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1 Factual Data

This section contains a factual listing of publications, research lectures, and students supported
in whole or in part under Contract No. AFOSR-89-0167 with total funding support of $128,035
during the period December 15, 1988 to June 14, 1991. In particular, our research advances have
led to 15 open literature publications, including 12 in the leading IEEE and SIAM journals. They
are listed below and the narrative to follow in Section 2 is keyed to this list. Significant progress
made under the auspices of the contract as well as plans for the future will be documented in the
narrative. Finally, copies of the abstracts of papers published or accepted for publication will follow
in Section 3.

1.1 Publications Supported by this AFOSR Contract

[1] Gahinet, P., A.J. Laub, C. Kenney, and G. Hewer, "Sensitivity of the Stable Discrete-Time
Lyapunov Equation," IEEE Trans. Aut. Control, AC-35(1990), 1209-1217.

[2] Pandey, P., C. Kenney, and A.J. Laub, "A Parallel Algorithm for the Matrix Sign Function,"
Int. J. High Speed Computing, 2(1990), 181-191.

[3] Gahinet, P., and A.J. Laub, "Computable Bounds for the Sensitivity of the Algebraic Riccati
Equation," SIAM J. Contr. Opt., 28(1990), 1461-1480.

[41 Pandey, P., C. Kenney, A.J. Laub, and A. Packard, "Algorithms for Computing the Optimal
H,, Norm," Proc. 29th IEEE Conf. on Decision and Control, Honolulu, Hawaii; December
1990; pp. 2628-2629.

[5] Pandey, P., C. Kenney, and A.J. Laub, "Numerical Solution of Large-Scale Riccati Equa-
tions," Proc. Third Rockwell Advanced Control Systema/Neural Networc/Signal Processing
Conf, Anaheim, California; January 1991; pp. 100-112.

[6] Kenney, C., and A.J. Laub, "Rational Iterative Methods for the Matrix Sign Function," SIAM
J. Matrix Anal. Appl., 12(1991), 273-291.

t7] Kenney, C., and A.J. Laub, "Polar Decomposition and Matrix Sign Function Condition Es-
timates," SIAM J. Sci. Stat. Comp., 12(1991), 488-504.

[8] Roy, S., R.H. Hashemi, and A.J. Laub, "Square Root Parallel Kalman Filtering Using
Reduced-Order Local Filters," IEEE Trans. Aerosp. Electr. Sya., 27(1991), 276-289.

[9] Laub, A.J., "Invariant Subspace Methods for the Numerical Solution of Riccati Equations,"
in The Riccafi Equation, S. Bittanti, A.J. Laub, and J.C. Willems (eds.), Springer-Verlag,
Berlin, 1991, pp. 163-196.

[10] Pandey, P., C. Keney, A. Packard, and A.J. Laub, "A Gradient Method for Computing the "

Optimal Ho Norm," IEEE Trans. Act. Contr., AC-36(1991), 887-890. o
[11] Ghavimi, A., C. Kenney, and A.J. Laub, "Local Convergence Analysis of Conjwgat Gradient ) 0 0

Methods for Solving Algebraic Riccati Equations," to appear in IEEE Ths. Act. Cotr.,
1992.

[12] Gahinet, P., ad A.J. Laub, "Algebraic Riccatd Equations ad the Dlstace to the Nert ty ow
Uncontrotl Pair,* to appear in SIAM . Casrtr. (OpL4 19. V~ a~
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[13] Kenney, C., and A.J. Laub, "On Scaling Newton's Method for Polar Decomposition and
the Matrix Sign Function," to appear in SIAM J. Matriz Anal. AppL., 1992 (early version
also appeared as "On Scaling Newton's Method for Polar Decomposition and the Matrix
Sign Function," Proc. 1990 American Control Con., San Diego, California; May 1990; pp.
2560-2564).

[141 Gudmundsson, T., C. Kenney, and A.J. Laub, "Scaling of the Discrete-Time Algebraic Riccati
Equation to Enhance Stability of the Schur Solution Method," to appear in IEEE Trans. Aut.
Contr., 1992.

[15] Williams, T., and A.J. Laub, "Orthogonal Canonical Forms for Second-Order Systems," to
appear in IEEE Trans. Aut. Contr., 1992 (early version also appeared as "Orthogonal
Canonical Forms for Second-Order Systems," Proc. 1989 American Control Conf., Pitts-
burgh, Pennsylvania; June 1989; pp. 1621-1622).

1.2 Major Invited Talks and Addresses Supported by this AFOSR Contract

1. State Space Computing: Past, Present, and Futur. Plenary Lecture for the SIAM Confer-
ence, "Control in the Nineties: Achievements, Opportunities, and Challenges," San Francisco,
CA, May 17-19, 1989; also given as a seminar at the Dept. of Mechanical Engineering, Uni-
versity of California, Irvine, Apr. 21, 1989.

2. The Matrix Sign Function and Riccati Equations. Systems Research Center, University of
Maryland, College Park, MD, Apr. 27, 1989.

3. Numerical Techniques for the Solution of Riccati Equations. Invited Plenary Tutorial Lec-
ture for the Workshop on "The Riccati Equation in Control, Systems, and Signals," Como,
Italy, Jun. 26-28, 1989.

4. Control Algorithms and Software Survey. Invited Plenary Lecture for the 3rd Annual
Conference on Aerospace Computational Control, Oxnard, California, Aug. 28-30, 1989.

5. Riccati Equations and the Matrix Sign Function: RIACS, NASA Ames, Moffett Field, CA,
Oct. 17, 1989; Dept. of Electrical Engineering, Princeton University, Princeton, NJ, Oct. 25,
1989; Dept. of Electrical Engineering, University of Ilinois, Urbana, IL, Nov. 3, 1989.

6. Computational Problems in Control Theor. Dept. of Electrical Engineering, University of
Pennsylvania, Philadelphia, PA, Oct. 26, 1989.

7. The Matrix Sign Function and Large-Scale Riccati Equations: Berkeley Center for Systems
and Control, Spring Seminar Series, University of California, Berkeley, CA, May 9, 1990;
Invited Plenary Lecture for SIAM Annual National Meeting, Chicago, Illinois, July 18,
1990.

