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AXI-SYMMETRIC GRAVITATIONAL FIELD
ANALYZED OVER EXTENDED PERIODS OF TIME

by
R. H. Gooding

SUMMARY

The author’s untruncated orbital theory for perturbations due to the Earth’s zonal
harmonics, previously developed to cover all terms associated with J,2 and Jj, is being
extended to cover the secular and long-periodic effects associated with J3 and JoJj. If J,
and J; (I > 2) are regarded as first-order and second-order respectively, this means that
formal third-order errors will no longer build up to second order over a timescale of order
up to 1/J2 in angular measure. The extended theory has been partially checked out for an
Earth model involving just J> and J3 . .
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This is the text of a paper that was presented (on 20 August 1991, as Paper AAS
91-466) at the 1991 AAS/IAIAA Astrodynamics Specialist Corference, held in Durango,
Colorado. The paper is printed here, as pages 3-24, in the format required for. publication
of the Conference Proceedings in Adv. Astronaut. Sci. (Vol.76, pp 2249-2270, 1992).
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AAS 91-466

ORBIT PERTURBATIONS DUE TO AN
AXI-SYMMETRIC GRAVITATIONAL FIELD
ANALYZED OVER EXTENDED PERIODS OF TIME

R. H. Gooding*

The author's untruncated orbital theory for perturbations due to the
Earth’s zonal harmonics, previously developed to cover all terms
associated with J? and J1, Is being sxtended 1o cover the secular and
long-periodic effects associated with Jz and LJj. Kb and Jy (I>2)
are regarded as first-order and second-order respectively, this means that
formal third-order errors will no longer bulld up to second order over a
timescale of order up to 1/ in angular measure. The extended theory
has been partially checked out for an Earth mode! involving just J and
J3.

INTRODUCTION

The author’s earlier work! on eccentricity-untruncated perturbations due to the zonal
harmonics J2 and J3 was subsequently2 generalized to J; and presented at the 1989
Astrodynamics Conference, more detailed versions3# of Refs. 1 and 2 also being available.
Refs. 3 and 4 were conceived as Parts 1 and 2 of a trilogy, Part 3 being envisaged as the
full account of the work that is introduced in the present paper.

The main feature of the author’s approach has been the particular way in which &,
the short-period perturbation in the osculating element { (generic for the usual elements
a, e, i, £2, ® and M), is separated from the mean element {, where { = {+6{. The
C, which have long-periodic as well as secular variation, are defined in such a way that
the remnant 6 can be combined into compact and non-singular perturbations (6r,6b,6w)
in a particular system of spherical polar coordinates ( with 7 = 7 + 87 etc), together with
thecmpondmgpmmbauonsmvebcnty(&&wa);malysxsfamegmal J; leads?
to unique definitions for the quasi-constants implicitly presentin the {, the ‘constant’ for
a being felicitously such as to make the mean semi-major axis exactly constant and identi-
cal with the quantity a’ defined!-6 such that —/24" is the energy integral. Thus the
theory of Refs. 1 and 2 may be regarded as having two components: one providesan
algorithm for the variation of the {, thereby constituting an integration of formulse
derived for the { ; the other component provides formulae for 8r,6b,8w (together with
5r,8b,6w). Amtpw(peunwdumelmmwymcmfum)showed '
how the theory can be given logical completeness by three particular extensions: first -
(somewhat academically) the formulse can be generalized to cover the tesseral harmonic
Jim , 50 long as the Earth smﬁonuignaed;mxd.thefumnheforconcepunl Ji

mmmmmmwum.m
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(and by further extension, Ji, ) with negative ! can be obtained (with an application to
lunisolar perturbations); third, the Fortran-implemented algorithm can be extended to cover
hyperbolic orbits. ,

Unlike Ref. 2, the present paper is mainly concemed with the first component of the
theory — the  variation. In regard to the second component, it is noted that the 8, and
hence also &, &b and dw , are essentially Poisson series in the generic angle ko’ + jv,
where k and j are integers, @' = @- %.x and v is true anomaly; they are obtained by
integration of Lagrange’s planetary equations with V as integration variable, terms with
j=0 being introduced (as required) as the integration ‘constants’. Terms with j=0
before the integration define the { , though they actually arise as d{/dv, there being no
fundamental distinction between long-periodic variation (k # 0), occurring for all { other
than a, and secular variation (k = 0), occurring for £2, @ and M only (since the planetary
equations involve sin(kw’ +jv) for a, e and i, but cos(ko’ +jv) for 2, ® and M).
To propagate the {, special action is required to cope with the obvious singularities
associated with e =0 and sini =0, and the more esoteric ones associated with
sin2i = 0.8 (the critical inclinations); but! this action can effectively be taken at the
subroutine-coding level and does not involve the abandonment of classical elements.

The existing theory has been regarded as ‘formally complete to second order’, relative
to J2, on the basis that J;=J,2 for />2 and that all terms with coefficient J,2 are
included!3. The implication is that the errors are of third order, but this is only true, in
practice, for orbital arcs limited to the order of one radian. Over a timescale with
nt = O(1/J2), in fact, where n is the mean motion (and n243 = y), the modelled first- and
second-order variations in ¢ build up to zero- and first-order effects respectively, and the
unmodelled (formal) third-order variation leads to second-order error. For accurate model-
ling over quite modest periods of time, therefore, there is a need to incorporate the secular
and long-periodic perturbations that are formally of third ordes, i.c. terms that have J,* or
J2J; as a coefficient. The third-order perturbations for £2 and @ would involve terms
that are quadratic in ¢, induced by the second-order long-periodic variationin e and i,
and effectively leading to first-order effects over a timescale with nz = O(1//2), were it not
for the inclusion! of the appropriate ‘induced components® within the second-order theory.
It is instructive to understand why induced terms were required for 2 and @ but not for
M: they originate from the first-order (secular) formulae for £2 and @ (see
equation (7)), but the corresponding formula for the perturbation in M (for J2 only5)
happens to be null; to first order, in fact, M =’ (where n’2a’3 = y).

The derivation of the secular and long-period components of the third-order variation,
associated with coefficients J,* and J3J; (for I=3 in particular), is the subject of the
present paper, the technique employed being esseatially the same as was used3 for all the
perturbations associated with J,2. A complete set of formulae has not been obtained,
however, and success has been limited for reasons that will emerge.

As in Ref. 2, it is convenient to conclude the introduction with some remarks on
notation. The quasi-clements y, p and L are useful, as before, where y= &+ c£2 (for
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c=cos i ,and we also write s=sini), p= o+ qy (where o issuchthat M=o +/,
Ibemgsh( thand for fn dt, andqzsl e2) and L= M+ qy . For conciseness we
also write f for s2, g forl—-f and A for l—-f The use of p (= ag?) and
u(=v+o) 1snormal,butwealsodeﬁne y=pc2, P=pir(=1+ecosv) and

u —u—%-x As the paper is almost entirely concermed with mean elements, we again omit
the bars on the right-hand sides of equations whenever this is ible without causing
confusion. Finally, we follow Ref. 2 in the use of C} and S} for the cosine and sine of
Jjv+ ki’ , sometimes s ing the superfix, and we introduce 7; and O} as concise
versions of Ck and sg , that is, as cos k@’ and sin k@’ respectively. (NB: this
notation should not be confused with the other meaningsof 7 and o.)

