
AD-A248 437

Annual Report for Contract Number N00014-88-K-0641

For the period: 1 October 1988 - 30 September 1989 T IC

APR~ :l

92-07360

2 /flliluH



A. Nico Haberrinann
Cartnqgie Meflen Univursity
Sch~ool of Computer Science
(412) 288 - 251X2
anh-Oco-cniu.edu
Graduate Research on %Iir6 and Avalon
student R~jlL ! %k WValter M-ainione

1 Oct 88 30 Sep 89

1. Mir6 Productivity Measures

Refereed papers submitted but njot yet published: I

Refereed papers published: '2

tinrefereed reports and articles: 3

Books or parts thereof submitted but not yet published: 1

Books or parts thereof published: 0

Patents filed but not yet granted: 0

Patents granted: 0

Invited presentations: 0

Honors received (fellowvships. technirsi society appoiintments, conference commnittee role. editorship, etc)-. 0

Prizes or awards received: 0

Promotions obtained: 0

Graduate students supported >= 25% of full time: 1

Post-docs supported >= 25% of full time: 0

Nfinorities supported: 0

A044.1& For

Statement A per telecon
Dr. Andre Van Tilborg ONR/Code 1133
Arlington, VA 22217-50022217-5000/g

:AV %i 2 r

NWW 4/10/92



A. Nico Habermann
Carnegie Mel6n University _
School of Computer Science
(412) 268 - 259.2
anhtbcs.cmu.edu
Graduate Research on Nir6 and Avalon
Student Reporting - Mark Walter Mainone
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

2. Mir6 Summary of Technical Progress

The Mir6 group is designing and imiplementing a parkage of two visual languages for computer security
specifications. The instance language describes static filesystem configurations: who are the users. and what
files can they access at this moment in time? The coustratnt language defines sets of legal instance pictures:
what configurations are allowed? In the past year. we have completed the design of these languages, and
have begun to implement the tools n.!cessary to make them part of a working software system.



A. Nico Habermann
Carnegie Mell&n University .

School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
Graduate Research on Mir6 and Avalon
Stude)',t Reporting - M'hrk Walter Maimone
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

3. Mir6 Detailed Summary of Technical Results

The Mir6 group is designing and implementing a package of two visual languages for computer security
specifications. The inslance language describes stati- filesystem configurations; who are the users, and
what files can they access at this moment in time? The constraint language defines sets of legal instance
pictures: what configurations are allowed? By October 1088, work on the instance language was essentially
complete: a formal description of its semantics was presented at the Visual Language workshop that month
in (1]. The constraint language then developed over the course of the 1988-1989 academic year. The rest of
this summary presents highlights of the constraint language. A complete description can be found in (2].

3.1. Background

Mir6 is a visual language for specifying security configurations. By "visual language." we mean a language
whose entities are graphical. such as boxes and arrows. By "specifying,", we mean stating independently of
any implementation the required and/or desired prolperties of a oystem. Finally, by "security," we mean
security for operating systems: ensuring that files are protected from unauthorized access and granting
privileges to perhaps some users, but not others.

Our work differs from other work in visual languages in three important ways: First, unlike many
languages based on diagrams where boxes and lines may fail to have a precise meaning, or worse, have
multiple interpretations, we are careful to provide a completely formal semantics for our visual language.
Second, iii contrast to visual programming languages. we are interested in specifications. not executable
programs. Third. we do not use visualization just for the sake of drawing pretty pictures: instead, we
address a domain, security, that lends itself naturally to a two-dimensional representation.

Security lends itself naturally to visualization because the domains of interest are best expressed in terms
of relations on sets. easily depicted as Venn diagrams. and the connections among objects in these domains
are best expressed as relations (e.g., access rights), easily depicted as edges in a graph (where the nodes are
Venn diagrams). The underlying model is a two-dimensional access rights matrix, but the compact visual
notation presents the same information in a more intuitive manner. The Mir6 instance and constraint
languages extend Ilarel's work on higraphs. an elegant formalism that shows relations on Venn diagrams.