8. IEEE Control Systems Society Distinguished Lecture Series - Numerical Linear Algebra
Problems in Control Theory- Ohio State University, Columbus, OH, October 22,1990; Wright
State University, Dayton, OH, October 23, 1990.
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1.3 Graduate Students Supported by this AFOSR Contract

1.3.1 Ph.D. Dissertations Completed

i. Pascal M. Gahinet

" Perturbational and Topological Aspects of Sensitivity in Control Theory

" December 1989
" Presently: Research Scientist, INRIA, Domaine de Voluceau, Le Chesnay (Paris), France

2. Pradeep Pandey

" Numerical Algorithms for Robust Control Problems

" December 1990
" Presently: Research Scientist, Integrated Systems, Inc., Santa Clara, California

1.3.2 Other Graduate Students Supported and Expected Completion Data

1. Thorkell T. Gudmundsson (Ph.D., Aug. 1992)

2. Ali R. Ghavimi (Ph.D., Dec. 1992)

3. Philip Papadopoulos (Ph.D., Dec. 1992)

Citizenship: Of the 5 graduate students listed above, 3 are U.S. citizens. Gahinet (France)
held an F-1 student visa as does Gudmundsson (Iceland). In addition to the above, four other
Ph.D. students also work in the P.I.'s research group: Thomas A. Bryan (Aug. 1992), Mark A.
Erickson (Jun. 1993), John J. Hench (Aug. 1992), and Stephen C. Stubberud (Aug. 1992). All
are supported by other contracts or fellowships and all are U.S. citizens.

It should also be mentioned that the P.I. and his students benefit enormously by being members
of the Center for Control Engineering and Computation at UCSB. This Center, under the co-
directorship of Professor Petar Kokotovik and the P.I., consists of nine permanent members from
the Departments of Electrical and Computer Engineering, Chemical and Nuclear Engineering, and
Mechanical and Environmental Engineering. The cross-departmental nature of the Center gives it
great strength for its most important task which is to initiate and coordinate research projects rich in
opportunities for cross-disciplinary investigations and applications to industrial, environmental, and
defense systems. In contacts with industry, the Center benefits from an unusually rich experience
of its members, covering a wide range of technologies.

2 Narrative

In this section we shall highlight research progress made under this AFOSR Contract and give some
indication of current directions of research. Of course, a more detailed description of some of these
research topics is contained in the original proposal.

The primary objective of this project has been the study of algorithms for large-scale computa-
tional problems arising in control, filtering, and system theory. Much of our work has concentrated
on matrix Rccati equations which are absolutely fundamental to the field. Substantial progress
has been made in other areas as well and we give the highlights of some of the more exciting
contributions below with further narrative to follow.
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(1): new parallel algorithms and successful implementations for several key computational prob-
lems in control and filtering

(2): significant breakthroughs in the area of error and condition estimation for the algebraic Riccati
equation

(3): development of an entire family of iterative methods, together with a complete convergence
analysis, for computing the matrix sign function; this family of methods is particularly effec-
tive for the solution of large-scale invariant subspace calculations because of its amenability
to implementation on parallel and vector computers

(4): the first computationally reliable method for estimating the conditioning of the matrix sign
function based on the Fr~chet derivative; this work reveals fascinating parallels between the
conditioning of the Riccati equation and the sign function of an associated Hamiltonian matrix

(5): a new scaling strategy for Newton's method for finding the sign of a matrix; this method
eliminates certain problems of determinantal scaling while remaining nearly optimal in terms
of speed

(6): development and analysis of conjugate gradient methods for solving Riccati equations and
general classes of matrix equations; necessary and sufficient conditions for convergence have
been derived in terms of the invertibility of the associated Frichet derivative

(7): a quadratically convergent gradient method of determining optimal H.. norms; the method is
much faster than current bisection methods and can be extended to more general perturbation
problems

(8): enhanced understanding of certain matrix "nearness" problems

(9): enhanced understanding of what can and can not be done using reliable numerical procedures
for matrix second-order models

Each of these results will be described in more detail below.

(1): We have developed several new algorithms for parallel computers and enjoyed successful im-
plementations of some of them. For example, we have published research in [8] on a number of
strategies and hierarchies for implementing Kalman filters in a decentralized or parallel way.
A major contribution here is to describe and analyze various multisensor network scenarios
whose signal processing tasks are amenable to multiprocessor implementation. A number of
extant strategies are unified and extended and new algorithms are proposed which have the
potential for approximately linear speed-up, are reasonably failure-resistant, and are opti-
mized with respect to communication bandwidth and memory requirements at the various
processors in the architecture. A special feature of the principally suggested architecture is
the ability to accommodate parallel local filters of smaller state dimension than the global
filter. A significant innovation in (8) relative to previous work is the description of specific
implementation details for so-called square-root versions of filters in both covariance and in-
formation filter forms. Another parallel algorithm for matrix Riccati equations is discussed
in (3) below.

(2): We have succeeded in deriving and extending computable error bounds for the solution of
the alpbraic Riccati equation (ARE). These bounds ae based on the theory devekqed by
Kenney, Laub, and Wette (Sys. Contr. Len., 12(1989), 241-150 for the Schur method,
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and Math. Contr. Sig. Sya., 3(1990), 211-224 for Newton refinement). These results and
other algorithms based on invariant subspaces are reviewed in an extensive survey paper
[9] which includes over 230 references. The Schur and Newton results are complementary
in the sense that the Schur method error bound, which is based on an invariant subspace
perturbation result of Stewart (SIAM Review, 15(1973), 727-764), is needed to guarantee that
the computed solution is within the region of convergence of the Newton refinement method. A
combination of using the Schur method and error bound as a "starter" for Newton refinement
with residual error estimation, can be easily implemented numerically and the necessary
changes to existing software are minimal. These results have been extended to discrete and
singular Riccati problems. For example, the discrete sensitivity results in [1] extend those
obtained for continuous systems by Kenney and Hewer (SIAM J. Contr. Opt., 28(1990),
50-69). Similar extensions of the Kenney, Laub, and Wette results will appear in (14]. Both
theoretical and computable bounds are determined and we note that the discrete-time case
turned out to be somewhat nontrivial to handle. We have also developed a much deeper
general understanding of the sensitivity of Riccati equations. Based on the Ph.D. dissertation
of Pascal Gahinet, we have addressed in [3 the problem of determining computable bounds
for the condition or sensitivity of ARE's. Specifically, when solving for the unique symmetric
nonnegative definite solution of an ARE in finite precision arithmetic, it is crucial to know
topological properties of such a solution when the parameter matrices of the equation are
subject to perturbation.

(3): Since the Schur method may be impractical for the very large Riccati problems which can
arise, for example, in distributed parameter control systems, we have also made enormous
progress in extending the matrix sign function approach. This work has its roots in the
important extension of the matrix sign function to generalized eigenvalue problems developed
by Gardiner and Laub (Int. J. Control, 44(1986), 823-832). Those algorithms are based on
applying Newton's method to a simple matrix equation for computing the sign of a certain
matrix and then solving a certain linear system. This has led further to the search for
more efficient methods of evaluating the matrix sign function, and to the development of a
major paper [6] based on PadA approximation of a certain hypergeometric function. This key
paper introduces a new family of algorithms, of which the classical Newton iteration is but a
special case. The algorithms are especially amenable to implementation on both parallel and
vector computers and a complete numerical analysis, including global convergence results,
is developed in [6]. As part of Pradeep Pandey's Ph.D. dissertation, vectorized and parallel
versions of these algorithms have been implemented on a Cray Y-MP supercomputer at
NASA Ames. For reference we note that even our early results have shown that a 100th-
order Riccati equation can be solved on this machine in 0.8 sec. Admittedly, not everyone
has access to a Cray - at this moment. However, it is important to bear in mind that we will
soon have Cray-type computing available in desk-top workstations in the next few years in
much the same way we presently have workstations with as much or more computing power
than the industry-standard VAX computer of only a few years ago. Descriptions of Cray
implementations of efficient parallel partial-fraction versions of high-order formulas from our
new family of algorithms have been published in (2] and [5]. In fact, in [5] we discuss the
numerical solution of Riccati equations of order 556 (involving Hamiltonan matrices of order
1112) in joint work with Rockwel's Rocktdyae Division. The problem derives from a model
associated with Space Station Freedom in which 278 modes are included.