FURTHER BACKGROUND

Following Ref. 2 we express the potential due to J; as U; = XU} with
Uf = —Ki(p) Ag P! cos k', m

where K;=J;(R/ip)!,R being the Earth’s equatorial radius, and Ay is an inclination
function (which in Ref. 2 subsumed K, but sepmuonxspmferable now); here /22 but
it will often be assumed that /2 ; further, Kz will (as in previous papers) be
expressed as K. The index & hasthcsamcpmtyas ! and 0<k <!, but two remarks
apply here. First, though Ay is only defined when ! and & have the same parity, a
parallel function, Ajx, was found useful when the short-periodic quantity & was
analyzed, where x has the opposite parity to ; Ref. 2 relates both the A and the Ajx
to a single family of inclination functions, the Af(i) where k now has either parity.
Second, though the restriction to non-negative £ may seem natural (and avoids the
duplication of terms in various formulae), it leads to an unnatural factor of 2 in the
definition of Az when k>0, and in the extension to tesseral harmonics3 a distinction
between positive and negative values is essential; in the present analysis we effectively
allow for negative k, with Ay =A[.k,butitis only for k=-1 that such quantities
figure in the final results. In addition to Ay, we need Al and Aji, the derivatives with
respect to i , though it is more convenient to replace Ay by A =cls Ay . We will
often suppress the first suffix in all these functions, writing Ag etc.

To facilitate the substitution of the appropriate partial derivative of U} in each
planetary equation, we introduce the eccentricity functions By;, defined by
Pl = (1 +ecosv)-! = ¥ Bjcosjv, )

where overwhelming advantage derives from allowing negative j, with Bjj=B;_;. The
seneseffecuvclyrunsﬁ'om —oo t0 +o0,with Bjj=0 when |jl2/. We also require the
derivatives, B;, ,and(asmﬂltbe Afmcums)wewxlloﬁenmppummeﬁrstsufﬁx a
useful formula for Bg not given in previous papers, is

By = ;(I—l)(Ba-l.m+Bl- 1.j1) - 3

In view of the frequent requirement for By.; ; in the analysis for J; we write this in
abbreviated formas B. ; . o
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The Bj; are defined with PF1 in equation (2), though itis P! that occurs in (1),
in anticipation of the change of variable in the planetary equations, the relation between the
variables being

av _ 3=2 2

F =H3°P +0UyJD, 4)
where > 2 since the absence of a term in J2 has already been remarked. After the
change of variable, the integration for a formal second-order solution proceeds entirely
straightforwardly, as far as the terms in J; in the solution are concerned (these terms being
first-order in the second-order quantity Jj), and fairly straightforwardly (though laborious-
ly) for the terms in J,2. The short-periodic terms constitute the 8¢, from which &r, &
and ow are derived, and are only of interest here in that they are needed to feed back for
the third-order solution. The remaining terms constitute the secular and long-periodic
perturbations, and in Ref. 2 their combination was expressed via formulae for the rates of
change ¢ . However, it must not be overlooked that the ‘averaged’ parts of the planetary
equations, after the change of variable, correspond to integrated quantitics that are linear in
¥ rather than M, so that there are additional perturbations terms, short-periodic in nature,
given by (C/")(V M). The resulting difficulty was handled in Refs. 1 and 3 by the
concept of ‘semi-mean’ elements, ¢ , that can be obtained from the { by incorporation
of these additional terms.

Three of the general {u formulae (associated with U*)arcxepeatedfromRefs 2
and4(wxd1barsonthenght—handsxdwommedfortheﬁrstum) These formulae, in
particular, are required in the sequel, and the first two formulac may be expressed via a
single equation. Thus

-zt ey = 721';?1& = kKinq2cArBi o} (5)
and ﬁuszne'lﬁAgBi‘n; ©)

for L 1., as given in Ref. 2, we replace &1 g3B; , in (6), by —(2/—1)q By.

The complete secular and long-periodic solution associated with J,2 (from Refs. 1
and 3) is also repeated, as the formulae involved are special cases of the formulae to be
associated with JoJj : they are ‘special’, rather than ‘particular’, as the general formulae
give double the correct results on setting /=2, since (as will become clearer) they cover
JiJ2 as well as JoJ;! As the general formulae will be expressed in terms of KK, rather
than KK, we express the J,? formulae, somewhat artificially, in terms of KK3 (where
K=§-Kz);dlewell-knownfn'st-aderfomnhemybewrimn

'ﬁz'o-—Knc and @20 = 2Kng. @
As the notation { 2 will be used o refer to the terms in 73 or o}, that emerge in the

solution for JoJ] , we express the secular part of the known solution for J,2 via the three
formulae
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2220 =-15KKanc[4(1-f)+eXa+5)], @®)
@220 = 35 KK2n[2(64 - 180f + 952) + €2(56 — 36f — 45(2)) ©)

nd a0 = -k KK
220 =-355KK2ng3@-8-52). (10)

It is possible to dispense with equation (10) by modifying Kepler’s third law for, mean
elements! 5, but the ‘additional perturbation’ (term in ¥— M) resulting from M220 will
still be required. The formulae from which the long-period perturbations may be derived
are

ZT 822 = ~12¥ 222 = KKane2@2cf(14-15)03, an
2222 = §KKane c(1- 150072, 12)

V222 = 35 KKan(2+5e2)f (141572 (13)

and L222 = 5 KKyne2 qf14- 15072 . (14)

The short-period perturbations will not be given again here, but two errors in Ref. 1 should
be noted: the factors T and ¥ were omitted from its equation (43), the formula for & ;
and the terms with overall factor 4f in its equation (44), the formula for éw , should all
be negated (the wrong sign was attached). '

To amplify the remarks in the Introduction concerning ‘induced terms’, it can now be

. stated that these terms arise from the variationof € and i (via K, and g)in

equations (7), the equations for this variation being (5) and (11).
JaJ; PERTURBATIONS

The analysis for each element, {, is separated into two distinct parts or ‘halves’,
which lead to the two components of the final formula for { 2. In the first half
we substitute the first-order solution associated with J2 , involving termsin K , in the
planetary equation associated with J;, whilst in the second half we substitute the existing
solution associated with J; in the equation associated with J2. (The analysis also covers
1 =2, though there is then only one set of terms, which is why this case is special rather
than particular.) The index % is associated with J; , not J2, sofor Jz itis best not to
think of any separation between ‘k=0" and ‘k =2’ ; but it is also best not to think of &
as irrevocably associated with U , in the second half-analysis, as & has to be redefined
during the development.

