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and Ji (1 > 2) are regarded as first-order and second-order respectively, this means that
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AAS 91-466

ORBIT PERTURBATIONS DUE TO AN
AXI-SYMMETRIC GRAVITATIONAL FIELD

ANALYZED OVER EXTENDED PERIODS OF TIME

R. H. Goodng*

The authors untruncated orbital theory for perturbations due to the
Earth's zonal harmonics, previously developed to cover all terms
associated with J2 and J, Is being sxtended to cover the secular and
long-perodic effects associated with V and J2J. If J2 and Jj (I> 2)
are regarded as first-order and second-order resqedIvely, this means that
formal third-order errors will no longer build up to second order over a
timescale of order up to 1I, in angular measure. The extended theory
has been partially checked out for an Earth model involving just J2 and
J3 .

INTRODUCTION

The author's earlier workl on eccentricity-untruncated perturbations due to the zonal
harmonics J2 and J3 was subsequently2 generalized to J and presented at the 1989
Astrodynamics Conference, more detailed versions 3 4 of Refs. 1 and 2 also being available.
Refs. 3 and 4 were conceived as Parts 1 and 2 of a trilogy, Part 3 being envisaged as the
full account of the work that is introduced in the preset paper.

The main feature of the author's approach has been the particular way in which 8t,
the short-period perturbation in the osculating elemren C (pnezic for the usual elements
a, e,i, 1% w andM),isseparatedfromthe maneleement C ,where C = C+ 8C. The
?, which have long-periodic as well as secular variadon, ae dined in such a way that

the remnant 8C can be combined into compact and nan-singular perturbations (8r,Sb,8w)
in a particular systm of spherical polar coordinae (with r = '+ Sr etc), together with
the coresponding perturbations in velocity (&,b, analysis for the general Jg leads2

to unique definitions for the quasi-constants implicitly psent in the C. the 'constant' for
21 being felicitously such as to make the mean semi-nmjor axis exactly constant and identi-
cal with the quantity a' deinedl-6 such tha -;4a' is the ergy intgral Thus the
theory of Refs. and 2 may be earded as having two componeu: one provides an
algorithm for the variation of the C, thereby constituting an integration of foimuliec
derived for the ;the other component povides formulae for JrSb.Sw (togethier with
8r8.i) A recent paper (pesented at the 1990 As.yanc Conference) showect
how the theory can be given logical compkeeness by Om picular euenions: flm
(somewhat acmemically) th formul can be Imenuad so cover the Wkw. harmonic
Ji., so long as the Earth's tomton is ignoed; second, the fornul for concept

Ot.... P gm , .I h 0J1 nnl. ..... ,
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(and by further extension, JI,) with negative I can be obtained (with an application to
linisolar perturbations); third, the Fortran-implemented algorithm can be extended to cover
hyperbolic orbits.

Unlike Ref. 2, the present paper is mainly concerned with the first component of the
theory - the Zvariation. In regard to the second component, it is noted that the 8C, and
hence also &, 8 and 8w, are essentially Poisson series in the generic angle kin" + iv,
where k and j are integers, an = - sx and v is true anomaly; they are obtained by
integration of Lagrange's planetary equations with V as integration variable, terms with
j = 0 being introduced (as requir d) as the integration 'constants'. Tams with j = 0
before the integration define the ? , though they actually arise as dC/dv, there being no
fundamental distinction between long-periodic variation (k * 0), occurring for all C other
than a , and secular variation (k = 0), occurring for A2 wn and M only (since the planetary
equations involvesin(kc' + jv) for a, e and i ,but cos(ko + jv) for I2 w and M).
To propagate the C, special action is required to cope with the obvious singularities
associated with e = 0 and sin i = 0, and the more esoteric ones associated with
sin2i = 0.8 (the critical inclinations); but1 this action can effectively be taken at the
subroutine-coding level and does not involve the abandonment of classical elements.

The existing theory has been regarded as 'formally complete to second order', relative
to J2,on the basis that Ji-J 2

2 for 1>2 and that all terms with coefficient J22 are
includedl.3. The implication is that the errors are of third order, but this is only true, in
practice, for orbital arcs limited to the order of one radian. Over a timescale with
nt = O(lI/J2), in fac, where n is the mean motion (and n2a3 =.U),the modelledfirst- and
second-order variations in Z build up to zero- and first-order effects respectively, and the
unmodelled (formal) third-order variation leads to second-order err'. For accurate model-
ling over quite modest periods of time, therefore, there is a need to incorporate the secular
and long-periodic perturbations that are formally of third order, i.e. terms that have .J2 or
J2Ji as a coefficienL The third-order perturbations for 17 and & would involve terms
that are quadratic in t, induced by the second-order long-periodic variation in e and i,
and effectively leading to first-order effects over a timescale with nt = O(1/1), were it not
for the inclusion I of the appropriate 'induced components' within the second-order theory.
It is instructive to understand why induced tern wert required for D and U but not for
A?: they originate fom the first-order (secular) fmmle for D and W) (see
equation (7)), but the coriesponding formula for the perurbation in Fl (for J2 only6)
happens to be null; to first order, infact, -a' (where n'2a'3=;).

The derivation of the secula and long-peiod components of the third-order variation,
associated with coefficients J3 and J211 (for 13 in pwcula), is the subject of the
present paper, the tedique e.iloyed being essetialy the same a was used3 for all the
et ons Associated with J22. A complete met o fmla has not been obtained,

however, and success has been limited for reasons th will emee

As in Ref. 2, it is convenient to conclude the introduction with some rmaks on
notation. The quasi-elements 9, p and L we udl. abefo where m- + cO (for
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cf=fcosi,andwealsowrite s-sins), jbf o+qV(where o is such that Mf=fi+I,
I being slxdiand for I dt,and q2 f= I e2) and =M+q. Frconcisenesswe
alsowrite f for s2 , g for -7f and h for 1- Mf. Theuseof p(=aq2)and
u(=v+ 0) isnormal, but we also define y=fpc2 , Pfp/r(-l+ecosv) and
u'=u--x. As the paper is almost entirely concerned with mean elements, we again omit
the bars on the right-hand sides of equations whenever this is possible without causing
confusion. Finally, we follow Ref. 2 in the use of C1 and for the cosine and sine of
jv+ku', sometimes supprssig the superfix, and we introduce and ok as concise
versions of C- and Sj, that is, as cos keY and sin kW respectively. (NB: this
notation should not be confused with the other meanings of y and a.)