(4): Asdde from matters of just efficiency, the Important numerical questioa of the sensitivity of
matr sip sotmos has also been considered. In [] a rdlnbhe condition estimation procedure
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is presented which costs two extra sign function evaluations. This work is motivated by some
of the fundamental research by Kenney and Laub (SIAM J. Matriz Anal. Appl., 10(1989),
191-209) on estimating condition of general matrix-valued functions. Future research efforts
will attempt to reduce the cost of this condition estimate, and extend these finite-dimensional
Riccati results to infinite-dimensional operator problems arising from distributed parameter
control systems.

(5): Also associated with the matrix sign problem is the use of scaling factors to accelerate conver-
gence. In analyzing optimal scaling factors for the related problem of accelerating Newton's
method for polar decompositon, we have discovered that the commonly used determinantal
scaling for the sign function can behave non-optimally in some rather ordinary situations. A
novel scaling strategy based on the spectral radius is also flawed but the analysis in [13] shows
that the strengths of these two procedures can be combined in such a way as to produce a
simple and efficiently realizable scaling method which is almost always optimal. This research
has, of course, significant practical value for these important matrix calculations.

(6): We have also made great strides in developing and analyzing conjugate gradient (cg) methods
for solving Riccati equations and general classes of matrix equations. In particular, we have
been able to show that the cg method converges in a neighborhood of a solution if and only
if the Frichet derivative of the matrix problem at the solution is invertible. This means, for
example, that the cg method is convergent near the positive extremal solution of an ARE
because the stability of the closed-loop system matrix ensures that the Frchet derivative
(which in this case is just the usual Lyapunov operator) is nonsingular at that solution. Our cg
algorithms can be applied to both symmetric and nonsymmetric Riccati equations, including
those in various "nonstandard" formats (e.g., certain additional terms). The methods can
also be extended to a wide class of general nonlinear matrix-valued equations. This is a very
promising approach for very large-scale problems and our first results will be published in
[111.

(7): In a related development, a quadratically convergent gradient method for finding optimal H.,
norms has been derived. Empirical evidence shows that this approach is much faster than
current techniques such as bisection methods, and can easily be extended to more general H,,
problems. These results have been published in [101. Other new technical characterizations
of Riccati solutions arising in the Ho problem appear in [4].

(8): A key paper [12] will soon be published in the area of matrix "nearness" problems. In this
work, a thorough mathematical treatment is given of the key problem of determining the
nearness to uncontrollability of a given controllable state-space model. The key tool used
in the analysis is a connection between nearness to unstabilizability and the behavior of
the unique symmetric positive definite stabilizing solution of an associated algebraic Riccati
equation.

(9): Finally, an important result relating to the matrix triples commonly found in so-called matrix
second-order models will appear in [15]. The basic idea is to establish which canonical forms
are obtainable under orthogonal equivalence for the standard matrix triple consisting of a
mass matrix, a stiffness matrix, and a damping matrix. Equivalence under orthogonal trans-
formations is, of course, crucial for numercal relabillty. It is established that an arbitrary
damping model can not be used but that orthogonal reduction of the commonly ad modal
damping model can be so reduced.

7



Thus we continue to be excited about the progress that has been made and are extremely
enthusiastic about the prospects and opportunities for further research.

3 Abstracts of Papers Published or Accepted for Publication

See attached.
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Sensitivity of the Stable Discrete-Time
Lyapunov Equation
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P ROPERTIES of the Lyapunov equation are frequently inves- is shown to be a relevant measure of the sensitivity of (1. 1).
[_tigated through the associated Kronecker operator. When Furthermore, this norm turns out to be equal to the spectral

analyzing the sensitivity of the equation, this approach leads to norm of the solution H of (1.1), obtained when W = 1. it also
some measures of conditioning which are difficult to interpret in has a simple interpretation in terms of the open-loop system
terms of the system parameters. Moreover, due to the size of the characteristics, namely, in terms of the L2-norm of the mini-
Kronecker product matrices (n 2 x ft2 where n is the order of mally damped solution of t - Az. More precisely
the matrices in the Lyapunov equation itself), the evaluation of 4
these condition numbers my be problematic for large systems.~ IHR,- maxv f 1 eAlzo 0 dt.

Recently, a new sensitivity measure was introduced 1101 for ol 1
the stable continuous-time Lyapunov equation

In this paper, we extend these continuous-time results to the
A "X .- XA - - W. (1 .1) discrete case, namely, the discrete-time Lyapunovequation

In (1. 1). the unknown X and the matrices A and W are in 0(X) =-, where 0(X) - X -A-XF. (1.3)
C"'"( (the space of ni x n complex-valued matrices). A is
stable, and AN denotes the Hermitian transpose of A: The paper is organized as follows. In the next section. we

AN -. V. No further assumption is made on W. Before getting review some basic concepts concerning (1.3) and perform a
into more detail, we need the following definitions. A liea perturbation analysis in both Frobenius and spectral norm. For
mapping e over C"", defined by each norm, it is shown that the corresponding norm of the

operator 0- is a relevant measue of the conditioning of (1.3).
E)(X) - AHX +XA (1.2) Some classical techniques of estimating the Frobenius norm of

0' are then frusented in Section I. before introducing in
is called a continuous-time Lyapunov operator. Throughout this Section IV our new sensitivity results, based on the evaluation of
paper, the vector norm will be the Euclidean norm, i.e.. AI x 12  the spectral norm of 0 - . Not only does this norm have a
= X rx. Recall the definitions of the Frobenius norm and the closed-form expression in terms of F, but also it can be calcu-
spectral norm (also called 2-norm) of a matrix as. respectively, late exactly by solving a single Lyapunov equation. Section V(~ provides some interpretation of 10 0'1 'ai terms of the System

I'F' lm1 , -("Wae (MNM))' nattural damping, and gives various bounds relating this norm to
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* A PARALLEL ALGORITHM FOR THE MATRIX SIGN
-4 FUNCTION

PRADEEP PANDEY, CHARLES KENNEY and ALAN J. LAUB
Department of Electrical and Computer Engineering

University of California 1
Santa Barbara, CA 93106

Received May 21, 1990

ABSTRACT
We propose a new parallel algorithm for computing the sign function of a matrix.

