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Abstract

The main goal of this research is to develop a unified geometric-asymptotic-
adaptive methodology for feedback design of nonlinear control systems. Such a

methodology is needed because the existing differential geometric results are

restrictive and often violated by small modeling errors. Effects of these errors can be

analyzed asymptotically by singular perturbation methods, which, however, are still

lacking a clear geometric interpretation. Neither geometric, nor perturbational
problem formulations can cope with large parametric uncertainty, for which an
adaptive approach seems suitable. Conversely, both geometric and asymptotic

techniques can become constructive steps in the design of an adaptive scheme and

in the analysis of its robustness. In our research these three heretofore separate

techniques are to be merged into a methodology which eliminates their individual
shortcomings.

During the first two years of the proposed research, major advances have been
made in our study of geometric-asymptotic properties of nonlinear dynamic

systems with parametric uncertainties and in the development of a systematic
design methodology for adaptive nonlinear control.

First, we have demonstrated that the phenomenon of controller and/or

observer peaking is of fundamental importance for nonlinear feedback design, and
that interference of peaking with uncertain nonlinearities can result in a drastic

decrease of the stability region. Geometric-asymptotic conditions under which this

type of interference can be avoided are being developed.
Second, we have shown that adaptive control methods can reduce the effects of

parametric uncertainties without introducing high-gain loops, thus avoiding the

danger of peaking. Our adaptive results are for "pure-feedback" systems with
known nonlinearities. We have solved the adaptive tracking problem with full-

state feedback. Our solution is in the form of a systematic recursive procedure called
"backstepping"

Third, we have formulated, and partially solved a class of nonlinear output

feedback problems by developing a Design Toolkit applicable to a wide range of o
systems. Among the tools developed so far is our nonlinear damping lemma, 0

which allows us to compensate for the effects of the estimation error in observer

and/or parameter estimators. _v abt t odes
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1. Introduction

The main goal of this research is to develop a unified geometric-asymptotic-

adaptive design methodology for nonlinear control systems.

The rigorous differential geometric results suffer from restrictive necessary and

sufficient conditions which are often violated by small modeling errors. Effects of
these errors can be analyzed asymptotically by singular perturbation methods,
which, however, are still lacking a clear geometric interpretation. Neither

geometric, nor perturbational problem formulations can cope with large parametric

uncertainty, for which an adaptive approach seems suitable. Conversely, both
geometric and asymptotic techniques are constructive steps in the development of
an adaptive scheme and in the analysis of its robustness. These three parallel, but

heretofore separate, research directions are now to be merged in order to

compensate for their individual shortcomings.
During the two years of the proposed research, five major advances have been

made in our study of geometric-asymptotic properties of nonlinear dynamic

systems with parametric uncertainties, in the state-feedback adaptive nonlinear

control and in the development of a design toolkit for output feedback control.

We report on these three sets of research accomplishments in the following

three sections of the report. Section 2 briefly describes our results on perturbed zero

dynamics and peaking. In Sections 3 and 4 we outline our new procedure for
adaptive nonlinear control design. Section 5 reports on other Principal

Investigator's activities. Full details of the reported results can be found in our

publications listed at the end of the report.

2. Perturbed Zero Dynamics and Peaking
[J1, J3, J6, J7]

Here we summarize our results on approximate feedback !inearization and

peaking. Feedback linearization designs were expected to preserve stability under

small regular perturbations. However, our results on perturbed zero dynamics

show that in many situations this is not the case. A robustness requirement for

every design is to guarantee a desired region of stability. This requirement often

contradicts other design specifications, such as disturbance attenuation or speed of

response. As the feedback gain is increased to meet these specifications, the stability
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region may become intolerably small. We have shown that this is due to an

interference of controller peaking and unmodeled nonlinearities.

To develop more robust approximate linearization techniques, we have

investigated systems in which exact techniques fail. As a benchmark physical

example we have analyzed a system in which a small centrifugal term renders the

exact linearization impossible. Modifying or outright neglecting this term would

result in a simplified system to which the exact technique is applicable.

A deeper insight into the effects of such regular perturbations has been gained

by our analysis which shows that the zero dynamics of regularly perturbed systems

may be, and often are, singularly-perturbed. A rather far reaching conclusion is that

the exact zero dynamics are insufficient for a robust nonlinear design and that, in

fact, a perturbed approximate design which avoids high-gain, may be more robust.

Another frequent appearance of high gain is by design: to make the linear part

of the system faster with the expectation that a sufficiently fast exponentially

decaying disturbance will be of negligible effect on the zero-dynamics, that is on the

remaining nonlinear part of the system. However, this expectation is, in general,

false, because of the peaking phenomenon. To analyze the destabilizing effects of

peaking, we have addressed the problem of global stabilization for a class of cascade

systems. In this problem, the first part of the cascade is a linear controllable system

and the second part is a nonlinear system receiving the inputs from the states of the

first part.

In linear systems, a peaking phenomenon occurs when high-gain feedback is

used to produce eigenvalues with very negative real parts. Then some states peak to

very large values, before they rapidly decay to zero. Such peaking states act as

destabilizing inputs to the nonlinear part and may even cause some of its states to

escape to infinity in finite time, as illustrated by simple examples.

We have given precise structural conditions for peaking and proceeded to

show that the destabilizing effects of peaking can be reduced if the nonlinearities

have sufficiently slow growth. Based on our detailed analysis of the peaking

phenomenon we have examined the tradeoffs between linear peaking and

nonlinear growth conditions. To provide for realistic trade-offs between

performance and stability, we have introduced several new concepts (nonlinear

overshoot function, semiglobal stability) and given a method for computing

robustness bounds.
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3. Adaptive State-Feedback Control of Nonlinear
Systems
[J2,4, C3, C5, C6, C81

Until a few years ago, adaptive linear and geometric nonlinear methods
belonged to two separate areas of control theory. They were helpful in the design of

controllers for plants containing either unknown parameters or known
nonlinearities, but not both. In the last few years the problem of adaptive nonlinear
control was formulated to deal with the control of plants containing both unknown
parameters and known nonlinearities. A realistic plan of attack for this challenging
new problem has led us through a series of simpler problems, each formulated
under certain structural assumptions, much as the assumption the unknown
parameters either appear, or can be made to appear, linearly. For example, if the

plant model contains not only 01 and 02, but also ea8 2, it is to be
"overparametrized" by introducing 3= = ee'02 as an additional parameter.

While we have kept the linear parametrization assumption, the applicability of
our adaptive designs to larger classes of nonlinear systems is achieved by removing
additional restrictive assumptions imposed on system structure, allowed types of
nonlinearities and signals available for measurement.

According to these restrictions, we have classified the existing adaptive
schemes into uncertainty-constrained schemes and nonlinearity-constrained

schemes.

Uncertainty-constrained schemes impose restrictions (matching conditions) on the
location of unknown parameters, but can handle all types of nonlinearities.

Nonlinearity-constrained schemes do not restrict the location of unknown
parameters. Instead, they impose restrictions on the nonlinearities of the original
system, as well as on those appearing in the transformed error system.

Our major result, most favorably received by the research community, is that

the limitations on nonlinearities can be removed for the so-called pure-feedback
systems, they are the broadest class of nonlinear systems for which adaptive
controllers can be systematically designed without imposing any growth constraints
on system nonlinearities.
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The geometric characterization of pure feedback systems identifies the level of
uncertainty and nonlinear complexity as structural obstacles to adaptive feedback
linearization. For an unknown parameter, the level of uncertainty is its "distance,"
in terms of the number of integrators, from the control input. The larger this
distance is, the smaller is the number of state variables on which the nonlinearity
multiplying this parameter is allowed to depend (nonlinear complexity).

Our new adaptive scheme for pure-feedback systems is designed by a systematic
recursive procedure called backstepping. This procedure interlaces, at each step, the
change of coordinates required for feedback linearization, and the construction of
parameter update laws required for adaptation.

One of the most important stability and robustness properties of every adaptive
system is the size of its region of attraction, relative to the size of the region that
would have been achieved if all the parameters were known. When with the
known parameters the stability and tracking properties are global, but the same
properties of the adaptive scheme are oniy local, then the loss of globality is due to
adaptation. To avoid this loss, some adaptive schemes require that the
nonlinearities and some of their derivatives satisfy a linear growth condition which
severely limits the applicability of these schemes. The class of systems for which our
new adaptive scheme guarantees global regulation and tracking is much wider.

The region of attraction for the new adaptive scheme is global if the feedback
linearization is global. A subclass of pure-feedback systems for which this global
property is easy to establish are strict-feedback systems. For these systems the new
adaptive scheme achieves both global regulation and global tracking of smooth
bounded reference inputs. In contrast to the earlier schemes, these global results are
obtained without any growth constraints on system nonlinearities.

4. Output Feedback Nonlinear Control
[J5, JS, Cl, C4, C7, C9, C0]

By far the most difficult problems in adaptive nonlinear control are those with
incomplete state measurement.

In the linear case, the adaptive output-feedback designs follow either a direct
model-reference path or an indirect path via adaptive observers. Current research
on adaptive observers for nonlinear systems indicates that the indirect path may
become promising for adaptive nonlinear control. However, the major stumbling
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block along this path continues to be its linear-like proof of stability which imposes

restrictive conic conditions on the nonlinearities. Under such linear growth
constraints the actual nonlinear problem is, in fact, not addressed. Our first two

results on output feedback adaptive nonlinear control, have made similar linear
growth constraints and can be subjected to the same type of criticism.

In our current research, we aim to formulate and solve truly nonlinear

output-feedback adaptive problems. To this end, we have first addressed a class of
problems for which an exponentially convergent observer is known to exist. We

have shown that, in general, a "certainty equivalence" control, which employs the

state estimates as if they were exact states, is not stabilizing and may even lead to

explosive instabilities. The reason for this is an observer-induced peaking
phenomenon. We have developed a "Design Toolkit" to counteract the effects of

peaking and achieve stabilization. Thanks to this result, a systematic output

feedback design is now possible for a much larger class of nonlinear systems than

before. In our current research we are extending these breakthroughs and preparing
for their applications.

5. Principal Investigator's Activities

Petar V. Kokotovic was the co-organizer (with Alan J. Laub) of an NSF-NASA
workshop on Nonlinear Control, April 5-7, 1990, at Cliff House, UCSB. Many of the

topics covered by this research grant were discussed at the workshop.
Another major event organized by P. Kokotovic, in his capacity as Grainger

Professor at the University of Illinois, was the series of fifteen Grainger Lectures on

"Foundations of Adaptive Control," September 28-October 1, 1990. A volume (more
than 500 pages) of extended texts of these lectures has been published by Springer in

1991.
At the World Congress of IFAC in August 1990, P. Kokotovic received the

IFAC's highest award-Quazza Medal-that has been given triennially since 1981.
He was chosen to deliver the Bode Prize lecture at the 1991 IEEE Conference on

Decision and Control.
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Systematic Design of Adaptive Controllers for
Feedback Linearizable Systems

I. Kanellakopoulos, Student Member, IEEE, P. V. Kokotovic, Fellow, IEEE,
and A. S. Morse, Fellow, IEEE

Abstract-A systematic procedure is developed for the design The new adaptive control scheme developed in this paper
of new adaptive regulation and tracking schemes for a class of can be classified as the least restrictive uncertainty-con-
feedback linearizable nonlinear systems. The coordinate-free strained scheme available for feedback linearizable systems.
geometric conditions, which characterize this class of systems,
do not constrain the growth of the nonlinearities. Instead, they It significantly extends the class of nonlinear systems for
require that the nonlinear system be transformable Into the which adaptive controllers can be systematically designed.
so-called "parametric-pure-feedback form." When this form is Among the advantages of the new scheme are its concep-
"strict." the proposed scheme guarantees global regulation and tual clarity and wide applicability. Its stability proof, base .'
tracking properties, and substantially enlarges the class of non- on a straightforward Lyapunov argument, is particularly
linear systems with unknown parameters for which global stabi- simple. The coordinate-free geometric conditions, character-
lization can be achieved. The main results of this paper use
simple analytical tools, familiar to most control engineers. izing the class of systems to which the new scheme is

applicable, do not constrain the growth of the nonlinearities.
Instead, they require that the nonlinear system be trans-

1. INTRODUCTION formable into the so-called parametric-pure-feedbackform.

M OST of the research activity on adaptive control of Furthermore, in the case of systems transformable into the

nonlinear systems [1]-[151 is still focused on the more restrictive parametric-strict-feedback form, the new

full-state feedback case [11-[131, although output-feedback adaptive scheme guarantees global regulation and tracking

results are beginning to appear 1141, 1151. The full-state Properties,
feedback case continues to be a challenge because of the The presentation is organized as follows: First, we address

severe restrictions of the two currently available types of the regulation problem. In Section 11 we characterize the

schemes: the uncertainty-constrained schemes [l1-[4), [101, class of single-input nonlinear systems to which the new

[III assume restrictive matching conditions, and the non- scheme is applicable. The design procedure is presented in

linearity-constrained schemes [51-[91, [121 impose restric- Section III, and the simple proof of stability is given in

tions on the type of nonlinearities. Section IV. In Section V we give the conditions under which

The systems to which uncertainty-constrained schemes the stability of the closed-loop system is global. Then, in

can be applied may contain all types of smooth nonlinearities Section VI, we use the design procedure to solve the tracking

and are fully characterized by coordinate-free geometric con- problem for a class of input-output linearizable systems with

ditions 121, (31, (111, which, unfortunately, are quite restric- exponentially stable zero dynamics. In Section VU we illus-

tive. On the other hand, the applicability of nonlinearity- trate this procedure on some "benchmark" examples, and

constrained schemes is restricted by coordinate-dependent discuss its properties in comparison to previous results. Fi-

growth conditions on the nonlinearities, which may exclude nally, some concluding remarks are given in Section VIII.

even certain linear systems [13]. Less restrictive The reader, unfamiliar with differential geometric results for

coordinate-free growth conditions, written in terms of a nonlinear systems can follow the presentation starting with
"control Lyapunov function," are used in the schemes of Section III and then omitting Propositions 5.3 and 6.3.

