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Abstract

The main goal of this research is to develop a unified geometric-asymptotic-
adaptive methodology for feedback design of nonlinear control systems. Such a
methodology is needed because the existing differential geometric results are
restrictive and often violated by small modeling errors. Effects of these errors can be
analyzed asymptotically by singular perturbation methods, which, however, are still
lacking a clear geometric interpretation. Neither geometric, nor perturbational
problem formulations can cope with large parametric uncertainty, for which an
adaptive approach seems suitable. Conversely, both geometric and asymptotic
techniques can become constructive steps in the design of an adaptive scheme and
in the analysis of its robustness. In our research these three heretofore separate
techniques are to be merged into a methodology which eliminates their individual
shortcomings.

During the first two years of the proposed research, major advances have been
made in our study of geometric-asymptotic properties of nonlinear dynamic
systems with parametric uncertainties and in the development of a systematic
design methodology for adaptive nonlinear control.

First, we have demonstrated that the phenomenon of controller and/or
observer peaking is of fundamental importance for nonlinear feedback design, and
that interference of peaking with uncertain nonlinearities can result in a drastic
decrease of the stability region. Geometric-asymptotic conditions under which this
type of interference can be avoided are being developed.

Second, we have shown that adaptive control methods can reduce the effects of
parametric uncertainties without introducing high-gain loops, thus avoiding the
danger of peaking. Our adaptive results are for "pure-feedback” systems with
known nonlinearities. We have solved the adaptive tracking problem with full-
state feedback. Our solution is in the form of a systematic recursive procedure called
"backstepping”

Third, we have formulated, and partially solved a class of nonlinear output =
feedback problems by developing a Design Toolkit applicable to a wide range of 0
systems. Among the tools developed so far is our nonlinear damping lemma, o
which allows us to compensate for the effects of the estimation error in observer
and/or parameter estimators.
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1. Introduction

The main goal of this research is to develop a unified geometric-asymptotic-
adaptive design methodology for nonlinear control systems.

The rigorous differential geometric results suffer from restrictive necessary and
sufficient conditions which are often violated by small modeling errors. Effects of
these errors can be analyzed asymptotically by singular perturbation methods,
which, however, are still lacking a clear geometric interpretation. Neither
geometric, nor perturbational problem formulations can cope with large parametric
uncertainty, for which an adaptive approach seems suitable. Conversely, both
geometric and asymptotic techniques are constructive steps in the development of
an adaptive scheme and in the analysis of its robustness. These three parallel, but
heretofore separate, research directions are now to be merged in order to
compensate for their individual shortcomings.

During the two years of the proposed research, five major advances have been
made in our study of geometric-asymptotic properties of nonlinear dynamic
systems with parametric uncertainties, in the state-feedback adaptive nonlinear
control and in the development of a design toolkit for output feedback control.

We report on these three sets of research accomplishments in the following
three sections of the report. Section 2 briefly describes our results on perturbed zero
dynamics and peaking. In Sections 3 and 4 we outline our new procedure for
adaptive nonlinear control design. Section 5 reports on other Principal
Investigator's activities. Full details of the reported results can be found in our
publications listed at the end of the report.

2. Perturbed Zero Dynamics and Peaking
01,J3,J6,J71

Here we summarize our results on approximate feedback linearization and
peaking. Feedback linearization designs were expected to preserve stability under
small regular perturbations. However, our results on perturbed zero dynamics
show that in many situations this is not the case. A robustness requirement for
every design is to guarantee a desired region of stability. This requirement often
contradicts other design specifications, such as disturbance attenuation or speed of
response. As the feedback gain is increased to meet these specifications, the stability




region may become intolerably small. We have shown that this is due to an
interference of controller peaking and unmodeled nonlinearities.

To develop more robust approximate linearization techniques, we have
investigated systems in which exact techniques fail. As a benchmark physical
example we have analyzed a system in which a small centrifugal term renders the
exact linearization impossible. Modifying or outright neglecting this term would
result in a simplified system to which the exact technique is applicable.

A deeper insight into the effects of such regular perturbations has been gained
by our analysis which shows that the zero dynamics of regularly perturbed systems
may be, and often are, singularly-perturbed. A rather far reaching conclusion is that
the exact zero dynamics are insufficient for a robust nonlinear design and that, in
fact, a perturbed approximate design which avoids high-gain, may be more robust.

Another frequent appearance of high gain is by design: to make the linear part
of the system faster with the expectation that a sufficiently fast exponentially
decaying disturbance will be of negligible effect on the zero-dynamics, that is on the
remaining nonlinear part of the system. However, this expectation is, in general,
false, because of the peaking phenomenon. To analyze the destabilizing effects of
peaking, we have addressed the problem of global stabilization for a class of cascade
systems. In this problem, the first part of the cascade is a linear controllable system
and the second part is a nonlinear system receiving the inputs from the states of the
first part.

In linear systems, a peaking phenomenon occurs when high-gain feedback is
used to produce eigenvalues with very negative real parts. Then some states peak to
very large values, before they rapidly decay to zero. Such peaking states act as
destabilizing inputs to the nonlinear part and may even cause some of its states to
escape to infinity in finite time, as illustrated by simple examples.

We have given precise structural conditions for peaking and proceeded to
show that the destabilizing effects of peaking can be reduced if the nonlinearities
have sufficiently slow growth. Based on our detailed analysis of the peaking
phenomenon we have examined the tradeoffs between linear peaking and
nonlinear growth conditions. To provide for realistic trade-offs between
performance and stability, we have introduced several new concepts (nonlinear
overshoot function, semiglobal stability) and given a method for computing
robustness bounds.




3. Adaptive State-Feedback Control of Nonlinear
Systems
[J2, J4, C3, C5, C6, C8]

Until a few years ago, adaptive linear and geometric nonlinear methods
belonged to two separate areas of control theory. They were helpful in the design of
controllers for plants containing either unknown parameters or known
nonlinearities, but not both. In the last few years the problem of adaptive nonlinear
control was formulated to deal with the control of plants containing both unknown
parameters and known nonlinearities. A realistic plan of attack for this challenging
new problem has led us through a series of simpler problems, each formulated
under certain structural assumptions, much as the assumption the unknown
parameters either appear, or can be made to appear, linearly. For example, if the
plant model contains not only 61 and 62, but also e9192, it is to be
"overparametrized" by introducing 63 = %182 as an additional parameter.

While we have kept the linear parametrization assumption, the applicability of
our adaptive designs to larger classes of nonlinear systems is achieved by removing
additional restrictive assumptions imposed on system structure, allowed types of
nonlinearities and signals available for measurement.

According to these restrictions, we have classified the existing adaptive
schemes into uncertainty—constrained schemes and nonlinearity—constrained
schemes.

Uncertainty-constrained schemes impose restrictions (matching conditions) on the
location of unknown parameters, but can handle all types of nonlinearities.

Nonlinearity—constrained schemes do not restrict the location of unknown
parameters. Instead, they impose restrictions on the nonlinearities of the original
system, as well as on those appearing in the transformed error system.

Our major result, most favorably received by the research community, is that
the limitations on nonlinearities can be removed for the so—called pure-feedback
systems, they are the broadest class of nonlinear systems for which adaptive
controllers can be systematically designed without imposing any growth constraints
on system nonlinearities.




The geometric characterization of pure feedback systems identifies the level of
uncertainty and nonlinear complexity as structural obstacles to adaptive feedback
linearization. For an unknown parameter, the level of uncertainty is its "distance,”
in terms of the number of integrators, from the control input. The larger this
distance is, the smaller is the number of state variables on which the nonlinearity
multiplying this parameter is allowed to depend (nonlinear complexity).

Our new adaptive scheme for pure-feedback systems is designed by a systematic
recursive procedure called backstepping. This procedure interlaces, at each step, the
change of coordinates required for feedback linearization, and the construction of
parameter update laws required for adaptation.

One of the most important stability and robustness properties of every adaptive
system is the size of its region of attraction, relative to the size of the region that
would have been achieved if all the parameters were known. When with the
known parameters the stability and tracking properties are global, but the same
properties of the adaptive scheme are oniy local, then the loss of globality is due to
adaptation. To avoid this loss, some adaptive schemes require that the
nonlinearities and some of their derivatives satisfy a linear growth condition which
severely limits the applicability of these schemes. The class of systems for which our
new adaptive scheme guarantees global regulation and tracking is much wider.

The region of attraction for the new adaptive scheme is global if the feedback
linearization is global. A subclass of pure-feedback systems for which this global
property is easy to establish are strict-feedback systems. For these systems the new
adaptive scheme achieves both global regulation and global tracking of smooth
bounded reference inputs. In contrast to the earlier schemes, these global results are
obtained without any growth constraints on system nonlinearities.

4. Output Feedback Nonlinear Control
s, J8, C1, C4, C7, C9, C10]

By far the most difficult problems in adaptive nonlinear control are those with
incomplete state measurement.

In the linear case, the adaptive output-feedback designs follow either a direct
model-reference path or an indirect path via adaptive observers. Current research
on adaptive observers for nonlinear systems indicates that the indirect path may
become promising for adaptive nonlinear control. However, the major stumbling




block along this path continues to be its linear-like proof of stability which imposes
restrictive conic conditions on the nonlinearities. Under such linear growth
constraints the actual nonlinear problem is, in fact, not addressed. Our first two
results on output feedback adaptive nonlinear control, have made similar linear
growth constraints and can be subjected to the same type of criticism.

In our current research, we aim to formulate and solve truly nonlinear
output-feedback adaptive problems. To this end, we have first addressed a class of
problems for which an exponentially convergent observer is known to exist. We
have shown that, in general, a "certainty equivalence” control, which employs the
state estimates as if they were exact states, is not stabilizing and may even lead to
explosive instabilities. The reason for this is an observer-induced peaking
phenomenon. We have developed a "Design Toolkit" to counteract the effects of
peaking and achieve stabilization. Thanks to this result, a systematic output
feedback design is now possible for a much larger class of nonlinear systems than
before. In our current research we are extending these breakthroughs and preparing
for their applications.

5. Principal Investigator's Activities

Petar V. Kokotovic was the co-organizer (with Alan J. Laub) of an NSF-NASA
workshop on Nonlinear Control, April 5-7, 1990, at Cliff House, UCSB. Many of the
topics covered by this research grant were discussed at the workshop.

Another major event organized by P. Kokotovic, in his capacity as Grainger
Professor at the University of Illinois, was the series of fifteen Grainger Lectures on
"Foundations of Adaptive Control,” September 28-October 1, 1990. A volume (more
than 500 pages) of extended texts of these lectures has been published by Springer in
1991.

At the World Congress of IFAC in August 1990, P. Kokotovic received the
IFAC's highest award—Quazza Medal—that has been given triennially since 1981.
He was chosen to deliver the Bode Prize lecture at the 1991 IEEE Conference on
Decision and Control.




N1

J2

]3

J4

J5

Jé6

J8

RESEARCH PUBLICATIONS UNDER
GRANT NO. AFOSR-91-0011 and
GRANT NO. AFOSR-91-147

"Nonlinear Systems Design: Adaptive Feedback Linearization with Unmodeled

Dynamics,”
P. Kokotovic, Principal Investigator

Journal Papers

H.K. Khalil and P.V. Kokotovic, "On Stability Properties of Nonlinear
Systems with Slowly-Varying Inputs,” IEEE Transactions on Automatic
Control, AC-36, pp. 229, February 1991.

1. Kanellakopoulos, P. Kokotovic, and R. Marino, "An Extended Direct
Scheme for Robust Adaptive Nonlinear Control,” Automatica, 27, pp. 247-
255, March 1991.

H.]J. Sussmann and P.V. Kokotovic, "The Peaking Phenomenon and the
Global Stabilization of Nonlinear Systems," IEEE Transactions on
Automatic Control, AC-36, pp. 424-439, April 1991.

I. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "Systematic Design of
Adaptive Controllers for Feedback Linearizable Systems,” IEEE
Transactions on Automatic Control, vol. AC-36, pp. 1241-1253, Nov. 1991.

I. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "A Toolkit for
Nonlinear Feedback Design," Systems & Control Letters, vol. 18, Feb. 1992.

J. Hauser, S. Sastry, and P.V. Kokotovic, "Nonlinear Control via
Approximate Input-Output Linearization: the Ball and Beam Example,”
to appear in IEEE Transactions on Automatic Control, vol. AC-37, 1992.

A. Isidori, S. Sastry, P.V. Kokotovic, and C. Byrnes, "Singularly Perturbed
Zero Dynamics of Nonlinear Systems,” to appear in IEEE Transactions on
Automatic Control, vol. AC-37, 1992.

I. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "Adaptive Output-
Feedback Control of Systems with Output Nonlinearities,” to appear in
IEEE Transactions on Automatic Control, vol. AC-37, 1992.




C4

C10

10

Conference Papers

I. Kanellakopoulos, P.V. Kokotovic, and R.H. Middleton, "Observer-Based
Adaptive Control of Nonlinear Systems under Matching Conditions,"
Proceedings of the 1990 American Control Conference, pp. 549-555, San
Diego, CA, May 1990.

I. Kanellakopoulos, P.V. Kokotovic, and R. Marino, "Adaptive Control
Design for a Class of Nonlinear Systems," Proceedings of the 1990
American Control Conference, pp. 1713-1717, San Diego, CA, May 1990.

P.V. Kokotovic and I. Kanellakopoulos, "Adaptive Nonlinear Control: A
Critical Appraisal," Proceedings of the Sixth Yale Workshop on Adaptive
and Learning Systems, pp. 1-6, New Haven, CT, August 1990.

I. Kanellakopoulos, P.V. Kokotovic, and R.H. Middleton, "Indirect
Adaptive Output-Feedback Control of a Class of Nonlinear Systems,"
Proceedings of the 29th IEEE Conference on Decision and Control, pp.
2714-2719, Honolulu, HI, December 1990.

L. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "Systematic Design of
Adaptive Controllers for Feedback Linearizable Systems," Proceedings of
the 1991 American Control Conference, pp. 649-654, Boston, MA.

P.V. Kokotovic, 1. Kanellakopoulos, and A.S. Morse, "Adaptive Feedback
Linearization of Nonlinear Systems,” in Foundations of Adaptive
Control, P.V. Kokotovic, Ed., Springer-Verlag, Berlin, 1991, pp. 311-346.

L. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "Adaptive Output-
Feedback Control of Systems with Output Nonlinearities," in Foundations
of Adaptive Control, P.V. Kokotovic, Ed., Springer-Verlag, Berlin, 1991, pp.
495-525.

D.A. Recker and P.V. Kokotovic, "Approximate Decoupling of Regularly
Perturbed Nonlinear Systems," Proceedings of the 1991 American Control
Conference, pp. 522-527, Boston, MA.

I. Kanellakopoulos, P.V. Kokotovic, R. Marino, and P. Tomei, "Adaptive
Control of Nonlinear Systems with Partial State Feedback," Proceedings of
the 1991 European Control Conference, Grenoble, France, July 1991, pp.
1322-1327.

I. Kanellakopoulos, P.V. Kokotovic, and A.S. Morse, "Adaptive Output-
Feedback Control of a Class of Nonlinear Systems," Proceedings of the 30th
IEEE Conference on Decision and Control, pp. 1082-1087, Brighton, UK,
1991.