We start by considering general aspects of just the first half-analysis. In principle,
every element has a first-order representation, such as 2= £ + AQ, where AQ consists
of &02 and a secular term, both having K as a factor, and these representations can be
substituted in the planetary equation for { due to J;. Because of the axial symmetry,

™ Sp 386




¢ ——— .

8

however, £2 is actually the one element that does not occur in the formula for { and for
which substitution is therefore not required; thus only for @ is the secular component
relevant, and this is taken account of separately, as we shall see, so we can revert to the
notation typified by &Q2. The contributionto { 2y arising from &2 we conceptually
denote by Dg, but the form taken by the planetary equations makes it preferable to work
with contributions Dp, Dp, Dy, D;, D, and Dy, derived from the perturbations &p eic
that are combinations of the (first-order) perturbations in the elements (so that ‘D,’ is not
the same as the D, that would arise if we stayed entirely with the clements themselves).
When { is i or 2, wedonotneed D, and D, , and the other four D contributions are
based on the following formulae taken directly from Ref. 3:

& = -3Kplf(eC}+3Ch+3eC?)~2h], (15)
& = —75KP [f(3¢C} + 10CE + 11eC2)) - ah(e cos v + 3)] , (16)
&u = 1‘—21( [2e(1-£)S% + (6 - T)ST + 2e(3 - 5)S2, + 4e(5 - 6f) sin V] a7
d
& - —$Kcs(eC? +3C+3eC2) - 3). . (18)

The ‘constant’ in equation (15) is 2k, rather than 3f (which mxght be expected in view of
(18)), because the constants in da, & and & are such that 8y=-k7(1 3f) as opposed
to being identically zero (where y=pc2).

_ Inregard to the secular component of A, this makes no direct contribution to

C 2 , since its effect is taken into account at the first-order level by the evaluation of
short-period perturbations gfter the mean elements have been propagated, so that @ has its
value at time ¢. There is an indirect contribution that must not be overlooked, however,
arising from the expression for the ‘constant’ 8Cjc) . the complete set of these expressions
being given in Ref. 2. Allowance has to be made for the fact that 8jkc) is not really
constant, specifically (when & # 0) because of the variation of k @. To counteract the
effect of this variation (at third order) we incorporate a contributionto { 2 in which %
or O} (in 8luc)) is replaced by ka0 By or —k P20 T respectively, where a0 is
given by equation (7). Essentially the same principle would apply to the short—pcnod
perturbations in a complete third-order analysis, with the terms in C‘t or S (occurring
in the & due to J;) leading to terms in k@20 S} or — szod mpecuvely this
principle was used, with a detailed explanation, in the J,2 analysis of Ref. 3.

In the second half-analysis the roles of J2 and J; are in principle reversed, but
expressions for the general dp (more precisely dpp) etc are not so simple as equations
(15)-(18), owing in part to the particular form taken by each constant; each expression may
be derived from the equations of Ref. 2, however. The expression for Jp is
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o = -Ki Awp { 2k E(ﬂk)" BCj+ [+ 1B — (I~ 1)B. £IC.k } (19)
J

The expression for &P may then be derived from its identity with (P/p)(dp — Pdr) , where
or (= &rp) is given by equation (61) of Ref. 2. Similarly, &u is given by éw-c 802,
where ow is given by equation (78) of Ref. 2, together with the special terms given by
(85)-(88), and Q2 may be derived from equations (38) and (84).

.Finally (because there has been no time to take the general analysis beyond = £2),
& may similarly be derived from equations (49) and (83) of Ref. 2 the result being

& = -Kics1{kAy Z(i+k)‘lB,Cj—%AikBkC.k}. (20)
ok

As in the first half-analysis, we must also correct for the fact that the first-order ‘constants’
are not really constant, because of effects arising from the long-period variationin e, i and
@, as well as the secular variation in @. The relevant ‘constants’ may be taken from
equations (148), (149), (151), (153) and (164) of Ref. 3, bcmg - —Ke(9f Y2 - 20h) for
e, ;Kcs for i, zerofor 2, :Kfaz for @ ,and ——qucz for M . Thereis an

important further source of terms in € 21k , however, which only appears in the second
half-analysis and which we must deal with before considering the analysis for the
individual elements.

The terms referred to stem from the O(J)) component of equation (4), which
comphcates the change of integration variable from ¢ to ¥, a further complication bemg
that it is really v the semi-mean equivalent of V, that is the new variable. Now Vv is
derived from & and M by the usual Keplerian procedure, so that

dv - ov d?_'_a; dM
dt agdt aﬁa&'

(21)

where HNide = qg2sinv(2+ecosv), MoM = g3(1+ecosv)? . (22)

Also, Z’ =73 P> 2 , whilst # and M (residual to n’) are given (for the assumed
restriction to Uy, ) by equations (5) and (6), so (21) leads to

5’3‘"— =ng3P2{1-K; Age\ [k Bygsinv(1+P)op-By P2 pl} . (23)

It is the terms in K that specify the O(J)) component of equation (4). We invert (23) to
obtain di/d v and thence the modified formula for changing the integration variable. On
expanding the terms in K, we get the factor that must be applied to each second-half
planetary equation as a source of additional terms in { 2% . The factor may be expressed as
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3 .2y1 . )
~L (3PP K11 AL(eB}, + kBp(eCouz + 4C.441) + 2B} (2 + ¢DC
+ (eBy —kBp) (4C.p1 +eCr2)] . (29)

When { is 2 or @, there is a final source of terms, consideration of which will be
postponed until we come to the second half of the analysis for £2. '

We now proceed to the analysis for individual {, none being required for a. We
start with i, for which the analysis is the most straightforward and from which the result
for e can also be derived. At the time of writing, the only other analysis completed is for
Q.

Analysis for Inclination

The planetary equation for the first half of the analysis is
dildt = kK ng3cs! Ay Pi*15E, (25)

where the right-hand side is exact as it stands, the elements being osculating not mean.
Since n 3 = (Wp3)"2 , the right-hand side is a function of p, P, u and i only, with p
implicitin K as well as n g3 . Hence we obtain the contributions to 7 2% denoted by
Dp, Dp, Dy and D; and expressed in terms of dp etc from equations (15)-(18). In each
contribution (after differentiating (25) with respect to p, P, u or i as appropriate) we
effectively replace ¢-3PH+1S§ by Z Byj S% on making use of equations (2) and (4).
Thus Dp is given by the terms of —k I+ Kinp'l ¢ s1 Ax (2 B;S)) &p that are free of
short-periodic variation, that is, by

Dp = 35kl +3)KKic 51 Ag {f(eBia3 + 3Brs2 + 3€Ba1)01s2
— 4hByOy +f(3eBt.1 + 3Bi-2 + eBr.3)0r-2} . (26)
on completion of the algebra.