Figure 1 shows a Mir6 security specification that refl'cts some aspects of the Unix file protection scheme.
The outermost left-hand box depicts a world. World, of users, two groups. Groupl, and Group2, and two
users, Alice and Bob. The containment and overlap relationships between the world, groups, and users
indicate that all users are in the world, and that some users are members of more thai one group. The
right-hand box denotes the set of files in Alice's mail directory. The arrows indicate that Alice, and no
other user, has read access to her nutil files. She is granted read permission because the direct positive
arrow from Alice overrides (i.e.. is more tightly nestod than) the negative arrow from World.



i~i: " _ Groupi

Figure 1: A Sample Mir6 Picture

3.2. Constraint Language

Mir6 is expressive enough to specify security configurations for any operating system. However, the kinds
of pictures users can draw will vary depending on the kind of system they are specifying. In particular, the
system architecture will impose constraints on what should be considered a "legal" (realizable and
acceptable) picture for that system. For example, a legal picture for Multics may be illegal for Unix.

Constraints themselves are specified by pictures drawn in a visual language similar to the Mir6 picture
language outlined above. We make the distinction, therefore, between Mir6 instance pictures and Mir6
constraint pictures. Each constraint specifies a "pattern," which is a template for many different instance
pictures. Instance pictures may match the pattern given by a constraint picture.

Constraints are typically statements in which the occurrence of some situation will imply that some further
condition should hold. Therefore, constraints are divided into two parts: the antecedent (or trgger) and
the consequent (or requirement). For example. we may wish to specify the constraint that any time a user
has write access to a file, he should also have read access to it. In this case, the existence of write privilege
is the "trigger" of the read privilege "requirement." Both parts are expressed together in a single
constraint; the trigger is drawn with thick lines, the requirement with thin line. Following are two
constraint picture examples:

1. Whenever a User has write access to a File, he should also have read access to that File.

2. Every Group must be directly contained in at least one World. and a Group can only be contained in a
World.

t orl d F

(tpeoup)[ye-Gop

4



The features of the constraint language are detailed in (2]; the following summarizes the constraint
language constructs:

Syntax Arrows: These match against individual arrows in an instance picttire.

Semantics Arrows: These match relations in the two-dimensional access matrix.

Containment Arrows: Containment arrows must join two boxes. They are matched when one instance
box is directly ,:ontained within the other.

Starred Containment: Matches when one box is contained within the other at any level (i.e., there may
be boxes surrounding the smaller, yet still contained within the larger).

Negated Arrows: Any of the arrows may be negated. For syntax arrows, it means there is a negative
arrow joining two boxes: for semantic arrows. it means the relation is negative: for containment
arrows, it means one box is not contained in the other.

Box Patterns: Each constraint box may have a predicate to restrict the kinds of instance boxes it
matches. For example, type = User & name = "jones" would only match an instance User (as
opposed to File) box with the name Jones.

Thick and Thin: For all parts of the instance picture matching the thick parts. there must exist instance
subpicfures matching the thin parts.

Numeric Constraints: A range limit can be given on the number of subpictures that match the thick
part of the constraint.

3.3. Implementation

We are designing a set of tools that will allow us to e.xploit Mir6's capabilities. Our front-end tools are
operating system independent, and use an internediatte file format to represent instance pictures and
constraints; the back-end tools use the intermediate file format to interface with actual operating systems.

The front-end tools include the 11ir4 graphical editor, which allows users to view and modify instance
pictures and constraints. The editor runs under the X Window system and is built on top of the Garnet
system, developed at Carnegie Mellon. The editor provides simple syntactic checks, and translates pictures
and constraints into our intermediate file format. It also provides the ability to "zoom" out and in to allow
the user to abstract away or focus in on details of a picture, and to "highlight" the sub-pictures of interest.
The Mird printing package takes the intermediate file format and produces a PostScript file of the Mir6

.5



picture. The Mird static ue.rtr)i€ca checker checks a pictture for ambiguity or violations ,f constraints, and
reports any eriors,

The back-end tools include the Atird file stiater cherker, which probes the file system to check whether a
given file system's protection conforms with its instance language description, A different file system
checker Is needed for each operating mystom on which Mir6 will be used, We are investigating the feasibility
of a Aird file 8ytemn irgpeclion fool which could alter.an instance picture to correspond to the actual state
of the file system. The file system inspection tool raises a number of interesting questions in the area of
automated production of attractive graphs. Of the tools n.ntioned, we have prototypes of the graphical
editor, static semantics checker. and the printing package,

In conclusion, the Mir6 system provides a convenient visual language for specifying security properties.
Our future work will concentrate on applying the Mir6 languages to domains other than security.