APPENDIX

Selected Publications Under
Grant #AFOSR-91-0011 and
GRANT #AFOSR-91-147

11



AC 1104 9103022 Galiey

Systematic Design of Adaptive Controllers for
Feedback Linearizable Systems

1. Kanellakopoulos, Student Member, IEEE, P. V. Kokotovic, Fellow, IEEE,
and A. S. Morse, Fellow, IEEE

Abstract— A systematic procedure is developed [or the design
of new adaptive regulation and tracking schemes for a class of
feedback linearizable nonlinear systems. The coordinate-free
geometric conditions, which characterize this class of systems,
do not constrain the growth of the nonlinearities. Instead, they
require that the nonlinear system be transformable into the
so-called *‘parametric-pure-feedback form.’* When this form is
“*strict,’’ the proposed scheme guarantees global regulation and
tracking properties, and substantially enlarges the class of non-
linear systems with unknown parameters for which global stabi-
lization can be achieved. The main results of this paper use
simple analytical tools, familiar to most control engineers.

1. INTRODUCTION

OST of the research activity on adaptive control of

nonlinear systems [1)-[15] is still focused on the
full-state feedback case [1]-[13], although output-feedback
results are beginning to appear [14], [15]. The full-state
feedback case continues to be a challenge because of the
severe restrictions of the two currently available types of
schemes: the uncertainty-constrained schemes [1]-[4}, [10],
(11] assume restrictive matching conditions, and the non-
linearity-constrained schemes [5}-[9], [12] impose restric-
tions on the type of nonlinearities.

The systems to which wncertainty-constrained schemes
can be applied may contain all types of smooth nonlinearities
and are fully characterized by coordinate-free geometric con-
ditions {2], (3], {11], which, unfortunately, are quite restric-
tive. On the other hand, the applicability of nonlinearity-
constrained schemes is restricted by coordinate-dependent
growth conditions on the nonlinearities, which may exclude
even certain linear systems [13]). Less restrictive
coordinate-free growth conditions, written in terms of a
**control Lyapunov function,’’ are used in the schemes of
[6]-(8]. Unfortunately, the existence of such a Lyapunov
function cannot be ascertained a priori.

.
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The new adaptive control scheme developed in this paper
can be classified as the least restrictive uncertainty-con-
strained scheme available for feedback linearizable systems.
It significantly extends the class of nonlinear systems for
which adaptive controllers can be systematically designed.

Among the advantages of the new scheme are its concep-
tual clarity and wide applicability. Its stability proof, base
on a straightforward Lyapunov argument, is particularly
simple. The coordinate-free geometric conditions, character-
izing the class of systems to which the new scheme is
applicable, do not constrain the growth of the nonlinearities.
Instead, they require that the nonlinear system be trans-
formable into the so-called parametric-pure-feedback form.
Furthermore, in the case of systems transformable into the
more restrictive parametric-strict-feedback form, the new
adaptive scheme guarantees global regulation and tracking
properties.

The presentation is organized as follows: First, we address
the regulation problem. In Section II we characterize the
class of single-input nonlinear systems to which the new
scheme is applicable. The design procedure is presented in
Section III, and the simple proof of stability is given in
Section IV. In Section V we give the conditions under which
the stability of the closed-loop system is global. Then, in
Section VI, we use the design procedure to solve the tracking
problem for a class of input-output linearizable systems with
exponentially stable zero dynamics. In Section VII we illus-
trate this procedure on some ‘‘benchmark’’ examples, and
discuss its properties in comparison to previous results. Fi-
nally, some concluding remarks are given in Section VIII.
The reader, unfamiliar with differential geometric results for
nonlinear systems can follow the presentation starting with
Section 111 and then omitting Propositions 5.3 and 6.3.

II. THE CLASS OF NONLINEAR SYSTEMS

The adaptive regulation problem will first be solved for
single-input feedback linearizable systems that are linear in
the unknown parameters:

{"-"fo(f) + iéf:f:(f) + | 8o($) + i:‘oigi(;) u

@2.1)

where {eR” is the state, uelR is the input, 8
{8,,-+.0,]" is the vector of unknown constant parameters,
and /;, 8,. 0 s i s p, are smooth vector fields in a neigh-
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borhood of the origin { =0 with f(0)=0, 0=<isp,
80(0) = 0.

The design of the adaptive scheme assumes that, using a
parameter-independent diffeomorphism x = ¢({), the sys-
tem (2.1) can be transformed into the parametric-pure-
JSeedback form:

X, =%+ 07y(x,, x;)

Xy =Xy + 0Ty,(x, X3, X3)

xn-l = xn + oT‘Yn-I(xl""v X,,)

Xy = Yo%) + 077,(x) + [Bo(x) + 87B(x)]u (2.2)
with

v0(0) =0,7,(0) = --- =9,(0) =0,  B,(0) 0.

(2.3)

Nc¢  »ary and sufficient conditions for the existence of such
a d..comorphism are given in the following proposition.
Proposition 2.1: A diffeomorphism x = ¢({), with ¢(0)
= 0, transforming (2.1) into (2.2), exists in a neighborhood
B, C U of the origin if and only if the following conditions
are satisfied in U.
i) Feedback Linearization Condition: The distributions

7' = span {gy.ad;y 8o, " *sad) go}, O=i=n-1
(2.4)
are involutive and of constant rank / + 1.
ii) Parametric-Pure-Feedback Condition:
g8,€79°,
[X,.f)ed*, vXxe¥’, 0<jsn-3,
Isisp. (2.9)

Proof:
Sufficiency: As proved in [16], condition i) is sufficient
for the existence of a diffeomorphism x = ¢({) with ¢(0) =
0 which transforms the system

£=fo(2) + 8o($)us

into the system

/o(0) = 0, g,(0) =0 (2.6)

X, =X, 0s Isisn-1
X, = yo(x) + Bo(x)u (2.7
with

70(0) = 0, Bo(0) = 0. (2.8)

Hence, in the coordinates of (2.7) we have

fo = xp—s 2
=X, + ot +x .
0 Zax' "ax,,_, +70(x)ax" (2 9)
8 = Bo(x) (2.10)
ax

n

2

d
' axn--i

; 9
f"=span{a——.-"

}, Osisn-1
x’l

(2.11)

where 3/dx,,"--,d/dx, are the coordinate vector fields
associated with the x-coordinates. Because of (2.11), the
parametric-pure-feedback condition (2.5), expressed in the
x-coordinates, states that

ad
giespan{ax"}v
3 3 3 ,
R e TR o IR

Ilsisp. (2.12)

But (2.12) can be equivalently rewritten as

d
g = Bi(x) ax,"
d
Si=v.x, XZ)E + v2.(x00 x20 x:)a—xz +
d
+ Yaor i Xm0 X) ax._, + Ya (X107 X,) ax.’
Isisp. (2.13)

Furthermore, since ¢(0) = 0 and f(0) =0, 1 s i< p, we
conclude from (2.13) that

7, (0) = -+ =17,(0) =0. (2.14)

Combining (2.9), (2.10), (2.13), and (2.14), we see that in
the x-coordinates the system (2.1) becomes (2.2).
Necessity: If there exists a diffeomorphism x = ¢({) that
transforms (2.1) into (2.2), one can directly verify that the
coordinate-free conditions i) and ii) are satisfied for the
system (2.2), and hence for the system (2.1). ]
Remark 2.2: A special case of the parametric-pure-feed-
back condition (2.5) is the *‘extended-matching’ condition

g€ fe?', (2.15)

introduced in [2], [3] and formulated in [1] as a ‘‘strong
linearizability’® condition. This is clear from the proof of
Proposition 2.1: if (2.5) is replaced by (2.15), then (2.13)
still holds, but with y, = 0, -+, v, _, = 0. Then, the system
(2.1) is expressed in the x-coordinates as

I1sisp

X, = X,
X; = X,
xn~2 = xn—l
v - T
Xpo1 =X + 6 Yn-l(xl'”" X,,)

X,, = 70(X) + OT'Y"(X) + [ﬁO(X) + OTB(X)]u' (2‘6)
O




AC 11-04 9103022 Galley 3

Remark 2.3: The expressions given in (2.4) and (2.5) for
the feedback linearization and parametric-pure-feedback con-
ditions are convenient for the proof of Proposition 2.1, but
they are not minimal. As shown in [17], {18], the equivalent
minimal form of (2.4) is

9"-? isinvolutiveand """ has constant rank n.

(2.17)
The minimal form of (2.5) is
(ad) 20, fi]€e¥’*', O0sjs=sn-3, 1=<isp.
(2.18)
The equivalence of (2.5) and (2.18) follows from the involu-
tivity of 4"~ 2, O

Remark 2.4: The term ‘‘parametric-pure-feedback’’ indi-
cates that the nonlinearities multiplying unknown parameters
are allowed to depend only on state variables that are *‘fed
back’ when the system is written in the x-coordinates. This
term should not be confused with the term ** pure-feedback
systems”’ used in [19] to denote the class of feedback lin-
earizable systems, nor with the *‘pure-feedback systems’* for
which the nonlinearity-constrained scheme of {5] was devel-

oped. O
1I1. ApaprTiVE SCHEME DESIGN

Since the diffeomorphism x = ¢({) does not depend on
the unknown parameter vector 8, Proposition 2.1 gives an a
priori verifiable characterization of the class of nonlinear
systems to which the new adaptive scheme is applicable.
Assuming that the transformation of (2.1) into (2.2) has been
performed, the new adaptive scheme is designed for the
parametric-pure-feedback system

X=Xy + 0Ty ( X000 Xigy), Isisn-1

Xy = Yo(X) + 0T7,(x) + [Bo(x) + 078(x)]u (3.1)
with

Yo(0) = 0,7,(0) = -+ =v,(0) =0,  B,(0) #0.

(3.2)

Recall that v, 84, and the components of Band v, | s i =
n, are smooth nonlinear functions in B,, a neighborhood of
the origin x = 0.

The following step-by-step procedure was inspired by an
idea contained in an early linear result of [20}. However, the
intuition behind our nonlinear development becomes much
clearer if the procedure is interpreted as the interlacing of the
steps of the ‘*chain of integrators’® method [21]-[23] with
the design of a new parameter estimator at each step.

Step 0: Define 2z, = x|, and denote by c¢,,¢;," . C,
constant coefficients to be chosen later.

Step I: Starting with

3 = x4+ 07y,(x,, x;) (3.3)

and following the ‘‘chain of integrators’ method, we see
that, if x, were the control input and 8§ were known, the

‘*‘control law**

Xy = =€z, = 07y,(x,, x;) (3.4)

would stabilize and regulate the system (3.3). As 8 is un-
known, this ‘‘control law’ is modified to its ‘‘certainty-
equivalence'’ form

X, = =62, = Nv(x,, x;) (3.5)

where 1, is an estimate of 8. Then, (3.5) together with the
update law

1él = 2,7, Xy, x3) (3.6)

would render the closed-loop system stable and would achieve
the regulation of z,. However, x, is not the control. There-
fore, define the new state z, as the difference between the
actual x, and its desired expression (3.5):

2,2 ¢z, + x, + Ofy,(x,, x;). (3.7)
To complete Step 1, substitute (3.7) into (3.3)
-z, + 2, + (0 - ‘71)T‘Y|(X|’ x3)

-z +2,+ (0 -9,) w(z,,2.9,) (3.8)

Z

>

and rewrite the update law (3.6) for the parameter estimate of
v, in the form
9, =zw,(2,,2,,9)). (3.9)

In addition to the *‘error system'’ (3.8) and the update law
(3.9), Step 1 has introduced the new state variable z,, which
is to be regulated in Step 2. .

Step 2: Using the definitions for z,, z,, and 9,, write 2,
as

4 Cl[‘clzu +2z,+ (0 - "l)Twl(zl’ 7-2"71)]
+xy 4+ 0Ty,(x,, X3, X3)
+z,w,(z,.22,0,)77,(x,.x2)
97, dy
+ 97| — T — T
'[ax, (x;+0™y) + ax,(x’” 2)

dy
(l + 0,‘3—')[,‘:, +0Ty,(x,, x5, x3)]

>

X

+ 0,(2y, 2,.9,) +0¥,(2,, 25, 0,). (3.10)
In this system, we will think of x, as our control input. As in
Step |, we need an estimate for 8. Since the update law for
Y, has already been defined in (3.9), 9, cannot be used
again. Therefore, let ¥, be a new estimate of 6 and define
the new state z, as

1+ 0,’1
X3

A
L2605+

d
a

[XJ + 9772 x,. x,, x3)]

+03(210 25, 9)) + 9¥,(2,, 25, 9,). (3.11)
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Substitute (3.11) into (3.10) to obtain
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iz = =02, + 2
+(0 - '92)T va(zy, 2,.9))
3v,(x. x;)
+(l + O'T—;‘)x_z_ v, (x,. x5, X3)
a AT
S -6+ 3, + (0 - 0,) wy(z,. 25, 25, 0y, ¥y).
(3.12)
Then, let the update law for the new estimate 7, be
'92=Zzwz(zuzz'zs-'9u‘72)- (3.13)

Step i (2<isn- 1) Using the definitions for

2.+, Z; and 9,0+, J;_ |, express the derivative of z; as
87 ad -
' + 197' | . l + 0i1-.—l _7_'
axz ax,.

e +0T’7i(x|r"°
+ iz, %)
+0TY(z,, 9;1) (3.14)

with ¢;, ¥, appropriately defined smooth functions. Let ¥, be
a new estimate of 6 and definc the new state z,,, as

, xN-l)l

.yZi’ 0

‘zi‘ 1t

97, 9y;_,

2 Lz + (H"Tax, > (1 9, 3 i)
'[xul+'91T‘Yi(x|v"‘vxl+|)]
+'Pi(z|v""7-iv"|o"' i-1)

+ V(2000 2.9y, 00y, (3-15)

Substitute (3.15) into (3.14) to obtain

2' = —C,Z,'f' Z“_. + (0 - 0,

R-TRE S

= -6+ 3, + (0 - "i)

wilz o, 2 9L ). (3.16)
Then, let the update law for U, be
éi=ziwi(zl"“'zl+l'0l"“'0l)' (3.17)
Step n: Using the definitions for z,,--*,z, and 9,,
» Un_, express the derivative of z,, as
v, 3Yn_»
=1+ —|- 1+, —=
in |ax2) l’ﬂ—l ax"
[ Bo(x) + 678(x)]u
+ ¢n(zo‘9|v"'v’9n-|) + ow’n(z"gl»"'v 0y_1)
(3.18)

with ¢,, ¥, appropriately defined smooth functions. Let 1,

4

be a new estimate of § and choose the control u as
]

U= -—= - -7
B(x.ﬂ,.---,ﬂ,,)[ CaZa = ¢n = UI¥,] (3.19)
where
- d v,
B(x,9,,--,0,) & (l + 0,’1) (l + a7, L—')
ax, "
[ Bo(x) + 978(x)]. (3.20)
Substitute (3.19) into (3.18) to obtain
. ) dv,
i, = -C,,Z"+(0—17,')T[¢,,+ l+1);r‘672)
Y,
L+ 97, ax,,| )B(x)u
= -6z, + (0 - t’n)TWn(z't’I’”"0:1) (321)

where (3.19) is used in the definition of w,. Finally, let the
update law for the estimate i, be

Uy = Z,W,(2,9,, "+, U,). (3.22)
Feasibility of this design procedure and the stability of the

resulting closed-loop adaptive system are analyzed in the next
section.

IV. FEASIBILITY AND STABILITY

The above design procedure has introduced a control law
defined by (3.19)-(3.20) and a set of new coordinates
2,,""", 2, defined by (3.15). In order to ensure that the
procedure is feasible, we construct in Proposition 4.1 an
estimate of FC R"'*? of the feasibility region such that
for all (x,9,,-++,9,)€ F the denominator in (3.19) is
nonzero and the coordinate change (3.15) is one-to-one, onto,
continuous, and has a continuous inverse.

