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1 Factual Data

This section contains a factual listing of publications, research lectures, and students supported
in whole or in part under Contract No. AFOSR-89-0167 with total funding support of $128,035
during the period December 15, 1988 to June 14, 1991. In particular, our research advances have
led to 15 open literature publications, including 12 in the leading IEEE and SIAM journals. They
are listed below and the narrative to follow in Section 2 is keyed to this list. Significant progress
made under the auspices of the contract as well as plans for the future will be documented in the
narrative. Finally, copies of the abstracts of papers published or accepted for publication will follow
in Section 3.

1.1 Publications Supported by this AFOSR Contract

[1] Gahinet, P., A.J. Laub, C. Kenney, and G. Hewer, “Sensitivity of the Stable Discrete-Time
Lyapunov Equation,” IEEE Trans. Aut. Control, AC-35(1990), 1209-1217.

(2] Pandey, P., C. Kenney, and A.J. Laub, “A Parallel Algorithm for the Matrix Sign Function,”
Int. J. High Speed Computing, 2(1990), 181-191.

[3] Gahinet, P., and A.J. Laub, “Computable Bounds for the Sensitivity of the Algebraic Riccati
Equation,” SIAM J. Contr. Opt., 28(1990), 1461-1480.

[4] Pandey, P., C. Kenney, A.J. Laub, and A. Packard, “Algorithms for Computing the Optimal
Hy, Norm,” Proc. 29th IEEE Conf. on Decision and Control, Honolulu, Hawaii; December
1990; pp. 2628-2629.

[5] Pandey, P., C. Kenney, and A.J. Laub, “Numerical Solution of Large-Scale Riccati Equa-
tions,” Proc. Third Rockwell Advanced Control Systems/Neural Network/Signal Processing
Conf., Anaheim, California; January 1991; pp. 100-112.

[6] Kenney, C., and A.J. Laub, “Rational Iterative Methods for the Matrix Sign Function,” SIAM
J. Matriz Anal. Appl., 12(1991), 273-291.

[7] Kenney, C., and A.J. Laub, “Polar Decomposition and Matrix Sign Function Condition Es-
timates,” SIAM J. Sci. Stat. Comp., 12(1991), 488-504.

(8] Roy, S., R.H. Hashemi, and A.J. Laub, “Square Root Parallel Kalman Filtering Using
Reduced-Order Local Filters,” IEEE Trans. Aerosp. Electr. Sys., 27(1991), 276-289.

{9] Laub, A.J., “Invariant Subspace Methods for the Numerical Solution of Riccati Equations,”
in The Riccati Equation, S. Bittaati, A.J. Laub, and J.C. Willems (eds.), Springer-Verlag,
Berlin, 1991, pp. 163-196.
wr

(10] Pandey, P., C. Kenney, A. Packard, and A.J. Laub, “A Gradient Method for Computing the “—?‘
Optimal H,, Norm,” IEEE Trans. Aut. Contr., AC-36(1991), 887-890. . a

(11} Ghavimi, A., C. Kenney, and A.J. Laub, “Local Convergence Analysis of Conjugate Gradient ,n___[_:'_

Methods for Solving Algebraic Riccati Equations,” to appear in /[EEE Trens. Ast. Contr.,
1992.

V4

(12] Gabinet, P., and A.J. Laub, “Algebraic Riccati Equations aad the Distance to the Nearest '~

Uncontrollabls Pair,” to appear in SIAM J. Contr. Opt., 1992.
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(13] Kenney, C., and A.J. Laub, “On Scaling Newton’s Method for Polar Decomposition and

[14]

[15]

the Matrix Sign Function,” to appear in SIAM J. Matriz Anal. Appl., 1992 (early version
also appeared as “On Scaling Newton’s Method for Polar Decomposition and the Matrix
Sign Function,” Proc. 1990 American Control Conf., San Diego, California; May 1990; pp.
2560-2564).

Gudmundsson, T., C. Kenney, and A.J. Laub, “Scaling of the Discrete-Time Algebraic Riccati
Equation to Enhance Stability of the Schur Solution Method,” to appear in IEEE Trans. Aut.
Conir., 1992.

Williams, T., and A.J. Laub, “Orthogonal Canonical Forms for Second-Order Systems,” to
appear in [EEE Trans. Aut. Contr., 1992 (early version also appeared as “Orthogonal
Canonical Forms for Second-Order Systems,” Proc. 1989 American Control Conf., Pitts-
burgh, Pennsylvania; June 1989; pp. 1621-1622).

Major Invited Talks and Addresses Supported by this AFOSR Contract

. State Space Computing: Past, Present, and Future: Plenary Lecture for the SIAM Confer-

ence, “Control in the Nineties: Achievements, Opportunities, and Challenges,” San Francisco,
CA, May 17-19, 1989; also given as a seminar at the Dept. of Mechanical Engineering, Uni-
versity of California, Irvine, Apr. 21, 1989.

. The Matriz Sign Function and Riccati Equations: Systems Research Center, University of

Maryland, College Park, MD, Apr. 27, 1989.

. Numerical Techniques for the Solution of Riccati Equations: Invited Plenary Tutorial Lec-

ture for the Workshop on “The Riccati Equation in Control, Systems, and Signals,” Como,
Italy, Jun. 26-28, 1989.

. Control Algorithms and Software Survey: Invited Plenary Lecture for the 3rd Annual

Conference on Aerospace Computational Control, Oxnard, California, Aug. 28-30, 1989.

. Riccati Equations and the Matriz Sign Function: RIACS, NASA Ames, Moffett Field, CA,

Oct. 17, 1989; Dept. of Electrical Engineering, Princeton University, Princeton, NJ, Oct. 25,
1989; Dept. of Electrical Engineering, University of Illinois, Urbana, IL, Nov. 3, 1989.

. Computational Problems in Control Theory: Dept. of Electrical Engineering, University of

Pennsylvania, Philadelphia, PA, Oct. 26, 1989.

. The Mairiz Sign Function and Large-Scale Riccati Equations: Berkeley Center for Systems

and Control, Spring Seminar Series, University of California, Berkeley, CA, May 9, 1990;
Invited Plenary Lecture for SIAM Annual National Meeting, Chicago, Illinois, July 18,
lm.

. IEEE Control Systems Society Distinguished Lecture Series — Numerical Linear Algebra

Problems in Control Theory: Ohio State University, Columbus, OH, October 22, 1990; Wright
State University, Dayton, OH, October 23, 1990.




1.3 Graduate Studehts Supported by this AFOSR Contract
1.3.1 Ph.D. Dissertations Completed
1. Pascal M. Gahinet

o Perturbational and Topological Aspects of Sensitivity in Control Theory
¢ December 1989
o Presently: Research Scientist, INRIA, Domaine de Voluceau, Le Chesnay (Paris), France

2. Pradeep Pandey

o Numerical Algorithms for Robust Control Problems
¢ December 1990
o Presently: Research Scientist, Integrated Systems, Inc., Santa Clara, California

1.3.2 Other Graduate Students Supported and Expected Completion Data
1. Thorkell T. Gudmundsson (Ph.D., Aug. 1992)

2. Ali R. Ghavimi (Ph.D., Dec. 1992)
3. Philip Papadopoulos (Ph.D., Dec. 1992)

Citizenship: Of the 5 graduate students listed above, 3 are U.S. citizens. Gahinet (France)
held an F-1 student visa as does Gudmundsson (Iceland). In addition to the above, four other
Ph.D. students also work in the P.I.’s research group: Thomas A. Bryan (Aug. 1992), Mark A.
Erickson (Jun. 1993), John J. Hench (Aug. 1992), and Stephen C. Stubberud (Aug. 1992). All
are supported by other contracts or fellowships and all are U.S. citizens.