161-181. Unfortunately, the existence of such a Lyapunov II. THE CLASS OF NONLINEAR SYSTEMS
function cannot be aserned a priori. fa . The adaptive regulation problem will first be solved for

Manuscript received September 13. 1990; revised May 14. 1991. Paper single-input feedback linearizable systems that are linear in
recouended by Asaor.ate Editor. 1. W. GOizzle. The work of 1. Kanel- the unknown parameters:
lakopoulas and P. V. Kokotovic was supponed in part by the National
Science Foundation under Grant ECS-97-15911I and in part by the Air Force ,.1

Ofce of Scientific Research under Grant AFOSR 9-0011. The workof f + O9f() +
A. S. Morse was supported by the National Science Foundation under Grant fo)+ 90(r) +
ECS-U-05611 and EDS-90-12551. I I

I. Ksnelskopoulos is wiih the Coordinated Science Laboratory, Univer-
sity of Illinois. Urban. IL 61301. (2.1)

P. V. Kokotovic is with the Department of Electrical and Computer
Engineering. University of California. Santa Barbara. CA 93106. where r e 1W is the state, u e A is the input. 9 =

A. S. Morse is with the Depement of Electrical Engineering, Yale [81 ",J r is the vector of unknown constant parameters,
University. New Haven. Cr 06520-1968.

IEEE Log Number 9103022. and fi, gi, 0 < i < p, are smooth vector fields in a neigh-
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borhood of the origin =0 with fj(O)=0, O ip, a a }go(O) * 0. Y' = span , ff i , i S n - I

The design of the adaptive scheme assumes that, using a

parameter-independent diffeomorphism x = 4(r), the sys- (2.11)

tern (2.1) can be transformed into the parametric-pure- where a/ax,,", a/ax, are the coordinate vector fields
feedback form: associated with the x-coordinates. Because of (2.11), the

*i = x 2 + OTY(X 1 , X2 ) parametric-pure-feedback condition (2.5), expressed in the

x2 = x 3 + 0T. 2(XI I X2 X 3) x-coordinates, states that

gi e span

. + = x,+ OT T I._ ,(x ,,. X ) a
,L 3 j~sn,t .fyo(x) +GT0y,(x) + t[0o(x) +0'0(x)] u (2.2) 1x-. f Iespan I ax. )xj, 3 n

with
ls is<p. (2.12)7 oCO) = o .T,( ) = . .= v (0) = 0, 0 (O) * 0. p

(2.3) But (2.12) can be equivalently rewritten as

a
Nc ary and sufficient conditions for the existence of such gi = 3,(x) a.-,
a d;.aeomorphism are given in the following proposition.

Proposition 2.1: A diffeomorphism x = 0(r), with 0(0) a a
-0, transforming (2.1) into (2.2), exists in a neighborhood fA = 7, 1 (x,, x 2 )- + Ty2 (x, x2, x 3) - +
B, C U of the origin if and only if the following conditions ax, ax 2

are satisfied in U. a a
i) Feedback Linearization Condition: The distributions + -.i (1X1,''', x")- + -. ( x.'", x) ax,

ax, Ix
6ffspan{go,adfog o ,'-.,ad'0 go}, 0<_i<__n- 1 Isisp. (2.13)

(2.4) Furthermore, since 0(0) = 0 and f1 (0) = 0, 1 S i s p, we

are involutive and of constant rank i + 1. conclude from (2.13) that
ii) Parametric-Pure-Feedback Condition: 7 (0) = ... = y,,(O) = 0. (2.14)

gie 0, Combining (2.9), (2.10). (2.13), and (2.14), we see that in
[X,f,]e 5j+'.  VXe " j, 0 r n - 3, the x-coordinates the system (2.1) becomes (2.2).

Necessity: If there exists a diffeomorphism x = 0(r) that

I S i p. (2.5) transforms (2. 1) into (2.2), one can directly verify that the

Proof. coordinate-free conditions i) and ii) are satisfied for the

Sufficiency: As proved in 1161, condition i) is sufficient system (2.2), and hence for the system (2. 1). £1
Remark 2.2: A special case of the parametric-pure-feed-

for the existence of a diffeomorphism x = €(') with €(0) = back condition (2.5) is the "extended-matching" condition0 which transforms the system

= fo( ) + go( )u, fo(0) =0, go(0) 0 (2.6) ge SO, fie 2', 1 s i 5 p (2.15)

into the system introduced in [21, [31 and formulated in [I] as a "strong
linearizability" condition. This is clear from the proof of

ti= x,+, i i:5 n - I Proposition 2.1: if (2.5) is replaced by (2.15), then (2.13)
still holds, but with -y, - 0," .., ,_ 2 = 0. Then, the system

= yo(X) + t3o(x)U (2.7) (2.1) is expressed in the x-coordinates as
with *1t = x

=o(O) 0 0, 0(O) * 0. (2.8) *I = X2

Hence, in the coordinates of (2.7) we have

a a a I
fo = x2 - + . +x- + yo(x) (2.9)

ax, x,_, a x,-, = xax + BTv_,(x,.... x.)

g 3W a ( ) =  o(X) + () + 0 0(x) + TO0 (X)]u. (2.16)

ax= ,(X)- (2.10)
ax C
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Remark 2.3: The expressions given in (2.4) and (2.5) for "control law"
the feedback linearization and parametric-pure-feedback con-
ditions are convenient for the proof of Proposition 2.1, but X2- 9T(XI x 2 ) (3.4)

they are not minimal. As shown in [17], [181, the equivalent would stabilize and regulate the system (3.3). As 0 is un-
minimal form of (2.4) is known, this "control law" is modified to its "certainty-

r"-2 is involutive and I"- has constant rank n. equivalence" form

(2.17) X2= -cz - I,3,(x,, x 2 ) (3.5)

The minimal form of (2.5) is where 0, is an estimate of 0. Then, (3.5) together with the
update law

[ad 4 go, f ] e j+ ', O j s n - 3 , 1 : iS p . 0, =. u3 
.6a

(2.18) = Z17 1(X,, X2) (3.6)
would render the closed-loop system stable and would achieve

The equivalence of (2.5) and (2.18) follows from the involu- the regulation of zi. However, x2 is not the control. There-
tivity of I- C--0 fore, define the new state Z2 as the difference between the

Remark 2.4: The term "parametric-pure-feedback" indi- actual x 2 and its desired expression (3.5):
cates that the nonlinearities multiplying unknown parameters
are allowed to depend only on state variables that are "fed Z2 = cz + X2 + 0I,(x,, x 2 ). (3.7)
back" when the system is written in the x-coordinates. This To complete Step 1, substitute (3.7) into (3.3)
term should not be confused with the term "pure-feedback
systems" used in [191 to denote the class of feedback lin- tz -ClZ I + Z2 + (8 _ 01)TY(XI

, X2)
earizable systems, nor with the "pure-feedback systems" for
which the nonlinearity-constrained scheme of [5] was devel- -cIZ, + z Z + (9 - 0))TWI(z , 21,01) (3.8)
oped. 0

and rewrite the update law (3.6) for the parameter estimate of
II. ADAPTIVE SCHEME DESIGN 0, in the form

Since the diffeomorphism x = 0(r') does not depend on
the unknown parameter vector 0, Proposition 2.1 gives an a 0 = zw,(z,, Z2,0,). (3.9)
priori verifiable characterization of the class of nonlinear
systems to which the new adaptive scheme is applicable. In addition to the "error system" (3.8) and the update law
Assuming that the transformation of (2.1) into (2.2) has been (3.9), Step I has introduced the new state variable z2 , which
performed, the new adaptive scheme is designed for the is to be regulated in Step 2.
parametric-pure-feedback system Step 2: Using the definitions for z,, Z2 , and 0,, write t2

as.k i = Xi+ I +" OT3'i(XI,1, Xi+l1), iS i :5 n - I a

-k.= 'o (X) + oTG%.(x) + [ilo(X) + oTO(x)]U (3.1) = C,[cIzI + Z2 + (9- 0)TW(Z Z2.)]
+ x 3 + OTY 2 (X, X2, X3)

with 
+ z,w,(z,, Z2. 1 ,)T ,(X,. X2)^to0 ( 0 ) 0 , 3" , ( 0 ) 1... 3' ( 0 ) = 0 , 0 0( o ) * 0 . -I'Y ( X 3 + T 7 2

(3.2) + -9x+ T) + +0T2)'

Recall that 'o, 0, and the components of 3 and -,,1 Si 1

n, are smooth nonlinear functions in B, a neighborhood of A I + 0T a"Y + 0T

the origin x -=0. iaX2n + 3 aX 2 2x 3)J
The following step-by-step procedure was inspired by an + 2(Z1 Z20) + OT 02(Z, 210) (3.0)

idea contained in an early linear result of [201. However, the
intuition behind our nonlinear development becomes much In this system, we will think of x, as our control input. As in
clearer if the procedure is interpreted as the interlacing of the
steps of the "chain of integrators" method [211-[231 with Step ha we need an estimate for 0. Since thc te elaw for

the design of a new parameter estimator at each step. again. Therefree, let be a new estimate of 9 and define

Step 0: Define z, = x,, and denote by c,, c, .. , c" The new state of as

constant coefficients to be chosen later. the new state Z3 as

S t e p : S t a r t i n g w i th + i a Z , + I

tI =x 2 +9T2 (X,,X 2 ) (3.3) 3 'c z+ T+.2l[x 3 +0 '.y2(x,,x2 ,x 3)]

and following the "chain of integrators" method, we see
that, if x2 were the control input and 9 were known, the + 0 2(z,, z2 ,0,) + 0'z,, 22,0,). (3.11)
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Substitute (3.11) into (3.10) to obtain be a new estimate of 9 and choose the control u as

t2 -CZ 2  + )(x, 0,Z) = _)[-cn z - - d, , (3.19)

+a_ 1 2) where

+ I )X Y2(x I X2 1X3)](x0,.i)) + oi* danT
C2 Z2 + Z3 + 0-l 2 (ZI Z2 1 Z3 ,1)1,1)2)-

(3.12) "[0(x) + 0T(x)]. (3.20)

Then, let the update law for the new estimate 02 be Substitute (3.19) into (3.18) to obtain

2 = Z2 W2 (Z), Z2, Z3 ,0 1 ,0 2 ). (3.13) Z., = -CZ, + (0 - 0 .)T1 (0+ + Ta )-Y
Step i (2 5 i : n - I): Using the definitions for a x,2

Z.,z, and ,,. . -, i_ , express the derivative of z as a-,, 1)

I + ,+ 09T ax, I 13x" I
x=-C, + Zn+(- )Tw(z.o ) (3.21)[X,+, + 0T,(x,,.* •,x,+,)l

+ ¢,(Z ,'", Zi, 0l," 01_ ) where (3.19) is used in the definition of w,. Finally, let the
update law for the estimate ,, be

+ oTo,(Zi,',,,,,'-', 0,,) (3.14)

with p, 01 appropriately defined smooth functions. Let 0, be = zw,( z, "., 0) (3.22)
a new estimate of 0 and define the new state z, +, Feasibility of this design procedure and the stability of the

A~+ 1Th . ( O resulting closed-loop adaptive system are analyzed in the next
Zi+,=c- '+ + I x, -- )x'  section.

+ + 7y(xi..., x,+,)] IV. FEASIBILITY AND STAoiLITY

The above design procedure has introduced a control law" i(Zl", Zi, 10,", loi- ) defined by (3.19)-(3.20) and a set of new coordinates
191+ C o I , " ' ' , Zi, 0,,'', l,_). (3.15) z 1,-'', z. defined by (3.15). In order to ensure that the

Substitute (3.t5) into (3.14)to obtain procedure is feasible, we construct in Proposition 4.1 an
estimate of .fC ,'(' + of the feasibility region such that

= -cizi + Z4I + (0 - 0 )T for all (x, 0,,..., 1,)e " the denominator in (3.19) is
I nonzero and the coordinate change (3.15) is one-to-one, onto,

+ Ta 7f ( a _, continuous, and has a continuous inverse.
L \1 + + x 2 . + o ax Proposition 4.1: Suppose the parametric-pure-feedback

form (3.1) of the system (2.1) exists in B, and let Bp C il-cz + Zi+1 + (9- 0 )T be an open set such that 0eB, and

w ( Z e -*" *. , Z + , ,I , , '"9 " . 0 ) . ( 3 .1 6 ) T , i ( X )

Then, let the update law for t~ be I I+ ax+ > 0,

i =zW(Z 1,'".,z + ,O, '",Oj). (3.17) vxeBB,, vOeB,, I :s is n - 1 (4.1)
Step n: Using the definitions for z 1,", z,, and O),

• " , express the derivative of z,, as 1 j°(X) + 0.,6(x)1> 0, wx6B,,,e8,. (4.2)

1  h.+ ' ( Then, the set X= B, x B' is a subset of the region in
,= I ... i ay._ I which the design procedure of Section III is feasible.ao2  .. I a IProof: Obvious, since (4. 1) and (4.2) guarantee that in

[0o(X) + eT#(x)Ju B, x B," the denominator in (3.19) is nonzero and (3.15) is
uniquely solvable for x,. 0]+, , + T,,( Z, O,""", -) Remark 4.2: Ingeneral, the feasibility region is notglobal.