*j The algorithm is based on the Padi approximation of a certain hypergeomet-
ric function which in turn leads to a rational function approximation to the sip
function. Parallelism is achieved by developing a partial fraction expansion of the
rational function approximation since each fraction can be evaluated on a sepa-
rate processor in parallel. For the sign function the partial fraction expansion is
numerically attractive since the roots and the weights are known analytically and -

can be computed very accurately. We also present experimental results obtained
on a Cray Y-MP.
Keywords: Matrix sign function, parallel algorithms, Pad& approximation.

1. Introduction. For a complex scalar z, with Re(z) # 0, the sign
function sgn(z) is defined as:

sgn(z) +1 when Re(z) > 0
-1 when Re(z) < 0.

I This definition can be extended to matrices X E CPXP, whose eigenvalues do
not lie on the imaginary axis in the following way [14,4]. Let X = T-1 (D +
N)T, where T is nonsingular, D =diag(dl, .4,d), and N is nilpotent and
commutes with D. Define the sign of X by

.sgn(X) = T diag[ sgn(d1),...,sgn(d,) ] T- '.

Because the columns of I - sgn(X) and I+sgn(X) form bases of respectively
the left-half-plane and right-half-plane invariant subspaces of X, the matrix
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can be a problem if the denominator polynomial is ill-conditioned and the
weights are large and of differing signs. However, we have also shown that
for the sip function, the roots and weight are known analytically -nd can

be computed accurately. Hence, the partial fraction expansion is numeri-
cally attractive for the sign function. Experimental results indicate that the
parallel algorithm achieves the expected speedup when implemented on a

parallel machine like a Cray Y-MP.
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COMPUTABLE BOUNDS FOR THE SENSITIVITY OF THE ALGEBRAIC
RICCATI EQUATION"

P. GAHINETt AND A. J. LAU~t

AbftaeL In control or estimation theory, linear-quadratic optimization problems give rise to the

so-called matrix algebraic Riccati equation (ARE). For such problems, a crucial issue is the existence and

uniqueness of a symmetric nonnegative definite stabilizing solution to the ARE. and conditions on the

equation parameters are known which guarantee both. However. in the context of computations in finite

precision arithmetic, and with imperfect parameter identification, it is of concern whether the ARE retains

such a solution in the proximity of a given set of parameters, and how sensitive this solution is to parameter

variation.
In this paper. topological properties, such as openness of the domain of existence and continuity with

respect to parameters, are established for the symmetric nonnegative definite stabilizing solution. Computable

sensitivity estimates are also derived, which quantitatively define a region of safe computation, in terms of

the parameters of the equation.

Key weeds. Riccati equation, sensitivity, stabilizability, computable bounds

AMS(MOS) mbjoc clasuilleations. 49E30. 93B35.93940

I. Istrodu:tlon. The symmetric algebraic Riccati equation (ARE) arises frequently

in control and estimation problems. Consider the continuous-time ARE given by:

(1.) ArX+XA-XFX+G=O

where all terms are matrices in R N (real square matrices of order n), and F and G

are symmetric, nonnegative definite. The case of complex-valued matrices is qualita-

tively similar to the sequel but only the real-valued case will be considered here since

it is most commonly encountered in applications. Under the assumption that the pairs

(A, F) and (G, A) are stabilizable and detectable, respectively, there is a unique

nonnegative definite symmetric stabilizing solution X to (1.1) (see [3) or [12]). By X

stabilizing (for the pair (A, F)), we mean that A - FX is stable, i.e., all its eigenvalues

have strictly negative real parts.
Numerical algorithms are now available that solve the ARE efficiently and depend-

ably, provided the original problem is sufficiently well-conditioned (see (13] or (1]).
Well-conditioned means that the solution X is not greatly affected by small perturba-

tions of the data A, F, G. In that case, and with an appropriate scaling of the data
(cf. [8]), the Schur-type solvers yield accurate solutions to (1.1).

A natural question following this preliminary remark is how to assess the condition-

ing of the symmetric ARE, that is. its sensitivity to perturbations of the data. In other

words, if we consider a.perturbed version of (1.1):

(1.2) (A+AA)rS+ S(A +aA)- S(F+AF)S+G+&G-O,

under what conditions does (1.2) keep a unique, nonnegative definite stabilizing
solution 5? And can we estimate the maximum discrepancy NX - S1 for a given range

of data perturbations A., .F. %G?

* Received by te editors Apnl 17. 1919; accepted for publicaion (in revised ftOr) December 13.19.
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ALGORITHMS FOR COMPUTING THE OPTIMAL No NORM [4J
Pradeep Paadey -Charles Kenney t Alan J1. Laub t Andy Packardt
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Abstract where

We prsenet a gradient method for computing the optimal r0  11 r 0 -1 1  0
norm for a general X4. control problem. Ilia method is much -[.. 0 Rj' £:=DJtDH t -oj0 (3)
faster tdam a bisection method and the additional cost of corn-.I
puting the gradient is small. Convergence is predicated on the The Hamiltonian J. is deined similarly. The following theorem is
snuootmnes of tme spectral radius of tim. product of certain Ric- setal m(]
cati solutions. Hybrid bisction-gradient methods can be used
in the snsmootm case. Theorem I There eists an edmissible controtter such "hn IIT,1. <,

7ifa the J6oU& wine conditions hoXd
1 Introduction (i)H f.e de'n(Ric) and X.:=Ric(I0 ) a0,

(ii) J& iE dein(Ric) and Y. :=Ric(J.) 2!0,
Consider the N.0 problem described in (1, 21. We ame interested in ()p:= p(X.Y.) <a-1.

the olloing inea sysem:In the sequel we describe the behavior of R. and X.. By duality,
i = Ax+Bis+ B2., than comsmetsal"apply to JandYVs. Consider the Riccati equa.
z - Cisz+Dito+ D1216, () tlon associated with X. In (2)

Y=Cis + Ditsw + D-nu. V_(X, a) :- AIX. + X&Ae - XOFOX. + G. -0. (4)

The problem is to Aind a contrallar which is internally stabilising and BY an admissible solution we will mesa a unique peuitle semi-definte
which minimizes 7 := 11T.1 .. the clneed-loop gala from ws to:z. We stabilizing solution. For a a 0 our assumptionsa m" a a prir
assume that (A,5BI) and (A.,B) wre stabllsable, and that (A, CI) that an Admissible Xe :sr Rie(ZO) 2: Omists. However, jara > 0 it
and (A,CI) are detectabl. These assumptions guarantee that the is not clear for what values of. an admissible solutos will eist. By
related ?(3 problem is well defined. Further, consider the following continuity, H. will he In dom(Rse) for seme a> 0. Suppose 9. and
assumptions: J. firs fail to be in doin(Ric) at a. and as, respectively, and define
Al. Du - 0, Df4C Di1, 0 ),D1 JBT Dfi]=10l1). 0.:= min(ae, %). We will refer to&a a C-(,ar) as fireibe. The
A2, D11 = 0. following theorema, which are proved in (51. characterize the behavior