It should also be mentioned that the P.I. and his students benefit enormously by being members
of the Center for Control Engineering and Computation at UCSB. This Center, under the co-
directorship of Professor Petar Kokotovi¢ and the P.L, consists of nine permanent members from
the Departments of Electrical and Computer Engineering, Chemical and Nuclear Engineering, and
Mechanical and Environmental Engineering. The cross-departmental nature of the Center gives it
great strength for its most important task which is to initiate and coordinate research projects rich in
opportunities for cross-disciplinary investigations and applications to industrial, environmental, and
defense systems. In contacts with industry, the Center benefits from an unusually rich experience
of its members, covering a wide range of technologies.

2 Narrative

In this section we shall highlight research progress made under this AFOSR Contract and give some
indication of current directions of research. Of course, a more detailed description of some of these
research topics is contained in the original proposal.

The primary objective of this project has been the study of algorithms for large-scale computa-
tional problems arising in control, filtering, and system theory. Much of our work has concentrated
on matrix Riccati equations which are absolutely fundamental to the field. Substantial progress
has been made in other areas as well and we give the highlights of some of the more exciting
contributions below with further narrative to follow.
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(1): new parallel algorithms and successful implementations for several key computational prob-
lems in control and filtering

(2): significant breakthroughs in the area of error and condition estimation for the algebraic Riccati
equation

(3): development of an entire family of iterative methods, together with a complete convergence
analysis, for computing the matrix sign function; this family of methods is particularly effec-
tive for the solution of large-scale invariant subspace calculations because of its amenability
to implementation on parallel and vector computers

(4): the first computationally reliable method for estimating the conditioning of the matrix sign
function based on the Fréchet derivative; this work reveals fascinating parallels between the
conditioning of the Riccati equation and the sign function of an associated Hamiltonian matrix

(5): a new scaling strategy for Newton’s method for finding the sign of a matrix; this method
eliminates certain problems of determinantal scaling while remaining nearly optimal in terms
of speed

(6): development and analysis of conjugate gradient methods for solving Riccati equations and
general classes of matrix equations; necessary and sufficient conditions for convergence have
been derived in terms of the invertibility of the associated Fréchet derivative

(7): a quadratically convergent gradient method of determining optimal H., norms; the method is
much faster than current bisection methods and can be extended to more general perturbation
problems

(8): enhanced understanding of certain matrix “nearness” problems

(9): enhanced understanding of what can and can not be done using reliable numerical procedures
for matrix second-order models

Each of these results will be described in more detail below.

(1): We have developed several new algorithms for parallel computers and enjoyed successful im-
plementations of some of them. For example, we have published research in (8] on a number of
strategies and hierarchies for implementing Kalman filters in a decentralized or parallel way.
A major contribution here is to describe and analyze various multisensor network scenarios
whose signal processing tasks are amenable to multiprocessor implementation. A number of
extant strategies are unified and extended and new algorithms are proposed which have the
potential for approximately linear speed-up, are reasonably failure-resistant, and are opti-
mized with respect to communication bandwidth and memory requirements at the various
processors in the architecture. A special feature of the principally suggested architecture is
the ability to accommodate parallel local filters of smaller state dimension than the global
filter. A significant innovation in (8] relative to previous work is the description of specific
implementation details for so-called square-root versions of filters in both covariance and in-
formation filter forms. Another parallel algorithm for matrix Riccati equations is discussed
in (3) below.

(2): We have succeeded in deriving and extending computable error bonn&a for the solution of
the algebraic Riccati equation (ARE). These bounds are based on the theory developed by
Kenney, Laub, and Wette (Sys. Contr. Lett., 12(1989), 241-150 for the Schur method,

L]




and Math. Contr. Sig. Sys., 3(1990), 211-224 for Newton refinement). These results and
other algorithms based on invariant subspaces are reviewed in an extensive survey paper
(9] which includes over 230 references. The Schur and Newton results are complementary
in the sense that the Schur method error bound, which is based on an invariant subspace
perturbation result of Stewart (SIAM Review, 15(1973), 727-764), is needed to guarantee that
the computed solution is within the region of convergence of the Newton refinement method. A
combination of using the Schur method and error bound as a “starter” for Newton refinement
with residual error estimation, can be easily implemented numerically and the necessary
changes to existing software are minimal. These results have been extended to discrete and
singular Riccati problems. For example, the discrete semsitivity results in [1] extend those
obtained for continuous systems by Kenney and Hewer (SIAM J. Contr. Opt., 28(1990),
50-69). Similar extensions of the Kenney, Laub, and Wette results will appear in {14). Both
theoretical and computable bounds are determined and we note that the discrete-time case
turned out to be somewhat nontrivial to handle. We have also developed a much deeper
general understanding of the sensitivity of Riccati equations. Based on the Ph.D. dissertation
of Pascal Gahinet, we have addressed in (3] the problem of determining computable bounds
for the condition or sensitivity of ARE's. Specifically, when solving for the unique symmetric
nonnegative definite solution of an ARE in finite precision arithmetic, it is crucial to know
topological properties of such a solution when the parameter matrices of the equation are
subject to perturbation.

(3): Since the Schur method may be impractical for the very large Riccati problems which can
arise, for example, in distributed parameter control systems, we have also made enormous
progress in extending the matrix sign function approach. This work has its roots in the
important extension of the matrix sign function to generalized eigenvalue problems developed
by Gardiner and Laub (Int. J. Control, 44(1986), 823-832). Those algorithms are based on
applying Newton’s method to a simple matrix equation for computing the sign of a certain
matrix and then solving a certain linear system. This has led further to the search for
more efficient methods of evaluating the matrix sign function, and to the development of a
major paper [6] based on Padé approximation of a certain hypergeometric function. This key
paper introduces a new family of algorithms, of which the classical Newton iteration is but a
special case. The algorithms are especially amenable to implementation on both parallel and
vector computers and a complete numerical analysis, including global convergence results,
is developed in [6]. As part of Pradeep Pandey’s Ph.D. dissertation, vectorized and parallel
versions of these algorithms have been implemented on a Cray Y-MP supercomputer at
NASA Ames. For reference we note that even our early results have shown that a 100th-
order Riccati equation can be solved on this machine in 0.8 sec. Admittedly, not everyone
has access to a Cray — at this moment. However, it is important to bear in mind that we will
soon have Cray-type computing available in desk-top workstations in the next few years in
much the same way we presently have workstations with as much or more computing power
than the industry-standard VAX computer of only a few years ago. Descriptions of Cray
implementations of efficient parallel partial-fraction versions of high-order formulas from our
new family of algorithms have been published in (2] and [5]. In fact, in [5] we discuss the
numerical solution of Riccati equations of order 556 (involving Hamiltonian matrices of order
1112) in joint work with Rockwell’s Rocketdyne Division. The problem derives from a model
associated with Space Station Freedom in which 278 modes are included.