(3.18) However, this is not due to the adaptive scheme because even
when the parameters 0 are known, the feedback linearization

with p,. , appropriately defined smooth functions. Let t,, of the system (3. 1) can only be guaranteed for I e B# C 1 P,
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an open set such that Remark 4.3: It can be expected that the above estimate is
a%(x)[ not tight because the choice of the unity gains in the update

I + T 1 > 0, laws was made for simplicity. With some a priori knowl-
axi+11 edge about the shape of Y. different adaptation gains can be

Vxe B, VOeB9, I s i s n - 1 (4.3) foundsothat Q ismaximizedbyabetterfitofF. 0
Next, from the invariance theorem of LaSalle, we con-

[t30(x) + OTO(x)I >0, VxeBx, VOeB. (4.4) clude that for all initial conditions (z, ),,...,0,,),. 0 e(), the
0 adaptive system (4.5) has the following regulation properties:

In the feasibility region, the adaptive system resulting from lim z(t) = 0, lim i(t) = 0, lim i),(t) = 0,
the design procedure can be expressed in the z-coordinates as

= - cz,, + z2 + (6 - o0)Tw(z,. z2, 0,) i <n. (4.11)
Finally, to establish that the original coordinates " are regu-
lated to zero, we note that (4. 1) guarantees, first, that the

t,_= -C I Zn I + Zn + (0 - ,,)T solution X2 =... = = 0 of the system of equations
w,_,(ZI,",* ,01,..., On) x +OT o(o, x2,.., x ,) = 0, s isn- I

i. = -cZ, + (0 - o)Tw(z 0,', t)) (4.12)

j = ZjWi, I n. (4.5) is unique in B x B,, and, second, that x,,'--, x, can be
expressed as smooth functions of z. O1,'" ", 0 using (3.15).

A nice property of this system is that its stability can be Combining these two facts with (4.11), we obtain
established using the quadratic Lyapunov function

I I lim x,(t) = 0, lir x(t) = 0, 1 Si sn. (4.13)
V .t = -z z + _ _ (0 _ )T(_ 0,). , ,-

2 2 j-1 Using an induction argument, it is now shown that x,(1) - 0
(4.6) as t-- (m, l 5 i s n.

The derivative of V(z, 01,', 0,,) along the solutions of For i 1, we have x,(f) - 0 as t

(4.5) is * For i =k, 2Sk Sn, we assume that x,(t) -.0 as
t -a, I s j 5 k - 1. Then, from (4.13) we have

V = -E [ lZ r (8 _- 1))T(Z ^ + sI' i)] "+ F I"i'M ii 'r- I(t) I {X k + OT 14-I(Xl" '' X - 1, xt)}
i- I i- I t* -

S -- -0 (4.14)
= iz 21  + ~2ZZ+.(4.7)
i- - I . 4. and from the uniqueness of solutions of (4.12) we conclude

that Xk(t) -- 0 as I - oc.At this point we can choose the coefficients c,., c, to Hence. x(t) -. 0 as I -. cc. Finally, since x = 0(Q) is a
guarantee that V is negative semidefinite. The choice c 2, diffeomorphism with 0(0) = 0. regulation is achieved in the
for all i = 1,'., n, yields original coordinates , namely

1 -z1 2. (4.8) lim (t) =0. (4.15)

This proves the uniform stability of the equilibrium I--M

The above facts prove the following result.
Z = 0, 01 = 0,", 0. = 0 (4.9) Theorem 4.4: Suppose that the system (2.1) satisfies

of the adaptive system (4.5). To give an estimate 0 of the Proposition 2.1 and that the design procedure of Section 11 is
region of attraction of this equilibrium, we note that a must applied to its parametric-pure-feedback form (3.1). Then. the
be a subset of our estimate X of the feasibility region. We equilibrium (4.9) of the resulting adaptive system (4.5) is
also note that, by definition, the point x = 0 is contained in uniformly stable and its region of attraction includes the set 11
BX, 0 e B#, and y (0) = ... = y,.(O) = 0. Combining these defined in (4.10). Furthermore, regulation of the state (t) is
facts with the definitions of Z,' , Zf, .,'". ", oM, it is achieved for all initial conditions in Q. 0
straightforward to show that the equilibrium (4.9) coincides
with the point x = 0, 0 = 9,.-., 0, = 0, and is therefore V. GLOBAL REGULATION
contained in ,f. Let 0(c) be the invariant set of (4.5) defined
by V < c, and let c* be the largest constant c such that There are strong theoretical and practical reasons for in-
0(c) C .4. Then, an estimate 0 of the region of attraction is vestigating whether the stability properties of an adaptive

system can be made global in the space of the states and
0 - 0(c*) = {(Z, 0,,.', 10,): V(Z, 1,", 10,) < C*), parameter estimates. Systems with a finite region of attraction

c*= arg sup {c). (4.10) may not possess a wide enough robustness margin for distur-
Q(C)C Y bances and unmodeled dynamics. Furthermore, it is usually
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j
hard to find nonconservative estimates of finite regions of 2.1. First, because of the assumptions that the diffeomor-
attraction. phism x = 0(r) is global and f3o(x) * 0 Vxe ', the dis-

Another aspect of the global stability issue is the compari- tributions I J, 0 :s j s- n - I are globally defined and can
son of the proposed adaptive controller to its deterministic be expressed in the x-coordinates as
counterpart, that is, the controller that would be used if the a
parameter vector 0 were known. Suppose that for all values I i = span - , 0 :5j sn - I.
of 0 there exists a deterministic controller which achieves ax," axjI
global stabilization and regulation of the system. If, with 0 (9.6)
unknown, the proposed adaptive controller does not achieve
the same global stability, this loss is clearly due to adapta- To prove sufficiency, note that if the parametric-pure-feed-
tion. back condition (2.5, of Proposition 2.1 is replaced by the

The stability result of Theorem 4.4 is not global. How- parametric-strict-feedoack condition (5.5), then (2.12) is re-
ever, as pointed out in Remark 4.2, this is not due to placed by
adaptation, because for parametric-pure-feedback systems g, - 0
global stability may not be achievable even with 0 known. In
Proposition 5.3, we define the class of "parametric-strict- 2 a l  I- a,
feedback" systems, for which a globally stabilizing con- ax fk IE span I a an

troller exists when 0 is known. We then prove that for this

class of systems our adaptive scheme guarantees global stabil- 1 5 i p. (5.7)

ity when 9 is unknown. Thus, the expression for fi in (2.13) becomes
In order to characterize the class of parametric-strict-

feedback systems, we use the following assumption about thea a
part of the system (2.1) that does not contain unknown A = T1.(x,)_X- + T'.'(xI' x 2 )- +

parameters.
Assumption 5.1: There exists a global diffeomorphism ++.. , x..,) a a

x - #(), with 0(0) = 0, transforming the system. i( ax,., , ,

f fo( ) + go()u (5.1) 1 si Sp. (5.8)

into the system The necessity is again straightforward. 0
The above proposition gives a geometric characterization

ii= Xi+ I, 1 : i S n - I of the class of systems for which the following global proper-

r.= Y (X) + 0(x) u (5.2) ties can be achieved.

Theorem 5.4: Suppose that the system (2.1) satisfies
Proposition 5.3 and that the design procedure of Section IU is

Yo(0) = 0, 30(X) * 0 VXER". (i.3) applied to its parametric-strict-feedback form (5.4). Then,

Remark 5.2: The local existence of such a diffeomor- the equilibrium

phism is equivalent to the feedback linearization condition z = 0, , = 0,'-' , 0, = 9
(2.4). At present there are no necessary and sufficient condi-
tions verifying the global validity of this assumption. Suffi- of the resulting adaptive system is globally uniformly stable.
cient conditions for Assumption 5.1 are given in [24], while Furthermore, regulation of the state '(t) is achieved:
necessary and sufficient conditions for the case where 0o(x) lim r(t) = 0 (5.9)
- const. can be found in [23], [26). 0 E-lo

Proposition 5.3: Under assumption 5. 1, the system (2.1) for all initial conditions in 0 - LW"' +
is globally diffeomorphically equivalent through x = 0(r) to Proof: When the adaptive design procedure (3.3)-
the parametric-strict-feedback system (3.22) is applied to the system (5.4), then for all tO e .,

I 0 i 5 n, the change of coordinates (3.15) is one-to-one,
onto, continuous, and has a continuous inverse, and the

i. = 'o (x) + 9T*,,(x) + po(X)u (5.4) control (3.19) is well-defined since

if and only if the following condition holds globally. a- (0__x,--' x) 0 , (3(x) 0 , (0 X) * 0, vxe ".
Parametric-Strict-Feedback Condition: ax4.

g,a 0, (5.10)

[X, fi e YJ, VXe P, 0 <sj s n - 2, Hence, (4.1)-(4.2) are trivially satisfied on f = B , x B; =

1t5 p (5.5) R" "), and from (4. 10) we conclude that 0 = 0'" +'". El
Remark 5.5: The results of Sections I1-V can be ex-

with 20, 0 S j < n - I, as defined in (2.4). tended to multiinput systems. We do not present this exten-
Proof." The proof is very similar to that of Proposition sion here, but refer the reader to [27). El
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VI. GLOBAL TRACKING 9 - I is involutive and of constant rank p. (6.9)

Every regulation result in Sections II-V has its tracking The sufficiency of these conditions is a consequence of
counterpart. For brevity, we restrict our presentation to the Proposition 10 in 1281. The necessity can be easily estab-
tracking version of the global regulation result in Section V. lished by verifying that (6.7)-(6.9) hold in the coordinates of
The counterparts of nonglobal regulation results can be ob- (6.4).
tamied using the same Lyapunov function argument as in this Furthermore, as shown in [29, Corollary 5.7], (6.3) is
section to determine an invariant set in which asymptotic globally equivalent to (6.4) if and only if the following
tracking is guaranteed. conditions are satisfied for all r e (W:

Consider the nonlinear systemp Lso~fh = 0, 0 < i :s p - 2 (6.10)

AM + E Oifi( ) + go(r)u LoL%'h*0 (6.11)

y = h(C) (6.1) 9I' is involutive and of constant rank p. (6.12)

where r e " is the state, u e 2 is the input, y el is the the manifold
output, 9 = [, .. , 9 "T is the vector of unknown constant M = {[' ': h(') L10h(r) . h
parameters, h is a smooth function on LW' with h(0) = 0,
and the vector fields go, fO, 0 < i % p, are smooth on in" (6.13)
with (r) * 0 VteM, f1 (0) = 0, 0 s i - . We first for- is connected, and the vector fields go, ad. ad%- ljo
mulate the input-output counterpart of assumption 5.1. are complete where

Assumption 6.1: There exist n - p smooth functions
*i() p + I !r i s n, such that the change of coordinates o 1 Loh

LX rg h go' f =f L .Lf-Ingo. (6.14)=h(l')101 oI

X2 = Lfh(r )  0

X3 iL4foh(r) We are now ready to formulate the input-output counterpart
of Proposition 5.3.

Proposition 6.3: Under Assumption 6. 1, the system (6. 1)
is globally diffeomorphically equivalent to the parametric-
strict-feedback normal form

x =q("), p+ I sisrn (6.2)

is a global diffeomorphism x = O() transforming the sys- ( + XT,.. X) + po(X p
tem x, = "o(x) + 9T3(X) + go(X)u

fo() +go( )u = I 0 0 (y, X') + _ 9,4(y, x')
y = h(r) (6.3) i-I

into the special normal forin y = X, (6.15)

x- X2  if and only if the following condition holds globally.

