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INTRODUCTION
This report documents a broad program of basic and applied information processing

research conducted by Carnegie Mellon's Scl ool of Computer Science. The Infor-
mation Processing Technology Office of the Defense Advanced Research Projects
Agency (DARPA) supported this work during the period 15 July 1987 through 14 July
1990, and extended the contract to 31 December 1990.

Chapters 1 through 7 present in detail our seven major research areas: Artificial Intel-
ligence, Image Understanding, Reliable Distributed Systems, Programming Environ-
ments, Reasoning About Programs, Uniform Workstation Interfaces, and Very Large
Scale Integration. Sections in each chapter present the area's general research con-
text, the specific problems we addressed, our contributions and their significance, and a
bib!iography for each chapter.

1. Work statement
We organize the research reported here under seven major headings. These interre-

lated projects and their major objectives are:

Artificial Intelligence
Perform basic research in artificial intelligence, with emphasis on representation of

knowledge, learning, and parallelism for Al applications. Specific subtasks include:

* Continue developing Soar, a domain-independent architecture for intel-
ligent behavior. Research directions include extending chunking as a
learning mechanism, developing planning mechanisms, and commencing
at least one major task domain.

* Develop interactive learning models in which learning takes place automati-
cally through interactions with a complex environment and also by taking
direct instruction from humans (Prodigy).

* Continue to explore the interaction of knowledge and search in the context
of the chess machine and in at least one other application domain.

Explore the concurrency available in classes of expert systems tasks, re-
late this to the structure of parallel production systems, and incorporate
parallel-decomposition techniques into the knowledge-acquisition tools that
are being developed elsewhere at CMU (in conjunction with PSM).

Image Understanding
Perform basic research in image understanding, emphasizing knowledge represen-

tation and algorithm acquisition for vision systems. Specific tasks include:
* Continue developing new computational methods for inferring surface and

shape information by exploiting image color, texture, and motion.

" Building on a production-system foundation, develop a knowledge-based
vision-system framework that integrates high- and low-level vision and al-
lows image-analysis systems to employ symbolic, geometric, and image-
feature reasoning efficiently.



* Develop techniques foi automatically acquiring 3-D object recognition al-
gorithms from CAD-type shape descriptions and sample images.
Demonstrate the techniques in a practical application such as a hand-eye,
bin-picking system.

Reliable Distributed Systems
Develop a system that supports reliable, distributed applications on networks of

uniprocessors and shared memory multiprocessors. Specific subtasks include:
* Construct a transaction-based facility that provides communication,

recovery, and synchronization for distributed applications (Camelot).

" Design and implement language facilities for Ada and Common Lisp to
provide application programmers access to Camelot and Mach facilities
(Avalon).

" Develop distributed algorithms to support applications requiring high
reliability and availability.

" Demonstrate entire Reliable Distributed System (RDS) on selected applica-
tions.

Programming Environments
Design and implement mechanisms for software development environments that can

evolve incrementally while supporting large, cooperative, development projects.
Specific subtasks include:

" Develop an environment kernel that provides uniform tool interfaces and al-
lows new tools to be incorporated into an integrated environment.

" Develop techniques to support project coordination, to include automatic
propagation of information and enforcement of policies.

" Develop concepts and tools to support large projects in a heterogeneous
development environment with hierarchies of policies.

Reasoning about Programs
Perform basic research on the semantics of programming concepts, and develop

semantically-based tools for reasoning about programs. Specific subtasks include:
" Investigate the semantic foundations of programming languages, with the

aim of designing semantically-based proof systems for reasoning about
program properties.

" Design and implement interactive program proof systems to be integrated
into an advanced programming environment (Ergo).

" Develop manageable and powerful proof methods for dealing with concur-
rent programs.
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Uniform Workstation Interfaces
Develop a uniform workstation interface system for a heterogeneous distributed com-

puting environment. This interface system is to be integrated with Mach and will be-
come an integral part of the Mach-based environment. Specific subtasks include:

o Develop an interface manager through which all interactions take place and
that supports multiple interaction styles simultaneously.

o Design and implement a system for modeling knowledge about the system
and the user, and use as a basis for an adaptive help system.

* Develop a language-independent application interface that can accom-
modate the needs of all the different types of applications, from batch-
oriented to highly interactive ones.

* Demonstrate the above features in a highly efficient integrated system for a
large number of application programs, and evaluate this system in a large
user community at CMU.

VLSI
Develop methodologies and tools for rapidly building and validating VLSI systems.

Specific subtasks include:
" Develop design environments and associated methodologies for building

special purpose architectures, and demonstrate by building prototype sys-
tems.

" Develop high-performance switch-level and symbolic simulators, including
parallel implementations of these simulators.

* Develop verification methodologies and tools capable of handling both
synchronous and asynchronous circuits and hierarchically constructed cir-
cuits.

3



1. RESEARCH IN ARTIFICIAL INTELLIGENCE
Our research in artificial intelligence aims at improving the performance of Al systems

when compared to the highest human level of performance. We also aim to reduce the
time needed to solve tasks. The fundamental understanding of Al resulting from this
research will provide the necessary foundation for applying Al to complex DoD tasks.
This project includes a number of efforts exploring new directions in Al research:

* Developing expert systems that automatically acquire knowledge from
large databases, concentrating on the domain of aerial image interpretation

* Developing systems that solve very difficult problems by the heuristic
search of huge spaces (tens of millions of nodes) using special hardware
architectures and exploring ways of guiding this fast, hardware-assisted
search with high-level knowledge

- Exploring the use of massively parallel, connectionist ("neural network") ar-
chitectures for learning, knowledge representation, recognition, and sym-
bolic processing

e Developing computer systems that can solve problems and learn in a wide
range of complex tasks by integrating learning and problem solving into
single systems.

1.1. Task-level parallelism for production systems
Large production systems (rule-based systems) continue to suffer from extremely

slow execution which limits their utility in practical applications as well as research set-
tings. Most efforts at speeding up these systems have focused on match or knowledge-
search parallelism in production systems. Though good speed-ups have been achieved
in this process, the total speed-up available from this source is not sufficient to alleviate
the problem of slow execution.

We focus on task-level parallelism, which is obtained by a high-level decomposition of
the production system. For the familiar OPS5 production system computational model,
task-level parallelism allows multiple rules in the production system to be fired in paral-
lel. Speed-ups obtained from task-level parallelism are distinct from those obtained
from match parallelism, and the two can be combined to provide even faster perfor-
mance.

Our vehicle for the investigation of task-level parallelism is SPAM (System for Photoin-
terpretation of Airports using MAPS), a high-level vision system implemented in a
production system architecture. SPAM tests the hypothesis that the interpretation of
aerial imagery requires substantial knowledge about the scene under consideration.
SPAM has been applied in two task areas: airport and suburban house scene analysis.
SPAM is a mature research system having over 600 productions, with a typical scene
analysis task having between 50,000 to 400,000 production firings and an execution
time of the order of 20-120 CPU hours (when measured with the Lisp OPS5 version
VPS2 running on a VAx 11/785).
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In investigations of parallelism, it is important to speed up an optimized sequential im-
plementation, otherwise the benefits of parallelism are lost. Hence, SPAM was first
reimplemented in ParaOPS5, a C-based optimized implementation of OPS5, that extracts
match parallelism. The reimplementation required some minor changes to the existing
OPS5 productions. We will refer to this reimplementation as SPAM/PSM. This provided a
factor of about 15-20 in speedup-some of this from better internal indexing
mechanisms in ParaOPS5, and some from the change from Lisp to C. However, match
parallelism of ParaoPS5 provided only a factor of 1.5-2 in additional speedups. This is
because, unlike most production systems, SPAM/PSM spends only 50% of its execution
time in the match phase, thus putting an upper bound of two on the speedups obtained
from match.

1.1.1. Task-Level parallelism in SPAM/PSM
The difficulties of extracting match parallelism encouraged our investigation of task-

level parallelism in SPAM/PSM. We have currently limited our exploration of task-level
parallelism in SPAM/PSM to two particular phases called LCC (local consistency check),
and RTF (region to fragment). The choice of LCC was motivated by the observation that
it consumes more than 90% of SPAM/PSM's execution time. The RTF phase was
selected for parallelization since it fits the framework of a traditional OPS5-system more
closely than the other phases of SPAM-it thus contrasts with the computation in LCC,
providing generality to the results presented. To describe our approach to task-level
parallelism and how it differs from some other approaches reported in the literature, we
first present a characterization of task-level parallelism in production systems along
three dimensions:

" Implicit/Explicit: In the implicit approach to extraction of parallelism, it is the
compiler's job to extract parallelism; in the explicit approach, the user
specifies the information for exploiting task-level parallelism.

" Synchronous/Asynchronous: Production systems can either fire produc-
tions asynchronously, or force synchronization of productions.
Synchronous systems are less capable of handling variances in processing
times of subtasks than asynchronous systems.

" Rule distribution/working memory distribution: In rule-distribution, the
productions in the system are distributed among processors, where each
production set maintains its own conflict set. In working memory distribu-
tion, all productions are allocated to each processor, but the working
memory is distributed.

The computation in the LCC and RTF phases of SPAM/PSM can be decomposed into
independent subtasks at different granularities. This suggested the appropriateness of
the explicit approach to task-level parallelism. An explicit approach also raises the ques-
tion of an appropriate granularity of decomposition. This choice is based on the com-
munication overheads, variance in subtask processing times and the ease of decom-
position. For the LCC phase, we explored two different decompositions. Table 1-1
presents results from these decompositions with the SPAM/PSM system running in a
uniprocessor mode. The first, called level 3, has about 50-200 independent subtasks
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available, each executing about 5 seconds. The second, called level 2, has about
400-1000 independent subtasks available, each executing about 1.5 seconds.

Table 1-1: Measurements for baseline system on the datasets
(Represents the optimized, ParaoPS5-based, uniprocessor version).

Dataset Total Number Average Prods RHS Changes
time of tasks time per fired actions to
(sec) task Working

(sec) Memry

SF Level 3 1433 283 5.07 33475 42383 39116

SF Level 2 1423 941 1.51 32251 41159 38550

DC Level 3 988 151 6.55 20059 31205 26714

DC Level 2 956 490 1.95 19418 30564 26412

MOFF Level 3 991 209 4.74 22203 23637 23 ,u8

MOFF Level 2 973 700 1.39 21294 22728 22950

With the explicit approach selected for task-level parallelism, no synchronization was
required, leading to the use of an asynchronous approach. Finally, we chose working
memory distribution, as that facilitates the explicit decomposition. Thus, for SPAM/PSM

(both the LCC phase and the RTF phase) we have an explicit/asynchronous/working-
memory-distribution approach to parallelization. This contrasts with the other ap-
proaches to task-level parallelism reported in the literature, which have been
implicit/synchronous approaches.

1.1.2. Results of the SPAM/PSM Implementation
Our experiments on task-level parallelism in SPAM/PSM were performed on the Encore

Multimax, a 16-processor shared-memory multiprocessor based on the NS32332
processors. The experiments were performed with three different large data sets.
These data sets represent three different airports: SF (San Francisco International), DC
(Washington National), MOFF (NASA Ames Moffett Field). The speedup curves show
near linear speedup for both the level 3 and level 2 decompositions. The maximum
speedup achieved is 12-fold in level 3 and 12.6-fold at level 2 with 14 processors.
These results also indicate that the potential for additional speedups in SPAM/PSM from
task-level parallelism is quite high. In fact, an expectation of 50- to 100-fold does not
seem unreasonable, given the number of independent subtasks available and the fairly
coarse grain size of execution. In fact, at present, the scheduling overhead of task-level
parallelism is less than 0.1% of the processing time. Similar speedups were observed
for the RTF phase.

With the substantial amounts of parallelism available in SPAM/PSM, the 16-processor
Encore Multimax appeared inadequate for exploring this. We explored two different ap-
proaches to alleviate this problem:

* The use of network shared memory: This technology will potentially allow
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us to share the processors on two different Encore Multimax machines,
giving us a total of 32 processors to experiment with. While the technology
is not very mature at this point, it has already shown promising results by
extending the speedup from 12-fold to 15-fold with the total of 22 proces-
sors over the two Encores. We are continuing investigation of the use of
netwck shared memory.
Message-passing computers: An alternative to the shared-bus shared-
memory technology used in the Encore Multimax is the use of more easily
scalable distributed memory machines. We have explored the use of such
machines for parallel production systems. These explorations have also
shown promising results, indicating that the communication overheads are
limited. In fact, for our benchmark systems, simulations indicate speedups
similar to the shared-bus machines like the Encore Multimax. Given man-
power limitations, and the fact that network shared memory technology was
more readily available, we have focused on network shared memory for our
actual implementation. However, the use of message-passing computer
technology remains an interesting issue for future explorations.

Our experiments also verified that match parallelism does represent an independent
axis of parallelism and thus could be multiplied with the speed-up obtained from task-
level para'elism. In the three datasets tested, this axis provided an additional factor of
1.5- to 2-fold parallelism. Although for SPAM/PSM match parallelism does not seem to
contribute as much, for more match-intensive applications, match parallelism will make
a substantial contribution to the speed-ups.

1.2. Search-intensive Al systems
In the quest for higher performance, "more of the same" frequently offers diminishing

amounts of "better." For Al systems, this means that it would be more productive to
blend more search into a knowledge-intensive system, or more knowledge into a
search-intensive system. We are studying the latter. Our research offers an oppor-
tunity to study the effects of extremely fast-and relatively clever-searches in very
large problem spaces. The opportunity here is significant because we have no ex-
perience with intelligent systems, human or mechanical, that solve problems in this
manner.

Humans are known to solve certain problems ini what could be called the knowledge-
intensive mode, with a small amount of search being invoked when necessary. This
provides the flexibility that is needed to avoid encoding all knowledge. Many current Al
systems mimic this. Indeed, the explosion of expert systems can be seen as an attempt
to exploit the knowledge-intensive style with as little problem search as possible.
However, it is clear that most problems can be solved by trading off search for
knowledge and vice versa. If one considers a two-dimensional space of search and
knowledge, hyperbola shaped isobars exist that define equal performance levels made
up of varying amounts of knowledge and search.

It is typically difficult to provide the power to do really large searches. However, when
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the opportunity presents itself to study the effect of very large (and fast) searches on
problem solving, such opportunities should not be ignored. Human problem solving
provides no experience with this manner of accomplishing tasks. Such a style does not
mean the absence of immediate knowledge, rather it means using relatively small
amounts of knowledge to modulate and guide a large search.

Chess provides a particularly good laboratory in which to study search-intensive tech-
niques. Chess programs and chess machines that search a large space of possibilities
in a very simple way have established dominance over chess programs that try to bring
a lot of knowledge to bear in guiding the search and evaluating each situation.

We have been using Hitech, our chess machine/program, to investigate search-
intensive architectures. Hitech combines fast search hardware with extensive
knowledge in the domain of chess, and incorporates techniques for adding new
knowledge.

Our goals in this research area were to:

" Continue work on the interaction of knowledge and search in the context of
the chess machine.

" Characterize the effect of deeper searches on the type of knowledge re-
quired to make good decisions.

* Extend the concept of chunking and characterize more clearly the kinds of
problems where this idea is applicable.

" Identify practical real-world domains where the search-intensive approach
used in the chess machine can be of value, and demonstrate this for at
least one such domain.

1.2.1. Refinement
As of August 1987, the new knowledge in Hitech appeared to blend very well with the

second-generation pattern recognizers that were installed in the last half of 1986. The
installing of this knowledge took much longer than expected because the overall
problem of providing knowledge that is both pertinent and correct is quite difficult. By
the end of 1987, we had entered a mode of patching small areas of incompetence, with
Hitech's knowledge in solid shape.

As we refined and augmented the pattern knowledge used in the course of a search,
Hitech's performance continued to improve. In addition, we developed new search
techniques that retain the efficiency of alpha-beta search while noting features that sug-
gest exploring some lines of play more deeply than others. This makes it possible to
explore certain critical lines to twice the normal depth [Anantharaman et al. 88]. We
designed a new pawn structure algorithm and upgraded the king-safety pattern recog-
nizers, which contributed significantly to Hitech's success. We supplemented the
design with new pattern recognizing software to fill out certain knowledge gaps.

We have designed, built, and installed some new hardware to produce more sophis-
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ticated evaluation of pawn structures. This design was based on knowledge acquired
by having a similar facility in programmable pattern recognizers. When we knew what
we wanted, this was converted to permanent hardware which now frees up the
programmable units to be used for other experiments.

Hitech's playing has improved continually during the contract period, proving that ad-
ding more knowledge continues to improve performance, even when search speed is a
major factor. Examples of Hitech's knowledge include the ability to recognize progres-
sively more complex board patterns, and to assign appropriate values that reflect a
chess master's assessment of the patterns.

1.2.2. Results: Competition
Since August 1987, Hitech's performance has been outstanding. It won the 1987

Pennsylvania State Championship Tournament with 15 masters competing. In 1988,
Hitech again won the Pennsylvania State Chess Championship tournament. In a field
of 46 players, it scored 4.5 - 0.5 for a clear 1 st place. With this victory, Hitech crossed
the magical 2400 boundary and became a Senior Master in the US Chess Federation.

In a specially arranged match in September 1988 in New York City, Hitech crushed
International Grandmaster and former US Champion Arnold Denker by the score of
3.5-0.5. This was the first time an International Grandmaster had been beaten by a
computer. In another tournament, Hitech drew with a player who is ranked among the
top 12 in the US, after having missed opportunities to beat him. Hitech is now among
the top 150 players in the US.

In November, Hitech tied for 6th place in the National Open with a number of chess
notables. This attracted wide attention, and was covered in Time Magazine.

In April 1989, Hitech drew with International Grandmaster J. Piket (rated FIDE 2500)
in a match of Computers vs. the Netherlands Championship competitors. In May,
Hitech finished second in the World Computer Chess Championships, behind Deep
Thought, also from CMU. In the June Asian Action Team tournament, Hitech scored
7-3 on first board on a computer team, and placed 4th among the 11 competing first
board players. In a June rematch against Manuel Apicella of France (FIDE 2400),
Hitech scored 1.5 - 0.5. Hitech drew with Apicella (1-1) last year when his rating was
FIDE 2365. This is a direct comparison since the human had improved in the mean-
time, and yet Hitech's performance was better.

In August 1989, Hitech won the Pennsylvania State Championship for the third time in
a row with a perfect 5-0 score. In the 1989 North American Computer Championship,
Hitech achieved first place on tie-breaking points, ahead of Deep Thought. Hitech has
now reached the highest USCF rating in its career: 2413.

In May 1990 Hitech scored a significant victory in the AEGON International Tour-
nament in the Netherlands. It scored 5-1, defeating a former World Champion Chal-
lenger and drawing with another Grandmaster. Its score was far above the other com-
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puters participating, the best of whom scored only 3-3. This event received tremendous
coverage in the European press. In November Hitech beat Deep Thought, another Car-
negie Mellon chess machine, in the ACM National championship.

1.2.3. Overview of Achievements
Massive Search has proven itself not only in chess, but also in Speech Recognition,

and other application. With kitech hardware we have succeeded in speeding up the
solving process by about 3 orders of magnitude over what was available without a spe-
cial purpose machine at the time Hitech was first built (1983-84). With the special pur-
pose architecture many problems that were formerly out of reach could now be ad-
dressed. The addition of pattern recognizers that could run without slowing the machine
down (since they are also hardware running in parallel) has made it possible to create
very complex subgoals that the machine tries to achieve, helping Hitech to behave as if
it is planning its moves.

The complexity of such subgoals is important; when one is competing at high levels of
skill, simplistic goals will not produce useful behavior on the part of the machine. A
simple-goal driven machine must rely solely on what it discovers during the search and
what it can understand in terms of these simplistic goals. With complex patterns,
progress becomes obvious much earlier. For example, if one can identify a weak pawn
that may be lost, it will be not too big a surprise when the search finally finds a way of
winning the pawn. Without the information on weak pawns, the search will not try to
weaken a pawn (or avoid having one of its own weakened) and will be hugely surprised
when such a pawn is won.

1.2.4. Application to other Domains
Similar machines can be built for any domain that is worth exploring in great detail.

Candidate domains are usually of the structural variety, such as architectural design,
chemical structure problems, design layout of computer chips. What is required is that
the rules of the domain be known quite exactly, and that the number of possibilities to
explore is beyond what can be achieved on a standard computer or costs too much on
a supercomputer.

1.3. Using massively parallel architectures
The term "connectionism" refers to attempts to perform tasks such as recognition,

learning, and knowledge representation using a large network of very simple neuron-like
elements, all operating in parallel. The study of Al on serial architectures was already a
well-developed field when we began our research; however, we were still in the early
stages of understanding how to use connectionist networks. Our hope was that this ap-
proach would lead to recognition systems that can be trained rather than programmed,
built on an inherently fault-tolerant hardware base. Carnegie Mellon has played a large
part in the renaissance of this field, which has grown into a major and important area of
research.
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The DARPA basic research contract funded only a small part of our overall connec-
tionist effort, specifically the development of new learning algorithms and simulation
tools. Closely related work on autonomous navigation and on the use of the Warp
machine as a simulation engine was not directly funded by DARPA, but made heavy use
of facilities provided by DARPA.

1.3.1. Tools for connectionist research
In the first six months of this research, a great deal of time was spent on tool-building.

We developed a variety of network simulation tools in both C and Common Lisp. In ad-
dition, we built a back-propagation simulator for the 10-processor, 100 MFLOPS Warp
machine. We needed this speed (20 million connections per second) for big jobs.

A network display tool
We pr)duced an animated display that follows the evolution of a small network (a two-

input XOR). The display shows each network layer's composite behavior, rather than
just the states of individual units and weights. This tool enabled us to observe the
layers' composite behavior; often the interesting and valuable phenomena are not
properties of individual components, but properties of component groups that may
correlate behaviorally but be scattered across the network. This, initially a minor effort,
provided insights into the "herd effect" that led to the development of the Cascade-
Correlation learning algorithm.

A connectionist network simulator
We developed a connectionist network simulator on the 10-processor Warp machine

that processes 20 million connections per second [Pomerleau et al. 88]. This is about 8
times the speed claimed for a 16K CM-1 connection machine, which is much more ex-
pensive, and over 300 times the speed obtainable on a machine of the VAx-780 class.
The Warp-based connectionist simulator makes it possible to apply connectionist net-
works to much larger problems. We distributed the software, called the Warp Neural
Network Toolkit, to other Warp sites. This work paved the way for later neural-net
simulators on the experimental GF1 1 machine at IBM Research and on the iWarp
processor, which is being produced commercially by Intel.

An international mailing list for connectionist researchers
We maintain an international electronic mailing list for connectionist researchers that

now has thousands of readers (direct and indirect) on six continents. This is a very im-
portant communication medium for neural net researchers-probably as important as
any journal, and certainly a better source of timely information. This is not a large effort,
but one that has a real impact in the neural-net research community.

1-8



The online benchmark collection
We have established an online collection of benchmark problems and data sets for

measuring neural net learning algorithms. For each problem, we maintain a summary
of the best results so far reported in the literature. Such a collection is necessary to our
own learning research, and it allows other researchers to compare their results in a
responsible and scientific manner.

1.3.2. New Learning Algorithms
The most important problem limiting the widespread application of neural-nets to real-

world problems is the slow learning speed and unreliability of existing learning al-
gorithms such as back-propagation. These algorithms scale up poorly as we increase
the size and complexity of the learning task. We have worked for several years to un-
derstand why back-propagation is so slow and what can be done about this.

The first round of exploration led to the development of the Quickprop algorithm. In
place of the simple gradient descent that backprop uses to reduce the error during train-
ing of the network, Quickprop makes use of second-derivative information to control the
size of the weight adjustments. On simple problems, this improves learning time by a
factor of 10 to 100, with even more speedup on larger problems [Fahlman 88].

However, even the Quickprop algorithm is too slow for many practical applications.
Further study revealed that the principal cause of this problem was in the uncontrolled
dynamic behavior of the "hidden" or interior units in the network. These units interact
only weakly with one another, and it takes a long time for them to settle into appropriate
roles, with each unit doing a different job. We developed the Cascade-Correlation algo-
rithm [Fahlman and Lebiere 90] to correct this problem. In Cascade-Correlation, we
begin with a net that has only inputs, output units, and the connections between them.
Then we add hidden units one by one. Each new unit moves quickly and directly to
cancel as much of the remaining error as possible. Once the new unit has found a role
to play, its input weights are frozen. As more hidden units are added, each one deals
only with the remaining portion of the error.

The cascade-correlation approach has several advantages over the older backprop
and quickprop models. Users no longer have to guess what network size and shape to
use for a problem, because the new method builds a near-minimal network automati-
cally. Since already-created, hidden-unit feature detectors are never altered, we can
teach the network new behaviors without destroying the structure of previously learned
behaviors. In learning experiments to date, the training time appears proportional to the
number of hidden units ultimately needed for the task. On the very difficult two-spirals
benchmark, cascade-correlation reliably solves the problem 25 times faster than Quick-
prop and 50 to 100 times faster than standard backprop.
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1.3.3. Autonomous Navigation
Using the connectionist network simulator on Warp, we developed a connectionist

road following system (ALVINN) that has successfully driven the Navlab vehicle on a path
through a wooded area. The road following network's performance is comparable to
that obtained by standard methods. Navlab now travels at greater than its previous 0.5
m/s speed using the on-board Warp machine (Pomerleau 89]. The neural net is no
longer the limiting factor, and Navlab can now be trained just by driving it on the road for
a short time (2 minutes), and can drive up to 8 miles per hour. Early versi( ns of ALVINN

used both a low-resolution video image and a laser rangefinder; at present, only the
visual input is needed.

1.4. Learning and problem solving architectures
Our objective is to develop computer systems capable of solving problems and learn-

ing in a wide range of complex tasks. Integrating learning and problem solving into a
single system is a necessary development for Al to make a major contribution to future
DoD systems. The heart of that integration is the ability of the system to continually
analyze its own experience and make that available for immediate future action. This
section describes our continuing work on Prodigy and Soar, two integrated intelligent ar-
chitectures that are to provide such capabilities. These architectures aim for generality
by providing problem-solving and learning mechanisms at a foundational level, in con-
trast to the traditional expert systems approach of building special-purpose mechanisms
for new applications.