(4): Aside from matters of just efficiency, the importaat aumerical question of the sensitivity of
matrix sign solutions has also been considered. In (7] a reliable condition estimation procedure




s

(5):

(8):

(M

(8):

(9):

is presented which costs two extra sign function evaluations. This work is motivated by some
of the fundamental research by Kenney and Laub (SIAM J. Matriz Anal. Appl., 10(1989),
191-209) on estimating condition of general matrix-valued functions. Future research efforts
will attempt to reduce the cost of this condition estimate, and extend these finite-dimensional
Riccati results to infinite-dimensional operator problems arising from distributed parameter
control systems.

Also associated with the matrix sign problem is the use of scaling factors to accelerate conver-
gence. In analyzing optimal scaling factors for the related problem of accelerating Newton'’s
method for polar decompositon, we have discovered that the commonly used determinantal
scaling for the sign function can behave non-optimally in some rather ordinary situations. A
novel scaling strategy based on the spectral radius is also flawed but the analysis in [13] shows
that the strengths of these two procedures can be combined in such a way as to produce a
simple and efficiently realizable scaling method which is almost always optimal. This research
has, of course, significant practical value for these important matrix calculations.

We have also made great strides in developing and analyzing conjugate gradient (cg) methods
for solving Riccati equations and general classes of matrix equations. In particular, we have
been able to show that the cg method converges in a neighborhood of a solution if and only
if the Fréchet derivative of the matrix problem at the solution is invertible. This means, for
example, that the cg method is convergent near the positive extremal solution of an ARE
because the stability of the closed-loop system matrix ensures that the Fréchet derivative
(which in this case is just the usual Lyapunov operator) is nonsingular at that solution. Our cg
algorithms can be applied to both symmetric and nonsymmetric Riccati equations, including
those in various “nonstandard” formats (e.g., certain additional terms). The methods can
also be extended to a wide class of general nonlinear matrix-valued equations. This is a very
promising approach for very large-scale problems and our first results will be published in

(11).

In a related development, a quadratically convergent gradient method for finding optimal H,,
norms has been derived. Empirical evidence shows that this approach is much faster than
current techniques such as bisection methods, and can easily be extended to more general H,,
problems. These results have been published in [10]. Other new technical characterizations
of Riccati solutions arising in the Ho, problem appear in [4].

A key paper {12] will soon be published in the area of matrix “nearness” problems. In this
work, a thorough mathematical treatment is given of the key problem of determining the
nearness to uncontrollability of a given controllable state-space model. The key tool used
in the analysis is a connection between nearness to unstabilizability and the behavior of
the unique symmetric positive definite stabilizing solution of an associated algebraic Riccati
equation.

Finally, an important result relating to the matrix triples commoaly found in so-called matrix
second-order models will appear in [15]. The basic idea is to establish which canonical forms
are obtainable under orthogonal equivalence for the standard matrix triple consisting of a
mass matrix, a stiffness matrix, and a damping matrix. Equivalence under orthogonal trans-
formations is, of course, crucial for numerical reliability. It is established that an arbitrary
damping model caa not be used but that orthogonal reduction of the commonly wsed modal
damping model can be s0 reduced.




Thus we continue to be excited about the progress that has been made and are extremely
enthusiastic about the prospects and opportunities for further research.

3 Abstracts of Papers Published or Accepted for Publication
See attached.
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[1]

Sensitivity of the Stable Discrete-Time
Lyapunov Equation

PASCAL M. GAHINET, ALAN J. LAUB, reLLow, iEee. CHARLES S. KENNEY, anp GARY A. HEWER

Abstract—The sensitivity of the stable discrete-time Lyapunov equa-
tion is analyzed through the spectral norm of the inverse Lyspusov
operator. This leads 10 a directly computable easy-to-interpret sensitivity
measure, and also provides insight into the connection between sensitiv-
ity, stability radius, and conditioning of the cigenproblem of the open-
loop state matrin. These resuits are sn extension, (o the discrete-time
case, of analogous results for the continuous-lime Lyapumov equation.

I. INTRODUCTION

ROPERTIES of the Lyapunov equation are frequently inves-
tigated through the associated Kronecker operator. When
analyzing the sensitivity of the equation, this approach leads to
some measures of conditioning which are difficult to interpret in
terms of the system parameters. Moreover due to the size of the
Kronecker product matrices (n? x n* where n is the order of
the matrices in the Lyapunov equation itself), the evaluation of
these condition numbers may be problematic for large systems.
Recently, a2 new sensitivity measure was introduced {10] for
the stable continuous-time Lyapunov equation

AX + XA = - W (1.1)

In (1.1). the unknown X and the matrices 4 and W are in
C"™" (the space of n x n complex-valued matrices), A is
stabie, and A" denotes the Hermitian transpose of A:

A" 2 47, No further assumption is made on W. Before getting
into more detail, we need the following definitions. A linear
mapping © over C"*”", defined by

O(X) = A"X + XA (1.2)
is called a continuous-time Lyapunov operator. Throughout lh:s
paper.dlevectornonnwnllbethesmlldean norm, i.e.. || xji?

= xTx. Recall the definitions of the Frobenius norm and the
spectral norm (also calied 2-norm) of a matrix as. respectively,

1MEp = (2 1my12) = (e (1))
IME; = max | Mx| = o, (M)
Rxi=)
where o, (M) stands for the largest singular value of M.

Final'v, these two norms induce corresponding norms on the
space of linear operators over C"*”, which are, respectively,

(5] max [e(M
I .’-IMIF'III ( )"r
M-e% December 6, 1988: revised November 17, 1999 and
April 2, 1990. Peper Associme Editor. R. V. Pasel. This
work was by the Nationsl Sciencs Foundation (and AFOSR) under
Grant -18897, National Science Foundation under Gramt

by the
mn ‘%Nmmmdkuml\chmhu*

P M. ME'ﬂhN“”hrlmnh n Computer and
Comtrol Sciences (INRA), Rocquencourt, France. l

Al ucs. u:‘wlth “'E‘X"S'.o?‘
O.A.llnerie mce- Chins Laks, CA 93553,

mu—n 12.

and
= (M),
101, = max |&(M)],
In [10]. the spectral norm of the inverse Lyapunov operator,
given by

X,

' e ——————
18, = i lA%X + xA|,
is shown to be a relevant measure of the sensitivity of (1.1).
Furthermore, this norm turns out to be equal to the spectral
norm of the solution H of (1.1), obtained when W = [. It also
has a simple interpretation in terms of the open-loop system
characteristics, namely, in terms of the L,-norm of the mini-
maily damped solution of ¢ = AZ. More precisely