Parametric-Strict-Feedback Condition:

X0_- X, [X,fi] e I J , VXe P, OsjSp-2,1s i sp

.t.- 3o(X) + ,%(x)u (6.16)
-" *o(y, x') with 9' , 0 s j :9 p - 1, as defined in (2.4).

y = X1 , (6.4) Proof. The proof follows closely that of Proposition
with 5.3. First, because of the assumptions that the diffeomor-

*,0(0) = L1%h(0) = 0, 4o(0, 0) = 0 (6.5) phism x = 0(t) defined in (6.2) is global and that 0 (x) * 0
0xEIOI *, the distributions IJ, 0 Sj S p - 1, are globally

0o(x) - L,0 L%'h( ) *0, vxe I~". (6.6) defined and can be expressed in the x-coordinates as

Remark 6.2: In order for (6.3) to be locally equivalent to f_ .. aS P
(6.4), it is necessary and sufficient that the following condi- span , , 0 jp- I.
tions hold in a neighborhood of the origin r = 0: ax_ ,

LoLfh = 0, 0 s i s p - 2 (6.7) (6.17)

LEGLI 1h(0) * 0 (6.8) The sufficiency follows from the fact that, by (6.16) and
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(6.17), Step I: Starting with

S span tj z,=x 2 +OT,, 1 (X, X')--, (6.22)

let 0, be an estimate of 0 and define the new state z2 as

2 Sj p, I s i s p. (6.18) z2 Cz1 + x 2 + OY,(x,, x')-.

Thus, the expression for f, in the x-coordinates is cl z + X2 + OT10 w(Z, X', Y,) Y- ,, C, 2 2.

a a (6.23)
, = .y,.(x,, x')- + 72.,(x,, x 2 , x')- +a8X2  Substitute (6.23) into (6.22) to obtain

= -cIz, + z2 + (0 - O)'rW(z., X% y,). (6.24)

Then, let the update law for the parameter estimate 0, be
+ 7.0(Xt .'"xr' X, ffi Z~w,(z~',"y,). (6.25)

+ t 4x(, I r. i -s p. (6.19) Step 2: Using the definitions for z,, z2. and 0,. write t,

The necessity is again straightforward. 0 tZ =C1[ -- cZ + Z2 + ( -- )TW(z, Xr, y,)]

Remark 6.4: To obtain the input-output counterpart of + X3 + Tv(x X2 , x')
Proposition 2.1, one just needs to replace the feedback
linearization condition (2.4) with conditions (6.7)-(6.9), and + zlw,(z,, x', Y,)rf(x,, x')
the parametric-pure-feedback condition (2.5) with

, ax, (xX+,XT

[X,fJ e OJ+t, VXe , 0 Sis p - 2, + a,(x,, x')
ax,

1 i p. (6.20) ( , ))[]• o(,,x') + E 9,'I,(x,, YB -:,

As in most tracking problems, we need an assumption
about the stability of the x'-subsystem of (6.15). X2i

Assumption 6.5: The x'-subsystem of (6.15) has the + OTw 2(z, z2,x,0,y,, 9 ,). (6.26)
bounded-input bounded-state (BIBS) property with respect to
y as its input. Let 02 be a new estimate of 9 and define the new state z3 as

It was shown in [9, Proposition 2.11 that the following
conditions are sufficient for Asumption 6.5 to be satisfied: Z3 fC 2 Z2 +X 3 +0 2 (z,, 2 ,x',O,y,,Y,,y1,)

i) the zero dynamics of (6.1) are globally exponentially + Tw 2 (z,, z 2 , x', 01, y,, .,), c2 > 2. (6.27)
stable, and

ii) the vector field - 0- o. I0*,I in (6.15) is glob- Substitute (6.27) into (6.26) to obtain
ally Lipschitz in x.0

These conditions m mn convenient for nonglobal re- z2 = -c 2 z 2 
+ Z3 + ( 0 2)W(Z, z 2 , x,01, Y,,,).

suits, where i) can be tued to estimate the region of attraction (6.28)
via a converse Lyapunov theorem. However, they are too Then, let the update law for the new estimate 2 be
restrictive for global results. For example, the system t' B,
-(x) 3 + y2 violates both i) and ii), but is easily seen to 2 = Z2W2 ( Z, Z2 , x', 0,, y,, 0,). (6.29)
satisfy Assumnption 6.5.

The control objective is to force the output y of the system Step i (2 s i o i): Using the definitions for
(6.1) to asymptotically track a known reference signal ZjW", Z' and 0 1,', 0 -,, express the derivative of z, as
y,(t), while keeping all the closed-loop signals bounded. i =f xi+ I + OA( z , x', 0,.-, 0_ 1,

Assumption 6.6: The reference signal y,(t) and its first p Y '(0)
derivatives are known and bounded. y," ,I I

To achieve the asymptotic tracking objective, the design + OTW ZI Zi, Xr, 01 ' ,
procedure presented in Section 11 is modified as follows:

Step 0: Define ,. ., Y' " (6.30)

Z =x - Y,. (6.21) Let 0, be a new estimate of 0 and define the new state z,,,
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as , = zw,(z,,... z, x', o,, ',_,. y'..., y',

Zi+I a ciZi + Xi+1 : i5 p

+ ij(z, , zx', , ,.., , y,..... Y" Y = Z, + ,. (6.38)
" oW,(Z,,.-.., z,, xr, ,,...,0,_1,. The stability and tracking properties of (6.38) will be estab-

lished using the quadratic function
y,,", y'- , ai 2. (6.31) V( ,",Z,0"'O)

Substitute (6.31) into (6.30) to obtain
±1 -c Z,+ + Z,= [ + (9 -_ - =i) j( 1o)l" (6.39)

ti = -izi + i+ I +2 j-

I wA(st,, sitx', O,,'". ,,y,,,y ,-'). (6.32) The derivative of V, along the solutions of (6.38) with

Then, let the update law for 0, be c, a 2, 1 s i s p, is

Oi - z^(z
1
'''

, zit x', O,*, O - y '' I. y '- ) "  t,= - [ciz+(9-o)T(z;w- ,)j + ztZi+,
(6.33) i--

0 p-I
Step p: Using the definitions for z,", zo and j c4 + _ z 1 ,
i,'",0,- express the derivative of z, a ia. s-i

o, , s - E z2 s o. (6.40)
i- I

Y,. ,y This proves that V, is bounded. Hence z,", z, and

+ 9Tw,(Z,,"'", Z., x, ,', , 0 ,10o are bounded, and , is bounded and integrable.
...., ,- . (6.34) The boundedness of z, and y, implies that y is bounded.

(634 Combining this with Assumption 6.5 proves that x' is

bounded. Therefore, the state vector of (6.38) is bounded.
This fact, combined with (6.31) and Assumption 6.6, implies

i()[ cz,- ,p, - 10,Tw] c, a 2. (6.35) the boundedness of x, r, and u. Thus, the derivatives
[' , "', .I, are bounded, which implies that V, is bounded.

Hence V, -, 0 as - co, which, combined with (6.40),
Substitute (6.35) into (6.34) to obtain proves that

= -cz, + (0 - O)TW,(Z1  _, Z, Xp, tim z,(1) 0, 1 S i p. (6.41)

,,..., ,i, Y,.... Y1,-1)). (6.36) In particular, this means that asymptotic tracking is achieved:

Finally, let the update law for the estimate 0, be lim z,(t) = lim [y(t) - y,(t)I - 0. (6.42)

O. = OZ,w,(,, z,, x', 0,.t,...,o, y,,.., y,). These results are summarized as follows.
(6.37) Theorem 6.7: Suppose that the system (6.1) satisfies

Proposition 6.3 and Assumption 6.5, and that the design

As was the case in d regulation result of Section V. the procedure (6.21)-(6.37) is applied to its parametric-strict-
assumptions of Propuaitiv. 6.3 guarantee that the design feedback normal form (6.15). Furthermore, suppose that the
procedure (6.2l)-(6.37) is globally feasible. The resulting reference signal y, satisfies Assumption 6.6. Then. all the
close-loop adaptive system is given by signals in the resulting closed-loop adaptive system (6.38) are

bounded and asymptotic tracking (6.42) is achieved for all
-,= -c CZ + Z + (9 - 0 ,)TW,( ,, x', y,) initial conditions in M1+.P. 0

Remark 6.8: Since in (6.15) we allowed y, i = 1."-. p
-I to depend on x', we had to restrict #,, i = 0,.... p

,- -C,_I,_ + Z, + (0 -0,_,) W._I not to depend on x2 .'-. x,. If f, also depended on
X2,.. I X, and Assumption 6.5 were modified to read "with

"#,'" -x"t 0"'" 0,- "  ' respect to xw... x, as its inputs," the boundedness of y
S-cz, + (0 _ 0TW would not guarantee the boundedness of x', and the argu-

to - co zoments after (6.40) would be invalid. However, if -y,, i
(,..., ,, X', ,. . , Y..., , y(is - )) I.' , q - 1 (I :S q :S p). were restricted not to depend on

x', then #j could be allowed to depend on X2 ,"', x, also.

' = 4 0(y. x') + 0*4,(y, x') In that case, the boundedness of z,,'", z, and Assumption
1-= 6.6 would guarantee the boundednesa of xl.'", x., and
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hence the boundedness of x'. The boundedness of t93 = 9 is a globally stable equilibrium of the adaptive sys-
Xq+,-.., x. would then follow from arguments similar to tern. Moreover, for any initial conditions x(0) e 21 ,

those after (6.40). This means that our design procedure can (1,(0) 102(0), 03(0)) E , the regulation of the state x(t) is
be easily modified to be applicable to systems of the form achieved
(6.1) which are globally diffeomorphically equivalent to the limx(t) = 0. (7.2)
following parametric-strict-feedback normal form: I--

= X 2 + 9T"yI(XI) The design procedure of Section III, applied to (7.1), is as
follows.

Step 0: Define z = x,.

_1= Xq + OT ,_i(XI, ' ' , Xq._,) Step 1: Let 0, be an estimate of 0 and define the new
state Z2 as

Z2 = 2z, + x2 + 10,Z. (7.3)

T  )Substitute (7.3) into (7.0) to obtain.t_ 0- x 0 + 0 y(x,, . . . ., x,, P-Ix') t 2 ,28 _0) 7 4
ic, = 7 0(X) + OTy(X) + 60(X)u = -2z, + Z2 + Z4( - 0,). (7.4)

p Then, let the update law for 10, be
" " 40 (X,,.", xq, x') + e *(x,. x. x') , = . (7.5)

i-I

y = x1. (6.43) Step 2: Using (7.3) and (7.5) write t 2 as

Using [29, Corollary 5.71, it is straightforward to show that i2 = 2(x 2 + Ox) + x3 + 10,2z,(x 2 + 9X4) + z'. (7.6)
there exists a parameter-independent global diffeomorphism Let 02 be a new estimate of 0, and define the new state
x = 4(r) transforming (6.1) into (6.43) if and only if in
addition to (6.10), (6.11). (6.13), and (6.14), the following Z3 = 2Z 2 + 2(x 2 + I2 x,)(l + O9z,) + I + x 3. (7.7)
conditions arm satisfied for all rE e R:Substitute (7.7) into (7.6) to obtain

V-I is involutive and of constant rank p - q + 1 (6.44) -2z,+Z3+2z(l +19,Z,)(6 1 2 ). (7.8)
[X, fil]e J ,  VXe P , 0O:j i.q -2, 1 S i 5p

(6.45) Then, let the update law for 0. be

d(LfLJ h)espan{dh,..,d(L.h)), 2 = 2z2 z 2(I + 0, z,). (7.9)

0 j s p - q - I, 1 s i s p. (6.46) Step 3: Using (7.3), (7.5), (7.7), and (7.8), write t3 as

i = 21-2z 2 + Z3 + 22(I + Oz,)( - 02) ]
DSuCUM AND EcAmPLES + 2[x 3 + 2x,192 (x 2 + 9I)

With the help of two examples, we now discuss some of +2zzI(i
the main featmes of the new adaptive scheme. The first +2 1 1 + 19,Z,)j(l + 19,Z,)

example illustrates Ihsqimkmtic nature of the design proce- + 2(X2 + 2,)[; + 0,(x 2 + I4)]
dure, while the seod om cmnpares the stability properties
of the new schem ldihm of the nonlinearity-constrained + 5z?(X2 + 84) + u. (7.10)
scheme of [91.

Example 7.1 (Regulation): We first consider a "be- Let 103 be a new estimate of 9, and define the control u as
nchmark" example of adaptive nonlinear regulation:

u = -2Z3 - 2[-2Z2 + Z3 + 24(1 + O9z,)(03 - 02)]
= -x 2 + x4 _2[x 3 + 2x,I12 (X2 + 03 x4)

'k2 X3

k3  U (7.1) +2X:22 ;(1 + 11,Z)]
(l + 0,z,) - 2(x 2 + o ,4)[4 + 1,(x2 + [ Z)]

where 9 is an unknown constant parameter. This system -( z )(X2 + I I.1)

violates both the geometric conditions of [11-[31 and the - 51(X2 + 1934)7
growth assumptions of [51, (6], [91, [121. In fact, the only
available global result for this example was obtained in [71. Substitute (7.11) into (7.10) to obtain

The system (7.1) is already in the form of (5.4) with Z(I xpO2

0o = I. Hence, this system satisfies the conditions of Theo- z 3  2 -2z3 + 141 + 19,,) + 4 1
rem 5.4, which guarantees that the point x - 0, 01 - 02 +209,(x 2 + t92 x') + 5z]( - 9 3). (7.12)
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Finally, let the parameter update law for 103 be Simulations of this system were performed with

43 = Z3[4 z2(l + tz,) +- 4xO X3,02 I
3 10 X2[)( +X0 M(S) = 2 + 5s 0 = 1, k, = -6, k2 = -5

+209,(x 2 +0 2 x )x +5 z '] . (7.13) (7.23)

The resulting adaptive system is
and all the initial conditions zero, except for x,(0), which

=t = -2z, + z2 + z4(o - 01) was varied between 0 and 0.45. The results of these simula-

t2 = -2Z2 + z3 + 2z42( + 0:Z,)(9 - 02) tions, shown in Fig. I, indicate that the response of the

closed-loop system is bounded for x(O) sufficiently small,
=: -2z3 +- [4z (l + 1 ) + 4x 92  that is, for x,(0) < 0.45. However, for x,(0) > 0.45, the

+2 1 (x 2 + Osx2)x2 + 5zI(O _ 03) response is unbounded. This behavior is consistent with the
proof of Theorem 3.3 in [91, which guarantees boundedness

01 = 4 for all initial conditions only under a global Lipschitz as-
2 = + tjZO ) sumption. In the above system, the presence of the term x,02 = 2 4(1 leads to the violation of this assumption, and, as the simula-

3 - Z3[4zf(l + Vjz,) + 4x O2  tions show, to unbounded response. Simulations with other
061 4schemes based on linear growth conditions [51, [121 show

+21&,(X 2 + 02 X'I )xf + 54] (7.14) that the behavior illustrated by Fig. I is typical.