FURTHER BACKGROUND

Following Ref. 2 we express the potential due to J1 as U1 = 7Ut with

U = -KI (p) A& PI+1 cosk °, (1)

where KI = JI (Rip), R being the Earth's equatorial radius, and Alk is an inclination
function (which in Ref. 2 subsumed Kj, but separation is preferable now); here I > 2 but
it will often be assumed that I * 2; further, 2K2 will (as in previous papers) be
expressedas K. Theindex k has the same parity as 1 and Ok5l,buttworemarks
apply here. First, though A& is only defined when I and k have the same parity, a
parallel function, Ar, was found useful when the short-periodic quantity 6b was
analyzed, where jr has the opposite parity to 1; Ref. 2 relates both the A& and the Air
to a single family of inclination functions, the Al (i) , where k now has either parity.
Second, though the restriction to non-negative k may seem natural (and avoids the
duplication of terms in various formulae), it leads to an unnatural factor of 2 in the
definition of A& when k > 0, and in the extension to tesseral harmonics 5 a distinction
bet'een positive and negative values is essential; in the present analysis we effectively
allow for negative k, with Agj = Aj,-k, but it is only for k = -1 that such quantities
figure in the final results. In addition to A& , we need Ai and A7k, the derivatives with
respectto i, though it is more convenient to replace A by Aj = c's Aj. We will
often suppress the first suffix in all these functions, writing Ak etc.

To facilitate the substitution of ft appropriate partial derivative of 14 in each

planetary equation, we inroduce the eccentricity functions By, defined by

pt-I w (1 + e cos v)'1 - FBq cos jv, (2)

where overwhelming advantage derives fom allowing negative j, with B = B,.i. The
series effectively runs from -o- to +-,with BI=O when Ij l!. We also require the
derivatives, B.j , and (as with the A functions) we will often suppress the first suffix; a
useful formula for B , not given in previous papers, is

Bu - l)(Ba.a,)j+ +Blljjj). (3)

In view of the frequent requirement for BI.Ij, in the analysis for J1 we write this in
abbreviated form as B..,j.

TM Sp 3 8
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The By are defined with PI-1 inequation (2), though it is P1+1 that occurs in (1),
in anticipation of the change of variable in the planetary equations, the relation between the
variables being

dy 3-;2-W = i P + O(j 2
2,J1 ), (4)

where 1>2 since the absence of a term in J2 has already been remak d. After the
change of variable, the integration for a formal second-order solution proceeds entirely
straightforwardly, as far as the terms in J! in the solution are concerned (these terms being
firt-orde in the second-order quantity J), and fairly saightforwardly (though laborious-
ly) for the terms in J2

2 . The short-periodic terms constitute the 8C, from which 8r, 8b
and &N are derived, and are only of interest here in that they are needed to feed back for
the third-order solution. The remaining terms constitute the secular and long-periodic
perturbations, and in Ref. 2 their combination was expressed via formulae for the rates of

change C . However, it must not be overlooked that the 'averaged' parts of the planetary
equations, after the change of variable, conespond to integrated quantities that are linear in
V rather than R, so that there are additional perturbations terms, short-periodic in nature,

given by (CIJI)(V - M. The resulting difficulty was handled in Refs. l and 3 by the
concept of 'semi-mean' elements, C, that can be obtained from the ? by incorporation
of these additional terms.

Three of the general C k formulae (associated with (4) are repeated from Refs. 2
and 4 (with bars on the right-hand sides omitted for the first time). These formulae, in
particular, are required in the sequel, and the first two formulae may be expressed via a
single equation. Thus

and= q 2 7 Ilk = kKjnq 2 cAkBk Ok (5)

and = Ki n e-1 q3 Ak Bj ; (6)

for L & , asgivenin Ref. 2, we replace elq 3 Bi ,in (6),by -(21- 1)qB .

The complete secular and long-periodic solution associated with 2 (from Refs. I
and 3) is also repeated, as the formulae involved are special cases of the formulae to be
associated with J2i : they are 'special', rather thak 'particular', as the general formulae
give double the correct rsults on setting I = 2, since (as will become clearer) they cover
JJ2 as well as J21 I! As the general fomulae will be expressed in terms of M, rather
than K2K,, we express the J22 formulae, somewhat artificially, in terms of KK2 (where
r I K"2); the well-known first-order formulae may be written

2,oh20 - -Knc and &), = 2Kng. (7)

Asthenotation Z21k willbeuued refertottermsin yk or or that emerginthe
solution for J2/J, we express the secular part of the known solution for J2

2 via the three
formulae

TM Sp386
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h2,740 1-KK2 n c [4(1 -f) + e2(4 + 5f)], (8)
L2,2,0 = -KK2 n [2(64 - 8 + 95f2 ) + e2(56- 3q- 45f2)] (9)

and 2,2 0 - KK2 n q3(8 - 8f- 5f 2). (10)

It is possible to dispense with equation (10) by modifying Kepler's third law for.mean
elementsl,6, but the 'additional perturbation' (term in V - MW) resulting from M2,2,0 will
still be required. The formulae from which the long-period perturbations may be derived
are

kr12,2,2 = 2 , 2.2 = T- KK2 n e2 q2 cf (14 -15f)72, (11)

"2,2.2 = j KK2 n e2 c(7 - 15f)72, (12)
= 1

W2.2.2 = KK2 n (2 + 5e 2)f (14 - 15f),2 (13)
7and L 2,2,2 = 7 KK2 n e2 qftl4 - 15f)y2. (14)

The short-period perturbations will not be given again here, but two errors in Ref. 1 should
be noted: the factors Z, and 7 were omitted from its equation (43), the formula for 8b ;
and the terms with overall factor 4f in its equation (44), the formula for 8W, should all
be negated (the wrong sign was attached).

To amplify the remarks in the Introduction concerning 'induced terms', it can now be
stated that these terms arise from the variation of i and " (via K, e- and g) in
equations (7), the equations for this variation being (5) and (11).

J2 JI PERTURBATIONS

The analysis for each element, C, is separated into twp distinct parts or 'halves',
which lead to the two components of the final formula for ? 2Lk. In the first half
we substitute the first-order solution associated with J2, involving terms in K, in the
planetary equation associated with J1, whilst in the second half we substitute the existing
solution associated with Jt in the equation associated with J2 . (The analysis also covers
I = 2, though there is then only one set of terms, which is why this case is special rather
than particular.) Theindex k isassociatedwith J1 ,not J2, sofor J2 it is best not to
think of any separation between 'k = 0' and "k = 2' ;butitisalsobestnottothinkof k
as irrevocably associated with U& , in the second half-analysis, as k has to be redefined
during the development

We start by conidering genel aspects of just the first half-analysis. In principle,
every element has a finat-orler n-- eai, such as D - + AD, where AD consists
of W and a secular tem, bothhaving K as a factor, and these representations can be
substituted in the planetary equation for C due to J1. Because of the axial syrnnetry,

TM Sp386
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however, 2 is actually the one element that does not occur in the formula for C and for
which substitution is therefore not required; thus only for w is the secular component
relevant, and this is taken account of separately,.as we shall see, so we can revert to the
notation typified by W(. The contribution to ? 2 arising from W we conceptually
denote by DD, but the form taken by the planetary equations makes it preferable to work
with contributions Dp, Dp, Du, Di, De and Dv, derived from the perturbations Sp etc
that are combinations of the (first-rder) perturbations in the elements (so that 'De' is not
the same as the De that would arise if we stayed entirely with the elements themselves).
When C is i or D, we do not need De and DV, and the other four D contributions are
based on the following formulae taken directly from Ref. 3:

8p = - [Kp[f(eC 2 + 3CJ + 3eC21)-2h], (15)

_= j 2h (16)&' =--ffKP Lf(3eC2 + IOCJ + 11eC21) -4h(e cos v+ 3)], (16)

&sfi.-K [2e(l -f)S 2 + (6 - 7f)Sj + 2e(3 - 5f)S2 1 + 4e(5 - 6f) sin v] (17)

and S Kcs(eC2 + 3Cg + 2 , -3). (18)

The 'constant' in equation (15) is 2h,rather than 3f (which might be expected in view of
(18)), because the constants in &,& and S aresuchithat by=ky(l-3f) asopposed
to being identically zero (where y= pc2).