+o
PH = max [ jerzptan
Nzol=1 /o

In this paper, we extend these continuous-time resuits to the
discrete case, namely, the discrete-time Lyapnnov‘eqmtion

Q(X) =@, where (X) = X R¥XF. (1.3)

The paper is organized as follows. In the next section, we
review some basic concepts concerning (1.3) and perform a
perturbation analysis in both Frobenius and spectral norm. For
each norm, ltlsshownthndleeonupondm;nonnofthe
operator 8~' is a relevant measure of the conditioning of (1.3).
Some classical techniques of estimating the Frobenius norm of
Q! are then presented in Section II, before introducing in
Section IV our new sensmvnty results, based on the evaluation of
the spectral norm of Q~'. Not only does this norm have a
closed-form expression in terms of F, but also it can be calcu-
iated exactly by solving a single Lyapunov equation. Section V
provides some interpretation of | Q" '}, in terms of the system
natural damping, and gives various bounds relating this norm to
characteristics of the matrix F. In ligin of these results, we
discuss in Section VI which characteristics of F are crucial for
the conditioning of (1.3). Finally, our conclusions are illustrated
by a few selected numerical examples in Section VII.

I1. Tue Lvarunov EQuaTioN ror Discrets-Time
Svstems

For continuous-time systems described by the equation x =
Ax + Bu, the stability of the matrix A can be ascertained via
(1.1). There is an equivalent result for discrese-time systems
Xgoy = Fxp + Gu,. The corresponding Lyapunov stability cri-
muvdmwhaweullmedmumopen
tor, defined a8

Q(X) = X ~ FHXF (2.1)

where the matrices F and X are in C*™". In the sequel, we
shail call any equation of the type

X-FNXF=Q

0018-9286/90/1100-1209$01.00 © 1990 [EEE
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A PARALLEL ALGORITHM FOR THE MATRIX SIGN
FUNCTION

PRADEEP PANDEY, CHARLES KENNEY and ALAN J. LAUB
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106

Received May 21, 1990

ABSTRACT

We propose a new parallel algorithm for computing the sign function of a matrix.
The algorithm is based on the Padé approximation of a certain hypergeomet-
ric function which in turn leads to a rational function approximation to the sign
function. Parallelism is achieved by developing a partial fraction expansion of the
rational function approximation since each fraction can be evaluated on a sepa-
rate processor in parallel. For the sign function the partial fraction expansion is
numerically attractive since the roots and the weights are known analytically and
can be computed very accurately. We also present experimental results obtained
on a Cray Y-MP.

Keywords: Matrix sign function, parallel algorithms, Padé approximation.
1. Introduction. For a complex scalar z, with Re(z) # 0, the sign
function sgn(z) is defined as:

_ ) 41 when Re(z)>0
sgn(z) := { -1 when Re(z) <O0.

This definition can be extended to matrices X € C?*?, whose eigenvalues do
not lie on the imaginary axis in the following way [14,4]. Let X = T-}(D +
N)T, where T is nonsingular, D =diag(dy,...,dp), and N is nilpotent and
commutes with D. Define the sign of X by

sgn(X) = T diag[ sgn(dy),...,sgn(dy) ] T"1.

Because the columns of [ - sgn(X) and I'+sgn(X) form bases of respectively
the left-half-plane and right-half-plane invariant subspaces of X, the matrix

181

[2]

-
P

o AT PRI T Vo Wi i




<
190 Pandey ¢t al.
TABLE 2 (10} P. HENRIC
Timing comparicon for large test matrices. p C. é;;:é
size Newton’s method Rational method (12] A. ,;o [.,T:
i (sec) (sac) Auton
98 1.1423 0.2675 (13} p Ef
208 3.4565 1.3390 e
(14] J. D. Rot
398 8.0332 3.1150 by use
= [15] G. SzBG¢
1939.

can be a problem if the denominator polynomial is ill-conditioned and the
weights are large and of differing signs. However, we have also shown that
for the sign function, the roots and weight are known analytically ~nd can
be computed accurately. Hence, the partial fraction expansion is numeri-
cally attractive for the sign function. Experimental results indicate that the
parallel algorithm achieves the expected speedup when implemented on a
parallel machine like a Cray Y-MP.

Acknowledgement. This research was supported in part by the Na-
tional Science Foundation (and AFOSR) under Grant No. ECS87-18897, by
the National Science Foundation under Grant No. DMS88-00817, by the Air

- - Force Office of Scientific Research under Contract No. AFOSR-89-0167, and
by the General Electric Company and the UC MICRO Program (89-096).
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COMPUTABLE BOUNDS FOR THE SENSITIVITY OF THE ALGEBRAIC
RICCATI EQUATION®*

P. GAHINET* anD A, J. LAUBY

Abstract. In control or estimation theory, linear-quadratic optimization problems give rise to the
so-called matrix algebraic Riccati equation (ARE). For such problems, a crucial issue is the existence and
uniqueness of a symmetric nonnegative dcfini bilizing solution to the ARE, and conditions on the
equation parameters are known which guarantee both. However, in the context of computations in finite
precision arithmetic, and with imperfect parameter ideatification, it is of concern whether the ARE retains
such a solution in the proximity of a given set of parameters, and how sensitive this solution is o parameter
variation.

In this paper, topological properties, such as openness of the domain of existence and continuity with
tespect to parameters, are established for the symmetric nonnegative definite stabilizing solution. Computable
sensitivity estimates are also derived, which quantitatively define a region of safe computation, in terms of
the parameters of the equation.

Key words. Riccati equation, sensitivity, stabilizability, computable bounds

AMS(MOS) subject classifications. 49E30, 93B3S, 93840

1. Introduction. The symmetric algebraic Riccati equation (ARE) arises frequently
in control and estimation problems. Consider the continuous-time ARE given by:

(1) ATX+XA-XFX+G=0

where all terms are matrices in R"*" (real square matrices of order n), and F and G
are symmetric, nonnegative definite. The case of complex-valued matrices is qualita-
tively similar to the sequel but only the real-valued case will be considered here since
it is most commonly encountered in applications. Under the assumption that the pairs
(A, F) and (G, A) are stabilizable and detectable, respectively, there is a unique
nonnegative definite symmetric stabilizing solution X to (1.1) (see [3] or [12]). By X
stabilizing (for the pair (A, F)), we mean that A - FX is stable, i.e., all its eigenvalues
have strictly negative real parts.

Numerical algorithms are now available that solve the ARE efficiently and depend-
ably, provided the original problem is sufficiently well-conditioned (see {13] or {1n.
Well-conditioned means that the solution X is not greatly affected by small perturba-
tions of the data A, F, G. In that case, and with an appropriate scaling of the data
(cf. [8)), the Schur-type solvers yield accurate solutions to (1.1).

A natural question following this preliminary remark is how to assess the condition-
ing of the symmetric ARE, that is, its sensitivity to perturbations of the data. In other
words, if we consider a.perturbed version of (1.1):

(1.2) (A+AA)'S+S(A+3A)-S(F+AF)S+G+AG =0,

under what conditions does (1.2) keep a unique, nonnegative definite stabilizing
solution S? And can we estimate the maximum discrepancy || X — S|| for a given range
of data perturbations AA, AF, AG?