Proposition 4.1: Suppose the parametric-pure-feedback
form (3.1) of the system (2.1) exists in B,, and let B, C R°*
be an open set such that § € B, and

ay;(x
ll ,9'1‘_7_(_) .
ax Xivi
vxeB,, vieB,, 1 sisn-1 (4.1)
|Bo(x) + 928(x)| >0, vxeB, vi,eB, (4.2)

Then, the set F= B, X B] is a subset of the region in
which the design procedure of Section IIl is feasible.
Proof: Obvious, since (4.1) and (4.2) guarantee that in
B, x B; the denominator in (3.19) is nonzero and (3.15) is
uniquely solvable for x,. O
Remark 4.2: In general, the feasibility region is not giobal.
However, this is not due to the adaptive scheme because even
when the parameters & are known, the feedback linearization
of the system (3.1) can only be guaranteed for e B, C R”
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}

an open set such that

dv,(x
1+0TM .
Xivy
vxeB, ¥0eBy, 1sisn-1 (4.3)
[Bo(x) +078(x)| >0, vxeB, vleB, (4.4)

a
In the feasibility region, the adaptive system resulting from

the design procedure can be expressed in the z-coordinates as

Li=-cqz+2,+ (0~ 0I)TWI(ZI‘ 2,.9,)
z.n--l = mCp %y T 2, + (0 - 0"__|)T
.wn—l(zl'...'zn’ﬂl’...’oll-l)
g, = =CpZ,y + (0 - '9n)Twn(z' l7I’”"0n)
9, = z,w,, lsisn. (4.5)

A nice property of this system is that its stability can be
established using the quadratic Lyapunov function

V(z,9,, ", 9,) = %z’z + % 2": (0 -9)7(6 - v).

(4.6)

The derivative of V(z,9,, ", d,) along the solutions of
4.5) is

n n—i
V = - ZI [C,Z,z +' (0 - 19,)T(Z,W, + 19,)] + ZI Z,-Z,H
= TE ]

n n-1\
= -2z + El ZiZiyy- (4.7)
im

i=1

At this point we can choose the coefficients ¢,," ", c, to
guarantee that V is negative semidefinite. The choice ¢, = 2,
forall i =1, n, yields

Vs —|z|j2.
This proves the uniform stability of the equilibrium
z2=0, 9, =0,---,9,=0 (4.9)

of the adaptive system (4.5). To give an estimate Q of the
region of attraction of this equilibrium, we note that @ must
be a subset of our estimate F of the feasibility region. We
also note that, by definition, the point x = 0 is contained in
B,,0eB, and v(0) = -+ = v,(0) = 0. Combining these
facts with the definitions of z,,°°*,z,, ¥,," -, 7,, it is
straightforward to show that the equilibcium (4.9) coincides
with the point x =0, ¥, =0, -+, 9, = 6, and is therefore
contained in F. Let f(c) be the invariant set of (4.5) defined
by ¥V <c, and let c¢* be the largest constant ¢ such that
3(c) C F. Then, an estimate © of the region of attraction is

Q=0(c*) = {(z.9,,---,9,): V(z,9,,++,9,) <c*},

c*=arg sup {c}. (4.10)
ac s

(4.8)

Remark 4.3: It can be expected that the above estimate is
not tight because the choice of the unity gains in the update
laws was made for simplicity. With some a priori knowl-
edge about the shape of ¥, different adaptation gains can be
found so that @ is maximized by a better fit of 7. a

Next, from the invariance theorem of LaSalle, we con-
clude that for all initial conditions (z, U, -, 1,),.,€ 0, the
adaptive system (4.5) has the following regulation properties:

limz(¢) =0, limz(¢) =0, limd(¢) =0,
g ] {— oo {—~ o

Ilsisn (4.11)

Finally, to establish that the original coordinates { are regu-
lated to zero, we note that (4.1) guarantees, first, that the

solution x, = -+ = x, = 0 of the system of equations
Xipq +07,(0, xp,- - lsisn-1|

(4.12)

‘Xint) =0,

is unique in B, x B,, and, second, that x,, - -, x, can be
expressed as smooth functions of z,d,,:**, J, using (3.15).
Combining these two facts with (4.11), we obtain

lim x,(¢) =0, limx,(r) =0, Isisn (4.13)

{— o [nd - ]
Using an induction argument, it is now shown that x,(t) = 0
ast— o, |l sisn

e For i = 1, we have x,(¢) * 0 as ¢ — oo,

e For i=k, 2s ks n, we assume that x;(f) =0 as
t—=+o, 1 <5<k~ 1. Then, from (4.13) we have

rlj-'?.xk-l(‘) = ;l-i.":.{xk AaCAR 791 C LIS Y A

=0 (4.14)

and from the uniqueness of solutions of (4.12) we conclude
that x,(t) *0as ¢ — co.

Hence, x(¢) = 0 as ¢t — o, Finally, since x = ¢({) is a
diffeomorphism with $(0) = 0, regulation is achieved in the
original coordinates {, namely

’Iim $(t) =0. (4.15)
The above facts prove the following result.

Theorem 4.4: Suppose that the system (2.1) satisfies
Proposition 2.1 and that the design procedure of Section I is
applied to its parametric-pure-feedback form (3.1). Then, the
equilibrium (4.9) of the resulting adaptive system (4.5) is
uniformly stable and its region of attraction includes the set
defined in (4.10). Furthermore, regulation of the state {(?) is
achieved for all initial conditions in Q. a

V. GLoBAL REGULATION

There are strong theoretical and practical reasons for in-
vestigating whether the stability properties of an adaptive
system can be made global in the space of the states and
parameter estimates. Systems with a finite region of attraction
may not possess a wide enough robustness margin for distur-
bances and unmodeled dynamics. Furthermore, it is usually
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hard to find nonconservative estimates of finite regions of
attraction.

Another aspect of the global stability issue is the compari-
son of the proposed adaptive controller to its deterministic
counterpart, that is, the controller that would be used if the
parameter vector § were known. Suppose that for all values
of 6 there exists a deterministic controller which achieves
global stabilization and regulation of the system. If, with 0
unknown, the proposed adaptive controller does not achieve
the same global stability, this loss is clearly due to adapta-
tion.

The stability result of Theorem 4.4 is not global. How-
ever, as pointed out in Remark 4.2, this is not due to
adaptation, because for parametric-pure-feedback systems
global stability may not be achievable even with @ known. In
Proposition 5.3, we define the class of ‘‘parametric-strict-
feedback’ systems, for which a globally stabilizing con-
troller exists when 0 is known. We then prove that for this
class of systems our adaptive scheme guarantees global stabil-
ity when 8 is unknown.

In order to characterize the class of parametric-strict-
feedback systems, we use the following assumption about the
part of the system (2.1) that does not contain unknown
parameters.

Assumption 5.1: There exists a global diffeomorphism
x = ¢({), with ¢(0) = 0, transforming the system.
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§ = fo() + 8ol )u (5.1)
into the system
X, = X400 lsisn-1
% = vo(x) + By(x)u (5:2)
with
¥(0) =0, Bo(x)#0 vxeR". (s.3)

Remark 5.2: The local existence of such a diffeomor-
phism is equivalent to the feedback linearization condition
(2.4). At present there are no necessary and sufficient condi-
tions verifying the global validity of this assumption. Suffi-
cient conditions for Assumption 5.1 are given in [24], while
necessary and sufficient conditions for the case where G(x)
= const. can be found in [25], [26). ad

Proposition 5.3: Under assumption 5.1, the system (2.1)
is globally diffeomorphically equivalent through x = ¢(¢{) to
the parametric-strict-feedback system

X=X, +0Ty(x, - .x), Isisn-1
Xp = Yo%) + 0Ty,(x) + Bo(x)u (5.4)
if and only if the following condition holds globally.
Parametric-Strict-Feedback Condition:
g;i=0,
[x,f]e?!., vXe9’), 0sjsn-2,
Il<isp (5.95)

with 7/,0 < j < n ~ 1, as defined in (2.4).
Proof: The proof is very similar to that of Proposition

2.1. First, because of the assumptions that the diffeomor-
phism x = ¢({) is global and By(x) # 0 YxeR", the dis-
tributions 4/, 0 < j < n ~ | are globally defined and can
be expressed in the x-coordinates as

97 3 3 0s/s 1
= span { — '+, — }, n-1.
pa ax, ax,_, 1

(5.6)

To prove sufficiency, note that if the parametric-pure-feed-
back condition (2.5} of Proposition 2.1 is replaced by the
parametric-strict-feedvack condition (5.5), then (2.12) is re-
placed by

gi=0

d ] d
ax,‘f" € span ax,” ax;)’

2sjsn,

lsisp. (5.7

Thus, the expression for f; in (2.13) becomes

fi= Yn.i(xn)a—i‘l‘ +72..(x. xz)b% + -
]
F¥noa, (X0t X0y) ax., + Ya X0, x')a_x:'
Isisp. (5.8)
The necessity is again straightforward. O

The above proposition gives a geometric characterization
of the class of systems for which the following global proper-
ties can be achieved.

Theorem 5.4: Suppose that the system (2.1) satisfies
Proposition 5.3 and that the design procedure of Section Il is
applied to its parametric-strict-feedback form (5.4). Then,
the equilibrium

2=0, 0,=0,-,9,=0

of the resulting adaptive system is globally uniformly stable.
Furthermore, regulation of the state {(¢) is achieved:

lim {(¢) =0

for all initial conditions in @ = R™*+?,

Proof: When the adaptive design procedure (3.3)-
(3.22) is applied to the system (5.4), then for all J,ef2”,
I < i < n, the change of coordinates (3.15) is one-to-one,
onto, continuous, and has a continuous inverse, and the
control (3.19) is well-defined since

ay,
ax,,

(5.9)

(x)=0, B(x)=0, Bp(x)#0, vxelR".

(5.10)

Hence, (4.1)-(4.2) are trivially satisfied on = B, x B] =
R™'*P_ and from (4.10) we conclude that @ = R™'*». O

Remark 5.5: The results of Sections II-V can be ex-
tended to multiinput systems. We do not present this exten-
sion here, but refer the reader to {27)]. ]
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VI. GLoBAL TRACKING

Every regulation result in Sections II-V has its tracking
counterpart. For brevity, we restrict our presentation to the
tracking version of the global regulation result in Section V.
The counterparts of nonglobal regulation results can be ob-
tained using the same Lyapunov function argument as in this
section to determine an invariant set in which asymptotic
tracking is guaranteed.

Consider the nonlinear system

= A5(0) + 2 0400) + o)

y = h($) (6.1)

where {€R" is the state, ue R} is the input, ye® is the
output, § = [0,, ', 0,]7 is the vector of unknown constant
parameters, A is a smooth function on R” with A(Q) =
and the vector fields g,, f;, 0 < i < p, are smooth on "
with g(§) #0vieR", f(0) =0,0 s i < p. We first for-
mulate the input-output counterpart of assumption 5.1.
Assumption 6.1: There exist n — p smooth functions
®.($), p + 1 < i s n, such that the change of coordinates
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x = h($)
X, = L,oh(g')

x3 = LY h(%)

X, = L;o"h(f)
= ¢,(2). (6.2)

is a global diffecomorphism x = ¢({) transforming the sys-
tem

p+lsisn

£ =/o(2) + 8o()u
y = h($)
into the special normal forim

*l-xz

(6.3)

X,y ;x,
%, = vo(x) + Bo(x)u
X" = dy(y, x")

y =X, (6.4)

with
v0(0) = L;“h(O) =0, $,0,0)=0 (6.5)
Bo(x) = L L}’;'h(f) +0, vxeR". (6.6)

Remark 6.2: In order for (6.3) to be locally equivalent to
(6.4), it is necessary and sufficient that the following condi-
tions hold in a neighborhood of the origin ¢ = 0:

L, L, h=m0, O0sisp-2

L3 'h(0) # 0

(6.7)
(6.8)

7

(6.9)'

The sufficiency of these conditions is a consequence of
Proposition 10 in [28]. The necessity can be easily estab-
lished by verifying that (6.7)-(6.9) hold in the coordinates of
(6.4).

Furthermore, as shown in [29, Corollary 5.7), (6.3) is
globally equivalent to (6.4) if and only if the following
conditions are satisfied for all e R"”

%°~" is involutive and of constant rank p.

L, L,h=m0, O0sisp-2  (6.10)
L, L5 'h#0 (6.11)
4°~" is involutive and of constant rank p. (6.12)
the manifold
M= (Fe®™: A(R) = Lh(E) = -+ = L5 'A(D))
(6.13)
is connected, and the vector fields 2o, ad; %o, ", ad%"'g,
are complete where
2
& = mgm fo=1o- —m (6.14)
a

We are now ready to formulate the input-output counterpart
of Proposition 5.3.

Proposition 6.3: Under Assumption 6.1, the system (6.1)
is globally diffeomorphically equivalent to the parametric-
strict-feedback normal form
» X i X ’) ’

X,-+|+0T‘Y,-(X|,"' lSiSp—l

%, = vo(x) + 0T,(x) + Bo(x)u

4*‘:

rJ
= ®o(y, x°) + 2 0,8(y, x")
imil

y=x (6.15)

if and only if the following condition holds globally.
Parametric-Strict-Feedback Condition:

vXe Y/,

[X.f)e?’, 0sjsp-2,1sisp

(6.16)

with 97,0 < j s p - 1, as defined in (2.4).

Proof: The proof follows closely that of Proposition
5.3. First, because of the assumptions that the diffeomor-
phism x = ¢({) defined in (6.2) is global and that 8,(x) = 0
vxeR", the distributions ¥/, 0 <j < p — 1, are globally
defined and can be expressed in the x-coordinates as

a
' axp-l

0
(1’=span{5;- }. 0<sjsp-1.

(6.17)

The sufficiency follows from the fact that, by (6.16) and

]
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6.1,
a —
%, » Ji| €span

Thus, the expression for f; in the x-coordinates is

a

)

*dx,

2sjsp, 1sisp. (6.18)

r a r a
Ji=v.i(x, x )E*"Yz.i(xnxz-x E”' toe

+ ‘Y,-l.i(xlv"" Xy1s x')

9x,_,

+ ‘Yp.l'(xl'...‘ xp' x’) F)

+ Z 4’1 l(x,.x)

j=p+

lsisp. (6.19)

I

The necessity is again straightforward. 0O

Remark 6.4: To obtain the input-output counterpart of
Proposition 2.1, one just needs to replace the feedback
linearization condition (2.4) with conditions (6.7)-(6.9), and
the parametric-pure-feedback condition (2.5) with

g,€9°,

[X.f)eT’*', vXe¥!, 0sjsp-2,

Isisp. (6.20)

a

As in most tracking problems, we need an assumption
about the stability of the x’-subsystem of (6.15).

Assumption 6.5: The x’-subsystem of (6.15) has the
bounded-input bounded-state (BIBS) property with respect to
Y as its input.

It was shown in [9, Proposition 2.1] that the following
conditions are sufficient for Assumption 6.5 to be satisfied:

i) the zero dynamics of (6.1) are globally exponentiaily
stable, and

ii) the vector ficld ® = &, + T/_,0,%, in (6.15) is glob-
ally Lipschitz in x. -

These conditions are more convenient for nonglobal re-
sults, where i) can be used to estimate the region of attraction
via a converse Lyapunov theorem. However, they are too
restrictive for global results. For example, the system x" =
—(x")? + y? violates both i) and ii), but is easily seen to
satisfy Assumption 6.5.

The control objective is to force the output y of the system
(6.1) to asymptotically track a known reference signal
y.(t), while keeping all the closed-loop signals bounded.

Assumption 6.6: The reference signal y,() and its first p
derivatives are known and bounded.

To achieve the asymptotic tracking objective, the design
procedure presented in Section I1I is modified as follows:

Step 0: Define

Z, = x,

-y, (6.21)

8

Step 1: Starting with
G=x,+ 07y (x,, x") -y, (6.22)
let 9, be an estimate of 8 and define the new state z, as
2,27, +x,+ 9y,(x,, x7) - 5,
Loz +x,+9w(z.xy) -5, ¢ =22
(6.23)
Substitute (6.23) into (6.22) to obtain
9,) w,(z,, x". ). (6.24)
Then, let the update law for the parameter estimate U, be

(6.25)

2| = _c|z|+12+(0-

’il =z,w,(z,, x", 5,).

Step 2: Using the definitions for z,, z,, and V,, write 2,
as

H=c[-cz,+2,+ (8- 9,) w(z.x, )
+ x5+ 0Ty, (%), x5, x7)
+ 7w (z,, x", }'r)r'h(xlv x’)

+ ,91[ av,(x,, x")
[}
ax,

d . x’
+ vi(xy, x7)
ax’

.(%(x“ x7) + ,.‘e&-,"'"("" x’))] -

A . .
= xJ + ¢z(z|. zz' xry ‘,|y .V,' yrv yr)
+ OTWZ(zI’ zZ' X’, l’h Ve j’,)-

(x; + 0%y,(x,, x7))

(6.26)
Let 7, be a new estimate of 8 and define the new state 2, as
2,2 62, + X3 + 03(200 220 X7, 0y, 3,0 3,0 )

+ 02“’"1(:" Zz, x" 0|. y’, y.’),
Substitute (6.27) into (6.26) to obtain

22 (6.27)

3= -7+ 2, + (0 - 19,)Tw,(z.. 2, X, 9,,5,.5,)-
(6.28)

Then, let the update law for the new estimate 9, be
0, = z2,wy(2y, 25, X", 9y, 3,0 3,). (6.29)

Step i (2 sisp— 1) Using the definitions for

Z,.'°*, 2, and 9, -+, U,_,, express the derivative of z; as
=X v ez 3 X0 Oy,
pett s 2E)
+ 07wz 2, X7, 0,000 0,
Yoo 0. (6.30)

Let ¥, be a new estimate of 8 and define the new state z,,
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A
Lp = 6T+ Xy

+ ¢1(Z|,"'- z,,x',t?,,"'.ﬂ,-_,.y,."'.y}"’)
+ ﬂfw-(z.,---. i X" 0y, Oy,
Yoo YN, 22 (6.31)
Substitute (6.31) into (6.30) to obtain
= —cz,+ 2., +(0-9)
. w‘(z“-..’ zi'xr'ﬂl,...,gi_l‘y”...'y:i-n)_ (6.32)
Then, let the update law for ¥; be
9 = 2w (2t 2 X7 0 iy Yyt PETD).
(6.33)
_ Step p: Using the definitions for 2z,,---, z, and

¥,°*, U,_, express the derivative of z, as
g, = Bo(x)“ +e,(20.

e ’y’n))
+0"w,(z,, ",

.Z,. X’|0|0“.-0n_l’

Z,- x’vl’ly."'l”_|o

y"...'y:’-"). (6'34)

Let 9, be a new estimate of § and choose the control u as

: —[- 9w, 22. (6.35)
u= -2, -9,w], c, . (6.
ao( ) ¢0 L

Substitute (6.35) into (6.34) to obtain

t,= —c,z,+ (0~ 9,) w(z,, ", 2,, X",
Aoy Yoo 927" (6.36)
Finally, let the update law for the estimate 9, be
Ié’ = Z,W‘(zh..., Z,. x’,ﬂ.."'.ﬂ,_..y,."'.yl"").
(6.37)

As was the case in the regulation result of Section V, the
assumptions of Proposition 6.3 guarantee that the design
procedure (6.21)-(6.37) is globally feasible. The resulting

closed-loop adaptive system is given by

L= -+, + (0 - 0I)Twl(zl' x',y,)

"n-l)rw;-

-Z,-.. x’v1’|"..|"’-20 )',."'

2._' = -C,_.Z,_, + Z, + (0 hnd
.(zl'...
-C,Z,+ (0 - ﬂa)TWu

(20

L4
k"= do(y, x) + ,Z. 0,8y, x’)

¢, =

b3, XN, 0 0, Y TY)

, y:.-z))

!ji = ziwi(z"."’ zl' x” 0".."01'-I’y’t.”vy:i_”)9
Ilsisyp
Y=z, t,. (6.38)

The stability and tracking properties of (6.38) will be estab-
lished using the quadratic function

V,(Z]).-.' z,,t?lv""op)

= %iéllziz"- (0 - 0'_)7(0 - 0")]'

The derivative of V, along the solutions of (6.38) with
c,z22,lsisp,is

(6.39)

V,= - i [ciziz + (6 - 0i)T(ziW: - ‘7:)] + ’z-:: ZiZin

'ZCZ + ZZZI-H

im |

s - Z 22 <0.
int

This ptoves that V, is bounded. Hence z,,---, 2, and
90009, arebounded and V uboundedandmtegnblc
'I'heboundednessof Z, and y, implies that y is bounded.
Combining this with Assumption 6.5 proves that x" is
bounded. Therefore, the state vector of (6.38) is bounded.
This fact, combined with (6.31) and Assumption 6.6, implies
the boundedness of x, {, and 4. Thus, the derivatives
2,,"-*, , are bounded, which implies that ¥, is bounded.
Hence V,— 0 as - oo, which, combined with (6.40),
proves that

(6.40)

lim z,(¢) =0 lsisop. (6.41)
1o .

In particular, this means that asymptotic tracking is achieved:
lim z7,(¢) = tim [»(2) = y()] =0. (6.42)

These resuits are summarized as follows.

Theorem 6.7: Suppose that the system (6.1) satisfies
Proposition 6.3 and Assumption 6.5, and that the design
procedure (6.21)-(6.37) is applied to its parametric-strict-
feedback normal form (6.15). Furthermore, suppose that the
reference signal y, satisfies Assumption 6.6. Then, all the
signals in the resulting closed-loop adaptive system (6.38) are
bounded and asymptotic tracking (6.42) is achieved for ail
initial conditions in R"**7. a

Remark 6.8: Since in (6.15) we allowed v,, i = 1,---, p
— 1 to depend on x", we had to restrict ®,, i =0,---, p
not to depend on x,,:--, x,. If &, also depended on
Xy, *, x, and Assumption 6.5 were modified to read *‘ with
respect to X,,° ", X, as its inputs,”’ the boundedness of y
would not guarantee the boundedness of x”, and the argu-
ments after (6.40) would be invalid. However, if v, i =
l,-++,q@ - 1 (1l S q s p), were restricted not to depend on
x’, then ¥, could be allowed to depend on x,,**, X, also.
In that case, the boundedness of z,,- -, z, and Assumption
6.6 would guarantee the boundedness of x,, -, x,, and
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hence the boundedness of x". The boundedness of
Xq410"" s X, would then follow from arguments similar to
those after (6.40). This means that our design procedure can
be casily modified to be applicable to systems of the form
(6.1) which are globally diffeomorphically equivalent to the
following parametric-strict-feedback normal form:

X=X+ 07y,(x,)

Xg_ =X+ 0Ty, (%,

q- ’xq—l)

Xg=Xgu + 0Ty (%,,00, x,, X")

*p-l =X, + OT'Yq(xI'“" xp—l’x')

%, = Ta(8) + 077,(x) + Bo(x)u
P
X = 8o(xy,c et xg x7) + 30 0,8, (xp,m 0, xg, x7)
Iy

y=1x,. (6.43)

Using {29, Corollary 5.7], it is straightforward to show that
there exists a parameter-independent global diffeomorphism
x = ¢({) transforming (6.1) into (6.43) if and only if in
addition to (6.10), (6.11), (6.13), and (6.14), the following
conditions are satisfied for all teR":

97~ is involutive and of constant rank p — ¢ + 1 (6.44)

[X.f]e¥), vXe?/, 0sjsq-2,1sisp

(6.45)

d(L,L},h)espan {dh,---,d(L}h)},
O0sjsp-qg-1,1si<p. (6.46)
]

Discussion AND EXAMPLES

With the help of two examples, we now discuss some of
the main features of the new adaptive scheme. The first
cxample illustrates the systematic nature of the design proce-
dure, while the secomd ome compares the stability properties
of the new scheme (a.thoss of the nonlinearity-constrained
scheme of [9].

Example 7.1 (Regwlation): We first consider a ‘‘be-
nchmark® example of adaptive nonlinear regulation:

X, =x, 4+ 0x}
X, = Xy
Xy=u (7.1)
where 0 is an unknown constant parameter. This system
violates both the geometric conditions of [1]-[3] and the
growth assumptions of [5], (6], {9], (12]. In fact, the only
available global result for this example was obtained in [7].

The system (7.1) is already in the form of (5.4) with
Bo = 1. Hence, this system satisfies the conditions of Theo-
rem 5.4, which guarantees that the poit x =0, 9, = 9, =

Yy = 0 is a globally stable equilibrium of the adaptive sys-
tem. Moreover, for any initial conditions x(0) € R,
(9,(0), 9,(0), 9,(0)) € R?, the regulation of the state x(?) is
achieved

lim x(¢) = 0.

{—~om

(1.2)

The design procedure of Section III, applied to (7.1), is as
follows.

Step 0: Define z, = x,.

Step 1: Let U, be an estimate of 0 and define the new
state z, as

Zz=22|+xZ+0|z|2. (73)

Substitute (7.3) into (7.0) to obtain
2| = -—21, + 22 + Z.z(a - l’.). (7.4)

Then, let the update law for J, be
9, = z. (7.5)

Step 2: Using (7.3) and (7.5) write 2, as
2, =2(x, +0x}) + x3+ 0,22,(x, + 0x3) +2}. (7.6)
Let Y, be a new estimate of 6, and define the new state
23 =22, + 2(x; + 9, x})(1 + 9,2) + 2} + x;. (7.7)
Substitute (7.7) into (7.6) to obtain
= =22, +2,+2z}(1 + 9,2,)(6 - 9,). (7.8)
Then, let the update law for 9, be
0, = 2z,23(1 + 9, 2,). (7.9)
Step 3: Using (7.3), (7.5), (1.7), and (7.8), write %, as

33 =2[=22, + 2, + 22}(1 + 9,2,)(8 - 9,)]
+2[x; + 2x,9,(x, + 0x?)
+2x3z, 23 (1 + 9,2)](1 + 9,2)
+2(x, + ‘924‘12)[2: + 9,(x, + 0"12)]

+520(x; +0x}) + u. (7.10)

Let U, be a new estimate of 8, and define the control u as

u=-22,-2[~-2z, +z, + 2z}(1 + 9,2,)(9, - 9,)]
-2[ x5 + 2x,0,(x, + 0yx})
+2xiz, 2] (1 + 9,3,)]
(1 +9,2,) -2(x, + '71"?)[21‘ +0,(x; + ‘73"'12)]
- 5z} (x; + 9yx}). (7.11)

Substitute (7.11) into (7.10) to obtain

+20)(xy + 9, x7) x? + 528)(6 - v,). (7.12)
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"Finally, let the parameter update law for J, be
9y = z3[423(1 + 9,2,)) + 4x}9,
L 29 (x + Oy xd)x? + 52F). (7.13)
The resulting adaptive system is
3= -2z, + 2, +22(0 - 9,)
= =22, + 2, +223(1 + 9,2,)(0 - 9,)
3y= =22z, + [42](1 + 9,2,) + 4x}Y,
+20,(xy + U, x3)x} + 528](8 - 0y)
9, =z}
9, = 2z,23(1 + 9,2,)

0y = z5(423(1 + 9,2,) + 4x}9,
+29,(x, + U, x3)x? + 52F].  (7.14)
Using the Lyapunov function

1
V= E[z.’+z§+z§+ (0 - 9,)

+(0 - 9,) + (6 -9) (7.15)
it is straightforward to establish the global stability and
regulation properties of (7.14). a

Example 7.2 (Tracking): Consider now the problem in
which the output y of the nonlinear system
X, =%+ 0x}
X, = U+ X,
Xy= =Xy +y
y=x, (7.16)

is required to asymptotically track the reference signal y, =
0.1sint.

For the sake of comparison, let us first solve this problem
using the scheme of [9]. This scheme empioys the control

U = —X; + k'(x| -") + kz(xz + 6|Xf - y',)
+9,-20,x,x, - 20,x} (7.17)

where 6,,6,, the estimates of 8,02, respectively, are ob-
tained from the update laws

- e,
1+ 87+ 8}

- e,
1+ &)+ &3

a

2

. (7.18)

Using a relative-degree-two stable filter M(s), the variables
e, £,, &, in (7.18) are defined as

e,=y -y +w-0,8 -6,¢ (7.19)
£, = M(s)[2x,x; + kyx?] (7.20)
&2 = M(s)[2x}] (7.21)

w = M(s)[0,(2x,%, + kyx?) +6,(2x))]. (7.22)

Simulations of this system were performed with
1
sSP+55+6°

M(s) = 1, k,

-6,k = -5
(7.23)

and all the initial conditions zero, except for x,(0), which
was varied between 0 and 0.45. The results of these simula-
tions, shown in Fig. 1, indicate that the response of the
closed-loop system is bounded for x,(0) sufficiently small,
that is, for x,(0) < 0.45. However, for x,(0) = 0.45, the
response is unbounded. This behavior is consistent with the
proof of Theorem 3.3 in [9], which guarantees boundedness
for all initial conditions only under a global Lipschitz as-
sumption. In the above system, the presence of the term x?
leads to the violation of this assumption, and, as the simula-
tions show, to unbounded response. Simulations with other
schemes based on linear growth conditions [S], [12] show
that the behavior illustrated by Fig. 1 is typical.

The unbounded behavior in Fig. 1 is avoided by the new
scheme, which results in globally stable tracking. The design
procedure in Section VII, applied to the system (7.16),
results in the control

u=-x3-32;, - 2(x, + S x})(1 + 9, x,)
-3 Xt 425, +5, (7.24)
and the update laws

9, =z,x}, d,=2zx{(1+97) (7.25)
where
L=X )
7-2=2(x| —yr) +xz+l9|X¥—j”. (7'26)

Theorem 6.7 establishes that uniform stability and asymptotic
tracking are achieved for all x,(0). x,(0), x,(0), 9,(0), 9,(0).
This is illustrated by simulations in Fig. 2. O

The above example illustrates an obvious advantage of the
new scheme when applied to parametric-strict-feedback sys-
tems: it guarantees global stability for all types of smooth
nonlinearities. For parametric-pure-feedback systems, when
the feedback linearization is not global, the new scheme
provides an estimate of the region of attraction. An advantage
of the schemes in [1], [5]-[9]. [12] is that they provide local
results without assuming the parametric-pure-feedback form.
However, estimates of the region of attraction are given only
in [1], [6]-{8]. A quantitative comparison of the regions of
attraction and robustness properties guaranteed by different
schemes is a topic of future research.

VIII. CONCLUSIONS

The results of this paper have advanced in several direc-
tions our ability to control nonlincar systems with unknown
constant parameters. The most significant progress has been
made in solving the global adaptive regulation and tracking
problems. The class of nonlinear systems for which these
problems can be solved systematically has been substantially
enlarged. The parametric-strict-feedback condition precisely
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characterizes the class of systems for which the global results
hold with any type of smooth nonlinearities. For the broader
class of systems satisfying the parametric-pure-feedback con-
dition, the regulation and tracking results may not be global,
but are guaranteed in regions for which a priori estimates
are given. It is crucial that the loss of globality, when it
occurs, is not due to adaptation, but is inherited from the
deterministic part of the problem. All these results are ob-
tained using a step-by-step procedure which, at each step,
interlaces a change of coordinates with the construction of an
update law. Apart from the geometric conditions, this paper
uses simple analytical tools, familiar to most control engi-
neers.

ACKNOWLEDGMENT

The authors are grateful to R. Marino and L. Praly for
their insightful comments and helpful suggestions.

REFERENCES

[!] G. Campion and G. Bastin, **indirect adaptive state feedback controt of
linearly perametrized nonlinear systems,”” Int. J. Adapt. Contr.
Signal Proc., vol. 4, pp. 345-358, Sept. 1990.

(2] 1. Kanellakopoulos, P. V. Kokotovic, and R. Marino, ‘‘Robustness of
adaptive nonlinear control under an extended matching condition,’’ in
Prep. IFAC Symp. Nonlinear Contr. Syst. Design, Capri, ltaly,
June 1989, pp. 192-197.

{3] —. "*An extended direct scheme for robust adaptive nonlinear con-
trol,”* Automatica, vol. 27, pp. 247-233, Mar. 1991.

12

[4] R. Marino, I. Kanellakopoulos, and P. V. Kokotovic. ‘*Adaptive
tracking for feedback linearizable SISO systems,"* in Proc. 28th IEEE
Conf. Decision Contr., Tampa, FL, Dec. 1989, pp. 1002-1007.

[5] K. Nam and A. Arapostathis, ‘A model-reference adaptive control
scheme for pure-feedback nonlinear systems,”" /EEE Trans. Au-
tomat. Contr., vol. 33, pp. 803-811, Sept. 1988.

[6] J.-B. Pomet and L. Praly, ‘‘Adaptive nonlinear control: An
estimation-based algorithm.'* in New Trends in Nonlinear Contro!
Theory. J. Descusse. M. Fliess. A. Isidori, and D. Leborgne, Eds..
New York: Springer-Verlag, 1989.

{7} —. **Adaptive nonlinear stabilization: Estimation from the Lyapunov
equation,'* JEEE Trans. Automat. Contr., to be published.

(8) L. Praly, G. Bastin, J.-B. Pomet, and Z. P. Jiang. ‘* Adaptive stabiliza-
tion of nonlinear systems,'’ in Foundations of Adaptive Control,
P. V. Kokotovic. Ed., New York: Springer-Verlag, 1991, to be
published.

[9] S. S. Sastry and A. Isidori, ** Adaptive control of linearizable systems,"*
IEEE Trans. Automat. Conlr., vol. 34, pp. 1123-1131, Nov. 1989.

{10} J.-J. E. Slotine and J. A. Coetsee, *‘Adaptive sliding controlier synthe-
sis for non-linear systems,"” /nt. J. Contr., vol. 43, pp. 1631-165t,
June 1986.

[11) D. G. Taylor, P. V. Kokotovic, R. Marino, and 1. Kanellakopoulos,
** Adaptive reguiation of nonlinear systems with unmodeled dynamics,™”
IEEE Trans. Automat. Conlr., vol. 34, pp. 405-412, Apr. 1989.

(12] A. Teel, R. Kadiyala, P. V. Kokotovic, and S. S. Sastry, **Indirect
techniques for adaptive input output linearization of nonlincar systems, "
int. J. Contr., vol. 53, pp. 193-222, Jan. 1991.

[13]) P. V. Kokotovic and 1. Kanellakopoulos. ‘* Adaptive nonlinear control:
A critical appraisal,”* in Proc. 6th Yale Workshop on Adaptive and
Learning Systems, New Haven, CT, 1990, pp. 1-6.

[14] 1. Kanellakopoulos, P. V. Kokotovic, and R. H. Middleton, **Ob-
server-based sdaptive control of nonlinear systems under matching
conditions,** in Proc. 1990 Amer. Contr. Conf., San Diego, CA,
May 1990, pp. 549-5S5S.

115} ——, “*Indirect adaptive output-feedback control of a class of nonlinear
systems.”" in Proc. 29th IEEE Con/. Decision Contr., Honolulu, Hi,
Dec. 1990, pp. 2714-2719.

[16] B. Jakubczyk and W. Respondek, *On linearization of control sys-
tems,”* Bull. Acad. Pol. Science, Ser. Science Math., vol. 28, nos.
9-10, pp. 517-522, 1980.

[17} R. Su, *“On the linear equivalents of nonlinear systems,"” Syst. Contr.
Lett., vol. 2, pp. 48-52, July 1982.

(18] L. R. Hunt, R. Su, and G. Meyer, *'Design for muiti-input nonlincar
systems,"* in Differential Geometric Control Theory. R. W. Brock-
ett, R. S. Millman, and H. S. Sussmann, Eds., Boston, MA: Birkhauser,
1983, pp. 268-297.

{19] R. Su and L. R. Hunt, ** A canonical expansion for nonlinear systems."*
IEEE Trans. Automat. Contr., vol. AC-31, pp. 670-673, July 1986.

{20] A. Fever and A. S. Morse, **Adaptive control of single-input singie-
output linear systems,”” /[EEE Trans. Automat. Contr., vol. AC-23,
pp. 557-569, Aug. 1978.

[21] ). Tsinias, °*Sufficient Lyapunov-like conditions for stabilization,'
Math. Contr. Signal. Syst., vol. 2, pp. 343-357, 1989.

§22) C. 1. Byrnes and A. Isidori, '*New results and cxampies in nonlinear
feedback stabilization,”* Syst. Contr. Leti., vol. 12, pp. 437-442,
1989.

[23) P. V. Kokotovic and H. J. Sussmann, ‘A positive real condition for
global stabilization of nonlinear systems,”* Syst. Contr. Lett., vol. 13,
pp. 125-133, 1989.

[24] L. R. Hunt, R. Su, and G. Meyer, “‘Globasl transformations of nonlin-
car systems.'" JEEE Trans. Automat. Contr., vol. AC-28, pp.
24-31, 1983,

(251 W. Dayawansa, W. M. Boothby, and D. L. Elliott, **Global state and
feedback equivalence of nonlinear systems,”” Syst. Contr. Letl., vol.
6. pp. 299-234, 1985.

{26] W. Respondek, ‘‘Global aspects of linearization, equivalence to poly-
nomial forms and decomposition of nonlinear control systems.’” in
Algebraic and Geometric Methods in Nonlinear Control Theory,
M. Fliess and M. Hazewinkel, Eds., Dordrecht, The Netherlands:
D. Reidel, 1986, pp. 257-284.

[27] 1. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, '*Adaptive
feedback linearization of nonlinear systems,”* Foundations of Adap-
tive Control, P. V. Kokotovic, Ed., New York: Springer-Verlag,
1991, to be published.

{28] R. Marino, W. M. Boothby. and D. L. Elliott, '*Geometric properties
of linearizable control sysiems,'* Marh. Syst. Theory, vol. 18, pp.
97-123, 198S.

129) C. 1. Byrnes and A. Isidori. ‘‘Asymptotic stabilization of minimum

ahare manliascs sentewes




A Toolkit for Nonlinear Feedback Design
I. Kanellakopoulos
P.V. Kokotovic
A.S. Morse

CCEC-91-0619

Center for Control Engineering and Computation
University of California at Santa Barbara




A Toolkit for Nonlinear Feedback Design*

I. Kanellakopoulos P. V. Kokotovic
Coordinated Science Laboratory Dept. of Electrical and Computer Engineering
University of Illinois University of California
Urbana, IL 61801 Santa Barbara, CA 93106
A. S. Morse

Dept. of Electrical Engineering

Yale University
New Haven, CT 06520-1968

To appear in Systems € Control Letters

Abstract

Motivated by several recent results, we assemble a set of basic tools which
can be used to construct systematic procedures for nonlinear feedback design. As
an illustration, we construct a backstepping procedure for observer-based global
stabilization and tracking of a class of nonlinear systems.

Keywords. Design tools, nonlinear damping, integrator backstepping, observer-based de-
sign, global tracking.

*The work of the first two authors was supported in part by the National Science Foundation under Grant
ECS-88-181686, in part by the Air Force Office of Scientific Research under Grant AFOSR 90-0011 and in
part by a Ford Motor Company grant. The work of the third author was supported by the National Science
Foundation under Grants ECS-88-05611 and ECS-90-12551.




1 Introduction

The complexity of the nonlinear output-feedback problem challenges not only the re-
searcher’s knowledge of nonlinear geometric techniques [4, 16], out also his/her ability to
employ, and often invent, a wide variety of other tools. This is particularly apparent in
several recent results which make use of intricate combinations of diverse concepts: special
classes of systems characterized by geometric conditions 8, 9, 13] or “Control Lyapunov
Functions” (17, 3], strict positive real properties of some part of the system [10, 12] and
filtered transformations to guarantee these properties [13, 15}, means to deal with swapping
terms [9] or to avoid them altogether [13], etc. Proofs combining these tools may appear too
technical and discourage potential users.

A more systematic treatment, which supplements rigor with intuitive appeal, seems to
be needed, and we make a step in this direction. In Section 2 we assemble a set of four
simple tools for nonlinear feedback design, either with or without full-state measurement.
The first two of these tools, “nonlinear damping” and “integrator backstepping,” were used
previously in adaptive and nonlinear control {3, 1, 22, 2, 10, 8, 14, 15, 5]. In Section 3
the tools of Section 2 are employed to give an alternative solution to an output-feedback
problem recently solved by Marino and Tomei [15]. The dynamic part of the controller
designed in Section 3 consists of only a nonlinear observer, while in [15] it also contains the

filters required for the filtered transformations.

2 The Design Toolkit

Throughout this section it is assumed that a feedback control u = a(z) is known, which.

when applied to the system
= f(zr)+g9(z)u, zeR", ueR, (2.1)

guarantees global boundedness of z(t) and regulation of n(z) € R™, that is, n(z(t)) — 0 as

t — oo. These properties are ascertained by the inequality
av r n 99
57 (B () +g(r)a(z)] € -W(n(z)) <0, VzeR", (2.2)

where V/(r) is positive definite and radially unbounded, and W(n) is positive definite. It is
further assumed that f,g,n,a.V and W are C? on R".

o




Each of the four lemmas in this section employs V(z) and a(z) to design a feedback
control for a particular perturbed or augmented version of (2.1).

In the first lemma, the system (2.1) is perturbed by an unknown disturbance. As the
following example demonstrates, even an exponentially decaying disturbance may cause ex-
plosive forms of unbounded behavior if it multiplies a term with significant nonlinear growth

rate.
Example 1. Suppose that in the system
=12+ u+ zlke™, (2.3)

the term z%ke~*, where k is an unknown constant, is considered as a perturbation. If, because
of the factor e~*, this perturbation is neglected and the control for the unperturbed system
u = —z — z3 is applied to the perturbed system (2.3), the resulting feedback system is

&= —z+rke™. (2.4)

Since (2.4) is linear in e its explicit solution is known:

_ 2x(0)
2(t) = (2 — kz(0))et + kz(0)e*" (2:3)

: : 1 kz(0)
The denominator of (2.5) is zero at t = 3 In w2(0) =2 It follows that, whenever kz(0) > 2,
z(t) escapes to infinity in finite time. 0

It is clear from this example that additional control action is needed to attenuate the
effects of the unknown disturbance. In the following lemma, a “nonlinear damping” term is
designed to fulfill this task for a class of unknown disturbances which are in the span of the

control.

Lemma ND# (Nonlinear Damping—Matched). Consider the perturbed system

i = f(z) +9(z) [u+ p(2)Td(z,¢)] (26)
where p(z),d(z,¢€) are continuous and d(z,0) = 0. Let the “disturbance generator”

é =q(z,¢), q(z,0)=0, e R’ (2.7)

satisfy the inequality
S (©)a(z,e) < ~lld(z, )] (28)




for some positive definite radially unbounded function Q(z) and for all ¢ € R’ z € R™
Then, the feedback control

u = a(z) = 5=(z)g(z)lla( (2)1* £ agou(z). (2.9)

when applied to (2.6). guarantees global Houndedness of z(t) and regulativn of n(r).

Proof. Because of (2.2) and (2.8), the time derivative of Vipy(z,2) = V(r) + Q(2) for (2.7)
and the perturbed system (2.6) with the feedback (2.9) is

; v v a0
Viou(z,€) = '——[f ga] - [ ] IpI* + 5-9p"d + -4
, oV ov
< -W(n) - {a } HMPﬁ-g—ng’ lld]|?
3 av |
< 4WM——MW d—gwﬂ
< -Win --WW (2.10)

which proves global boundedness of z(t),2(t). Furthermore, LaSalle’s invariance theo-
rem guarantees that z(t),e(t) converge to the largest invariant set of (2.6)-(2.7) on which
V;DM(J:,::) = 0. This proves that the regulation of n(z) is achieved and that the disturbance
vanishes: d(z(t),e(t)) = 0 as t — oo. O

The control aypy(z) in (2.9) is designed by adding a term to the control a(z) for the
unperturbed system. The implementation of this nonlinear damping term does not require
that d(z,2),q(z, ) or Q(e) be known: it is sufficient that they satisfy (2.8).

The nonlinear damping (2.9) is a variant of a design by Barmish, Corless and Leitmann [1].
I[ts effectiveness as a tool for output-feedback design was suggested by Sontag [20, 21] and
demonstrated by Marino and Tomei [15]. A form of nonlinear damping is implicit in an early

adaptive control result by Feuer and Morse [3].

Example 1 (cont’d). Using p(z) = z?, d(z,<) = ¢, and the disturbance generator

i = —¢g, £(0) = k, the perturbed system (2.3) is rewritten in the form (2.6) as
t=z3+u+ . (2.11)

With a(z) = -z - 23, V(z) =
damping feedback is

r? and Q(¢) = 1?2, Lemma NDM applies and the nonlinear

L
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With Vipou = %(.2:2 + %) it is easy to show that the resulting closed-loop system
it=—-r+rtket -1 (2.13)

is globally exponentially stable. Clearly, the nenlinear damping term —z° prevented the

unbounded behavior that would have been caused by r?ke~*. a

In the second lemma, “integrator backstepping” is used to design a feedback control for

the system obtained when (2.1) is augmented by an integrator.

Lemma IB (Integrator Backstepping). Consider the augmented system

f(z) +g9(x)¢ (2.14a)
£ = u, (2.14b)

r

where £ € IR is available for measurement. Then, the feedback control

w= (€~ alz)) + 2@ [f2) + 9(2)E] - Fo(@)o(x) San(z,€),  (215)

when applied to the system (2.14), guarantees global boundedness of z(t), £(t) and regulation

of n(z),§ — a(z).

Proof. The backstepping idea is to first view £ as the control and stabilize (2.14a) with a(z)
from (2.2). Then, to account for the fact that £ is not the control, the change of variables

: =¢ — afr) is introduced to transform (2.14) into

g = f(z)+9(z)(a(z) + 2)
) Ja (2.16)
z = u- %(1')(1’(1)-*0(1‘)(0(1')4'5)}-

Finally, (2.15) is designed to make the time derivative of Vi3(z,z) = V(z) + 12? nonpositive:

. oV ov , OV
= — —gz— 22— —gz < -W(n) - 2. 217
Va(z,2) = 5/ +ga) + 7—g 5292 < ~Wh) (2.17)
This proves global boundedness of x(t), z(t) and, by LaSalle’s invariance theorem, regulation
of n(r) and z. O

Integrator backstepping has recently been used by several authors {22, 2, 10], and was one

of the tools for the systematic design of adaptive nonlinear controllers by Kanellakopoulos.




Kokotovic and Morse [8] and Jiang and Praly [5]. As a design tool, it often leads to global

results not achievable by feedback linearization, as illustrated by the following example.

Example 2. Consider a system which is not globally feedback linearizable:

T = 2+ (l+7)¢ (2.18a)
£ = u. (2.18b)

Thinking of (2.18a) as a system controlled by £, we use a(z) = —z, V(z) = }z? to satisfy
(2.2). Recognizing that £ is not the control, we let z = £ + z and transform (2.18) into

r = —z+(l+2)z2
(2.19)
: = u—z+(l+2)2.
For this system, a;p(z,£) given by (2.15) is
u=—-¢—-(£+2z)(l+z)=-2+z—-2(142)-2z(l +2). (2.20)

With Vig(z,2) = 3(z? + 2?) it is easy to show that the system (2.19) controlled by (2.20) is
globally exponentially stable. o

Lemmas NDM and IB can be combined into more sophisticated tools. One such combi-
nation, incorporating filtered transformations, was used by Marino and Tomei in [15]. Two
additional combinations are given in Lemmas NDE and OIB below.

While in Lemma NDM the perturbation p(z)Td(z,<) was in the span of the control u, in

Lemma NDE it precedes the control by one integrator.

Lemma NDE (Nonlinear Damping-Extended). For the augmented perturbed system

i = f(z) +9(2) [¢ +p(z)"d(z,e)] (2.21a)
£ = u, (2.21b)

under the assumptions of Lemma NDM, the feedback control

6aNDM

(@)[£(2) + 9(2)€] - e()g(2)

2
£ awor(z,6), (2.22)

u = —[§—anou(z ]+

oM —*(z)9(z)p(=)

[f anoum( 1')]




guarantees global boundedness of z(t),£(t) and regulation of n(z),€ — anou(z).

Proof. Viewing £ as the control, the nonlinear damping feedback of Lemma NDM for (2.21a)
is £ = axpu(), with Vypu(z,e) = V(z) + Q(€). As in Lemma IB, z = § — axpy(z) is used to
transform (2.21) into

¢ = f(z)+g(z)anou(z) + 9(z)p(z)"d(z,€) + g(2)z

. Oanpu T (2.23)
P o= u— ) [f(2) + g(2)aven(2) + 9(2)2] - B(2)Td(,),
where p(z) = UQT'::M-(x)g(x)p(r). In the absence of the term j(z)Td(z,¢), Lemma IB would
result in the feedback control
aaNDM aV
U=—-z2+—— o [f + ganom + 92] - _9 = a,g(z z) (2.24)

with Vig(z,2,€) = Vipu(z,€) + 122, To account for the presence of p(z)Td(z,¢), we apply

Lemma NDM once again and add a nonlinear damoing term to (2.24):
6V - Oa
5@ = an(z,2) - 2 | —==(2)g(2)p(z)

When applied to (2.23), this control guarantees global boundedness of z(t), 2(t) and regula-

2

u = an(z,2) — (2.25)

tion of n(z) and z. o

The tools we presented so far assumed full-state measurement. Suppose now that the
system (2.1) is augmented by an integrator whose state is not measured, but is instead

estimated by an observer. We consider (2.14) for the case g(z) =g #0:

r = f(z)+g¢ (2.26a)
£ = u. (2.26b)
Following [11], an observer for this system is
§ = ~k(i-y)+gl+ filz) (2:27a)
£ = —k(i-y)+u, (2.27b)

where y = z; is a component of z such that g; # 0 and k;, k; are chosen to guarantee the

exponential stability of the error system

HRED R A

where § = y — §,€ = £ — €. Then, an observer-based feedback control for (2.26) is designed
by backstepping the integrator (2.27b) in the observer.
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Lemma OIB (Observed-Integrator Backstepping). Consider the augmented system
(2.26), where the unmeasured state  is estimated by the observer (2.27). Then, with
ay(z) = a(z) - _0?(1)‘9’ the feedback control

dou ; Oy

2
u=ky(y—9)=[€ - (@) + 5 (2) [f(2) + g —%g(x)g—[e — o (2)] [E(x)g] . (2.29)

when applied to the system (2.26), guarantees global boundedness of z(t),{(t) and regulation
of n(z),§ — en(z).

Proof. Let us combine (2.26a) with the observer equation (2.27t) into a system:
= f(z)+g[€+¢]
§ = —hly—j) +u,
and treat £ as a disturbance generated by(2.28). The system (2.30) is in the form (2.21)
“1T .
with ¢ = [3} E] , d(z,e) = €, p(z) =1 and Q(e) = eTPoe, PoAp + AJ Py = —1. Hence,
Lemma NDE applies and the feedback control (2.29) guarantees global boundedness of

z(t), €(t), (t) and regulation of n(z),€ — a1(z). Then, global boundedness of £(t) and regu-
lation of § — a,(z) follow from § = f + f =z + o(z) +f and £ — 0. a

(2.30)

3 A Backstepping Design Procedure

Employing the tools of Section 2 in a step-by-step fashion, we are able to construct back-
stepping procedures for nonlinear feedback design problems. With full-state feedback, such
procedures have been constructed for partially linear composite systems in [18] and for a
class of nonlinear systems containing unknown constant parameters in [8]. Here we design
an observer-based controller for the class of nonlinear systems that can be transformed via

a global diffeomorphism into the output-feedback form

¢ = AC+¢(y) +bo(y)u (3.1)
y

= ¢ = ¢
0 ]
0 ; 0 w1(y)
A= : , b= b, ,cT=[1 0...0], o(y) = : , (3.2)
0 .. 0 #n(3)
L b |




where only y is available for measurement, b,_,8""?+- - + b, s + by is a Hurwitz polynomial,
and ¢y,...,¥n, 0 are smooth functions with o(y) # 0 Vy € R. This class of nonlinear
systems, characterized via geometric conditions in [15, Theorem 5.1}, is of interest because

its state can be estimated using the observer

a

C = AC + Ko(é, - y) + o) + bo(y)u, (3.3)

where K is chosen so that Ag = A— KocT in the error system f = AoC, C = ¢ =C, is Hurwitz.
Using this observer, we now design a feedback controller to force the output y of (3.1) to
track a reference signal y,(t), which is given along with its first p derivatives g, ¥, ...,y

In Step 1, our step-by-step design applies Lemma OIB to the first two equations of (3.1).
Each consecutive step adds one more equation from (3.3) and applies Lemmas IB and NDM.

The procedure terminates at Step p — 1, when the true control appears for the first time.

Step 1: We define the output error z; = y - y; = y — ao(yr) and consider the second-order

system

Ho= Grey) - 2 G+ b veb) (3.42)
G = G+ely). (3.4b)

As in Lemma OIB, we replace (3.4b) with the second equation of the observer (3.3) to

compose the system

Ho= G+BY Yt + G (3.52)
(2 = G+ Ka(i-y)+ey). (3.5b)

If (; were the control, then Lemma NDM would result in
G2 = ~B1(¥: e 90) = 221 = e1(Y, Y Br) (3.6)

and V,(z;,f) = %z,’ + fTPof, where PyAo + AgPo = —]I. Since fg is not the control, the new

state z; = fg — a1(y¥, Yr, Yr) is introduced and (3.5) is rewritten as

o= —n+n-5+(
. _ ; 2 601 - - 601 . aal -
23 = G+ Koa(Gi —y) +waly) - ‘a—y’(Cz +ei(y) +G) - Y T (3.7)

1[4

o . s L. Oay -
(3 + Ba(y, €1y G2y Yer Yy ) — %C? ’
y
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601 301 601
dy ’ Oy, ' Oy
of y, yr and y,. Again, if {3 were the control, then Lemmas [B and NDM would result in

s s . day \?
=82y C1y G20 Yer Yoo Ur) — [1 + (‘—l) ] 22— 4

02(!}»51,(:2».%’ y.l'vgl')s (38)

are known functions

where in the definition of 3; we have used the fact that

G

1

and Vy(21,23,¢) = Vi(21,{) + 54 + (TP

Step: (2 <1< p—1): In Steps 2 through : — 1 we designed a;,...,a;. Now, in Step ¢,

we apply Lemma IB to backstep another integrator. We introduce the new state z;4; =

Q:.-.H - a;(y, fl, ... ,fg,y,, Yry oo s yﬁ‘)) to obtain

. 601 1z 3&,- 1 2 . R
2; = =i+ —-—F—C— p) z;—zj, 1)<t
Yy S (3.9)
éi+1 = <i+2 + Bi«{-l(ya Cl, ey Cl'+19 Yry yrv s $yr‘+l)) - 'CZ
Again, if Q:H_g were the control, Lemmas IB and NDM would result in
. : : . ; da;
Ci+2 = _ﬂi+l(y7<l»-~'»Ci+hyrsyr9"-ayr+l)) [1+ (ay) ] Zig1 — 3
a 2 2 . ;
=ai+l(y$Ch-"aCi+layr3yra"-vyl(- +l)) (310)

and Vigr = V; + 122, + (T PC.

Step p — 1: Finally, we backstep the last integrator before the actual control u appears.
Following Lemma IB, we substitute z, = c:,, ~a,_1(y,fl, ey f,-,,y,,g,, o, y¥" ) into (3.9)
(with : = p — 2) and augment the resulting system with the z,-equation:
. ()Q 1 60'_1 2 .
i = —zj+ zjy1 — djy Cz—( BJy zj—2zj.1, 1<j<p—~1
60,-
G

(3.11)

bﬂ—ﬁa(y)u + ép#—l + ﬂp(ya éla e aéps Ye y.n s 7yrp))

éﬂ
Now the actual control u has appeared, and Lemmas IB and NDM result in the control law

1 Oa,_,

2
u=‘-m{C&H-l+Bﬂ(y'Ch'--v&ﬂoyrsyrv""yrp))+[1+( ay )]ZP+29‘1}'
(3.12)
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The derivative of

Vo=V, + 22,,+CTP0C— Zz +p¢TP (3.13)
=1

along the solutions of (3.11)-(3.12) is nonpositive:

. 8a,1 1 :
Vpg-z[z+—||c\| ( 3 ,+§cg)]50. (3.14)

J:

With this systematic procedure we have not only designed the control law (3.12), but

have also set the stage for the following result:

Theorem 3.1 (Stability and Tracking). For the nonlinear system (3.1), assume that
bn-,8""? + .-+ + bys + by is a Hurwitz polynomial, and that y;, g, ...,y{*’ are bounded on
[0,00) and y{?)(t) is piecewise continuous. Then, all the signals in the closed-loop system
consisting of the system (3.1), the observer (3.3) and the control (3.12) are globally bounded,
and, in addition,

lim [y(t) — y:(t)] = (3.15)

t—oo

Proof. Due to the piecewise continuity of y{*)(t) and the smoothness of the nonlinearities,
the solution of the closed-loop system exists. Let its maximum interval of existence be [0, t;).
On this interval, the nonnegative function V, is nonincreasing because of (3.14). Thus,
z1,...,2, are bounded on [0, ¢;) by some constants depending only on the initial conditions
of (3.1) and (3.3). The boundedness of all other signals on [0, 1) is established as follows.
Since z; and y, are bounded, y is bounded. The boundedness of ¢ and b=y —¢(; imply that
4:1 is bounded. Since z; is bounded, 4:2 is bounded. In the same manner, it can be shown
that 4:1, e ,(:, are bounded. Hence, (;,...,(, are bounded.

To prove the boundedness of (,4,,....(s, we use the fact (see, for example, (19, Theo-
rem 2.1]) that there exists a similarity transformation { = T¢, with {; = ¢1,...,C, = (,,

which results in )
G = G+eily)

G = Got9oly) ] (3.16)
¢ = @o(y) +baopo(y)u +ai{

" = A +o(y)

y = Clv
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where the eigenvalues of the (n — p) x (n — p) matrix A, are the roots of the Hurwitz
polynomial 4,_,8""? + .- + b;s + &. Now the boundedness of (*, which follows from the
boundedness of 3(y), together with the boundedness of (y,...,(,, imply that ( is bounded.
We conclude that ¢ = T-!( and { = ¢ — ( are bounded. Since b.—,0(y) is bounded away
from zero, the feedback control u (3.12) is bounded.

We have thus shown that the state of the closed-loop system is bounded on its maximal
interval of existence [0, ¢r). Hence, t; = oo.

To prove the convergence of the tracking error to zero, note that the boundedness of ¢,
é, ¢ and u, together with (3.13) and (3.14) imply that both V,, and f/,, are bounded, and,
moreover, that V, is integrable on [0, 00). Hence, V,, — 0 as t — oo, which proves that

21,...,2, = 0 ast — oo. Since z; = y — y,, this proves (3.15). a

4 Concluding Remarks

Among the major contributions of geometric methods to the systematic design of nonlinear
feedback systems over the last decade are conditions characterizing classes of nonlinear sys-
tems which are feedback linearizable or transformable into so-called “normal forms.” Under
such conditions, the feedback design problem either becomes linear or is greatly simplified
due to the special properties of the normal forms.

Geometric results have their own limitations: they are often only locally valid, as in
Example 2, or valid only in a disturbance-free setting, which excludes the system of Exam-
ple 1. Tools like those assembled in this paper alleviate some of these limitations and appear
as a valuable supplement to geometric methods. The backstepping procedure of Section 3
demonstrates that such tools are not just “tricks of the trade,” but can also be used in a
systematic fashion. In a more complicated adaptive setting, where the backstepping has to
be performed not only under state observation, but also under parameter estimation, such

tools are currently used to design fundamentally new adaptive schemes.
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Adaptive Output-Feedback Control of a Class of Nonlinear Systems*
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Abstract. For a class of single-input single-output nonlinear systems
with unknown constant parameters, we construct a new systematic
procedure for adaptive noniinear control design. which requires only
output. rather than full-state, measurement, and which vields global
boundedness and tracking properties without imposing any type of
growth constraints on the nonlinearities. The new procedure i1s ap-
plicable to nonlinear systems which can be expressed in the output-
feedback canonical form. We give a coordinate-free characterization of
this class of systems, and show that a single-link robotic manipulator
with an elastically coupled dc-motor actuator belongs to this class and
can thus be adaptively controlled via our new design procedure using
only position measurement.

1 Introduction

In the last few years, the problem of adaptive nonlinear control was
formulated to deal with the control of plants containing both unknown
parameters and known nonlinearities. The motivation for this prob-
lem lies in the fact that many practically important systems {robotic
man;pulators with rigid or flexible joints. electric motors. automotive
suspensions, chemical processes) are inherently nonlinear (due to the
presence of gravitational. Coriolis or aerodynamic forces. flux-speed,
flux-current or ion concentration products, and even hydraulic valve
actuators) and typically contain unknown parameters which vary with
the operating conditions {task-dependent load masses and torques,
temperature-sensitive resistances and heat-transfer coefficients).

Many of the early results (see [7] for a unifying treatment and de-
tailed references) yielded global properties only when growth condi-
tions were imposed on the nonlinearities. Such growth conditions re-
strict the applicability of the corresponding schemes, and, in some
cases. actually bypass the true nonlinear problem. Moreover, all of
the early results employved the assumption of full-state measurement,
which further restricted their applicability to practical situations.

In this paper, we construct a new systematic procedure for adaptive
nonlinea:r control design, which requires only output measurement.
and which yields global boundedness and tracking properties without
imposing any type of growth constraints on the nonlinearities. This
procedure is applicable to single-input single-output nonlinear systems
which can be transformed into the output-feedback canonical form.
This is the same class of systems to which the filtered-transformation-
based design procedure of (6] is applicable.

The design procedure is constructed by interlacing in an intricate
fashion several tools from our nonlinear toolkit (2. 4]. which are pre-
sented in Section 2. Some of these tools (nonlinear damping, integrator
backstepping, parameter-dependent estimation) were used previously
in the adaptive and nonlinear literature. The tools of adaptive in-
tegrator backstepping and observed-integrator backstepping were the
crucial ingredients of the design procedures of 3] and {4], respectively.
Here we combine them to form the new tool of “adaptive observed-
integrator backstepping” (Lemma 6), which is the crucial ingredient
of our new design procedure, presented in Section 3. The bounded-
ness and tracking properties of the resulting closed-loop system are
established in Section 4.

*The work of the first two authors was supported in part by the National Sa-
ence Foundation under Grant ECS-87-15811 and in part by the Air Force Office
of Scientific Research under Grant AFOSR 90-0011 The work of the third author
was supported by the National Science Foundation under Grants ECS-88-05611
and ECS-90-12551.
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Yale Univeraty
New Haven, T (06320- 1963

Since models of noniinear svstems are often derived from physical
principles and given in specific coordinates. it may not always be ubvi-
ous whether or not the nonlinear system at hand can be transformed
into the output-feedback form to which our design procedure is appii-
cable. Therefore. in Section 5 we use differential geometric conditions
to derive a coordinate-free characterization of the corresponding ~la~s
of nonlinear systems. Then. in Section 6. we show that rhe ncnitnear
system consisting of a single-link robotic manipulator and an elas-
tically coupled dc-motor actuator (including the actuator dynamics)
belongs to this class. Thus, our new design procedure is applicable to
this system and. for all positive values of the elasticity constant and
of the electrical and mechanical time constants of the motor, vields
global boundedness and asymptotic position tracking using only po-
sition measurement. Finally, in Section 7. we give some conciuding
remarks about improvements and extensions of the new Jesign proce-
dure.

2 The Design Toolkit

In this section we present the tools that will be used as building
blocks in the construction of the design procedure of Section 3. The
proofs of the following lemmas were presented in [2. 4).

Definition 1 (n-g.r.f.) A feedback controi u = agl(z) which. when
applied to the system

reR".
guarantees global boundedness of z(t) and regulation of nizi' € R™. 1s

called an n-globally regulating feedback (n-g.r.f.) for (2.1). Further-
more, if these properties are ascertained by the inequal-ty

i = folz)+g(z)u. uelR. 2

Z—‘:-f-r)[fo(r) +g(r)ag(z)) < -W(n(z)) <0, YreR*., 2.1

where V(z) is positive definite and radially unbounded, and Win; 1s
positive definite, we say that ag(z) is an n-g.r.f. for (2.1} with respect
to (w.r.t.) V(z).

Lemma 1 (Nonlinear Damping) Consider the perturbed system
i=fo(r)+9(r)[u+p(r)re( .s)]. (2.3)

where p(z),¢(z,c) are continuous and €(x,0) = 0. Let the “disturbance

generator” . .
¢=gq(z.e), qz,00=0. c€ R, (2.4

satisfy the inequality

R )z 0) < ~ll(z. (25)

for some positive definite radially unbounded function Q<) and for all
e € R z € R™. Ifag(z) is an n-g.r.f for (2.1) w.rt. V(z), then an
n-g.r.f. for (2.3) is

v
al(z)=ao(z)—da—(z)g(z)llp(.t)llz. (2.6
z
where d > 0 is a design constant.

Lemma 2 (Integrator Backstepping) Consider the augmented
system

= folz) + gLz




where y € R 1s avatlable for measurement. [f ag z1 15 an n-g.r f. for
(3.1) w.rt. Vi(z). then the feedback control u = oy r. ).

3 . . av
az{r.z)=~-z2+ Lg‘—’(:);fo(ﬂ*-glrr'a.)(rw- s - —i{r)g(zr).
Jdr Jdr i2.8)

is an 17, 2)-q.r.f. for (2.7), where
2=y -aglz). 12.9)
The tools we presented thus far assumed full-state measurement.
Suppose now that the system (2.1) is augmented by an integrator

whose state 15 not measured. but is instead estimated by an observer.
We consider 12.7 for the case g1, =9 £ 0:

o= foin+ gy {2.10a)
X = u. 12.10b)
Following [3!. an observer for this system is
A R R A WEY (2.11a)
x = -kig-y)+u. 12.11b)

where y = r, is a component of r such that ¢, # 0 and k;.k; are
chosen to guarantee the exponential stability of the error system

HRER !

where § = y — y. x = Y — \. Then, an observer-based feedback control
for (2.10} is designed by backstepping the integrator (2.11b) in the
observer.

(2.12)

Lemma 3 (Observed-Integrator Backstepping) Consider the
augmented system (2.10). in which the unmeasured state \ is esti-
mated by the observer (2.11). If ag(z} is an y-g.r.f. for (2.1) w.rt.
V(z). then the feedback control u = ay(z. 2},

. d
ar.z) = —z+kiy-y+ "%(I)[fo(l)*'g(al(”'* z}]

_%(z)g—d;z {%‘:'(:)gr, 12.13)
1san (n.x - ay(z))-g.r.f. for (2.10), where
z=i—ax(Z)gi-ao(szxg—:(z)g. (2.14)
and dy > 0.d, > 0 are design constants.
Let us now consider the nonlinear system
I=folz)+0f(z)+g(z)u. z€R", uelR, (2.15)

where § € R is an unknown constant parameter. Let us assume that
there exists a feedback control u = ag(z)+8a(z). with ag(z) and a(z)
known, which, for every § € R, is an n-g.r.f. for (2.15) w.r.t. V(z),
with V(z) known. Thatis,Vz € R", V8 € R, we have

v

S=(2)folz) + 8f(z) + 9(z)(ao(z) + 8a(z))] < -W(n(z)) < 0,
9z (2.16)
where V'(z) is positive definite and radially unbounded, and W(n) is
positive definite. It is further assumed that fo, f, g, 7, ¢, a, V and
W are C? on R".

Lemma 4 (Adaptive Integrator Backstepping) Consider the
augmented system

z

Jo(z) + 0f(z) + glz)x

X = u,

(2.17a)
(2.17b)

where v € R is avaslable for measurement, and assume that ag(z) +
faiz) 1s an n-g.r.f. for (2.15) w.rt. V(z). Let v, and v, be two
estimates of 0. Then, the feedback control u = a;(z, 2.9y, V;),

atsz vty = -z4 a—"ﬁ(znd,a_"(z)
oz 3z

olz) + 02f(2) + glz)ay(z.0y) + 2)]
av 2 . OV
-7‘_0:(”9(”" (z) - —‘.h(z)g(:). (2.18)

RN ERZ TGRS RV 2
s an (n,z)-g.rf for the system conswsting of 2. /7 and the update
laus

--»‘,l%%(:)g(rlmr) 2.2,

[300 ! ;

da, 1
vz)-bl}[‘_ll'“Jv.[:Z. $ 2
Jr J

')1 =

vz

it

—_—n

where ~; > 0. v; > 0 are design constants.

Let us now consider the case in which (2.13} is augmented bv an
integrator whose state is not measured. As in Lemma 3. we consider
+2.13) for the case g{z) = ¢ # O

22,223,

1 2.225),

folz) + 6fizr+ gy
\' = u.

z

The main difference between (2.22) and (2.10) is the presence of the
unknown parameter 8 in (2.22a). If this parameter were known. an
observer of the form (2.10) would provide an exponentially convergent
estimate of y. which would then be used in the design of a g.r.{. for
(2.22). Keeping in mind that our ultimate goal is not the estimation
of y itself, but rather the design of a g.r.f.. we construct a “parameter-
dependent” estimate of y using the following lemma:

Lemma 5 (Parameter-Dependent Estimation) Choose a com-
ponent of z, y = z, such that g; # 0, choose k. k; to guarantee
the ezponential stability of the matriz

- ‘kl g 959
Ao = [ ~k; 0 ] . 12.23)
and define the filters

i1 = Lz + 9,602 ~ ka &g
§12 =~k -

Then, the signal ¢ = y - (£52 + 0€,3) converges to cero.

for = fou(z) + g:€oa + k1 (y — Eor)

o2 = u + ka(y - €o1) 234

We can now combine Lemmas 1, 4 and 5 into a new tool. which
shows us how to design a g.r.f. for (2.22).

Lemma 6 (Adaptive Observed-Integrator Backstepping)
Consider the augmented system (2.22) and the filters (2.2{). and as-
sume that ag(r) + 8a(z) is an n-g.r.f. for (2.15) w.rt. V(z}. Let
J, and 9, be two estimates of . Then. the feedback control u =
ay(z, 2, 801,61, 91, ¥2)

3&1 Ja

@ =~z kalfor + 06 - )+ [T + 0 G20 ot

-
$931(2) + gloa(z, 61, 90) + )] - B (2)gla(2) - a)

—~dqz ([%—i‘(z) + 013—:(2)] g)z.

12.23)
where a&;(z) = ap(z) - d,%(z)g and

A
=02 - ay(2.60.9) = Goa - {00(1‘) +vy(afz) - &2) - 410—;(1’)9
12.26)
13 an (n, z)-g.r.f. for the system consisting of (2.22) and the update
lauws

, v _

h = -716—(2)9(0(1)—511) 1220
r

j, = o da . -

v = -m [E(ZH-'M az(f)] fir)z, V2N

where v, > 0, v2 > 0. dy, > 0. d3 > 0 are design constants.




3 The Systematic Procedure

In this section we present the main result of the paper. We use the
tools of Section 2. especially nonlinear damping | Lemma 1}, adaptive
integrator backstepping (Lemma 4) and adaptive observed-integrator
backstepping ( Lemma 6). to construct a fundamentally new systematic
design procedure for nonlinear systems which can be transformed into
the output-feedback canonical form:

P
)+ }:9;;;.1(1/)

By o= I+ poaly
)=
P
Iy = Iyt Soalyl - E ;e
;=1
P
I, = -tp"‘PO.p-l(II)"‘ZoJ»’).D-X(W (3.1)
=1
P
T, = Zpwr + 20a(¥)+ 3 0rnaly) + baopaiy)u
1=l
P
In = only)+ 3 07a(y) + boo(y)u
)=t
y = It

where £ € IR is the state, u € R is the input. y € R is the output,
2)4-0<j € p. 1 £i<n, and o are smooth nonlinear functions. and
8 =106, .9cR, b= [brep.....bo)T € R™?*! are vector- of
unknown constant parameters.

We now make the following assumptions about the system (3.1):

Assumption 1 The sign of b,_, is known.

Assumption 2 The polynomial B(s) = ba_,s""% + ---
known to be Hurwitz.

+bys+bgis

Assumption 3 g(y) # 0 Vy € R.

These assumptions imply, in particular, that the system (3.1) has a
globally well-defined and known strong relative degree p [1. Chapter 4],
and that its zero dynamics (1. Chapter 4] are linear and exponentially
stable.

Assuming that only the output y is measured, the control objective
is to track a given reference signal y(t) with the output y of the
system (3.1), while keeping all of the signals in the closed-loop system
globally bounded. For the adaptive controller which results from our
design procedure to be implementable, we assume that

Assumption 4 The reference signal y.(t) and its first p derivatives
are known and bounded, and, in addition, yi')( t) is piecewise continu-
ous.

This assumption is satisfied if y,(2) is the output of a linear stable
reference model of relative degree p, > p.

The first step in our systematic design procedure is the choice of
filters which will provide “parameter-dependent estimates” of the un-
measured state variables z3,...,z,. Following the development of
Lemma 35, we rewrite the system (3.1) in the form

P
Az +poly) + 3 0,4,(y) + bo(y)u

r =
< (3.2)
y = 'z,
0 O(n—l)xl
1= : b= ba-, _ 1
4= (;l(n-l)x(n-l()) 0= : . €= On-t)x1
bo
(3.3)

T 1 e .
PRI E iy gty DS T 44

We then choose a gain vector A such that 4o = 4 - Ac” s Hurwe,
and define Juus filters
o= .-10\‘0 - [\'y + soly)
< dobo+ 2yiyr. 1<y<p 35
&, = Ao, +eq, oIz u. 0<,<n-».

where e, is the ith coordinate vector in R". From (3.2} and 1 3.5) it
follows that

521_(\0-20,\,v7m), ‘3.6
;=0
which implies that ¢ satisfies the disturbance conditions of Lemma [
with Q(e) = T Pye. PyAg + AT Py = —I. In particular. ¢ converges
exponentially to zero. e also note that the derivative of y can be
expressed as
P

¥ =82+ vorly) + 30, [Fraly) + &2+ Sq byryy=e D)

=1

We are now ready to construct our systematic design procedure.
The main idea of this procedure is to apply Lemma 6 to the first
two equations of (3.1), and then, at each next step. to add one more
equation and use Lemmas « and ! to stabilize the resulting system. At
each step, new design constant -,.... > 0 and a new symmetric design
matrix [, > 0 are introduced.

Step 1: We define the output error 2y = 1y -
i'l as

y, = y — agl Y+ and write

?
= I3+ poa(T1) + 2 0,¢50(51) = e - (3.3)
=1
Since z7 is not measured. we use (3.7) to rewrite (3.8) as
P n-p
21 =802 +v“o,1(y)+z 8, {@snly) + &)+ Z biv, 2~y +e. (3.9)
=1 1=0
A closer examination of the filters (3.5) reveals that the control u
will first appear in the pth derivative of v,_, ;. Hence, v, .., is the
variable that we should view as the control in (3.9). If v,_, ; were the
control and the parameters 6,...,0;, bacp.. ... by were known. then,
by Lemma 1, a z;-g.r.{f. for the system (3.9) would be

Un-p2 = = faazy +dizy + &2 + 2ol
n-p
-4 n-o-1 b
Z Eleatbal- 3 e (310
= 1=0 bn—p

To deal with the fact that v..,; is multiplied with the unknown co-
efficient b,_,, we use (3.10) to rewrite (3.9) in the form

< -

3t = - - dlzl +¢€

1
+ba-s {—b [erzr + diz + &o.2 + vou)
—

1=t

n- D-
+Z—'L'v°)l+612]+ z b v)l“"‘fn 02}
n=p

a .
= —aqn-dizg+e+by, {v..-,,z +00..;,(21.C1£.C|v.y..y,)}.
(3.11)
where, fori=1,...,n-1:
a
CIE = [sﬂ.lw---ED.|+l‘--'vfy‘l‘-“'fp.vﬁl] (312)
a .
Cov = [ogee- - W0asle- s Prmpmbilr - -+ Vnmpmdadds Trple - o s Va-ou,
i1
gefl f 8 h e e
bn—p bn-p bn-p bv\-n bv\—p
a
<1 = [az + dizy + &0 + vou,
Pt i vpt + 6520020 Uanpot2) 315




Let v, be an estimate of §, and denote v, = §y — J,. Then. from
Lemmas 4 and 1. and (3.11}. we know that if the update law for v, is
chosen as .

Vi = sgn{bn-p) Tt (21 L& Cre yen 9 ) (3.16)
and if v,., were the control, then
tnesz = =~ wnr(2.CLE Cru. ye de)
2 ai(zy, C £.Cyo vh. Ye Yr) 31T

would be a z;-g.t.f. for the system consisting of (3.11) and (3.16), w.r.t.
. | . S Teel s L
V=g (:,- BTN th ")1) I
Step 2: Since v,_,2 is not our control, we augment the system con-
sisting of (3.11), and (3.16) by the i,_, ;-equation from (3.3) and use
Lemmas 4 and 1 to backstep it. We define the new state z; as the
difference between v,.,; and its desired expression {3.17}:

Qz). 13.18)

22 = taep2 — {1 . CLE.Cre Yy Y Ye) 13.19)
and. using 13.3), (3.7). (3.11). (3.16) and (3.17), we write 3, as
20= tamp3 + (i 5, Co€ Coe Vi yes Yoo )
+8T 21, 72, CL&. Crvn Dy g )
+azz(z|,C1£,C1v. I Ve Yede (3.20)

dy

where %;‘2_ denotes the partial derivative of the right-hand side of (3.19)
with respect to v. and

G=10,....0,b0....6.,]F.

Let v, be an estimate of § and denote 152 = § - v,. From Lemmas 4
and 1, we know that if the update law for ¥, is chosen as

(3.21)

vy = Tawa(21, 22, C1€, Cro. vy g ) 22 (3.22)
and if v,., 3 were the control, then
622 2
Un-p, =—cz-z—u‘-t)T.:—d<—):
n-p.3 242 1 2 2% 2 3y 2
2 o321, 22, C26, Cav. 91, Ye. Ve ) (3.23)

would be a (2, z;)-g.r.f. for the system consisting of (3.11), (3.16),
(3.201. and (3.22) w.r.t.
- Lo 5Tp-15 1
Va=Vi+s (e +97T549,) + Ze). (3.24)

Step:(3<i<p-1): In Steps 1 through i — 1, we designed

ag.. ... a,-1. V1,....U,—; and we know that if v,_,, were the control,
then
9z.1\?2
Vnops = ~Cic1Zi-1 — Zica — Yio1 - ',;r_lui-l +dio ( a'yl) Zi-1
a -
= al—l(zlv ey zi-‘vcl'-lfvc -17, ‘,lv cree 0‘_“ Yero oo yi l))
(3.25)
would be a (zy,...2i—1)-g.r.f. for the system
H = —(aa+di)n+n+ l;'lrw] + €
: 9z,)* Ty, + 22
5, = ~-|¢+4d, 3y z,+z,+1—z,-l+d,w,+ay€.
2<j<i-2, (3.26)
. dz,.
ot = Vnepy + Uiy + 0 wing + 3| Le
y
Uy = —sgu(bn-p)liwszy
b, = -lwz, 2<j<i-1,
w.r.t
. 1 - 1 1 -
Vier = Vi + 5 (sl + 9L, TN D) + roniGEEED)

Now, in Step :. we augment {3.26) bv the f._,.-equation {tom 4.3
and use Lemmas 4 and ] 10 backstep it. We define the new state z, as
the difference between v,_,, and its desired expression «3.23
:|_|.C|_1E.Cl_ll’.

R L O Xt TS A R

and. using (3.5),(3.7). and (3.26). we write %, as

B0F Uaopump e GG Ny
1-91.;“:1,....:, Ci&.Ciov vy, o1 e vt
Sttt e Gttt Ve

320

Let U, be a new estimate of § and denote 9, = § — v,. Then. from

Lemmas 4 and 1. we know that if the update law for 1, is chosen as
Y, = Liw(o1ne. 2 Gt Cmrv Ve ey s 030300

and if r,_,,,; were the control, then

Fao \2
—en -z - e = W~ d, <d> 5

Unepasl = ()—y
£ a1 . CEC U D W e y,'.") i3.31)
would be a (z;.....2)-g.r.f. for the system
o= -(cl+d1)zl+zg+l},r..z\+e
H o= - [c, +d, (%Zy’-)z] S+ - Lat ,}}T‘.J - (2—:;(.
2<j<i~1, {3.32)
f, 0= Uppasr + U+ 0T + g—;‘e
b = —5g0(ba—p ) [1n 2y
g, = -Tuw,z. 2<j<i,
w.r.t. 1 R . 1
Vi=Via+s (24 97r719)) + 7). (3.33)

Step p: This is the final step of our design procedure, in which we
backstep the last equation separating us from the actual control u.
Since v,_, , is not the control, we augment (3.32) (withi = p— 1) by
the 9,_, ,-equation from (3.3) and use Lemmas 4 and | to backstep
it. We define the new state z, as the difference between v,_,, and its
desired expression (3.31) (withi =p - 1):
Zp = tnopp = @poi(2n 0 5p-1,Coni€ Cpgen
D JOUUE JTS VRN Ll (3.34)

and, using (3.5), (3.7), and (3.32), we write , as

2, = (YU + Un_posr + V(21,020 Co€,Cov 0y, .., Yo,
y,,....yl(,’))+é'r..;,(zh..‘,z,.C,_lf,C,-lv.lh,...,0‘,_1.
_ dz
yr,...,yl(,p l‘\)+a—;(21 ..... 2,..1.C,_1€,C,_\V,l)1,.4.,l)‘,-l.
Yroe -y Me. {3.35)

Let J, be a new estimate of § and denote 9, = § — d,. Then, from
Lemmas 4 and 1, we know that if the update law for v, is chosen as

!j, = [‘,u,(:l....,z,.C,-.{,C -lv,l’h.. .,l’,_l,y‘.,. ”.yy_”I?:iG)

then the control

2
u= ! {_c,z,~z,..|—w,—d,ru,—d,(?,’—z;) z,} 13.37)

" a(y)
isa(z,....2)-grf for the (z1,.... 25 Uq. ..., J,)-system w.r.t.
, 1 Tr13 1
Vo = Vi + 3 (z2+95T;'9,) + FRUG)
1 {& : B [ . °
= 3| 22+ 1baanl9TTidy + 3 U707, +Zd—)mf’-‘~”“
1=l =2 =1




Indeed, the (zy.....2: Y. .. Y, 0-5vstem beromes with rhe choice of
control (3.37)

-'1 = —!Cl*dl‘;.'j'*Zz*L-)f.'l-o-g

; dz : L)

5 = —{c,#-d, (0—y> :4,«-:]“-:‘,_14.0],;)-3;(‘
2<j<p-1, 13.39)

¢
©
1]

(3: ? T ():_,

—sgniba_, 01wty

b=

!}, = -l 2<7<p.
and the derivative of the partial Lyapunov function V), defined in13.3%)

along the solutions of (3.39) is nonnegative (since ¢,.d, > 0):

5 dz A
= .2 <5, 3 o )
‘9“Z[Cm* 4, (—aij———%f) +—_4d, 1= ] <0.  (3.40)

4 Boundedness and Tracking

With the above systematic design procedure we have not only de-
signed an adaptive controller, but we have also set the stage for the
following resuit:

Theorem 1 ['nder Assumptions !-{, all of the signals in the closed-
loop adaptive system. which consists of the system (3.1). the filters
(3.5), the parameter update laws for V.. ... J,. and the control {3.37}.
are globally bounded, and, in addition,

Jim [y16) - ye(t)] = 0. (+.1)

Proof. Due to the piecewise coatinuity of y.gp’(t) and the smoothness
of the nonlinearities in (3.1}, the solution of the closed-loop adaptive
system exists. Let its maximum interval of existence be [0.f). On
this interval. the nonnegative function V), is nonincreasing because of
(3.40). Thus, z1.....2, th,....0,. and hence vy,...7,. .re bounded
on [0.t) by constants depending only on the initial conditions of the
adaptive system. Furthermore, from (3.6), we know that the same is
true of €.

The boundedness of all other signals on (0.t} is established as fol-
lows. Since z; and y, are bounded, it follows that y is bounded. This
implies that o(y) is bounded away from zero and, from (3.5), that
&o.- ... &, are bounded. From (3.3) we also see that

tnmpmss = [T (8] = A0) M eyu)] 0(y)u, 0<j<n-p,  (42)

where e, is the ith coordinate vector in IR". Then, we express (3.1) in
the differential equation form (D = d/dt)

n 14 n
Dry =% D™ [vo..(v) + Zo,saj..(y)] +Y bas D [o(y)u].

=1 =1
(4.3)
Since y is bounded and, by Assumption 2, the polynomial B(s) =
T, bnoys""* is Hurwitz, we conclude from (4.3) that H,(s)[o(y)u] is
bounded, where H,(s) denotes any exponentially stable transfer func-
tion of relative degree greater than or equal to i. By (4.2), this in turn
implies that Fyv,_,_,,0 < j € n - p, are bounded. where

1=p

Fovj; = (v, .y 0y041]. (4.4)

In particular, by (3.13), this implies that C, v is bounded. From (3.19)
we conclude that v,_, 3 is bounded. Hence, by (1.2), H,_\(s)o(y)u)
and thus F 1 v,_,,,0 € j < n—p, are bounded. This again implies
that v,_, 3 is bounded. Continuing in the same fashion, we use (3.23),
(3.34) and (4.2) to show that f,(s)(o(y)uj.p—2 > 1 > 1, are bounded,
which implies that v is bounded. Since o(y) is bounded away from zero,
we conclude from (3.37) that u is bounded. Furthermore, from (3.6)
we see that z is bounded.

We nave thius shown that all of "he <ignais in L vlosed-loon aeap e
svstem are bounded on :0,1” hy ennstants depending anis on Lot
vonditions. Hence, t; = x.

To prove the convergence of the tracking error "o zero, we note tnat
the boundedness of £. &;..... &,. v and u. together with - 3.3%:..3.40,
and (4.2), implies that both V, and l',, are bounded. and moreover,
that V), is integrable on {0. x ). Hence. V), — 0 ast — ~x. which proves

that z(,....5, - 0 ast — x. Since =y = y — y. this proves .. =

5 The Class of Nonlinear Systems

Most models of nonlinear systems are derived from physical prina-
ples and given in specific coordinates. As we shall see in the robotic-
arm example of Section 6. it may not alwavs be obvious whether or
not the nonlinear system at hand can be transformed into the output-
feedback canonical form to which our design procedure s applicable.
Therefore. in this section we derive a coordinate-free characterization
of this form using differential geometric conditions which are necessary
and sufficient for the existence {and also provide the guidelines for the
construction) of a diffeomorphism which transforms the nonlinear sys-
tem at hand into the output-feedback canonical form 3.1}.

In the full-state feedback case. it is natural to look for parameter-
independent diffeomorphisms, since one wants to be able to calculate
the new state variables from the measurements of the original ones.
On the other hand. when only the output is measured. the dependence
of the diffeomorphism on the unknown parameters is not importaat.
Therefore. we now give necessary and sufficient conditions for the sys-
tem

¢ figi) + glgir)u

y = h(iK),

where % is a vector of unknown parameters, to be globally trans-
formable into {3.1) via a possibly parameter-dependent diffeomor-
phism. The proof of the following theorem was given in [2].

(3.1)

Theorem 2 The system (5.1} can be transformed via a global diffeo-
morphism z = o((; x) into the output-feedback canonical form /3.1) if
and only if the following conditions are satisfied for all { € R” and
for the true value of the parameter vector x:

(1) rank {dh.d(L;h).....d (Lj;“h)} =n.

(it) [ad‘,r.ad'l”r] =0, 0<i<n-2.

n=-1 P
(fii) adfr = ) [v‘é‘n-.(y) + Zo;v‘ﬁ.n-.(y)} {-1)"adjr,

1=0 =1

v
where ¢; o\ (y) = / ¥ino(8)ds. 0<i<n~1.0<5<p.
[\

(iv) [g,ad',r] =0, 0<i<n=-2,

-9
(v)g = U(')Zb,(-—l)'ad}r, and
=0

(vi) the vector fields r,ad;r. .. .,ad?"r are complete,
where o 18 g srnooth nonlinear function and r 1s the vector field defined
by

3.2)

v _ ) 0. 1=0,...
L,L/h-{ L i=

6 Application: Single-Link Flexible Robot

As an example of a mechanical system to which our new design pro-
cedure is applicable, let us now consider a single-link robotic manipula-
tor whose rotary motion is controlled through an elastically coupled dc
motor. If the effect of elastic coupling is modeled as a linear torsional
spring, then the dynamic equations of the system are (cf.[1. p.231})

Jig + Fldl + K(ql - q—:) + mgdcosql =0

Jz%*-ﬁﬂz—_;(th—%) Ku o1

LDt + Ri + Rudz

u,




where ¢; and ¢; are the angular positions of the link and the mo-
tor shaft, 1 is the armature current and u is the armature voltage.
The inertias Jy. Ja. the viscous {riction constants Fj. F3, the elasuaty
constant K. the torque constant A\, the back-EMF constant A%, the
armature resistance R and inductance L, the link mass M, the posi-
tion of the link's center of gravity d. the transmission gear ratio .V and
the acceleration of gravity ¢ can all be unknown.

We now assume that only the link position ¢, is measured. Then. we
would like to see if the design procedure of Section 3 with n = p = 3.1is
applicable to this system. To this end. we first try the natural choice
of state variables J; = q1. <2 = 91 (3 = 2. ¢4 = 2. q3 = ¢. The
dynamic equations :6.1) become

f= 2

R mgd . Fi. K - W3

s.z = ’TCOSH-IQ—ZQH—T)

83 = s

. K (. 4\ F. K. 16.2)
= J—z.\—'(\l— T) -J—zs4+J—2ss

B R . I\—b - 1

s = —ng——i—uﬁ'zu

y = a-

Clearly. (6.2) is not in the output-feedback form (3.1). However. there
exists a different choice of coordinates which brings (6.1) into that
form. To show this, we derive the input-output description of {6.2).

Differentiating y twice, we obtain (; = Dy and
T N | _"'(__3)
Dy = 7, cosy 7; Dy T y- v ) (6.3)

which implies that

N ’
3 = -J'—_(D’y-o-iicosy-r-—Dyd—iy) (6.4)

K Jy I
. LV ( 3, mgd o, K )
G4 = DG = v D7y + 1 Dcosy+JlD y+J1Dy . (6.5)

Differentiating (6.5) and substituting (3 and ¢4 from {6.4) and (6.3),
we obtain

(s = ———Jl]z‘v [D‘y+(ﬂ+ﬁ) Day+<i K Fle)D

KK AR Lttt
mgd _, ( K m\')
+——J Décosy + ——J‘JgNz + -——th D
mgdF; ‘mgdK_
A Jl-lzt'V’ cosy (6.6)

Finally, differentiating (6.6) and substituting (4 and (s from (6.4) and
(6.3), we arrive at the input-output description of (6.1):

2y = g (2070 32) o[£ (7 3)
a5 s
- (7 (5 7w 5
70 0t T P

(B Bymi,, [R(_EK bk
(L+J; At Al VA A s R A

Ky KK ( K RF KbK¢) mgd
Thn PV \wt T T ) ey
R mgdK

_I—.’th2 cosy.

From (6.7), it is clear that there exists a choice of variables which
brings (6.1) into the form (3.1):

iy = r;+60z

23 = r3+6,ry4+63c081,

fy = r4+8,z) +08scoszy (6.8)
fy = Is+B9gry +0rco81,

I = 8gcosry + bou,

R K F;
g, = - (2.8 _2)
! <L+Jl A
P __[E(Fl.[‘-z ﬁé_‘ /ﬁ v F\F;Jl
P IT\T J«)' L7\ v T
4 = —#1
Ny
[R(I\' K ‘Flfz) K F-A [\'bF_I\(]
04=—— —+—_‘--A————— - — - —
L \J] JgA\' J1J2 J].lz.\' 4/1./3 L lll;
9. = <R Fz>mgd
s = ~{—+ =] ——
L 5L/ 5 o
4 = -[_@( 1279 Fgl\\_/_ﬁ[\;[\]
5= L\J1J;N? J]J:/ L JiJ;
9 = _<£-@ "b")TL“
T NeTTL T
R mgdk
93 = —— -
LT JN?
KK
bg = —— >0.
A A

5.0
Hence, the design procedure of Sectinn 3 is applicable to % % and
vields an adaptive controller that act. -es bounded asymptotic posi-
tion tracking from all initial conditions and for all positive values of
the constants A, Ky, Ky.J1.J2, R. L. [t is a tedious but straightfor-
ward task to verify that (6.2) satisfies the conditions of Theorem 2
and that the map from the physical coordinates of (6.2) to those of
(6.3) is parameter-dependent.

7 Concluding Remarks

The results of this paper have advanced our ability to control nonlin-
ear systems with unknown parameters using only output. rather than
full-state. measurement. They have also demonstrated that the design
tools of Section 2 are not just “tricks of the trade.” but can be used
in a systematic fashion. In fact, these tools were recently used in 2!
to produce new design procedures for the more general case of partial-
state measurement, thus generalizing the results of this paper. Finallv,
it is worth noting that the new design procedure can be modified in
several ways to decrease the dynamic order of the resulting adaptive
controller {2, Chapter 5].
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