sequential:

- The attribute RECORD-SIZE is illegal

- The default value of the attribute RECORDUNIT is 1 (byte)

- The record size will be the smallest multiple of the specified (or default)
RECORDUNIT that holds the object and its length. This is the only case
where records of a file may have different sizes.

60 Appendix F Version 5

Buffering

The buffer size can be specified by the attribute

BUFFER SIZE = > sizein bytes

A buffer size of 0 means no buffering.

The default value for buffer size depends on the type of the external file and on the file
access mode, as follows:

" If the external file is a "regular" UNIX mass storage file, the default buffer size is the
system's Input-Output block size (typically 1024 or 2048). For other types of UNIX
files (directories, device files, named pipes), the default buffer size is 0 (no
buffering).

" For a file used in direct access mode or the STANDARD OUTPUT file, the default
buffer size is in any case 0.

Appending

Only to be used with the procedure OPEN, the format of this attribute is simply

APPEND

and it means that any output will be placed at the end of the named external file.

In normal circumstances, when an external file is opened, an index is set which points to
the beginning of the file. If the attribute APPEND is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set to one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

USE-ERROR is raised when the file mode is IN FILE.

USEERROR is raised if the file size is not a multiple of RECORD-SIZE or
RECORD UNIT.

Input-Output Characteristics 61

Blocking

This attribute has two alternative forms:

BLOCKING,

or

NON BLOCKING,

This attribute specifies the desired behavior of the input-output system at any moment
that a request for data transfer cannot be fulfilled. The stoppage may be due, for _
example, to the unavailability of data, or to the unavailability of the external file device.

NON BLOCKNG

If this attribute is set, then the task that ordered the data transfer is suspended -
meaning that other tasks can execute. The suspended task is kept in a 'ready' state,
together with other tasks in a ready state at the same priority level (that is, it is
rescheduled).

When the suspended task is next scheduled to run, the data transfer request is
reactivated If ready, the transfer is activated, otherwise the rescheduling is
repeated. Control returns to the user program after completion of the data transfer.

BLOCKING

In this case the task waits until the data transfer is complete, and all other tasks are
suspended (or 'blocked'). The system is busy waiting.

The default for this attribute depends on the actual program: it is BLOCKING for
programs without task declarations and NONBLOCKING for a program containing
tasks.

62 Appendix F Version 5

Terminal Input

This attribute takes one of two alternative forms:

TERMINAL-INPUT - > LINES,

TERMINAL-INPUT = > CHARACTERn

Terminal input is normally processed in units of a line at a time, where a line is delimited
by a special character. A process attempting to read from the terminal as an external file
will be suspended until a complete line has been typed. At that time, the outstanding
read call (and possibly also later calls) will be satisfied.

The first option specifies line-at-a-time data transfer, which is the default case.

The second option means that data transfer is character by character, and so a complete
line does not have to be entered before the read request can be satisfied. For this option
the BUFFERSIZE must be zero.

The attribute TERMINAL-NPUT is only applicable to terminal devices.

Input-Output Characteristics 63

INDEX

Ada identifier 2, 3 Enumeration values 18
Ada.subprogram_name 1 Fixed point values 26
AdaReformat 4 Floating point values 24
ADDRESS 8 Integer values 21
Address clause 49 Task values 29
Address of an object ofa(n) Enumeration representation clause 18

Array subtype 34 EXPORT 2
Record subtype 45 External file 53

Alignment of a(n) FORM 53
Access subtype 29 NAME 53
Array subtype 33 EXTERNAL-NAME 3
Enumeration subtype 21
Fixed point subtype 28 File 53
Floating point subtype 25 File Protection 56
Integer subtype 23 GROUP 56
Record subtype 44 OWNER 56
Task subtype 30 WORLD 56

APPEND 61 File Sharing 57
Appending 61 File Structure 58
ARRAY DESCRIPTOR 8,42,47 FIXED_32 25
Assembler 1 FLOAT 23
Attribute ADDRESS 8 FORM 53,54
Attribute IMPORT 8 Fortran 1

Blocking 62 Gap 30, 31,34
BUFFER SIZE 61 GROUP 56
Buffering 61

IEEE standard format 24
C I Implicit components 39
Collection size 28 IMPORT 8
Component clause 35 INDENT 4
CREATE 53 Indirect component 36,39

INLINE 2
DIRECT 10 54 INTEGER 21

INTEGER 16 7
Encoding of INTEGER_32 7

Access values 28 INTEGER.8 7

Inder 64

INTERFACE 1 Pragma PACK 4,17,20,23,27,33
INTERFACENAME 1 Pragma PRIORITY 4
Internal codes of enumeration literals Pragnma SUPPRESS 4

18 Predefined fixed point type 25
10EXCEPTIONS 54 Predefined floating point types 23

Predefined integer types 21
Languagename 2 PRIORITY 4
Layout of a record 34
Layout of an array 30 Record component clause 20, 23, 27
Length clause 29 Record representation clause 17,34,
LONG-FLOAT 23 35,44

RECORD-DESCRIPTOR 8,42,47
Minimum size of a(n) RECORD-SIZE 8,40,43,47,59

Access subtype 28 RECORD-UNIT 5",
Enumeration subtype 18 Selection of the
Fixed point subtype 26 Parent of a fixed point type 25
Floating point subtype 24 Parent of a floating point type 23
Integer subtype 21 Parent of an integer type 21
Task subtype 29

SEQUENTIAL10 54
NAME 53 SHARED 57
Name string 1, 3 SHORT FLOAT 23
NON BLOCKING 62 SHORTINTEGER 21
NOT-SHARED 57 SHORT7SHORT INTEGER 21

Simple name 43
OFFSET 8,47 Size of a(n)
OPEN 53 Access subtype 28
OWNER 56 Array subtype 33

-PACK 4 Enumeration subtype 19
Fixed point subtype 27

Pragma EXPORT 2 Floating point subtype 24
Pragma EXTERNALNAME 3 Integer subtype 22
Pragma IMPROVE 4,43 Record subtype 43
Pragma INDENT 4 Task subtype 29
Pragma INLINE 2 Size of the objects of a(n)
Pragma INTERFACE 1 Access subtype 28

• Pragma INTERFACENAME 1 Array subtype 33

Inder 65

9

Enumeration subtype 20
Fixed point subtype 27
Floating point subtype 24
Integer subtype 23
Record subtype 44
Task subtype 29

Size specification 17,20,22,24,27,28,
29, 32, 33, 44

Small of a(n)
Fixed point type 25

SPACE 43
STANDARD 16
Storage for a task activation 29
STORAGE SIZE 28
SUPPRESS 4
Suppression of implicit components 43
SYSTEM 4, 11
SYSTEM.ADDRESS 8

Terminal input 63
TERMINAL-INPUT 63
TEXT 10 54
TIME 43

UNCHECKEDCONVERSION 51

VARIANTINDEX 8, 40,43,47

WORLD 56

66 Appendix F Version 5