* Received by the editors Apnl 17, 1989; accepted for publication (in revised form) December 13, 1989.
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ALGORITHMS FOR COMPUTING THE OPTIMAL X, NORM

Alan J. Laub ¢
Dept. Electrical and Computer Engineering

Pradeep Pandey * Charles Kenney !

University of California
Saata Barbara, CA 93106

Abstract

We present s gradient method for computing the optimal
acrm for a general o control problem. This metbod is much
faster than a bisection method and the additional cost of com-
puting the gradient is small. Coavergencs is predicated on the
smoothness of the spectral radius of the product of certain Ric~
cati solutioos. Hybrid bisection-gradient methods can be used
in the nonsmooth case.

1 Introduction

Consider the # problem described in (1, 2). We are interested in
the following linear system:

& = Az+Byv+ By,
2 = Ciz+Dyw+ Dy, (8))
y = Ciz2+ Dyw+ Dnu.

The problem is to find a controller which is internally stabilizing and
which minimizes ¥ := [|Tyulles. the closed-loop gain from w to 5. We
assuma that (4, 5;) and (A, By) are stabilisable, and that (A4,C))
aand (A,C)) are detectadle. These aseumptions guarantes that the
related %; problem is well defined. Further, consider the following
assumptions:

Al Dz =0, DLICy Dia) ={0 1), Dyt {BF D) =01}

A2, Du =0.

These assumptions are from [1] where it was noted that a given system
could be transformed 30 that it meets these assumptions via “loop-
shifting” (6]. Howaver, the tranformations to make Dy, = 0 depend
on the gain parameter v. This makes it harder to characterize the
behavior of the Riccati solutions as a function of y and hencs, is not
suitable for the gradient method that we present. Therefore, we will
work directly with the more difficult case in which D), # 0. We
will refer to » system thas satisfles all the assumptions to be in the
standard form. A system for which Dy % O will be referred to 28
in the generel form. For notational simplicity we define a := 7-3.
Scalar- and matrix-valued fuactions of a will be subscripted with a.
If / is such a function then f” and f” will denote its first and second
derivative, respectively, with respect to a.

Let Dy :m [ Dy Dig | aad M:m [ DFC, BT |7, and define
the Hamiltonian H, by

”-"[-c?‘c, _'1,]-.711’&:'11-:[_’& ::g] @
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where
-1
J:=[BI 5]‘ R01=Dﬂ0”-[aol g] (3)

The Hamiltonian J, is defined similarly. The following theorem iy
essentially from (1].

Theorem 1 There erists an admissible controller such that || To !l <
v iff the following three conditions hold:

(i) By € dom(Ric) and X, := Ric(H,) > 0,

(i) Jo € dom(Ric) and Y, := Rie(J,) 2 0,

(iii) pa = p(XaYa) < a-1.

In the sequel we describe the behavioe of A, and X,. By duality,
these comments also apply to J, and Y,. Consider the Riccati equa-
tion associated with X, in (2)

R(X,0):m AT Xo + XoAg = XoFaXe+Go = 0. (4)

By an admissibie solution we will meas a unique positi-e semi-definite
stabilizing solution. For @ = 0 our assumptions guarsates s prior
that an admissible Xy := Ric{Ho) 2 0 exists. However, fora > 0 it
is not clear for what values of @ an admisible solution will exist. By
continuity, H, will be in dom(Ric) for some a > 0. Suppose &, and
Ja first fail to be in dom(Ric) at a, aad a,, respectively, and define
a. := min(a,,a,). We will refer to a2 & € (0,a.) as feasible. The
following theorems, which are proved in (5], characterize the bebavior
of H, aad X, for a general problem.

Theorem 23 For feasibls @ we can write G, = CIC,. If V spans
the unobeervable subspace of the pair (A,C)) then it also spans the
unobservable subspecs (Aa,C,). Further, ker(X,) = V.

Theorem 8 Leta, > ay > ag 2 0. Then for & general problem the
Riccati solutions X, and Y,, and the spectral radins function p, are
continuous end nondecressing, i.e., Xo, 2 Xo,, and pa, 2 pay.

2 Gradient Method

In this section we review a gradient method for computing Top (4]. We
will assumne that condition (44i) of Theorem 1 will fail before coadition
(¥) or (i6). This implies that at the optimal value p(X,Ya) = 1, and
that aey is a root of the equatioa

Ma) = ape =1 = 0. (%)

We caa find the root usiag the Halley-secant (or Newton's) method.
The derivatives of A(a) are

Naof, sad Na2f+s, ®)
wsuming that the derivatives of the spectral radius function axist.
Usiag these dedinitions the Halley-secaat method yields

oy mag+ As, whare Aavb.[h’-%]-‘. 4]




Numerical Solution of Large-Scale Riccati Equations

PRADEEP PANDEY, CHARLES KENNEY, and ALAN J. LAUB
Department of Electrical and Computer Engineering
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Santa Barbare, CA 93106

Abstract

We discuss algorithms for obtaining numerical solutions for large-ecale algebraic Riccati
equations. By “large-scale” we mean problems arising from models involving matrices of dimen-
sions in the hundreds or perhaps thousands. There are numerous sources for such problems,
e.g., control of large space structures, distributed parameter systems, aad interconnected power
systems. Design of control systems for such large systems places s significant burden on com-
puting resources and may require unacceptably long computing time on existing computers. We
describe a parallel algorithm for solving Riccati equations which is based on the matrix sign
function. We also present numerical results obtained on a Cray v-MP for a structures model
curreatly under study by Rockwell.

1 Introduction

Algebraic Riccati equations (ARE) play a central role in control theory. Indeed, they are one
of the most deeply studied nonlinear matrix equations arising in mathematics and engineering.
Riccati equations arise in a variety of situations and their role in control and system theory is well
established.

.Consider the following state-space model of a linear system:

z(t) = Az(t) + Bu(t), (1)
w(t) = Cx(1),

where the state z(¢) € IR®, the input u(¢) € R™, and the output y(t) € R”. In an LQG problem
we define an associated quadratic cost function

J(u) := ./o m(yr’ +Ty) de,

and we waat to find a state-feedback control u such that the closed-loop system is stable and the
cost fanction J is minimized. This optimization problem leads to the following ARE:

ATX + XA-XBBTX +CTC =0, (2)

where A € R**", B € R™*™, and C € R*™. Natural assumptions of stabilisability aad detectabil-
:z‘mmdomdx=c XT € R™*" which is the unique noanegative definite stabilising
tioa of (2).
Wae are interested in efficient algorithma for solving large-scale AREs. Our primary motivation is
mummmummwuw»uwhmm
of large dimensions. At preseat, problem sizes of “teas” or even low “hundreds” caa be haadled by

100
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Size of problem 542
Time (seconds) 207
One-norm of residual R 3.9093 x 10~°

Unfortunately, we cannot deduce accuracy of the computed solution from the norm of the residual
alone. Suppose S is the true admissible solution for the ARE in (2). To get a better measure of
accuracy we use the following bound from Kenney et al. [14]:

I1X - st < 219 IR, (37)
where ( is the closed-loop Lyapunov operator defined by
2Z):= ATZ + ZA., where A, :=A-BBTX.
In [14] Kenney et al also showed that ||Q~!|| = ||Z|| where Z € R™*" solves
| ATZ + ZA.+I=0. (38)

We solved the above equation to obtain || Z|| = 1.362 x 10°. From the data we conclude that the
. solution X was computed to at least 6-digit accuracy.