In regard to the secular component of Am, this makes no direct contribution to
21k, since its effect is taken into account at the first-order level by the evaluation of

short-period perturbations fter the mean elements have been propagated, so that a has its
value at time t. There is an indirect contribution that must not be overlooked, however,
arising from the expression for the 'constant' 8 Lkc). the complete set of these expressions
being given in Ref. 2. Allowance has to be made for the fact that CLk(c) is not rrlly
constant, specifically (when k * 0) because of the variation of k U. To countmact the
effect of this variation (at third order) we incorporate a contribution to C 21k in which 3t
or B (in Cg~)) is replaced by k &U N or -k 0)2,0 3y respectively, where W-2,0 is
given by equation (7). Essentially the same principle would apply to the short-period
peruraio in a complete t-order analysis, with the terms in or Sj (occurring

in the 8 due to Jt ) leading to tr in kiZ,0$ or-k 2,0 Cj rptively: this
principle was used, with a detailed explanation, in the J2

2 analysis of Ref. 3.

In the second half-analysis the r6les of J2 and Jt are in principle reversed, but
expressions for the general 4p (more precisely APt&) etc are not so simple as equations
(15)-(18), owing in prt to the panel"ar form talen by eac constant; each expression may
be derived from the equations of Ref. 2, however. The expression for (p is

TM Sp 386
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Jp =-Kt Aitp f2k ,i+ k)-' BjCj +[( + I)Bk -(I -I)B-.k]C-k }.(19)

jsk

The expression for W may then be derived from its identity with (P/p)(p- Pr), where
&(= &i) is given by equation (61) of Ref. 2. Similarly, & isgivenby &v-cf2,
where 6w is given by equation (78) of Ref. 2, together with the special terms given by
(85)-(88), and 8.0 may be derived from equations (38) and (84).

Finally (because there has been no time to take the general analysis beyond =.0),
may similarly be derived from equations (49) and (83) of Ref. 2 the result being

S .- - cK c kAlk " +k)-1 BCj -+AjBk C-k}. (20)
jA2

As in the first half-analysis, we must also correct for the fact that the first-order 'constants'
are not really constant, because of effects arising from the long-period variation in e, i and
w, as well as the secular variation in w. The relevant 'constants' may be taken from
equations (148), (149), (151), (153) and (164) of Ref. 3, being - Ke(9f72- 20h) for
e Kcs for i, zerofor D , Kfa2 for o ,and -3Kqfa2 for M. Thereisan

important further source of terms in 2 , however, which only appears in the second
half-analysis and which we must deal with before considering the analysis for the
individual elements.

The terms referred to stem from the O(J) component of equation (4), which
complicates the change of integration variable from t to V, a further complication being
that it is really , the semi-mean equivalent of V, that is the new variable. Now ; is
derived from and M by the usual Keplerian procedure, so that

-~ = -- -+---., (21)

where = q 2 sin v (2 +ecosv), ov/oM - q-3 (1+ecosv)2  (22)

Also, = " P ,whilst e and M (residual to n')are given (for theassumed
restriction to Uit) by equations (5) and (6), so (21) leads to

= n q 3P2 1 - Ki Alt e 1 [k Bt sin v (1 + P) ok - Bj p2 M) (23)

It is the terms in KI that specify the O(JI) component of equation (4). We invert (23) to
obtain di/d ; and thence the modified formula for changing the integration variable. On
expanding the terms in KI , we get the factor that must be applied to each second-half
planetary equation as a source of additional terms in 2 2. The factor may be expressed as

TM Sp 386
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-1 (q-3 K e- I Ak ReBi + kBk(eCk+2 + 4Ck+l) + 28j (2 + e2)Ct

+ (eBj - k k) (4C.k-1 + eC-k.2)]. (24)

When C is 2 or w, there is a final source ofterms, consideration of which will be
postponed until we come to the second half of the analysis for D.

We now proceed to the analysis for individual C, none being required for a. We
start with i , for which the analysis is the most straightforward and from which the result
for e can also be derived. At the time of writing, the only other analysis completed is for
£.

Analysis for Inclination

The planetary equation for the first half of the analysis is

di/dt = kK nq-3 cs-1 AkP+1 S6, (25)

where the right-hand side is exact as it stands, the elements being osculating not mean.
Since n q-3 = (,u/p3)'/2, the right-hand side is a function of p, P, u and i only, with p
implicit in KI as well as n q-3 . Hence we obtain the contributions to i 21 denoted by
Dp, Dp, Du and Di and expressed in terms of 8p etc from equations (15)-(18). In each
contribution (after differentiating (25) with respect to p, P, u or i as appropriate) we
effectively replace q-3P+l 1 SS by Z Bij Sk on making use of equations (2) and (4).

Thus Dp is given bythe terms of -k(l+ Knp- 1 c rlAkEBjSP) 8p that are free of

short-periodic variation, that is, by

Dp = -Lk(21 + 3) KKt c s"1 Ak {f(eBk+3 + 3Bk+2 + 3eBk+l)ok+2

- 4 hBkok +f(3eBk-i + 3Bk-2 + eBk-3)ok-2}, (26)

on completion of the algebra.

Formulae for Dp , D. and Di may be obtained in the same way from, respectively,
thetermsof k(I +I)KI n c r' P'- A (YBj Sj) W, k2Kt n c slA (Bj Cj) & and
kKjn (Aj-f-1 Ak)(Bj Sj)& ,but they are not listed here. (The coefficient of & takes
this form because the derivative of c r 1 Ak is c rl Aj -f-1 Ak.) Finally, the effect of
ki~c) is available at once from equation (20), on inrpreting C-k as 7k and replacing it
by 2kKng ok in accord with the mtionale that has beennoted.

We now have to combine five results, of which one is Dp as given by equation (26).
We seek a final formula with Ok common to all a'ms, and there is no inherent difficulty in
this since the four contributing formulae effectively apply for a/ k. Thus we can redefine
k (as forecast) such that the quantity kAk Bk.3ok+2 in (26), for example, is replaced by
(k- 2) Ak.2B8lOk. At this point we can conveniently introduce some notation that will
simplify the presentation of results genenally, not just for the element i.

