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ABSTRACT in the setting of the ratio estimation problem.
The ratio estimation problem arises in many different The paper is organized as follows. In Section 2, a

number of different applications in which ratio estimationapphications settings. This papcr s concerned with the prbmsaieaedcueanthmteaialfm-
interplay between gradient estimation and ratio estima, polm rs x icse, n h ahmtclfae
inerpla beteen niadi estimatifor aen rator tam- work for the remainder of the paper is described. Section
tin. Given unbiased estimators for the numerator and

the denominator of the ratio, as wvell as their gradients, 3 is devoted to deriving a confidence interval methodol-
ogy for estimating the partial derivative of a ratio. In ad-joint central-I;mit theorems ror the ratio and its gradient dition, a joint central-limit theorem for the simultaneou

are derived. The resulting confidence regions are of poten- estimation of the entire gradient s obtained. In Section 4,

tial interest wh,!n optimizing such ratios numerically, or estimation ie are isussed. In Section 4

for sensitivity analysis with respect to parameters whose low-bisu estimtion e es alre discussed. Finally, Section 5

exact value is unknown. The paper also briefly discusses timators fo ratio, nd es te paper wit

low-bias estimation for the gradient of a ratio.
a brief summary. The proof of our main theorem (Theo-

1. INTRODUCTION rem 1) is given in the Appendix. The other proofs are not

given here. A (future) more elaborate version of the paper
Let (A, B) be a pair of jointly distributed real-valued will contain all the proofs, derive a joint central-limit the-

random variables. The estimation of the ratio a = orem that can be used to simultaneously estimate the gra-
E[A]/E(B is known, in the simulation literature, as the dient and the Hessian of mixed second-partial derivatives
ratio estimation problem. Such ratio estimation problems of a ratio, and provide further numerical illustrations.

arise in many different applications settings. For example,
it is well known that the steady-state mean of a positive 2. EXAMPLES OF RATIO ESTIMATION PROB-
recurrent regenerative stochastic process can be expressed - LEMS
as such a ratio of expectations; see, for example, Section As discussed in the introduction, the ratio estimation
3.3.2 of Bratley, Fox, and Schrage (1987) or Chapter 2 or problem is concerned with th estimation of the ratio
Wolf (1989). In Section 2 of this paper, we will discuss the
ratio estimation problem in greater detail and offer addi- EJA]
tional examples. It will turn out that the infinite-horizon = T= -]'
discounted cost of a non-delayed regenrative process can where (A, B) is a pai of jointly distributed real-valued
also be expressed in term of an appropriately chosen in- random variables. We now proceed to offer several exam-
tio estimation proble. This fact was Irnt pointed out by of thisimation problem

Fox and Glynn (1989).
Recently, the simulation community has devoted a EXAMPLE 1. Let X . (X(t), t > 0) be a real-valued

great deal of attention to the use of simulation as an opti- (possibly) delayed rqeerative procem with regenerative
misation tool. An importst component of this research times 0 < T(0) < T() < .... For i > 1, let
effort has been the development of estimation method- 2(0)
ology for computing the gradient of a real-valhed per- A = f IX(s)Ids
formance measure with respect to a (finite-dimensional) Js'i-1)

decision parameter vector. Such gradients play an im- 2td)

portant role in many iterative algorithms for performing Ai - f X(e*)

both constrained and unconstrained mathematical opti- - r(-i)
misation. This paper is intended as a study of the ques-
tion of how to use this gradient estimation methodology

'Research supported by the U.S. Army Research Office under Contract DAAL-03-91-G-0101.
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If E[A +Bu] < o, then it can he shown t see, for example, case r(F) would typically correspond to the system failure

Asmussen 1987, or Wolff 1989) that. time, and T(1) to a time at which the system is brought

I- back to an "as good as new" state. Let

Um!1[ X(s)ds a , = E[AI]/E[BI. = min[r(F), T(1)]