6 Summary

We have proposed a new parallel algorithm for solving large-scale Riccati equations. The algorithm
is based on a partial fraction expansion of a certain Padé approximation used in computing the
matrix sign function. A partial fraction expansion allows a parallel implementation in which each
fraction can be evaluated on a different processor. In general, the roots and weights of such an
expansion have to be computed numerically. This can be a problem if the denominator polynomial
is ill-conditioned and the weights are large and of differing signs. However, we have also shown that
for the sign function, the roots and weights are known analytically and can be computed accurately.
Hence, the partial fraction expansion is numerically attractive for the sign function. Experimental
results indicate that the parallel algorithm achieves the expected speedup when implemented on a
parallel machine like a Cray v-MP.
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RATIONAL ITERATIVE METHODS FOR
THE MATRIX SIGN FUNCTION®*

CHARLES KENNEYt aND ALAN J. LAUBt

Abstract. In this paper an analysis of rational iterations for the matrix sign function is presented. This
analysis is based on Padé approximations of a certain hypergeometric function and it is shown that local
convergence results for “multiplication-nich™ polynomial iterations aiso apply to these rational methods. Mul-
tiplication-rich methods are of particular interest for many parallel and vector computing environments. The
main diagonal Padé recursions, which include Newton's and Halley’s methods as special cases, are giobally
convergent and can be implemented in a multiplication-rich fashion which is computationally competitive with
the polynomial recursions ( which are not globally convergent). Other rational iteration schemes are also discussed,
including Laurent approximations, Cayley power methods, and globally convergent eigenvalue assignment
methods.

Key words. Padé approximation, matnx sign function, Riccati equations, rational iterations
AMS(MOS) subject classifications. 15424, 65D99, 65F99

1. Introduction. It is a classical result that the algebraic Riccati equation can be
solved by using an invariant subspace of an associated Hamiltonian matrix. This motivated
the introduction, by Roberts {21] in 1971, of the matrix sign function as a means of
finding the positive and negative invariant subspaces of any matrix .X which does not
have cigenvalues on the imaginary axis. This and subsequent work (9] showed that the
matrix sign function couid be used to solve many probiems in control theory.

The sign of X can be defined constructively as the limit of the Newton sequence

(1.1) Xoor =X+ XY, Xo=X,
(1.2) sgn(X)= lim X,.

Newton’s method has the pleasant feature that it is globally convergent; if X has no
cigenvalues on the imaginary axis then the limit in ( 1.2) exists. As a definition, however,
(1.2) does not reveal many of the important properties of the sign function. Because of
this, it is useful to have an equivalent definition based on the Jordan canonical form of
X (see (4], [7]). For a complex scalar z with Re z # 0, define the sign of z by

I ifRez>0,
-1 ifRez<O0.

For a complex matrix X such that A(X) < C* U C~ (i.e., X has no eigenvalues on the
imaginary axis) let T take X to Jordan form:

(1.3) s,,.z-[

[P0
(14) X T’[O NT,

* Received by the editors September 28, 1989: accepted for publicatios (is revised form) November 15,
1989. This ressarch was supported by Nauonal Soeace Foundation (and Ais Foros Ofiics of Scieatific Ressarch)
grant BCS37-18997, National Science Foundaton grant DMS$8-0081 7, and Air Forcs Office of Sciemific Ressarch
contract AFOSR-99.0167.
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POLAR DECOMPOSITION AND MATRIX SIGN FUNCTION
CONDITION ESTIMATES®

CHARLES KENNEYt AnD ALAN J. LAUBt

Abstract. This paper presents reliable condition estimation procedures, based . n Fréchet derivatives,
for polar decomposition and the matrix sign function. For polar decomposition, the condition number for
complex matrices is equal to the reciprocal of the smailest singular value, and rather surprisingly, (or real
matrices it is equal to the reciprocal of the average of the two smallest singular values. By using inverse
power methods, both of these condition numbers can be evaluated at a fraction of the cost of finding the
polar decomposition.

Except for special cases, such as for normal matrices, the condition number of the matrix sign function
does not have such a precise characterization. However, accurate condition estimates can be obtained by
using explicit forms of the Fréchet derivative, or its finite-difference approximation, with a matricial inverse
power method. These methods typically require two extra sign function evaluations, and it is an open
problem whether accurate estimates can be obtained for a fraction of a function evaluation, as is the case
for the polar decomposition. Related results for the stable Lyapunov equation and Newton's method for
the matrix square root probiem are discussed.

Key words. polar decomposition, matrix sign function, conditioning

AMS(MOS) subjoct classificstions. 65F15, 15A12

1. Introduction. Both the polar decomposition and the matrix sign function play
important roles in many matrix algorithms (1]-[3], (8], (9], (14), [17]). The sensitivity
of these matrix functions is determined by the norms of their Fréchet derivatives. More
specifically, let F = F(X) be a matrix function which is continuously differentiable at
X in the sense that there exists a linear matrix operator L(-) = L(-, X, F) such that
for any matrix Z,

(L) |im’"()ﬂ-&l)*-f"()()

50 ]

= L(Z).

Then L is the Fréchet derivative of F at X and we define the absolute and relative
condition numbers of F at X, with respect to a matrix norm || - ||, by K,(F, X) =L} =
maxyzyuo | L(Z)N/1ZH, and K.(F, X)=|L|§ XN/ F(X)| when | F(X)f»0. This
definition is consistent with the condition theory of Rice [16] (see [13]). For § small
and | Z]| =1, we see from (1.1) that

laF|| = | F(X +8Z)- F(X)|=|L(Z)|8SLIS,

which motivates the use of || L] as a condition measure for the mapping X -» F(X).
As a simple example, if F(X)= X then

F(X +82)-F(X)
5

so L(Z)=2ZX +XZ and ||L| 52| X}

=ZX + XZ + 823,

* Received by the editors June 21, 1989; accepted for publication (in revised form) December 4, 1989.
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graat ECS 37-18897, National Science Foundation grant DMS$8-00817, and Air Foroe Ofice of Scientific
Research contract AFOSR-$9-0167.
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Square Root Parallel Kalman
Filtering Using Reduced-Order
Local Filters

S ROY
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We examine verious discrete-tione paraliel Kalman fUtering
implementistions, with special atiention given lo square reet
versions in both covariance and information Biter forme.
Throughwet (he paper we empley the commwa convention of using
the terms “square reet” to refer to o Chelesky factex A speciel
feature of the suggested archilecture is (he ability te acconumdate
parslie] local Niters thet have & smalier stale dimension than
the giohal filtex The estimmates snd covariance o¢ information
matrices (or their square roets) from these reduced-order Niters
are collated at & cemtral filter ot each siep to ganeraie the full-size,
giobally eptimsl sstimaies and their msecisted error covariance or
infermaiion meirices (or their square reels).
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. INTRODUCTION

Decentralized estimation problems have been the
fom!a of great interest in recent years in multisensor
environments such as integrated navigation systems.
This stems from the fact that using 2 monolithic
centralized filter in a multisensor system can result in
severe computational problems due to overicading the
filter with more data than it can handle. Consequeantly,
the overall centralize ; system may be unreliable and
suffer from poor accuracy and stability. This leads
naturally to decentralized processing configurations.