1.4.1. Soar
The Soar system is an architecture for general intelligence. Soar incorporates the

ability to solve problems in both knowledge-lean and knowledge-intensive situations, to
exhibit the full range of appropriate problem-solving methods, and to learn from its ex-
perience about all aspects of its operation. Soar has been under development since
1982 and is a maturing system that we have used to conduct research in Al, cognitive
psychology, and implementation technology. On the Al side, Soar aims to be an ar-
chitecture that can be used for the full range of Al applications. On the psychological
side, Soar is being used as a basis for a unified theory of human cognition, including an
engineering model of the user for use in human-computer interface design (extending
work started by Card, Moran and Newell in the 1970s). In terms of imp!ementation
technology, there is a substantial effort within the Soar project to explore efficiency
issues for production systems, especially on parallel machines.

Research is distributed over three main sites where the primary researchers reside:
CMU (Newell), University of Michigan (Laird); and Information Sciences Institute at USC
(Rosenbloom). Additional participants are working on Soar at about half a dozen other
sites. The various Soar sites form a tightly integrated community, but informal
specializations have developed, with Michigan concentrating on using Soar as a robot
controller, and USC focused on mainstream Al areas such as abstraction, planning, and
the relationship of Soar to connectionism. The research at CMU covered during the
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term cI this contract has focused on specific Al applications as well as the support of
ger3ral capabilities and implementation support for Soar.

Al Applications
AT CMU, Soar has been applied to several difficult knowledge-intensive areas, taken

mostly from engineering-related applications, but also in related areas such as science
tutoring and production planning, This work built on previous work at CMU on
reimplementing the R1/XCON computer configuration expert system in Soar and at
Stanford on medical diagnosis (ongoing work at the Ohio State University continues to
explcre medical applications of Soar). These multiple foci arise in part from cooperative
effots initiated by domain principals outside the DARPA project (which is our deliberate
strategy). The CMU efforts during the term of this contract are briefly described below:

" Algorithm design: Based on the detailed analysis of the behavior of
human algorithm designers conducted as part of the Designer project, we
built several versions of an automatic algorithm design system in Soar.
The last version, Designer-Soar [Steier and Newell 88], integrated
knowledge about general problem-solving, algorithm design, implemen-
tation techniques, and the application domain. The system used severn!
levels of abstraction, generalizes from examples, and learns from ex-
perience, transferring knowledge acquired during the design of one algo-
rithm to aid in the design of others. Along the way, we produced a
monograph that is the first systematic comparison of published derivations
and syntheses of algorithms. The comparison focused on seven al-
gorithms for which multiple derivations were available in the literature: in-
sertion sort, quicksort, Cartesian set product, depth-first search, Schorr-
Waite graph marking, N-queens, and convex hull). We also initiated small
efforts to extend the framework of Designer-Soar to other areas of pro-
gramming technology, such as coding, and system design, and data struc-
ture design.

" Chemical engineering: We built a Soar system to perform simple design
of simple chemical separations systems. Separations systems design in-
volves determining the sequence in which splits should be carried out in or-
der to isolate the constituent components of a given feed mixture. To
evaluate competing split sequences, this design task requires the extensive
use of specialized software such as chemical process simulators. Ex-
perienced engineering designers employ heuristics, such as doing the
easiest split first, to minimize the computational effort required. The first
Soar-based separation systems designer, CPD-Soar (Chemical-Process-
Design-Soar), employed such heuristics to design simple systems of cas-
caded distillation columns. However, a major limitation of this system was
that the majority of rules it learned encoded specific numeric values in their
conditions, and thus would not transfer to new tasks. A second system,
Interval-Soar, was built to better understand the processes an agent should
use to be able to generalize intervals from specific quantitative results. The
experience from Interval-Soar and CPD-Soar was combined to produce a
preliminary design for CPD2-Soar, and hand-simulations of this design
showed that useful learning would be obtained. The design of CPD2-Soa
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also yielded a new result from the standpoint of chemical engineering: tests
run on hundreds of sample design problems led to the discovery of a
powerful new heuristic for distillation system design that was later shown to
outperform every other known heuristic for that class of problems.

* Civil engineering: Two systems were built to explore the potential of Soar
applications in this domain. The first system implemented the design of a
floor system. A floor system is a floor slab covering a typical bay in a build-
ing floor, and its design involves choosing the action of the slab (whether it
will bend along one or two dimensions due to gravity), the type of material
and the type of support. Several types of learning were demonstrated to be
possible with careful problem structuring. The second system used Soar to
learn tool selection knowledge in an integrated building design environ-
ment. The environment contains seven tools that can be sequenced to
generate a construction plan for the structural system of a high rise office
building, given a set of owner requirements for area, cost, and siting. The
task of the Soar system was to learn the proper order in which to invoke the
tools, extracting the necessary knowledge from experimentation, a model
of the inputs and outputs of each tool, and guidance from an expert user.
Several problem solving methods were implemented including forward
search and means-ends analysis; learning was shown to reduce the
probiem solving effort significantly (by as much as two-thirds) on all of
these methods.

* Manufacturing scheduling: Since the summer of 1988, part of the ap-
plications effort has focused on building a prototype scheduling system for
the production of replacement automobile windshields. The production
process involves cutting and bending the glass and stretching screening,
and cutting vinyl. The focus of the system, now in its second version as
Merle2-Soar, is the scheduling of the bending of the glass, done in a large
oven called a lehr. The schedule must satisfy both hard and soft con-
straints. Hard constraints reflect the physical realities of the factory, such
as lehr capacity, and must be satisfied for the schedule to be feasible. Soft
constraints are preferences which should be taken into consideration to in-
crease the quality of the schedule. For example, all other things beir, j
equal, it is desirable to interleave large and small jobs to avoid exhausting
the workers. Merle2-Soar, which incorporates most of the hard constraints
of the factory situation, demonstrated both across-trial and across task
transfer in producing schedules.

• Electrostatics tutoring: ET-Soar is a Soar-based tutoring system
designed to teach students how to use field diagrams to solve problems in
electrostatics. The system embodied a framework based on a problem
space-based model of the tutoring situation: a state representation is used
for the curriculum and student model and tutoring strategies are
represented as operators that can be applied to eventually yield a final
state in which the student has learned the curriculum. A general Soar-
based model of agent-tracking (following the visible actions of an external
agent using an internal cognitive model of the task being performed) is
used as the basis for student diagnosis via model tracing. To overcome
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performance limitations of ET-Soar, a novel experimental technique was
used in which a slow computer tutor is replaced with a hidden human
operator and the results of that session are fed back to the computer-based
tutor (at a slower pace) to provide for complete validation of the tutor.
Using this technique, ET-Soar was successfully used to teach actual stu-
dents the use of electric field diagrams.

General Capabilities
The work on specific Soar applications was complemented by two efforts on providing

general capabilities. These efforts both began with the construction in 1987 of a task
acquisition system that permitted Soar to acquire new tasks from the environment by
learning. This system used Soar's learning mechanisms to acquire new tasks from a
user. This system had both a formal language input for describing Soar systems in
terms of problem spaces, and an (elementary) capability for natural language input.
Each of these input capabilities subsequently developed into a major research thrust at
CMU, with about four to six people devoted to them apiece. The first group, RTAQ,
focuses on specification of Soar systems, while the second, NL-Soar, focuses on
providing Soar with the ability to understand natural language input as it runs. Both ef-
forts are the beginnings of language capabilities that will eventually make it easier for
humans to interact with Soar.

The RTAQ (Rapid Task AcQuisition) subgroup of Soar has as a core belief that con-
structing initial expert system versions in Soar seems to require only identification
processes, assignments of known representational schemes, and communication
linkages [Yost and Newell 89]. The usual lengthy process of explicitly designing
methods is not necessary, because Soar operates as a multiple-problem space system.
Thus the expectation is that expert system construction will be facilitated by providing
the appropriate language and environment for describing systems at this level. The
result at the end of the contract period was the Task Acquisition Language (TAQL). We
identified a number of small tasks for testing TAQL, and in a cooperative effort with Digi-
tal Equipment Corporation, collected a set of test cases of medium-sized domain-
oriented expert system specifications (where the task descriptions are several thousand
words long). These were used to drive the development of TAQL, and associated tools
such as structured editors and a graphical interface. TAQL also contains capabilities for
interfacing to databases and specifying operator control; these constitute extensions to
our original conception of the problem space computational model. By now, TAQL has
been extensively tested in two rounds of experiments, resulting in system building times
on the order of several minutes per production for systems with a few hundred produc-
tions. There is a manual for the system, and we have conducted several tutorials on
TAOL. TAQL now has about a dozen users within the Soar community, and indeed
some of the work described in the previous section, for instance on manufacturing
scheduling, is now conducted entirely within TAQL.

Since our original interest in giving Soar a natural language capability was as another
vehicle for rapid task acquisition, our original work in language comprehension was
done as part of TAQ. Within the course of this contract, however, the natural language
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effort has become distinct from TAQL and continues to follow its own course. At the
basis of the system is the idea of the comprehension operator, first introduced in the
William James Lectures in 1987. The idea of the comprehension operator is a general
one, extending beyond language to vision and the other ways in which we comprehend
the environment. With respect to language, however, the comprehension operator
brings to bear all the knowledge about a word in a given context to produce data struc-
tures in working memory that can be used by later comprehension and by problem solv-
ing.

The comprehension operator approach allowed us to build a 1988 version of NL-Soar
that greatly improved Soar's natural language capability for simple task instruction. This
version of the system was integrated with another Soar system (IR-Soar) having an im-
mediate reasoning ability, that is, the ability to extract implicit information from simple
situations in 30 seconds or less (for example, inferring the truth of a discrete statement
based on given premises). After expanding the immediate reasoning tasks and studying
Soar's performance, we found that Soar's immediate reasoning process is very similar
to humans' [Lewis et al. 89, Polk et al. 89]. One difficulty with the natural language por-
tion of the integrated system, however, was that the comprehension operators had to be
constructed by hand; hand-coding of operators that integrate multiple knowledge
sources h-s been demonstrated to be an extremely difficult design problem for a num-
ber of systems.

As a solution to this difficulty, the final version of NL-Soar constructed during the con-
tract period was restructured to take advantage of Soar's chunking mechanism in order
to learn comprehension operators automatically. The system is now organized so that it
performs both deliberate processing (the sequential application of syntactic, semantic,
and pragmatic knowledge sources) and recognitional processing (the simultaneous, or
parallel, application of those knowledge sources). If no comprehension operator exists
for the word in the current context, the system proceeds deliberately. That deliberate
processing is then captured by chunking so that processing can proceed recognitionally
in future, similar circumstances. Thus, the two activities intermix freely and provide a
paradigm for Soar to move from deliberate activity to skill. The 1990 version of NL-Soar
uses an all-paths, bottom-up parsing algorithm and a chart-like structure containing
standard phrase-structure constituents to build the annotated models that represent the
meaning of the utterance.

To the major thrusts on rapid task acquisition and natural language comprehension
described above should be added a list of smaller (essentially single-person) efforts on
general capabilities in Soar. An example that is related to the NL-Soar effort is the use
of annotated models as a representation of situations. Another project has tried to un-
derstand what allows people to acquire new strategies for solving small tasks such as
the Tower of Hanoi puzzle [Ruiz and Newell 89]. Additional even smaller efforts have
studied representation shifts, the use of constraint satisfaction, and the basic code used
by humans to represent small quantities, so that for example, one can recognize im-
mediately that there are four blocks on the table without counting. Much of this work
was used to complete a manuscript for a book based on the William James Lectures in

1-14



Psychology delivered at Harvard in the spring of 1987, and again in the fall at CMU. Al-
though focused on human cognition, the book was built entirely around the Soar system
and the suitability of its architecture for obtaining intelligent action.

Implementation support
During this period we also made several improvements to Soar, further expanding its

capabilities and building a more efficient software technology base.

A major part of this effort was due to the first major revision of Soar's underlying ar-
chitecture, working to ensure that all learning and performance capabilities were
preserved in a transition from Soar4 to Soar5. Soar5 uses a "rolling" state which is con-
tinually modified, rather than copying all problem-solving states, as the prior Soar sys-
tems did. Although this strategy appears relatively straightforward, in fact it induces
profound changes by altering the production system's basic computational model and
the nature of working memory, forcing us to use a truth-maintenance system, and
having strong interactions with chunking. Despite almost 3 years of development and
analysis, new conceptual issues have continually emerged as we have gained ex-
perience with the system. These challenges require considerable analysis, some sys-
tem redesign, and significant reworking of specific Soar systems. Almost all the main
projects (some 20 systems at CMU, Michigan and ISI) have now converted completely
to Soar5 and are running successfully including learning. We have completed a new
draft manual. In addition, we converted TAQL, the problem-space language discussed
in the previous section, to produce Soar5 systems.

Another issue related to the implementation of Soar has been the slowdown in the
match that sometimes results when Soar's chunking is used. The primary cause of the
slowdown are what we have called expensive chunks, single productions that drastically
increase the time per step needed to solve problems [Tambe and Newell 88]. After
much investigation, we have found partial means to control the phenomena of expen-
sive chunks, allowing Soar to remain faithful to its constant time per step model [Tambe
and Rosenbloom 88]. The central notion in the solution is to restrict the expressiveness
of the language in which Soar's productions are written. When chunking is applied to
the restricted language, we can guarantee that chunking will create only cheap, i.e..
nonexpensive chunks. We have convinced ourselves that the drawback of restricting
expressiveness is more than adequately compensated for by the resulting gain in ef-
ficiency.

The third implementation area explored during the term of this contract was the inves-
tigation of advanced software and hardware techniques to increase the efficiency of
Soar. Several improvements in the match network implementation, including a conver-
sion from Lisp to C, have resulted in significant speedups. But potentially the most sig-
nificant speedups will come from the use of parallelism. In 1989, we introduced
ParaoPs5, a parallel version of OPS5 (a central part of our underlying software). A paral-
lel version of Soar 4 now operates on the Encore multimax (16 processor shared-
memory system) and we have obtained the first measurements showing good, but not
fully linear, speedups. These implementations have been facilitated by detailed studies
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of production systems. These studies uncovered features, such as long chains of
match tasks that would limit parallelism if existing uniprocessor implementations would
be straightforwardly converted for use on multiprocessors. A particularly interesting
finding was that we found an increased potential for parallelism in learning systems over
nonlearning systems, due to the increased size of the affect set as new productions are
added to the network.

Concurrently with these research areas, we are continuing to support Soar as an ex-
perimental computer system, now used by perhaps 170 people at a dozen sites. The
development of a manual, system support, and training materials for Soar has been a
high priority for the project. As part of the support effort, we gave a 4-day tutorial and
hands-on workshop at the University of Groningen, The Netherlands, in June 1990. We
prepared new documentation and teaching exercises for the event. This requires sub-
stantial effort, but pays off in getting Soar systems developed in many different direc-
tions (as in discovering the conceptual issues with the new Soar5 system).

1.4.2. Prodigy
Prodigy is a computational architecture designed as a general testbed for research in

problem solving, planning, and most centrally, machine learning. This section reviews
the objectives of the project, the research methodology, results obtained, and current
(iew) directions including promising application directions.

The basic motivation
Effective acquisition of large amounts of knowledge has proved to be a bottleneck for

the construction of large knowledge-based systems. A promising paradigm entails
separating factual knowledge (knowing what) from contrcl knowledge (knowing how and
when to apply facts to solve problems). Experience shows that the former knowledge is
easier to acquire as it is more readily formalized both in written texts and in the minds of
experts. The latter knowledge is often tacit, problematic to convey, and difficult to ac-
quire manually. Recent advances in machine learning, however, have focused
precisely in the acquisition of tacit control (strategic) knowledge from experience. In
particular, explanation-based learning, analogical case-based reasoning, and
automated formulation of abstraction hierarchies are promising techniques for effective
acquisition of control knowledge.

In order to exploit these machine learning techniques, however, an integrated ar-
chitecture is required where the learning component feeds new knowledge to the perfor-
mance component (the planner and problem solver), and the latter in turn provides
feedback as to the effectiveness of new control rules, etc. Prodigy is designed precisely
to address this type of learning-performance integration, starting with a powerful
problem solver and extending to numerous learning techniques, all sharing the same
underlying knowledge representation (a form of typed first-order logic with inheritance),
and subject to a uniform control structure.
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Research Strategy and Its execution
Our research strategy called for a 3-year plan concentrating first on developing of the

core planning system, then the various learning modules, then testing on several
domain, and then evaluating and disseminating results (including the software) widely
within the Ai community (academic, government and industrial). The underlying hope
was for a stable computational architecture that would enable research into the various
machine learning methods t" proceed systematically and with clear comparative and
evaluative criteria.

The first year of the research focused on the completion of the basic Prodigy problem
solving and plk.Lning architecture with the appropriate "hooks" (connection points) to the
multiple learning mechanisms under parallel (or subrequent) development. Additional
activities included initial work on learning modules, documentation of Prodigy 1.0, and
developing test domains.

The second year focused on developing and integrating three core machine learning
modules: Explanation-Based Learning, Derivational Analogy, and manual knowledge
acquisition. Additional activities included testing, evaluation and debugging of the core
Prodigy system (including alpha distribution to "friendly" external laboratories, integra-
tion of the learning and performance components, and developing more extensive
problem suites and domains of application. Initial work was started on Prodigy 3.0, the
nonlinear complete planner. The latter activity was unplanted, but developments in
general planning methodologies elsewhere made it possible to accelerate our effort and
provide a state-of-the art complete nonlinear planner-for the first time ever, one
capable of learning from experience.

The third year witnessed some thorough evaluation of the integrated learning and per-
formance components of Prodigy (most notably the linear planner with explanation-
based learning), widespread distribution and external feedback of the robust Prodigy
2.0, continued development of the full nonlinear Prodigy 3.0 version, and the addition of
new learning methods such as the automated formulation of abstraction hierarchies for
hierarchical planning (performing bottleneck and contention analysis to define the most
effective abstractions). Multiple domains were defined and used to test the effective-
ness of the learning mechanisms bearing out their generality across domains as diverse
as robotic path planning, factory-floor machining and scheduling, matrix algebra com-
putations and computer configuration.

Most of the work followed our original strategy and implementation plan, with some
additional unplanned directions such as nonlinear planning (mentioned above), testing
on 10 different domains instead of just the four-to-six initially envisioned, and distributing
to more external sites, as there was a demand for the software, however experimental.

The one aspect of our research strategy not thoroughly completed involved scaling up
experiments. These became the first priority in the following contract, with very positive
initial results.
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The most gratifying aspect of the project is the incremental nature of the results. Im-
provements in the perform~ince system are immediately available to all the learning
modules, and the effects of each type of leaning can be measured quantitatively (e.g. as
time/space improvements in problem solving performance) allowing for direct com-
parisons. In essence Prodigy already serves as the unified "plugboard" to investigate
learning methods in the context of a performance engine. Testing is an integral part of
development and points the way to the next functional improvement.

Research Results and Applications
The results of the various learning methods developed in Prodigy are reported at

length in the published literature (-ee bibliography). Here we summarize the primary
achievements in an integrated manner.

Performance Engine
The central performance engine in Prodigy is a domain-independent planning system,

of which there are three interchangeable versions:
" Prodigy 1.0 is a linear operator-based planner that operates with a default

means-ends strategy, modifiable by control rules that focus search (decid-
ing which operator to apply, which goal to pursue, which objects to select,
etc.) These control rules can be hand-coded or acquired via the learning
mechanisms such as EBL (see below).

" Prodigy 2.0 is a hierarchical planner that uses 1.0 as its basic engine, but
can plan in abstract spaces (to produce skeletal plans), and the refines
these plans gradually reintroducing details until a full plan is achieved (or
proved impossible). Abstraction is useful when the correct details are sup-
pressed to reduce search and are later reintroduced without significant al-
terations in the skeletal plan. Much more complex problems can be ad-
dressed in this manner.

" Prodigy 3.0 is a nonlinear "complete" planner capable of interleaving goals
and subplans to cope with interactions in the most efficient manner. Unlike
the linear planners, 3.0 can follow any control discipline best suited for the
task at hand.

The software for Prodig,/ 2.0 has been sufficiently documented and tested on site, as
well as at various other laboratories, so that it can be pronounced "robust." The same is
not yet true for 3.0, but it is similarly scheduled for external release and testing in sub-
sequent funding phases. Several sites are actively using Prodigy 2.0 as the basis for
their planning and learning R&D projects. Copies have been distributed to many sites
including Naval Research Laboratories, GTE laboratories, and several universities.

Learning
Many learning modules have been built and tested on the Prodigy performance en-

gines (above). These include:
* Explanation-Based Learning (EBL): EBL traces the execution path of
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past problem solving events to extract the critical decision points (those
where incorrect decisions produce substandard planning behavior, wasted
time or resources, etc.) in order to generate new control rules so that the
next time an equivalent decision presents itself, a more informed (and
therefore more correct) choice will be learned. Of course, there is some
overhead in learning and applying more control rules. Therefore, utility
analysis is performed to determine which control rules to retain (those
whose effectiveness outweighs their application cost). Note that an in-
tegrated learning-performance is required in order to automate the feed-
back into the utility metric. EBL has demonstrated performance improve-
ment factors ranging from 2X to 6X in several domains: robotic path plan-
ning, extended STRIPS, and so on.

" Abstraction: Prodigy is capable of learning abstraction hierarchies (for 2.0
version hierarchical planning) by analyzing the domain definition
(operators, inference rules, relations and objects) in order to identify critical
paths and solve problems by first addressing the most important and con-
tentious issues and later reintroducing other details progressively. Multi-
layered abstraction hierarchies were produced automatically for domains
as simple as "tower of Hanoi" and as complex as machine-shop process
planning and scheduling. Performance improvements comparable to those
of EBL were obtained (2X to 1OX), and future research will address the in-
tegration of both methods to determine whether their combination is
capable of higher (additive or multiplicative) performance improvements.

" Derivational Analogy Unlike EBL and Abstraction, DA does not require a
full domain definition to learning from experience. In essence, DA stores
past solution paths to problems in a large case memory indexed by goal,
initial state, etc., and retrieves these solutions when encountering new
similar problems in future situations. Retrieved solutions are "replayed";
that is, the same lines of reasoning are recreated, modifying the final plan
as necessary to accommodate differences between new and old problems.
Although DA can require a large case memory and pay an overhead price
for indexing and retrieval, experiments have shown that improvements in
performance of up to 20X have been demonstrated in nonlinear planning
tasks. Future research will address the scaling up issue and the integration
of DA with EBL and Abstraction to see if is possible to obtained the com-
bine best behavior from all three.

All three of these learning mechanisms have been implemented and tested in a num-
ber of domains. Other learning mechanisms have been explored but not found as effec-
tive. New ones, however, will continue to be explored in a systematic manner thanks to
the common performance engine, domain definitions that allow rapid testing and
evaluation, and easy integration.
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1.4.3. Comparison of Soar and Prodigy
Soar and Prodigy are both exploring mechanisms, built in at the architectural level,

that facilitate integrated problem-solving and learning. An important similarity between
the two architectures is that each is built around a relatively simple general problem sol-
ver whose performance improves incrementally through the acquisition of factual and
control knowledge for each domain. The differences arise from the different goals and
assumptions of each project:

" Access to long-term memory: All the knowledge used or acquired in any
Prodigy module is open for inspection and use by every other module, a
discipline made possible by the use of a uniform logic-based representation
of all control and factual knowledge. In contrast, once a Soar chunk is
formed, its contents are not open to inspection or modification. Prodigy's
structure is based on the desire for representational transparency, while the
structure in Soar is based on psychological plausibility and efficiency con-
siderations.

" Variety in learning vs. variety in problem solving: A number of learning
strategies are diptinct architectural mechanisms in Prodigy: explanation-
based learning, analogy, abstraction, experimentation, static analysis, tutor-
ing, etc. Soar has a single architecturally-defined learning mechanism,
chu, iking, but can exhibit the functionality of the different learning
mechanisms if it can use the appropriate knowledge during problem solv-
ing. Similarly, Prodigy embodies a commitment to a single problem-solving
method, backwards chaining, while Soar has been provided with default
knowledge to use a variety of the classical weak problem-solving methods,
including means-ends analysis, lookahead search, hill-climbing, etc.

" Deliberative vs. reflexive learning: Prodigy acquires new knowledge only
when it believes that knowledge will be useful; learning is a deliberate
meta-reasoning process. Soar, on the other hand, learns all the time,
based on the assumption that the future utility of learned knowledge cannot
be predicted in a general way.

1.5. Automated Feature Analysis
Since the fall of 1987, the Digital Mapping Laboratory has been investigating

knowledge-intensive techniques for the detailed analysis of remotely-sensed imagery.
Our strategy has been to develop rule-based scene interpretation systems for airports
and urban areas. This work has resulted in the design and implementation of several
rule-based image analysis systems and supporting work in knowledge acquisition and
performance analysis tools.

We expect to establish specific performance levels for automated feature extraction
techniques that can be used in emerging modernization programs within DoD and the
intelligence community. While there are high expectations for the utility of knowledge-
based systems as intelligent aids for imagery analysts, concrete results and prototype
implementations are still in their infancy.
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We have focused our efforts in two broad areas. We will begin by describing our ad-
vances in the area of knowledge acquisition, followed by our accomplishments in apply-
ing task-level parallelism to rule-based systems.

1.5.1. Acquisition of Spatial and Functional Knowledge
For rule-based systems to be at all practical, it is important that there are tools avail-

able to create, maintain, and evaluate a system's knowledge base. By the spring of
1987, we had already embarked on an effort to aid in the interactive accumulation of
spatial knowledge for SPAM. This included:

* Pioneering the development of techniques for the automatic compilation of
spatial and structural constraints into OPS5 productions, which can be
directly executed by the SPAM interpretation system.

* The integration of automated performance evaluation tools in order to study
the effect of various types of knowledge in the quality of the overall scene
interpretation. This work relies on a database of human generated ground
truth interpretations.