TM Sp 386
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Since terms (in each half-analysis, and for all elements) arise that involve Ak+28k+1,
Ak+2Bk, Ak+2Bk.1, AkBk+l, AkBk, AkBk.I, Ak.2Bk+1, Ak.2Bk and Ak-2Bk.1, we denote
(arbitrary) coefficients of these nine quantities by 4+, 40 4+.., AO+ Aoo, A-, A.-+, ;L0,
and .. , respectively. We also require, for some elements, smilar coefficients for
Aj+2Bk+j etc and for Ai+2Bk+i etc, and we denote these by 1++ etc and v++ etc,
respectively. Finally, we may need the coefficient of AkB.,, and we denote this by A(.
We now introduce the generic quantity Q , defined by

Q = A++ Ak+2Bk+l + ... + p++ Aj+2Bt+ + + v++ Aj+2Bk+ 1 + .__ + A(-) AkB-j , (27)

to permit formulae to be expressed mainly in tem of the particular Q that is appropriate.

In terms of the foregoing notation we shall eventually be able to write (with both
halves of the analysis covered) the formula we seek as

i 2k=-kj ,,,ii c s- Q a. (28)

For the first half only, on combining equation (26) with four other results, we require

(4L-+,X+o,L+-) = - k 1 (k + 2) (e[6(k + 1) -f(i + 10k + 27)],
[6(k + 1) - f(21 + 7k + 22)], e[2(k + 1) -f(l + 2k + 7)]),

(A0+,40 ,Ao-) = 2(e[2(l+ 5k + 1) - 3f(i + 4k + 1)], 2121- 3 - 3Y],
e[2(1- 5k + 1) - 3f(l - 4k + 1)]),

= k- (k - 2) (e[2(k - 1) +f(l- 2k + 7)],
[6(k - 1) + f(21- 7k + 22)], e[6(k - 1) +f(l- 10k + 27)]) ,

(u++,L+op+-) = - 2k'l (k + 2)(1 -f) (3e, 3, e),
(u+,poopO-) = [0,6(6 - 7f),0], (J-+,p-,p -) = - 2k-l(k - 2)(1 -f)(e, 3, 3e)

and all v=k(.)=O.

The factor k-1 , appearing in most of these expressions, is eliminated when we combine
with the second-half results.

The planetary equation for the second half of the analysis is

di/d = K n q-3 c s p3 sin 2u', (29)

which leads to the contributions Dp, Dp, D" and Di given by the short-period-free terms
of-.Knp-1csPSj8p, 3KncsSj6P, 2Kncs PCJ& andKn (1-2)PS2 & ; p and &,here, are given by equations (19) and (20). The
product P S (and similarly P Cj ) expands to . (eS1 + 2SJ + eS21), the expansion
being appropriate to the S contribution , as well as the other three, since the factor P can
be extracted from A. But tp,& P, & and & involve terms in Ck and S*, , the coef-
ficients of which can be developed as combinations of At& BIj, A&k BI.Ij and Aik Btj (for
particular values of j relatedto k), after which a term such as A& BUjSCk canbe
re-expressed as +AkBj (S+ - 2), extraction of the short-period-free portion and
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redefinitionof k then leadto I (Ak.2 Bk+I - Ak+2 Bk-1) ck (since B =B.j) for this
tem

The full second-half analysis for DI, Dp, Du and D, generates considerable algebra.
which will be omitted, leading to a result that (as for the first half) can be expressed via the
A's and u's. There would also be terms in Ak+2B.,k+l and Ak.2B..k.lI, were it not
that these are cancelled by terms we are about to derive. Following the general remarks on
J2J1 perturbations, we bave two additional sources of terms to incorporate with the second-
halfcontributions to 1 2ip. First, the first-order 'constant', viz .Kcs ,for i is
responsible for contributions arising from the long-periodic variation of e and i, as given
by equation (5) - the variation of w is irrelevant as o) does not appear in this particular
constant These contributions combine to -Ik KKi n c rI (1- 6f)'Ak Bk Ok .

The other additional source is the one associated with expression (24) that only arises
in the second half-analysis. On multiplying this expression by the right-hand side of
equation (29), and then picking out the short-period-free terms, we get

33
;-KK I n c s Ak [(ktBk + eBj) ak-2 + (kBk -eBk) ak+2]•

On redefinition of k and simplification via equation (3), this leads to 3(1 Q- 1) KKI n e c s
(Ak+2 B-,k+I - Ak-2 B-,k.-)Ok , which involves the cancelling terms that have been alluded
to.

The second-half values of the A's and p's are now available. On combining them
with the first-half values, we have the final solution for " 2k , expressed via equations
(28) and (27). The final formulae for the I's and p's are as follows:

(A.++,;A+o,A+.) = - (e[6(k + 2) -f(l + 10k + 21)], [6(k + 2) - f(21+ 7k + 16)],

e[2(k + 2) -f(l + 2k + 5)]) , (30a)

= 2(e[2(1 + 5k + 1) - 3f(I + 4k + 1)], 2[2(1- 3) - 3f(l- 6)],

e[2(1-5k+ 1)- 3f(l-4k + 1)]), (30b)

(At-+,Ao,A...) = {e[2(k- 2) +f(l- 2k + 5)], [6(k- 2) + f(21- 7k + 16)],

e[6(k-2) +f(l- 10k + 21)]), (30c)

U4+ t++.) = - 2(1 -f) (3e,3,e), oo = 6(6 - 7f),

(p+,,, -) = - 2(1 -f)(e,3,3e). (30d)

Results for particular J may be derived by substituting in equations (30). For I = 2
we have a special situation, as already noted, such that the conect result, given by
equation (11), is produced by either half-analysis on its own and equations (30) give
double this result But this remark posits an Important point that arises for all even I : the
value of A1,O, to be used as Ak.2 when k = 2, must be doubled, to include the 'unnatural
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factor of 2' (see the Introduction) that normally applies only to Alk with k * 0 ; this
aliows for the restriction of results to k > 0 and the consequent absence of A1.0 in the r6le
of At+2 for k = -2. (This doubling does not apply to the use of Al, 0 as Ak for
k=O, but this is irrelevant for Cii,since ro=0;thefactorof2presentin Al, 2 makes
it unnecessary to include Al, -2.)

Finally, we substitute for I = 3 in equations (30), with k = 3 and 1, so that (27) and
(28) provide results for J3 ,but first we note a point for odd I in general. It is that for
k= I we require Al,3, Al, 1 and Al,.- ;although Ai.-I = Al, , wecannotjustcombine
the two, because the corresponding A 's will be quite different. As the pair of formulae
for J3 are new, we express them with 03 and al replaced by cos 3W and -cos W,
respectively. Then

'2,3,3 = KK3 n e3 cf (20 - 21f) cos 3o
i K [( 5 +52 e (31)

,2,3,1 = K [2(8-15f+5f 2)+5e 2f (6- 7f)] cos o(

These formulae were originally derived by a specific analysis for J2J3, and have been
checked out by inclusion in the author's Fortran test program.

