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INTEGRATION OF STEREO VISION AND OPTICAL FLOW
USING ENERGY MINIMIZATION APPROACH

Nasser M. Nasrabadi

Computer Vision Research Group
Electrical Engineering Department

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Tel: (716) 636-2427

ABSTRACT

A cooperative motion-stereo method is proposed where image intensity

(brightness) and optical flow information are integrated into a single stereo

technique by modeling the input data as coupled Markov Random Fields

(MRF). The Bayesian probabilistic estimation method and the MRF-Gibbs

equivalence theory are used to integrate the optical flow and the gray level

intensity information to obtain an energy function which will explicitly

represent the depth discontinuity and occlusion constraints on the solution.

This energy function involves the similarity in intensity (or edge orientation)

and the optical flow between corresponding sites of the left and right images

as well as the smoothness constraint on the disparity solution. If a simple

MRF is used to model the data, the energy function will yield a poor disparity

by smoothing across object boundaries, particularly when occluding objects

are present. We exploit optical flow information to indicate object bound,.ies

(depth discontinuities) and occluded regions, in order to improve the disparity

solution in occluded regions. A stochastic relaxation algorithm (Simulated

Annealing) is used to find a favorable disparity solution b, minimizing the

energy equation.
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1. INTRODUCTION

Integration of visual cues have recently been investigated by many researchers [1]- [2].

Stereo vision [3]-[4] and optical flow [5] information have been used to obtain 3-dimensional

structure about the environment. The major problems encountered in stereo matching are

identifying the occluded areas and the depth discontinuities. Our objective in this research is

to develop a motion-stereo matching algorithm that is minimally affected by occlusion and

depth discontinuities. This is down by integrating the edge information and short range opti-

cal flow data into our stereo matching algorithm.

In this report a motion-stereo vision technique is investigated where short range optical

flow information [5] is integrated into an intensity-based stereo vision technique. A Bayesian

model is used to derive the Maximum A Posteriori (MAP) stereo matched solution for a

motion-stereo intensity matching algorithm. The input data and the disparity solution are

modeled as Markov Random Fields (MRFs). The MRF-Gibbs Distribution equivalence [6]

reduces the MAP problem to that of finding an appropriate energy function that describes the

constraints on the solution. Stereo algorithms based on low-level information (intensity, edges

for example) have difficulty with occlusion as well as depth discontinuities because they have

to make decisions about object boundaries in order to find the correct disparity for a region

that is not visible in both images. If an object boundary is not pronounced, the disparity solu-

tion for the occluded region will usually be a smoothly changing function between the dispar-

ity of the occluded object and the visible object. In this report the optical flow data is used to

flag the potentially occluded regions, and when a region is identified as occluded, a discon-

tinuity in the disparity solution is assumed. However, the resulting energy function is no

longer convex so a stochastic relaxation technique is employed to find the minima of the func-

tion. In stereo images occlusion occurs when some points are visible in one image but not in

the other due to the displacement between the two cameras. For instance, this will happen

when an object looks like it is behind another one from the angle of the camera. Figure 1
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shows the mismatch resulting from a stereo matching algorithm which does not consider

occlusion. Occlusion problem has been tackled by other researchers who have used the rate of

change of disparity [71, or the "ordering constraint" [81 to flag a potentially occluded region.

-In Section 2 of this report we describe our algorithm in detail, and presents properties of

MRFs and their Gibbs equivalence distribution, as well as the used energy functions. In sec-

tion 3, the effect of occlusion and depth discontinuities are reported with experimental results.

2. DESCRIPTION OF THE MOTION-STEREO MATCHING ALGORITHM

The approach of our stereo matching algorithm is to find an estimate of the "optimal"

disparity solution for a pair of stereo images. Optimality is defined as the Maximum A Pos-

teriori probability (MAP) solution. The MRF model allows us to integrate the low level

visual cues as well as reducing the stereo matching problem to that of finding an appropriate

energy function. We minimize the energy function and obtain a MAP estimate by using a

well established stochastic optimization technique. In the following subsections we introduce

MRFs and the Coupled MRFs, MRF-Gibbs distribution equivalence, energy functions

representing the constraints on the solutions.

2.1 Markov and Coupled Markov Random Fields

The stereo matching problem is an ill-posed problem in the sense defined by Hadamard

[9-10], which can be solved by using a standard regularization method [11-13]. The standard

regularization theory produces a convex quadratic energy function (a cost functional) thus with

a unique solution. However, in order to include the occlusion process and to deal effectively

with the integration of visual cues, a non-convex energy function is derived. Therefore, in

contrast to standard regularization methods, we represent the a priori knowledge in terms of

probability distributions rather than constraints on the actual solution space. Specifically, we

maximize the a posteriori probability of the disparity solution given the degraded (i.e., noisy)

images by modeling the disparity solution as a Markov Random Field D over a lattice VN.