Formulae for Dp , Dy, and D; may be obtained in the same way from, respectively,
the terms of k(I +1)K;nc s P-1 Ay (ZB;Sj) &P, k2K nc s"'A; (ZB; Cj) du and
kKin (A~ f-1 Ax)(T B; S;)& , but they are not listed here. (The coefficient of & takes
this form because the derivative of ¢ s-1 A, is ¢ s Ay —f-1 Ap.) Finally, the effect of
&iik(c) is available at once from equation (20), on interpreting C4 as 7k and replacing it
by 2kK n g oy in accord with the rationale that has been noted.

We now have to combine five results, of which one is Dp as given by equation (26).
We seek a final formula with 0 common to all terms, and there is no inherent difficulty in
this since the four contributing formulae effectively apply for all k. Thus we can redefine
k (as forecast) such that the quantity kA Bp.30%4+2 in (26), for example, is replaced by
(k- 2) Ar.2B1+10% . At this point we can conveniently introduce some notation that will
simplify the presentation of results generally, not just for the element .
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Since terms (in each half-analysis, and for all elements) arise that involve Ag42Bk+1.
Ap+2Bk, Ak+2Bk-1, AkBis1, AtBi, AiBi-1, Ak-2Bi+1, Ap-2Br and Ag-2Bi.3, we denote
(arbitrary) coefficients of these nine quantities by A4y, 240, A+, Ao+ A00s Ao-r At Aoy
and A, respectively. We also require, for some elements, similar coefficients for
Apy2Biyy etc and for Ag,oBie etc, and we denote these by My etcand vy, etc,
respectively. Finally, we may need the coefficient of Az B.x, and we denote this by A(.).
We now introduce the generic quantity Q , defined by

Q = l...p Ak+28k+l +..+ jiree Ak,.,,szq.] + ot Ve, A;+2Bk+1 + ..+ A.(-) AkB-.k » (27)

to permit formulae to be expressed mainly in terms of the particular Q that is appropriate.

In terms of the foregoing notation we shall eventually be able to write (with both
halves of the analysis covered) the formula we seek as

~i-21k = Tzk an;ncsQjox. (28)
For the first half only, on combining equation (26) with four other results, we require

(Av+Avohe) = — k1 (k+2) {e[6(k + 1) - f(I + 10k + 27)],
[6(k+1)-f(Q2+ Tk +22)], e[2(k+1)-f(+2k+T]},

(Ao+hooho-) = 2{e[2(1+ Sk+1)-3f(I + 4k + 1)], 2{21-3-3[f],
e[2(1- 5k + 1) - 3f(1— 4k + )]},
Ardod.) = k1 (k-2) (el2tk- 1) +f(U-2k+T)],

[6(k=1) + f(21 - Tk + 22)), e[6(k—1) +f(I- 10k + 27)]} ,
Ut sliols-) = =21 (k+2)(1-£) (3e, 3,€),
(Ho+Hoo.Ho) = [0,6(6 — T1),0}, (s sptolt--) = — 2k 1(k - 2)(1 - f)(e, 3, 3e)
and all v=40)=0.

The factor k!, appearing in most of these expressions, is eliminated when we combine
with the second-half results.

The planetary equation for the second half of the analysis is
di/dt = Knq3csP3sin2u’, (29)

wh1ch leads to the contributions Dp, Dp, D, and D; given by the short-period-free terms
of ~3KnplcsPS§ép,3KncsS§oP, 2Kncs PC}&u and
Kn (1 2f)PS}&i ; & and &, here, arc glvcn by equations (19) and (20). The
product P S (and similarly P CS ) expands to -(eS2 + 25§ + eS?,) , the expansion
being appropriate to the &P contribution;, as well as the other three, since the factor P can
be extracted from &P . But &p, &P, & and & involve termsin Cf and S% , the coef-
ficients of which can be developed as combinations of Ay Byj, Ay BHJ and A Byj (for
parucularvaluesofj related to k), after which a term suchas Ay By; S § C’f can be
re-expressed as 3 AiBj (Skf - S¥{); extraction of the short-period-free pomon and
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redefinition of k thenleadto 3 (A2 Bgs1 — Aks2 Bi-1) Cx (since B = B.j) for this
term.

The full second-half analysis for Dp, Dp, D, and D; generates considerable algebra,
which will be omitted, leading to a result that (as for the first half) can be expressed via the
A’s and p's. There would also be terms in Agy2 B- k+1 and Ap-2 B. -1, were it not
that these are cancelled by terms we are about to derive. Following the general remarks on
JaJ] perturbations, we have two additional sources of terms to mcorporatc with the second-
half contributions to i 27, . First, the first-order ‘constant’, viz 2Kcs for i is
responsible for contributions arising from the long-periodic variation of e and i, as given
by equation (5) — the variation of @ mmlcvantas o does not appear in this particular
constant. These contributions combine to —-k KKincs1(1-6f)AgBg ok .

The other additional source is the one associated with expression (24) that only arises
in the second half-analysis. On multiplying this expression by the right-hand side of
equation (29), and then picking out the short-period-free terms, we get

2KK; n c s A [(kBy + eB}) Or2 + (kB — eB}) Opa2] .

On redefinition of k and simplification via equation (3), this leads to 3(/— 1) KKjnecs
(Ak+2 B k+1 — Ag-2 B. £.1)0r , which involves the cancelling terms that have been alluded
to.

The second-half values of the A’s and y’s are now available. On combining them
with the first-half values, we have the final solution for i 2y , expressed via equations
(28) and (27). The final formulae for the A’s and p’s are as follows:

(A++:A4044.) = — {el6(k +2)—f(I + 10k +21)], [6(k +2)- f(2] + Tk + 16)],
el2(k+2)~f(I+2k +5)]}, (30a)

2{ef[2(I + Sk + 1) - 3f( + 4k + 1)}, 2[2(1-3)-3f(I-6)},
e[2(- 5k +1)-3f(1- 4k + 1)]} , (30b)

(Ao+A00,40-)

AtAod) = [el2(k-2)+f(I-2k +5)], [6(k—2)+ f(2 - Tk + 16)],
e[6(k—2) +f(1- 10k + 21)]} , (30c)

U‘ﬂ'ﬂ*ﬂ)’”%) = - 2(1 -f) (3¢,3‘,C) » Moo= 6(6— 7f) s
(ﬂ—"’u-Ov‘L -) = - 2(1 -f)(e’3’3¢) .

Results for particular J; may be derived by substituting in equations (30). For /=2
we have a special situation, as already noted, such that the correct result, given by
equation (11), is produced by either half-analysis on its own and equations (30) give
double this result. But this remark posits an important point that arises for all even 1: the
value of A70, to be used as Ag.2 when k =2, must be doubled, to include the ‘unnatural

(30d)
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factor of 2° (see the Introduction) that normally applies only to Ay with k# 0 ; this
aliows for the restriction of results to k20 and the consequent absence of A in the role
of Ap42 for k=-2. (This doubling does not apply to the use of A; ¢ as A; for

k =0, but this is irrelevant for {=i, since o =0; the factor of 2 presentin A; 2 makes
it unnecessary to include A;, 2.)