Analysis for Eccentricity

The analysis for 1 21k would be considerably more complicated than for i 21k if we
proceeded ab initio in the same way, but there is a much shorter route that makes use of the
exact constancy of the osculating quantity y(= pc2), which is a measure of the angular
momentum about the axis of symmetry. Now

d1fdt = c (q2 a - 2a e c e- 2a q2 s : ) , (32)

so we can get e2k from

e2/k= -1 q2c-1 s [T21k +(2p cs)'72k]. (33)

It remains, therefore, to do the two half-analyses for the mean quantity T, the variation of
which stems entirely from the general non-zero 'constant' &8t&c) , to be derived for the
first half, and the specific value 3 Kr(I - 3f) , given after equation (18) and required for
the second half.

From the expressions for &&c, & c) and &LU(c) in Ref. 2, we can derive

ft(c) = -KrAk I ( + I)Bk- (Y- l)B-,] +k AjBk , (34)

from which the first-half contribution to y2& is obtained on replacing y' by 2kKng crt.
From the value 2 K r(I - 3f), similarly, using equation (5), we derive the second-halfcontribution such that in combination with the effect of (34) we get

T
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V2 k -k KKi nr [ [4(31- 7)- 3f (51- 19)] Ak Bk

+ 12g [Aj Bk - (I - 1) AkB.,k ak. (35)

Now equation (35) can be interpreted via values of Am Poo and A(.). If it were not
for these, the required values of the I's and it's could all be taken as identical with the
values resulting from the i analysis since, in view of equations (28) and (33), we naturally
write

-- -jjk KKt n e- I q2 Qe k. (36)
Thus the only values, to be substituted in (27), that are different from those given by

equation (30) are

Am = - 2[8(1- 2) - 3f (31- 7)],

= 12(1 -f) and A(-) = 24(- 1)g (37)

For I = 2 we get the result (doubled) given by equation (11), whilst for 1= 3 we
obtain the new formulae

- 5

e2,3,3 = - KK3 n e2q2 sf (20- 21f) cos 3o
- ,3,1 = 1 (38)
e2,3,1 =L KK3 n q2 s [2(8 - 41f + 40f2) - 5e 2 f (6 - 7f)] cos )(

As with the results for i , given by (31), these formulae were originally derived by a

specific analysis and the Fortran test program has shown them to be cort.

Analysis for Nodal Right Ascension

For D we proceed as for i , with a complication in the second half of the analysis.
The planetary equation for the first half is

dfidt = - K! n q-3 s-I A p+I PW& . (39)

Formulae for Dp, Dp, Du and Di can then be obtained from the short-period-free terms of
(1+ 3) Kt n p-l s-l Aj (E BCj) 8p , - (1+ 1) KI n s P-l Aj (Z BjCj) S',
k K1 n s-I Aj (Z BjSj) 8 and - KI n r (A 't - c r A ) (Z BjCj)& . Finally, the
effect of & 21kqc), given by equation (84) of Ref. 2, is 42 KKI n c s-2 g Ak Bk 7.

We express the final formula for i 2m as

21k = -LKKIncf- Qark, (40)

with QD to be taken from the appropriate version of equation (27); the appearance of
cfPI,ratherthan r I ,reflects the usageof Aj rathrthan Aj. On combining all the
first-half contributions, and after the algebra involved in the redefinition of k etc, we find
we require
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(4+,p+) = {e[6(k + 1) -f( + 10k + 21)], [6(k + 1) -f(2+7k + 16)],
e[2(k + 1) -f( + 2k + 5)]), (/io+Po4pwo-) = - 2(e[2(1+ 5k + 1) - 3f(l + 4k + 1)],2[(21- 3) - 3f(I - 1)], e[2(t - 5k + 1) - 3f(! - Uk + 1)]), (p.+4j p) --

- (e[2(k- 1) +f( - 2k + 5)], [6(k - 1) +f(21- 7k + 16)], e[6(k - 1) +f(l - 10k + 21)]),

(v++,vo, v4) = 2f(3e,3e), (Vo+,Voo,Vo.) = (0,-12f,0), (V.+,VoV_) = 2f(e,3,3e),
=oo - 24k2 g and allother X =0.

The planetary equation for the second half of the analysis is

8Q/dt = K n q-3 C p3 (cos 2u'+ 1), (41)

and this leads to Dp, Dp, Du and Ds given by the short-period-free terms of
n CP(Cj+1)8p, -3Knc (Cj+1)', 2Kn cPSJ & and

Kn c P (Cj + 1)A, to be combined via the redefinition of k as usual (laborious detail
omitted). Since the first-order constant is zero for D, there is no additional contribution
associated with equation (5). We do have the source associated with equation (24),
however;, on applying this to (41) and picking out the short-period-free terms, we get

1-KKI n e'Ic Ak [3e(eBj + kBk)y-2 + 4(2 + 3e2)Bjyk + 3e(eBj - kBk)Y+2].

The preceding expression introduces an apparent singularity, since the coefficient of
,yk involves a non-cancelling factor e-1 outside the square brackets. There is a final
contribution to the second-half h2a , however, which did not arise for i or e.

This final contribution derives from the first-order secular variation given by D2.0 in
equation (7), with a similar effect arising in the second half-analysis when C = o and
deriving from w2o. This quantity is a function of I (via 9), 1 (via V) and -f. The
long-periodic variations of E and 1 were already accounted for (as has been noted) in
the second-order theory, via the so-called 'induced components', errors that are
O(KKI n2 t2) being thereby avoided. Now the false assumption that R = n' only involves
O(KKI n t ) effects; these were not previously relevant but are of precisely the order
covered in the present paper.

The point is that £ZO originates the term -/e" in dIO/d, and this integrates to
-fir'V,whichishandledasthesecularterm -fe-n't,with -Ke'(V-W) asa
separate short-periodic effect. But - fr V has an 0(R1 ) component deriving from
equations (5) and (6) via (21) and (22). Equations (5) and (21 lead to no long-term effect,
but (6) and (22) lead to our required final contribution' of -TKKin "l c (2 + e2)
At Bj & on taking the mean value of q-3p2 tobe -q-3(2 +2). In combination with the
preceding contribution, this effectively changes the coefficient of B yk (within the square
brackets) from 4(2 + 3e 2) to e2 , thus eliminating the apparent singularity.