These assumptions are from f 1] where it was noted that a given system o f n .fragnrlpolm
could be transfrmed so that it meet these assumptions via loop- Theorem 2 For fees"lea we can write Ge = CITC.. li V sports
shifting" (61. However, the traafommatious to make D11 = 0 depend the Wsaw yebb subspor of t pear (A, Ci) then it esn sports the
on the gain parameter -y. This makes it harder to characterize the un&eraie.bspse(A., C*). Fbeher, ker(X.) - .
behavior of the Riccasi solutions as a function of 7 and hence, isno
suitable hor the gradient method that we present. Therefre, we will Theorem 3 Lot a. > a, > an 2: 0. Then. for a generaL problem the
work directly with the more diffcut case in which D11 5' 0. we iMM Solutions X. end %, end the spectrel rndiaa fsnawin p. are
will refer to a sYstM that satis"e a&l the assumptions to be in the continuu and mordsesue. ie., X., a X..' ad P6,
sandardfOrmm A system fixwhich D1, #O0will be erdto as
in time general form. For notationa simplicity we defn a := 7-3. 2 Gradient Method
Scalar- and matrix-valued functions of a will be subscriptedl with a.
ff I Is such a fMact"o then r, aad /W will denote its first and second In this section we review apgadient method for compating 7.,o 14). We
derivative, respectively, with respect to a. will aseame that coadition (iii) of Therm 1 will fall befor condition

Lot Dur: [ D"i Dis I end A:= DJ;C, BT 1'. and define (i) or (ii). Ths Implies that at the optmal value p(X.Y.) aj, and
the Haitna .b that Q.0 is atout of the equation,

A 7 '~j A _G. -A~r1 (2) We can find the root Sing the Halle-ssCaa (01' Newns's) method.

Is Is by 041 I eeoo (MA R wOe The dulsutives of hA) ane
1146 it-IWsP. I-*F ftg - j.eSMWW~~ Ia Pest imp SWm Naeaed Sism Fesedaule. sader Gnat lftmp,2' 6
API.4SV Nd . -k Veraag amee Sisalf "msrm e. earetMe , of ase apectr raiu fuenet WUst

Uiug-uA In pansh bym A n e sie e~is pee a e e VC MICR Usisi them ddtsmsh kM aNsv-eeM metb yield
.P (04W PLL

*Ia s +A, where Aw ejV j (7)Af
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Numerical Solution of Large-Scale Riccati Equations

PRADEEP PANDEY, CHARLES KENNEY, and ALAN J. LAUB
Department of Electrical and Computer Engineerng

Uniuersity of California
Santa Barbars, CA 93106

Abstract

We discuss algorithms for obtaining numerical solutions fir largesals algebraic Riccati
equations. By "large-scale" we mean problems arising fnom models involving matrices of dimen-
sions in the hundreds or perhaps thousands. There ar numerm sources for suck problems,
e.g., control of large space structures, distributed parameter systems, and interconnected power
systems. Design of control systems for such lag* systems places a sipificant burden oan com
puting resources and may require unacceptably long computing time on existing computers. We
describe a paralel algorithm for solving Riccati equations which in based on the matrix sign
function. We also present numerical results obtained on a Cray Y-sdP for a structures model
currently under study by Rockwell.

1 Introduction

Algebraic Riccati equations (ARE) play a central role in control theory. Indeed, they are one
of the most deeply studied nonlinear matrix equations arising in mathematics and engineering.
Riccati equations arise in a variety of situations and their role in control and system theory is well
established.

-Consider the following state-space model of a linear system:

i(t) = Az(t) + Bu(t), (1)
yKt) = CS(t),

where the state z(t) e ", the input u(t) e .", and the output y(t) e lV. In an LQG problem

we define an associated quadratic cost function

J(u) := +

and we want to find a state-feedback control s such that the closed-loop system is stable and the
cost function J is mialmized. This optimization problem lInds to the fllowing A

ATX + XA - XBBrX + CTC = 0, (2)

where A E 3SES, Be 3 *.x, and C e 3P1'. NatuMrmumptiumosta*ya dekwt
ity guaratee ezietuce of X = XT c t"n"" which Ig the unique Rnvmngtl ddbits sMblhhla
solMUiof o(2).

We an iutn@dh eis cmt alprithm for slving bIrm k ARZ. Our pdmar M@twdlM is
thM is the futn uemal tenghnsm ca iacrmaaln be iped to be bMtsMd is sadviR ;R61 -
of WVr dWumsi.M At psint problem sam of tre' @w eva Iw 9huaizei ca3 be eladled by
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Size of problem 542
Time (seconds) 207
One-norm of residual R 3.9093 x 10-9

Unfortunately, we cannot deduce accuracy of the computed solution from the norm of the residual
alone. Suppose S is the true admissible solution for the ARE in (2). To get a better measure of
accuracy we use the following bound from Kenney et al. (141:

IX - S11 < 211n-'IIIII11, (37)
where f0 is the closed-loop Lyapunov operator defined by

fl(Z):= AYZ+ ZA., when A:=A-BBT*X.

In (14] Kenney et aL also showed that IIn-'ll = IIZll where Z 4E . x v' solves

ATZ + ZA, +Ir = 0. (38)

We solved the above equation to obtain IiZiI = 1.362 x 103. From the data we conclude that the
solution X was computed to at least 6-digit accuracy.

6 Summary

We have proposed a new parallel algorithm for solving largs-cal Riccati equations. The algorithm
is based on a partial fraction expansion of a certain Pad4 approximation used In computing the
matrix sip function. A partial fraction expansion allows a parallel implementation in which each
fraction can be evaluated on a different processor. In general, the roots and weights of such an
expansion have to be computed numerically. This can be a problem if the denominator polynomial
is ill-conditioned and the weights are large and of differing sips. However, we have also shown that
for the sign function, the roots and weights ame known analytically and can be computed accurately.
Hence, the partial fraction expansion is numerically attractive for the sign function. Experimental
results indicate that the parallel algorithm achieves the expected speedup when implemented on a
parallel machine like a Cray Y-mP.
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RATIONAL ITERATIVE METHODS FOR
THE MATRIX SIGN FUNCTION*

CHARLES KENNEYt AND ALAN J. LAUBt

Abstract. In this paper an analysis of rational iterations for the matrx sign function is Presented. This
analysis is bond on Pad6 approximations of a certain hyperpeometric function and it is shown that lo
convergence results for "multiplication-rich'" polynomial iterations also apply to these rational methods. Mui-
tiplication-rich methods are of particular interest for many parallel and vector computing environments The
main diagonal Pud recursions, which include Newton's and Halley's methods as special cases, are globally
convergent and can be implemented in a multiplication.rich fashion which is computationally competitive with
the polyomi recursions (which are not globally convergent). Other ratioal iteration schemes are also discusled
including Laurent approximations, Ca~ley power methods, and globally convergent eigenvalue asignment I
methods

Key won. Pad6 approximation, matrix sign function, Riccati equations, rational iterations

AMS(MOS) subject clalficstoes. I5A24. 65D99. 6SF99

1. Introdcdio. It is a classical result that the algebraic Riccati equation can be
solved by using an invariant subspace of an associated Hamiltonian matrix. This motivated
the introduction, by Roberts [21] in 1971, of the matrix sign function as a means of
finding the positive and negative invariant subspaces of any matrix X which does not
have eigenvalues on the imaginary axis. This and subsequent work (91 showed that the
matrix sign function could be used to solve many problems in control theory.