Finally, we substitute for =3 in equations (30), with k=3 and 1, so that (27) and
(28) provide results for J3 ,but first we note a point for odd ! in general. It is that for
k=1 werequire A; 3, A, and Aj .); although A; _; = A} 1, we cannot just combine
the two, because the corresponding A ’s will be quite different. As the pair of formulae
for J3 are new, we express them with o3 and 0 replaced by cos 3w and —os @,
respectively. Then

1233 = -2 KK3nedcf (20-21f) cos 3@
. 31)
7231 = 35 KK3nec [28- 15 + 52+ 5¢2f (6—7f)] cos @

These formulae were originally derived by a specific analysis for JoJ/5, and have been
checked out by inclusion in the author’s Fortran test program.

Analysis for Eccentricity

The analysis for €273 would be considerably more complicated than for i 25 if we
proceeded ab initio in the same way, but there is a much shorter route that makes use of the
exact constancy of the osculating quantity y(= pc2) , which is a measure of the angular
momentum about the axis of symmetry. Now

dydt = c(q?a-2aece-2aq?si), (32)
S0 we can get € from '
e = -el@cls [T +@pesyliy]. (33)

It remains, therefore, to do the two half-analyses for the mean quantity ¥, the variation of
which stems entirely from the gencral non-zero ‘constant’ 8m(c) to be derived for the
first half, and the specific value -K y(1 - 3f), given after equation (18) and required for
the second half.

From the expressions for 8aik(c), deik(c) and &ikc) in Ref. 2, we can derive
Miie) = — K1y {Ae [+ DBr~ (- 1)B_ g + A Br} e (34)

from which the ﬁrst-half contribution to T2k is obtained on replacing 7 by 2kKng Oy .
From the value 2K y(1 - 3f), similarly, using equation (5), we derive the second-half
contribution suc?l.that in combination with the effect of (34) we get
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Far = —gkKKiny{[431-T) = 3f (51— 19)] A By
+12g [Ag Bi— (I~ 1) AgB. 4} ox . 35)
Now equation (35) can be interpreted via values of Ago, oo and A(.). If it were not
for these, the required values of the A °s and u°’s could all be taken as identical with the
values resulting from the i analysis since, in view of equations (28) and (33), we naturally

write .
e = -3;kKKin €120, 0} (36)

Thus the only values, to be substituted in (27), that are different from those given by
equation (30) are

Aco

Hoo 12(1-1) and Ay = 24(-1)g.

For =2 we get the result (doubled) given by equation (11), whilst for /=3 we
obtain the new formulae

-2[8(-2)-31 3I-T)],
37

2 KK3n e2g2 s f (20 - 21f) cos 30

€233

, : $ . (38)
€31 = 33 KKang?s (28 -41f +40r2) - 5e2f (6-7f)] cos @

As with the results for i, given by (31), these formulae were originally derived by a
specific analysis and the Fortran test program has shown them to be correct.

Analysis for Nodal Right Ascension

For 2 we proceed as for i, with a complication in the second half of the analysis.
The planetary equation for the first half is

dS¥ds = ~Kinq3s1 Ay P CE. (39)
Formulae for Dp, Dp, Dy and D; can then be obtained from the short-period-free terms of
(+DKinpl s Ay EBC) &, —-(+1)Kinst P1A, EBC)) &,
kKins1A; (EBS)u and ~Kins1(A, -cs1A;) EBC))8i . Finally, the
effect of 88k(c), given by equation (84) of Ref. 2,is k2 KKjncs2g ApBr .
We express the final formula for ﬁm as
Do = 7KKincf10a7, (40)

with O, to be taken from the appropriate version of equation (27); the appearance of
cf-1, rather than 5!, reflects the usage of Ay rather than A;. On combining all the
first-half contributions, and after the algebra involved in the redefinition of k etc, we find
we require
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(Hssbbvorbs-) = (e[6(k + 1) —f(1 + 10k + 21)}, [6(k + 1) — £ (21 + Tk + 16)],

e[2(k + 1) - f(I + 2k + 5)1}, (Mo Hooko-) = —2(e[2(I + Sk + 1) - 3f(l + 4k + 1)),
2[Q21-3)- 31— 1)), e[2(] -5k + 1)~ 3f (I - 4k + 1)]}, (UopMoolt-) =

— {e[2(k— 1) + (I - 2k + 5)], [6(k — 1) + f (21 — Tk + 16)], e[6(k — 1) + f(I - 10k + 21)]} ,

(V++1V+O:V+-) = 2f(3€,3,€), (Vo-hVoo.Vo-) = (0,—1”,0), (V.+,V.°,V..) = 2f(€,3,3¢).
Aoo = ~24k2g and all other 1=0.

The planetary equation for the second half of the analysis is
0Qdt = -Knq3cP3(cos2u’'+1), 41)

and this leads to Dp, Dp, Dy and D; given by the short-period-free terms of
zKnplcP(Ch+op, -3Knc (C§+1)8P, 2KncP 5§ and

Knc P (C§+1)&, to be combined via the redefinition of £ as usual (laborious detail
omitted). Since the first-order constant is zero for €2, there is no additional contribution
associated with equation (5). We do have the source associated with equation (24),

however; on applying this to (41) and picking out the short-period-free terms, we get
$KKin e'lc A [3e(eB}, + kBTr2 + 42 + 3By + 3e(eB} — kBDYi+2] -

The preceding expression introduces an apparent singularity, since the coefficient of
& involves a non-cancelling factor e-1 outside the square brackets. There is a final

contribution to the second-half ﬁm , however, which did not arise for i or e.

This final contribution derives from the first-order secular variation given by 250 in
equation (7), with a similar effect arising in the second half-analysis when {= @ and
deriving from ®2,0. This quantity is a function of # (via k), 7 (via #)and 7. The
long-periodic variationsof & and i were already accounted for (as has been noted) in
the second-order theory, via the so-called ‘induced components’, errors that are
O(KK n2 12) being thereby avoided. Now the false assumption that % =7’ only involves
O(KK| n t ) effects; these were not previously relevant but are of precisely the order
covered in the present paper.

The point is that {220 originates in the term — K¢ in d€¥/dv , and this integrates to
- K& v, which is handled as the secular term — K& n't, with —~ K& (- M) asa
separate short-periodic effect. But — K& v hasan O(K}) component deriving from
equations () and (6) via (21) and (22). Equations (5) and (21) lead to no long-term effect,
but (6) and (22) lead 10 our required ‘final contribution’ of —3-KK;ne'l ¢ (2 +€2)
Ak B} % on taking the mean value of ¢3P2 t be 3¢-3(2 +€2). In combination with the
preceding contribution, this effectively changes the coefficient of B}, 7, (within the square
brackets) from 4(2 + 3e2) to 8¢2, thus eliminating the apparent singularity.