A. Nico Haberuiann
Carnegie Mellon University
School of Computer Science
(412) 268 - 250,2
anh@cs.cmu.edu
Graduate Research on Mir6 and Avalon
Student Reporting - Mark 'Walter Maimone
N00014 - 88 - K -0641
1 Oct 88 - 30 Sep 89

4. Mir6 Publications, Presentations and Reports

References

[1] Mark W. Maimone, J. D. Tygar, and Jeannette M. Wing. Mir6 semantics for security. In Proceedings
of the 1988 IEEE Workshop on Visual Languages, pages 45-51, October 1988.

[2] Allen Heydon, Mark Maimone, Amy Moormann, J. D. Tygar, and Jeannette Wiihg. Constraining
Pictures with Pictures. Technical Report CMU-CS-88-185, Carnegie Mellon University, School of
Computer Science, 1988.

[3] Allan Heydon, Mark W. Mainone, J. D. Tygar, Jeannette Wing, and Amy Moormann Zaremski.
Constraining pictures with pictures. In 1l' h IFIP World Computer Conference. August 1989.

[4] Allan Ileydon, Mark V. Maimone. J. D. Tygar. Jeannette Wing, and Amy Moormann Zaremski. Mzir6
Tools. Technical Report CNIU-CS-89-159, Carnegie Mellon University. School of Computer Science.
July 1989.

[5] Allan Heydon, Mark W. Maimone. J. D. Tygar. Jeannette Wing, and Amy Moormann Zaremski. Mir6
tools. In Proceedings of the 1989 IEEE Workshop on Visual Languages. Rome. Italy. October 1989.

[6] Mark W. Maimone. J. D. Tygar, and Jeannette N1. Wing. Visual Languages and Visual Programming.
chapter Formal Semantics for Visual Specification of Security. Plenum Publishing Corporation. Winter
1989.



A. Nico Habermann
Carnegie Mellbn University -

School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
Graduate Research on NIir6 and Avalon
Student Reporting - N-ark Walter Mairnone
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

5. Mir6 Research Transitions and DoD Interactions

Through workshop and conference presentations, other researchers are becoming interested in our work.
Since the tools are still in the development phase. however, no substantial transitions have occurred.



A. Nico Habermann
Carnegie Mellon ,University -

School of*Compute'r Science
(412) 268 - 2592
anh@cs.cmu.edu
Graduate Research on Mir6 and Avalon
Student Reporting - Mark Walter Maimone
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

6. Mir6 Software and Hardware Prototypes

We have entered into the software development phase of our research. We now have a working editor,
printing tool and ambiguity checker. These are all prototype versions, however. Over the next year we will
refine these tools, and hope to complete several others. See the paper Mir6 Tools for more details on the
status of our software.

- .9



Nico Habermann
Carnegie-Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

1 Productivity Measures

Refereed papers submitted but not yet published: I
Refereed papers published: 0
Unrefereed reports and articles: 2
Books or parts thereof submitted but not yet published: 1
Books or parts thereof published: 0
Patents filed but not yet granted: 0
Patents granted: 0
Invited presentations: 0
Honors received (fellowships, technical society appointments, conference committee
role, editorship, etc): 0
Prizes or awards received: 0
Promotions obtained: 0
Graduate students supported >= 25% of full time: 1
Post-docs supported >= 25% of full time: 0
Minorities supported: 0



Nico Habermann
Carnegie Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

2 Summary of Technical Progress

In the Fall and Winter, we completed work on Avalon/C++, a fault-tolerant, dis-
tributed programming language. In the spring, we mounted a design effort towards
implementing Avalon/Common Lisp, an extension to Common Lisp with support for
reliable, distributed computing.

Over the summer, the Avalon/Common Lisp group designed and implemented a
prototype version of our system using CMU Common Lisp, Mach (for remote data
transmission), and Camelot (for fault tolerance and primary recoverability). Future
work will entail rcfining our ideas concerning system semantics, and modifying the
implementation to conform to them.

2



Nico Habermann
Carnegie Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen.
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

3 Detailed Summary of Technical Results

Project Goals

A distributed system consists of multiple computers (called sites) that communicate
through a network. Distributed systems are typically subject to site crashes and
communication link failures. A crash renders a site's data temporarily or permanently
inaccessible, while a communication link failure causes messages to be lost. A failure
is detected when a site that has sent a message fails to receive a response after a
certain duration. The absence of a response may indicate that the original message
was lost, that the reply was lost, that the recipient has crashed, or simply that the
recipient is slow to respond.