It remains t ombine all the contributions in the second half-analysis, to redefine k,
and to combine with th results of the first half-analysis. In terms of equations (40) and
(27) we finally derive:
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(4H.,A+o,4+-) = 2f e(- 8k- 21), - (21+ 3k + 16), - e(31 + 5), (42a)

(,o+,,oo,A.) = - 6(ef(l - 5k - 2), [4k2 -f(5k2 + 41- 8)], ef( + 5k - 2)}, (42b)

(.+,.o,..) = - 2f(e(31 + 5), (21- 3k + 16), --e(I + 8k- 21)), (42c)

(4+.jt~oj+-) = {e[6(k + 3) -f(I + 10k + 33)], 16(k + 3) -f(21+ 7k + 28)],
e[2(k + 3) -f(I + 2k + 9)]), (42d)

(uo+,po,po-) = - 2(e[2(1+ 5k + 1) - 3f( + 4k + 1)], 2(21- 3 - 3fl),
e[2(1-5k+ 1)- 3f((-4k + 1)]}, (42e)

(w+, -o,4L--) = - (e[2(k- 3) +f(I - 2k + 9)], [6(k - 3) +f(21- 7k + 28)],

e[6(k - 3) +f(l - lOk + 33)]) , (42f)

(v++,V+o,V+.,Vo+,Voo,o V., vo, v..) = 2f(3e,3,e,O,-6,0,e,3,3e) (42g)

and )L.) = 12(1 - 1)f(4 + 3e2). (42h)

For I = 2, equations (42), substituted in (27) and (40), give the results (doubled)
known from equations (8) and (12), with k = 0 and k = 2 respectively; for k = 2, as
already noted, we require the values of A2.,, A.0 and A"t0 to be doubled, whilst for
k = 0 we use these values undoubled and do not require A2,.2 etc. For 1 = 3, with k = 3
and k = 1 , we get the new results given by

h, " -- KK3 n e3 c s (4 + 7f) sin 3o)

h2,3,1 = - KK3 necrl [2(8 +99f -185f2)+5e 2f(18-35f)] sinw

Equation (43) conforms with the results of the specific analysis originally carried out,
but is unfortunately not validated by the test program. Them are effectively seven
numerical coefficients in the equations and computer runs for different values of e and i
indicate that five of them ar correct. The dubious integers are 99 and -185, with some
evidence that the correct values might be 51 and -125, which would imply an error, in the

square brackets of 2 3 ,1 , proportional to fg. At the time of writing, it is not known
whether the error is a real one or an artefact of the algorithm used in the test program. (The
two leading coefficients in equations (43), contributing 4 sin 30) and 16 sin W apart from
the overall factors at the beginning of the expressions, could actually have been written
down without any analysis, since they are mandated by the coresponding coefficients in
equations (31), to avoid singularity.)

Analysis for Perigee Argument and Mean Anomaly

The gemnal walysis for the last two elemnt has not been completed at ft time of
writing. Specific results for J293 have ben derived, but (as for D) they are.not validated
by the test program and the formulae will not be quoted. (I formulae for W2,3 and
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*2., , from which &2,3,3 and &2,3,1 follow, involve four and nine numerical
coefficients, rpectively; two of the four, and three of the nine, are certainly correct from
their mandatory association with the coeffidents appearing in equation (38).) In the present
paper we just remark on some aspects of the general analysis.

The analysis for the quasi-element wr is distinctly simplr than for a itself, since
the planetary equation is simpler for V than for 6)(= (-. c2) and the analysis for £2
has already been done. We must allow for the variation of c (= cos i), but this merely
involves the incorporation of contributions given by sb & , where h as given by (39)
and & by (18) are appropriate for the first half-analysis, and similarly for the second. The
analysis is necessarily more laborious than for i and D, however, as shown by the
,lanetary equation for the first half-analysis, which (cf equations (25) and (39)) is

dy~ldt K ~Knq-3 AU P+I (l+ + k) Ck2+ 21+ +2k)e-1C + 21+ Co
+ 2(1+ - 2k)e-I &- + (I+ - k) &-2 }, (44)

where I+ = I + 1 (cf equation (39) of Ref. 2).

Equation (44) leads to the usual quantities denoted by DP, Dp, Du and Di , but we
now also need De and Dv; the former is associated with the two appearances of e-I in
(44), and the latter with the implicit appearance of v in Cj, which becomes explicit (if
j O0) when we write Ck infulL The expressions for & and & (see equations (148)J
and (182) of Ref. 3) are more complicated than the four quantities given by equations
(15)-(18), so we cannot expect that, after redefinition of k in the analysis, all the coef-
ficientsof 7k in W2& can berelated tojust Bk+1, Bk and Bk-l ; the number of B's
required in each half-analysis in fact rises from three to eleven, but on combination of the
two halves it reduces to three again. This avoids the occurrence of non-zero W2k with
k>l.

Analysis for the sixth element in practice involves the quasi-element L rather than
M, and this in turn involves the planetary equation for the quasi-element p rather than
a, where r= 0 -qq. The analysis for p proceeds in the same way as for W,
allowance being made for the variation of q in q , and then a final analysis is required
for the integral of n, the quantity defined such that L=p +. The results for P 21k

and J 2k ,individually, do not reduce to zero for k=l+2,even when the pairs of half-
analysis are combined, but on combining these combinations we do get results for L 21k
in our standard form.

Now J = n't + J dt andwemayconveniently write &=n'(K A + Ki 9t +
KKt 21 ) to the accuracy that concerns us (with additional terms in K2 and K3 when we
cometo J2

3 peautbeons). Expessing & similauy, we require that n2a 3 -ip=n'2a '3 ,
from which we obtain

T3 _1_(4 5 )
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The second erin the expression for AU may be regarded as an easily-evaluated correc-
nlon tem so we conider only the main term Thin we require to evaluate, as the principal

part of 121k, the third-ottler component of - (3nl2a) & . Changing the integration vari-

able as usual, we have

dJid - (3/2a) q3 P-2 &, (46)

so we need to express the required components of & with P2 as a factor.

We start from the exact equation

& = - 2aKlq4-2Alk PL+1 C6 (47)

all quantities (other than a') on the right-hand side being osculating, not mean. When
these quantities are expressed for the first-order solution, we can derive the usual first-half

partof J12u,viathecomponents Dp, Dp, Du, Di and De; theneedfor De stems from
the factor q 2 in (47). There is no difficulty in either half of the analysis, but the details are
omitted as the complementary analysis for 2 1 has not been completed.

j 2
3 PERTURBATIONS

The analysis for J2
3 perturbations follows the same principles as for J2JI perturba-

tions, the second-order solution for C being fed back into the planetary equation. The
analysis is more tedious, however, and there is no opportunity for cross-check between
general and particular results. At the time of writing, formulae have been obtained for

= i, e and 12, but none has been successfully validated by the test program.

Some revision of notation is called for, such that the suffix 3, in particular, implies a
power of,J 2 (or in practice R) rather than a value of 1. In general, we return to the
notation of Ref. 3, writing the known short-periodic component of the second-order
solution as (A;=) KC, +f 2C2, where C1 and C2 are Poisson series in cos jv, Cj
and 1) (or the corresponding sines), where (with bars suppressed) Cj = cos(jv + 20) and
1j= cos(iv + 4o)); in the earlier notation of this paper, C. and r. would be written -&-
and d4 (AsinRef. 3,the notatimsC1 and C2 are extended to any quantity that is a
function of the orbital elements.) We seek formulae for the third er mean rates of

change, which will be expressed as C 30 for the secular component and C 32 for the
long-periodic component; the latter notation is used because the long-period rate of change
isproportionalto cos2 & or sin 2a), terms in 4i being absent.