Hence, as discussed in the introduction, the steady-state Bi = i[r(F) < T(l)],

mean of such a process can he expressed as the ratio of where I denotes the indicator function. If P[T(F) < oI >

the two expectations E[AI] and E[BI]. 0 (note that this is equivalent to requiring that Pfr(F) <

EXAMPLE 2. Let X = {X(t), t > 0) be a non-delayed T(l)] > 0), it is easily shown that

regenerative process, taking % ihcs iII a slate space S. with E[A1 ]

regenerative times 0 = T(0) < T(]) < .... Let f and g

be two real-valued non-negative (measurable) functions

defined on S, and set See Goyal et al. (1991) for additional details. Thus, the
mean hitting time of a regenerative process can be formu-

V(t) = g(X(s))ds lated in terms of the ratio estimation problem.

I EXAMPLE 4. Let X be a real-valued random variable

o = E ep-V(t)]/(X(t))dt. and let C be an event with P(C) >0. Suppose that we
wish to estimate

Then, a is the infinite-horizon expected discounted cost, a = E[X I C],

the process g(X(t)) corresponds to the (state-dependent) namely the conditional expectation of X, given that the

discount rate at time t, and f(X(t)) is the (nndiscounted) event C has occured. If E[IXI] -, oo, then we can express

rate at which cost is incurred at titne t. A common choice a in terms of the ratio a = E[Ai]/E[Bi], where
for g is the one in which g(.) is constant and equal to

p >0, in which case Al = XI(C)

a = E exp[-pijf(X(t))dH 
B = I(C).

Hence, conditional expectations are expressable in terms

is the infinite-horizon p-disconted cost. Let of the raio estimation problem.
Thus, the ratio estimation problem arises in a variety

Al = T(1 exp 9(Xs)),, fX~f)dtof different applications contexts. We shall now introduce

T) 1- ( d) a decision parameter vector 0 into the discussion. For each

C, = exp [-V(T(l))] 0 E IRA, let P, be the probability measure associated with

the parameter value 0, and let E. be its corresponding
B1  = 1- C1 . expectation operator. In addition, we shall permit the

Betause of the regenerative strtcture of X, it is evident random variables A(O) and B(e) to depend explicitly on

that a satisfies the equation o = E[A 1]+ E[Cjjo. Thus, if e E IR'. Then, for each i E R", the ratio of expectations

E[C) < 1, it follows that a is finite and can be expressed can be expressed in the form

as EA] = 9)

Hence, the infinite-horizon discounted cost for a regenera- where u(e) = E#[A(9)] and 1(e) = E.[B(9)]. Given our

tive process can be expressed in terms of a ratio estimation above examples, computing the gradient of such a ratio

problem; see Fox and Glynn (1989) for further details. o(9) is useful for sensitivity analysis or optimization of

EXAMPLE 3. Let X be a regenerative process as in any of the following : steady-state costs or rewards in

Example 2, and assume that N has riglit-continuoiis paths regenerative processes; infinite-horizon discounted costs;
mean time to failure in reliability systems; conditional ex-

with left limits. Let F be a non-empty subset of the state peatio aduprobabilits

space S, and let r(F) = inf{ > 0 I X(t) E F) be the first pectations and probabilities.

hitting time of the subset F. Then, 3. CONFIDENCE INTERVALS FOR GRADI-

a = E[r(F)] ENT ESTIMATORS OF RATIOS

is the mean hitting time of F. Stich expectations are of Let Oo E Rd be fixed. In order for the gradient esti-

interest, for example, in the reliability setting, in which mation problem to make sense, we shall require that both
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u(.) and t(-) h;ave gradients at 0 = Oo. We shall fur- Our first proposition states that under reasonable con-

ther assume that there exists unbiased estimators for not ditions, .5(n) is a consistent estimator for a.,(0o). The
only u(0o) and t(o), but also their gradients Vu(0o) and proof is straightforward and therefore omitted.
Vt( 00). Focussing now on the i-th component of the gra-
dient, we shall specifically assume that there exist jointly PROPOSITION 1. Suppose that E[1A1i+1B11+1C 1 +

distributed random variables (A B, C, D) such that ID, I] < oo and that E[BI $0. Then,