Assuming that in general the disparity is smooth over rigid objects except at depth
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discontinuities the MRF property can be stated by Equation (1) which says that probability of

a disparity value di at a pixel location (i, j), given the disparity of all other pixels in the image,

is the same as the probability of that value given only the disparity of the neighbors of site

(i, j)

Prob( D =dij I d . (k,l) # (ij)) = Prob( D =dij I did (k,1) c Nd(i,j)) (1)

where Nd(i,j) specifies the pixel indices of those defined to belong to the neighborhood system

of (ij).

The disparity data with the depth discontinuity process or occlusion process can be com-

bined together to form a coupled MRF [6]. For example, define the depth discontinuity as a

binary MRF Apij(iN,jN) defined over a lattice UN as

1, if [ pr(ij) - P'(iNJs) ]2 > Tp(2)

Aiji'jV) O, otherwise

where iN, JN E N,(i,j) represents the eight nearest-neighborhood system, Tp is a pre-defined

threshold, and pr(i, j) represents the magnitude of the optical flow. This binary process is very

similar to the line process introduced by Geman and Geman [6]. We now associate this

binary process with the disparity process to form a coupled MRF defined as D = (D, Ap) over a

lattice HN = VNUUN where there is a line process between each pair of disparity sites.

Each input image can also be considered to be a combination of two MRF's coupled

together to represent the corresponding intensity and optical flow information. For example,

let the intensity image be a MRF X on a lattice ZN such that,

X =t(i, j) if ( ij) CZN ; Z ={I(ij) : 1_5(ij)<_5N }(3)

where I(i, j) is the gray level of the image of size Nx N.

The neighborhood system C_ for each pixel J(i, j) is defined as its eight nearest-neighboring

pixels. Similarly the optical flow information can also be considered as a MRF 0 on a lattice

WN such that,
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O = p(i, j) if ( i,j) W WN = {(ij) : 1 < (ij) < N } (4)

Where p(i, j) represents the magnitude of the optical flow at location (i, j). The neighborhood

system C for each pixel is defined as the eight nearest-neighbors.

Now each input image can be considered as a coupled MRF F = (X, 0) a collection of an inten-

sity process X and optical flow process 0. The values of the field F is defined as:

IXij = l(i, j) if i,j F Z(5

Oij = p(i, j) if ij e W(

where F is defined as a MRF on a lattice SN = ZNUWN the components of F assumes values

among the allowable gray level and optical flow values. The interaction between the intensity

process X and the optical flow process 0 will become clear in section 2.3 when correspondence

problem (energy expression) is considered. We can define a pair of stereo images as two cou-

pled MRFs F1 = (XI, 0') and F'= (X', or) representing the left and the right image data respec-

tively. Each coupled MRF can be considered as an observation or an external input to the

stereo system.

2.2 MRF-Gibbs Distribution Equivalence

It has been shown [14-17] that if an image measure (such as disparity) can be modeled

by a MRF, then the probability distribution of the measure can be represented as a Gibbs dis-

tribution (Hammersley-Clifford theorem). Equation (6) defines the probability of arriving at a

solution configuration Co, with a Gibbs distribution given by

p' (ofo = (6)

where Z, is the normalizing constant such that the sum of P (Co) for all configurations is unity:

Z = Z exp [-U(co)/kT. (7)

T is analogous to the temperature of the system that yields the configuration w, and k is a

universal constant. U(co) is called the energy function and is of form,
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U00) = I U100) (8)
C

where U,((o) is called a potential function and is defined over the neighborhood's cliques. A

clique is a set of sites (pixels) such that for a defined neighborhood system every pair of sites

belonging to this set are neighbors. An example of neighborhood system and possible poten-

tial functions used in this proposal is given below:

1) The potential function for a simple disparity MRF with no discontinuity process at a

pixel location (ij) with a neighborhood system Nd(i,j) is defined by

U,(dij) = I [ d(i, j) - d(iN, iN)] 2  iN,JN e Nd(i, ) (9a)

where the neighborhood system Nd(i, j) represents only the eight nearest-neighbors.

2) The potential function for a coupled MRF (disparity with discontinuity) at pixel location

(i,j) with a neighborhood system Md(i, j) is defined by

U,(dij) = I [ d(ij) - d(iM,jM) ]2 " (l-Apj(iM,jM)) + APij(im,jm) - cp; iM,jM C Md(i, j) (9b)

where Md(i. j) is simply the 8-nearest neighbors and cp is a constant. Equation (6), with the

potential function given by expression (9a) or (9b) is said to represent the prior distribution of

the disparity solution. It is easily seen that low energy configurations represent a higher pro-

bability than high energy configurations. The 3 = kT factor affects the equilibrium state of the

solution. At high temperatures, the solution's equilibrium state will be very random. At low

T, however, the equilibrium state is more regular and dependent on its initial configuration.

The advantage of representing each probability in the Gibbs distribution form is that it

can I - formulated with an energy function U(o) which suitably describes the consa'aints of the

solution. These constraints are similar (if not identical) to those used in a standard regulariza-

tion method, but the interactions between the depth discontinuity and disparity smoothness

processes can now be explicitly included in the energy function.

2.3 The Energy Function for the Proposed Motion-Stereo Matching Algorithm
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The energy function describes the constraints on the desired solution in terms of local

characteristics [18]. For example, there should be a strong similarity in the intensity (or orien-

tation if an edge) between two corresponding sites in the stereo solution. Likewise, the

disparity solution should be smooth over the same object.

The MRF model allows us to reduce the stereo matching problem to that of finding an

expression for the a posteriori probability P(D IF, Fr) in terms of the a priori probability P(D)

and the conditional probability of observations. Then using the MRF-Gibbs (or Boltzmann)

distribution equivalence, one can determine an appropriate energy function representing the

corresponding MAP.

The left and the right image data are defined as two observations corresponding to ran-

dom. fields F and Fr respectively. Our goal is to determine the most likely solution D = (digj)

given the above observations. Using the Bayesian rule the a posteriori probability can be writ-

ten as

'(D IF, r)= P(F',F, D) = P(F'ID, F').P(D, F') = P(F'ID, F')- P(DIF'P) (10)

P(F', F r) P(F t, FI) P(FIF')

If the disparity D is independent of the observation Fr then P(DIF')=P(D) which can be

replaced by its corresponding Gibbs distribution given by expression (6). The conditional pro-

bability P(F1 I F') is a constant since it is independent of D. The key term in expression (10) is

the conditional probability P(F'ID, F') which has to be written in Gibbs distribution form.

From the stereo camera geometry we have F'(i, j) = F'(i, j+dj) in absence of any noise or

occlusion.

However, assuming F1 was degraded by a Gaussian random noise N independent of D and

Fr with zero mean then,

1 [_x2lP(N=x) = ---m aexp [ (I

p(FPID, F,> r) Hn e () - I'(i, j+di,) )2 1
,2(2
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Expression (12) can be written in Gibbs distribution form as

P(F' ID, F) = exp {- I UiJ F'ID. Fr)} (13)

where

Ui-(F1 ID, Fr) = [( I'. j)_Ir(i, j+diD2] (14)

with X = kT

The overall local energy contribution from a single site (i, j) can be written as

Ujj = Ui(/F' ID, Fr) + U,(dj) (15)

where the first term represents data term the similarity in the intensity (or orientation if an

edge) between two corresponding sites in the stereo solution as given by expression (14). The

second term represents the smoothness of the solution given by expression (9a) or (9b) when

depth discontinuity is present. Th-e total energy is determin,-d by totlling the energy contri-

bution from each site.

In order to include depth discontinuities as well as occlusion process we assume that for

each site the optical flow estimate Tki,j) is available for the left and the right images. There

are a number of standard techniques that can be used to measure the optical flow information

[5]. Optical flow is represented by a vector random field where -Ri,j) = (u11, vii), the two com-

ponents of the optical flow. The difference in optical flow between the two corresponding

sites is thresholded to indicate a potentially occluded region (op = 1) or a visible region

(¢p = 0), only the magnitude of the optical flow is considered.

1, if[ Ip'(ij)I - Ip'(i+dii,j)I ]2  > T
P = 0, otherwise (16)

An occluded region is then processed differently than visible regions; heavily weighting

the smoothness term over the data term. As shown in Equation (17), the data term Do does

not use the measure of similarity of the corresponding pixels in an occluded region as they
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will not match for the correct disparity value. Instead, the data term is assigned a small fixed

energy c* causing the smoothness term to have more weight in determining the correct dispar-

ity estimate. The non-zero cost (energy) associated with this process inhibits non-occluded

areas from settling into a falsely-indicated occluded state.

Olj = (1 _ Pi)• [ CA [ lI(ij) _ Ir(i+ dii,j) 2 + CB [ I p'(ij) - Ipr(i+ d,,,j)I 1 2 ] + opis _ c* (17)

where (ij) e SN. The smoothness term Sij is not changed significantly except that we now use

the optical flow gradient to indicate potential discontinuities in the disparity solution. If the

difference in optical flow of two neighboring sites exceeds a pre-specified threshold T. then

there is a discontinuity in the disparity and smoothness measure should not be performed

across this discontinuity. Instead a small energy cost c. is included, in this way we are intro-

ducing a local minima in our cost function.

Sij= Y [ d(ij) - d(iM,jM) ]2 - (-Aij(iMjM)) + Apj(iM,jM) CP; iMjM e Md(i,j) (18)

where

l1, if [ Ip'(ij)I - IpP(iM,jM)l ]2 > TP
ApoI(iM'JM) = 0, otherwise (19)

If the calculated optical flow is reliable it can be segmented into different regions representing

each object and their boundaries [19] or a cooperative technique could be designed that can do

the segmentation as the optical flow is calculated.

3. EXPERIMENTAL RESULTS

We work with motion-stereo images generated by two cameras situated in a parallel axis

geometry yielding epipolar lines which are parallel to the scan lines. Thus, corresponding

image points lie along the same horizontal scan line limiting the search space to one dimen-

sion. For the initial algorithm validation, we simulated the intensity and optical flow vector

for stereo images of size 64 x 64 pixels. Our simulated image model includes random errors

in both the image intensity and the optical flow estimate. Figure 2 shows a pair of stereo
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images simulated for experimental evaluation of the proposed technique.

For the preliminary experimental investigation it is assumed that optical-flow values for

the motion stereo images are already estimated from a motion estimation technique. Although

there are problems with calculating reliable optical flow data, but by means of post-processing,

the optical flow information can be smoothed and segmented into regions representing

different objects and can be used to locate the occluded regions as discussed in this report.

To maximize the probability given by Equation (10), and thus obtain the a MAP esti-

mate, we minimize the total energy by achieving an equilibrium state at low temperature. We

use a stochastic relaxation method called Simulated Annealing (SA) which is described in

detail in [20-21]. The physical process of annealing brings materials to low energy states by

gradually lowering their temperature. As in chemical annealing, if the temperature is dropped

too quickly the solution does not have sufficient time to reach equilibrium states, resulting in

configurations which correspond to local minima of the energy function; these constitute

errors. The ideal temperature schedule which guarantees convergence to a minimum energy

state, or the maximum a posteriori (MAP) configuration is given in [6] if the Gibbs sampler

schedule is used; however, this schedule is impractically slow. For the preliminary evaluation

of the algorithm we have used a non-ideal, monotonically decreasing temperature schedule

and some result are presented. The Simulated Annealing algorithm can efficiently be imple-

mented with parallel processing units, such as neural networks, due to its localized nature.

The stochastic characteristic of the SA algorithm however, requires a random parameter to

simulate the effect of lowering the temperature.

Figure 3 illustrates the disparity solution when no occlusion process is employed. The

energy function used is a combination of the solution smoothness and intensity similarity con-

straints given by expressions (9a) and (14) respectively. Disparity error occurs in the

occluded areas when this energy function is used. Here the solution has matched to the wrong

pixel in an attempt to minimize the data term. Figure 4 shows the result of applying Equa-

tions (17)-(18) to images similar to those in Figure 2. The solution is much improved and
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yields a better disparity estimate in the occluded region. Figure 5 shows disparity solution at

three different temperatures, T = 50, 10, and I for the intensity-based stereo technique incor-

porating optical flow data. The temperature was decreased by 10% when there was no

significant change in the energy value (system in an equilibrium state). The system is said to

be in an equilibrium state whenever the number of jumps in the energy increase and decrease

are about the same. Although there is no guarantee of convergence to a minimum energy state

due to our monotonic temperature schedule, but a close approximation to the optimal solution

is expected whenever the system is kept in equilibrium at each temperature.
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Figure 1. Typical stereo matching error in occluded regions.



Figure 2. Typical left and right stereo images used to generate results in Figures 3-7, Gaus-

sian noise is also introduced into the data. Disparity of left box =15; of right box =

5.



Figure 3. Disparity solution resulting from intensity matching without optical flow
data.

Figure 4. Disparity solution resulting from intensity matching incorporating optical
flow data.



dZ

Figure 5. Disparity solution resulting from intensity matching incorporating optical
flow data shown at three different tempratures, T = 50,30, 1.