The primary goal of the Avalon Project is to create a set of linguistic constructs
designed to give programmers explicit control over transaction-based processing of
atomic objects for fault-tolerant applications. These constructs have been imple-
mented as extensions to C++ and Common Lisp. The constructs include new encap-
sulation and abstraction mechanisms, as well as support for concurrency and recovery.
The decision to extend an existing language rather than to invent a new one was based
on pragmatic considerations. We felt we could focus more effectively on the new
and interesting issues of reliability and concurrency if we did not have to redesign or
reimplement basic language features, and we felt that building on top of a widely-
used and widely-available language would facilitate the use of Avalon outside our
own research group.

Past Accomplishments

Last fall and winter, we completed our efforts on Avalon/C++, an extension to C++.[81
My time was spent debugging the data transmission package (which I designed and
built the previous summer), and implementing an example of a highly-available and
recoverable data type in our Avalon/C++ system. The data type, a simple counter,
grounded at zero, illustrates a number of the unique features of Avalon/C++.

3



A detailed presentation of the language and its features can be found in [1] and
in the part of [3] devoted to discussion of the Avalon/C++ project.

By late winter, our research efforts in Avalon/C++ gave way to the initial de-
sign of Avalon/Common Lisp, i.e. a Common Lisp(7] with support for distribution,
concurrency, reliability and fault-tolerance. While the goals were similar to those of
the Avalon/C++ effort, our design resulted in a different computation model. These
differences were the result of influence from a number of directions, both technical
and practical.

One of the initial design goals of the Avalon Project was to extend existing
languages, rather than invent new ones. In the process of such an extension, it is
important to introduce as few new features as possible, and design those features
to combine well with the base language's idioms and model of computation. In
Avalon/C++, we chose an object-oriented design, consistent with the C++ model.
In Avalon/Common Lisp, we strove to extend the language in a similarly consistent
manner.

The most significant enhancement we made to Common Lisp was the addition of
a new first-class data type, the evaluator. An evaluator represents an additional, non-
local, Common Lisp evaluator, on which the user can evaluate expressions, install
procedures, and modify accessible data. Evaluators are used via two new macros,
remote and local, which direct the thread of computation to a different evaluator.

Avalon/Common Lisp is built on top of three locally-developed systems, CMU
Common Lisp, Mach, and Camelot, and runs on IBM-PCIRTs. CMU Common Lisp
is one of the first implementations of Common Lisp, and was chosen over other
Common Lisp implementations for two reasons. Firstly, it is the only available
Common Lisp that runs on the computers the Avalon Group had already available.
We also favored the presence of the support and maintenance the locally-managed
system provides.

Mach[l], a Unix-like operating system with support for distributed computation,
is used to provide communication among the various Avalon processes, and to support
process-level concurrency. Camelot[5,3], a machine-independent, high-performance,
distributed transaction facility, is used to support the fault-tolerance and reliability
we desire.

Over the stimmer, we designed and built a prototype version of Avalon/Common
Lisp. The implementation supports most of the features we had envisioned for the
system, with the exception of some of the more expensive features. Please refer to
the enclosed Carnegie Mellon Techneal Report (2] for details.

My own work has focused on the design of the remote evaluation model for
Avalon/Common Lisp, and on the interface between the Camelot recoverable virtual
memory system and the Common Lisp data-type system.

The remote evaluation model provides an interesting model of computation for
distributed computing. Instead of remote servers and remote procedure calls, the dis-
tribution of the computation is generalized to a set of remotely situated Common Lisp
evaluators, which communicate via "remote evaluator" calls. While not significantly

4



more computationally expensive from the point of view of the implementation, this
model provides a richer environment for the programmer. (See [2) for examples.)

The remote evaluation model was inspired by Stamos' PhD work [6] and by my
experiences with Avalon/C++ in previous years. (See last year's Fiscal Report for
details of my work with Avalon/C++ .)

The design and implementation of the interface between the Camelot recoverable
virtual memory system and Common Lisp mostly involved the integration of the
Camelot/Common Lisp interface provided to us by the Camelot Group, and the
demands of the standard Common Lisp data types. Camelot, having been written
in C, understand only basic C data types. Any useful Lisp interface, however, must
understand the more complex data types present there (lists, vectors, structure, etc.).
I expended much effort implementing most of the Common Lisp data types on top
of the primitive data types provided by the Camelot interface.