E[A] = i(0o) lim 6,(n) aj 8,a(Oo). I

E[B] = 1(O) To develop aconfidence interval methodology for a,(n),

) we need a central-limit theorem (CLT) for the estimator.
10 O Let

E[D] = 0(0 0) d1 L(G) Z, = A, - o(9o)B,
10=0 0  W, = C, -o(o)D, -,a(o)B,

where a, denotes the partial derivative with respect to 89,
and 0, is the i-th component of 0. and note that under the assumptions of Proposition 1,

There is now a great deal of literature on various E[Z,] = E[W,] = 0. This observation is an important

ways of constructing unbiased estimators for 8,7i(Oo) and element in the proof of the following theorem.

a.t(0o). The two principal approaches that have been ex-
plored are likelihood ratio gradient estimation (see Glynn T

1990 for a survey) and infinitesimal perturbation analysis addition, the conditions of Proposition I are in force, then

(see Glasserman 1991). For links between the two meth- v'ni[bi(n) - 8.a(o)] :: aeN(O, 1)
ods and for a general survey, see L'Ecuyer (1990, 1991).

We shall now assume that it is possible for the sim- as n - oo, where
ulator to generate a sequence ((A,, B,,C,,D;), i > 1)
of i.i.d. replicates of the random vector (A, B, C, D). In o,2 = E[W - (E[D,][E[B])Z .

each of the problem settings described in Section 2, this (E[Bi])2

is typically straightforward. Theorem 1 has been previously established, using dif-

To estimate ferent methods, by Reiman and Weiss (1989) in the con-

t(803)r), (80) - u(00)8, t(80) text of likelihood ratio gradient estimation for regenera-

C(00) tive steady-state simulation. Their expression for the vari-

aiu(O0) - o(O0),t(80) ance constant or 2 is formally different, but algebraically
t(9o) 'identical.

The final step needed to develop a confidence interval
the natural estimator to use is methodology for 6i(n) is the construction of an appropri-

C. - &.Dn ate estimator for a2. Let() - t n..

where n [W, -(D,/B,

w where

B,, = _I 2 A,-aB,

W, = C- D-6,(n)B,.

Cn = 2E C, The next proposition gives conditions under which v(n)

is strongly consistent for o,. The proof is straightforward

- and therefore omitted.

n=, PROPOSITION 2. Suppose that E[A2 + B2 + C? +

and Ol< oo. If E[B1] # O, then

an A,, limn V(U)a 2._1
n-oo 01

1A,
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We note that if v(n) is computed via a two-pass ap- Define
proach in which a, and 5,(n) are computed in the first
pass through the data {(A,, B.C), D)), I < j < n) and W,(i) = Cj(i) - o(Go)Ds(i) - .o(9o)B,.

the sum of squares computed the second pass, then it We are now ready to state a joint CLT for (a,., 6(n),
is essentially guaranteed that !) will be computed as 6d(n)).
a non-negative quantity on an. ite-precision computer.
More importantly, this means of computing v(n) is likely THEOREM 2. Assume that E[A?+B+C12(I)+D2(1)+
to be more stable numerically than that associated with + C2(d) + D?(d)] < . If E[B1 ] # O, then
the computation described in Reiman and WVeiss (1989).

We are now ready to describe a general confidence in- V/n[a,, - a(O0), 61(n) - c1ct(Oo),.....

terval methodology for estimating partial derivatives of 6d(n) - 8 do($O)] E[BI] * N(O, C)
ratios. Suppose that we wish to compute a 100(1 - f)%
confidence interval for ao(o). We use the following pro- as n - co, where C = (C,,, 0 < i,j < d) is a covariance

cedure matrix whose elements are given by

Algorithm CI. Coo = E[Z ]