Using the Lyapunov function The unbounded behavior in Fig. I is avoided by the new
scheme, which results in globally stable tracking. The design

V [2 + Z2 + _ 10)2 procedure in Section VII, applied to the system (7.16),
2- i + Z3 + (- , results in the control

+(8 - 102)' + (6 - 03)'] (7.15) U = -X3 - 3z 2 - 2(x 2 + 0 2 )(1 + 1 X')

it is straightforward to establish the global stability and -zx + 2,, +, (7.24)
regulation properties of (7.14). and the update laws

Example 7.2 (Tracking): Consider now the problem in
which the output y of the nonlinear system 0 = zx', 02 = 2 z 2 X2(1 + O z,) (7.25)

'I xX 2 + Ox 2  where

2 = U + X 3  
Z= = x1 - Y,

' 3  _X 3 + y Z2 = 2(x 1 - y,) + x 2 + O1x 2 -. y,. (7.26)

y = x1 (7.16) Theorem 6.7 establishes that uniform stability and asymptotic
tracking are achieved for all x,(0), x2 (0), x3(0), 0(0), 02(0).

is required to asymptotically track the reference signal Y, = This is illustrated by simulations in Fig. 2. 1
0.1 sin t.

For the sake of comparison, let us first solve this problem The above example illustrates an obvious advantage of the
using the scheme of 191. This scheme employs the control new scheme when applied to parametric-strict-feedback sys-
u = -x 3 + k,(x, - .p,) + k2 (x 2 +I- #1xt -2 tems: it guarantees global stability for all types of smooth

nonlinearities. For parametric-pure-feedback systems, when
+Jr-2,xtx2 - 2 2 x (7.17) the feedback linearization is not global, the new scheme

provides an estimate of the region of attraction. An advantage
where C,,'*, the etimue of 0,02, respectively, are ob- of the schemes in [11, [51-191, 1121 is that they provide local
tained from the update laws results without assuming the parametric-pure-feedback form.

However, estimates of the region of attraction are given only

"8e____ : e1 -2  . (7.18) in [1i, 161-[81. A quantitative comparison of the regions of
I +E2+ j + , +e2  attraction and robustness properties guaranteed by differentschemes is a topic of future research.

Using a relative-degree-two stable filter M(s), the variables VIII. CONcLus[Otus
el, I,. 2 in (7.18) are defined as

The results of this paper have advanced in several direc-
e, = y - y, + w - 'Itt - '2e2 (7.19) tions our ability to control nonlinear systems with unknown

XY21 ( constant parameters. The most significant progress has been
ti = M(s)[2x,x 2 + k2x 1 (7.20) made in solving the global adaptive regulation and tracking

t - M(s)[zx l (7.21) problems. The class of nonlinear systems for which these
Il problems can be solved systematically has been substantially

= M(s)[i,(2x,x 2 + k2 xI) + ' 2(2x')]. (7.22) enlarged. The parametric-strict-feedback condition precisely
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1 Introduction

The complexity of the nonlinear output-feedback problem challenges not only the re-

searcher's knowledge of nonlinear geometric techniques [4, 16], out also his/her ability to

employ, and often invent, a wide variety of other tools. This is particularly apparent in

several recent results which make use of intricate combinations of diverse concepts: special

classes of systems characterized by geometric conditions [8, 9, 151 or "Control Lyapunov

Functions" [17, 5], strict positive real properties of some part of the system [10, 12] and

filtered transformations to guarantee these properties [13, 15], means to deal with swapping

terms [9] or to avoid them altogether [15], etc. Proofs combining these tools may appear too

technical and discourage potential users.

A more systematic treatment, which supplements rigor with intuitive appeal, seems to

be needed, and we make a step in this direction. In Section 2 we assemble a set of four

simple tools for nonlinear feedback design, either with or without full-state measurement.

The first two of these tools, "nonlinear damping" and "integrator backstepping," were used

previously in adaptive and nonlinear control [3, 1, 22, 2, 10, 8, 14, 15, 5]. In Section 3

the tools of Section 2 are employed to give an alternative solution to an output-feedback

problem recently solved by Marino and Tomei [15]. The dynamic part of the controller

designed in Section 3 consists of only a nonlinear observer, while in [15] it also contains the

filters required for the filtered transformations.

2 The Design Toolkit

Throughout this section it is assumed that a feedback control u = a(x) is known, which.

when applied to the system

=f(x) + g(x)u, x ER' , (2.1)

guarantees global boundedness of x(t) and regulation of q(x) E R' , that is, rq(x(t)) --+ 0 as

t -, oc. These properties are ascertained by the inequality

- V(x) [f(.r) + g(x) a(x)] - VV((x)) < 0, Vx E R", (2.2)

Ox

where V(x) is positive definite and radially unbounded, and W(q) is positive definite. It is

further assumed that f, g, r, a. V and W are C2 on R'.
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Each of the four lemmas in this section employs V(x) and a(x) to design a feedback

control for a particular perturbed or augmented version of (2.1).

In the first lemma, the system (2.1) is perturbed by an unknown disturbance. As the

following example demonstrates, even an exponentially decaying disturbance may cause ex-

plosive forms of unbounded behavior if it multiplies a term with significant nonlinear growth

rate.

Example 1. Suppose that in the system

i = x 3 + u + x 2k e- , (2.3)

the term x 2ket, where k is an unknown constant, is considered as a perturbation. If, because

of the factor e', this perturbation is neglected and the control for the unperturbed system

u = -x - x3 is applied to the perturbed system (2.3), the resulting feedback system is

= -x + x 2ke - . (2.4)
1.

Since (2.4) is linear in -, its explicit solution is known:

2x(O) (2.5)
x(t) = (2 - kx(O))et + kx(O)e-t (

1 k(O) tflwttwhee (
The denominator of (2.5) is zero at t = I In kx(O) -. It follows that, whenever k(O) > 2,
x(t) escapes to infinity in finite time. r0

It is clear from this example that additional control action is needed to attenuate the

effects of the unknown disturbance. In the following lemma, a "nonlinear damping" term is

designed to fulfill this task for a class of unknown disturbances which are in the span of the

control.

Lemma NDM - (Nonlinear Damping-Matched). Consider the perturbed system

= f(z) + g(x) [u + p(x)Td(x, e)], (2.6)

where p(x), d(x, e) are continuous and d(x, 0) 0 0. Let the "disturbance generator"

S=q(x,c), q(x,0) =_ 0, C E Re, (2.7)

satisfy the inequality

3) -]d(z,e)1 2 (2.8)



for some positive definite radially unbounded function Q(-) and for all _r E IRt . x E IRS.

Then, the feedback control

U = Q(X) - ax = .,D.,(X) (2.9)

when applied to (2.6). guarantees global oundedness of x(t) and regulatiun of q(x).

Proof. Because of (2.2) and (2.8), the time derivative of VD.!(x, ) = V(r) + .( ) for (2.7)

and the perturbed system (2.6) with the feedback (2.9) is

DM(X,C) = [f + ga] -g I pld + -gT + q

< -w(i)- -- gK9  11P112 + gprd - IdI12

< -Iv(q)I- I3ld1 1 - d- -gp

< -w() - 3Ildl12, (2.10)

which proves global boundedness of x(t),e(t). Furthermore, LaSalle's invariance theo-

rem guarantees that x(t),e(t) converge to the largest invariant set of (2.6)-(2.7) on which

I'NDM(X, .r) = 0. This proves that the regulation of r(x) is achieved and that the disturbance

vanishes: d(x(t),e(t)) -- 0 as t - oo. El

The control a D.,(x) in (2.9) is designed by adding a term to the control a(x) for the

unperturbed system. The implementation of this nonlinear damping term does not require

that d(x, r), q(x, z) or 11(c) be known: it is sufficient that they satisfy (2.8).

The nonlinear damping (2.9) is a variant of a design by Barmish, Corless and Leitmann [1].

Its effectiveness as a tool for output-feedback design was suggested by Sontag [20, 21] and

demonstrated by Marino and Tomei [15]. A form of nonlinear damping is implicit in an early

adaptive control result by Feuer and Morse [3].

Example 1 (cont'd). Using p(x) = x2, d(x, c) = e, and the disturbance generator

-, Z(0) = k, the perturbed system (2.3) is rewritten in the form (2.6) as

i = X3 + U + X2E. (2.11)

With a(x) = -x - x3, V(X) = 1x2 and Q(e) = 1.r2 , Lemma NDM applies and the nonlinear

damping feedback is

u = D.,(x) = -x - X- x. (2.12)

4



With VDM = 1(x2 + e2) it is easy to show that the resulting closed-loop system

x=-x + x 2ke - - x3 (2.13)

is globally exponentially stable. Clearly, the nonlinear damping term -x prevented the

unbounded behavior that would have been caused bv x'ke- t.

In the second lemma, "integrator backstepping" is used to design a feedback control for

the system obtained when (2.1) is augmented by an integrator.

Lemma IB (Integrator Backstepping). Consider the augmented system

= f(x) + g(x) (2.14a)

= u, (2.14b)

where E IR is available for measurement. Then, the feedback control
8V

U ) + -(W) [f + g(x) ] - -(X)g(X) aB(X,, (2.15)

when applied to the system (2.14), guarantees global boundedness of x(t), (t) and regulation

of,77(x), - (x).

Proof. The backstepping idea is to first view as the control and stabilize (2.14a) with a(x)

from (2.2). Then, to account for the fact that is not the control, the change of variables

- - a(x) is introduced to transform (2.14) into

S= f(x)+g(x)(ct(x)+z)
(2.16)

U "- T W V W + (x) (a (x) + -]
ax

Finally, (2.15) is designed to make the time derivative of V,(x, z) = V(x) + z2 nonpositive:

0" 0V 2 aV
Vr(x,z) = -. f+ga) + x- gz - xgZ < -W(r) -z 2 . (2.17)

This proves global boundedne;s of x(t), z(t) and, by LaSalle's invariance theorem, regulation

of q(x) and z.

Integrator backstepping has recently been used by several authors 122, 2, 101, and was one

of the tools for the systematic design of adaptive nonlinear controllers by Kanellakopoulos,
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Kokotovic and Morse [8] and Jiang and Praly [5]. As a design tool, it often leads to global

results not achievable by feedback linearization, as illustrated by the following example.

Example 2. Consider a system which is not globally feedback linearizable:

= x2 + (1 + X) (2.18a)
U . (2.18b)

Thinking of (2.18a) as a system controlled by , we use a(x) = -x, V(x) = 2 to satisfy

(2.2). Recognizing that is not the control, we let z = + x and transform (2.18) into

i = -x+(l+x)z

z = u-x+(1+X)z.

For this system, aIB(x, ) given by (2.15) is

u= -- (+2x)(1+x) =-z + -z(1-x) -x(1-x). (2.20)

With VB(x,z) = I(X 2 + z 2) it is easy to show that the system (2.19) controlled by (2.20) is

globally exponentially stable. 0

Lemmas NDM and IB can be combined into more sophisticated tools. One such combi-

nation, incorporating filtered transformations, was used by Marino and Tomei in [15]. Two

additional combinations are given in Lemmas NDE and OIB below.

While in Lemma NDM the perturbation p(x)Td(x, e) was in the span of the control u, in

Lemma NDE it precedes the control by one integrator.

Lemma NDE (Nonlinear Damping-Extended). For the augmented perturbed system

= .f(x) + g(x) [ + p(x)Td(x,c)] (2.21a)

= u, (2.21b)

under the assumptions of Lemma NDM, the feedback control

U= -[ -NDM(X)]+ O (X) [f(X) +g(X)g] I_- (X)g(X)
ax a9X

2
-[ -,a.DM(x)j -"'"-(X)g(z)p(X) fo (Z') (2.22)
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guarantees global boundedness of x(t), (t) and regulation of Yi(x), - aND.(z).

Proof. Viewing e as the control, the nonlinear damping feedback of Lemma NDM for (2.21a)

is ' = acNDM(x), with VDM(x, c) = V(x) + f1(f). As in Lemma IB, z = --. ,M(x) is used to

transform (2.21) into

= f(x) +g(x)aDM(X) +g(x)p(x)Td(x,E) +g(x)z

i = U- x) [f(x) + g(X)CDM(X) + g(X)Z] - p(X)Td(x, e), (2.23)

where fi(x) ONDM (x)g(x)p(x). In the absence of the term p(x)Td(x,e), Lemma IB would

result in the feedback control
O =-Z+atNM [f + zf a

u = -z + D-M" [f + gcrDo + gz] - -g = d,(X, Z) (2.24)

with VB(x, z, c) = VNDM(X,e) + 1z 2 . To account for the presence of fi(x)Td(x,e), we apply

Lemma NDM once again and add a nonlinear darroing term to (2.24):

8V1 ~ 2
U = jfiB (X, z) - Ilp(X)11 2 = &1B(X, z) - z (x)g(x)p(X) . (2.25)

When applied to (2.23), this control guarantees global boundedness of x(t), z(t) and regula-

tion of 77(x) and z. 0

The tools we presented so far assumed full-state measurement. Suppose now that the

system (2.1) is augmented by an integrator whose state is not measured, but is instead

estimated by an observer. We consider (2.14) for the case g(x) a g $ 0:

, = f(x)+g (2.26a)

= u. (2.26b)

Following [11], an observer for this system is

y = -k,( - y) + g, + f,(x) (2.27a)

= -k 2(i - y) + u, (2.27b)

where y = xi is a component of x such that gi : 0 and ki, k2 are chosen to guarantee the

exponential stability of the error system

Y g' Ao(2.28)

where = y - = --. Then, an observer-based feedback control for (2.26) is designed

by backstepping the integrator (2.27b) in the observer.