This work made it possible to extend the scope of the SPAM system from its original task
of analyzing airport scenes to also be able to interpret suburban house scenes.

From the Fall of 1987 through the Spring of 1988, a suite of tools was developed for
interactive knowledge acquisition. This collection includes tools for result evaluation, as
well as for knowledge acquisition and compilation.

" RULEGEN, a compiler that converts knowledge represented as schemata
into OPS5 productions.

" PHOTOGRAM, a photogrammetric measurement module.

* SPAMEVALUATE, an interactive tool for graphically "navigating" through and
evaluating the results generated by a SPAM run. This includes tools for ac-
quiring knowledge for the first (RTF) and second (LCC) phases of SPAM.

" SPATS, an automated performance analysis system which uses ground
truth scene segmentations to analyze scene interpretations produced by
SPAM, our knowledge-intensive scene interpretation architecture.

Tool refinement and development has continued throughout the duration of this contract
and beyond. For example, we have developed and tested automated (unsupervised)
methods for knowledge acquisition. Our current expectation is that such methods,
though marginally useful by themselves, will be useful as methods of suggesting ap-
propriate rules to the user of an interactive acquisition system.

We continue to investigate techniques for representing functional and spatial con-
straints, typically used by cartographers and imagery analysts, in an automated
knowledge acquisition system. This work has provided, and will provide, important in-
sights into the feasibility of automating the process by which scene interpretation sys-
tems acquire new tasks and become more proficient in old ones. Therefore, this con-
tinues to be a major emphasis in our research.
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1.5.2. Parallel Execution of Rule-Based Systems
Large production systems (rule-based systems) suffer from extremely slow execution

that limits their utility in practical as well as research applications. Efforts focusing on
match (knowledge-search) parallelism have not yielded sufficient speedups.

In the Fall of 1988, with our knowledge acquisition tool suite operational, we began to
investigate the application of task-level parallelism to high-level vision. We used the
SPAM interpretation system, comprising over 700 OPS5 production rules, as the basis of
our investigations to:

* Measure how task decompositions yield effective parallelism;
" Study scheduling issues due to task granularity;
" Study interactions between knowledge-search parallelism and task-level

parallelism.

Our initial investigations focused on a SPAM processing phase that used task
knowledge to apply and propagate local spatial constraints between object hypotheses
in a scene. We used the airport interpretation task, which applies general and structural
constraints to airport layout. The interpretation phase, local consistency check (LCC),
takes between 40 and 140 hours of CPU time on a VAX-1 1/785.

After some initial attempts revealed difficulties in dealing with a Lisp-based implemen-
tation, and to capitalize on the best existing technology, we reimplemented SPAM in
ParaOPS5, a C-based, optimized, parallel implementation of OPS5. This provided us
with an initial 10-20 fold speed-up over the original Lisp-based SPAM. This move has
also enabled us to port SPAM to several different hardware platforms, including including
the Encore Multimax, the DEC 3100, and the Sun SPARCstation.

We can decompose SPAM's LOG phase computation into independent subtasks at dif-
ferent granularities, and our intent was to attempt to discover the optimal granularity.
We experimented with two different decompositions, level 3 and level 2. Level 3 has
50-200 independent subtasks, each executing in approximately 5 seconds. Level 2 has
400-1000 available subtasks, each executing in approximately 1.5 seconds.

We performed experiments on the Encore Multimax, using three large data sets
representing three different airports. The results are reported in Section 1.1.2 of this
report, as part of our cooperative work with Task Level Parallelism.

Our local computing environment has two Encore Multimax machines, each with 16
processors. In the Spring of 1988, SCS researchers made available the shared
memory server, providing a virtual 32-processor shared memory machine. At this time,
we began investigating the shared virtual memory system, which provides a virtual ad-
dress space among all processors in a loosely-coupled multiprocessor. Introducing
shared virtual memory into the SPAM/PSM system was more complex than our initial ex-
pectations. In this configuration, the programmer has to be more sensitive to allocating
data structures to pages in order to avoid contention. Though many problems with this
configuration remain, we were able to show that significant speedups are possible (15-
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fold speedup using 22 processors) and that the overheads associated with using the
shared memory server are not excessive.

Our latest work in the area of task-level parallelism (TLP) has emphasized making it a
usable tool for SPAM researchers. We continue to make performance improvements to
the baseline CParaOPS5 system, such as improving memory efficiency. We have also
removed some of the experimental features of the TLP implementation, such as the
throwing away of computed results when the execution terminated. In the process, we
have identified and measured the contention on several shared resources and, in some
cases, have been successful in removing the contention. Though the system has
produced good speed-ups (12.5-fold using 14 processors), we believe there are still im-
provements that can be made. This continues to be a topic of investigation.
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2. RESEARCH IN IMAGE UNDERSTANDING
Image understanding is a technology with applications in diverse tasks, including

aerial photointerpretation, automated manufacturing, and robot vehicle guidance. In the
past, efforts at image understanding have largely relied on heuristics that use over-
simplified models of image and scene. This approach typically produces "brittle" sys-
tems with limited scope and capability. Our research aims at making breakthroughs in
all aspects of the problem by introducing more sophisticated models of object
properties, sensor data, and the imaging process, and by showing how to incorporate
these models into demonstrable systems. We concentrate in six areas:

e Understanding image color and texture
* Extracting shape and reflectance
o Determining visual depth and camera motion
* Developing a framework for model-based computer vision
* Acquiring 3-D recognition algorithms
* Fast rangefinding by analog VLSI

2.1. Understanding Color and Texture
Low-level vision systems can succeed only when they adequately account for com-

plex features such as color and texture. Oversimplified models have, in the past, led to
programs that cannot deal with the complexity of real images. Our research in color
and texture understanding aims to develop more realistic models that allow the
representation, analysis, and, hence, "understanding" of complex image effects.

2.1.1. Understanding color
Color offers a rich source of information for analyzing images. However, previous

color analysis efforts assumed random color variations and so employed simple statis-
tical approaches for modeling color. Such methods failed to extract such basic infor-
mation as object boundaries. We have been developing an approach to understanding
color based on modeling the physical processes that produce images. This goal re-
quires modeling the illumination of a scene, the way scene objects reflect light, and the
way in which the color camera records the image. These models relate characteristics
of scene and camera to the resulting color properties of the image. Our model allows
us to develop methods that can extract, from image data, important information about
the scene.

One of our primary thrusts in this area is modeling the physical laws of reflection and
how they determine color in an image. In this work, we previously developed a
Dichromatic Reflection Model that describes the physical cause of gloss, or highlights,
and object color, which is the characteristic color of an object. For many dielectric
materials such as paint and plastic, these reflections have different colors. The color
difference can be described mathematically by applying the laws of color physics.
Then, by using the equations that describe how color images are formed, we obtain a
model that relates the light reflected by this type of object to the distribution of color data
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in the image. From this model we derive an algorithm to analyze color images. In
1987, we successfully used this algorithm on actual color photographs of plastic objects.
In these demonstrations, we produce two images: One, with the highlights removed,
shows just the object's body color; the other contains only the highlights. This result is
of considerable importance in computer vision because these resulting images have a
much closer correspondence to the underlying geometry of the scene than the original
color image. For example, in analyzing surface smoothness and defects, the image of
highlights shows these features plainly, whereas they are quite subtle in the original
photograph.

In addition to modeling reflection, we developed several methods for modeling the im-
aging process. Many vision algorithms assume an ideal camera that obeys simple im-
aging equations. Unfortunately, such an instrument does not exist, and we must con-
sider the effects of real imaging systems in order to ensure that our algorithms will work
on real images. Our work began with implementing previously developed techniques
that compensate for nonlinear intensity response.

We have also developed methods to compensate for color-filter brightness effects
and the limited response range of color video cameras. Color-filter brightness effects
derive from the fact that certain filters are optically denser than others. Our new method
for "aperture balancing" compensates for this phenomenon while preserving the best
signal-to-noise ratio the camera can produce. The limited response range of video
cameras means that very bright points such as highlights will saturate the camera,
producing maximally white data points instead of true image colors. Our reflection
analysis method can detect this effect and compensate for it by estimating the true
colors, even in areas that have saturated the camera in one or two of the three color
bands.

Integrating segmentation and reflection analysis
Our next challenge was to eliminate the heuristic process that must segment an im-

age into individual objects before we can analyze reflections. We addressed this
problem by developing a new segmentation method that incorporates the Dichromatic
Reflection Model into the earliest stages of visual analysis.

Many computer vision algorithms for image understanding begin by breaking up the
scene into regions that correspond to a single object, and then attempting to analyze
each of these regions. The problem is that the presence of highlights will fool segmen-
tation algorithms into thinking highlight regions are separate objects. Any analysis
program that proceeds from there will have difficulties since the regions will not correctly
correspond to individual objects. A preferable method is to analyze the highlights first
so they can be correctly recognized as belonging to their surrounding objects.

We showed that according to the model, each pixel neighborhood in the image can be
classified into one of several categories such as "matte" or "mixed matte and highlight"
based on the statistics of the colors within the neighborhood. We then developed a
variation of region-growing to utilize these classifications in the segmentation process.
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As each region is formed, a corresponding hypothesis is generated that describes the
way in which the color varies within that region. This description consists of the dimen-
sion and direction (principal axes) of the color variation. The criterion for region-growing
is to find all the adjacent pixels that conform to a single hypothesis. The result is a kind
of region-growing algorithm that differs from the traditional approaches in an important
way: instead of grouping pixels by conformance to a single color, the pixels are
grouped by conformance with a single color description. Thus all pixels that have the
same color dimension and principal axes are considered to belong to the same group.
Since the Dichromatic Reflection Model says that plastics will exhibit two colors, the
highlight color and the underlying object color, all the pixel neighborhoods correspond-
ing to a given plastic object will have variation along two dimensions and in the same
directions. Thus, our algorithm works better than traditional methods, since it success-
fully recognizes that highlights and shadow regions are parts of an object rather than
being separate objects. This is the most successful approach ever proposed for this
classical problem in segmentation [Klinker et al. 88a]. The color separation into the two
reflection components (highlight and body color) that was done on hand-segmented
images in 1987, is now an additional byproduct of the new segmentation method from
1988.

Calculating color-constancy
We also studied how illumination color affects the color measured by a camera. This

effect underlies several important problems in low-level vision including color constancy
and the estimation of illumination and object colors. We have developed a new math-
ematical formulation to allow fast and accurate calculation of color constancy and the
illumination color. This method uses a system of linear equations based upon con-
straints generated by the camera measurements of a test target. This mathematical for-
mulation can be used when the image data are noisy; we can use error estimation to
determine how to reliably calculate object and illumination colors.

Our method calculates color constancy and illumination color by explicit reference to
the full spectrum of color rather than only the red/green/blue (RGB) components. This
allows us to model effects such as color metamerism that cannot be modeled in the
lower dimensional RGB space. However, in order to do computer processing, the
spectral functions need to be represented in a finite manner. We have found that
representing the spectral functions as a weighted sum of Legendre polynomials (sug-
gested by Binford and Healey) works much better than sampling the function at regular
intervals. This is because we solve the linear constraints using least squares estimation
which suffers when variables have a nearly linear relationship. Since most spectral
functions are fairly smooth, a given sample is close to equaling a linear combination of
nearby samples. This causes trouble for least squares estimation which assumes that
variables are independent.

Our method of color constancy allows us to recover a very precise representation of
illumination color by use of a test chart with several colors on it. Each observation of a
known color gives constraints for the possible spectral make-up of the unknown il-
lumination. Solving for these constraints gives us an estimate of the illumination. In the
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past, a white card has sometimes been used to give an estimate of the color of the il-
lumination. In a typical camera with three color primaries, this only yields three con-
straints upon the illumination. A test chart with n color patches creates 3n constraints in
a three-primary camera system. Furthermore, the test chart is a reliable referent, since
we know it is in the scene and we know the colors on it. This makes the algorithms
more reliable than some previous algorithms which made ad hoc assumptions about
images which are not always true (e.g. the brightest point in the scene corresponds to a
white object).

Handling image noise
We then applied our algorithm to simulated images which included a model of camera

noise. Once the incident illumination has been estimated, the color appearance of any
object with known reflectance can be very reliably predicted. In 1989 we showed that
our algorithm may be adapted to a neural network model, so that the network solves the
constraints. We also showed that our method may be extended to the more general
vision problem where the spectral reflectance function of interesting objects is not
known in advance. Just as images of several known colors under an unknown illumina-
tion give constraints upon the illumination, images of an unknown objeci unoer several
known (or estimated using our technique) illuminants give constraints upon the object's
spectral function, allowing us to solve for these constraints and estimate the object's
reflectance function.

One limitation of both our color constancy algorithm and the Dichromatic Reflection
algorithm is that they assume that there is only global illumination. This is a common
simplifying assumption based upon the model that there is a single light source and that
it reflects light onto objects which in turn reflect that light into the camera. In this simple
model there is no interaction between objects in the scene. However, in reality, light
from one object may reflect onto another, altering the second object's appearance. Of-
ten these interreflections will cause a dramatic color change over a very small area of
the object.

Exploiting interreflection
We developed a quantitative model of color in scenes with interreflection among mul-

tiple objects. We found that our Dichromatic Reflection Model extends naturally to
model interreflection. The result is a model of interreflection between two objects in
color space. We simulated this type of interreflection between two idealized cylinders
and showed the causes of sudden changes in hues observed in interreflection in real
objects. In the second half of 1989 we obtained actual images of interreflection be-
tween objects and verified that our model is at least quafitatively correct - that it cap-
tures many of the features that appear in actual images.

Rather than than treating interreflection as a source of noise in the images, we plan to
use it as an additional source of information about the scene. We examined how inter-
reflection can give important clues about the surface properties of objects in the scene.
The properties of note are roughness, shininess (percentage of light reflected at the sur-
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face), and metallic/nonmetallic material type. The image of an object under a single
light source may lack info - qtion sufficient for determining such surface properties.
Since interreflected light follows the same laws of physics as reflected light, other scene
objects that are reflecting light onto the primary object can provide additional information
about these surface properties.

2.1.2. Understanding texture
To better understand imagery texture and its role in surface and object properties, we

are studying the perception of regular texture repetitions. The central issue is a
chicken/egg problem; the texture element is difficult to define until the repetition has
been detected, but repetition cannot be found until the texture element is defined. To
break this cycle, past research has made strict assumptions about either the texture ele-
ment definition or the repetition pattern. The resulting programs work only in limited
kinds of image texture that happen to comply with the assumptions. We are seeking
ways to use much more general models: entertaining several hypotheses at one time
and using overall relationships among image features.

We have made substantial progress on this approach through combining two develop-
ments. The first is the "dominant feature assumption," which states that a repetitive
texture pattern should contain some particular feature within the texture element that is
more visually prominent than all the others. By looking for repetitions of just this fea-
ture, it is possible to screen away all the other data and arrive at a computationally tract-
able algorithm for texture analysis. The dominant feature assumption does limit our
systems, but it is still quite general. In particular, textures that people perceive easily
seem to correspond generally with textures that obey the dominant feature assumption.

The second development is a theory of repetition description that shows how to
characterize any two-dimensional repetition using two selected image vectors. The
theory is so compact that it has led to a simple algorithm that is provably correct in
detecting the vectors that describe any regular two-dimensional repetition. This algo-
rithm uses a new definition of image connectedness based on the six-connected neigh-
borhood graph, a graph that connects the nearest neighbor within each 60-degree sec-
tor around the feature points in the image. The graph has simple and important
geometrical properties that facilitate its use in analyzing repetitive texture patterns. Fur-
thermore, rather than imposing a single-grid structure on the texture in an image region,
our method allows the structure to vary systematically across the region. This
generality allows us to apply our method to the deformations (which often vary sys-
tematically) that arise in real-world image textures, such as patterns on fabric or
perspective texture gradients (foreshortening) on tall buildings. We have successfully
applied this method to several images of textured objects.
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2.2. Extracting Shape and Reflectance
We have been working towards enhancing our understanding of surface reflection.

Most machine vision problems involve analyzing images that result from reflected light.
The apparent brightness of a surface point depends on its reflectance characteristics,
that is, its ability to reflect incident light in the direction of the sensor. Therefore, image
intensity interpretation requires a sound understanding of the various mechanisms in-
volved in the reflection process.

There are two approaches to the study of reflection: physical optics, which uses the
wave theory of light to generate accurate models, and geometric optics, which provides
a fast method of approximating physical models. In physical optics, the wave theory of
light is used to accurately model reflection and diffraction. Geometric optics ap-
proximates light as traveling in straight lines, giving much simpler models of optics.
While geometric models may be construed as mere approximations to physical models,
they possess simpler mathematical forms that often render them more usable than
physical models. However, geometric models are applicable only when the wavelength
of incident light is small compared to the dimensions of the surface imperfections.
Therefore, it is incorrect to use these models to interpret or to predict reflections from
smooth surfaces; only physical models are capable of describing the underlying reflec-
tion mechanisms. To benefit from the advantages of both approaches, we proposed a
unified reflectance model composed of the simple elements from each approach. We
then reduced this model to a hybrid model that linearly combines Lambertian (diffuse)
and specular ("mirrorlike") reflectance components.

Using the hybrid model, we developed a shape and reflectance extraction technique
that does not rely on a predetermined reflectance map as do previous shape-from-
intensity methods. This new technique is called photometric sampling and consists of
eight lights arranged in a circle around an object. These light sources are placed
several inches away from the object in the center and are known as extended light
sources. The extended light sources ensure the detection of both Lambertian and
specular components. The image intensities recorded at each surface point are used to
compute local estimates of surface orientation and reflectance parameters. The method
can therefore adapt to variations in hybrid reflectance from one surface point to another,
including the extreme cases of purely Lambertian and purely specular behaviors.

2.3. Visual Depth and Camera Motion
To navigate and act in a poorly known environment, a robot must see. It needs to

buiid a map of its surroundings, in order to know where it is and to plan where to go
next. While moving, the robot must be able to verify that the commands issued to its
motors produce the desired trajectory with respect to landmarks in the world. In order to
manipulate objects carefully, the robot must perceive their shape, usually to a high de-
gree of accuracy.

Although active sensors have been used with increasing levels of performance for
these types of tasks, passive, camera-based vision remains attractive in a wide variety
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of situations. Our research goal has been to use input from mobile cameras to estimate
both environment geometry and camera motion. Abstractly, this process amounts to
using data from a sequence monocular or binocular images to map the environment
and track the camera's trajectory within the map and over time. When it is referred to a
sensor-centered frame of reference, this map is usually called a depth map.

This problem has challenged researchers in robotics for a long time. The math-
ematics of how shape in the world combines with the motion of the camera to produce
the flow of patterns in the image is fairly well understood. In spite of this, the inverse
process, from images to motion and shape, has been known to be among the hardest in
computer vision.

There are two main reasons for this. One is that both shape and motion are very sen-
sitive to noise in the images. The more distant the objects are in the field of view, the
more serious this problem becomes. The other reason is that the combination of shape
and motion into image sequences is an inherently nonlinear transformation. Shape and
motion are tightly coupled to each other, and errors in one quantity propagate to errors
in the other, creating instability and lack of convergence to the true values. These two
issues, noise sensitivity and coupling of motion and shape, were the two crucial
problems we faced.

Our work has shown that the multiframe estimation of depth and motion based on
stochastic models is a viable and effective method for obtaining high quality depth maps
and a good estimate of the robot's motion. Furthermore, the problem of initializing the
estimates is adequately solved by our multistage strategy, which is both practical and
accurate for navigation purposes.

2.3.1. Reducing noise sensitivity
Noise sensitivity can be lowered by using more image frames, and having the camera

move more between frames. Multiple images are the obvious line of attack when noise
is a problem: Statistical estimation has proven a very effective tool, and we chose to
exploit its power for the interpretation of visual motion.

The advantage of a wider interframe camera motion, on the other hand, is related to
the use of stereo triangulation as the essential means for the recovery of depth. The
wider the triangulation baseline, that is, the camera motion between frames, the lower
the sensitivity of depth to image noise. Unfortunately, a wider baseline makes it more
difficult to identify corresponding points in different images, since weaker geometric con-
straints can be assumed to hold during the search for correspondences. Furthermore,
images taken from distant viewpoints look different from each other and are thus harder
to relate.

Thus, there is a dilemma between a wider baseline for good noise rejection and a
smaller baseline for an easier correspondence problem. We chose to solve this
dilemma by using closely spaced image frames to establish correspondences and ob-
tain initial depth estimates. We then use this noise-corrupted knowledge of depth to
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restrict the search for correspondences in a wide-baseline stereo system, thus achiev-
ing good depth accuracy.

2.3.2. Integrating shape and motion
We approached the other key issue, the coupling of shape and motion, by proposing

a solution in stages, so that depth and motion could be effectively be estimated at
separate times.

As a concrete basis for the introduction of these ideas, we now sketch the stages in
our solution. Initially, the robot does not move. Instead, one camera is translated in a
carefully controlled fashion by a positioning platform. As the camera moves, images are
taken at closely spaced intervals. Although each pair of successive images, having a
small baseline, yields poor depth estimates, the latter can be combined probabilistically
into better and better depth maps. Once an approximate depth map is obtained, a
calibrated, two-camera stereo system refines the map.

Then, the robot starts moving. Uncertain knowledge of motion from mechanical
measurements can be used to propagate the depth map, that is, to change it to reflect
the robot's motion. The new depth map can then be used to initialize a new binocular
stereo measurement, without using the translation stage, and without having to stop the
robot. The stereo triangulation at this stage is relatively easy to perform, berause the
correspondence problem is simplified by prior depth information from propagation, but
leads to accurate measurements, because it is characterized by a wide baseline.

In summary, as the robot navigates, a depth map can be propagated and refined.
Given two successive depth maps, a three-dimensional registration algorithm then com-
putes the transformation between the maps, thus refining the coarse motion measure-
ments into an estimate that improves over time.

2.3.3. Developing a stochastic model
To design and analyze this system and to combine the ideas of multiframe estimation

and decoupled recovery of depth and motion, we developed a paradigm in which scene
depth, camera motion, and image sequences and pairs could be modeled in probabilis-
tic terms. Most previous work in the literature has ignored noise and, more generally,
measurement uncertainty, leading to brittle methods that tend to fail when confronted
with the noise that arises in real data.

The theory of stochastic dynamic systems proved to be the right formulation for the
problem of depth and motion computation. Image noise and uncertainties in the
mechanically measured camera motion are modeled as random variables. Their effects
on the depth map and on the robot location estimates are analyzed with the techniques
of error propagation.

Within this framework, depth and motion estimation can be performed in an incremen-
tal fashion by using Kalman filtering techniques. With this approach, the running es-
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timates of both depth and camera motion are updated with each new image, or image
pair, that is obtained. In the initial, controlled-motion stage of depth estimation, image
displacements are measured by correlating intensity windows in adjacent frames. The
depth values obtained by triangulation between frames are then weighted against the
current estimates, obtained from previous frames, based on the associated uncer-
tainties. As a result, new depth values and reduced uncertainties are obtained at each
step in the camera motion.

Similarly, for the propagation of depth maps and the refinement of motion estimates
during robot motion, we use an iconic representation of uncertainty that stores the depth
estimate and variance at each pixel. Camera motion, and the resulting changes in the
depth map, are described as dynamic systems, whose variations over time are them-
selves corrupted by noise. Kalman filters then operate in an interleaved manner to in-
corporate new depth measurements, from stereo triangulation, and motion measure-
ments, from mechanical sensors.

In previous work in the field, the analysis of image sequences could not rely on the
appropriate probabilistic representations and algorithms for the combination and refine-
ment of uncertain knowledge. As a consequence, visual motion interpretation was
usually performed in a "batch mode" at the end of the motion, thus severely limiting its
applicability in realistic applications. With our approach, on the other hand, we obtain
results as soon as possible, and refine their quality over time. We compared our depth
estimation method both mathematically and experimentally to previous feature-based
algorithms. Our results show that lateral camera motion is in fact effective, and that our
incremental method can produce results just as good as the best previously known
"batch" technique.

Also, the use of an iconic representation of depth produces a denser estimate of
depth that is available from previous edge-based techniques, while competing with the
convergence rate and accuracy of the latter. Experiments with images of a flat poster
have confirmed this analysis and given quantitative measures of the performance of
both types of algorithm. Experiments with images of a realistic outdoor-scene model
have shown that our algorithm performs well on images with large variations in depth
and that even occluding boundaries can be extracted from the resulting depth maps
[Matthies et al. 88].

In our current work, we are integrating a model for the correlation between adjacent
flow estimates in the images into the Kalman filtering framework. The modeling of cor-
relation, which is presently ignored in our system, is likely to produce more robust and
accurate depth estimates, and to improve the convergence speed of the Kalman filter.
The central mathematical components of this extension are Bayesian estimation
methods applied to random-field models of a range map. We developed the basic math-
ematical models and operational strategies underlying this extension [Szeliski 88], and
are continuing the experimental evaluation of these ideas.
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2.4. A Framework for Model-based Computer Vision
Three-dimensional object description and reasoning is critical for many image under-

standing applications, such as robot navigation and 3-D change detection. A system for
3-D image understanding must include geometric reasoning as a primary component,
because geometric relationships among object parts are a rich source of knowledge and
constraint for image analysis. Unfortunately, most work in 3-D image understanding
has utilized limited solid or surface models and a fixed order of analyzing image fea-
tures. Such systems perform poorly since they cannot exploit specific properties or
relationships within any given image. Our research is aimed at developing a more
general framework for representing 3-D models and relationships, so that vision sys-
tems can fully exploit specifi, information contained in each image.

We have 1een developing a system called 3DFORM, based on the Framekit frame lan-
guage defined on Common Lisp. The system includes several features that improve on
earlier work:

" Extensible models: 3DFORM uses frames to model object parts and
geometric relatiors, which make it easy to extend the system and incor-
porate new features. The frames are arranged in a class hierarchy, so a
new class can be defined by simply specifying differences from existing
classes.

" Two-way reasoning: 3DFORM includes explicit modeling of projections from
the 3-D scene to the 2-D image and back, permitting a program to reason
back-and-forth as needed.

" Optimized computation: Active procedures can be attached to the frames
to dynamically compute values as needed, avoiding unnecessary computa-
tions.