As with the J2J1 analysis, it is helpful to express the planetary equations in terms of
the quantities p, P, u, i, v and e, rather than the original elements, since the analysis has
not been caied to C = and C M, we only need p, P, u and i here. The notation Dp

etc is no longer helpfu, however, as we effectively require 14 basic conmbuioms to C 3o
and C 32: four associated with p2 , P2.u2 and i2; four with p1

2, P1
2, M1

2 and i12 ;
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and six with the cross-products p1 PI etc. There we also contributions associated with the
'constants' in C1 and C2,and with the O(2 2) part of equation (4).

Because p and P occur in the sawe way in four planetary equations (C = a and
C = M are the exceptions), namely, via K n q 3 p 2 ,it is convenient to set up a grouping
of the five basic contributions associated with p2, P 2, Pi2, P1

2 and p1P, . It is also
convenient to introduce, for p and P only, a 'normalized notation' such that Ai = P/P
etc, this is non-trivial for PI and P2, since P is itself a Poisson series, giveq by A

equation (2) with I = 2, by which P1 and P2 must be exactly divisible for PI and P2
to have useful meanings. The formula for P1 is given at once by equation (187) of Ref. 3,
which also includes all the other C1 and C2 that we need, an exception being P2 . which
is given by evaluation of

P2 = e2cosv-e v2 sinv-1vj (2el sin v+evl cos v). (48)

(It needs 38 separate cosine terms to express each term of (48), but most of these cancel out
on combination; the remaining 18 then reduce to 13 when P r.1 + e cos v is divided out-
cf (51b) below - and this cancellation is responsible for the absence of 4& terms in

C 32 .) We use the expansions (correct to second order)

/P)-T= 2 2 2 ) (49)
and

(P/)3 = +(3A 1 +3A( 2 + 1
2 ), (50)

from which it follows that the grouping of terms we require is given by

P+ A1
2) _.(p 2 _9Ep 2 + 301A)P P; (51a)

this leads to an expression of the form

I ff2(173e2/r6 +... + 327e2 12) - 4f (terms in C4, ..., Co)

+ 16(termsin cos2v,cosv and 1)). (51b)

There are nine remaining 'basic contributions' to be covered, for each C separately:
two lead to a particular combination of u2 and u12 ; two lead, similarly, to a combination
of i2 and i1

2 ; one comes from ul il ; and thelast fourlead totheproduct ofan appro-
priate combinatioa of ul and ii with the fixed combination of pi and Pi given by

7,i -3P 1 = l(f(5eC3+ 12C2+9eCI)-4h(3 cosv+2)). (52)

Inregardtothecontributionsto 30 and t 32 duetothe non-constancy of the
'constants' in C, and C2 , we stat with the C coostants, which wet listed after
equation (20). Each constant has a vaiation due t die variation in F (which affects the
suppressedf in 9C) and T,aecfldbyeqoatw (I1),mdcmacfatoofthis
variation is one sowr of die nquied convibti Sin die consta in Mi and Mi
(thoughnotin ilor j)lnvolve ,weal haveolovertheeffectsof O variation,

TM sp396



20

with a complication associated with the firt-order component of this variation, but these
effects am not required in the incompleft analysis of the present paper. In dealing with the
'constant' part of C2, on the other hand, it is only the variation of r that is relevant - it
is dealt with in exactly the same way as in 6C(c) in the second half of the analysis of the
J2J/ perturbations.

To get the contribution to t 3o and C 32 due to the O( 2
2) part of equation (4), we

apply equations (21) and (22) again. This time we use expressions for - and M given
by equations (10), (11), (13) and (14). From M 2,2,0 we get the factor, analogous to (24),
given by

1 K2 (8 - 8f - 5f2) [e2 cos 2v + 4e cos v + (2 + e2)], (53)

whilst from e22,2 and M2,2,2 we get

17.S K2f (14- 15f)[e2C2 + 4eC1 + (2 + e2)C0] (54)

When Cis Dor w,threisafinalsourceoftenmsin 30 and 32,associated
(just as in the second half of the J2J1 analysis) with the interpretation of n in equations (7).

Analysis for Inclination

Lagrange's planetary equation has been given by (29), which can also be written as

dildt = - g i('q3 P 2) (p/p) 7/2 (P/P) 3 P c s S2 . (55)

Then the change of variable, specified by equation (4), leads to

di/dV = - K(p/p)-712 (P/p)3 p C S 2. (56)

We have developed (p/p)-7/2 and (P/P)3 via equations (49)-(51), so for the basic

contributions to i 32 (there is no i 30) it remains to develop

cs = rr+ K(l - 27)i + 9 2 [(1- 27)i 2 -2 ' 1
2 ]  (57)

and S2 = S2 + 2K C2 l + 2 2 (C2 u2 - S2 u12 ). (58)

We now work with equation (56) to derive all the contributions to L 32, expressing
each contribution with the overall factor ( 1/.4) K3n e2 c s sin 2o) suppressed.

From the grouped terms represented by equations (51), with the factor --K3P c s S2
applied and the short-period-free component then picked out, we obtain -3(448 - 1536f+
1279f2). From the product of (52) with KIP [(1 - 2 S2 ii + 2c sC2ul we obtain
4(728 - 2169f + 1677f2). From the product of -0P with the combination of
2c s (C2 u2 - S2 u12), S2[(1 - V)2- 2c s i 2] and 2(1-2f')C2ul il) ,weobtain
(5408 - 11724f + 5601 2 ). And the combiation of these three results, representing the
sum of all the basic contributions, is 8(872 - 1974+ 1059f2).
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The 'constant' in il, viz -c s leads (via 2 ,, and i2,2) to -48(14 - 99f +
90f2 ),and the COcomponent o the constant in 12, viz 3 - se2 cs(9 +)CO, leads
(via 52,0) to -32(36 - 41f- 5f 2). And the combination ohese two results is
-16(114- 379f+ 26Q 2 ).

Finally, the product of-K P c s S2 with the factor given by (53) leads to

-36(8 - 8f- 5f2), there being no contribution from (54).

On combining all contributions we get

T-32 = 1 6 3 n e2cs (1216- 2360f+ 1123f2) sin 2w. (59)

Analysis for Eccentricity

As in the analysis for J2J perturbations, we derive e32 from i 32 via the exact
constancy of y( = pc2). To apply the equation analogous to (33) we require the formula
for 12 ; as noted in Ref. 3, 7 has no first- or second-order variation.

The variation of T stems entirely from the non-constancy of the 'constants' in Yj
is ly(1 -3f), which leads (via F2,2,2 and T2,2 .2) to theand y2. The constant in YI is 127

contribution

1
1 K3 n e2yf (14 - 15fX5 - 9f) sin 2w

t 2 The CO component of the constant in r'2 is - -Le2rf(63 - 82f)C0 which

leads (via 52,0) to the contribution

- OKn e2yf (63 - 82f)(4 - 5f) sin 2o) .