1. Generate {(A,,fB,C, Ds), . > 1). Co. = C.0

2. Compute or, and 6,(n). = E W () E ii Z ZI

3. Compute v(n) (using the two-pass approach de- C,. = C,

scribed above). E W(i) E[D,(i)] Z

4. Find z(6) such that P[N(0, ]) < z(6)] = 1- K E[B, I

5. Compute 
W,] Z j 1)]

L,= ,€(n)-z()\/-7 for I < i,j < d. I

U,, = (n) + z(6) v;T)l IThe proof of this theorem mirrors that of Theorem 1

Then, [L,1 , U,] is an (approximate) 100(1 -6)% confidence and is therefore omitted.

interval for 8ia(eo). In particular, if the conditions of A procedure for producing asymptotically valid con-

Proposition 2 are in force and a2 > 0, then fidence regions for (a(8o), aia(eo), ... &.3a(o)) can now
easily be derived, using the same ideas as those described

lim .P[aia(O0 ) E [L., U,]] = 1 - 6. earlier in this section for aia(Oo). We leave the details to
n-00

the reader.
We conclude this section with a brief discussion of the

problem of generating a confidence regicn for the vector 4. LOW BIAS ESTIMATION FOR THE GR.A-

(a(Go),aaa(Gu),. . . ,8, )). A joint confidence region DIENT OF A RATIO
could be of potential interest in a number of optimization
settings, since virtually all iterative (deterministic) opti- Since the gradient of the ratio is a nonlinear function

mization algorithms choose their search direction, at each of the expectations E[A], E[B], Ef( '1, E[D(l)], ... ,

iteration, by considering the full gradient. E[C(d)], E[D(d)], it follows that the e ..ator b(n) is, in

Let C(i) and D(i) be unbiased estimators for cu(Go) general, biased for 8ia(Oo).

and 8.t(0o), so that We will now proceed to (formally) derive a bias ex-
pansion for Si(n). The proof of Theorem I shows that

E[C()] = a,u(fo)
E(D(i)] = At(fo). A0(n)-a(o) = B. (1)

If ((A,, B,,C,(l),D,(1),... C,(d),Di(d)), 1 < i !5 n) We wouldlike to approximate the expectation of that. We
is a set of n i.i.d. replicates of the random vecto note that since B. is close to p 4-_! EfBIJ for large n, we

(A, B, C(l), D(I),..., C(d), D(d)), then the estimators o, can use the power series expansion for f(Z) = 0 - W,
6(n) ... , 6d(n) can be constructed from the sample in canto obtain
the obvious way, namely

,, = A/ =

6(n) = (C,(i) - anD.(i))/f,,.
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=+ + + Under appropriate regularity hypotheses, and by ap-
plying techniques similar to those used in Glynn and Hei-

delberger (1991), one can rigorously prove that i,(n) re-
- 1L + 1 - duces the asymptotic bias, in the sense that

2- B. E[!,(n)] = 9,a(o) + o(1/n).
A second approach that is frequently used to correct

Using this approximation in (1), we find that for "nonlinearity bias" of the above type is to "jackknife"

bs(n) - ,or(Oo) the estimator. Specifically, for 1 < . <n, let

- ,n

2 Z Ak
k1i. kij

2W,. + Z,,D, - D.V, D.Zn,, =

A 11
2  ,. ZnE Bt,

2W. + Z.D. - B) n . _ 2Z,,D.(2L - B,.) h=1, k;fj

A A 2  Id n

2W. ZnD,. + B.W. 2Z.D.B. (2E Y, C .) E D,
A P2  

+ 1 ( 32)) = k. k;1

wh,-re A = B,, - t. Recall that E[Wj] = E[Z,] = 0. j B,
Observe that for i 0 j, E[BiV,] = E[Bi]E[W,] = 0, since k.,. kfj

Bi and TY) are independent. Therefore, =(j)  na,(j) - (n - 1)f,n,).

1 n n= E[B 1W 1] Then,
E[B.W.] = 2 E[BW,] n- 1

J=1
Similarly, E[Z.D.] = E[Z, Da]/n. Also, E[Z, D,(BA, - is the jackknife estimator for a,o(Oo). Also,
I&)] = 0 whenever i # k. Therefore,

E[Z.D.AJ. = E[ZD (B ) sJ(n)-)N(O,1),

(n - 1)E[Z (B - p)]E[DJ where
n2_ E[Z, B,]E[D,] + o(l /n). (.J(n))f = n (6.(,) - b-'(n))2

Now, taking the expectation in (2) yields is a consistent variance estimator. As in the case of the

E[6,(n)] - aja(eo) estimator l,(n), one can prove rigorously (under suitable

2E[Z1 BIJE[D,] - IE[B, W1 + Zi D] regularity hypotheses) that the estimator 6.4(n) reduces
asymptotic bias, in the sense that

This bias approximation suggests an obvious means of re- E[6(n)] = aia(o) + o(1/n).
duing the bias of gradient estimators for ratios. The idea It turns out that the improved bias characteristics of
is to estimate the bias term and correct for it by sbtract- these estimators are costless relative to the variance, in the
ing off the estimated bias. In this case, this approach leads sense that the estimators li(n) and 6!(n) obey precisely
to the estunator the same CLT as does 6i(n). Hence, the estimators exhibit

2 E ', 2,B, the same degree of asymptotic variability.(n = b(n) + 2. j
THEOREM 3. Assume that E[A+B2+C2 +D2]<o

. (B,W,, + 2,D,) and that E[BIJ 96 0. Then,
n2fl2

V l,- - 0,o)) = uv(o, 1)
where 2 , and WI are defined just before the statement of V'-(Ii(n) - &a(fo)) * aN(O, 1)

Proposition 2 in Section 3. - aia(fo)) =* vN(O, 1)

where u is the some constant as in Theorem I. I
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Table 1: Bin, llalf-Widths, and Coverages of Confidence Intervals for 0 = 0.2
(a(8) = 0.25 and o'(6) = 1.5625)

n = I0 n= 100 n = 1000

bias half-width I cover. bias half-width cover, bias half-width cover.

a,, -.010±.002 .129±.002 .77±.01 -. 001±.001 .059±.001 .90±.01 -.000±.001 .021±.001 .94±.01

a -.001"±.002 .149±.002 .80±.01 -.000±.001 .061±.001 .90:L.01 -.000±.001 .021±.001 .94±.0l
6(n) -.401±.024 .914±.021 .43±.01 -. 113±.013 .857±.014 .74±.01 -.004±.005 .391±.004 .88±.01
-bj(n) -. 120±.035 1.345±.038 .52±.0l -.014±.013 .921±.017 .76±.01 -.001±.005 .395±.004 .88±.01

Table 2: Bias, lialf-Widths, and Coverages of Confidence Intervals for 0 = 0.5
(o(O) = 1.0 and ot'(0) = 4.0)

n = 10 n =100 n = 1000
bias half-width cover, bias half-width cover, bias half-width I cover.

-.135±.009 .440±.005 .57.01 -.019±.004 .313±.004 .82±.01 -.003±.002 .125±.001 .92±.01
O -.036±.011 .634±.012 .65±.01 -.001±.004 .339±.004 .84±.01 -.001±.002 .126±.001 .92±.01
6(n) -2.072±.050 1.692±.057 .26±.01 -.407±.048 2.333±.051 .57±.01 -.056±.019 1.493±.022 .81±.01

6J(n) -1.152±.089 2.694±.084 .37±.01 -.049±.063 2.919±.077 .63±.01 -.012±.020 1.541±.022 .82±.01

5. A NUMERICAL EXAMPLE (see L'Ecuyer, Giroux, and Glynn 1991), thereby obtain-

We will now illustrate some of the ideas developed in ing the required unbiased estimators for the numerator
and denominator of the ratio (as discussed in Section 3).

this paper with a numerical example. We consider the It tunout th e rntial peurbation )s

steady-stateIt turns out that while infinitesimal perturbation analysis
queuey-stharrvalrate A te of an smenerice te M 1 can be applied to obtain strongly consistent steady-state
wheue t arv rTe sojourn time is the sum of the gradient estimators for this problem, it fails to give unbi-

wher 0 9 1. he ojorn tme s te su ofthe ased estimators of the gradient of the numerator and of the

time spent by a customer waiting for service, plus that adient of the eno int of the reeeratov atdo for
customer's service time. Let X0 = 0 and, for i > 1, let X. gradient of the denominator of the regenerative ratio for-

cusomr' srvcetie.Le X =0 nd fr ~1,le- X mula. See Heidelberger et al. (1988) for further details. As

be the sojourn time of the i-th customer, starting from an a See heier et p(pr ft etaile As

empt sytem.It s wel kown hata consequence, the theory of this paper is not applicable to
empty system. It is well known that the infinitesimal perturbation analysis steady-state gradi-

Xi- v,) + a(., ent estimator for this problem. But on the other hand, the
infinitesimal perturbation analysis derivative estimator is

where { vi, C1, v2, C2 .... } is a se11,ence of i.i.d. exp(l) ran- itself the estimator of a ratio of expectations, so that one

dom variables. For this model, the mean steady-state so- can apply the standard theory relative to the construction
journ time a(g) can be computed in dosed form: of co-fidence intervals for ratios of expectations (Igehart

1975, Wolff 1989).
Tables I and 2 report the experimental results ob-

Hensce, tained for this example. Simulation runs were carried out

S= 1/(1 - )2 at two parameter values, namely = 0.2 and 9 = 0.5,
using n = 10, 100, and 1000 regenerative cycles. A to-
tal of four estimators were considered in this experiment,

This system regenerates when customers arrive to an namely the ratio estimator a,. for a(8) and its jackknifed
empty queue. Consequently, as discussed in Example I of analog a (see Iglehart 1975), and the derivative estima-
Section 2, the steady-state mean sojourn time of a cus- tor 6(n) (Section 3) for &'(0) and its corresponding jack-

tomer can be expressed in terms of a ratio estimation knifed analog 6P(n) (Section 4). Standard regenerative

problem, and the methodology of this paper is therefore confidence intervals were constructed for the estimator
applicable. It is also straightforward to apply the likeli- or, and the confidence interval methodology of Section

hood ratio method for gradient estimation to this problem 3 was used to analyze O(n). For the jackknifed versions,



7

confidence intervals were constructed based on the vari- W,. - (E[Du]/E[B1])Z,
ance estimator (sJ(n))2 given in Section 4. At each of the -(D,,]B - E[Dz]E[B.]) 2,.
two parameter values and three choices of n (the number
of regenerative cycles), a total of 10,000 95% confidence Clearly, vrn/Z *: (E[Z]) 12N(O, 1) as n - oo and
intervals was replicated for each of the four estimators. D./B, a2. E[D1 ]IE[B] as n - oo. It follows, by the
From that, we are able to report estimates for the bias, ex- converging-together principle, that
pected half-width, and coverage (the probability that the
quantity being estimated lies in the confidence interval), v/n (D,,B, - E[D,]/E[B,]) 2, * 0

as well as 95% confidence intervals for the bias, expected as n - 0o. The CLT for i.i.d. random variables also
half-width, and coverages themselves. proves that

One can observe that for small n, for all estimators,
the coverage is really lower that what is to be expected. v/n (W. - (E[DI]/E[B])Zn) =*. E[BJaN(0, 1)

This bad behavior gets worse when 0 increases (heavier as n - 00. A second application of the converging-
traffic). Jackknifing clearly reduces the bias significantly. together principle then yields
It also gives a better coverage for small n, but usually at
the expense of a wider confidence interval. For small n, vrn/B, (6i(n) - 9.a(9o)) =:: E[Bo]aN(0, 1).
the coverage is too low anya"y. "or larger n, jackknifing
still helps reducing the bias. hiut (perhaps surprisingly) One final application of the converging-together principle

does not improve the coverage significantly. Of course, (note that R. '_ E[B1] as n - o) proves the theorem.

this is just a particular illustration, and one must be care-
ful about drawing any general conclusions from these nu-
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