" Flexible control flow: The order of computation is controlled by accessing
objects' attribute values, a strategy that allows the system to perform top-
down and bottom-up reasoning as needed.

" Elimination of external "focus of attention": There is no need for an external
"focus of attention" mechanism, which in past systems has sometimes
been a complex and problematic item to construct.

" Incremental representation and reasoning: Objects may be specified in-
completely (or by placing constraints on them) as opposed to requiring full
and complete descriptions.

2.4.1. Combining top-down and bottom-up reasoning
We have been extending the system's capabilities to model more complex parts and

relationships such as the relationship of polygon vertices to the lines that form the
edges of the polygon. When these relationships are evaluated, the side-effects include
creating hypotheses for the missing or incomplete parts of each object. We have also
been adding a mechanism for relationships at different levels of the part/whole hierarchy
to interact with each other. Then when one feature is added to the interpretation, it can
trigger reasoning processes at other levels of the hierarchy. This provides a rich struc-
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ture for combining top-down and bottom-up reasoning in a single mechanism. We have
successfully used our new developments to analyze images in which many of the im-
portant features have contrast too low to be analyzed by traditional bottom-up methods.

We applied our initial version of 3DFORM to two task scenarios. The wireframe task
begins with partial and noisy sets of line segments derived from an edge operator. The
system forms complete 3-D building hypotheses from this data by applying general prin-
ciples, such as the fact .hat buildings tend to have vertical walls. 3DFORM is able to
create building models even where individual edges may be too low in contrast to be
detected reliably, using the context provided by the visible edges plus general 3-D
reasoning.

Our other task is geometric interpretation of shadows. We utilize the shadow
geometry framework - developed in 1983 as part of our DARPA-sponsored image un-
derstanding research -which defines a "Basic Shadow Problem" that occurs
repeatedly in complex images. This situation is represented in a 3DFORM frame. The
frame is then evaluated wherever the s:tuation occurs in the image. Although this has
not yet been integrated into an actual system for aerial photointerpretation, it
demonstrates the power of a general 3-D reasoning system for easily assimilating new
and relevant theories and applying them to image data.

2.4.2. Merging distinct views
We've also applied our modeling framework to merge 3-D data sets derived from dis-

tinct views of a single object [Walker et al. 88]. The system assembles a model for each
view, determines whether the models are compatible, and if so, creates a new one
satisfying constraints from each source view. In this way, using two partial models, we
can create a third compatible with and more complete than either. We combine con-
straints of multiple models by adding the attributes (including relationship constraints) of
one to another, and using attribute slot daemons to determine compatibility. If a par-
ticular attribute is constrained to a single value, the value will be automatically computed
the next time it is required. We can use the process not only on multiple views of a
single object, but also to combine data from multiple sensors, or to match a partial
description of a sensed object with a previously entered model while determining the
pose of the object.

We then refined portions of the system, especially its ability to maintain equivalence
between different representations of the same object. Single subpar's can now fill more
than one role in modeling complex geometric objects. For example, a horizontal edge
at the top of a building is one of the roof edges as well as the top of one wall. There-
fore, when 3DFORM hypothesizes a new roof edge, it must also hypothesize a wall with
the new edge at its top. We employ the system's matching capability to merge the
newly hypothesized wall with one that is already supported by the data. We also use
the notion of equivalence when grouping objects into more complex objects. For ex-
ample, when several walls define a building, the system hypothesizes a roof bounded
by the wall tops.

2-11



2.5. Acquiring 3-D Recognition Algorithms
Historically, and even today, most successful model-based vision programs are hand-

written: Relevant object knowledge is extracted from examples, tailored to the particular
environment, and hand-coded into the program. When done properly, the resulting
recognizer is effective and efficient, but its development time and demands on machine
vision expertise are high.

To simplify the process, we have developed a vision algorithm compiler (VAC) that
automatically generates vision programs. Rather than requiring extensive time from
highly skilled implementors, a VAC can generate a vision program for a well-defined vi-
sion task automatically, given adequate models of objects, sensors, and processing
techniques.

Establishing VAC technologies required developing several key components:
" Object models that describe the geometric and photometric properties of a

target object
" Sensor models that predict object appearances for a given object/sensor

combination

" Strategy generation that uses predicted appearances to prescribe an ap-
propriate recognition methodology

* Program generation that converts a strategy into a executable code.
We have completed designing a VAC for bin-picking tasks and generated several object
recognition programs.

2.5.1. Modeling objects
Surveying existing solid modeling systems, we found they suffer two fundamental

limitations that preclude their use for our purposes. First, they are designed primarily for
the generating display images and therefore do not yield explicit symbolic information
about the image structure. Extracting symbolic shape information from the image
representation in such systems is difficult, for example. Yet our work requires such in-
formation. Second, current systems use closed architectures and hide their internal
data structures from the user. This design makes such systems difficult to modify or
enhance for sensor modeling.

Thus we embarked on designing a new solid modeler - and appropriate user inter-
face - to support our research. Our system uses the Framekit language and so
provides an open architecture and explicit symbolic representations of all the com-
ponents: sensors, objects, and images. Our Vantage solid modeler offers:

" Explicit representation of 2-D image features (lines, polygons, etc.) in ad-
dition to 3-D solid objects. This feature allows us to reason about relation-
ships within the image, crucial for computer vision.

" Implementation as a Common Lisp package allows Vantage to interface
with other packages such as low-level vision, graphics display, and robot
arm control.
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* An open, frame-based architecture makes it easy for vision and robotics
researchers to extend data structures as needed for specific research
tasks.

2.5.2. Modeling sensors
A recognition program observes an object's 2-D appearance and so requires a cor-

responding 2-D representation. Since model-based systems frequently use active sen-
sors, their 2-D models must integrate both 3-D object information and sensor limitations.
That is, they must be able to represent an object's appearance as the interaction be-
tween object model and a model of "sensor detectability" that describes where the sen-
sor can "see."

For our system, we have developed a versatile method of representing sensor detec-
tability. We first define a "G-source," an abstract sensor component that may be either
a light source or a camera, and illumination conditions that specify under what con-
ditions the G-source illuminates surface portions. With this concept, we can represent
sensor detectability as a set operation on G-source illumination conditions.

We developed a method to model sensor capabilities and established an interface
tool to the Vantage system and implemented sensor modeling in Vantage. Using this
framework, we have described stereo vision, photometric stereo, a lightstripe ran-
gefinder, and synthetic aperture radar (SAR) [Ikeuchi and Kanade 88a].

2.5.3. Generating a recognition strategy
With an ability to model a given object and sensor, we next turned to the problem of

how to generate an effective recognition strategy. We chose to focus on object localiza-
tion in bin-picking. There we need analyze only the topmost, usually nonoccluded, ob-
ject in a jumble of identical parts. We decompose the task into two distinct parts:

" Aspect classification(AC)-An image of an object is classified into one of a
small number of topologically distinct appearance groups called aspects.
Each aspect represents a collection of viewpoints within which the object
"looks roughly the same" according to a mathematical criterion.

" Linear shape change(LC)-With the rough estimate of position and orien-
tation from aspect classification, we can initialize a more accurate proce-
dure that matches model features to observed image features.

Within this framework, a workable VAC technology requires solving three basic
problems:

* Aspect generation - How to extract aspects from given object and sensor
models?

* Aspect Classification - What kinds of features to use for aspect classifica-
tion?

- Linear change determination - What kinds of features to use for determin-
ing the object's precise attitude and position?
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Generating aspects
An "aspect" is a class of objects having topologically equivalent visible structure. We

have modified this definition somewhat to describe the class of object appearances
having faces visible to a specific sensor. Using this definition, we developed a method
that, for given object and sensor models, systematically groups object appearances into
like "aspects" [Ikeuchi and Kanade 68b]. Our exhaustive method generates various ap-
pearances of an object from uniformly sampled viewer directions under a given sensor
model. It then classifies the generated appearances by examining combinations of
visible faces. We have implemented this method atop the Vantage geometric/sensor
modeler modeler. From a given object and sensor model represented in Vantage, we
can generate aspects automatica!ly [Ikeuchi and Kanade 88c].

Classifying aspects
We have developed two different methods to generate an aspect classification

strategy. Both methods provide an interpretation tree representing what features to ex-
amine, and in what order, during aspect classification. Each node represents a clas-
sification decision. It stores a necessary feature type and threshold value for the clas-
sification. Each leaf node corresponds to one particular aspect.

The first method recursively subdivides possible aspects by available features.
Generation of the strategy begins creating a group of all possible aspects. The process
examines whether one feature can divide a group of aspects into subgroups. If so, the
process registers the features and their threshold values. This operation is applied
recursively to a group of aspects along a fixed set of features. The process stops when
all groups consist of single aspect or the available features are exhausted. While this
method can generate an aspect classification strategy, it offers but no guarantee that
the obtained strategy is optimal.

To address the optimality issue, we then developed another method that constructs a
minimum cost strategy. Each operation that can be performed during aspect classifica-
tion was analyzed to determine its computational cost. This enabled the organizing all
possible aspect classification strategies as a tree, in which each arc represents an
operation and is labeled with the corresponding cost. During compilation, the tree is
dynamically constructed and searched using a branch-and-bound method to find the se-
quence of operations that can perform aspect classification of a given object for the min-
imum computational cost.

Determining linear change
We have implemented a LC generation module that repeats the following process at

each aspect (at each leaf node of an interpretation tree). First, the module examines
visible faces at each aspect and determines the most reliable among them. Using the
characteristics of the face, it determines a strategy to set up a local coordinate on the
face; then, it generates procedures to execute the strategy as well to transform between
the local coordinate system and the body coordinate system of the object. Third, it
produces a procedure to match visible edges to visible model edges. Finally, it
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generates a procedure to determine the position and orientation precisely, by iteratively
solving the edge-matching equation, given edge correspondences by the previous pro-
cedure. These strategies are stored at nodes along a branch of the interpretation cor-
responding to each aspect.

2.5.4. Program conversion
Strategy generation only provides a recognition strategy. To have a runnable

program, we need a method to convert a strategy into executable code. For this, we
prepared an program library and a conversion program. The program library is a collec-
tion of prototypical "object-oriented" objects that can be used to perform feature extrac-
tions and threshold operations for aspect classifications and linear change determina-
tions. The conversion program analyzes each node of an interpretation tree, instan-
tiates appropriate objects from the program library, and completes a recognition
program.

2.6. Fast Rangefinding
Integrating both sensing and processing on one circuit substrate holds great promise

for developing sophisticated acquisition systems. Parallel computing at the point of
sensing allows the tailoring of raw data to meet the needs of higher level system re-
quirements. The abiiity to intelligently acquire data also means that new sensing
methodologies can be developed.

The current focus of this research into intelligent sensors involves implementing a
high-performance lightstripe range sensor integrated circuit. Due to advances in VLSI
technology, we can build smart sensors by integrating sensing and processing. Our ex-
perience with this application has shown it to be an ideal testbed for demonstrating the
power of combining sensing and processing on monolithic silicon. Our design uses a
specialized VLSI sensor that gathers range data as a moving stripe continually sweeps
a scene.

We are focusing on a critical component restriction for many robotic applications: ran-
gefinders that measure the three-dimensional profile of an object or scene. The major
drawback of conventional lightstripe devices is their slow speed. A faster design, being
developed at CMU, is based on the lightstripe rangefinder but extended to record all
necessary information. Our design is implemented with VLSI techniques, parallelism,
and "smart" photosensors. These devices integrate a photoreceptive cell with comput-
ing circuitry and associated memory to yield a photosensor that both detects light and
processes the signal. Our rangefinding algorithm is practical only because we use such
devices. Analog processing techniques have enabled us to achieve a dense arrays of
cells that perform the rangefinding function. Instead of using a camera as a sensor, we
are now fabricating a VLSI range sensor that contains numerous elements (6x1 0) com-
bining photosensing, signal conditioning, and signal processing on a single CMOS chip.
One photosensor cell needs to be comprised of the following chip components:
photoreceptor, analog circuitry, ranq,- memory, and signal processing. We have con-
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firmed that theses elements can perform all the necessary functions: sensing the inten-
sity, detecting the stripe, and storing the time of detection.

The VLSI rangefinder uses triangulation to map detectable data points to the 2-D im-
age frame. However, instead of projecting a stripe, processing the information, and
then stepping the stripe, the light source emits a plane of light that scans the scene
once, left to right. The sensor cell processes incoming data rapidly enough to make
stepping action unnecessary. Each cell in the MxM array is oriented so that it can
detect those data points that would lie on a predetermined light plane. Additionally, the
individual cells record the time (which is why the range memory is necessary) at which
the cell's sensing element detected the points lying in some predetermined light plane
L. With a lightstrpe rangefinder, light plane L can be determined from the angle 0.
However, with the VLSI smart photosensor based rangefinder, the light is sweeping
across the image at a constant rate rather than being stepped. Given the light plane's
(constant) angular velocity, the timestamp gives the photosensor information necessary
for correlating detected light points with a light plane.

Work on characterizing the sensitivity, accuracy, and repeatability of range data
generated by this 30x30 element range sensor is in progress. Our research to date has
produced a lightstripe rangefinding system capable of generating from 100 to 1000
range frames per second - up to two orders of magnitude faster than conventional
lightstripe rangefinding methods. The design is based on a specialized VLSI sensor we
have designed and fabricated that gathers range data as a moving stripe continually
sweeps the scene. One of the most distinguishing features of this approach is that it is
not just parallel implementation of known algorithms by VLSI technology to achieve in-
creased speed, such as VLSI chips for convolution. Rather, it demonstrates that the
integration principles of information acquisition (in our case, range imaging) results in a
qualitative improvement in performance.
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3. RESEARCH IN RELIABLE DISTRIBUTED SYSTEMS
Our work in Reliable Distributed Systems aims at simplifying the construction of dis-

tributed applications that access shared data, particularly those that require continued
operation despite the occurrence of failures. Our strategy was to develop a distributed
transaction facility and associated linguistic support. This effort was divided into four
major subgoals:

* Develop a machine-independent, high-performance, distributed transaction
facility (Camelot) for uni- and multi-processors that provides systems sup-
por. for coordinating and controlling access to data in a large
heterogeneous environment.

* Design and implement a set of appropriate high-level programming lan-
guage primitives (Avalon).

• Devise formal methods for reasoning about such application programs.

* Demonstrate the utility of our approach via implementing practical applica-
tions and algorithms.

3.1. Background
Camelot and Avalon build on the transaction model of distributed computing. A

distributed system consists of multiple computers (called nodes) that communicate
through a network. Distributed systems are typically subject to several kinds of failures:
nodes may crash, perhaps destroying local disk storage, and communications may fail,
via lost messages or network partitions. A widely-accepted technique for preserving
consistency in the presence of failures and concurrency is to organize computations as
sequential processes called transactions. A transaction is a collection of operations that
reduce the attention a programmer must pay to concurrency and failures, by providing
three properties:

* Failure atomicity: If a transaction's work is interrupted by a failure, any
partially completed results will be undone. A programmer or user can then
attempt the work again by re-issuing the same or a similar transaction.

" Permanence: If a transaction completes successfully, the results of its
operations will never be lost, except in the event of catastrophe. Systems
can be designed to reduce the risk of catastrophe to any desired probabil-
ity.

" Serializability: Transactions are allowed to execute concurrently, but the
results will be the same as if the transactions executed serially.
Serializability ensures that concurrently executing transactions cannot ob-
serve inconsistencies. Programmers are therefore free to cause temporary
inconsistencies during the execution of a transaction knowing that their par-
tial modifications will never be visible.

It is also assumed that programmers write transactions so that they will take the
database from one consistent state to another. With this consistency assumption and
the failure atomicity, permanence, and serializability properties, databases are
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guaranteed to remai, 2,onsistent across failures. Frequently, the three transaction
properties and the consistency assumption are called the four ACID properties of a
transaction: Atomicity, Consistency, Isolation (serializability), and Durability (per-
manence).

3.2. Camelot
Most computer systems projects have a simple, central goal. However, systems

designers must then balance particular (lower-level) functional and performance goals
(or specifications) against the constraints that govern a system's developn~et and
operation. Our central goal in the Camelot Project was to develop a system embodying
innovative techniques for simplifying the development of reliable distributed programs.
There was no doubt that Camelot would utilize transaction technology.

Initially, the project needed to specify the precise collection of functions that Camelot
would support; Also, performance specifications had to be developed. Fortunately,
these jobs were made easier since many intended uses for the Camelot system were
known. Early on, the development and target computing environments were con-
strained to be Mach and C.

Because most project members had worked on a similar system, there was a crucial
head start in understanding the complexity and performance of different collections of
potential functions. It was quickly realized that Camelot would require the development
of 50,000 to 100,000 lines of new computer code, so great care had to be exercised to
keep the complexity to a minimum.

A major goal of the top-level architecture of Camelot is to reduce the number of times
that messages need to be exchanged between Mach tasks. This leads to a decomposi-
tion in which commonly performed functions are performed by the Camelot Library with-
out the need to send messages. (In particular, servers may lock and modify objects
without sending messages.) It also leads to the merging of the local Log Manager and
Disk Manager into one task. Shared memory is not used extensively in Camelot, be-
cause the correctness of applications and data servers cannot be assumed. Since
Camelot must protect itself and its clients, it must execute in protected address spaces.

Code modularity was the second most important goal, and this led to the division of
the Recovery Manager, Transaction Manager, and Disk Manager into separate tasks.
The Recovery Manager is not active and hence rarely communicates with any task, so it
was an obvious candidate to become a separate task. The Transaction Manager and
Disk Manager communicate only once or twice for write transactions. The Transaction
Manager and Communication Manager communicate frequently and have to maintain
much shared state, so we ultimately determined that the two should be combined into
one address space. The Camelot Project decided that the benefits of being able to more
easily develop separate tasks outweighed the slight performance benefits that would
have accrued from having a single, large task.
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3.2.1. Performance Goals
Camelot's design supports secure, authenticated inter-node communication; control of

parallelism on a node, including the use of shared-memory multiprocessors; inter-
transaction synchronization; and transaction recovery after transaction, server, node,
and media failures.

Camelot's performance goals apply to both normal operation and recovery after
failures. The performance goals for transactions that eventually commit are as follows:

" I/O of recoverable data. Camelot should not add appreciably to the cost
of normal I/O, and should permit servers to supply knowledge of data ac-
cess patterns, thereby permitting even more efficient I/O. Additionally,
Camelot must be able to perform parallel I/O to disks, up to the limits of the
underlying operating system.

" Transaction execution. The per-transaction overhead of top-level trans-
actions should be sufficiently low to make even short transactions feasible.
The per-transaction overhead of nested-transactions should be a small
constant that does not preclude their wide use.

" Operation calls. Camelot should not add appreciable overhead to normal
remote procedure calls (RPCs).

" Synchronization. The cost of obtaining a free or shared logical lock
should be very low: less than a thousand instructions. Access to locks
previously held by other transactions may be much higher, particularly if
they have been held by transactions within the same transaction family.

" Operation on multiprocessors. Camelot should not have bottlenecks
that preclude the efficient use of shared memory multiprocessors.

" Checkpointing. Camelot should be able to perform checkpoints and the
associated flushing of dirty pages efficiently, so as to reduce the number of
log records that need to be considered during node recovery.

In all instances, Camelot should provide maximal throughput by permitting overlapped
use of I/O devices, processors, and networks.

Camelot's recovery processing performance goals are the following:
" Transaction abort. Camelot's processing of aborts should require roughly

the same time as the Camelot system time in forward processing. Impor-
tantly, nodes should never have to wait for other nodes to recover before
finishing an abort.

" Node failure. Recovery after node failure should require 10% to 100% of
the cost of forward processing. The 100% cost should occu, only when for-
ward processing is doing little else but streaming log records at full speed.
With checkpoint and hot-page flushing reasonably occurring every 10
minutes or so, node recovery should require between 1 and 10 minutes.

" Media failure. Media failure recovery should require only the time to trans-
fer the archival dump file plus at most 10% of the execution time since the
most recent archival dump was written. This could be on the order of an
hour for heavily-used databases with nightly dumps.
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* Continued forward processing. Forward processing should continue
during transaction abort processing. Forward processing on operational
servers should be possible during node or media recovery of other servers.

3.2.2. Implementation
The design and implementation of Camelot were heavily influenced by the design, im-

plementation, and schedule of Mach. The latter affected Camelot since some features
of Mach were developed only as Camelot matured.

The feature of both UNIX and Mach that most influenced Camelot is the necessity of
implementing separate protected components as separate tasks. The high cost of con-
text switching implied that Camelot had to be designed to minimize the number of times
that RPCs are used to cross subsystem boundaries. On Mach, calling one local sub-
system from another via RPC is about 100 to 1000 times slower than issuing a local
procedure call. Sometimes Camelot's design or implementation combines two logically
separate functions into one task to reduce inter-task communication. In some in-
stances, Camelot also uses Mach's shared memory for communication.

Calling one subsystem from another non-local subsystem is 1000 to 10000 times
slower than issuing a local procedure call. This influenced Camelot to reduce the num-
ber of non-local RPCs to the minimum and to use UDP datagrams in the Transaction
Manager and the distributed Log Manager.

Control of paging I/O on Mach requires the addition of an external memory manager
task. I/O to secondary storage must ultimately be done using the UNIX file system calls,
to either the raw or buffered file system.

In addition, the use of Camelot had to be natural for UNIX C programmers and com-
patible with other uses of UNIX, and Camelot's design had to be modular enough from
the beginning to accommodate change during implementation.

3.2.3. Results
Camelot is a working, well-integrated system that provides support for distributed

transactions. This support is provided by the following four major facilities.

Node Configuration
Camelot supports dynamic allocation and deallocation of both new data servers and

the recoverable storage in which data servers store long-lived objects. At every node,
Camelot maintains a collection of configuration data to support this dynamic activity.
This configuration data contains a list of the data servers that should be restarted after a
crash, the recoverable storage to which they should be attached, and their recoverable
storage allocation limits. These configuration data are stored in recoverable storage
and may be updated transactionally by properly authorized users.
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Library Support for Data Servers and Applications
The Camelot Library is composed of routines and macros that allow a user to imple-

ment data servers and applications. For servers, it provides a common message han-
dt!ng framework and standard processing functions for system messages. Thus, the
task of writing a server is reduced to writing procedures for the operations supported by
the server.

The Library provides several categories of support routines to facilitate the task of
writing these procedures. Transaction control routines provide the ability to initiate and
abort top-level and nested transactions. Data manipulation routines permit the creation
and modification of static recoverable objects. Locking routines maintain the
serializability of transactions. (Lock inheritance among families of subtransactions is
handled automatically.) Critical sections control concurrent access to local objects.
Macros facilitate RPCs to other servers.

Recoverable Storage

Camelot provides data servers with up to 248 bytes of recoverable storage. Camelot
also provides data servers with logging servers for recording modifications to objects.
These services allow modifications of recoverable storage to be undone or redone after
failures so that failure atomicity and permanence guarantees can be met.

Values in a transaction are logged in one of two forms: either only new values in a
transaction are logged, or both old and new values are logged. In comparison with old-
value/new-value logging, new-value logging requires less log space, but increases
paging for long-running transactions. This is because pages cannot be written back to
their home location until a transaction commits. Camelot assumes that the invoker of a
top-level transaction knows the approximate length of the transaction and will accord-
ingly specify the type of logging.

Camelot also provides utilities to save and restore archival dumps of recoverable
storage. Archival dumps limit the amount of log space that is needed to recover from
media failures.

Transaction Management
Camelot provides facilities for beginning, committing, and aborting new top-level and

nested transactions.
- When a top-level transaction is begun, the transaction can be permitted to

invoke operations on any number of servers, or it can be restricted to the
server that initiates the transaction. In the latter case, the transaction is
called server-based and it has substantially less overhead.

* When a transaction attempts to commit, and blocking, nonblocking, or lazy
commit protocol can be specified. Blocking (two-phase) commit
guarantees failure atomicity and permanence, but failures may cause data
to remain locked until a coordinator is restarted or a network is repaired.
Nonblocking commit, though more expensive in the normal case, reduces
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the likelihood that a node's data will remain locked until another node or
network partition is repaired. Lazy commit is only for transactions that are
local to a server, and it does not guarantee permanence of effect until
another transaction (on the same node) has later committed with either a
blocking or nonblocking commit.

* Both the system and users can initiate aborts. User aborts can be used to
abort either the innermost nested transaction or an entire top-level trans-
action. Abort calls take a status variable as an argument that Camelot will
propagate to all sites involved with the transaction.

In addition to these standard transaction management functions, Camelot provides an
inquiry facility for determining a transaction's status.

Security and Authentication
Camelot provides an integrated set of tools, collectively called Strongbox, that provide

end-to-end client/server authentication and encryption. Strongbox provides program-
mers with strong guarantees as to the privacy and integrity of their data. However,
Strongbox does not prevent traffic or denial of service attacks.

Strongbox primitives are very similar to Camelot Library primitives, making them easy
to use. Because Strongbox is layered on top of Camelot, programmers are free to
choose whether or not they want to use the security facility it provides.

3.2.4. Design and Implementation Weaknesses
Camelot's design goals have proved to be reasonable. However, Camelot would be

more useful if it met some additional requirements:
" An open log. The Camelot Log Manager permits use only by the Camelot

Disk Manager, Recovery Manager, and Transaction Manager. While
recoverable storage can obviate the need for other recovery mechanisms,
servers may nonetheless wish to implement their own recovery techniques
using a private buffer pool and recovery algorithm. Having interfaces to
permit them to read from and write to the common log would be valuable to
them.

" Better portability and interoperability. Many Camelot components (e.g.,
the Transaction Manager) could have been implemented more portably, in-
creasing the utility of the Camelot code base. Camelot would be more use-
ful if it supported access to transaction services on other platforms.

" More flexible locking. A locking mechanism that better supported inten-
tion locks would be a useful addition to the Library.

In retrospect, the choice of algorithms for Camelot seems to have been reasonable.
Despite the fact that the Camelot team did not understand the complexity of efficient
checkpointing, distributed abort, and communication until near the end of the Camelot
implementation effort, the resultant algorithms appear to work satisfactorily and to be
reasonably close to what is needed.
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However, there are a number of implementation details that did not turn out well. For
example, the recoverable storage allocator has too much overhead, and a simpler
storage allocation algorithm should be used. Insufficient attention was paid to the per-
formance of recovery, so it can be slow under some circumstances. Many Camelot
components are overly complicated and should be rewritten to simplify them, and en-
hance their reliability. For example, the Transaction Manager should be rewritten to be
table driven. Overall, the system is not reliable, and an enormous amount of additional
work would be required to make it so.

The performance evaluation of Camelot has many gaps in it, despite the substantial
amount of work that has been done. For example, when running the ET-1 benchmark,
there are occasional transactions that become delayed for a second or so, and the
reason is still unclear. Also, there has been little evaluation of the use of Camelot on
multiprocessors. Camelot is designed to effectively use multiple CPUs per node, but
this aspect of the design has hardly been tested.

Perhaps the greatest weakness of Camelot was the lack of component testing as the
system was developed. Due to a lack of formal code review and testing processes, too
many bugs were found via the stress testing of the complete system. Because of the
complexity of a system like Camelot, this lack of a sufficiently careful development
methodology will prevent Camelot from achieving the reliability required for production
systems.

3.3. Avalon
Programming reliable distributed systems is inherently more difficult than program-

ming conventional sequential systems because of the complexity introduced by concur-
rency and failures. Camelot is a very large, well-integrated system for transactions.
However, a typical applications programmer is not going to be able to very easily use
that entire system. The Avalon project at Carnegie Mellon is intended to help program-
mers master this complexity by allowing them to implement and reason about programs
in terms of high-level constructs meaningful to the application, while still exploiting the
efficiency and flexibility of Camelot and Mach. Application writers can build abstract
atomic types and control abstractions without worrying about lower-level details such as
transaction management and storage stability. Work on specifying and verifying this lin-
guistic support (in the form of language extensions) enhances both our understanding of
our extensions' semantics as well as the confidence of the programmers who use them.

The driving idea behind Avalon's programming language design is to identify the right
constructs that give the expressibility to the programmer, and hide the complexity of the
lower-level details. For instance, a programmer using one of the Avalon extensions
might actually have no idea of the details of the recovery algorithm, but will still be able
to write an application using the operation called "recover." Since this operation can ac-
tually be called under the covers by the runtime system (is the environment in which a
low-level, compiled program runs), when a failure occurs the programmer knows that
'recovery will happen" somehow, without having to be aware of the underlying in-
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tricacies of Camelot and Mach. Avalon aims to provide this kind of access to Camelot's
power with extensions to the C++ and Lisp languages, and with underlying runtime sup-
port.

3.3.1. Avalon/C ++

A program in Avalon consists of a set of servers, each of which encapsulates a set of
objects and exports a set of operations and a set of constructors. A server resides at a
single physical node, but each node may be home to multiple servers. An application
program may explicitly create a server at a specified node by calling one of its construc-
tors. Rather than sharing data directly, servers communicate by calling one another's
operations. An operation call is a remote procedure call with call-by-value transmission
of arguments and results. Objects within a server may be stable or volatile; stable ob-
jects survive crashes, while volatile objects do not. Avalon/C ++ includes a variety of
primitives for creating transactions in sequence or in parallel, and for aborting and com-
mitting transactions. Each transaction is the execution of a sequence of operations;
each is identified with a single process.

A design decision in Avalon was to not invent another programming language. It is
unlikely that anyone would stop programming in a language with which they are familiar
in order to use Camelot. We targeted specific existing programming languages and
worked to add extensions, providing linguistic constructs which access Camelot
facilities.

Avalon/C ++ adds extensions to C++ to give the C++ programmers the right linguistic
constructs to exploit the facilities provided by Camelot. Camelot serves as the runtime
system of the language.

Avalon/C ++ takes a piece of Avalon code and translates it into C, which then ex-
ecutes. Much of that C code consists of calls to the Camelot C interface; hence,
Camelot becomes Avalon's runtime environment. An example of the power of Avalon
programming language support is provided by one application which we wrote, consist-
ing of about 350 lines of Avalon/C ++ code. That 350 lines translates into about 10,000
lines of real code in C. There is additional benefit from this, in that there are con-
sequently fewer places for a programmer to make a mistake. The 10,000 lines of C
code are actually much farther removed from the application.

The only other instance of programming language support for a transaction-based
system is a project called Argus from MIT. We support a notion of correctness that per-
mits more concurrency than Argus.

For example, Avalon allows oncurrent transactions where those transactions might
be enqueuing and dequeuing onto a shared queue. Intuitively, it seems that one
process should be allowed to remove an object from the end of a queue, at the same
time letting another process add an object onto the other end, as long as the queue is
not empty. The two processes are working at different ends of the queue, so they
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shouldn't interfere. Argus does not directly allow that, because it has a simpler notion of
correctness. It says that any time a process is writing to a shared object, it locks out all
other writers. Enqueuers and dequeuers are both modifying this shared object, so they
both are classified as writers. Therefore, Argus disallows concurrent enqueuers and de-
queuers. Avalon also supports data structures other than queues, such as trees.
These are very easy to write in Avalon code, permitting higher degrees of concurrency.

Another technical difference between Avalon and Argus is that in Argus the applica-
tion writer has absolutely no control over what follows a commit or abort. The program-
mer cannot specify "upon an abort, do X." Avalon gives the user explicit control over
commit and abort, and provides the user with the capability to fine-tune what happens
upon a commit or abort of the transaction.

Avalon also allows the programmer to determine the status of the transaction at run-
time. The transaction can have committed, aborted or still be active. We provide a
class in Avalon/C ++ called transidwhich lets the programmer determine whether a
transaction has committed with respect to the querying transaction. Providing this sup-
port empowers the programmer with respect to increasing the degree of concurrency.

Another critical improvement over the Argus system derives from the fact that C++ is
an object oriented programming language which supports the notion of inheritance.
Avalon is the first language to exploit the use of inheritance for this realm of fault-
tolerant distributed transaction-based computing. In particular, the most visible realiza-
tion of this is the class-hierarchy that we provide in C++. Each of the classes built into
Avalon/C ++ can be considered a C++-Iike class. From these three classes, all other ob-
jects are derived.

3.3.2. Avalon/Common Lisp
Our work in Avalon/Common Lisp is part of the same effort not to invent a new lan-

guage, but to target existing languages. Avalon/Common Lisp is an attempt to provide
a similar kind of veneer to that provided by Avalon/C ++ , but to the Lisp community, to
provide them access to Camelot's functionality. Avalon/Common Lisp provides support
for remote evaluation. Suppose one has a computation running at a local site, and
wants to exploit the resources at some remote site. Instead of doing a remote proce-
dure call and encountering the expense of shipping data back and forth to compute a
function locally, the function is shipped to the remote site where the data is located.
The results are then shipped to the local site where the computation was initiated. In
Lisp, functions are treated as first-class data. This enabled us to implement remote
evaluation, whereas in C it would have been impossible.

Another technical innovation of Avalon/Common Lisp is support for a more general-
ized client-server model. In this model, both the client and the server can be split be-
tween a local and remote site. This split or generalization of the standard client-server
modl results in greater efficiency. Part of the client might be defined remotely, and cal!
those remotely defined functions to execute remotely. Part of the server might be
defined locally, so that the whole bundle of messages can be eliminated by a local call
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3.3.3. An interface to Camelot's functionality.
The primary motivation for our work in Avalon is to provide programming language

support for any very large software system. Camelot is a very large, well- integrated,
system for transactions. However, a typical applications programmer is not going to be
able to very easily use the entire system because of its inherent complexity-one must
take the entire Camelot package, not just one or two useful tools. Avalon abstracts from
the morass of Camelot the high-level concepts and encapsulates those high-level con-
cepts in linguistic constructs that an applications programmer can easily use, leaving all
low-level operating system intricacies hidden. For instance, Camelot itself runs on top
of Mach, and the Avalon programmer need not know anything about Mach To use
Avalon.

3.4. Verifying Atomic Data Types
We have formulated proof techniques that allow programmers to verify the correct-

ness of atomic objects in a transaction-based system. Although language and system
constructs for implemeliting atomic objects have received considerable attention in the
distributed systems community, the problem of verifying the correctness of programs
have received surprisingly little attention. To our knowledge, the Avalon Project is the
only language project to address this particular program verification problem. The sig-
mficant aspect of the developed technique is the extension of Hoare's abstraction func-
tion to map a set of abstract operations, not just to a single abstract value.

We have also used the Larch Prover to prove the correctness of a non-trivial im-
plementation of a highly concurrent FIFO queue. The queue derives from class sub-
atomic and we proved it satisfies the hybrid atomicity property, as must be shown of all
Avalon objects. The Larch traits, which include axiomatization of much of Avalon's
model of computation, were three pages long; the proof transcripts, which includes
proofs of helping lemmas, were 168 pages.
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4. RESEARCH IN PROGRAMMING ENVIRONMENTS
The increasing sophistication of today's software creates a need for greater sophis-

tication of the programming environments used in software development efforts. Future
environments will have to support large, complex development projects. Such projects
might involve many cooperating but widely-distributed participants who have diverse re-
quirements for managing, propagating, and communicating information. These next-
generation environments will have to offer three crucial features:

e The ability to evolve incrementally as developers integrate new tools and
data into existing systems

* Communication support that allows developers and tools to coordinate their
activities

* Automation of the user interface to enhance efficiency.
In addition, the high cost of software development mandates that these environments
be automatically generated, rather than hand-crafted.

At Carnegie Mellon, our research in programming environments continues to build on
the Gandalf system, an environment generator. Gandalf environments maintain
knowledge about the project at hand in a set of databases and can shoulder many of
the burdens (such as integrating programming tools with system development support)
previously left to the programmer.

Gandalf users are divided into three classes: kernel implementors, environment
designers, and end users. Kernel implementors are our researchers here at Carnegie
Mellon who design and build Gandalf. Environment designers are those people who
build software development environments using the Gandalf tools. Since Gandalf is
bootstrapped (successive versions of Gandalf are built using Gandalf tools), the kernel
implementors are also environment designers. An end user is anyone who works in an
environment generated with Gandalf. To the end user, Gandalf itself is transparent.

In response to the needs identified above, our research has focussed on these four
areas:

Data Transformations
Our work on data transformations responds to the difficulty of incorporating new

release versions of software into existing environments: as software becomes increas-
ingly complex, converting existing data structures to be compatible with a new software
release becomes a more difficult and time-consuming procedure. We explored ways of
automating this conversion process.
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Views for Tools
One goal of our research has been to support a style of programming where several

tools can be written separately and later combined into a complete program. This is in
stark contrast to current programming environments, which depend upon a central
database or the good will of programmers to maintain system consistency and tool com-
patibility.

Communication Support
As software complexity increases and larger numbers of programmers work on a

single project, issues of communication and control become larger. Our research in
communication support explored three key areas that previous programming environ-
ments had failed to address successfully:

" Database segmentation
" Concurrency
" Configuration management

Expertise and Tolerance
Today's computers and software are more powerful than ever before, but state-of-the-

art systems still rely on the user's knowledge of the computer to facilitate communica-
tion instead of allowing the computer to take over that burden. We investigated ways of
making the interfaces to orogramming environments more knowledgeabJe of the user's
preferences and more tL terant of his errors. A significant problem with such an inter-
face is the cost (in terms of efficiency) of automaticity and tolerance, especially if the
consequent gain in productivity is not great. Our research on tolerant user interfaces
focused on trying to maximize the efficiency of these interfaces.

4.1. Data Transformations
A serious problem for programming environments is that information created and

maintained by a programming environment becomes invalid when the environment is
replaced by a new release. This problem is not unique to programming environments; it
also affects many other types of programs including database systems and operating
systems. For example, in the widesprea" conversion from Version 4.1 of BSD UNIX to
Version 4.2, file directory structures created under 4.1 were incompatible with 4.2 and
therefore required conversion. To install a new release of an environment or system
requires, at the very least, design and construction of a conversion process for existing
persistent data, and work must partially halt while conversion takes place. Users are
burdened with a period of instability and loss of functionality in the case of inadequate
conversions. Consequently, users and environment designers are faced with a
dilemma: stability can be achieved by ignoring successive releases, in which case the
environment or system will not meet the evolving needs of its users; or change can be
allowed, at the cost of a time consuming process of conversion.
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Structure-oriented environments such as those generated by Gandalf are a class of
programming environments for which these problems are particularly severe. A
structure-oriented environment is typically generated from a formal description, includ-
ing a grammar. One of the purposes of the grammar is to define the structure of
databases created with such an environment. When the grammar is changed in any but
trivial ways, existing databases, structured according to the old grammar, may not be
compatible with the new grammar, thus preventing the new environment from using old
data. At early stages of environment prototyping, it may be feasible to simply discard
the old databases. However, in practical settings where users have come to depend on
the information and programs created with the old environment, a sudden announce-
ment that existing databases are no longer valid will not be acceptable.

Our work at Carnegie Mellon has shown how automatic converters can be generated
in terms of an environment designer's changes to the grammars of structure-oriented
environments. We designed and implemented an environment called TransformGen. in
which an environment designer can make structured changes to the grammar of an en-
vironment. The output of TransformGen is a new grammar together with a transformer,
which takes instancp if database trees built under the old grammar and automatically
converts them to instances of database trees that are legal under the new
grammar [Staudt et al. 88].

While our techniques were developed specifically to solve problems of grammar
evolution for structure-oriented environments, many of the results carry over to other
systems. In particular, our experience indicates that there are three essential in-
gredients to a successful approach to maintenance based on structural transformation.
First, the objects to be transformed must be represented in a structured form as
described by some formal notation. Second, it is important to provide an environment in
which monitored changes can be made to this notation. Third, any resulting transfor-
mation scheme must be extensible along two dimensions: it must be possible to aug-
ment the repertoire of transformations automatically hanoied by the transformer as new
classes of transformation become better understood, and it must be possible for the
person who is making the changes to augment the automatic mechanisms to handle
special cases.

The results of pursuing this approach, at least within the domain of structure-oriented
environments, have been encouraging. We have been able to make substantial im-
provements to existing environments that would have been infeasible using the manual,
ad hoc techniques available before TransformGen. The generator for structural trans-
formations is a powerful tool that can be built relatively easily by extending existing en-
vironment generators.

Gandalf now incorporates TransformGen in AloeGen, a tool used to create and main-
tain environment grammar descriptions. AloeGen monitors changes and automatically
transforms data from previous versions. Previously, any nontrivial change in the
database grammar's syntax would invalidate trees created under the prior grammar.
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4.2. Views
Most programming environments exhibit one of two strategies for incorporating tools.

The "toolbox approach" describes those environments that comprise a loosely or-
ganized toolset on top of a host operating system. Tools exist more or less in isolation,
and the primary burden of maintaining system consistency lies with the environment's
users. Since the environment itself has no knowledge of tools or tasks, it can provide
little help in supporting the management and communication requirements in a large
project.

Another approach has been that of integrated environments, whose cooperating tools
share a common database and an environment kernel that mediates interactions be-
tween user, tool, and database. A problem with this approach is that tool interdepen-
dence extends all the way down to the shared data structures, so that data represen-
tations for one tool depend upon the formats that other tools use. Building and modify-
ing tools can present a special challenge when they require data structures incom-
patible with those in the existing database. Often, all work is halted until a central
database can be reconfigured.

The Gandalf project studied how to integrate tools by specifying "views." The process
requires a common database of shared structures. The main difficulty is defining a data
format that satisfies all the tools. The traditional approach, defining the data structure
then assembling the tools, is self-limiting since further evolution is restricted to that
structure. Instead, the system should be able to determine and adapt that data struc-
ture to what is expected by the tools. In our model, each tool defines a view into the
common database according to what it wants to see in terms of data and operations on
that data. The system then synthesizes the data format from the collection of views for
the tools to be integrated.

The goal of our research in views was to produce a concrete, coherent language with
support for views-style programming. Toward this end we designed and developed a
language (Janus) for views. Due to uncertainties about the language that developed as
the research progressed, we did not go on to develop a compiler. Janus started as an
object-oriented language, but in some ways a conventional language with abstract types
now seems like a more appropriate foundation for views programming.

Conventional languages make a strong distinction between code and data; much of
the appeal of the object-oriented style was lost when we found ourselves making
precisely the same distinction with Janus, as well. The abstraction boundary associated
with an abstract data type partitions the code associated with it in exactly the desired
way:

1. Code that implem-,ients the data type. This code sees the concrete
representation of tWe type and is responsible for maintaining the invariants
of the abstraction irl terms of the representation.

2. Code that uses the data type in other computations.

The code that implements a type would be rewritten when a merged representation is
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substituted for the original abstract data type (ADT). Code that uses the abstract type
should be unaffected. This is essentially what we achieved with our object-oriented
Janus design; the ADT style would simply make it more natural by explicitly supporting
procedures that operate on abstract data.

But there are difficulties with the ADT approach, as well. One of the main differences
between conventional ADTs and objects is that objects encapsulate both private
storage and code for operating on that storage, while ADTs have a single, central copy
of the code. This means that all instances of an ADT will have exactly the same runtime
representation, which is both good and bad:

* The advantage of ADTs is that code that can see their representation may
directly manipulate two or more instances at the same time. In object
oriented programming, the fields of exactly one object are available at any
given time Other objects may be accessed only abstractly.

o The advantage of objects is that there may be many representations of the
same class at runtime. Each instance knows which representation it is
using, and encapsulates code that operates correctly on that represen-
tation.

The concept of views remains a powerful one. However, because of these difficulties
with the Janus language, a new language must be developed before the power of views
can be fully realized [Habermann et al. 88].

4.3. Communication Support
Structure editors are traditionally viewed as tools restricted to programming-in-the-

small. At the other end of the spectrum, environments for the programming-in-the-large
domain (i.e. numerous large program modules) typically view a software database as a
set of black boxes with a narrow interface providing no knowledge of the internals.

By providing the proper database support, environments generated by the Gandalf
system can address programming-in-the-large as well as programming-in-the-many (i.e.
numerous programmers on a single project) without the loss of the fine grain information
available in the knowledge-based environments currently generated.

In providing this support, some of the issues we examined were:
* Gandalf's previous restriction of storing all information in a single monolithic

database. We wanted to maintain all the knowledge stored in a Gandalf
environment, but not as a single structure. The monolithic databcisq often
proved cumbersome to work with. The database generated by the im-
proved Gandalf system produces a set of integrated software databases in
which all information is structurally decomposed for storage and accessed
via a single uniform interface. This assists not only the end-user, but also
the environment designer by allowing the decomposition of their specifica-
tions.

• Concurrency and its associated management tasks. The addition of a seg-
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mented database will, by providing quicker access to stored information,
stimulate the desire for multiple users within that database (task decom-
position). To enhance our segmented architecture, we are implementing a
persistent transaction mechanism to provide both controlled concurrency of
multiple users and the ability to start new child transactions for experimen-
tal workspaces. Along with implementing the transactions, our design in-
cludes a copy-on-write facility to minimize the proliferation of files that can
occur with the sharing of files across transactions.

Configuration management. Large software projects complicate the
management tasks of tracking versions and configurations. A generated
environment needs to support these tasks, but it should be left to the en-
vironment designers to specify their needs in a generated environment.
Gandalf provides a basic default model for configuration management, but
it is easily customizable. Many other development environments have
erred by "hardwiring" these policies into unmodifiable code.

4.3.1. Segmented Architecture
For interactive structure-oriented programming environments such as those

generated by the Gandalf System, it is infeasible to have a single database server
providing database access for multiple user processes, for two reasons:

" The computer resources required to extract the textual representation of in-
formation from the database

" The high bandwidth requirements for passing this information between the
database and the user process.

These suggest that each user process must have direct access to the database.
However, with very large software databases it may also be impractical to load an entire
database into a user process space. A compromise between these two conflicting ef-
ficiency considerations is to segment the database contents and allow user processes
to access only small segments of the database directly.

Providing facilities for database segmentation allows an environment to be used in
real programming-in-the-large applications. It reflects a desire to provide good system
performance for programming-in-the-small activities within a large software database.

During this funding period, we have designed and implemented a scaled-up version of
the Gandalf System to support full scale software development projects. This version
meets our objectives of modular database grammars, segmentation of the software
database contents, allowing multiple users to corcurrently access the software
database, and still retain the small grain database integration present in earlier Gandalf
environments. Grammar modularity, segmentation, and concurrency are achieved by
segmenting the software database at grammar boundaries and applying concurrency at
the segment level of granularity. Small grain database integration is achieved through
unification of the two levels in the database: the internal segment level and the atomic
segment level. This is accomplished by having the segment node, at the internal seg-
ment level, provide the structural relationships between segments at the atomic seg-
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ment level. The cooperation of the internal segment database manager and the atomic
level database manager bridges the boundaries around segments at the atomic seg-
me it level.

Access control was found to be important in supporting the reserve/deposit semantics
required in software transactions. Due to the hierarchical, large-grained, and long-lived
nature of softwar, transactions, it is important to be able to delimit portion3 of the
software database for a semantically related collection of changes by a group of one or
more persons. Access control mechanisms for reading and modifying segments
provides the Gandalf System with reserve/deposit semantics [Krueger and Bogliolo 88].

Support for segmented architecture has been incorporated into Gandalf and used
successfully for about a year.

4.3.2. Concurrency
A software development environment must provide contrclled concurrent access to

the environment data.,ase in order to support a team development effort. Such access
control must include features similar to those in conventional database systems, such
as read/write locks. However, due to fundamental differences in transaction charac-
teristics, standard solutions to the concurrency problem found in the database literature
may not be directly applicable to software databases. Unlike transactions in conven-
tional database systems, concurrent transactions in a software database may have life
spans on the order of days or weeks and may involve kilobytes of information. Because
of this large transaction size, it is important for the user to know in advance that a trans-
action will not fail due to factors external to the transaction itself. For example, after
programming for a month, most developers will be unwilling to "abort the transaction
and try again" because a lock required for subsequent development is unavailable.

Providing facilities for controlled concurrent access to a software database allows an
environment designer to support programming-in-the-many. For example, access con-
trol tests can be added to read/write locks in the database to control which persons and
groups can read and modify information.

Our work on concurrent transactions at Carnegie Mellon assumes the following about
a typical transaction for one or more programmers operating in a software dat, ,se:

* The transaction will be long term (on the order of days or weeks)
* It will involve a large collection of semantically related extensions and

modifications.
Although transactions of this type can be viewed as a long sequence of smaller trans-
actions, the top level transaction will only be able to commii 3;' of the smaller sub-
transactions succeed. For example, if a procedure declaration is modified to have an
extra parameter, then the transaction is not complete until all of the procedure use sites
have been modified to reflect syntax and semantics of the additional parar-ter.

Our notion of transaction involves the programmer as much as the operations on the
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database. In order to change the procedure use sites in our example, the programmer
must understand the intended semantics of the change in each use site context and is-
sue the appropriate commands to modify the database accordingly.

In order to avoid failed transactions due to locking or other external conflicts, we have
developed the reserve operation. The reserve operation delimits portions of the
database for a semantically related collection of changes by a group of one or more per-
sons. At first glance it appears that a write lock is sufficient for the reserve. However,
there are at least two fundamental differences between the reserve and write lock
semantics. The first is that reservation by a group should not necessarily preclude
others from viewing reserved information, only from writing or acquiring read or write
locks. The second difference comes from having a group of persons involved in the
reservation. Although a group has the right to modify its reserved portion of the
database, it still only makes sense to allow a single programmer to gain a write lock on
any given piece of information at any one time. This illustrates that the semantics of the
reserve operation is to limit the modification and access privileges on a portion of the
database to members of a group.

The current Gandalf System generates single-user environments. It provides no con-
trol for concurrent database access. We have, however, designed and built a kernel
version which includes support for concurrent transactions. It is undergoing testing prior
to release.

4.3.3. Configuration Management
For a software development environment to handle a large, complex software project

effectively, the environment must have mechanisms for source code control and con-
figuration management. A common method of addressing this problem uses a source
control system such as RCS (Revision Control System) as a baseline. Configuration
management is superimposed upon the low level version control system by describing a
system variant as a selection thread through the sets of component versions. In the
Gandalf project we explored the inverse approach, building version control on top of
configuration management.

Gandalf uses three levels to manage a software system. At the lowest level in our
model we maintain a hierarchically structured collection of source code components.
This structured collection consists of one or more variants of a software system. Each
variant represents a complete instance of the software system and is comprised of a
subset of the components in the collection, such as a system variant to run under the X
windowing system versus a system variant to run under the NeWS windowing system.
This approach emphasizes the composition of systems as opposed to assembling sys-
tem variants out of components organized with a version control system at the lowest
level.

The next higher level provides version control. This level maintains the evolution of
the system as a set of revisions. As development proceeds, modifications of software
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components are tracked by the creation of additional revisions. Each revision contains
a full set of variants in contrast to systems that maintain revisions of single components.

At the top leve!, we embed version control into nested long-term transactions to
handle the issues of active software development by multiple users. This mechanism
defines a recursive structure that provides encapsulated workspaces for software
development and the ability to divide the development process into subtasks. All levels
of the transaction hierarchy include the capabilities of the versioning system, providing
the developer with a safe environment for experimental work [Miller et al. 89].

4.4. Expertise and Tolerance
Computer technology has reached a stage where automatic customization of user in-

terfaces is feasible. In the past, the user has been the computer's servant, feeding data
upon demand, and strictly following the often arcane rules set down by the application's
programmer. But this no longer needs to be the case. Indeed, our research has striven
to make the computer be subservient to the user. The computer should learn to under-
stand a user's requests, rather than force the user to speak its language.

Towards this goal, we identified three properties that an intelligent user interface
should exhibit:

• Automation. The interface should automate as much of the user's task as
is feasible.

" Tolerant command interpretations, the interface should be tolerant of the
styles of individual users.

" Active help. When necessary, the interface should provide help and ex-
planations actively, and in terms that are adapted to the individual user.

At Carnegie Mellon, our research on tolerant user interfaces has concentrated on
designing an object-oriented architecture, that will support the definition of heuristics.
These heuristics should allow a user interface to adapt to individual users based on
domain, context, and historical knowledge.

We have designed and built a prototype architecture which allows the environment
designer to define three different kinds of procedural objects required to support heuris-
tics: heuristics, loggers, and success-failure criteria. Heuristics perform the actions that
actually modify the user interface. Loggers collect and store those parts of the history
which the heuristics require. Success-failure criteria monitor the user's actions after a
heuristic has been applied to determine whether the heuristic's actions were acceptable
to the user. Heuristics and loggers can be attached to node types, error types, and
command types. Success-failure criteria can be attached to node instances, error
types, and command types. The environment designer initially defines where heuristics
and loggers should be attached. As the user uses the system, those heuristics whose
performance falls below some pre-defined standard are automatically detached from
their objects. Therefore, after a brief training period, only those heuristics which are ac-
tually useful for the user will remain attached. Those heuristics which are not useful will
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no longer be attached and thus will not detract from the performance of the ALOE (a
language oriented editor) [Lerner 89a].

We have designed and built a prototype of the heuristics architecture, which has been
tested successfully.

4.5. Changes to Tools

4.5.1. Language for Specifying Semantics
ARL (Action Routine Language) is our language for specifying semantics. Its syntax

augments the user's ability to write action routines and improves the routines' screen
representations.

Although ARL was an excellent tool for specifying semantics, it handled string
manipulation poorly and programmers had to manipulate strings via their own C code.
Responding to this problem, we added a string library to the ARL environment. The
library contains routines that help produce complex strings such as error messages.
Previously, functions relied on sequential string concatenation that was prone to
"memory eaks" because it allocated memory without subsequently de-allocating it
properly.

We have also removed the use of cursors, which are pointers to nodes, as a part of
the language. We found users often had problems distinguishing when to use a node
variable and when to use cursors. The use of cursors was needed to protect nodes
which were being referenced to avoid unwanted side effects of certain
constructive/destructive commands. The protection has now been incorporated into the
commands themselves, so that an environment designer only uses node variables. The
ARL environment includes the appropriate transformations to automatically convert ear-
lier versions of ARL trees. We have noted a few instances where the semantics cannot
be automatically converted and will identify these sites requiring further input by the
designer.

4.5.2. LexGen
Responding to requests for additional facilities, we have generated a second version

of the LexGen editor and improved our distribution mechanisms for ALOEs. The Lex-
Gen editor is used to specify scanning routines that validate user input. The new Lex-
Gen includes improved error checking and a mechanism that can define named mac-
ros, thus allowing named regular expressions. These changes have been documented
in user manuals.
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4.5.3. Input Parsing
We have been integrating the use of parsing input into the lines of a command editor.

The use of incremental parsing allows a more natural "infix" style of input for longer ex-
pressions. Incomplete information is handled via a variety of methods.

* The user can input the name of a metanode as a placeholder so that the
rest of the expression can be typed out. The user would later fill in the
metanode.

* The user can use a generic "$$" token for specifying whatever metanode
would be appropriate in the context of an expression instead of naming the
metanode explicitly, in unambiguous cases.

* We have created a special version of 'yacc' that can handle some "error
repair" automatically. This is a public domain version, allowing us to dis-
tribute the modified form. Without additional input from the environment
designer, there are many cases where the editor can automatically con-
struct metanodes to validate input that would have previously generated a
syntax error. For the Pascal environment, we found the system can repair
86% of the cases with metanodes as the lookahead that would have
generated a syntax error.
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5. RESEARCH IN REASONING ABOUT PROGRAMS
The central problem of software engineering is the development and maintenance of

demonstrably correct programs. In order to accomplish this goal, a wide variety of ap-
proaches to the problem have been developed. These range from what might be called
"software management techniques," devoted primarily to addressing the practical ques-
tions of how best to manage a software development project in order to improve the
quality of programs, to fundamental research programs that seek to develop a rigorous
body of theory on which software development methodologies may be based. These
two approaches (among many others) are not opposed to one another, but rather ad-
dress two equally important aspects of the problem: on the one hand, the question of
what can be achieved now, and on the other, the question of what might be achievable
at some point in the future. Research into the development of reliable and maintainable
software is an ongoing dialogue between workers in these two areas, with fundamental
research results continually being incorporated into the mainstream of software
development, and with the problems of practical software development providing the
framework in which fundamental research is being conducted.

Our research is devoted to the development of a comprehensive and rigorous math-
ematical foundation for programming. This foundation will support reasoning about the
correctness of language implementations, programs, and software development
methods, and will also be vital to the coherent development of languages, implemen-
tations, and program tools. In broad terms, our research focuses on three main areas:
mathematical theories underlying parallelism, development of advanced type systems,
and applications of mathematical logic in program development. Specific activities in-
clude:

" Use of formal semantics and type theory to design and prototype advanced
programming languages

" Development of formal systems for analyzing and synthesizing programs
" Design of software tools for deriving and verifying program correctness.

We are linked with the Ergo project, which has developed the Ergo Support System
(ESS) [Lee et al. 88]. The ESS is an integrated environment for experimenting with ad-
vanced programming methodologies based on formal proof techniques. Research on
reasoning about programs provides the necessary theoretical underpinnings for con-
tinued development of ESS tools and components. Conversely, the ESS provides a
test-bed and environment for experimentation and rapid prototyping of new theoretical
ideas.

5.1. Semantic foundations of parallel programming
The first focus of our research is the semantic foundations of parallel programming.

Our main research results in this area can be organized into two categories: The
development of a proof methodology for analyzing deadlocks and correctness in parallel
programs, and the development of mathematical models for reasoning about intensional
properties, such as efficiency, of parallel programs.
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A proof methodology for parallel programs
The well-known notion of "weakest precondition" and the closely related "strongest

postcondition" represent fundamental tools in the theory and practice of proving
program correctness. While these ideas are well understood for sequential programs,
until recently they have not been adequately adapted to parallel programming lan-
guages. In the parallel setting there are many complicating features that make it impos-
sible to adapt naively ideas that work in the sequential domain. Such features include
the potential for deadlock and the often intricate ways in which program components
can interfere with one another.

We have successfully developed a new axiomatic method for parallel program proofs.
Its principal innovation lies in employing tree-structured assertions and incorporating a
generalized form of "weakest preconditions" cleanly and elegantly into the parallel set-
ting.

Building upon this result, we have developed a proof methodology that guides one
through a rigorous "development" of the proof of a parallel program's correctness. This
method makes it relatively easy to track cleanly the potential for deadlock and the inter-
ferences between program pieces and represents a significant advance over earlier
parallel proof methodologies that typically force one to prove correctness separately
from proving deadlock-freedom. We believe that this new methodology allows more
straightforward program proofs and is conceptually easier to use than previous tech-
niques.

Today, we continue investigating the utility of this method as the basis for several
program-development methodologies, and have considered problems posed by real-
world applications. For example, in a separate but related line of research, we have
been investigating ways to prove the absence of network deadlock by reducing the
problem to small subnetwork deadlock. This reduction decreases the size of the com-
binatorial explosion normally incurred when attempting to analyze large systems
[Brookes and Roscoe 89].

Mathematical models of parallel programs
We are also developing techniques for reasoning about intensional properties, such

as efficiency, of parallel programs. Eventually we plan to use these techniques as the
basis for designing and implementing automated tools that can assist in general reason-
ing about parallel programs. We view our work here as a novel departure, in that most
traditional semantic models focus on purely extensional aspects of program behavior,
such as input-output behavior and partial or total correctness. By building a more finely
structured model that accurately represents intensional information about program be-
havior (such as a computation strategy suitably formulated as a mathematical object),
we will be able to provide a semantics that supports reasoning about how efficiently a
program computes its results. We believe that such a fundamental investigation is
necessary to understand the potential for exploiting parallelism in programming lan-
guage design and implementation.
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Our work has progressed well, and our main result is a new mathematical model of
parallel programs that is suitable for reasoning about intensional behavior of determinis-
tic parallel functional programs [Brookes and Geva 89]. One possible outcome of this
work might be the design of a powerful, yet clean and elegant parallel programming lan-
guage, in which the programmer can employ parallelism conveniently wherever its use
can result in greater efficiency.

A key feature of the model is the mathematical representation of the "computation
strategy" used by an algorithm to compute its results. The objects of this model are
called "parallel algorithms," to distinguish them from the functions they compute and to
emphasize the fact that they truly embody parallelism [Brookes and Geva 90]. (This
model arises as a generalization of Berry and Curien's earlier ideas on "sequential al-
gorithms.") We believe that our new construction may lead to a coherent semantical
account of parallelism that sheds new light on several issues: the relationships among
various alternative models of parallelism, as well as among alternative semantic
models, and the relative expressive powers of various parallel primitives. In the course
of demonstrating that our model is sensible, we discovered a new ordering on al-
gorithms that is based on the notion of "strictness." In the new ordering, the conven-
tional extensional ordering on functions generalizes naturally to the intensional setting.
This is an encouraging sign that previously developed methods for reasoning about ex-
tensional properties can be adapted to reasoning about intensional properties.

5.2. Development of advanced type systems
Although this early work on type systems in programming languages led to significant

advances in software engineering, their success must still be described as limited.
Years of research, however, have changed the terms of the debate about the value and
role of types considerably. Languages incorporating notions such as type
polymorphism, type inclusion, and type inference, which ameliorate or eliminate many of
the restrictions of early type systems, are becoming more widely used and im-
plemented. At the same time, the mathematical theory of types has been elaborated to
a considerable extent, leading to new applications of types such as the use of types as
specifications, and to greater understanding of the deep structure of programming lan-
guages. At present there is a considerable body of research devoted to the applications
of types in programming, ranging from improved type systems for functional and object-
oriented languages, to the applications of types in formal program development.

In our work on reasoning about programs, we have focused on the development of

two specific kinds of type systems. The first kind is called an "intersection type dis-
cipline," which is being studied in the context of a new language design called Forsythe.
The second kind involves a mechanism called "stratified polymorphism."
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Intersections types and the Forsythe language
As an example of what intersection types mean in practice, consider a language in

which the operators "+" and "*" act upon both integers and reals. Using intersection
types, the user might define a procedure

procedure poly (x); x*x+2*x+l

that can act upon either integers or reals. In contrast to the typical "generic" procedure
capability (as in, for example, Ada), such a procedure is guaranteed by the language
design to interact cleanly with the implicit conversion from integers to reals, so that the
same result occurs whether poly is applied before or after converting an integer to a
real.

This is, of course, an extremely simple example, but it illustrates the point that such
guarantees - which we believe to be crucial for any sound approach to software en-
gineering - can be obtained by working from the mathematical semantics of the type
system. In contrast, ad hoc approaches lead to languages with many inconsistencies
and ambiguities, and for which such guarantees lack the force of mathematical proof.

We have been successful in defining a semantics, based on category theory, for inter-
section types. This semantics incorporates such guarantees and is sufficiently general
to be applicable both to functional programming languages and to Algol-like languages
that combine functional capabilities with imperative features [Reynolds 87].

With the semantics of an intersection type discipline in hand, we were then able to
design "Idealized Algol," a language based upon a semantic model of Algol-like lan-
guages that emphasizes their close connection with the lambda calculus. The result
has been a substantial simplification and generalization of the language, now named
"Forsythe." One benefit is that the programmer is allowed to define his own declara-
tions (e.g., for unusually shaped arrays) straightforwardly. Another is that the language
now supports object-oriented programming in a meaningful way, including the notion of
attribute inheritance. A detailed description of Forsythe is given in [Reynolds 88] (which
also contains 225 lines of programming examples, including an object-oriented program
for finding paths in a directed graph).

Recently, we have shown that the semantics of Forsythe is unambiguous. This ques-
tion arises because the type structure is sufficiently rich that there can be more than one
proof that a program phrase has a particular type. Since the formal semantics is
defined by induction on such proofs, one must show that the language is "coherent," in
other words, that distinct proofs of the same typing always give the same semantics.
We have proved the coherence of a class of intersection-typed languages, including
Forsythe, in [Reynolds 91].

We have also investigated how to restrict the syntax of Forsythe in order to make
aliasing between variables and, more generally, interference between procedural side-
effects, detectable during compilation. Such a restriction is a vital first step in extending
most any imperative language to parallel processing, since it is necessary if the com-
piler is to detect when parallel processes can interfere with one another. A sufficient

5-4



system of restrictions has been found and reported in [Reynolds 89]. It may be that
these restrictions are too draconian, and thus we are refining this system further before
imposing them on a practical language.

Finally, we have discovered that type checking for intersection-type languages, such a
Forsythe, is PSPACE-hard. (This result has not yet been published.) This implies that
there exist programs for which type checking will be very inefficient, but not necessarily
that such programs will arise in practice. Nevertheless, it is a clear warning that the
Forsythe type checker will have to be written very carefully to avoid unnecessary in-
efficiency.

These various technical results about intersection types and Forsythe constitute sig-
nificant technical contributions. Moreover, they represent a new, disciplined, and sound
approach to language design, implementation, and analysis which may serve as a much
better foundation for software development methodologies.

Stratified polymorphism
Higher-order logic has long served as an extremely powerful tool in the study of logic

and mathematics. We have been exploring how to use higher-order logic as a unifying
framework for program synthesis, program analysis, and computational complexity. Our
work has successfully established several fundamental connections between higher-
order logics, on one hand, and the logics of programs and computational complexity, on
the other. Somewhat surprisingly, these investigations have disclosed relevant work
from the 1910's and 1950's.

Our main innovation is the development of a notion of a "stratified polymorphic type
discipline" [Leivant 89a]. The key idea here is the use of a spectrum of type disciplines
based on type quantification with stratified levels, ranging from the so-called "parametric
polymorphism" of ML and the full quantification of the second-order polymorphic lambda
calculus. Stratified polymorphism has an attractive, straightforward semantics, and thus
has the potential for offering new approaches to type inference without sacrificing useful
expressive power.

5.3. Applications of mathematical logic in programming
A natural extension to the research in types is the search for applications of higher-

order logic in programming. The principle problem is as follows: "Given a formal proof
that a function satisfies its specifications, find an algorithm for computing the function."

One approach to this problem is the so-called Curry-Howard isomorphism, which
makes a precise analogy between formulas and proofs on the one hand, and types and
programs on the other. In other words, for certain kinds of logical systems, formulas
can be viewed as program specifications, and proofs of the formulas as programs that
satisfy the specifications.

We have developed a generalization of this analogy to the more powerful, higher-
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order logical systems and shown how this may be systematically used in deriving cor-
rect programs [Leivant 89b]. This generalization has an advantage over previous for-
mulations in its great clarity and generality. For example, it does not depend on the
presence of specific data types, but only on the logical form of their specifications. This
leads to an elegance and simplicity which may be more conducive to automated support
in an advanced environment such as the Ergo Support System.
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6. RESEARCH IN UNIFORM WORKSTATION INTERFACES
User interface software is difficult and expensive to implement [Myers 89a]. Highly-

interactive interfaces are among the hardest to create, since they must handle at least
two asynchronous input devices (e.g., a mouse and keyboard); real-time feedback; mul-
tiple windows; and elaborate, dynamic graphics. Most graphical interfaces today are
created using toolkits, which are collections of interaction techniques (sometimes called
"widgets" or "gadgets"), such as menus, scroll bars, and buttons. Unfortunately, these
toolkits are often difficult to use, since they contain literally hundreds of procedures. In
addition, the toolkits often do not help the programmer create the most important part of
the application-the graphics that appear in the main application window. Furthermore,
it is usually difficult or impossible to modify toolkit items or create new ones. Our
research in Uniform Workstation Interfaces was originally embodied in the Dante
project. A year of research yielded no substantial progress, and Dante was thus
replaced by the Garnet project, which aims to create a set of tools that will help user
interface designers create, modify, and maintain highly-interactive, graphical, direct
manipulation interfaces.

6.1. Motivations and Related Work
Garnet's goals follow closely those of its predecessor, Dante, with the exception that

Garnet is not Mach-specific (as was Dante), and is being developed for any workstation
running any Xl 1 system with Lisp.

The primary goals of the Garnet project are:
" Demonstrate that the use of constraints and interactors makes the con-

struction of user interfaces and user interface toolkits easier, more modular,
and more modifiable.

" Create a small set of interactor objects that cover a wide range of user in-
terface styles of interaction.

" Demonstrate that it is possible to provide graphical, direct manipulation
construction tools that allow significant parts of the user interface to be con-
structed without programming.

A common name for software that builds user interfaces is a "User Interface Manage-
ment System" (UIMS), and there are many examples of these. Unfortunately, most of
these programs are very limited and are unable to create the types of interfaces that
users wanted, and hence and have not been widely used. Notable exceptions include
Apollo's Dialogue and Apple's MacApp.

Influences on the Garnet project include interaction technique layout tools such as the
two Macintosh programs: Prototyper from Smethers Barnes and the Exper User Inter-
face Builder. Examples from research labs include Menulay and one from DEC SRC.
These programs allow the user interface designer to place preprogrammed menus,
scroll bars, and buttons in windows, and then typically allow the designer to type in the
name of a procedure that should be executed when the interaction technique is ex-
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ecuted. These tools do not allow aspects of the interaction techniques themselves to be
edited, however. The Garnet construction tools are designed to be as easy to use as
these programs when the user only wants to assemble interaction techniques, but also
to be more functional when new ones are desired.

Another important influence on the Garnet project is Apple's MacApp application
development environment. MacApp provides an object-oriented framework that helps
build programs with the standard Macintosh user interface. MacApp handles many of
the details of the user interface, but leaves a number of hard problems to the application
developer. In particular, while MacApp handles the menus and scroll bars arounda
window, it does not help much with mouse or keyboard events inside the window. For
example, the application is told about mouse button presses and movement, and is re-
quired to deal with all issues of selection and moving objects itself. Garnet's Graphical
Editor Shell attempts to go further in this area by helping to deal with input events inside
the application's window also.

Garnet builds on earlier work by Dr. Myers on the Peridot UIMS. Peridot is in many
ways similar to Garnet, but there is no programming interface to any Peridot features; it
is a stand-alone program. Garnet has been designed so that its parts can be used in-
dependently by programmers, as well as by the Garnet construction tools.

To facilitate creating interaction techniques and application-specific graphic objects,
our strategy was to separate the graphics from the interactive behaviors, which are the
ways the graphics change when the user operates the input devices. In Garnet, many
of the relationships among the graphic objects can be defined using constraints, which
are declared once and then maintained automatically by the system. Like other inter-
face builders, the Garnet interface builder allows existing toolkit items to be positioned,
but it also allows new interaction techniques and application-specific objects to be
created.

6.2. Constraints and Interactors
One goal of most user interface development environments and toolkits is to free the

application from details of specific interactors and input device behaviors. This has
proven to be a very difficult goal, and most previous attempts to achieve this separation
have failed. Garnet has taken a new approach, and identified a few low-level input
device behaviors. These are encapsulated into objects called interactors. There are a
smali number of different types of interactors, and each one handles a different kind of
input device interactive behavior. For example, there are interactor types for menu be-
havior (selecting one from a set of objects), moving behavior (moving an object with the
mouse), and angular rotation behavior (for interacting with circular gauges, etc.). In
each case, the output graphics is entirely independent of the behavior, which allows
tremendous flexibility.

A constraint is a relationship among graphical objects that is maintained even if one of
the objects changes. For example, in an editor that supports boxes attached by arrows,
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the user interface designer can specify a constraint that the arrows must stay attached
to the boxes. Then the boxes can be moved by the program or the mouse, and the
lines will stay attached without any additional coding.

6.2.1. Constraints
An early version of constraints in Garnet was Coral [Szekely and Myers 88], although

we now implement constraints in the KR object sys'em. KR provides a prototype
-instance model for objects, rather than the conventional class-instance model used by
Smalltalk and C++ . In a prototype-instance model, there is no distinction between in-
stances and classes; any instance can serve as a "prototype" for other instances. The
advantages of the prototype-instance model are that it is much more dynamic and
flexible than the familiar class-instance model. A high-level tool, such as the Garnet in-
terface builder, can display a prototype on the screen, and allow the user to edit it.
These edits are then automatically reflected in all instances of that prototype. For ex-
ample, the designer might be changing the standard look-and-feel of the menu
prototype, and immediately all menus in the system will change accordingly. In a class-
instance model, it is much more difficult to change the class structure and have that
reflected in instances [Giuse 89a].

Constraints in Garnet are arbitrary CommonLisp expressions stored in slots. When a
program accesses a slot, it cannot tell whether the slot contains a simple value like a
number, or a constraint that calculates the value. In the latter case, whenever the
referenced slot of the other object changes, the formula is reevaluated.

The implementation of constraint satisfaction is designed to be very efficient. Con-
straints in Garnet are "one-directional." This means that there always must be at most
one formula for any slot. The result of this is that there can never be a choice about
how to solve a constraint, so no planning is necessary. Therefore, when an object
changes, the system always knows immediately which other objects to change, and
how to change them. Surprisingly, this restriction does not substantially limit the inter-
faces that can be created, because it is almost always possible to find a one-directional
way to specify any group of constraints.

An interesting feature of the constraints in Garnet is that the object referenced in the
constraint can be accessed indirectly through a variable. For example, a feedback ob-
ject in a menu (such as a highlight or outline) might be constrained to the same size as
whatever object it should appear over. A slot holds the current object that the feedback
should appear over, and whenever this slot is changed, Garnet would automatically re-
evaluate the formulas that depend on the slot, thus causing the feedback object to
move. It is this mechanism that allows the interactive behaviors (described in section
6.2.2) to be independent of the graphics. For example, a menu interactor simply sets a
slot with the object that the mouse is over, and the constraints ensure that the graphics
that handle feedback are changed appropriately.

Constraints can also be used to connect graphical objects to application-specific ob-
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jects. For example, the value of a gauge displayed on the screen could be constrained
to a temperature value in the application.

Although the constraints are designed to be used for graphical objects, they are im-
plemented in a general-purpose manner, and can therefore be used by applications for
defining relationships on their own data, if desired. Since they are efficiently im-
plemented, applications may find it convenient to use constraints for maintaining data
integrity and dependencies, for example.

Other important aspects of the use of constraints in Garnet are:
" There is an easy-to-use, object-oriented language, KR, for specifying con-

straints in a prototype-instance fashion.
" Constraints can be defined in the abstract and dynamically attached to dif-

ferent objects.

* Constraints can be defined on lists of objects.

6.2.2. Interactors
One of the most difficult tasks when creating highly-interactive user interfaces is

managing the mouse, keyboard, and other input devices. Typically, window managers
or user interface toolkits only provide a stream of mouse positions and key events and
require that the programmers handle all interactions themselves. Garnet tries to provide
significantly more help through the use of interactors which are encapsulations of input
device behaviors. The observation that makes this feasible is that there are only a
small number of different kinds of behavior that are used in user interfaces. For ex-
ample, although the graphics can vary significantly and the specific mouse buttons used
may change, most menus operate in the same manner. Another example is the way
that objects move around when following the mouse. Interactors capture these com-
mon behaviors in a central place while still being highly customizable by application
programs [Myers 89b, Myers 90a].

Another advantage of the use of interactors is that it helps to separate and modularize
the user interface software. The graphics are defined using the object-oriented graphics
package and constraints, and the interactive behaviors are programmed separately
using interactors. The interactors are connected to the graphics using constraints. The
graphics of a user interface provide the "look," while the interactors (connected to the
graphics via constraints) determine the "feel." Since interactors are completely "look"
independent, any "look" can be linked with any "feel."

Interactors also provide a level of window manager independence. The designer is
freed from details of how events are queued and how exception conditions are
presented. The object-oriented graphics package and the interactors provide a com-
plete layer hiding the details of the window manager. This should allow applications to
be easily ported to various window managers.

In designing the interactors, there were many trade-offs that had to be considered.
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Our design attempted to balance flexibility and power with ease of use. The earlier
Peridot system only had very simple interactors, and multiple interactors were needed
for many common operations. For example, to have an outline box follow the mouse
while a button is pressed and have an object jump to the final position when the mouse
button is released required three interactors: one to control the visibility of the feedback
object, one to have it track the mouse, and one to have the actual object jump to the
final position. In Garnet, interactors are higher level so that this behavior is achieved
with one interactor. A result of this is that individual interactors have more parameters
(to control the various options for feedback), and there are a few more interactor types
than in Peridot.

An important design goal, however, was to limit the number of different types of inter-
actors provided by Garnet. There are only six types and these handle almost all inter-
active behaviors in user interfaces.

" Menu-Interactor: for choosing one or more from a set of items, or for a
single, stand-alone button.

* Move-Grow-Interactor: to move or change the size of an object or one of
a set of objects using the mouse. This interactor can be used for one-
dimensional or two-dimensional scroll bars, horizontal and vertical gauges,
and for moving or growing application objects in a graphics editor.

" New-Point-Interactor: to enter one, two or an arbitrary number of new
points using the mouse, for example for creating new lines or rectangles in
an editor.

" Angle-Interactor: to calculate the angle that the mouse moves around
some point. It can be used for circular gauges or for "stirring motions" for
rotating.

" Trace-Interactor: to get all of the points the mouse goes through between
start and end events, as is needed for free-hand drawing.

" Text-string-Interactor: to input a small (optionally multi-line) string of text.
This seems to provide an appropriate balance between ease of use (using the defaults)
and flexibility (writing procedures). In the event new procedures are needed, the object-
oriented implementation of interactors in CommonLisp should render it easy to create
new interactor types.

6.3. Graphical Object System
Opal, the object-oriented graphics component of Garnet, allows the higher layers of

the software to be independent of the details of the particular window manager used. In
particular, this layer supports "retained graphics," which means that the objects know
where they are displayed in a window and are able to redisplay themselves automati-
cally if the window is uncovered, and they can move and erase themselves [Kosbie et
al. 90].

Previous implementations of the prototype-instance model have not supported chang-
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ing the structure of instances. Opal provides special graphical objects called "Ag-
greGadgets" which are used to hold a collection of other objects (either primitives or
other AggreGadgets). When an AggreGadget is used as a prototype, its instances con-
tain copies of the entire collection of objects. This means that an instance is made of
each of the components of the AggreGadget, as well as for the AggreGadget itself.
Changes to the AggreGadget are immediately reflected in all instances, including when
components are added or deleted from the prototype. In this case, the corresponding
components are immediately added or deleted from all instances. Thus when objects
are erased, AggreGadgets can limit the number of other objects that are redrawn, and
thereby improve efficiency [Dannenberg et al. 90].

6.4. Other Developments

6.4.1. An interface builder
On top of the Garnet toolkit layer (KR, Opal, constraints, and interactors) are a num-

ber of tools to assist the user interface designer. The most important is the Lapidary
interface builder [Myers et al. 89a]. Lapidary provides a graphical front end to most of
the underlying Garnet toolkit features.

In particular, Lapidary allows the designer, who does not have to be a programmer, to
draw pictures of application-specific graphical objects which will be created and main-
tained at run-time by the application. This includes the graphical entities that the end
user will manipulate (such as the components of the picture), the feedback that shows
which objects are selected (such as small boxes on the sides and corners of an object),
and the dynamic feedback objects (such as hair-line boxes to show where an object is
being dragged). The designer creates prototypes of the objects in Lapidary, and then
the application program creates instances of these as needed.

Lapidary supports the construction and use of interaction techniques, such as menus,
scroll bars, buttons and icons. Lapidary therefore supports both using a predefined
library of widgets, and defining a new library with a unique "look and feel." The runtime
behavior of all these objects can be specified in a straightforward way using constraints
and abstract descriptions of the interactive response to the input devices. Lapidary
generalizes from the specific example pictures to allow the graphics and behaviors to be
specified by demonstration.

Lapidary is designed to allow the user interface builder flexibility in specifying object
behavior. Graphical constraints can be attached to objects using iconic menus. If an
object should move with the mouse, it can be selected and declared a feedback object.
Lapidary will automatically generalize the constraints on the feedback object so they
refer to whatever graphical object the mouse is over. Also, if an object should change
based on some user action, the designer can specify this by demonstration. First, one
state is drawn, and then another state, and Lapidary will automatically construct the
constraints to change the object between the two states.
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6.4.2. A dialogue box creation system
Sometimes it is easier to list the contents of a dialogue box or menu, rather than draw

it meticulously. Jade automatically creates an attractively laid out dialogue box or menu
from a simple listing of its contents. In addition to being simple to use, the specification
passed to Jade has the additional advantage of being look-and-feel independent. The
textual specification of the contents also describes the kind of input required (e.g.,
choice of one of a set, a number in a range, etc.), and the particular look-and-feel to use
(e.g., Macintosh-like, Garnet-standard, etc.). From this, Jade will choose the correct in-
teraction techniques, which themselves are designed using Lapidary. In addition, the
heuristic rules that determine the placement of various parts of the interface are specific
to a particular look-and-feel. For example, the set of buttons that make a dialogue box
go away ("OK," "CANCEL") will be at the right for a Macintosh-like dialogue box, and at
the top for a Xerox-Star-like one. [Vander Zanden and Myers 90]

6.5. Results
Version 1.1 of the Garnet toolkit was released in the fall of 1989, to enthusiastic

response from the user interface development community. A second version was
released the following spring. Although Garnet has only been working for a short time,
it has already demonstrated that it makes the creation of graphical, highly-interactive
user interfaces significantly easier. It is one of the few systems that supports the crea-
tion and exploration of various looks-and-feels for user interfaces. The use of con-
straints and automatic refresh for graphical objects has proven to be very useful and
sufficiently efficient to support the desired interfaces. The encapsulation of the inter-
active behaviors makes it much easier to have the objects respond to input devices.
The Lapidary interface builder allows more of the user interface to be specified graphi-
cally and by demonstration than any other interface builder, and Jade is the most ad-
vanced look-and-feel-independent dialogue box creation system. Taken all together,
these components make Garnet an exciting and innovative system that is extendinq the
state of the art in user interface software, while still being useful for creating user inter-
faces today.

Over 250 companies and universities have requested licenses for Garnet, with 85
sites already licensed by the end of the contract period.
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7. RESEARCH IN VLSI
The task of designing VLSI systems grows continually more difficult, pushed by in-

creasing circuit density and wafer scale integration, and pulled by ever more ambitious
application requirements. At the same time that designs grow more complex, the trend
toward special purpose systems calls for a larger number of designs to be carried out.
As a result, current design tools and methodologies are unable to keep pace. Carnegie
Mellon's research in VLSI is aimed at designing tools and architectures themselves in
such a way that the process of implementing new systems becomes more rapid and
reliable.

Our VLSI research program includes the following tasks:

" Develop and distribute VLSI logic design validation tools that combine ad-
vanced functionality with the efficiency needed to make early validation of
large designs feasible.

" Develop and prototype application-specific architectures that exploit tech-
nology and parallelism for large gains in cost and performance, along with
methodological, software and hardware support for their design and
deployment.

7.1. Special Purpose Architectures

7.1.1. SLAP
The SLAP (Scan-Line Array Processor) pro'ec *s developing a highly parallel

(100-1000 processor) SIMD linear array architecture for image computation and related
applications [Fisher et al. 87a]. Our early work concentrated on hardware implemen-
tation and on the development of programming paradigms and tools.

We planned a three board system to fit in a Sun-3 cabinet: two array boards and one
controller board. The controller board was based on a commercial microprocessor con-
trolling an array instruction issue unit and several fast data transfer and storage units.
Several SLAP chips mounted on the controller board facilitatec! connecting the array into
a ring, and made a one board system yielding hundreds of MIPS possible. We an-
ticipated that when fully populated with 128 SLAP chips, the system should execute
some four billion sixteen bit operations per second.

At the same time, we were developing programming support, including a compiler, as-
sembler and simulators for the entire system [Fisher and Highnam 88a]. One interest-
ing aspect of the compiler work involved the expression of inter-PE communication in a
functional style that allowed automatic scheduling and optimization of the interaction of
communication and computation.

Concurrently, we brought up two compilers. One translates SLANG, our image-
oriented high-level data parallel language, into assembly code. The other translates
APPLY, the image-processing language developed by the Warp group at CMU, into
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SLANG code that runs on a SLAP of any size. We will thus be able to run many
programs developed for Warp.

Although the four-processor SLAP chip worked at speed on first silicon in both p-well
and n-well processes, yield was low and clocking at full speed was tricky. We tuned the
chip design for enhanced yield and timing margins, at the same time improving our test-
ing capability. We fabricated and tested an improved version of the chip.

The other focus of effort was on the system interface/controller and its software sup-
port. Low-level tools for generating and linking array code and controller code were
written and tested, and await final updating to reflect late changes in the controller
design. Another software task was to update the code-generation interface of the
SLANG high-level language compiler.

By the end of the contract period, we completed the benchmarking and analysis of
our optimizing compiler for SLANG. The results showed that the compiler meets our
design goals of producing nearly hand-quality code on image processing applications.
Further, the results demonstrate an important complementarity between loop unrolling
and constant propagation in these programs, and also demonstrate that our technique
of directional analysis provides on the order of a 20% improvement in runtime for these
applications. The compiler's effectiveness also stems from the extensive use of other
standard optimizations, such as constant subexpression elimination.

Parallel graphics
As part of our SLAP applications work, we also studied the performance of a polygon

rendering algorithm that scales gracefully between processor-per-pixel and processor-
per-polygon approaches, and which can be implemented using incremental arithmetic.
Our preliminary results show that some point in between the extremes usually gives the
best efficiency for a given number of processing elements, and that MIMD implemen-
tations are typically twice as fast as SIMD implementations due to better load balancing.

7.1.2. Chess
Because of the enormous search spaces involved in chess, chess-playing machines

provide the ideal environment to conduct parallel search experiments. ChipTest, the
SUN-based system built around one of our move generator chips, was crowned the nc,',
ACM North American Computer Chess Champion in the fall of 1987. A new 2-
processor chess machine, Deep Thought, was then built, with anticipated performance
being around 2,000,000 nodes/sec. This represents about a factor of 4 increase in raw
speed over the retiring champion. Because of algorithm improvement, the actual speed
increase should be around a factor of 5. The new design was a single VME triple
height, full depth board that plugs directly into a SUN workstation. Based on test results
between ChipTest and Hitech (another Carnegie Mellon chess machine), we expected
that once the chess knowledge in Hitech is merged with the new machine, a computer
grandmaster would become a reality.
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We planned to use simulated annealing to automatically tune the evaluation function
parameters instead of acquiring the equivalent parameters from Hitech. The equivalent
evaluation parameters were not always present in Hitech, and there were practical dif-
ficulties in extracting the parameters from Hitech.

The speed of the new machine was roughly equivalent to the maximum speed that
Cray Blitz (the 2nd place finisher in the '87 ACM Computer Chess Championship) could
ever attain running on 20 4-Processor Cray XMP/48s, assuming linear speedup for the
80 Cray XMP processors. ChipTest, the predecessor to the new machine, finished first
in the same ACM event. The new machine was to serve as a prototype machine for
running parallel search experimentz, with each of it's two processors containing a
single-chip move generator implemented in 3-micron CMOS, as well as a set of Xylink
logic cell arrays to implement the evaluation hardware.

Gary Kasparov, the world chess champion, convincingly defeated Deep Thought, the
world computer chess champion in a two game exhibition match held on Sunday Oc-
tober 22, 1989, although Deep Thought was running on the fastest hardware yet. Using
6 custom processors running on 3 Sun4-330 workstations, Deep Thought was search-
ing over 1.6 million positions/sec. Kasparov nevertheless defeated Deep Thou, it in
both games, proving "hat there is still a considerable gap between the best chess play-
ing computer and the best human chess player [Hsu 90].

7.1.3. A coprocessor design environment
The coprocessor design environment project focused on developing a suite of

hardware and software tools aimed at assisting the process of designing and deploying
custom coprocessors within an existing application environment. The tools provide
early feedback on eventual system performance as well as assistance in hardware and
software interfacing.

We completed the logic design and layout of an MC68020-compatible coprocessor
design frame, and designed an example coprocessor with raster graphics and data
structure applications that exercise the most commonly used features of the
frame [Chatterjee and Fisher 87a, Chatterjee and Fisher 87b].

Part of our work involved designing a simple language for specifying the instruction
st of a coprocessor, along with the translations needed both to produce object code
invoking the coprocessor and to emulate the coprocessor in response to a "coprocessor
missing" exception. We have implemented an interface compiler that translates such a
specification into a phase to be inserted in a C compilation that inserts coprocessor in-
structions, along with emulation routines to be used in performance prediction.

The implementation of our initial set of software tools for coprocessor interfacing led
to testing an example coprocessor chip. Developments in the microprocessor market
since the inception of this project made the 68020 less attractive as a host CPU, so we
dropped our plans to refine the design environment for release. Instead, we are retar-
geted our efforts to use what we learned to study the architectural and programming
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issues raised by the use of programmable accelerators. We implemented a simple dis-
tributed event simulator to let us take some measurements on fine-grain parallel decom-
positions of inner loops, and used these results to guide further research on program-
ming tools and hardware support.

7.1.4. Parallel programming
We worked on compiling data-parallel languages for shared-memory machines. Our

long term goal was to promote portable parallel programming by developing an expres-
sive and high-level programming model that could be efficiently implemented on a
variety of architectures. Data parallelism appears to be an appropriate level of abstrac-
tion that allows the programmer to think in terms of the logical structure of the program,
avoid overconstraining the algorithm, and postpone (or even ignore) the low-level
details of scheduling, synchronization and load balancing. However, implementations of
this programming paradigm have been largely on SIMD machines, and attempts to port
this model to MIMD machines have been mostly limited to SIMD emulation, which has
high overheads associated with startup and synchronization, and is not competitive with
hand-coded solutions written in a less portable style. We suspected that the regularities
in the data-parallel paradigm allowed for the application of advanced compilation tech-
niques and extensive compile-time analysis to produce efficient code for various MIMD
machines.

Based on the these ideas, we implemented a compiler for an experimental data paral-
lel language called VCODE. The compiler was targeted for the Encore Multimax, a
shared-memory machine. Initial experiments indicated that it is possible for an optimiz-
ing compiler to obtain 70-90% efficiency. The compiler generates C Threads code,
which is then compiled by the native C compiler to produce final object code. This al-
lows some flexibility in the choice of the target machine. We also implemented some of
the runtime mechanisms on the CRAY Y-MP, and their speed compared well with the
speed of the standard libraries on that machine.

The first version of a compiler that translates abstract data parallel code into efficient
code for a shared memory multiprocessor was completed, but not all optimizations were
in place. Nevertheless, the compiler was able to perform a detailed synchronization
analysis that allowed a large amount of serial overhead to be eliminated.

We also completed the design of a simple and powerful data parallel extension to
C. The extension adds just two features: a parallel loop with data renaming via index
vectors, and an array partitioning construct that concisely expresses a large variety of
data remappings. Unlike existing designs, these features provide dynamic data sizing
and nested parallelism without adding automatic storage management or new
datatypes.
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7.2. Circuit simulation and verification
Many hardware systems can be viewed at some level of abstraction as communicat-

ing finite state machines. In analyzing a system of N processes, however, the number
of states in the global state graph may grow exponentially with N. We call this problem
the state explosion problem. Our approach to this problem is based on another obser-
vation about distributed programs. Although a given program may involve a large num-
ber of processes, it is usually possible to partition the processes into a small number of
classes so that all of the processes in a given class are essentially identical. Thus, by
devising techniques for automatically reasoning about systems with many identical
processes, it may be possible to make significant progress on the general problem.

We have addressed the problem of devising an appropriate logic for reasoning about
networks with many identical processes. Indexed Temporal Logic is a logic we
developed based on computation trees. We make precise the idea that changing the
number of processes in a family of identical processes should not affect the truth of a
formula in our logic, by introducing a new notion of equivalence between networks of
finite state processes. We prove that if two systems of processes correspond in this
manner, a closed formula of our logic will be true in the initial state of one if and only if it
is true in the initial state of the other. We have devised a procedure that can be used in
practice to find a network with a small number of processes that is equivalent to a much
larger network with many identical processes. We call this result the collapsing theorem
for networks with many identical processes.

Our results indicate that it is possible to show that exactly the same formulas of our
logic hold in a network with 1000 processes as hold in a network with two processes.

We also devised a methodology for verifying an n-bit random-access memories by
simulating O(n log n) patterns. This technique was tested on a series of CMOS static
RAM designs ranging from 4 to 4096 bits. As a benchmark, simulating the 114,689 pat-
terns to verify the 4096-bit RAM required 30 hours of user CPU time on a MicroVax-II,
exploiting 32-fold data parallelism. The elapsed time was over 3 weeks, however, due
to serious thrashing by the virtual memory system. Furthermore, as the memory size
grew, the simulation time grew roughly quadratically, since both the number of patterns
and the time to simulate a single pattern grew. Each time the memory size increased
by a factor of 4, the simulation time increased by 18-20x. The time could be decreased
dramatically by mapping the simulation onto the Connection Machine.

In other work, we verified the register array portion of the SLAP data path. The array
contained 32 registers of 20 bits each. Most interesting, it contained separate read and
write ports that could operate on different (or the same) registers simultaneously. This
required simulating O(n log 2 n) patterns to account for the potential interactions between
reads and writes. This verification required 1.5 hours on a SUN-3/160. It demonstrated
the utility of the methodology for a class of circuits (multi-ported memories) that is prone
to design errors.
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Symbolic simulations
Our work also addressed several fronts dealing with formal verification of hardware

using a symbolic simulator. We made significant progress in developing systematic
methodologies for verifying sequential circuits. Since combinational circuits already are
straightforward to verify using a symbolic simulator, this was a very significant step for-
ward [Beatty et al. 89].

For data-intensive circuits, the traditional approach of building global state graphs is
unworkable. For example, a single 32-bit counter has billions of reachable states. We
developed a variation of the temporal logic formalism described by others in our group
that addresses this problem for synchronous machines. Instead of building the state
graph explicitly, we used symbolic simulation and our efficient Boolean function
manipulation routines to characterize both states in the global state graph and the
machine's next state function symbolically. We showed how to verify such circuits un-
der the assumption that input sequences are restricted to members of a regular lan-
guage. We demonstrated the verification of circuits with some 1021 states in just a few
minutes' CPU time.

Although we have been using symbolic simulation to verify circuits for some years
now, our work fell short in terms of generality, ease of use, and degree of automation.
We did not have a formal notation for specifying the desired circuit property, nor a
method to generate simulation patterns directly from the specification. Instead, we
derived symbolic simulation patterns by hand and argued informally that these patterns
served to verify the desired properties. Furthermore, it was particularly cumbersome to
verify operations requiring multiple state transitions, such as occurs in pipelined sys-
tems.

Our most recent work corrects this shortcoming by presenting a formal state transition
model for digital systems using three-valued (0, 1, X) models, a formal syntax for ex-
pressing desired properties of the system, and an algorithm to decide whether or not the
system obeys the specified property. Our specifications take the form of formulas
mixing quantified Boolean expressions and elementary temporal logic operators. The
class of properties that can be expressed with this notation is relatively restricted, as
compared to other temporal logics. Nonetheless, we have found that we can readily ex-
press most aspects of synchronous digital systems. It is quite adequate for expressing
many of the subtleties of system operation, including clocking conventions and pipelin-
ing.

We extended the COSMOS symbolic simulator to support this verification methodol-
ogy. In addition, we wrote a preprocessor (in a dialect of Scheme), that gives powerful
constructs for reasoning about vectors of circuit nodes and for constructing and
manipulating Boolean expressions. The output of the preprocessor is a sequence of
simulation commands for COSMOS.

Our experiments with this new system have been able to verify several styles of stack
and RAM circuits. The performance has proved quite acceptable: less than 5 minutes
of CPU time (on a DEC 3100) to verify memories of over 1 K bits.
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Verification of hardware controllers
The control portion of a complicated hardware system can usually be expressed as a

finite state machine. Given such a finite state machine, one would like to assert and
check properties about the sequencing of events within the system. Temporal logic is a
formalism that is appropriate for specifying such properties. Previously, we have
developed efficient methods for checking temporal logic specifications of finite state sys-
tems with at most a few thousand states. Unfortunately, a large hardware system with
several devices acting in parallel may give rise to a gigantic state space, making a direct
analysis intractable. Our work took three approaches to solving the state explosion
problem.

In the first two approaches, we described a hardware system as a set of finite state
concurrent processes that operate on shared Boolean state variables. The first method
used a DAG representation for Boolean expressions to represent the state space of the
system. By using this representation our verifier was able to find a bug in an
asynchronous arbiter circuit with more than 60,000 states in under a minute. The entire
state space could be represented using fewer than 300 nodes. We are currently testing
the verifier on a number of other sequential circuits.

The second approach involved making use of symmetries in the circuit to produce a
reduced automaton that correctly models the circuit behavior. Our goal was to verify
properties of very large systems of concurrent processes, provided they possess certain
known symmetry properties. We represented the symmetries of a system as a permuta-
tion group on its state variables. Under appropriate conditions, the system states could
then be merged into equivalence classes corresponding to the orbits of the group. Un-
fortunately, in the general case, determining whether two states are in the same equiv-
alence class was computationally intractable. Thus, our work focused on finding classes
of permutation groups for which the reduction problem was tractable.

The third approach attempted to exploit the hierarchical structure of large hardware
systems. Looking more closely at such systems, we often found that they were com-
posed of a set of modules which interacted through well-defined interfaces. The in-
dividual modules were usually much simpler than the whole system and could be
analyzed using the temporal logic verifier. Our goal was to be able to deduce properties
of such a system from properties of its individual components. The basic idea involved
the notion of a communication protocol A protocol specifies the interaction between a
group of modules. The protocols were supplied by the designers based on their
knowledge of the system. By checking that each module implemented the protocol in
an appropriate sense, it was possible to assert that any property of a component would
also be a property of the entire system. Additional properties of the system could then
be deduced from these component properties. Some hardware systems also contained
many repetitions of a single type of component. Intuitively, it seemed possible to check
some properties of a similar system with only a few repetitions of the component and
deduce that the same properties hold of the original system. Analyzing the smaller sys-
tem was often much easier than analyzing the original.
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Cache coherency protocols
In past few years, many shared-memory nultiprocessors have been developed to

meet demands for increased performance and reliability. These machines usually have
on the order of ten processors, each of which has a local cache to reduce memory bus
contention. However, these designs do not scale well to larger numbers of processors.
More recent efforts include complex multi-level caching schemes in an attempt to ac-
commodate hundreds of processors. The largest hurdle in designing such machines is
maintaining consistency between caches and main memory. There have been many
proposed methods to maintain the desired consistency while still providing acceptable
performance. Unfortunately, understanding exactly how these cache coherency
protocols operate has proved difficult. In order to guarantee correct behavior, some
method of formal verification is needed.

We considered two major classes of Cache coherency protocols: Those protocols
based on a snooping, and those based on linked lists. Snooping is usually used for sys-
tems with a common memory bus. Each cache watches the common bus to coordinate
its activity with the other caches. In a linked list protocol, each piece of data is as-
sociated with a linked list which gives the location of each copy of the data. To modify
the piece of data, messages must be sent to each location. This method is common in
message-passing systems.

We have been experimenting with the use of model checking techniques for the
verification of such protocols. Since the protocols are designed to be implemented in
hardware, they can be described by finite-state models. One of the protocols which we
are currently attempting to verify is for an actual multiprocessor currently being
developed (The Encore Gigamax). We view this work as a test of the practical ap-
plicability of our methods and as an opportunity to allow practical experience to drive the
development of new methods.

7.2.1. COSMOS
COSMOS provides a combination of high simulation performance and a variety of

simulation features. It simulates between 10 and 200 times faster than other switch-
level simulators such as MOSSIM II. COSMOS achieves this performance by
preprocessing the transistor network using a symbolic Boolean analyzer, converting the
Boolean description into procedures describing the behavior of subnetworks plus data
structures describing their interconnections, and then compiling this code into an ex-
ecutable simulation program [Bryant 87a].

An earlier bottleneck caused by the long time required to preprocess a circuit into an
executable simulation program was solved by a combination of hierarchy extraction, in-
cremental analysis, and assembly code generation. The preprocessor takes a flat net-
work description and extracts a two-level hierarchy consisting of transistor subnetworks
as leaves, and their interconnection as root. This extraction utilizes graph
coloring/isomorphism-testing techniques similar to those used by wirelist comparison
programs. To avoid repeating the processing of isomorphic subnetworks, it maintains a

7-8



directory of subnetworks and their compiled code descriptions with file names derived
from a hash signature of the transistor topology. Finally, the code generation program
can generate assembly language declarations of the data structures rather than C code.
The data structure formats for all Unix assemblers are sufficiently similar that the as-
sembly code generator for a new machine type can be produced with minimal effort. As
an example, a 1600 transistor circuit that earlier required 23 minutes to preprocess on a
VAX-1 1/780 now requires only 2.9 minutes to preprocess the first time, and only 2.3
minutes subsequently.

Features of COSMOS include both logic and concurrent fault simulation, mechanisms
to interface user-written C code to implement new simulation commands as well as be-
havioral models, and the ability to simulate up to 32 sets of data simultaneously.
Programs are provided to translate circuit descriptions produced by the Berkeley Magic
circuit extractor into the network format required by the symbolic analyzer.

Response from users has been favorable, especially regarding the simulation perfor-
mance. We successfully simulated a number of chips containing over 40,000 transis-
tors, with simulation speeds superior to any other switcn-level simulator. For example,
we were able to simulate a 4 processor SLAP chip (around 60,000 transistors) at a rate
of less than 10 CPU seconds per clock cycle of simulation on a SUN-3/160. This en-
abled the designers to perform extensive simulation prior to fabrication.

We released an experimental version of COSMOS (Version 2.0) that is able to per-
form symbolic simulation. With symbolic simulation, the user provide simulation pat-
terns containing Boolean variables, in addition to constants 0 and 1. The program then
reoresents the states of the nodes as Boolean functions of the past and present input
variables. By using OBDD's to represent the Boolean functions, we have been able to
simulate many large and complex circuits symbolically. This style of simulation is made
possible by the symbolic preprocessing performed by COSMOS which converts the
transistor-level description of a circuit into a functionally-equivalent Boolean represen-
tation.

Symbolic simulation provides a convenient tool for formal circuit verification. We can
determine the behavior of the circuit over far more combinations of inputs than would be
conceivable by conventional simulation. For example, we recently used the symbolic
simulator to verify an 80-bit priority encoder that is to appear in a new move generator
for a chess machine. This circuit has 88 inputs, and hence exhaustive simulation would
require on the order of 1019 years to simulate conventionally. (For reference, the big
bang is believed to have occurred about 1010 years ago.) Using symbolic simulation, we
were able to evaluate this circuit for all possible inputs and to verify the output values
with 1.5 hours of CPU time on a MicroVax-II.

We studied the resource requirements of the COSMOS simulator using a 43,000 tran-
sistor benchmark circuit supplied by Intel. Running on a VAX 8800, COSMOS requires
30 minutes to create an executable simulator, which then simulates 1 clock cycle every
2.2 seconds. In contrast, MOSSIM II requires only 12 minutes to create its simulation
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data structures, but 23 seconds to simulate 1 clock cycle. Thus, COSMOS outperforms
MOSSIM II for any simulation run longer than 16 cycles.

Our symbolic analyzer ANAMOS requires 13.2 MB of virtual memory to preprocess
the circuit. Extrapolating to larger circuits, the virtual memory requirement will impose a
circuit size limit of around 200,000 transistors. However, with a better partitioning of the
preprocessing programs and with more careful coding, we should be able to decrease
the memory requirements dramatically. Developing a simulator capable of handling mil-
lion transistor circuits seems well within our reach.

ANAMOS II
We began a new version of ANAMOS, which had been in operation since 1986. One

goal of our rewrite was to produce more optimized Boolean formulas. The original ver-
sion of the program missed significant optimization possibilities by considering only
small units of the circuit at a time. Consequently, the resulting symbolic description of a
unit contained terms to handle conditions which would never arise during actual circuit
operation. For example, when a signal and its complement were inputs to a unit,
ANAMOS would treat these signals as if they were completely independent. As a
result, the symbolic description contained terms of importance only when both signals
are 1, or both are 0.

To find more optimizations, the new ANAMOS carries out the symbolic analysis on
larger blocks of logic. In order to accomplish this, it is imperative that powerful Boolean
function manipulation routines are employed. An experiment of using a Binary Decision
Diagrams (BDDs) is currently in progress. Some preliminary results from this have
been quite promising. For example, the symbolic description of a barrel shifter circuit
reduces in size by an order of magnitude.

Today, the ANAMOS program takes a transistor network and performs a symbolic
analysis using pairs of Boolean formulas to derive a behavioral description of the tran-
sistor circuit. Unfortunately, the program has some major deficiencies: it is very tightly
coupled to the Cosmos switch-level simulator, it requires an excessive amount of
memory, and it generates unnecessary large Boolean functions for some types of net-
works. The new "ANAMOS I1" tries to rectify these problems, but also to make
ANAMOS into a more general tool. During discussions with industry, it has become
very clear that there is a need for such a tool that can take a transistor network and
transform it into a multi-level "gate" network with the same behavior. This gate network
can then be simulated/analyzed/... using standard simulators and hardware ac-
celerators.

Delay modeling
We developed a transformation technique that allows comprehensive delay and race

modeling in a symbolic simulator. Previously, only unit delay and zero delay modeling
could be used for a symbolic simulator. Traditional race analysis algorithms are highly
data dependent, and statements like "if the current value is 0 and is trying to change to
1 then ..." are very common. Clearly such algorithms cannot be used directly in a sym-
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bolic simulator where the current value of a node might be the Boolean formula a+b and
it is trying to change to (a+b)c. By exploiting specific properties of the dual-rail encoding
used by COSMOS, we have adapted a ternary bounded-delay algorithm to transform a
circuit into a "delay circuit." This delay circuit can then be simulated by using a unit
delay algorithm. However, the results of such simulation correspond exactly to the
results that would be obtained by simulating the original circuit using the bounded delay
algorithm. The most surprising part of this transformation, except for the fact that it ac-
tually can be done, is that the overhead is relatively small. For example, using a pure
unit delay model it takes approximately 10 seconds of CPU time to verify the addition
function for a 16-bit precharged ALU circuit. The same verification, with the delays in
the nodes assumed to be bounded between 1.7ns and 4.5ns, takes about 33 seconds.

Test generation
We have extended the COSMOS symbolic simulator to generate tests for sequential

MOS circuits by symbolic fault simulation. To generate tests for a circuit, the program
simulates the behaviors of the good and faulty circuits over a sequence of input patterns
containing Boolean variables. It creates representations of Boolean functions in terms
of the variables describing the values on the primary outputs. It then derives a set of
test sequences by deterrm.ining assignments to the variables that will cause the good
and faulty circuits t' - duce different outputs.

This approacri u test generation has several important advantages over more tradi-
tional methnds based on combinatorial search. It can generate tests for MOS circuits
represened at the switch-level. It can generate tests for sequential circuits, where the
input ratterns contain sequences of Boolean variables to denote a multiple cycle test.
Finally, the simulator-based user interface naturally allows the user to provide an indica-
ticn of an overall test strategy, relegating the tedious task of detecting a specific set of
faults to the program. That is, by simulating patterns with control inputs set to constants
and data inputs set to variables, the user can indicate the means by which data are
transferred from the primary inputs to the inputs to a subsystem, and from the subsys-
tem outputs to the primary outputs.

We have successfully generated tests for sequential circuits of up to 700 transistors.
This is over twice the largest previous switch-level test generation benchmark, and the
first sequential one. Unfortunately, the virtual memory requirement grows rapidly for
larger circuits. We believe that by tuning the code, the test generator can be made
practical for true VLSI circuits.

Data parallel simulation
Most attempts to exploit parallelism in simulation utilize circuit parallelism. In this

mode, the simulator extracts as much parallelism as it can while modeling the behavior
of the circuit over a single test sequence. Such an approach has the advantage that it
accelerates the existing way in which simulators are used. However, its performance is
limited by the degree of parallelism found within the circuit, as well as the need to main-
tain synchronization. Furthermore, the overhead of keeping the simulation
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synchronized and communicating values between processing elements can overwhelm
the savings gained through parallel evaluation.

We implemented a data parallel version of COSMOS on two different types of the
machines. Unlike other switch-level simulators, COSMOS can evaluate the behavior of
a circuit obliviously, since the new state of a set of nodes is computed by simply
evaluating a sequence of Boolean formulas. In reality, our implementation is not en-
tirely oblivious, since it maintains an event list to indicate which regions of the circuit
should be evaluated. However, we queue a logic element on the event list if one of its
inputs has changed for any of the test cases being evaluated. This leads to some un-
necessary evaluation, but our experiments indicate that this does not compromise the
performance significantly.

One implementation operates on conventional hardware, exploiting the bit-level paral-
lelism inherent in machine-level logic operations (typically 32-fold). A set of library
routines assist the user in writing C code to generate a number of test cases, evaluate
them in batches of 32 at a time, and then check the simulation results. This typically
yields a speedup of 20x over sequential simulation. It falls short of the optimal factor of
32 due to the overhead of packing and unpacking the data, and the decreased locality
of simulation activity.

The second implementation runs on a Connection Machine. In this implementation,
each processor stores the state of every circuit node for a single test sequence. The
host executes the simulation program, commanding the processors to perform logic
operations on their node values or to test whether a node has changed state. We were
able to implement this version by modifying the existing simulation program to make
calls to subroutines in the C/Paris library. This version achieves very high speed, since
it does not require any use of the communication network in the Connection Machine.

We have evaluated the performance of data parallel simulation for a 16-bit nMOS
ALU (688 transistors), based on a design in Mead and Conway. The ALU control inputs
were set to perform addition. The patterns were generated automatically, and the
results were tested by comparing the ALU output values to the input values. The Con-
nection Machine was a Thinking Machines Corp. CM-2 with 32 physical processors,
configured as 1 M virtual processors, with a VAX 8800 as a host. The table below shows
the time required to evaluate 32 million different input patterns.

Program Machine Parallelism Absolute Time Relative Time
MOSSIM II VAX 11/780 1 2.53 yrs.* 376,000
COSMOS VAX 11/780 1 81 das.* 33,000
COSMOS VAX 11/780 32 103 hrs.* 1,743
COSMOS SUN 4 32 10.7 hrs.* 181
COSMOS CM-2 32K 212 secs. 1
Circuit 10 MHz 1 3.2 secs.* 1/66

- Estimated by extrapolation
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As can be seen, the Connection Machine achieves a very high speed-up over se-
quential evaluation. In contrast, for a simulator exploiting circuit parallelism, it is doubt-
ful that many circuits contain 32,000-fold parallelism, nor that this degree of parallelism
could be supported without high overhead in synchronization and communication.

We successfully mapped the simulation of a 4K CMOS static RAM (24,577 transis-
tors) onto a 32K processor CM-2. This mapping exploits data parallelism, in which the
behavior of the circuit over a number of independent patterns is evaluated simul-
taneously. We were then able to formally verify the RAM in 5.6 minutes by simulating
114,689 specially selected patterns. This was 250 times faster than performing the
same simulation on a MicroVax-II.

Unfortunately, this method did not scale well to larger circuits. Preprocessing the cir-
cuit with ANAMOS requires 37 MB of virtual memory, since the entire memory array
must be analyzed as a unit. Furthermore, our parallel mapping required 4 bits per node
to store its state, plus extra space for storing temporary values. Thus, we were limited
by the 64K bits of memory available to each CM-2 processor.

COSMOS and NECTAR
Despite the major advances in switch-level simulation performance over the past few

years, we were still unable to perform full switch-level simulation of the largest chips be-
ing manufactured (more than 1 million transistors.) Our major limitation was not CPU
speed so much as primary memory capacity. The data structures required to represent
a large circuit were extremely large (hundreds of megabytes), and were accessed to
heavily to make efficient use of virtual memory.

We believed the high performance distributed network system Nectar, also being
developed at Carnegie Mellon, would be a good simulation engine for these simulations.
By making the granularity coarse enough, we could ensure that the communication
overhead was very small compared to the total simulation time. Whereas most experi-
ments with parallel logic simulation produced disappointing results, we believed that it
could be viable for handling circuits that are too large to run on a single machine.

Sequential circuits
We have developed a new method for specifying and verifying sequential circuits

using the symbolic simulation capability of COSMOS. The heart of the method is to use
a representation function to let a designer reason about an abstract version of his
machine, rather than deal with the large and messy case analysis needed to deal
directly with pipelined circuits. Given this approach, we have developed a way to use
COSMOS not only to simulate the circuit, but also to evaluate the representation func-
tion and the verification conditions.

We developed a circuit verification approach with two novel features. First, it used
Hoare-style representation functions to abstract the typically messy state of a (possibly
pipelined) circuit, allowing the designer to write specifications as simple Hoare-style
rules. The approach could then be extended to handle more complex styles of
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specification, but representation functions seem to allow a large number of difficult-
looking problems to be easily specified. Second, it used the symbolic simulation
capability of COSMOS not only to simulate every possible computation of the circuit, but
also to evaluate the representation function and verification conditions. Using this ap-
proach, we verified that a synchronous systolic stack circuit of 96 cells and 5400 transis-
tors works correctly, independent of circuit delays. This : rification used about 4.5
minutes of CPU time and 31 MB on a VAX 8800.

A major goal of our research on circuit verification most recently has been the
development of compositional and hierarchical reasoning techniques that are suitable
for use with temporal logic model checking algorithms. Although there has been quite a
lot of research on compositional techniques for reasoning about concurrent and dis-
tributed programs with manually constructed correctness proofs, there has been very lit-
tle research on how this type of reasoning can be adapted to automata-based verifica-
tion methods. We have investigated a method of compositional reasoning in which the
environment of a module is modeled by another module called interface module, and
modules are verified by checking their behavior in combination with the interface
modules. This approach fits quite nicely with the verification methods that we have
developed previously. Our work on analyzing synchronous circuits was based on a pro-
gramming language called SML for describing complicated finite state machines. This
language has many of the standard control structures found in modern imperative pro-
gramming languages including nonrecursive procedures and processes. The SML
compiler extracts a Moore machine from a high level description of the state machine as
program, and the Moore machine can then be used as input to our model checking
program or various CAD tools in the VLSI lab for generating layouts. For our research
on compositional verification, we used our extension to SML, CSML, which allows us to
describe complex hardware controllers in a hierarchical manner and to construct inter-
face modules automatically. When we used this approach to reason about a CPU con-
troller with decoupled access and execution units, we were able to reduce the number
of states by a factor of 6.

A temporal logic based programming language
We developed a temporal logic based programming language for specification,

simulation, and verification of digital circuits. The language is actually a general purpose
programming language with temporal formulas as its Boolean expressions. The tem-
poral operators are important for describing the time intervals used in specifying the be-
havicr of synchronous circuils. The language includes both future-time operators and
past-time operators. The past-time formulas are used for simulation, while the future-
time formulas are used for verification. Most synchronous circuits of reasonable size
can be simulated in a natural manner by programs in the language. The language can
also be used for automatically verifying many important properties of such circuits.
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7.2.2. Symbolic Boolean manipulation
In the process of verifying finite state machines, large Boolean expressions often oc-

cur. For this reason, the design of efficient algorithms for manipulating and testing
Boolean expressions are important to the success of automatic verification methods.
Most of the relevant tests on Boolean expressions can be reduced to a simple test for
satisfiability, so much research has been devoted to this problem. The best theoretical
upper bound for t3sting satisfiability is achieved by Allen Van Gelder's algorithm. He
proves that his algorithni has a worst-case running time less than 2 (0 .25+E)L, where L is
the length of the Boolean expression to be tested. We have modified the algorithm to
improve the worst-case running time, and we are currently developing a parallel im-
plementation for the modified algorithm. Although the algorithm has a natural parallel
decomposition, additional changes will be necessary in order to facilitate load balancing
among the processors.

Our method for representing and manipulating Boolean functions as Ordered Boolean
Decision Diagrams (OBDD's) has proved to be among the most efficient and reliable
methods known [Cho and Bryant 89]. Several other organizations doing research on
logic synthesis and verification (e.g., UC Berkeley, IBM, and Fujitsu) have implemented
and are using our algorithms. We have implemented a new version of the algorithms
that runs 10 to 40 times faster than the original implementation. It is now feasible to
construct and represent the Boolean functions describing combinational logic gate net-
works with up to 3719 gates and 207 primary inputs.

We recently confirmed a conjecture that the Boolean functions representing the out-
puts of a multiplier provide difficult cases for the OBDD representation. That is, we
proved that for an n-bit multiplier with outputs numbered from 0 (LSB) to 2n-1, the
Boolean function representing either output ior 2n-i-1 requires an OBDD with at least
1.09n vertices. Our experience has been that multipliers with word sizes greater than
about 10 require graphs that are too large to handle efficiently.

In proving this lower bound, we discovered an interesting relation between the tech-
niques used to prove lower bounds on OBDD sizes and to prove lower bounds on the
area-time complexity of a VLSI implementation. In particular, the same form of proof
that shows that any VLSI implementation of a single output Boolean function requires
area-time complexity AP=Q(n 2 ) also shows that any OBDD for the function must have L'

vertices for some c>1. In fact, our lower bound proof for multiplication is actually a lower
bound proof for VLSI. It shows that computing output n of an n-bit multiplier has about
the same area-time complexity as computing the entire product.

These theoretical investigations of Boolean function complexity have given us a great
deal of insight into the st'engths and weaknesses of different representations.
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An alternate approach to BDDs
Another approach to binary decision diagrams that we explored is somewhat different

from the one discussed above. We view the binary decision diagram for an n-argument
Boolean function f as the minimal finite state machine for the set of Boolean vectors of
length n that satisfy f. Because the minimal finite automaton for a regular language is
unique up to isomorphism, it is easy to argue that this representation provides a canoni-
cal form for Boolean functions. Boolean operations involving NOT, AND, OR, etc., are
implemented by the standard constructions for complement, intersection, and union of
the finite languages accepted by these automata. In general, each of these operations
involves building a product automaton and then minimizing it.

When we construct a binary decision graph, our algorithm follows the syntactic struc-
ture of the Boolean formula. First, the level of each Boolean operation is determined.
Operations in the same level can be performed in parallel. If there are few operations at
some level, then these operations are divided into a sequence of suboperations that can
be processed in parallel.

7.2.3. Metastability
Synchronizer failures are among the most difficult hardware problems to diagnose be-

cause of their transient nature combined with their very wide range of mean times be-
tween failures (MTBF). This problem can be minimized by either using circuits that
avoid synchronizers altogether (self-timed logic) or to carefully design synchronizers so
that their MTBF is very high compared to other components.

In both cases, it is necessary to analyze the metastable behavior of the decision cir-
cuit subjected to asynchronous signals (usually some type of flip-flop). We have built a
tester, using a MOSIS-fabricated printed circuit board, designed to measure the
response time distribution for devices subjected to asynchronous input signals.

Despite the importance of reliable metastability data for circuit designers, this data is
rarely published in common data books. This is partially due to the lack of standardized
testing procedures. Our tester can be used to evaluate new device designs and to test
off-the-shelf components.

The tester consists of two fast signal generators with a precise, programmable delay.
The resolution of the programmable delay, about 20 ps, is fine enough to explore the
region of metastability of most practical devices (TTL, CMOS, custom VLSI). The tester
has two analyzers that can timestamp a signal transition with a resolution of about 1 ns.

7.2.4. Asynchronous circuits
Asynchronous systems have many possible advantages over traditional synchronous

systems but are not widely used due to the unavaiiability of suitable components, a lack
of experience with such systems, a lack of a simple, proven design method, and few
tools to help the designer. The asynchronous systems project has designed a set of
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asynchronous building block parts and used them to design and build a number of small
asynchronous systems for testing.

Work progressed on a system to automatically translate programs written in an
Occam-like langauge into asynchronous circuits. Occam is a language similar to CSP
used for describing concurrent communicating processes and turns out to be a very
natural description language for a class of self-timed circuits. Programs are translated
into initial circuits in a syntax directed way, and correctness-preserving optimizations will
be done on the resulting circuit. The resulting circuit will be correct by construction in
that the circuit will correctly implement the given program. Proving that the initial
program is correct, however, remains a task for the user.

The result is a netlist of circuit modules and wires that can be simulated using switch-
level simulators like COSMOS and RNL, or assembled into a VLSI chip using place and
route software on a set of circuit elements implemented and tested previously by the
asynchronous systems group.

Three test chips have been compiled by the system, assembled as VLSI chips by the
MOSIS FUSION place-and-route service and fabricated. Two of the chips implement
different versions of a two-to-one fifo-join module and are fully functional. The third
implements a switch for cut-through packet routing similar to the Torus Routing Chip of
Dally and Seitz. This chip consists of two two-way routers operating in parallel.

We built a second version of the chip implementing a switch for cut-through packet
routing. The first version was only half functional (one of the two routers on each chip
was fully functional) due to a problem with the interaction of the Magic layout program
and FUSION. After that problem was corrected, a second version was fabricated and
was mostly functional, this time the problem was a bug in the FUSION routing software.
However, the second chip was functional enough (luckily, the problem is in the data
path, not the control path) to verify that the generated circuit would have been correct if
not for the unfortunate bug in the routing software used.

Component models in the verification of asynchronous circuits
The formal correctness of a circuit is relative both to a specification and to a com-

ponent model. A component model is a formal description of the behaviors of the com-
potrents from which a circuit is constructed. It is important to have a wide range of com-
ponent models available. If a component model is too -.onservative (makes too few as-
sumptions), then it may be impossible to verify the correctness of a circuit that works in
practice. This reduces the applicability of formal verification. Worse yet, if a component
model is too liberal (makes too many assumptions), then a circuit that is verified may
not actually work in practice.

Historically, little attention has been given to the component models used in the
verification of asynchronous circuits. Two primary component models have been used:
The delay-insensitive model and the speed-independent model. However, neither deals
with timing information like the speed with which circuit components respond to inputs.
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Consequently, such models are too conservative to be used for a large class of circuits
that actually work in practice.

We have expanded the class of c rnponent models that can be used by our automatic
verification tools (both the trace theory verifier and the CTL inodel checker). It is now
possible to verify circuits that rely on assumptions about the relative delays of their com-
ponents for correct operation. This greatly expands the class of circuits that can be
automatically verified and makes the verifier a more useful tool for the design of
asynchronous circuits. The worst case complexity of the verification algorithm is linear
in the size of the state graph for both the specification and the circuit. Bounded and
unbounded maximum delays, bounded minimum delays, and setup times can all be
handled with this technique. Morecver, the nondeterminism inherent in asynchronous
circuits can be modeled more accurately by this technique than by other techniques that
deal with timing.

We have demonstrated this method on an asynchronous queue. The circuit was
known to contain an error, but our earlier work on this circuit could not be used to show
that it would work correctly if this error was fixed, since the circuit made certain assump-
tions about the relative delays of its components. By using the debugging information
provided bv the verification algorithm described in the previous paragraph, we were able
to design a correct version of the circuit and then demonstrate that it satisfied its
specifications. This is the first time that such a cirrcuit has been formally verified using
its original timing assumptions. We plan to integrate our technique for modeling timing
information with the technique described above for representing circuits using BDDs.
We expect this to increase the size and complexity of circuits that can be efficiently
verified.

CTL, trace theory, and timing models
We developed a system that combines CTL model checking and trace theory for

verifying speed-independent asynchronous circuits. This system is able to verify a large
and useful class of liveness and fairness properties, and is able to find safety violations
after examining only a small fraction of the circuit's state space in many cases. An ex-
tension was implemented that allows the verification of circuits that are not speed-
independent, but instead rely on assumptions about the delays of their components for
correct operation. This greatly expands the class of circuits that can be automatically
verified, making the verifier a more useful tool in the design of asynchronous circuits.

The system has been demonstrated on several fair mutual exclusion circuits, includ-
ing a speed-independent version that is verified correct. It has also been used to show
that given quite weak assumptions about the relative delays of components, the
problem of designing a fair mutual exclusion circuit using a potentially unfair mutual ex-
clusion element becomes almost trivial. Other examples verified with the system in-
clude a self-timed queue element.
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7.2.5. Alternative state-space representations
Traditional temporal logic model checking techniques have been limited to control cir-

cuits, since they require a complete enumeration of the state space, and the number of
states of the data path part of a circuit is prohibitively large. Recently, however, we
have carried out experiments in which we modified the original temporal logic model
checking algorithm to represent a state graph using binary decision diagrams. Because
this representation captures some of the regularity in the state space of sequential cir-
cuits with data path logic, we have been able to verify circuits with an extremely large
number of states. For example, using this method, we verified a synchronous pipeline
with approximately 5 X 1020 states. Our model checking algorithm handles full CTL with
fairness constraints. Thus, we are able to handle a number of important liveness and
fairness properties, which would otherwise not be expressible in CTL. The empirical
results we have obtained on the performance of the algorithm applied to both
synchronous and asynchronous circuits with data path logic indicate that the approac
is very promising. More work is required in this area, however, to characterize these
algorithms and determine exactly when they provide improved performance over tradi-
tional methods. The same basic idea should be useful in a number of other algorithms
that deal with large state transition graphs. For example, we are currently trying to
adapt this technique to various algorithms for CCS equivalence.

The state explosion problem can be particularly severe in the case of asynchronous
circuits and protocols. Even a minor mistake in such a system may cause events to
become highly disordered and virtually impossible to analyze. In one asynchronous cir-
cuit that we considered, a relatively minor error resulted in a global state graph with
more than 20,000 states. When the error was fixed the circuit had fewer than 200
states. A promising approach to the state explosion problem for this type of circuit is
based on the use of partially-ordered computation models (which consider the causal
ordering between events, rather than their temporal ordering). Since commuting
events, which would normally determine different interleavings, correspond to the same
partial order, the total number of cases that need to be considered in analyzing such a
system may be significantly less. Model checking algorithms based on such models
may have lower complexity than the algorithms we have developed previously. Such a
result would be of substantial practical interest and would vindicate the theoreticians
who have argued for partially ordered models of concurrency instead of interleaving
models.
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GLOSSARY
3-DFORM A general framework or system for representing 3-D models and

relationships; it is based on the Framekit language

ALOE A Language Oriented Editor
ALVINN Autonomous Land Vehicle In a Neural Network; a connectionist net-

work autonomous road-following system
ANAMOS The VLSI project's symbolic analyzer
Apply An image-processing language developed by the Warp group
ARL Action Routine Language; a language for specifying semantics in

Gandalf
AC Aspect Change; the move from one topologically equivalent class in

image recognition to another
A valon A set of high-level language primitives that allow easy access to

Camelot, a distributed transaction facility
Camelot A machine-independent, high-performance, distributed transaction

facility
Cascade Correlation

A learning architecture that begins with a minimal network and adds
hidden units one by one to eliminate remaining network errors

CCS Calculus of Communicating Systems; a formal model of concurrent
systems

Chip Tesi A single-processor, Sun-based chess move generator system
CMSL A specialized extension to SML that allows the programmer to

describe complex hardware controllers hierarchically and to con-
struct interface modules automatically

COSMOS COmpiled Simulator for MOS circuits
Constraints Relationships among graphical objects which are maintained when

one of the objects is changed
CTL A branching-time temporal logic used in much of the VLSI work in

hardware verification
DA Derivational Analogy; a learning method within Prodigy
Deep Thought A two-processor chess machine developed by the VLSI project

Dichromatic Reflection Model
A theoretical reflection model that mathematically describes the
physical cause of an object's highlights and color

EBL Explanation-Based Learning module within Prodigy

ESS Ergo Support System
Forsythe An Algol-like language which emphasizes a close connection to the

lambda calculus
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Framekit The language that is used with Vantage
Fusion The MOSIS place-and-route service

Gandalf A programming environment generator
Hitech A search-intensive chess machine
Interactors Objects in Garnet which control graphical device behaviors

Jade Garnet's dialogue box creation system
Janus A programming language used to specify views in Gandalf
KR An object-oriented language used for specifying constraints in Gar-

net
Lapidary A Garnet interface builder that allows flexibility in specifying object

oehavior
LC Linear Shape Change; changing the orientation of an object while

remaining in the same aspect classification
LCC Local Consistency Check; one of two production phases explored in

SPAM/PSM
LexGen An editor that specifies scanning routines that validate user input in

Gandalf
Noctar A high-performance distributed network system that serves as a

simulation engine for switch-level simulations of large chips
OBDD Ordered Boolean Decision Diagram
Opal The object-oriented graphics component of Garnet
OPS5 A production system computational model
ParaOPS5 A C-based optimized implementation of OPS5

Peridot An early predecessor to Garnet
Photogram A photogrammatic measurement module in SPAM
PRODIGY A computational architecture designed as a general testbed for

research in problem solving, planning, and machine learning
Quickprop A new learning algorithm in which each weight takes a nearly

optimal-sized step after each training cycle
RGB Space Calculating illumination color and color consistency by explicit refer-

ence to the red/green/blue (RGB) components
RTAQ Rapid Task AcQuisition
RTF Region To Fragment; the second of two production phases ex-

plored in SPAM/PSM
RuleGEN A compiler that converts knowledge represented as schemata into

OPS5 productions

SCS School of Computer Science

SLANG An image-oriented high-level data parallel language
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SLAP Scan Line Array Processor
Soar An architecture for general intelligence

SPAM System for Photointerpretation of Airports using MAPS

SPAMEvaluate An interactive tool for analyzing the results of a SPAM run
SPAM/PSM A reimplementation of SPAM in ParaoPS5
SPATS An automated performance analysis system for SPAM

STRIPS A well-known Al planner out of Stanford
Strongbox An integrated set of security tools provided by Camelot
TAQL Task AcQuisition Language
TransformGen An environment which automatically converts programs to run on a

new grammar
UIMS User Interface Management System; often used interchangeably

with UIDE
UIDE User Interface Development Environment; referred to in this report

as UIMS
Vantage The solid modeler that was specifically designed to support IU

research and which is incorporated into the VAC

VAC Vision Algorithm Compiler; a compiler that automatically generates
vision recognition programs for a well-defined vision task

VCODE An experimental data parallel language
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