Future Goals

My research plans for the next year are twofold. First, during the Fall, I plan to
augment the existing Avalon/Common Lisp prototype to support some of the more
interesting features of my initial remote evaluation design. In our effort to get the
prototype running by the end of the summer, we passed over some of the features
that required additional research and extensive implementation efforts, mainly sharing
of data among transmitted objects, and propogation of side-effects across evaluator
boundaries.

In the new year, we plan to start work on the next generation of Avalon/Common
Lisp. At this time, it appears as if we will choose a different Lisp dialect (probably
Scheme) as our base language. While Common Lisp provided a fertile testbed for
our work, a simpler, cleaner language will allow us to better explore the more formal
aspects of our research.

On another front, we have begun discussing our ideas with the ML language[4]
community here at SCS, in an effort to understand what a distributed ML might look
like.

I personally plan to explore in detail the idea of extending our ideas about dis-
tributed computation models with the ML researchers. During our talks, we have
discovered that we can learn about our research by trying to cast it into a framework
that other language researchers can understand.

References
[1] Accetta, M., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F., Teva-

nian, Jr., A.. and Young, M. W. Mach: A New Kernel Foundation for UNIX
Development. In: Proceedings of Summer Usenix. 1986.

-- -' a nmm uuaami i mim~mm IHNN N a im5



9-

[2] Clamen, S., Leibengood, L., Nettles, S., and Wing, J. Reliable Distributed
Coinputing with Avalon/Common Lisp. No. CMU-CS-89-186, Carnegie Mel-
lon University, September 1989. Submitted to 1990 IEEE Computer Society
International Conference; an extended abstract appears as "An overview of
Avalon/Common Lisp," in the Proceedings of the Third Workshop on Large
Grained Parallel Programming (Pittsburgh. PA, October 10-11, 1989).

[3] Eppinger, J. L., Mummcrt, L. B., and Spector, A. Z. Guide to the Camelot
Distributed Transaction Facility including the Avalon Language. Prentice-
Hall, Englewood Cliffs, New Jersey, 1989.

[4] Milner, R. The Standard ML Core Language. Polymorphism, vol. 11 (1985).
Also Technical Report ECS-LFCS-86-2, University of Edinburgh, Edinburgh,
Scotland, March 1986.

[5] Spector, A. Z., Bloch, J. J., Daniels, D. S., Draves, R. P., Duchamp, D., Ep-
pinger, J. L., Menees, S. G., and Thompson, D. S. The Camelot Project.
Database Engineering, vol. 9 (1986). Also available as Technical Report
CMU-CS-86-166, Carnegie Mellon University, November 1986.

[6] Stamos, J. W. Remote Evaluation. No. MIT/LCS/,R-354, Massachusetts Insti-
tute of Techonology, January 1986. Technical report form of PhD work.

[7] Steele, Jr., G. L. Common Lisp: The Language. Digital Press, 1984.

[8] Sroustrup, B. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 1986.

19] Wing, et al., J. The Avalon Language. In: Guide to the Camelot Distributed
Transaction Facility including the Avalon Language, edited by J. L. Eppinger,
L. B.Mummert, and A. Z. Spector. Prentice-Hall, Englewood Cliffs, New Jersey,
1989.

[10] Wing, et al., J. The Avalon/C++ Programming Language (Version 0). No.
CMU-CS-88-209, Carnegie Mellon University, December 1988.

6



0

Nico Habermann
Carnegie Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

4 Publications, Presentations and Reports

Below are the list of Avalon publications I have been involved with during the past
year:

References

[1] Jeannette Wing, et al. The AvalonlC++ Programming Language (Version 0).
Technical Report CMU-CS-88-209, Carnegie Mellon University, December 1988.

[2] S.M. Clamen, L.D. Leibengood, S.M. Nettles, and J.M. Wing. Reliable Dis-
tributed Computing with AvalonlCommon Lisp. Technical Report CMU-CS-89-
186, Carnegie Mellon University, September 1989. Submitted to 1990 IEEE
Computer Society International Conference; an extended abstract appears as "An
overview of Avalon/Common Lisp," in the Proceedings of the Third Workshop
on Large Grained Parallel Programming (Pittsburgh, PA. October 10-11, 1989).

[3] Jeannette Wing, et al. The Avalon language. In Jeffrey L. Eppinger, Lily
B.Mummert, and Alfred Z. Spector, editors, Guide to the Camelot Distributed
Transaction Facility including the Avalon Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1989.

7



Nico Habermann
Carnegie Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

5 Research Transitions and DoD Interactions

A number of researchers, in both academia and industry, have expressed an interest
in our Avalon/C++ work. