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ABSTRACT

A scale-invariant theory of Raman scattering of light by fractal clusters is de-

veloped. The enhancement factor GRS of Raman scattering is shown to scale in terms

of a properly chosen spectral variable X. The critical indices of the enhancement factor

are found to be determined by the optical spectral dimension of the fractal. Numerical 4
modeling is carried out and shown to support the analytical results obtained. The the-

ory, which does not contain any adjustable parameters, agrees well with experimental

data on surface-enhanced Raman scattering over a wide spectril rmnge.
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1. INTRODUCTION

Surface-enhanced Raman scattering (SERS) is one of the most intriguing optical

effects discovered 1' ,2 in the past 15 years. Its manifestation is a very great increase, often

as large as a million-fold, in the Raman scattering intensity of molecules absorbed on

the surfaces of special metallic structures, as compared to the intensity of an equivalent

number of molecules in solution or the gas phase. The special metallic structures that

display SERS normally involve small metal features such as those found on micro-

rough metal surfaces and in aggregated colloidal particles, whose dimensions are much

smaller than wavelength A. The major contribution to the enhancement is understood

to originate from the large local electromagnetic fields that arise from resonant optical

excitation of surface plasmons. Because these plasmons are both intense (i.e. possessing

great dipole moments and low decay rates) and easily excitable with commonly available

laser sources for the alkali and coinage metals, the SERS effect is largely restricted to

tbese metals.

Theory shows that field enhancement can be great at the points of high curva-

ture (the so-called lightning rod effect). 3 However, the most effective SERS systems are

collections of interacting particles. The reason for this is understood to be even greater

field enhancement that results from electromagnetic interactions among the constituent

small metal particles. Models have been reported which account for these interactions

in terms of the modifications of the Lorentz local field operating on a particle due to the

presence of neighboring particles4 . However, the mean concentration of metal needed

in these treatments to achieve the red shifts observed experimentally is much too high.

Additionally, Aravind et al. have calculated 5 the magnitude of the electromagnetic

field at various locations in the vicinity of two interacting particles invoking very high

multipoles. Also, Liver and others have reported6 the results of a calculation among

several metal particles, but restricting the interaction to dipole-dipole. These calcula-

tions demonstrate that, in addition to a further increase in the local field magnitude,

the interaction among particles also results in a red shift of the maximum enhancement

wavelength from the surface plasmon resonance positioned in the near uv. However,

none of the above mentioned theories can satisfactorily explain the form of the spectral
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contour of SERS, which is very wide with the maximum enhancement in the red region.

Although the precise structure of roughened metal surfaces is not known with

certainty, the structure of colloid aggregates has been investigated by various methods

and shown to be fractal (see e.g. the electron microscopy study of Ref. 7). The Hausdorff

dimension D of such aggregates is consistent with that characteristic of cluster-cluster

aggregation 7 - 9 . For the sake of brevity, we will refer to fractal clusters simply as fractals.

This should not cause confusion because no other physical realizations of fractals will

be discussed.

A tentative theory of enhanced Raman scattering by fractals has already been

considered.'" Because it is based on a binary approximation, this treatment is only

applicable to diluted fractals, making it unable to account for the form of either the

absorption spectrum or the Raman excitation contour. A scale invariant theory has

been developed in Ref. 11 to describe the linear optical polarizability of fractals. It

demonstrates the scaling properties of the absorption and determines the dispersion

relation for the dipolar excitation modes of the fractal (see also Ref. 12). The important

qualitative feature of scaling are the dominance of the strong fluctuations of local fields

at all scales and a dramatic restriction in the spatial extent of the eigenmodes to small

regions within the cluster. Such localization for the fractal vibrations ("fractons") has

been predicted'" by Alexander and Orbach, and experimentally observed' 4 recently by

Sapoval and others for acoustic excitation of fractal drums.

A scale-invariant theory developed by S. Alexander' 5 describes Raman scatter-

ing from vibration modes of fractals. However, this theory does not include dipolar

excitations (plasmons) and, therefore, can not describe the phenomenon of SERS. In

the present paper, we develop a scale-invariant theory of SERS from fractals which

is insensitive to details of the cluster structure providing universal description of this

phenomenon in terms of a few critical exponents. The present theory fully takes into

account the strong spatial fluctuations of local fields characteristic of fractals and their

excitations. It is capable of explaining both the magnitude and spectral contour of the

enhancement.
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In Sec. 2 we formulate the model and basic equations governing linear response

of the fractal. In Sec. 3 general expressions for the enhancement factor GRs are obtained,

and self-similarity is invoked to derive the scaling expressions for GRS. Numerical

simulation with the use of the Monte Carlo method in Sec. 4 confirms the predictions

of the scaling theory. The results are discussed and shown to be in a good agreement

with experimental data in Sec. 5.

2. FORMULATION OF THE MODEL AND LINEAR RESPONSE OF A

CLUSTER

Let us very briefly recapitulate the formulation of the model and the results for

the linear optical response of fractals (Ref. 11), which are necessary for the present paper.

A fractal is considered as a system of N polarizable particles (monomers) with dipole-

dipole interaction between them at optical frequencies. The monomers are positioned

at points ri, i = 1,... , N. The number N of monomers in a fractal scales as

N - (Rol&o)D , (1)

where D is an index called the Hausdorff dimension, R, is a characteristic total size of

the fractal, and R& is a constant equal to a typical separation between monomers. A

fractal is called nontrivial if D < 3. The length R0 plays the role of a minimum scale

of the fractal, and the dependence on Ro is of principal importance to the theory (see

Ref. 11 and below).

Since Raman scattering is accompanied by a Stokes frequency shift, the linear

response of the cluster at the frequency w of the exciting radiation can be found inde-

pendently from its Raman response at the shifted frequency w,. Experimentally, most

fractal clusters are larger than the exciting wavelength A. However, the localization (co-

herence) length of fractal excitations can be much smaller than A. Also, under certain

conditions, the interaction of monomers at distances greater than A can be neglected.

We will find qualitative conditions for the validity of the two assumptions at the end of

the next section [see Eqs. (39) and (40)].

4



Accepting these assumptions, one can neglect the spatial variation of the electric

field E(' ) of the exciting optical wave and obtain the well-known system of equations

describing the transitional dipole moment di, induced on the ith monomer (oscillating

with frequency w),
N

Zd, = E(°) - Z(ijWji3)d# , (2)
j= 1

where i = 1,..., N. Here Z = X- 1 , and X0 is the linear polarizability of a monomer at

the light frequency w, and W is the dipole interaction tensor,

(iaIW j3) [bca - 3n., n. j r, (3)
10, 2-j

The Greek indices label tensor components, summation over repeated Greek indices

is implied, and rij = ri - rj and n( ij ) - roi/rii. Of course, Eq. (2) is quantitatively

applicable to small clusters (Rc < A) without invoking additional assumptions discussed

above.

We shall reformulate the system (2) as an equation in 3N-dimensional linear

space, introducing the vector Id) with components (iaId) = di., and similarly for other

vectors. In this way, we obtain

Zjd) = JE(0)) - Wid) , (4)

where W is the operator determined by its matrix elements (3).

Let us introduce the eigenvectors In) of the W operator and the corresponding

eigenvalues w.: (niWm) = wnam, where n,m = 1,2,... ,3N. Note that the eigen-

values w, and components of the eigenvectors (ialn) are all real due to the symmetry

of W. The solution of Eq. (4) in the In) basis has the form

(nld) = (njE(0))A. , A. - (Z + w,)-'. (5)

From Eq. (5), the expression of Ref. 11 for the polarizability tensor Xi of the Zth monomer

in the cluster can be obtained as 16

.= A,(ialn) (jflln) . (6)
n5
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The local field Ei acting on the th monomer can easily be expressed as

E,. = )  (7)

After averaging over the orientation of a cluster as a whole, the polarizability tensor is

reduced to a scalar
1()

X = (Xi"'x) ,(8)

where (.-.) indicates averaging over the ensemble of clusters. The total absorption cross

section a. of the cluster is proportional to ImX, namely a. = 4,rkNlmx, where k is

the light wavevector. Below we will refer to ImX simply as the absorption.

The exciting light frequency w enters Eq. (4) and subsequent expressions im-

plicitly, via the complex variable Z. Also, all material and geometrical properties of

monomers affect the problem only through Z. Let us isolate the real and imaginary

parts of Z in the form X = -ReZ, 6 = -ImZ. The quantity X plays the role of a

spectral variable in place of w, and the parameter 6 > 0 describes the dissipation in a

monomer. The dependence of both X and 6 on w for real systems is discussed in Sec. 5.

Another quantity of fundamental importanoe for the theory is the density v(X)

of fractal eigenmodes per monomer defined as

L(X)=N'(Z6(Xw.))(9

The absorption and eigenmode density satisfy the exact sum rules 1I

J ImX(X)dX = Ir , f v(X)dX = 3 (10)

The principal advantage of using X is shown in Ref. 11 to be due to the fact

that optical responses scale with X but not with w. In particular, ImX(X) and v(X)

have identical scaling,

ImX(X) -, v(X) -, R'3 (R 3 IX I)d - i 11

Here d. is a critical index introduced in Ref. 11, which governs the properties of optical

responses of fractals and is called the optical spectral dimension. It plays a similar role

6



for polar excitations of fractals as Alexander and Orbach's index 3 , fracton dimension

d, does for vibrational excitation. However, in contrast to d. the physical range for d.

is 0 < d, < 1. The condition of scaling has the form1 l

6, Ro3N - (31D - 1)I ( - d° ) < jXJ < R3 (12)

For X in this region, the light excites collective modes of the fractal, i.e. modes deha-

calized over many monomers. However, these modes are still well localized within the

whole fractal. In other words, the coherence length Lx of the excitationsil ,

Lx - Ro (Ro IX) , (13)

conforms to the inequality R < Lx < Re. Due to this, the optical responses of the

fractal per monomer do not depend either on the fractal fine structure or on the total

number of monomers N.

Since there is no dependcnce on the fractal fine structure in the range given

by Eq. (12), we can always unify some number of nearest monomers into a composite

particle and call it a new (renormalized) monomer. Such a renormalization transforma-

tion changes only the fractal structure on a minimum scale; in particular, the length

Ro is changed. The total absorption of the fractal should not change under the renor-

malization transformation, which means that a .c Ro. From this and Eq. (11), a

transformation law" follows,

jc( R(3d-D)/(1-d°) (14)1XI 0c--

3. ENHANCED RAMAN SCATTERING BY CLUSTERS

We assume that each monomer of the cluster apart from the linear polarizability

Xo possesses also Raman polarizability e. The exciting field E applied to an isolated

monomer, therefore, induces a dynamic dipole moment d' oscillating with the Stokes-

shifted frequency w,. In order to avoid unnecessary complications, . will be assumed to

be scalar. Accordingly, we have d' = KE. The Raman polarizability may be either the

polarizability of a monomer itself or that of adsorbed molecules bound to the monomer.
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For spontaneous Raman scattering, which is an incoherent optical process, the

Raman polarizabilities xi of different monomers (i = 1, 2,..., N) contain uncorrelated

random phases. This can be expressed as

IKK, C 12, (15)

This feature constitutes the principal difference between ic and the linear polarizability

X0, ensuring that there will be no interference between the Stokes waves generated by

different monomers.

The field acting upon an ith monomer in a cluster is the local field E rather

than the external field EM . Likewise, it is the dipole interactions of the monomers at

the Stokes-shifted frequency w, that should be considered. The components of d' obey,

therefore, the following system of equations

- , - ,xO (iaWji3)dj , (16)

where X- is the linear polarizability of an isolated monomer at the Stokes-shifted fre-

quency w,. Equations (16) can be rewritten as a vector equation in 3N-dimensional

space

Id') = kIE) - x-Wlds) , (17)

where h is an operator defined by its matrix elements

(icijkjl3f) = Pcj .c" (18)

The formal solution to Eq. (17) has the form

IdZ) = kfE) (19)

where Z, = (X') - '. Combining Eqs. (4) and (19), one obtains

Z3 z
d)- +wKz +wIE()) (20)

Using the completeness of vector sets In) and 1i), we rewrite (20) in the form

d!s = ZZ E rjA,,A., (lln) (jflln) (jDn') (i"O'Dn') E12)  (218
nnij
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Using Eq. (6) to clear the matrix elements from (21), we obtain the following expressions

for the total Stokes dipole moment D of the cluster

Dc = Z'Z scKXXj, Ei , (22)
i j

where X = Xy(X,), as given by Eq. (6) with substitution of X, = -ReZ, for X, is the

polarizability of the jth monomer in the cluster at frequency w,.

The enhancement factor of SERS is given by

G RS - (ID, 12)_ (23)

N n112 IE(O1 2

This factor expresses increase in the Raman intensity of light scattered by a fractal

cluster consisting of N monomers with respect to the integral Raman intensity of light

scattered by N separate (non-aggregated) monomers.

Expressions (16)-(23) are valid for clusters of any geometry, fractal or not. To

find a closed-form expression for GRS, we must invoke the concept of scaling as well as

some approximations. First, we consider the case of the Stokes shift so large that the

Raman-scattered light is well out of the absorption band of the fractal. This requires,

in particular, that R3 IX - X, I > 1. In this case, the polarizability (6) at frequency w.

is expressed as X!, - Z7', • Substituting this into Eq. (22), after averaging over all

orientations, we obtain from Eq. (23)

GRS = IZ12 5-K Ix,,M)1 (24)

The exact relation E, X,- = b-I , ImrX,,, has been proved in Ref. 11, based

on the completeness of thc eigenvector set (laln). Substituting this into Eq. (24) and

taking account of Eq. k 7), we finally obtain

GRS = b (1 + X 2 1 b2 ) Im . (25)

This expression for GRS coincides exactly with the expression found previously [see

Eq. (20) in Ref. 111 for the enhancement factor G of the local field fluctuations. This is
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expected, because in the limiting case considered, the Raman-scattered light does not

interact with the fractal, and the Raman scattering intensity is simply proportional to

the mean square of the local fields. The exact expression (25) reduces in the scaling

region to the form

GRs - X 26-Im . Q (RO Xf) ,(26)

where Q - (R6) - ' is a large dimensionless parameter [cf. Eq. (12)] which plays the

role of the resonance quality factor for the monomer.

If the Stokes shift is not very large, the general expression for GRS is needed,

which follows from Eqs. (6), (22) and (23) after averaging over the orientations,

GRS = IZZ[2 Z Knnmmi A()An 'A (r)*. , , , (27)
nnN n n'

where the kernel K is defined as

Knn'mm, = ana,,oa,maam,# > (J-[")(J-')(i6Im)(jajm') (28)

with aM E, (lain). The completeness and orthogonality of the eigenvectors In)

ensures that the kernel K satisfies the sum rule

Z Knn'min = 3N (29)
nn 'rn

Expression (27) can not be evaluated analytically in a general form. Instead,

we will consider the limiting case of an extremely small Stokes shift, X - X. < 6,

which is experimentally satisfied for most Raman bands. Then the Stokes shift can be

neglected in Eq. (27), and one can set Z = Z,, A = A'. In the scaling region (12), we

can put IZI = JXI to a high degree of accuracy. Taking this into account, we obtain

from Eq. (27)

GRS --X g(X) , g() _ Knnmn'AnAn,A A , (30)IG 3N g() gX
n n'mm'

To further evaluate GRs, we will invoke scale invariance and employ the sum

rule approach. An exact sum rule for the function g(X) (30) has the form

_ g (X)dX -27r1m E K.nmm,RnmRn,m(Rnm, +R,,m) , (31)
nn1mm'
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where

RnM = (w,, - w,m - 2i6)' (32)

The sum rules (10) are satisfied, on the order of magnitude, if we use Imx(X)

and v(X) in the scaling approximation (11) and expand the integrals over the scaling

region, lXI < Ro 3 . This means that the number of eigenmodes contained in the scaling

region (12) is on the order of the total number 3N of eigenmodes. Because the integral in

Eq. (31) is rapidly converging, it is plausible that the integration over the scaling region

gives the major contribution to it. In that case, f g(X)dX would be scale-invariant.

This is what we will assume. The scale invariance assumption is strongly supported

by numerical results (see below). The integral f g(X)dX must be propor-ional to N,

in order to yield GRS independent ,f N [see Eq. (30)]. Therefore, its scale invariance

means that N - 1 fg(X)dX depends on neither &t nor R, and can be expressed in

terms of 6 only. Taking the dimensionality into account, we obtain the simple estimate

f g(X)dX - N6 3 . Comparing this relation with Eq. (31), we arrive at the conclusion

that in Eq. (32) lw,, - w,,l < 6 in the essential region of integration in Eq. (31). In

this case, neglecting the difference of eigenvalues in Eq. (32) and taking Eq. (29) into

account, we obtain from Eq. (31) the sum rule

) XdX 3ir N0g(X)dX = 31r N (33)
1 go - 263 33

Considering the dimensionality arguments, the scaling expression for g(X) fol-

lows from Eq. (33)

g(X) ~NR6 3 (RPd IXI)D (34)

where 0 is an index. The scale invariance of g(X) implies that under the renormalization

transformation g(X) ox R'. From this requirement and taking into account transforma-

tion law (14) and Eq. (1), we immediately obtain 0 = do - 1. This gives us the scaling

form

RS , Q3 (30 IXI)d.+ 3  (35)

The coefficient of the asymptotic dependence in Eq. (35) can be estimated using

sum rules (10) and (33). Taking account of the scaling relation (11), we can rewrite
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Eq. (34) as g(X) - NN 6- 3ImX(X). As comparison with Eq. (10) shows, sum rule

(33) is satisfied if the coefficient in this relation is chosen to equal 3, yielding

GQ3 (R X) 4 ImX(X) (36)

Because relations (35) and (36) are the final results and of principal importance,

let us indicate another way of obtaining them. The product of the A factors in Eq. (27)

can be rewritten identically as

= RmR,,,, [AA,, + A A,, + R,,,. (A, - A*,) + R ,, (Am -A,,)]

(37)

To yield the scaling form of GRS, the difference of the eigenvalues in Eq. (37) should

be negligible with respect to 6. Assuming scaling and neglecting this difference, as was

done above, and using the orthonormality relation of the eigenvectors, we obtain from

Eq. (27)
GRs_ 1a

6N63 X4 2ImA, (38)
n

Taking Eqs. (6) and (8) into account, we see that Eq. (38) is equivalent to Eq. (36).

Let us emphasize that in the case of a large Stokes shift, expression (26) for

GRs is asymptotically exact, i.e. both the scaling index d. + 1 and the proportionality

coefficient are correct. In the case of a small Stokes shift, we believe that the index

d. + 3 in Eq. (35) is also asymptotically exact because it is derived from the general
1*

requirements of scale invariance. Unlike it, the numerical coefficient 1 in Eq. (36) is

only an estimate, its accuracy depending on what fractions of the sum rules (10) and

(33) are saturated in the scaling region (12).

The scale-invariant theory presented above is developed based on Eq. (2), where

the spatial variation of the exciting field E ( ° ) is neglected. A necessary condition for

the validity of such neglect and also for the existence of scaling is Lx < A, which, upon

taking account of Eq. (13), acquires the form

3(-D
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This condition does not contradict Eq. (12), because it is assumed that R0 < A, as is

the case experimentally (note that D < 3 and d. < 1).

To have the indices of GRs coincide with the values d0 + 1 and d. + 3 [Eqs. (26)

and (35)], one more condition must be satisfied, namely that the external field at each

monomer is the same, which is implied in Eq. (2). This assumption is rigorously correct

only for small clusters (Rc < A). The present theory can be applicable to the clusters

with R, > A only if the far-field zone [i.e. monomers positioned at distances rii > A

from a given ith one] contributes negligibly to the local field Ei. The condition for this

has been found in Ref. 17 to be

(RO/A) 3- D , for D < 2 (1xl> -2D(40)

(Ro/A) N I 2/D, for D > 2.

Note that for the most common case of D < 2, the first of conditions (40) supersedes

(39). If this is i..zt, then the far field zone (which might otherwise bring about inter-

ference phenomena) can be neglected. In the intermediate zone (rii " A) the external

field EM° ) is, strictly speaking, not constant, but does not change phase often enough to

cause destructive interference. Therefore, in the zeroth-order approximation, we may

neglect the variation of EM0 ) and use Eq. (2).

Let us briefly recapitulate and discuss the analytical results obtained above.

The enhancement factor of Raman scattering GRS for each of the cases of large and

small Stoke shifts [see Eqs. (26) and (35), (36), respectively] has the form of a power

law in the variable X, with the corresponding index determined by the optical spectral

dimension d., provided X is within the region given by Eq. (12). For the case of large

shifts, this result is rigorously shown to be asymptotically exact, with an index equal

1 + do. For small Stokes shifts, scale invariance of GRS is assumed [this assumption

is strongly supported by the results of numerical simulation (see below)], and then the

index 3 + d0 is obtained. Both the indices mentioned above are positive, implying that

the enhancement increases with X. Physically, this property follows from the decrease

of the eigenmode coherence length Lx [see Eq. (13)], which brings about enhancement

of the local field fluctuations (from one monomer to another) in the fractal.
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The Raman scattering enhancement factor GRS is found to be large, propor-

tional to large factors, namely Q for the case of small and Q' for large Stokes shifts.

Note that Q is required to be a large quantity as a necessary condition for the very

existence of the scaling region [see Eq. (12)]. Thus, strong enhancement of Raman scat-

tering is characteristic of scaling and, consequently, of fractals consisting of monomers

with high-quality optical resonances (i.e. with Q > 1), such as silver and gold fractal

clusters.

The Raman scattering intensity is proportional to the intensity (mean-squared

magnitude) of the local fields induced on different monomers. Strong fluctuations of the

local fields in fractals bring about an increased local field intensity and, consequently,

enhanced Raman scattering. In a pure form this mechanism works for large Stokes

shifts, in which case the scattered light does not interact with the cluster. Therefore,

the corresponding expression (25) GRS simply coincides with the coefficient G of the

enhancement of local fields found in Re. 11.

Apart from the general mechanism discussed above, for the case of a small Stokes

shift there exists an additional enhancement. The scattered field is not radiated freely,

but rather interacts with the cluster. More exactly, the dipole moment d-, induced at

the shifted frequency w, induces, in turn, secondary dipole moments at w,, and so on

to self-consistency. The Raman radiation is emitted by the integral dipole moment D"

(22), resulting in an additional enhancement as given by Eq. (35). We point out that

for the case of a small Stokes shift, GRs (35) is certainly not the square of GRS given

by Eq. (26) for large Stokes shifts, as is often proposed in the SERS literature.

4. NUMERICAL MODELING

We have examined two types of fractals, the random walk fractals [fractal di-

mension D = 2 and optical spectral dimension d. _ 0.4 (Refs. 11 and 17)] and cluster-

cluster aggregates8 [D : 1.7 (Refs. 7 and 9) and do z 0.3 (Ref. 17)]. The clusters were

generated using the Monte Carlo method and well-known procedures. Then, following

Ref. 11, the clusters have been subjected to dilution (decimation), which consists of

the following. The 2th (i = 1,2,..., N) monomer is randomly retained in the cluster
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with some probability 3, or removed with probability 1 - 3. This procedure simplifies

the fractal structure at small scales and reduces the total number N of monomers in

the cluster on average by a factor 0, simplifying greatly the numerical calculations. At

the same time, the resulting (diluted) fractal is characterized by the same Hausdorff

dimension as the original one. In most cases, 32-fold decimation (0 ; 0.03) has been

performed. Some simulations have been done with 3 as small as 10- for comparison.

The results of the computations clearly show that the optical properties of fractals in the

scaling region [i.e. for X satisfying Eq. (12)] do not depend on the dilution, as expected.

Finally, averaging over a large ensemble of fractals (up to 10') has been performed.

The enhancement factor GRS of the cluster-enhanced Raman scattering

(CERC) is calculated accordingly to the exact expression (23) with the use of Eqs. (6)

and (22). Most interesting from the experimental point of view is the case of small

Stokes shifts, where G RS is greatest. Also, because expression (26) for GRs for the case

of large Stokes shift is asymptotically exact, its properties are cle.-,. !t is ;or this reason

that we concentrate below on the numerical modeling for the case of small Stokes shifts.

The theory [Eqs. (35) or (36)] predicts: (i) scaling of GRS as a function of the

variable X with index d,,+3; (ii) proportionality of GRS to Q3 ; (iii) independence of GRS

from N; and (iv) equality of the scaling indices of GRS for X > 0 and X < 0. The two

last features are not self-evident. In fact, there are four summations over rn = 1, 2, ..., 3N

in the exact expression (30), and it is not clear a priori that these summations mutually

cancel to result in the independence of GRS from N. The equality of indices for X > 0

and X < 0 is not evident because Eqs. (2) and (16), along with all the solutions which

follow from them, are not even with respect to the sign change X ,-+ -X. The numerical

computations strongly support these analytical results.

The normalized enhancement factor GRSQ - 3 for clusters generated assuming

the cluster-cluster aggregation is shown in Fig. 1 as a function of the dimensionless

spectral variable R0 IX I for both positive and negative X (note the double-logarithmic

scale). The calculated points lie along straight lines, indicating scaling of G RS over

seven decades of its magnitude. The scaling indices found from these data, 3.30 for

X > 0 and 3.27 for X < 0, are almost equal and close to the predicted value of d. + 3
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with the optical spectral dimension found in Ref. 17 of d0 - 0.3. The lines for X > 0

and X < 0 are parallel but not coincident, which shows that the coefficients, unlike the

indices, are unequal (they differ nearly by a factor of 2). The last property results from

the lack of symmetry with respect to the sign change of X. emphasizing the nontriviality

of the equality of indices for X > 0 and X < 0.

Further insight into the requirements for scaling and the test of the proportion-

ality GRS oc Q3 is provided by Fig. 2, where GRSQ - 3 is plotted as a function of 14X

for two different values of Q. We see that for Q = 200 scaling takes place in the whole

region presented in Fig. 2, while for Q = 50 the scaling exists only when ROX 0.1,

where the two sets of data virtually coincide. This shows the importance of the scaling

condition (12), which requires XR > Q-'. The independence of GRSQ - 3 from Q

in the region of scaling, clearly seen in Fig. 2, corroborates the analytical result that

G oc Q3 in, and only in, this region.

Comparison of the results obtained from approximate formula (36) with the

computations based on the exact expression (23) is presented in Fig. 3. We can see that

the predictions of Eqs. (23) and (36) do not differ by more than a factor of two over

seven decades, which makes Eq. (36) a useful approximation. The indices of the two

sets of data are indeed very close, and a very good quantitative agreement is obtained

if the numerical coefficient in Eq. (36) is changed from I to .. The possible origin of

the difference between the numerical coefficients is discussed at the end of the preceding

section.

The data presented in Fig. 4 demonstrate scaling for random walk fractals, and

also provide a direct test of independence of the enhancement coefficient GRS, as defined

by Eq. (23), from cluster size. The latter property is evident from Fig. 4, where the

points corresponding to N = 64 and N = 128 coincide within statistical error. The

scaling is as good as for the case of Fig. 1, and the index found, 3.45, is reasonably close

to the predicted value of 3 + d0 with d. z 0.4 as found in Refs. 11 and 17.
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5. DISCUSSION

Since the analytical results obtained have been discussed at the end of Sec. 3, we

will mainly concentrate our discussion on the underlying physics and manifestation of

the predicted critical behavior in observable optical phenomena, including quantitative

comparison with experimental data.

Fractals are self-similar objects, and the general property of such objects is such

that fluctuations in space on all scales are of the same relative magnitude. Therefore

it is understandable that a mean-field approach is not applicable, and that the scaling

behavior of linear optical responses takes place, as established in Ref. 11. The linear

optical absorption and density of fractal eigenmodes scale with the same index d. - 1,

where d. is called the optical spectral dimension. This scaling is not present in terms of

the frequency, but rather in terms of a "natural" spectral variable X - ReXo, where

Xo is the optical polarizability of a single monomer. The variable X can be expressed

in terms of light frequency w or wavelength A, but in a complicated, non-scaling form

given below. The region of scaling is determined by Eq. (12) with additional conditions

(39) and (40) for large (R > A) clusters.

The main goal of this work is to examine how the scaling properties of the

fractal, its eigenmodes and linear responses manifest themselves in the Raman scattering

of light. The major result of this paper is the prediction of the scaling behavior of the

enhancement factor GRS of the Raman scattering. Before proceeding, let us recall that,

by definition, the factor GRS shows how many times the Ranan intensity per monomer

is increased upon aggregation of the monomers into a cluster. The Raman susceptibility

of a monomer may represent either its own, inherent Raman scattering ability, or that

of the adsorbates bound to it.

Physically, the intensity of Raman scattering is proportional to the averaged

intensity of the local fields acting on the monomers in the cluster. Such a mechanism,

acting in a pure form in the case of very large Stokes frequency shifts, predicts GRS (25)

to be equal to the enhancement factor G of the local fields, which has been calculated1

exactly earlier. In this case, the scaling of GRS in X follows from the scaling of the
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optical absorption fIm,(X)]. The magnitude of GRS is large, proportional to the large

parameter Q (quality factor of the optical resonance of monomers), and the scaling

index is d, + 1.

In the case of a small Stokes shift, which is typical for most experiments (in-

cluding those discussed below), the dynamic dipoles oscillating at the Stokes frequency

interact with the fractal, resulting in additional enhancement of Raman scattering. In

this case, GRS (35) is much larger, proportional to Q3, and the index is d0 + 3. We

note that the tentative theory of Raman scattering enhancement based on the binary

approximation (Ref. 10) predicts correctly the dependence of GRS on Q, but fails to

give the correct scaling in X.

The results of the numerical simulation presented above (Sec. 4) strongly sup-

port the scaling of GRS in terms of X, the independence of GRS from the number of

monomers in the fractal, and the proportionality of GRS to Q3. Given the large val-

ues of Q characteristic of metal fractal clusters, the last feature qualitatively explains

the strong enhancement of Raman scattering observed with aggregated colloidal metal

clusters.

Now let us examine how the scaling relations established and discussed above

translate into experimentally measurable spectral profiles of SERS, i.e. how GRs de-

pends on the wavelength A. To do this, we need to know the variables X and 6 as

functions of A. Let us concentrate on metallic fractal clusters. Such a cluster consists

of aggregated spherical colloidal particles as monomers. The polarizability X0 of such a

monomer is given by the familiar expression

Xo = R3(E - co)(c + 2eo)-', (41)

where Rm is the radius of the spherule, and f and f0 are the dielectric permittivity of

the colloidal material (metal) and embedding medium (usually water). From Eq. (41),

the spectral variable X and the resonance quality factor Q = 1/IR6 are determined to

be

X =-R -12c+ °o 2 + 9 (M)3 fEOI° 2  (42)4 In - o12  Ro 3e-;'o
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where e" -Ime.

From Eqs. (35), (41) and (42), we obtain an explicit expression for GRS in terms

of the metal dielectric permittivity e,

if.t + IO 12 _- 9€01
d .

+ 3

GRS (Ro/R.) 3d°  2 2 3 (43)

If- oj (3c" eo) 3

Colloidal metal particles are known to be fractal clusters with the Hausdorff

dimension close to that predicted7 '9 by the cluster-cluster aggregation model, D % 1.7.

For such clusters we can expect1" d0 - 0.3 and R0 - R,. An electron micrograph

of a silver colloidal cluster 8 is shown in Fig. 5. The cluster, which contains - 10'

metallic monomers, was produced as outlined in Ref. 19. One can clearly see in Fig. 5

the main qualitative feature of a fractal cluster, namely its self-similarity on all spatial

scales between the minimum scale (distance between monomers) and the maximum

scale (cotal size of the cluster): each fragment after magnification resembles the whole

cluster. Also, the tenuous structure of the cluster is evident: there are cavities of all

sizes up to the total size of the cluster, and the larger the fragment that is considered,

the lower its density.

In the red region of visible light, the dielectric constant e' M Ree is known to

be negative and large in magnitude for most metals, especially the noble metals, i.e.

-f > Co, 0. In this case GRS becomes very large,

G RS f 123 " 3 >(44)

For noble metals, the resonance quality factor Q (42) can be as high as 100, yielding

the upper estimate GRS _ 106. Another role of the fractality is in the formation of the

broad spectral contour of SERS displaying the dramatic increase from the blue to red

region where Q is large.

The model with dipole-dipole interaction considered above does not include

some factors present in real systems. In colloidal clusters, monomers are touching or

almost touching each other (cf. Fig. 5). As a result of this, there may exist Ohmic
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conduction between the monomers. However, at high frequencies, the capacitive con-

ductivity (which is taken into account by the dipole coupling) will prevail over the

Ohmic conductivity, as argued in Ref. 11. Another factor is the short-range interactions

of nearest monomers, namely, exchange and higher-multipole couplings (the exchange

coupling is also responsible for conduction between the monomers). We believe that the

long-range dipole interaction dominates in determining the collective excitation spec-

trum of a fractal, i.e. in the scaling region. However, the higher-multipole interactions

may change the local fields acting on a monomer or on a monomer-adsorbed molecule,

as has been shown' for two monomers. This factor can renormalize the magnitude of

enhancement factor GRS, but, probably, has lesser effect on its spectrum. We hope to

return to quantitative consideration of these factors elsewhere.

Let us compare the theory with experimental results obtained with colloidal

silver. Figure 6 shows the spectral dependence of X and 6 for silver calculated with

optical constants adopted a .m Ref. 20. One ran conclude from these data that the

scaling region, where X > 6, is A > 400 nm. Also, in this region Q = 1/RgS is large.

Experimental SERS enhancement data obtained in Ref. 19 are compared in

Fig. 7 with GRS values calculated with Eq. (43) as a function of A. Only the spectral

dependence of GRS is informative in this figure since only relative values of GRS are

reported in Ref. 19. The experimental data presented in Fig. 7 are normalized by

putting GRS = 15000 at 460 nm, which is a reasonable value. Clearly, the present theory

accounts successfully for the dramatic increase in Raman enhancement accompanying

aggregation, and for the observed increase of GRS towards the red despite the fact that

the enhancement for a single silver colloidal particle is expected to peak in the near uv.

We emphasize that, aside from a single multiplicable factor, the calculated enhancement

factor contains no adjustable parameters (d0 has previously been found from modeling

of linear responses).
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FIGURE CAPTIONS

Fig. 1. The normalized enhancement factor for cluster-cluster aggregates plotted

against the dimensionless spectral parameter (R' IXI) in a double logarithmic

scale. The straight lines represent the best power-law fits to the data (the fit

parameters are shown in the figure). The parameters used in the computations

are 3 = -, Q = 200, and N = 64 (for notations see text). Each point is

obtained by averaging over 250 individual clusters.

Fig. 2. The normalized enhancement factor GRSQ - 3 as a function of RgX for two

values of the resonance quality factor, Q = 200 and Q = 50. The rest of

parameters are the same as in Fig. 1.

Fig. 3. The normalized enhancement factor GRSQ - 3, computed with the exact formula

(23) (circles) and approximation (36) (diamonds), plotted versus -RgX (for

X < 0) in a double logarithmic scale. The straight lines correspond to the

power-law fits with the parameters indicated in the figure. The clusters and

parameters used in the computations are the same as in Fig. 1.

Fig. 4. The normalized enhancement factor GRSQ - 3 for random walk fractals plotted

versus R 3X (for X > 0) in a double logarithmic scale. The total number of

monomers in a cluster is N = 128 with averaging over 50 individual clusters

(circles) and N = 64 with averaging over 250 clusters (stars). The straight line

corresponds to the best power-law fit with the parameters shown in the figure.

Fig. 5. Electron micrograph of a silver colloidal cluster, adopted from Ref. 18. For

details of obtaining this, see Ref. 19.

Fig. 6. Spectral parameter X and dissipation parameter 6, both multiplied by Rg to

give dimensioneless quantities, plotted against wavelength A. Optical constants

for silver are taken from Ref. 20, and the ratio Ro/Rm = 0.7. typical for cluster-

cluster aggregation, is assumed.

Fig. 7. Theoretical and experimental enhancement factors for the silver colloid clusters

as functions of wavelength A.
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