Various decentralized and parallel versions of the
Kalman filter have been reported in the literature
{1-10}. Conventional Kalman filtering algorithms,
though well known to be theoretically globally optimal
(e-g, [11]), can also be numerically unreliable. T
remedy such problems, more numerically stable and
better conditioned implementations of the Kalmsa
filtering algocithms, such as U-D or square root
formulations, are employed (12, 13}. Recent efforts
have concentrated on decentralized versions of such
numerically stable filtering algorithms, e.g., [14-18).
advantages in many applications. [ndeed, in many
circumstances it provides the most logically feasible
processing schemes. For instance, in 3 multisensor
system in which each individual sensor has its own
“built-in” Kalman filter, one is interested in combining
the estimates from these independent data sources
(ie., the built-in Kalman filters) to generate a giobal
estimate that will, ideally, be optimal. Furthermore,
decentralization makes for casy fault detection and
isolation {35), since the output of each local sensor
filter can be tested and, if a sensor should fail,
it can be expeditiously removed from the seasor
network before it affects the aggregate filter output.
Also, decentralization increases the input data rates
significantly and yiclds moderate improvemeats in the
throughput.

The focus of several existing parallel Kalman filter
structures ({1-3, 6, 7, 9, 10]) has been to preserve
the overall global optimality of the whole system,
which is definitely a desirable feature and serves as a
benchmark for other systems. While afl the previous
results have assumed full-order local models to
achieve global optimality, the inteat of this work is to
i scenarios and present algorithms for which
the same caa be achieved using reduced-onder local
filters. [n general, this cannot be achieved for arbitrary
global and (reduced-order) local models; more is
said abowt this in Section I1. Akhough this Emis the
applicability of the decentralized schomes proposed
here, there are asvertheless several weful scenarics for
which thess algorithms are astural candidetes. These
include all casss whes ths giobal state vector can be
pertitionsd (a0 digjeins segments, and cach sogment
or subvector yislds & compatible reduced-onder focal
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7 Invariant Subspace Methods for the Numerical
Solution of Riccati Equations

Alan J. Laub

7.1 Introduction

In this tutorial paper, an overview is given of progress over the past ten tw fificen
years towards reliable and efficient numerical solution of various types of Riccati
equations. Our attention will be directed primarily 10 matrix-valued algebraic Ric-
cati equations and numerical methods for their solution based on computing bases
for invariant subspaces of certain associated matrices. Riccati equations arise in
modeling both continuous-time and discrete-time systems in a wide variety of ap-
plications in science and engineering. One can study both algebraic equations and
differential or difference equations. Both algebraic and differential or difference
equations can be further classified according to whether their coefficient matrices
give rise w0 so-called symmetric or nonsymmetric equations. Symmetric Riccai
equations can be further classified according to whether or not they are definite or
indefinite.

The rest of the paper is organized as follows. A brief review of “classical”
methods is followed by a summary of the now-standard Schur method, introduced
in 1978, for solving algebraic Riccati cquations. Extensions of the basic Schur
method, by means of associated generalized cigenvalue problems, are thea do-
scribed together with some applications. Next, some powerful new numerical re-
sults relating so0 Riccati equations in general will be described. These include a
thorough analysis of iterative refinement via Newton's method (including a com-
putable estimase of the region of convergence), a thearem on the relation of error
estimates to residuals, estimation of the condition of algebraic Riccati equations,
and promising new scaling srategies. Newwon's method for computing the matrix
sign function is then described and its implementatioa for perallel algorithms for
Riccatl equations (on a message-passing hypercube compuser) is outlined. This
method is particularly well suited to parsllelization and vectorization and has been
used successfully to solve fairly largs order (several hundred) problems. A number
of generalizations of this basic iterstion have exseaded its applicability 10 a broader
range of problems. For example, generalizations of the matrix sign function 1 the
case of matrix pencils allows straightforward solution of discrese-time Riccatd equa-
tions. Furthermore, the Newton iteration itself has been genemlized considerably
and found o be but a special case of a general family of iserations for the matrix
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¢ software: This is almost always, of course, the uitimate vehicle of reliable tech-
nology transfer. Early anempts at a large comprehensive Forwran-based Riccasi
package (RICPACK; see (11]) will undoubtedly be superseded by much more

casily constructed packages based on software such as MATLAB and its clones
and imitators.
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Local Convergence Analysis of Conjugate Gradient
Methods for Solving Algebraic Riccati Equations *

Ali R. Ghavimi, Charles Kenney, and Alan J. Laub
Dept. of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106

Abstract

Necessary and sufficient conditions are given for local convergence of the con-
jugate gradient (cg) method for solving symmetric and nonsymmetric algebraic
Riccati equations. For these problems, the Frobenius norm of the residual ma-
trix is minimized via the cg method, and convergence in a neighborhood of the
solution is predicated on the positive definiteness of the associated Hessian ma-
trix. For the nonsymmetric case, the Hessian eigenvalues are determined by
the squares of the singular values of the closed-loop Sylvester operator. In the
symmetric case, the Hessian eigenvalues are closely related to the squares of the

" closed-loop Lyapunov singular values. In particular, the Hessian is positive defi-
nite if and only if the associated operator is nonsingular. The invertibility of these
operators can be expressed as a non-cancellation condition on the eigenvalues of
the closed-loop matrices. For example, the stability of the closed-loop matrix, for
the positive semi-definite Riccati solution, ensures the invertibility of the Lya-
punov operator and hence the convergence of the cg method in a neighborhood
of that solution.

1 Introduction

When minimizing a scalar function f via the conjugate gradient (cg) method, local conver-
gence is equivalent to the Hessian of f being positive definite at the point of minimization (1].
*This ressarch was supported in part by the National Science Foundation (and AFOSR) under Graat No.

ECS87-18807, by the Nstional Science Foundation under Grast No. DMS88-00817, aad by the Air Force
Office of Scientific Ressarch under Contract No. AFOSR-80-0167.




Algebraic Riccati Equations and the Distance to
the Nearest Uncontrollable Pair *

P. Gahinet and A.J. Laud

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

Abstract
A connection is established between nearness to unstabilizability of a stabilisable
pair (A, B) of matrices and nearness to singularity of the symmetric positive definite
solution to an associated algebraic Riccati equation. From this result, computable
upper and lower bounds are derived for the distance of (A, B) to the nearest un-
controllable pair. Numerical tests confirm the validity of the method and poteatial
applications are discussed.