The sign of X can be defined constructively as the limit of the Newton sequence

(1.1) X.., = I(X.+XV), Xo-X,

(1.2) sgn(X)- lim X5.
a , - 0

Newton's method has the pleasant feature that it is globally convergent; if X has no
eigenvalues on the imaginary axis then the limit in (1.2) exists. As a definition, however,
(1.2) does not reveal many of the important properties of the sign function. Because of
this, it is useful to have an equivalent definition based on the Jordan canonical form of
X(see (41, (71). For a complex scalar z with Re z # 0. define the sign ofz by{I ifRez>0,
(1.3) sgn = - ifRe>0,L-I if Re z<0.

For a complex matrix X such that A(X) c C * U C- (i.e.. X has no eigenvalues on the
imaginary axis) let T take X to Jordan form:

(1.4) Xs - [ P 0T.

0Rmmwiv by tbe edsnSeptember 211. 19W.~ awpu for pubinmisa (is maba foe) Novesme IS.
19189. 1Th Mn su m 'sd by Naionalr ac Foueissim (ad irkFom6d ehtik RmNA)
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POLAR DECOMPOSITION AND MATRI SIGN FUNCtiON
CONDITION ESTIMATWS

CHARLES KENNEYt AND ALAN J. LAU~t

Abstract. This paper presents reliable condition estimation procedures. based, i Fr~chet derivatives.I for polar decomposition and the matrix sign function. For polar decomposition, the condition number for
complex matrices is equal to the reciprocal of the smallest singular value, and rather surprisingly, r real
matrices it is equal to the reciprocal of the average or the two smallest singular values. By using inverse
power methods, both of these condition numbers can be evaluated at a fraction of the cost of finding the

polar decomposition.
Except for special case, such as for normal matrices, the condition number of the matrix sign function

does not have such a precise characterization. Howe-er, accurate condition estimates can be obtained by
using explicit forms of the Frichet derivative, or its finaite-dufferenca approximation, with a atatricial inverse
power method. These methods typically require two extra signt Function evaluations, and it is an open
problem whether accurate estimates can be obtained for a fraction of a function evaluation, as is the case
fr the polar decomposition. Related results fr the stable Lyapunov equation andl Newton's method for
the matrix square root problem are discussed.

Key weds pola decomposition. matrix sign function, conditioning
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1. lnarodctie Both the polar decomposition and the matrix sipn function play
important roles in many matrix algorithms [1]-[3], [8], [9], (141, [17]. The sensitivity
of these matrix functions is determined by the norms of their Fr6chet derivatives. More
specifically, let F - F(X) be a matrix function which is continuously differentiable at
X in the sense that there exists a linear matrix operator L(-) - L(-, X, F) such that
for any matrix 7,

(1.1) liFX 8  )( ) L(Z).

Then L is the Frechet derivative of F at X and we define the absolute and relative
condition numbers of F at X, with respect to a matrix norm II -L by &,I(F, X) - ILI -
maxjzm,.o JL(Z)II/IIZI, and K,(F, X) - ILII IIXH/IIF(X)I when IF(X)I #0. This
definition is consistent with the condition theory of Rice (16] (see [13]). For 6 small
and IIZiI - 1, we see from (1.1) that

II&FII - JIF(X +8BZ) - F(X)M a HL(Z)jjII8 6,

which motivates the use of 11 1 as a condition measure for the mapping X - F(X).
As a simple example, if F(X) - X' then

F(X+ 8Z) -F(X), m Z + XZ + S2

1so L(Z) -ZX+XZ and 11IL11 S2IIXII.
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Square Root Parallel Kalman focustof reat insirecent easin mulensor

Filtering Using Reduced-Order Thissemsro tfcttatingmn olthi
centralized filter in a mutisCAsof system can result iLocal Filters =even copttoa rbesdet vrodn h
the overall centralizc ;system mtay be unreliable and
suffer from poor accuracy, and stability. This leads
naturally, to decentralized processig configurations.

S. N 'briow decentralized and parallel versions of the
NI L I'"SfEMI Kalman filter hawe been reported in the literatre
A. X. LAMh FiODW. WEEE [1-104 Conventional Kjaman. filtering algorithm
Univuaty of Caiftmorat~ Santa Barbeca thoughi well Wsown to be theoretically globally optimal

(ecg&, 1111). can also be numerically unreliable. 1b
remedy such problems, more numerically stable and
better conditiond impiementatiim of the K~alman

WMW TWIM disata-4ime P~u Kaleuam fluet fltering algorithms. such as U-D or sque foot
.ahn - a6 aatSpcia WISDO @IV I~e rest formulations, are employed 112.14f Recent efforts

mulst M 6" Gba tUM Sol~hm aid WAD 1A UhIh have concentrated, on decetirailed versions of suach
Thwvuglo Ons pqwe - 91e 9b do m atla.de of voin tlmkally stable filtering algoritra. eqg, (14-191

Ow Ia -sme rW toWar o aCbmby falas SpeialDecentralized estimation oftes n~m
lbs*d h lam3Sooltl a tofeela As a o ClY t femmo ~ advantages in m"apiton.Jddin Ing"n

Paalldmf o ueasmwSednmk o circumstances it provides the most loicll feasible
nomb hal El Mk The Sd m a imeref Wt dlamie Proesin ~ w cmes. For instance, in a multisensor
fel o (Wba ti S lb rom ft dom rena~ d Af system in which each indiVidual senor bas a own

,a~wg at hink~ .a~ b~m~m "aeds Elm "built-in" Kalmm filter oni s intemeted in combining
an alatad at a mural lowe at cack "to I. 0S"rm* lN kU-Ole% the estimates from thene independent data soures
sl" bl opdomi saflomainm do*r smaaa .eff ee'arkme er (L~e, the built-in Kalmian filters) to generate a global
JAteWiAM" Maf (aort"ar upar fats., estimate that will, ideally, be optimal. Furtheormore

decentralizattion makes for easy fault detection and
isolation (SJL since the output of each local secuo
Melt can be tested and. If a snsor shulild fall,
it can be expeditiou*l removed arm the scnor
netwk before it affects; the agmpe flter outpuL
Also, decentralization inases the Input data rate
significantly and yields moderate improwements in the
thropt

The focus of several existing parallel Kalmuan filte
structure (11-3,6d,7,9, 10J) has been to preserve
the oveal global optimality of the whole system,
which is definitely a desirable feature and serves as a
bench=*r for other system While all the previous

9 F~nk% 3419W fWVW Agus 2&19W results have assumed fiavr local models to
Maau~, rrniniFeksa Nb199 r'bs Aua'U 990 ahiem 0"ba optimsay, the lats Of this work is 10

(EEE L* ft 41t investigae acoima and present aliilas forwhc
7WM N19a~ yf i a tm lSml the same can be achieve using vecdorda local

PiAaMab ider COMaM AOSR*0? and by' the Nuatoa flits. In ana, thin cumt be aedi4 ftr artatury
Woosl 0000161011 (ad AVOIR) mmiii Grit ECI11UP global and (iudoid ) local ida w is
Mlb@m ma a ftR~Dips.af Ewrica saiau aid aBMW thi Is Sedes ML Aftwo 3Mm ff the

Usiesb athimtomm, ~ i, ~ Ed"'i. A I'lU appllaft of t aIsiN I nd ~a popa
IL IL NEWEL~ 0111L di RuiddM Kabw twmas Causer L= as* INN h.aeimnhi aswamI NOW a'innls fr
Aafft CA UUM A. I tlik Dept. de Moo"d iCampusi wble thun %Fd ane iw i e ua~o 'Ius
IM16"aft U~m. i Cdflhuh, saa Uam&.s CA isme kotf ans u i t glbdam rns en be
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7 Invariant Subspace Methods for the Numerical

Solution of Riccati Equations

AlOaJ. Laub

7.1 Introduction

In this tutrial paper, an overview is given of progress over the pat ten to feesi
years towardu reliable and efficient numerical solution of various "ype ot Riccati
equations. Out aennoni will be directed primarily to matrix-valued algebfic Ric-
cad equatimn and numerical methods fo thir solution based on computing bases
for invariant subspeces of certain associated matrices. Riccati equations mis in
modeling both continuous-am and discret-im system in a wide variety of ap-
plications in science and engineering. One can study bath aipemic equation and
differential or difference equations. Both algebraic and differntial or di~kncs
equations can be further classified according to whehe ther coeffiient matrices
give rise to 3o-calle symmetric or noasymmerc equations. Symmeuki Riccati
equations can be further classified according to whether or not they =m definite or
indefinite.

The rest of the paper is organized as follow. A brief review, of 'claulcul
methods is followed by a summary of the now-standard Schur method, intoduced.--
in I97, for solving alebraic Riccati equations. Extensions of the basic Schur
method, by mean of associte generalized eigenvalue problems, are then do-
scribed together with mam applications. Next. some powerfu new numerical re-
sults relating wo Riccati equations in general, will be described. Thesn inlude a
thorough analysis o( iterative refinement via Newton's method (including a comn
putable estimat of the region of convergenc), a them on tho relaton of error
estimates to resduals, estimation of tim condition of algebraic Riccasi equations,
and promising new scaling sntrawiua Newsm's method for comapting the maWki
sign function is then described and ins impkewmamo for parullel algortins for

* Riccad equations (on a ms -pasing hypebe camptar) is oudfinud. This
* method is particularly well suited to paalellzulon and veclatindwo and hes been
* used successfully to solve fairly tarp order (several htbmd)Q pumblems. A Imb
* at~o geuuralizations of this basic iteration have sended ins applicabity lo a Iu

rang of problemts. For example, gnrlulm of the aerx sip ta IcI Wo die
case of matrix pencils allows suiighdarwurd solutio of discs0 0 - Ricced aqua

* dons. Futhermome, the Newton iteradon itself has bun semmmilud coonds~l~y
and found to be but a special case of a genal finslly atl- -si1 1m for domm

.
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9 softwaw: This is almost always. of coarse the ultimat vehicle Of feliable teb'
nolog ansfer. Early atmts at a Iarp comprehesive Fortranbased Riccati
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Local Convergence Analysis of Conjugate Gradient

Methods for Solving Algebraic Riccati Equations *

Ali R. Ghavimi, Charles Kenney, and Alan J. Laub
Dept. of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106

Abstract

Necessary and sufficient conditions are given for local convergence of the con-
jugate gradient (cg) method for solving symmetric and nonsymmetric algebraic
Riccati equations. For these problems, the Frobenius norm of the residual ma-
trix is minimized via the cg method, and convergence in a neighborhood of the
solution is predicated on the positive definiteness of the associated Hessian ma-
trix. For the nonsymmetric case, the Hessian eigenvalues are determined by
the squares of the singular values of the closed-loop Sylvester operator. In the
symmetric case, the Hessian eigenvalues are closely related to the squares of the
closed-loop Lyapunov singular values. In particular, the Hessian is positive defi-
nite if and only if the associated operator is nonsingular. The invertibility of these
operators can be expressed as a non-cancellation condition on the eigenvalues of
the closed-loop matrices. For example, the stability of the closed-loop matrix, for
the positive semi-definite Riccati solution, ensures the invertibility of the Lya-
punov operator and hence the convergence of the cg method in a neighborhood
of that solution.

1 Introduction

When minimizing a cAlar function f via the conjugate gradient (cg) method, local conver-
gence is equivalent to the Hessian of f being positive ddnite at the point of minimization (I].

"Thb Nmek was sappote in part by the Nadasel 8.m 1rbmdatlMc (sad AFO ) Adw Gmat No,
ES71-ZIU, by dhe Neabmd Science Foudtonw ade Grst No. DMSU.O17, sod by the Air Foce
O fs tS i Rh m ml ude Contrat No. AFOSWR44.-U6.
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Algebraic Riccati Equations and the Distance to
the Nearest Uncontrollable Pair *

P. Gahinet and A.J. Laub

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

Abstract

A connection is established between nearness to unstabilisability of a stabilisable
pair (A, B) of matrices and nearness to singularity of the symmetric positive definite
solution to an associated algebraic Riccati equation. From this result, computable
upper and lower bounds are derived for the distance of (A, B) to the nearest un-
controllable pair. Numerical tests confirm the validity of the method and potential
applications are discussed.

1 Introduction

When numerically assessing whether a pair of matrices (A,B) E Rox x R"xM is con-
trollable (or stabilizable), tests which simply provide a yes/no answer are not entirely
satisfactory [17, 181. Instead, an estimate of how far the pair is from the set of uncon-
trollable (respectively, unstabilizable) pairs is more relevant. Unfortunately, this involves
a nonconvex minimization in a space of n dimensions and existing numerical methods to
search for minima often suffer from the following limitations:

" the computed minima are only local,

" a two-dimensional search is necessary when complex perturbations are allowed,

" the speed of convergence is guaranteed to be quadratic only in the proximity of the
local minima and a high computational overhead may thus be attached.

Few lower or upper bounds on the distance to uncontrollability are available in the
literature. Upper bounds were proposed in (1) but they require either forming the coa-
trollability matrix, or that A be stable. A lower bound was obtained by Demmel in (6).

*This research was supported by the Natiosal Sdeco Fowndatioa (and AFOSR) uade Gnat No.
ECSS-I8897 aud the Air Force Office of Sdestific Rusea rhad. ConAtrct No. AFOSR49-,0167. ROOM
should be addressed to the first author, currently with INRIA, Doems de Volucesn, SP 105, 813 Le
Chemasy Cedez, Fnasmo.



On Scaling Newton's Method for Polar Decomposition and the

Matrix Sign Function

Charles Kenney Alan J. Laub
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106

Abstract

A tight bound is given on the speed of convergence of Newton's method with optimal scaling
for the polar decomposition of a nonsingular complex matrix. Necesmary and sufficient conditions
are then derived which tell when an approximation to the optimal scaling value will give better
results than the unscaled Newton method. For the related matrix sign problem, it is shown that
optimal scaling requires complete knowledge of the eigenvalues of the original matrix. Because
this is impractical, we derive a family of scaling methods which are optimal with respect to
partial eigenvalue information. This family includes optimal scaling as well as a 'semi-optimal'
scaling method based on the dominant eigenvalues of the matrix and its inverse. Semi-optimal
scaling can be implemented using the power method and gave nearly optimal performance on
a set of test problems. These test problems also show that a variety of other commonly used
scaling strategies, including spectral scaling, determinantal scaling, and 2-norm scaling can result
in unduly slow convergence.

Keywords- polar decomposition, matrix sign function, Newton's method, optimal scaling.
AMS(MOS) subject classification: 65F35,65F30,15A18.
Abbreviated title: Scaling Newton's method.

1 Introduction

The polar decomposition of a noosingular complex matrix A of order m is a matrix pair (U, H) such that

U is unitary, H is Hermitian and positive definite, and A = UH. If A has a singular value decomposition,
A - PEQR, where P and Q are unitary and E = diag(rl,. orm) with 0 < r,. <. a,, thel([7]

U=PQ', H=QWEQ . (1)

However, it is more efficient to compute the polar decomposition using scaled Newton recursions of the form,

A,,+ 1 = !(-,,A, + (y,,Af)-'); Ao = A, -r, > 0. (2)

For y. suitably chos , A10], An - U, and H can be found from H - UA. In the next section we
give converpncs b l g the empirical observation that Newton's method with optimal scaling,

*Tbb nn., wam wm by 11w NaWsa Sd Famdmia (-- AMOOR) m Gr o Ks No. SSST-0, boN.simi Sd.. Vim0a mde Om No, DMS.O0o , as.i, d Ar Pm 04k. of 3dea, Romm midw Camma
No.. AF54w.OS.



Scaling of the Discrete-Time Algebraic Riccati Equation to

Enhance Stability of the Schur Solution Method *

Thorkell Gudmundsson, Charles Kenney, and Alan J. Laub
Dept. of Ele'trical and Computer Engineering

University of California
Santa Barbara, CA 93106

Abstract

A simple scaling procedure for discrete-time Riccati equations is introduced. This procedure
eliminates instabilities which can be associated with the linear equation solution step of the gen-
eralized Schur method without changing the condition of the underlying problem. A computable

bound for the relative error of the solution of the Riccati equation is also derived.

1. Introduction

The Schur method [8J for solving discrete-time algebraic Riccati equations consists of transforming an as-

sociated generalized eigenvalue problem to real Schur form using orthogonal equivalence transformations,

followed by the solution of a system of linear equations. The orthogonal transformations are numerically

well-conditioned, but recent work (12 has suggested that the overall method can appear numerically unsts.

ble, even when the original equation is well-conditioned. This can originate for two different reasons. One is

the ill-conditioning of a linear system of equations, and the other is related to scaling problems for the basis

vectors of a certain subspace. In this paper we extend the work which was done for the continuous-time

Riccati equation in (71 to the discrete-time equation and show that this apparent numerical instability can

be eliminated by a scalar scaling procedure. Moreover, this analysis yields a good computable bound on the

relative error of the solution of the Riccati problem.

Our procedure is not completely satisfactory, because the scalar involved is a function of the solution to

be computed and thus leaves open the question of how to estimate it accurately beforehand. However, this

does not invalidate our main result in any way, namely that the Schur method is not inherently numerically

unstable. In fact, the problem can be circumvented by solving the unscaled equation, using our anor bound

to establish the accuracy of the computed solution, and in cm that is not satisfactory, usi the imccurt

solution to atimate the optimal scaling parameter. This stimat will almoat always be sucisantly close to

the correct val to yield am accurate result on the second pm.

.7%b .ra w, sesdbm pen by tbo Naasdm. ressidwas (.., AIFOS) uWr 0omas N& CSS-VU .,
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Orthogonal Canonical Forms for Second-Order Systems

Trevor Williams
Dept. of Aerospace Engineering and Engineering Mechanics

University of Cincinnati
Cincinnati, OH 45221-0070

and

Alan J. Laub
Dept. of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106

Abstract
It is shown in this paper that a linear second-order system with arbitrary damping cannot

be reduced to Hessenberg-triangular form by means of orthogonal transformations. However,
it .s also shown that such an orthogonal reduction is always possible for the modal damping
commonly assumed for models of flexible structures. In fact, it is shown that modally damped
models can be orthogonally reduced to a new triangular second-order Schur form.

1 Introduction

Second-order models arise naturally in the study of many types of physical systems, with common

examples being electrical and mechanical networks. An application area of great practical interest

for dynamics and control is that of flexible space structures (FSS) [2], which are commonly repre-

sented by second-order finite element models of very high dimension. Now, continuum models of

structures are, to be sure, much more elegant (see, for example, (1, 11]) but it is generally still the

case that setting up the governing partial differential equations and solving the resulting boundary

value problems can only be done for relatively simple structures. In analyzing a realistic structure

(spacecraft, airplane, etc.), a continuous structure model is seldom feasible and common engineer-

ing practice has been to use some method (usually finite elements) to get an approximate "M and

'This work was initiated while the first author held a National Rsearch Council-NASA Langley Reseach Center
Senior Rsearch Amociataship. The work of the second anthor was supported by the National Sience Foundation
(and AFOSR) unde Grant No. ECS87-iss9 and the Air Force Oce of Scientilic Rsearc under Contract No.
AFOSL.89-0167.
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