So
2= -K3 n e2yf(112 - 241f + 140f2) sin 2o . (60)

From equations (33), (59) and (60) it now follows that

" '3 n e q2f (320 - 432f + 3f 2) sin 2w. (61)

Analysis for Nodal Right Ascension

We are now looking for secular variation, represented by 630, as wel as the long-

periodvariationrepresentedby h 32 . The analysis is very similar tothatfor i,exceptfor
a final contribution that stems from D2,0 and the non-identity of n' and 71,just as with
J2 1 perturbations.

The planetary equation has been given by (41) and can also be written as

drdt= X(fi 3P 2) (p/')/'2(P/P)3 Pc (C2- 1), (62)
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whence

a = F(p/p 7)'-72 (P c)3 F C (C2 - 1). (63)

For the factors involving p/p and PIP we can use the grouped terms represented by
equations (51), whilst for c (C2 - 1) we require, in analogy with (57) and (58),

c = r_ r (_ i2 + ru2) (64)
and

C2 -1 = C2-1-292u1-2K2 (Y2 u2 + C2 U12)- (65)

We now express the contributions to £30 with the overall factor (1/576) K3 n c
suppressed, and to .32 with the factor (1/23o4) K3 n e2c cos 2w suppressed.

From the grouped terms, with the factor K3 P c(C 2 - 1) applied, we obtain

-[16(40 - 144f+ 113f2) + e2(576 - 2038f+ 1831f2)] and 3(448 - 2816f+ 2785f 2).

From the product of (52) with K3 P [s(C2 - 1)il + 2c S2 ul] we obtain

8(4(6 - 13f+ 6f2 ) + e2(58 - 159f'+ 862)] and -8(400 -1107f+ 711f2).

From the product of K3 P with the combinations of -2c (S2 u2 + C2 u1
2),

_(C2 - 1)(si2 ++ci2) and 2sS2 ul il, we obtain

-[16(24 - 41 f+ 5f2) + e2(176 - 2942f + 2955f2)] and -(6752- 13416f + 5907f 2).

Hence the sum of all basic contribution yields (with the same overall factors assumed)

-2[8(52 - 159f+ 106f 2) + 3e 2(48 - 618f+ 683f2)] and -8(1076 - 1728f + 405f 2).

The 'constant' in £i is zero, so there is no contribution to i530 or h32 via e2,2,2

or i'2.Z2. But the onstant in QJ2 is --I-.c e2 (18 -19f) So, and this leads (via 02,0)
to a contribution to h32 of 16(72 - 166f + 95f 2) (multiplied by the usual factor).

We treat, finally, the contributions to £30 and h32 arising from the product of

K P c(C2 - 1) with the factors given by (53) and (54), together with the contributions

associated with the fact that the factor n in equation (7) ought to be interpreted as

n' + M2.,O + M2,2,2 , but is in practice set to just n'. The two pairs of contributions can

conveniently be combined since (it can be shown that) the effect of the second pair is to

delete the factor 2 + e2 in (53) and (54). As a result we obtain

-18ef(14 - 1sf) and 72(8 - 8f + 5f2).

On combining all contributions, we derive

£3 -L- On c [4(52 -159f + 10o 2) + 3e 2(24- 28/ + 319f2 ) (66)
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and
32O 2 c (430 -662f+ 85f2) cos 2. (67)

There is a conflict, associated with singularity, between the leading coefficients in equations
(59) and (67); this has not yet been resolved.

Analysis for Perigee Argument and Mean Anomaly

The analysis for the lat two elements has not been embarked upon at the time of
writing.

DISCUSSION

An orbital theory is of no practical value until it has been implemented in an accurate
and efficient computer program for ephemeris generation. The author's untruncated
second-order theory1 4 for an orbit in an axi-symmetric gravitational field, or any non-
rotating fitdd, had been fully validated by such a computer program, the main features of
which are as follows. First, a mean-orbit-based coordinate system was utilized as being
ideal for the efficient representation of the short-period perturbations free of singularity.

Secondly, singuirity problems in the propagation of the mean elements ( ) were avoided

by two expedients: two of the formulae are for = and L, rather than o and M,

with 312 and Lrw stored (rather than 12 and W,) ; and the non-singular mean elements

Y sin 12, - cos D and i' are introduced locally in the propagation of " and £,to

complete the avoidance of any problem when 3 - 0 (with a similar procedure that pays off
when 11 - 0). Thirdly, the concept of a semi-mean element was employed as a device
associated with the ransformation of the integration variable from t to Tp whilst the
propagation of the C is still required in terms of t. Fourthly, the terms in D2 and Co
that are induced by the second-order terms in F and T, and are formally only of third
order but responsible for quadratic variation with t, were included in the program.
Fifthly, and to supplement the fourth feature, an option was introduced to 'rectify' the
propagation of the ? from to (epoch) to t by the use of intermediate epochs as way-
stations; use of the option degrades the status of the theory from fully analytic to semi-
analytical, but the efficacy of the 'induced' terms is such that the interval t - to has to be
equivalent to several hundred orbital revolutions before there is any gain from switching to
the semi-analytical mode. Finally, the inve'se of the algorithm that converts the C into
position and velocity was made highly efficient, and of essentially unlimited accuracy, by
the use of a general iterative inversion procedure7 (it typically gives 8-decimal accuracy
after a single iteration!); this procedure is at the heart of the program's operation, since it
permits the conversion of successive state vectors (components of position and velocity), as
generated by an independent pure-numerical integration, into successive sets of mean
elements which can be compared with sets propagated by the theory-based algorithm.

The last feature above may be amplified by two remaks Fis the inversion
procedure is independent of the algorithm it inverts (apart from the fact that it calls the
algorithm directly during each iteration), so that modifications to the algorithm (such as the
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adding of higher-order terms) do not affect the inversion procedure itself. Secondly, the
existence of the procedure provides an intrinsic and definitive answer to the question:
"Yes, but what actually are your mean elements?".

In view of the successful validation of the second-order theory, originally for just J2
2

and J3 but later 2 with the perturbations due to J4 incorporated, no fundamental difficulty
was anticipated in extending the theory to cover the secular and long-periodic effects of
third order. (That the algebra would be long and tedious was anticipated, and the use of a
computer-algebra package was considereo but appeared to be impracticable.) After
validated formulae had been found for " and i associated with the product J2J3 ,
therefore, it was assumed that completion of the results for J2J3 , the analysis for J23, and
the generalization from J2J3 to J2JI would all be straightforward. The intention was that
the updated computer program would then be used for a full examination of the long-term
accuracy of the extended theory. Since discrepancies, as yet unexplained, have been met in
the analysis for both J2J3 and J? , however, the work is incomplete and the present paper
must be regarded as no more than an interim report.
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