1 Introduction

When numerically assessing whether a pair of matrices (4,B) € R"**" x R™*" is con-
trollable (or stabilizable), tests which simply provide a yes/no answer are not entirely
satisfactory [17, 18]. Instead, an estimate of how far the pair is from the set of uncon-
trollable (respectively, unstabilizable) pairs is more relevant. Unfortunately, this involves
a nonconvex minimization in a space of n dimensions and existing numerical methods to
search for minima often suffer from the following limitations:

¢ the computed minima are only local,
¢ a two-dimensional search is necessary when complex perturbations are allowed,

o the speed of convergence is guaranteed to be quadratic only in the proximity of the
local minima and a high computational overhead may thus be attached.

Few lower or upper bounds on the distance to uncontrollability are available in the
literature. Upper bounds were proposed in (1] but they require either forming the coa-
trollability matrix, or that A be stable. A lower bound was obtained by Demmel in [6].

*This research was supported by the National Science Foundatioa (saad AFOSR) uader Graat No.
ECS87-18897 and the Air Force Office of Scientific Ressarch nader Coatract No. AFOSR-89-0167. Replies
should be addresesd to the first author, curreatly with INRIA, Domaine de Volucean, BP 108, 78153 Le
Chesaay Cedex, France.




On Scaling Newton’s Method for Polar Decomposition and the

Matrix Sign Function *

Charles Kenney Alan J. Laub
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106

Abstract

A tight bound is given on the speed of convergence of Newton’s method with optimal scaling
for the polar decomposition of a nonsingular complex matrix. Necessary and sufficient conditions
are then derived which tell when an approximation to the optimal scaling value will give better
results than the unscaled Newton method. For the related matrix sign problem, it is shown that
optimal scaling requires complete knowledge of the eigenvalues of the original matrix. Because
this is impractical, we derive a family of scaling methods which are optimal with respect to
partial eigenvalue information. This family includes optimal scaling as well as a ‘semi-optimal’
scaling method based on the dominant eigenvalues of the matrix and its inverse. Semi-optimal
scaling can be implemented using the power method and gave nearly optimal performance on
a set of test problems. These test problems also show that a variety of other commonly used
scaling strategies, including spectral scaling, determinantal scaling, and 2-norm scaling can result
in unduly siow convergence.

Keywords: polar decomposition, matrix sign function, Newton’s method, optimal scaling.
AMS(MOS) subject classification: 65F35,65F30,15A18.
Abbreviated title: Scaling Newton’s method.

1 Introduction

The polar decomposition of a nonsingular complex matrix A of order m is a matrix pair (U, H) such that
U is unitary, H is Hermitian and positive definite, and A = UH. If A has a singular value decomposition,
A= PEIQR, where P and Q are unitary and L = diag(cy,...,0m) with0 < o0y < ... < 0y, thc@

U=PQ¥ H=Qcq". (1)

However, it is more efficient to compute the polar decomposition using scaled Newton recursions of the form,
1

Anyr = 5(7'|An + (7'.44.{')"); As=A, 1a>0. (2)

/ﬂ
For 7, suitably ¢ 1 10] , As — U, and H can be found from H = U¥A. In the next section we
give convergence ing the empirical obeervation that Newton’s method with optimal scaling,
*This ressarch was supperted by the National Scenca Foundation (and AFOSR) wader Gramt No. ECSS7-13097, the

National Science Foundation wnder Grans No. DMS88-00817, and the Alr Fercs Ofice of Sciantific Ressasch wader Contract
No. AFOSR-s0-0107.
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Scaling of the Discrete-Time Algebraic Riccati Equation to
Enhance Stability of the Schur Solution Method *

Thorkell Gudmundsson, Charles Kenney, and Alan J. Laub
Dept. of Elestrical and Computer Engineering
University of California
Santa Barbara, CA 93106

Abstract

A simple scaling procedure for discrete-time Riccati equations is introduced. This procedure
eliminates instabilities which can be associated with the linear equation solution step of the gen-
eralized Schur method without changing the condition of the underlying problem. A computable
bound for the relative error of the solution of the Riccati equation is also derived.

1. Introduction

The Schur method (8] for solving discrete-time algebraic Riccati equations consists of transforming an as-
sociated generalized eigenvalue problem to real Schur form using orthogonal equivalence transformations,
followed by the solution of a system of linear equations. The orthogonal transformations are numerically
well-conditioned, but recent work [12] has suggested that the overall method can appear numerically unsta-
blé. even when the original equation is well-conditioned. This can originate for two different reasons. One is
the ill-conditioning of a linear system of equations, and the other is related to scaling problems for the basis
vectors of a certain subspace. In this paper we extend the work which was done for the continuous-time
Riccati equation in [7] to the discrete-time equation and show that this apparent numerical instability can
be eliminated by a scalar scaling procedure. Moreover, this analysis yields a good computable bound on the
relative error of the solution of the Riccati problem.

Our procedure is not completely satisfactory, because the scalar involved is a function of the solution to
be computed and thus lesves open the question of how to estimate it accurately beforehand. However, this
does not invalidate our main result in any way, namely thas the Schur method is not inberently numerically
unstable. In fact, the problem caa be circumvented by solving the unscaled equation, using our error bound
to establish the accuracy of the computed solution, and in case that is not satisfactory, using the inaccurate
solution to estimate the optimal scaling parameter. This estimate will almost always be sufficiently closs to
the correct value to yield an accurate result on the second pass.

mmwn”-‘dhmbﬂhNMSd-—h—ﬂ-(dM)*dmN& ECSS7-10007 and
by the Ale Poros Ofies of Sclentifie Ressarch under Contract No. APOSR-80-0167.
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Orthogonal Canonical Forms for Second-Order Systems *

Trevor Williams
Dept. of Aerospace Engineering and Engineering Mechanics
University of Cincinnati
Cincinnati, OH 45221-0070

and

Alan J. Laub
Dept. of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106

Abstract

It is shown in this paper that a linear second-order system with arbitrary damping cannot
be reduced to Hessenberg-triangular form by means of orthogonal transformations. However,
it is also shown that such an orthogonal reduction is always possible for the modal damping
commonly assumed for models of flexible structures. In fact, it is shown that modally damped
models can be orthogonally reduced to a new triangular second-order Schur form.

1 Introduction

Second-order models arise naturally in the study of many types of physical systems, with common
examples being electrical and mechanical networks. An application area of great practical interest
for dynamics and control is that of flexible space structures (FSS) {2], which are commonly repre-
sented by second-order finite element models of very high dimension. Now, continuum models of
structures are, to be sure, much more elegant (see, for example, [1, 11]) but it is generally still the
case that setting up the governing partial differential equations and solving the resulting boundary
value problems can only be done for relatively simple structures. In analyzing a realistic structure
(spacecraft, airplane, etc.), a continuous structure model is seldom feasible and common engineer-

ing practice has been to use some method (usually finite elements) to get an approximate “M and

“This work was initiated while the first author held a National Research Council-NASA Langley Research Center
Senior Research Associateship. The work of the second author was supported by the National Science Fouzdation
(and ARI:OSR) under Grant No. ECS87-18897 and the Air Force Office of Scieatific Research under Coatract No.
AFOSR-89-0167.
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