It remains to combine all the contributions in the second half-analysis, to redefine &,

and to combine with the results of the first half-analysis. In terms of equations (40) and
(27) we finally derive:
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AserA40ds-) = 2f (eI - 8k-21), - (2 + 3k + 16), —e(31 +5)} , (42a)
(AorrAoorho-) = —6lef(I—5k-2), [4k2-f(5k2+4i-8)l,ef(I+5k-2)}, (42b)
Aphor.) = —2f{e(3l+5), (21 -3k+16), —e(l + 8k-21)}, (42c)

(R Haoolts-) = {e[6(k +3) —f(I + 10k + 33)], [6(k +3) -f(2] + Tk + 28)],
ef2(k+3)-f+ 2k +9)]}, (42d)

(HowHoollo) = — 2{e[2(1+ 5k + 1) = 3f(I + 4k + 1)], 221 - 3-3fD),
e(2(- 5k + 1)~ 3f (- 4k + 1)]}, (42¢)

Mtpospt) = —(el2(k=3)+f(1 -2k +9)), [6(k~3)+f(2l Tk +28)],

e[6(k—3) +f(1- 10k + 33)]} , (42f)
(Vasts Viaor Vi-sVor: Voo Vo-r Vs Voos Vo) = 2f(3€,3,€,0,-6,0,¢,3,3€) (42g)
and Ay = 12(-1)f(4 +3e2). (42h)

For I =2, equations (42), substituted in (27) and (40), give the results (doubled)
known from equations (8) and (12), with k=0 and k=2 respectively; for k=2, as
already noted, we require the values of A2, A3 and Az g to be doubled, whilst for
k=0 we use these values undoubled and do not require Az.2 etc. For /=3, with k=3
and k=1, we get the new results given by

-62,3,3 = —%% KK3nedcs (4+7f)sin 3@ (
\ 43)

$231 = 2 KK3necs1[28 +99f - 1852) + 5e2f (18 - 35f)] sin ©

Equation (43) conforms with the results of the specific analysis originally carried out,
but is unfortunately not validated by the test program. There are effectively seven
numerical coefficients in the equations and computer runs for different values of e and i
indicate that five of them are correct. The dubious integers are 99 and —185, with some
evidence that the correct values might be 51 and —125, which would imply an error, in the

square brackets of §223,1 , proportional to fg . At the time of writing, it is not known
whether the error is a real one or an artefact of the algorithm used in the test program. (The
two leading coefficients in equations (43), contributing 4 sin 3@ and 16 sin @ apart from
the overall factors at the beginning of the expressions, could actually have been written
down without any analysis, since they are mandated by the corresponding coefficients in
equations (31), to avoid singularity.)

Analysis for Perigee Argument and Mean Anomaly
The general analysis for the last two elements has not been completed at the time of

writing. Specific results for J,/; have been derived, but (as for £2) they are not validated
by the test program and the formulae will not be quoted. (The formulae for ¥23,3 and
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¥23,1, from which &233 and @23, follow, involve four and nine numerical
cocfficients, respectively; two-of the four, and three of the nine, are certainly correct from
their mandatory association with the coefficients appearing in equation (38).) In the present
paper we just remark on some aspects of the general analysis.

The analysis for the quasi-clement y is distinctly simpler than for @ itself, since
the planetary equation is simpler for ¥ than for ®@(= ¥~ c£2) and the analysis for
has already been done. We must allow for the variation of ¢ (= cos i), but this merely
involves the incorporation of contributions given by s£2 & , where £2 as given by (39)
and & by (18) are appropriate for the first half-analysis, and similarly for the second. The
analysis is necessarily more laborious than for i and €2, however, as shown by the
~lanetary equation for the first half-analysis, which (cf equations (25) and (39)) is

dyids = —2Kin g3 A PH1{(1* + k) C§ + 20+ + 201 ¢F + 21+ C
2+ -2Be 1 C + 1+ - ) (49
where I+ =]+ 1 (cf equation (39) of Ref. 2).

Equation (44) leads to the usual quantities denoted by Dp, Dp, Dy and D;, but we
now also need D, and D, ; the former is associated with the two appearances of ¢! in
(44), and the latter with the implicit appearance of v in C¥ , which becomes explicit (if
j#0) when we write C} in full. The expressions for & and & (scc cquations (148)
and (182) of Ref. 3) are more complicated than the four quantities given by equations
(15)-(18), so we cannot expect that, after redefinition of k in the analysis, all the coef-
ficients of ¢ in W2 can be related to just Bg+1, Bx and By-1 ; the number of B’s
required in each half-analysis in fact rises from three to eleven, but on combination of the
two halves it reduces to three again. This avoids the occurrence of non-zero o with
k>1.

Analysis for the sixth element in practice inimlvmthequasi-clemmt L rather than
M , and this in tum involves the planetary equation for the quasi-clement p rather than
o, where 6= p- qy. The analysis for p proceeds in the same way as for y,
allowance being made for the variation of ¢ in ¥, and then a final analysis is required
for the integral of n , the quantity defined suchthat L = p + f. The results for pap
and foy , individually, do not reduce to zero for k =1+ 2, even when the pairs of half-
analysis are combined, but on combining these combinations we do get results for L 2y
in our standard form.

Now | =n't + [5n dt and we may conveniently write dn=n'K i + K +
KK 7 21) to the accuracy that concerns us (with additional terms in X2 and K3 when we
come to J,* perturbations). Expressing &a similarly, we require that n2g3 =y =n"2a'3,
from which we obtain

f=-32, f =-38, Ru=-3Gu-38). @5)
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The second term in the expression for fi; may be regarded as an easily-evaluated correc-
tion term, so we consider only the main term. Thus we require to evaluate, as the principal
partof Joy , the third-order component of — (31/2) & . Changing the integration vari-
able as usual, we have

dijdv = -(3/20) g3 P2 &a, (46)
so we need to express the required components of & with P2 as a factor.
We start from the exact equation
8 = -2a'K1q2Ag PH C§, 47)

all quantities (other than a’) on the right-hand side being osculating, not mean. When
these quantities are expressed for the first-order solution, we can derive the usual first-half
part of Tou , via the components Dp, Dp, Dy, D; and D, ; the need for D, stems from
the factor g2 in (47). There is no difficulty in either half of the analysis, but the details are
omitted as the complementary analysis for p 2 has not been completed.

J;* PERTURBATIONS

The analysis for J, perturbations follows the same principles as for J,J; perturba-
tions, the second-order solution for { being fed back into the planetary equation. The
analysis is more tedious, however, and there is no opportunity for cross-check between
general and particular results. At the time of writing, formulae have been obtained for
{ =i, e and Q, but none has been successfully validated by the test program.

Some revision of notation is called for, such that the suffix 3, in particular, implies a
power of J, (or in practice K) rather than a value of . In general, we retumn to the
notation of Ref. 3, writing the known short-periodic component of the second-order
solution as (8 =) K{1 + K2{3,where {; and {2 are Poisson serics in cos jv, C;
and I (or the corresponding sines), where (with bars suppressed) C; = cos(jv + 2w) and
I = cos(jv + 40); in the earlier notation of this paper, C; and I} would be writen ~C7.
and C}4 . (AsinRef. 3, the notations {; and {2 are extended to any quantity that is a
function of the orbital elements.; We seek formulae for the third-order mean rates of
change, which will be expressed as £ 30 for the secular componentand { 32 for the
long-periodic component; the latter notation is used because the long-period rate of change
is proportional to cos 2® or sin 2®, terms in 4® being absent.

As with the JoJjanalysis, it is helpful to express the planetary equations in terms of
the quantities p, P, u, i,v and e, rather than the original elements; since the analysis has
not been carried 0 =@ and {=M , weonly need p, P, u and i here. The notation D,

etc is no longer helpful, however, as we effectively require 14 basic contributions to ¢ %
and { 33: four associated with pa, P2, uz and iz ; four with p,2, P2, u.2 and i?;
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and six with the cross-products piP; etc. There are also contributions associated with the
‘constants’ in {} and {2, and with the O(/,2) part of equation (4).

Because p and P occur in the same way in four planetary equations ({=a and
{=M arc the exceptions), namely, via K n ¢-3 P2, it is convenient to set up a grouping
of the five basic contributions associated with ps, P2, p,2, P;2 and p1P . Itis also
convenient to introduce, for p and P only, a ‘normalized notation’ such that By = p1/p
etc; this is non-trivial for Py ansz.sinoePisitselfaPoissonseriu,giveg\by a
equation (2) with /=2, by which P; and P> must be exactly divisible for P) and P;
to have useful meanings. The formmla for P) is given at once by equation (187) of Ref. 3,
which also includes all the other {; and {2 that we need, an exception being P2, which
is given by evaluation of

P2=ezcosv—evzsinv-%vl(klsinv+evlcosv). 48)
(It needs 38 separate cosine terms to express each term of (48), but most of these cancel out

on combination; the remaining 18 then reduce to 13 when P =1 + ¢ cos v is divided out -
cf(Slb)below-andtlﬁscanceﬂaﬁonismsponsiblcfortheabsenceof 40 terms in

¢ 32.) We use the expansions (correct to second order)

@™ = 1-2RH-1K? Br- 2D 49)
and 3
(PIP) = 1+3K P1+3R2(P,+BY), (50)
from which it follows that the grouping of terms we require is given by
A2 A
3B+ P ) -2@a- 2% + 31 Py); (51a)

this leads to an expression of the form

5307 (FA173€2 s + ... + 3272 ) - 4f (terms in C, ..., Co)
+ 16 (terms in cos 2v,cosv and 1)} . (51b)

There are nine remaining ‘basic contributions’ to be covered, for each { separately:
two lead to a particular combination of w2 and ;2 ; two lead, similarly, to a combination
of i and i}2; one comes from ; i1 ; and the last four lead to the product of an appro-
priate combination of u; and i; with the fixed combination of p; and P; given by

I —3P1 = & (£(Se C3 + 12C2 + 9¢ C1) - 4h(3e cos v + 2)) . (52)

In regard to the contributions to { 30 and { 32 due to the non-constancy of the
‘constants’ in {) and {2, we start with the {; constants, which were listed after
equation (20). Each constant has a variation due 10 the variation in & (which affects the
suppressed K in K{) and T, as specified by equation (11), and cancellation of this
variation is one source of the required contribution. Since the constantsin @ and M,
(though not in i; or £2y) invoive & , we also have o cover the effects of & variation,
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with a complication associated with the first-order component of this variation, but these
effects are not required in the incomplete analysis of the present paper. In dealing with the
‘constant’ part of {2, on the other hand, it is only the variation of @ that is relevant — it
is dealt with in exactly the same way asin 8{jc) in the second half of the analysis of the
JoJ1 perturbations.

To get the contribution to Z‘ 30 and Z 32 due to the O(J,?) part of equation (4), we
apply equations (21) and (22) again. This time we use expressions for € and M given
by equations (10), (11), (13) and (14). From M220 we get the factor, analogous to (24),
given by

35 K2 (8- 8f - 5f2) [e2cos 2v + decos v+ (2 + €2)], (53)

whilst from €222 and A_.lz.z.z we get
- 25 K2f (14 - 15)[€2C2 + 4¢C1 + (2 + €)Co) . (54)

When { is 2 or w, there is a final source of terms in ?30 and?;;z,associated
(just as in the second half of the J,J] analysis) with the interpretation of n in equations (7).

Analysis for Inclination
Lagrange’s planetary equation has been given by (29), which can also be written as

. 2 = K ~.3 _
dilds = - R(Rg>P>) @ipy " (PIP) PcsS,. (55)
Then the change of variable, specified by equation (4), leads to

_ .3 _
dildv = — R(pipy "?(PIP) PcsSy. (56)

. _.3 . .
We have developed (p/p) " and (P/P)’ via equations (49)-(51), so for the basic
contributions to i 32 (there is no i 3) it remains to develop

cs =¥+ KA -2Diy+ B2 [0 -2Dip-2e7i2] (57)

d o I
an Sy = Sy 428 Coup +23K2 (Cruz- 521412) . (58)

We now work with equation (56) to derive all the contributions to i 32 , expressing
each contribution with the overall factor (}/2304) K3n €2 ¢ s sin 20 suppressed.

From the grouped terms represented by equations (51), with the factor -K3P ¢ 5 52
applied and the short-period-free component then picked out, we obtain —3(448 — 1536f +
1279f2). From the product of (52) with K3P [(1 - 2f) S2 i) + 2c s C2u1] we obtain
4(728 - 2169f + 1677f2). From the product of —X3P with the combination of
2cs (Cauz-S24y2), Sa[(1-2Mia~2¢siy?] and 2(1 ~2f) C2 wy iy) , we obtain
(5408 — 11724f + 5601f2) . And the combination of these three results, represeating the
sum of all the basic contributions, is 8(872 - 1974f + 105972).
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The ‘constant’ in iy , viz 3¢ 5, leads (via €222 and 12,2,2)to ~48(14 - 991 +
90f2), and the Co component o %meconstamm iy, viz3 - 71 =e2cs (9 +)Co, leads
(via wzo) to —32(36 - 41f- 5f2). And the combination og these two results is

-16(114 - 379f + 260f2).

Finally, the product of —X P ¢ s S2 with the factor given by (53) leads to
—36(8 — 8f — 5f2), there being no contribution from (54).
On combining all contributions we get
T32 = shcK3 ne?cs (1216 - 2360f + 1123f2) sin 20 (59)

Analysis for Eccentricity

As in the analysis for JoJ; perturbations, we derive €32 from 7"32 via the exact
constancy of y(= pc2). To apply the equation analogous to (33) we require the formula
for %, ; as noted in Ref. 3, 7 has no first- or second-order variation.

The variation of ¥ stems cnnrcly from the non-constancy of the ‘constants’ in ¥
and y>. The constantin 7 is -7 (1 -3f), which leads (via 2222 and i222) to the

contribution
K3 ne2yf(14 - 15FX5 - 9f) sin 20

to %,. The Co component of the constantin 7y is — e27f (63 — 82f)Cq , which
leads (via wz,o) to the contribution

- -3-;1(3n e2yf (63 ~ 82f)(4 - 5f) sin 2w .

So
%2 = -3 K3 ne2yf (112 - 241f + 140f2) sin 20 . (60)

From equations (33), (59) and (60) it now follows that
332 = '515 =-K3neq¥ (320- 432 + 3f2)sin 20 . 61)

Analysis for Nodal Right Ascension

We are now looking for secular variation, represented by £239, as well as the long-
period variation represented by £232. The analysis is very similar to that for i , except for
a final contribution that stems from {220 and the non-identity of n’ and , just as with
JaJ| perturbations.

The planetary equation has been given by (41) and can also be written as

e = REFPD) oy (PIP) Pc(Ca-1), (62)
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whence

didy = K(p/ p)'m (k/F )3 Pc(Ca-1). 63)

For the factors involving p/p and P/P we can use the grouped terms represented by
equations (51), whilst for ¢ (C2—1) we require, in analogy with (57) and (58),

c =E—I?S'i1—i{'2(riz+-;-l'u12) 64)
and
Ci-1= (-,'2-1—21?§2u1-2i(-2(§2u2+ Cau?) . (65)

We now express the contributions to ﬁ3o with the overall factor (1/576) K3nc
suppressed, and to {237 with the factor (}/2304) K3 n €2c cos 2@ suppressed.
From the grouped terms, with the factor X3 P ¢(C3 — 1) applied, we obtain
—{16(40 — 144f + 113f2) + £2(576 — 2038f + 1831f2)] and 3(448 — 2816/ + 2785(2) .
From the product of (52) with K3 P [s(C2 — 1)i1 + 2c S2 u1] we obtain
8[4(6 — 137 + 6/2) + €2(58 — 1597 + 86f2)] and —8(400 — 1107f + 711f2) .

From the product of K3 P with the combinations of —2¢ (S2 u2 + C2 4;2),
—(C2 - 1)(siz +-0112) and 2582 uy i1 , we obtain

—[16(24 — 41f + 512) + €2(176 — 2942f + 29552)] and —(6752 - 13416f + 5907f2) .
Hence the sum of all basic contribution yields (with the same overall factors assumed)
—2[8(52 — 159f + 106f2) + 3e2(48 — 618f + 683f2)] and —8(1076 — 1728f + 405f2) .

Thc constant’ in {2 is zero, so thcrc is no contribution to .Q3o or .(732 via ez,z,z
or i222. Buttheconstantin & is —5rc 2 (18 -19f) So, and this leads (via 2,0)
to a contribution to 235 of 16(72 - l66f + 95ﬂ) (multiplied by the usual factor).

We treat, finally, the contributions to .ﬁao and ﬁ32 arising from the product of
K P ¢(C2 - 1) with the factors given by (53) and (54), together with the contributions
associated with the fact that the factor n in equation (7) ought to be interpreted as
n+ Mz,z,o + Mz,z,z but is in practice set to just n’. The two pairs of contributions can
conveniently be combined since (it can be shown that) the effect of the second pair is to
delete the factor 2 + €2 in (53) and (54). As a result we obtain

~18¢2f(14 - 15f) and 72(8-8f + 572).
On combining all contributions, we derive
39 = -7 K3nc[4(52- 159 +106/2) + 3e2(24 288f +319f2)]  (66)
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and
Q237 = —ir K3ne2c (430 - 662f + 85f2) cos 20. 67

There is a conflict, associated with singularity, between the leading coefficients in equations
(59) and (67); this has not yet been resolved.

Analysis for Perigee Argument and Mean Anomaly

__ The analysis for the lat two elements has not been embarked upon at the time of
writing.

DISCUSSION

An orbital theory is of no practical value until it has been implemented in an accurate
and efficient computer program for ephemeris generation. The author’s untruncated
second-order theory!-4 for an orbit in an axi-symmetric gravitational field, or any non-
rotating ficld, had been fully validated by such a computer program, the main features of
which are as follows. First, a mean-orbit-based coordinate system was utilized as being
ideal for the efficient representation of the short-period perturbations free of singularity.
Secondly, singuiarity problems in the propagation of the mean elements ( {) were avoided
by two expedients: two of the { formulae are for {=y and L, rather than @ and M,
with 302 and ey stored (rather than §2 and ¥); and the non-singular mean elements
Tsin £, =S cos 2 and T are introduced locally in the nropagationof i and £2,to0
complete the avoidance of any problem when ¥ = 0 (with a similar procedure that pays off
when & =~ 0). Thirdly, the concept of a semi-mean element was employed as a device
associated with the transformation of the integration variable from 7 to ¥ whilst the
propagation of the C is still required in terms of . Fourthly, the terms in 0 and @
that are induced by the second-order terms in € and i , and are formally only of third
order but responsible for quadratic variation with #, were included in the program.

Fifthly, and to supplement the fourth feature, an option was introduced to ‘rectify” the
propagation of the ¢ from 1, (cpoch) to ¢ by the use of intermediate epochs as way-
stations; use of the option degrades the status of the theory from fully analytic to semi-
analytical, but the efficacy of the ‘induced’ terms is such that the interval ¢ % hasto be
equivalent to several hundred orbital revolutions before there is any gain from switching to
the semi-analytical mode. Finally, the inverse of the algorithm that converts the { into
position and velocity was made highly efficient, and of essentially unlimited accuracy, by
the use of a general iterative inversion procedure? (it typically gives 8-decimal accuracy
after a single iteration!); this procedure is at the heart of the program’s operation, since it
permits the conversion of successive state vectors (components of position and velocity), as
generated by an independent pure-numerical integration, into successive sets of mean
clements which can be compared with sets propagated by the theory-based algorithm.

The last feature above may be amplified by two remarks. First, the inversion

procedure is independent of the algorithm it inverts (apart from the fact that it calls the
algorithm directly during each iteration), so that modifications to the algorithm (such as the
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adding of higher-order terms) do not affect the inversion procedure itself. Secondly, the
existence of the procedure provides an intrinsic and definitive answer to the question:
“Yes, but what actually are your mean elements?”.

In view of the successful validation of the second-order theory, originally for just J,2
and J; but later2 with the perturbations due to J, incorporated, no fundamental difficulty
was anticipated in extending the theory to cover the secular and long-periodic effects of
third order. (That the algebra would be long and tedious was anticipated, and the use of a
computer-algebra package was considered but appeared to be impracticable.) After
validated formulae had been found for i and € associated with the product J5J3,
therefore, it was assumed that completion of the results for JoJ3 , the analysis for J,3 , and
the generalization from JaJ3 to JoJ; would all be straightforward. The intention was that
the updated computer program would then be used for a full examination of the long-term
accuracy of the extended theory. Since discrepancies, as yet unexplained, have been met in
the analysis for both JJ3 and J,> , however, the work is incomplete and the present paper
must be regarded as no more than an interim report.
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