7



Lemma OIB (Observed-Integrator Backstepping). Consider the augmented system

(2.26), where the unmeasured state is estimated by the observer (2.27). Then, withOV
a I () a(r) - -- (x)g, the feedback control

ax

U = k( -[ - +Wx) 4 -X fX -OV(X)g-[ -a(x)] 01(X)g , (2.99)
,) [ax 1a

when applied to the system (2.26), guarantees global boundedness of x(t), (t) and regulation

of 7(x), - ai().

Proof. Let us combine (2.26a) with the observer equation (2.27L) into a system:

. =(2.30)

=-k(y - ) + U

and treat as a disturbance generated by(2.28). The system (2.30) is in the form (2.21)

with e [ ]T, d(x,c) - , p(x) = 1 and P(e) - Tpoe, PoAo + A0P 0 = -I. Hence,

Lemma NDE applies and the feedback control (2.29) guarantees global boundedness of

x(t), (t),e(t) and regulation of i7(x), - a,(x). Then, global boundedness of (t) and regu-

lation of - a,(x) follow from = + -z + a(x) + and 0. 0

3 A Backstepping Design Procedure

Employing the tools of Section 2 in a step-by-step fashion, wc are able to construct back-

stepping procedures for nonlinear feedback design problems. With full-state feedback, such

procedures have been constructed for partially linear composite systems in [18] and for a

class of nonlinear systems containing unknown constant parameters in [8]. Here we design

an observer-based controller for the class of nonlinear systems that can be transformed via

a global diffeommorphism into the output-feedback form

= A( + (y)+ba(y)u (3.1)

Y = cT( =

0

A4 b 0 c T =[1 0 ...01, V() = "(3.2)0 ... 0 V,(.



where only y is available for measurement, b, _J -
- +... + bis + bo is a Hurwitz polynomial,

and a,...,,, o are smooth functions with a(y) # 0 Vy E IR. This class of nonlinear

systems, characterized via geometric conditions in [15, Theorem 5.1], is of interest because

its state can be estimated using the observer

=A + Ko((, - y) + p(y) + ba(y)u, (3.3)

where Ko is chosen so that Ao = A-KocT in the error system C = Ao, C C-C, is Hurwitz.

Using this observer, we now design a feedback controller to force the output y of (3.1) to

track a reference signal yr(t), which is given along with its first p derivatives yr,Yr,..,y(O).

In Step 1, our step-by-step design applies Lemma OIB to the first two equations of (3.1).

Each consecutive step adds one more equation from (3.3) and applies Lemmas IB and NDM.

The procedure terminates at Step p - 1, when the true control appears for the first time.

S : We define the output error z = y- = Y - ao(yr) and consider the second-order

system

= +, (3.4a)

+2 = (3+ 2(Y). (3.4b)

As in Lemma OIB, we replace (3.4b) with the second equation of the observer (3.3) to

compose the system

, = C ,+1(Y,Yr,r)+C2 (3.5a)

( 2 = (3 + K02 ((I - Y) + P2(Y). (3.5b)

If (2 were the control, then Lemma NDM would result in

(2 = -3 (y,y,r) -2z I aI (y, Yr,) (3.6)

and V(z,) - Jz 2 + CTpo0, where PoAo + APo = -I. Since c2 is not the control, the new

state z2 = (2 -C11(Y,Yr,) is introduced and (3.5) is rewritten as

zl = -Z +Z2 - zI+ 2

K ),,ac t, . 9a,.
i2=C 3 + K2o Y 02 (2+ (PI(Y) + 2) -yYr - Yr (37

~9r
W (3.7)

(3 + 02(YC(,,?Yr,,Yr,)- --9y 2,
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where in the definition of /32 we have used the fact that - are known functions
'9Y r '9y r

of y, Yr and Yr. Again, if 3 were the control, then Lemmas IB and NDM would result in

3= -32(Y, il, 2,Yr,,,r- + ( ) )2 Z2- zI

-a2(y,¢1,,¢ , r, yr, i ), (3.8)

and V2(z,,z,) = Vi(z,,) + + Z2, 2 2

Step i (2 < i < p - 1): In Steps 2 through i - 1 we designed a,... ,a. Now, in Step 1,

we apply Lemma IB to backstep another integrator. We introduce the new state zj+1 =

;+ -a(Y ,. . ,, Yri Yr, .... Yr')) to obtain

i = -z.+zj+1 y a - zj  <j :5 1a3  ay ) z,, _ _
a., 1) (3.9)

zi+i = Ci+2 + 3,+i(Y,(,... ,i+iYr, Yri ... ,yri+l) - Oy

Again, if ,+2 were the control, Lemmas IB and NDM would result in

¢,+2 = -,+,,,...,+,,Yr,... (a+) .- [1+(8\o] ] i+- Zi

= c,+i(,(I , , - ,(+I,,Yr, ,-,.... Yr' " (3.10)

and V+, = V, + 1z' 1 + cTpo .

Step p - 1: Finally, we backstep the last integrator before the actual control u appears.

Following Lemma IB, we substitute z. = P-aP.-(YI 1 , (p...-i, l4-l,.,' '-  ) into (3.9)

(with i = p - 2) and augment the resulting system with the i,-equation:

ac- a~ 2

= -Z,+Z. i2 y ) zj -zj_, 1 <J < p -1. . O o_,,:(3.11)

io= b.-a(y)U + (+t + 0(Y, i,..-,CP, Yr, Yr,...,Yrp) - ,,,2

Now the actual control u has appeared, and Lemmas IB and NDM result in the control law

U = b,,,(y) + [+ + (,)21 + z,,_}

(3.12)
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The derivative of
V, = V + 2 P = -izj +p¢ T po (3.13)

.1=1

along the solutions of (3.11)-(3.12) is nonpositive:

V p2+ i+10 (3.14)

With this systematic procedure we have not only designed the control law (3.12), but

have also set the stage for the following result:

Theorem 3.1 (Stability and Tracking). For the nonlinear system (3.1), assume that

bnos - p + ... + b1s + bo is a Hurwitz polynomial, and that Yr, Yr, .'', Y?) are bounded on

[0, oo) and y4)(t) is piecewise continuous. Then, all the signals in the closed-loop system

consisting of the system (3.1), the observer (3.3) and the control (3.12) are globally bounded,

and, in addition,
lim [Y(t) - Yr(t)] = 0. (3.15)

Proof. Due to the piecewise continuity of y °)(t) and the smoothness of the nonlinearities,

the solution of the closed-loop system exists. Let its maximum interval of existence be [0, tf).

On this interval, the nonnegative function V, is nonincreasing because of (3.14). Thus,

z 1,... , z. are bounded on [0, tf) by some constants depending only on the initial conditions

of (3.1) and (3.3). The boundedness of all other signals on [0, tf) is established as follows.

Since z, and y, are bounded, y is bounded. The boundedness of and 1 = y - , imply that

, is bounded. Since z2 is bounded, C2 is bounded. In the same manner, it can be shown

that 1,..., C, are bounded. Hence, c,..., (0 are bounded.

To prove the boundedness of P+ .. (,,, we use the fact (see, for example, [19, Theo-

rem 2.11) that there exists a similarity transformation C = T(, with I = (,.. -, = (0,

which results in
S= (2+Y

+,p = P-I

= +(3.16)pr = +p(y) + b.'(y)U

y = A,
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where the eigenvalues of the (n - p) x (n - p) matrix Ar are the roots of the Hurwitz

polynomial b + + bis + bo. Now the boundedness of r which follows from the

boundedness of (y), together with the boundedness of (1,... ,', imply that is bounded.

We conclude that ( = T-1c and ( = C - are bounded. Since b,,_o'(y) is bounded away

from zero, the feedback control u (3.12) is bounded.

We have thus shown that the state of the closed-loop system is bounded on its maximal

interval of existence [0, tf). Hence, tf = c.

To prove the convergence of the tracking error to zero, note that the boundedness of ,

, and u, together with (3.13) and (3.14) imply that both V , and f/. are bounded, and,

moreover, that "V', is integrable on [0, oo). Hence, V , -- 0 as t -- o, which proves that

z,..., zP - 0 as t -- o. Since z1 = y - yr, this proves (3.15). 0

4 Concluding Remarks

Among the major contributions of geometric methods to the systematic design of nonlinear

feedback systems over the last decade are conditions characterizing classes of nonlinear sys-

tems which are feedback linearizable or transformable into so-called "normal forms." Under

such conditions, the feedback design problem either becomes linear or is greatly simplified

due to the special properties of the normal forms.

Geometric results have their own limitations: they are often only locally valid, as in

Example 2, or valid only in a disturbance-free setting, which excludes the system of Exam-

ple 1. Tools like those assembled in this paper alleviate some of these limitations and appear

as a valuable supplement to geometric methods. The backstepping procedure of Section 3

demonstrates that such tools are not just "tricks of the trade," but can also be used in a

systematic fashion. In a more complicated adaptive setting, where the backstepping has to

be performed not only under state observation, but also under parameter estimation, such

tools are currently used to design fundamentally new adaptive schemes.
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Abstract. For a class of single-i upit single-output nonlinear systems Since models of nonlinear systems are often derived from ph-. icai
with unknown constant parameters, we construct a new systematic principles and given in specific coordinates, it may not alwa i be ow.t-
procedure for adaptive nonlinear control design. which requires only ous whether or not the ionlinear system at hand can be tranit'orm.Ni
output, rather than full-state, measurement, and which yields global into the output-feedback form to which our design procedure i ppi
boundedness and tracking properties without imposing any type of cable. Therefore, in Section 5 we use differential geometric concirlonr-
growth constraints on the nonlinearities. The new procedure is ap- to derive a coordinate-frpe characterization of the corresponding -[a,
plicable to nonlinear systems which can be expressed in the output- of nonlinear systems. Then. in Section 6. we show that the non inar
feedback canonical form. We give a coordinate-free characterization of system consisting of a single-link robotic manipulator and an elas-
this class of systems, and show that a single-link robotic manipulator tically coupled dc-motor actuator tincluding the actuator dynamics;
with an elastically coupled dc-motor actuator belongs to this class and belongs to this class. Thus, our new design procedure is applicable to
can thus be adaptively controlled via our new design procedure using this system and. for all positive values of the elasticity constant and
only position measurement, of the electrical and mechanical time constants of the motor, yields

global boundedness and asymptotic position tracking using only po-

1 Introduction sition measurement. Finally, in Section 7. we give some concluding
remarks about improvements and extensions of the new design proce-

In the last few years, the problem of adaptive nonlinear control was dure.
formulated to deal with the control of plants containing both unknown
parameters and known nonlinearities. The motivation for this prob- 2 The Design Toolkit
lem lies in the fact that many practically important systems (robotic
maripulators with rigid or flexible joints, electric motors, automotive In this section we present the tools that will be used as building
suspensions, chemical processes) are inherently nonlinear (due to the blocks in the construction of the design procedure of Section 3. The
presence of gravitational. Coriolis or aerodynamic forces, flux-speed, proofs of the following lemmas were presented in [2, 4J.
flux-current or ion concentration products, and even hydraulic valve- ~ Definition 1 (s7-g.r.f.) A feedback controi u = no(:) which. when
actuators) and typically contain unknown parameters which vary with applied to the system
the operating conditions (task-dependent load masses and torques,
temperature-sensitive resistances and heat-transfer coefficients). fo(x) + g(x)u, z E I' . u E IR. ,2+1

Many of the early results (see [7] for a unifying treatment and de- guarantees global boundedness of z(t) and regulation of rif x l E R". is
tailed references) yielded global properties only when growth condi- called an r7-globally regulating feedback (7-g.r.f.) for (2. 1). Further-
tions were imposed on the nonlinearities. Such growth conditions re- more, if these properties are ascertained by the ine7uabty
strict the applicability of the corresponding schemes, and, in some 9V
cases, actually bypass the true nonlinear problem. Moreover, all of -(z) [fo(z) + g(x)ao(z)] < -WT(7 (z)) < 0. Vz E IR' 2-2)
the early results employed the assumption of full-state measurement,

which further restricted their applicability to practical situations. where V(z) is positive definite and radially unbounded, and 1'77; is

In this Daper, we construct a new systematic procedure for adaptive positive definite, we say that o0(r) is an r1-g.r.f. for (2.1) with respect

nonlinea. control design, which requires only output measurement, to (w.r.t.) V(x).

and which yields global boundedness and tracking properties without
imposing any type of growth constraints on the noninearities. This Lemma i (Nonlinear Damping) Consider the prturbed system
procedure is applicable to single-input single-output nonlinear systems = f0(x) + g(r) [u + p(x)T(z ) 2.31
which can be transformed into the output-feedback canonical form.
This is the same class of systems to which the filtered-transformation- where p(z), c(x,-) are continuous and 4(x, O) O. Let the disturbance
based design procedure of [61 is applicable. generator"

The design procedure is constructed by interlacing in an intricate = q(x.C), q(.,O) a 0 E IR, 2.4)
fashion several tools from our nonlinear toolkit ['2. 4]. which are pre- satisfy the inequality
sented in Section 2. Some of these tools (nonlinear damping, integrator O
backstepping, parameter-dependent estimation) were used previously (e)q(X, f) 11, 2 -3)
in the adaptive and nonlinear literature. The tools of adaptive in- for some positive definite radially unbounded function Q(E) andfor all
tegrator backstepping and observed-integrator backstepping were the 6 E IR, X E IR". If oo(z) is an t7-g.r.f. for (2.1) w.r.t. V(z), then an
crucial ingredients of the design procedures of [3] and [4], respectively. r-g.r~f . for (2.3) is
Here we combine them to form the new tool of "adaptive observed-
integrator backstepping" (Lemma 6), which is the crucial ingredient a(x) = ao(z) - d-'(z)g(z)1p(z) 2 , 2 6)of our new design procedure, presented in Section 3. The bounded- X

ness and tracking properties of the resulting closed-loop system are where d > 0 is a design constant.
established in Section 4.

*The work of the first two authors was supported in part by the National Sc,- Lemma 2 (Integrator Backstepping) Consider the augme-d
ence Foundation under Grant ECS-87-15811 and in part by the Air Force Office system
of Scientific Research under Grant AFOSR 90-0011 The work of the third author .r = Jo) + g( ,2 7t
was supported by the National Science Foundation under Grants ECS-88-05611
and ECS-90-I2551. = u. 2 75



uhere I E JR is available for mfa.qurement. If ,)i z i is an rj-g.r.f. for
(2.1) w.r.t. l'(z). then the feedback control u =I. z:. d-i.r. , I= -O)X i -i,..

)00o - dV is an (* :)-g.rJf for the system ronsisting of .. nd ,nd, A -
Q2(X.-) = -Z 4 ,.LS tz)[f() g(xiiQ'(z x1 - x rg z . l w

d(z g 2.R) laws

is an '7.z)-g.r.f. for (2.7), where 0I = -,--(Z g.x 2.2'X,

z=-= o(Z). ,2.9) ao S-, 1

The tools we presented thus far assumed full-state measurement. "x o j 2

Suppose now that the system (2.1) is augmented by an integrator
whose state is not measured. but is instead estimated by an observer, where "i > 0. '2 > 0 are design constants

We consider 2.7, for the case g i z j t: 0: Let us now consider the case in which 2.15; is augmented by an

x = foi -j- 9g i2.10a) integrator whose state is not measured. As in Lemma .3. we consider

= U . 2.10b) 2.15) for the case g(z) g40:

Following '51. an observer for this system is x = fo)i Ofi zI-gk 2.22a)

y= -ki -y) - g,j -f),.I 12.1la) = U 2.22b
= -k 2  - y) + u. ,2.1 lb) The main difference between (2.22) and (2.10) is the pre-enc- of he

where y = x, is a component of z such that g, $ 0 and klk 2 are unknown parameter 8 in (2.22a). If this parameter were known, an
chosen to guarantee the exponential stability of the error system observer of the form (2.10) would provide an exponentially convergent

1j 1 ; I estimate of k, which would then be used in the design of a z.r.f. fory ] -k1  , ] (2.12) (2.22). Keeping in mind that our ultimate goal is not the estimation
k -k2  0 , . j of X itself, but rather the design of a g.r.f., we construct a -parameter-

where = y - y. j = ' - j. Then. an observer-based feedback control dependent" estimate of < using the following lemma:
for (2.10) is designed by backstepping the integrator (2.11b) in the
observer. Lemma 5 (Parameter-Dependent Estimation) Choose a com-

ponent of z, y = x, such that gi * 0, choose kj. k2 to guarantee
Lemma 3 (Observed-Integrator Backstepping) Consider the the exponential stability of the matrix
augmented system (2.10). in which the unmeasured state X is esti-
mated by the observer (2.11). If ao(z) is an q-g.r.f for (2.1) w.r.t. . -k' g, 1(223)
V(r). then the feedback control u = a2(z. z), -k2 0

o 2(x.z) = + dk( ci-y)+ (atWfOW +g(a, W)+ z)] and define the filters

OV, Oo, , 1 oi f/o,,(r)+.g, o 2 +ki(y- 0) ] ,z .,5- &dx 9 I
[ a,~~~~~~~~ ~ ~ ~ ~ ~ (.g O.X .2+k~ rj 1 ,' 2 k 4 '-- )x)g -d 2 z -(_ f(2.13) k 2 yo 1  i=-k 1 .

224)
is an (q. x - oi(r))-g.r.f. for (2.10), where Then, the signale = - ( o2 + 8fi2) converges to zero.

+. OV
" - o(z) - -o(z) +d-d, (Z)g, (2.14) We can now combine Lemmas 1. 4 and 5 into a new tool. which

ad dshows us how to design a g.r.f. for (2.22).
and d > 0. d2 > 0 are design constants.

Let us now consider the nonlinear system Lemma 6 (Adaptive Observed-Integrator Backstepping)
Consider the augmented system (2.22) and the filters (2.24). and as-

£= fu(x)+Of(x)+g(Z)u. xEIR", uEIR, (2.15) sume that ao(x)+Oa(z) is an r7-g.rjf for (2.15) w.r.t. V(x(. Let

where 0 E IR is an unknown constant parameter. Let us assume that 0t1 and 12 be two estimates of 8. Then, the feedback control u =
thereexists afeedback control u = ao(x)+8a(z), with ao(z) and a(x) 01(z, z, o0,, , Jt, 02)
known, which, for every 8 E JR, is an Y-g.r.f. for (2.15) w.r.t. V(x), [., O ]
with V(x) known. That is, V E R", VO E R, we have al = -z + k2 ( ot + 061 - y) + 2()+ -+ - '(r) fo(x)
O- (rz)[fo(r)+8 Ogr(o~)8~D -~~r)0 v

+ Of W) + 00(zo) + 0a(z))] < -W(O(2) 0 +02 f (r) + g(oI(Z,&, 0i) + z)] - --(r Lgo(z) - fi2)

where V(r) is positive definite and radially unbounded, and W() is -d 2 z () + 0, ') g , 2.25)
positive definite. It is further assumed that fo, f, 9, 7, ao, o, V and lzs i ,

W are C2 on R.

Lemma 4 (Adaptive Integrator Backstepping) Conaider the where 61(z) = oo(z) - d,- E(z)g and
augmented system

i = fo(x)+#f(Z)+g(Z)-C (2.17a) Z= f0-a)(Z.f, 0) -_' - 2 o(z) +01((z)- 2) - dn0(Z)g

= u, (2.17b) 12.26)
is an (il, z)-g.r~f. for the system consisting of (2.2) and the update

where % E JR is available for measurement, and assume that ao(z) + laws
Oci) s an qg.r.f, for (2.15) w.r.t. V(). Let 1 and 02 be two
estimates of0. Then, the feedback control u = 02(Z,z. 1, 1)2), di = - t-(Z)g(o(r) - f;ti) 2 27)

i.q(z'ta Z'01 2) Z -+ (Z I d 1 W d21

tfo(X) + 02f(Z) + g(Z)(a 1 (ZO,1) + z)]
V - dV where 71 > 0, y2 > 0. d, > 0, d2 > 0 are design constants.

- 1- ( ( - (x)9(x )" (2.18)



3 The Systematic Procedure T.

In this section we present the main result of the paper. We use the Wp then choose a gain vector K such that Ao .A - kI,- _. lur.tz.

tools of Section 2. especially nonlinear damping ( Lemma I ), adaptive an.d define ',, filters
integrator backstepping (Lemma 4) and adaptive observed-integrator
backstepping (Lemma 6), to construct a fundamentally new systematic 0 = .4o, o - ly ;0( Y)

design procedure for nonlinear systems which can be transformed into ,= .40 ,,O - ; . _ _ p 3

the output-feedback canonical form: ' = Ao,4- e,-, cr"(u. 0 < j < -

o .I(Y)+ where e, is the ith coordinate vector in R". From 3.2) and 3.51 it
1=i follows that

.r2 = 13 + ,:.t l-E ::.'Y : =  .40E: _- X - "o +0 , 0v , ,3.6 1

S o iwhich implies that satisfies the disturbance conditions of Lemma I

p with Q(6) = .PoE. Poao + ATPo = -1. In particular..- converges

io-. = " - -0.0o-i(Y) (:3.1) exponentially to zero. We also note that the derivative of y can be
)=I expressed as

P p

= r,+, + ;O.(y) +- F',,,t( + bn_,Ty)U =0o.2 + ;odY) t+ F , .(Y) + j.21 b,t- .V,.72

We are now ready to construct our systematic design procedure.
P OThe main idea of this procedure is to apply Lemma 6 to the first

-in= ;o.n(y) + Z ';., y 4- boa~y)t two equations of (3.1), and then, at each next step. to add one more

= XI equation and use Lemmas -, ird I to stabilize the resulting system. At

each step, new design constant , > 0 and a new symmetric design

where z E IR" is the state. u E IR is the input. y E IR is the output, matrix r, > 0 are introduced.

,. 0 S j < p, 1 < i < n, and a are smooth nonlinear functions. and Step 1: We define the output error zt = Zi - y - o Yr'. and write
0 = 0. 0 IRP , b = [bn ....... bol E a- are vector- of LI as

unknown constant parameters. I = X2 + '7o.t(xt)+ ";0, I (X 1 (3.8)
We now make the following assumptions about the system (3.1): += i

Assumption 1 The sign of b,-, is known. Since z2 is not measured, we use (3.7) to rewrite (3.8) as
p "-5

it =,% o.2 + oJt( Y) + Y[ () + .21+ ,: 6, ,.2- +. (3.9)
Assumption 2 The polynomial B(s) = b,_,s n - , + - + bis + bo is = l j=o
known to be Hurwitz. A closer examination of the filters (3.5) reveals that the control u

will first appear in the pth derivative of v,-.,2. Hence. V,-.,.2 is the

Assumption 3 0(y) $ 0 Vy E IR. variable that we should view as the control in (3.9). If t,, _o.2 were the
control and the parameters 01,. . .,Op, b,-,..... bo were known. then,

These assumptions imply, in particular, that the system (3.1) has a by Lemma 1, a zi-g.r.f. for the system (3.9) would be
globally well-defined and known strong relative degree p [l. Chapter 4], 1
and that its zero dynamics [1, Chapter 41 are linear and exponentially nv-0.2 = - - Ic i z

t + diz + o.2 + ;o1

stable.
Assuming that only the output y is measured, the control objective - 6 .t+ . 310b)

is to track a given reference signal yr(t) with the output y of the E 2=0 b

system (3.1), while keeping all of the signals in the closed-loop system
globally bounded. For the adaptive controller which results from our To deal with the fact that vt-.2 is multiplied with the unknown co-

design procedure to be implementable, we assume that efficient b,-,, we use (3.10) to rewrite (3.9) in the form

Assumption 4 The reference signal yr(t) and its first p derivatives ; --dz 1 +t

are known and bounded, and, in addition, y?)(t) is piecewise continu- +b,_,A __ [ct z, + d t z t + f0.2 + ,O.tI

OPS 0 . n- }
This assumption is satisfied if yt(t) is the output of a linear stable + E b [P, + G21 + .bsV 1 .2 + r .... 2

reference model of relative degree p, _ p. 1 ,t---o _'
The first step in our systematic design procedure is the choice of - dtzt +e + b + O

filters which will provide "parameter-dependent estimates" of the un- = V, .. 2 O I (Z-Cs .Ct. Y"

measured state variables z2,.... z,, Following the development of (3.11)
Lemma 5, we rewrite the system (3.1) in the form where, for i I. n - 1

i = Az + ;o(y) 4- F ,,(y) + b6(y)u [ .2 (3.12)

y = cTz. (3.2)
,3.13i

bna 1 8t Op bo bl-1-t 3 4
1 [0(01lx1 1 1) = b _ . _ bx .. ..I. 14

0 ... 0 T I=[lt+ll4{. -,Ot

-b 3 ) [c1z1 + di z + . + :.... . . o-i. .. 15

(3.3) IPIA + fi.2-... p.1 + 0.2, .- Vno

3



Let 01 be an estimate of go and denote '3i = 1- . Then. from Now, in Step t, we augment 3.26) by the i'--,-equation from
Lemmas 4 and 1. and (3.11) we know that if the update law for 01 is and use Lemmas 4 and 1 to backstep it. We define the new ,tate :,as
chosen as the difference between v,,.-, and its desired expression .25,:

dl~ =sgn(b,, )fi. c-Cit'1 ,. Yr, . r) '3.16) -

and if t',-,. 2 were the control, then S

A a Cand, using (3.5) (3.7). and .3.26). we write :, as= ai(zlCl, C lV, dl.Y,. ) ,3.17)

S ,- . + . . v, .' I ..... ),-I-Yr .
would be a zl-g.r.f. for the system consisting of (3.11) and (3.16). w.r.t. .OJr- *. 1). ' -. yr.

Step 2: Since t-,, 2 is not our control, we augment the system con- .329)
sisting of 13.11) and (3.16) by the c,_. 2-equation from (3.5) and use
Lemmas 4 and 1 to backstep it. We define the new state Z2 as the Le 3heanwsimtof9ndeoe'3=9-',.Tnrm

Lemmas 4 and 1. we know that if the update law for '3, is chosen as
difference between V,-,.2 and its desired expression t3.17): '3t = t1(J.. .z. , I C _ 1. I . . .O _~ r*....Yr .,:.0

Z2 = V.n-o.2 - )tl( :.Cl. Clvt-. Ol. Yr. !r) . (3.19)
and if t':a,. were the control, then

and, using 3.5). (3.7). (3.11). (3.16) and (3.17), we write :2 as

.2 = V,.3 + ,2):, ,.C2 ,Cu. ', .Y.rr) , .... = -c,:, - :,_d - ., - o,.,, -,d, (o)-,LC1 V. '31. Yr
=4.;2 _j Z2,z .... zC,, ,C v C, .... d,, .... V r' ,a

+---(ZI, ,ClV, I,.Yr-,.)(• (3.20)3.31)
-,3 would be a (zi . ., :,)-g.r.f. for the system

:i , = -(c l)zt+ z+1 T
where - denotes the partial derivative of the right-hand side of (3.19) + )2J
with respect toy. and = + d, z, + 2 +.-z 1+ ,.. .

S = [ot 0,,bo .... b,_1 1 . (3.21) 2 < j i - 1, (3.32)

Let tO2 be an estimate of 0 and denote t)2 = 9 - 02. From Lemmas 4 3, = Z' + , + , + aZ,

and 1, we know that if the update law for 02 is chosen as + + + Y

'32 Z ~ 2 i 2 , C, Cl V. 9, Y,iMZ2  (3.22) 01 -sgn(b.,,F.,;I 1 ~zs
and if -,,3 were the control, then 232 = -rzwz 2 . 2<j<i,

n-p.3 -C 2 Z 2 - Z,- V'- .-2 - d2 ( ) 2 w.r.t. (=+ (- + +r)+ Q . 3.33)

a2(z1 zl, C C2 V 1 t, , 4r4r) (3.23) Step p: This is the final step of our design procedure. in which we
backstep the last equation separating us from the actual control u.

would be a (:t. z2 )-g.r.f. for the system consisting of (3.11), (3.16), Since v,_. is not the control, we augment (3.32) (with i = p - 1) by
13.20). and (3.22) w.r.t. the i,t.-equation from (3.3) and use Lemmas 4 and 1 to backstep

1 2it. We define the new state z, as the difference between t'_,. 5 and its

v = vs ( .+ r 1 2)+ (3.2) desired expression (3.31) (with = - 1):

Step 1(3< i < p- ): In Steps 1 through i - 1, we designed to - 0.

at ..... ,-l. d t,.. and we know that if v,,-,, were the control, t .... ,Yr.. yr 1 1 ), (3.34)
then and, using (3.5). (3.7), and (3.32), we write i. as

(Oz,- 2 = (y)u+ - + + , -. ,zo, C9,C, d, -,-o_-.
- = -C.-IZ'-I - Z--2 - i-I t -1 cii- + d,. 5 - a - .y- z -t r .... :

Y-. .. - -(, ) ) + Z.....zo, Co- , Co-LU, 01- ..... 0 ,

(3.25) Yr-.... -)+-O- ,z . zo.C°1 ,C5  _ v, O .

would be a (: , ... z, -. )-g.r.f. for the system yr .. , V °-1))( . (3 3 )

-(c + d)z + z2 + 4W+ Let 0, be a new estimate of 9 and denote 0, = 0 - t9D. Then, from
Lemmas 4 and 1, we know that if the update law for 0, is chosen as

il= -c,+ d, Z' + z+z+ '-z I-t+ Tiw + 08/ f l = Jow,(z,.., -1, :,Yt.
a 3 6)

2 < j ! i - 2, (3.26) then the control

,_,= Vn-" + V + Fr wi-l + U = - -cozo - Zo-t - Wo - do ) 13.37)

01 = -sgn(b,)ft,,;1 zt is a (z .,.. Zo)-g.r.f. for the (zt ,... ), ..... o)-system w.r.t.
01 = -r,, z, = < j _+l(-io)_

21 J~ (j<:-I.VA V5 ..- + tir;35

1 2 lTz + )b,..'3f~r1 jl jr.-:;\
w.r.t. = V-+ o r + r , + (r). (3.27) E + Q(E) .i.,3)

2 _ -) + _ 2 ,=2d)



Indeed, the t ..... :. 01 . v -system becomes wt rn he :hoice of ke nave th,;s shown tha t all .h,*h l kgnas .:,-," , i, , , ;control v3.37) stem are bounded on '0. tf 5, ,-nstants ,' t ,; t )n .?.AI.L
o onditions. Hence, tF = X.

;j = I! ,- d,~~ T-: 0 -
.To prove the convergence of the tracking error ,o ero, norte !nat

('C2  dz2] ~the boundedness of .... c, c and u. together with ,3:S... ,,41),

a+yd ) -y ] +. - -- dy and (4.2), implies that both , and Vt are bounded, and moreover.
2 < j < p - 13:39) that V. is integrable on 0. x ). Hence. V., -0 as t - x. ,v hich proves

0 that :. - 0 as t - x Since z-- - this provs 4 Z

(- y ] : -:- +  0Y 5 The Class of Nonlinear Systems
1b= -sgn-b,-t.t-i Most models of nonlinear systems are derived from ph. sical prtnci-

, v = -, 2 <_ j < pies and given in specific coordinates. As we shall see ;n the robotic-
arm example of Section 6, it may not alwavs be obvious whether or

and the derivative of the partial Lyapunov function 1, defined in i not the nonlinear system at hand can be transformed into the output-
along the solutions of (3.39) is nonnegative isince c, d, > 0): feedback canonical form to which our design procedure is applicable.

V = 2 I~2 Therefore, in this section we derive a coordinate-free characterization
I;+d, d I 4 r 1 . 0. (3.40) of this form using differential geometric conditions which are necessary

I dy k 2d, -4d, and sufficient for the existence (and also provide the guidelines for the

construction) of a diffeomorphism which transforms the nonlinear sys-
tem at hand into the output-feedback canonical form (3.1 t.

4 Boundedness and Tracking In the full-state feedback case. it is natural to look for parameter-

With the above systematic design procedure we have not only de- independent diffeomorphisms, since one wants to be able to calculate
" the new state variables from the measurements of the original ones.

signed an adaptive controller, but we have also set the stage for the On the other hand, when only the output is measured, the dependence
following result: of the diffeomorphism on the unknown parameters is not important.

Theorem 1 Under Assumptions 1-4. all of the signals in the closed- Therefore. we now give necessary and sufficient conditions for the sys-

loop adaptive system, which consists of the system 0.1). the filters tern

(3.5), the parameter update laws for t .. . 0, and the control (3.37). = (.1)

are globally bounded, and, in addition, y= h(s; K),
where r is a vector of unknown parameters, to be globally trans-

limly(t) - yr(t)1 = 0. (4.1) formable into (3.1) via a possibly parameter-dependent diffeomor-

phism. The proof of the following theorem was given in [2].

Proof. Due to the piecewise continuity of yrO t(t) and the smoothness Theorem 2 The system (5.1) can be transformed via a global diffeo-
of the nonlinearities in (3.1), the solution of the closed-loop adaptive morphism z = o(; oc) into the output-feedback canonical form / Y. I/if
system exists. Let its maximum interval of existence be [0. tf). On and only if the following conditions are satisfied for all _ E lR' and
this interval, the nonnegative function V, is nonincreasing because of for the true value of the parameter vector K:
(3.40). Thus, z .. ., ... t). and hence 1 .... 0,. ...e bounded (t)rank dh.d(Lh) .....d L h n.
on [0. tf) by constants depending only on the initial conditions of the

adaptive system. Furthermore, from (3.6), we know that the same is (if) [adr.ad r] -0 0 < i < n -2.
true of E.

The boundedness of all other signals on [0, tt) is established as fol- i d = , P 1
lows. Since z, and yr are bounded, it follows that y is bounded. This f =0 =

implies that a(y) is bounded away from zero and, from (3.5), that Y I

.o p are bounded. From (3.5) we also see that where ,...(y) "]o ;'...(s)ds. 0 < i < n - 1.0 < j < p.

V__,= eT (s-o)-' e+,] r(y)., 0 < j - (4.2) (iv [gadr] 0 0< i < 2,

where e, is the ith coordinate vector in R". Then, we express (3.1) in a(.) b,(-1)'adr. and

the differential equation form (D = d/dt) (v) g = 0,-

"(vi) the vector fields r,ad ,-ad'r are complete,
D'y = D" - os(y) + api.'(Y)J + b, -.,D-' [a(y)v]. where a is a smooth nonlinear function and r is the vector field defined

(4.3) by 0. i 0 n- 2
Since y is bounded and, by Assumption 2, the polynomial B(s) = L, {h 0 - n2EIL,,s, _ is Hurwitz, we conclude from (4.3) that H,(s)(a(y)u] is , ,i -l 52

bounded, where H,(s) denotes any exponentially stable transfer func-
tion of relative degree greater than or equal to i. By (4.2), this in turn 6 Application: Single-Link Flexible Robot
implies that F2 ,_o_, 0 <ji< - p. are bounded, where As an example of a mechanical system to which our new design pro-

F,v, = [v,,. ... v,.,+11. (4.4) cedure is applicable, let us now consider a single-link robotic manipula-
In particular, by (3.13), this implies that C, v is bounded. From (3.19) tor whose rotary motion is controlled through an elastically coupled dcweonclarticulatby(3.),thisimpliesthatC is bounded. Hencromy(4) 9) motor. If the effect of elastic coupling is modeled as a linear torsional
we conclude that Va_.. is bounded. Hence, by (4.2), Hoi(s)[ay)u] spring, then the dynamic equations of the system are (cf. fl p. 231)
and thus F,,, v-,-,, 0 <1 < n - p, are bounded. This again implies
that vn,-.. 3 is bounded. Continuing in the same fashion, we use (3.28), Jq 4 + Fq 1 + A' - + mgdcosq, = 0
(3.34) and (4.2) to show that H,(s)(a(y)uj , p-2 > i > 1, are bounded,
which implies that v is bounded. Since a(y) is bounded away from zero, JZ4q + F242 - - q - 2 = h ti,
we conclude from (3.37) that u is bounded. Furthermore, from (3.6) V
we see that z is bounded. LD + Ri + Kbq 2 = U.



where q, and q2 are the angular positions of the link and the mo- /R F~ F
tor shaft,. is the armature current and u is the armature %oliage. 01 = + - , F )
The inertias J1 , J, the viscous friction constants Fl, F2, the elasticity R J J2 KbA, - it F ,
constant K, the torque constant A', the back-EMIF constant Kb, the it= F F2  >! ) - V

armature resistance R and inductance L, the link mass V,. the posi- mgd
t ion of the link's center of gravity d. the transmission gear ratio N and 63 M

the acceleration of gravity g can all be unknown. Then we (K +-7_F K F, A t F A ,
We now assume that only the link position q, is measured. [hen we+ L: Jl, J2N- 7F2K i LJ .

would like to see if the design procedure of Section 3 with n =p=.Is (R F2  -gd

applicable to this system. To this end, we first try the natural choice -, _ 1 j .
of state variables I", = ql. <'2 =ql. 3~ 72- 4~ 42 <'s The [R F_,IK F2  KbKA't
dynamic equations t6. 1 become LiJ (LJ 2  J± i j L~ 2J

K ~2= ( RF 2  KA-t mgd

= mgd . F, K ( - '\_ R mgdK
-- lcossi - T l -1 =, T LJiJ2 N 2

=o =, '"1 K 0

= K (.- 3> F,. +T Kt2) b JlJ2 .L tr

2.V \ -V~ J2 - Hence, the design procedure of Secti-" 3 is applicable to ."and
5 V5 T ' . 1 U ids an adaptive controller that ad-.. .es bounded asymptotic posi-

y tion tracking from all initial conditions and for all positive values of
= the constants K, Kt, Kb, J1. J12, R. L. It is a tedious but straightfor-

Clearly. (6.2) is not in the output-feedback form (3. 1). However. there ward task to verify' that (6.2) satisfies the conditions of Theorem 2
exists a different choice of coordinates which brings (6.1) into that and that the map from the physical coordinates of (6.2) to those of
form. To show this, we derive the input-output description of (6.2). (6.S) is parameter- dependent.

Differentiating y twice, we obtain (2 = Dy and

D2y = - dcosy- -iDy- Ki (Y- ) (6.3) 7 Concluding Remarks
which implies that The results of this paper have advanced our ability to control noniin-

= 'Icosy+ - y) (-4) ear systems with unknown parameters using only output. rather than
(,3 ID y+a-dcsy+ Dy + Ky(.) full-state, measurement. They have also demonstrated that the design

/ , 3 Fad(6.5) tools of Section 2 are not just "tricks of the trade." but can be used
C1 = D( 3 = -i- ,Dy , +2-cosy + TDY+- -Y 63 in a systematic fashion. In fact, these tools were recently used in '21

K- i1i to produce new design procedures for the more general case of partial-
Differentiating (6.5) and substituting 6 anid C4 from (6.4) and (6.5), state measurement, thus generalizing the results of this paper. Finally.
we Obtain it is worth noting that the new design procedure can be modified in

Cs= +: -D- 4 y + + D 3+ ' + 'I2 D2Y several ways to decrease the dynamic order of the resulting adaptive
K IK I it J2  TI TN

2  7,J 2J controller 12, Chapter 5].

+ 2 cos y+ ( Il Dy
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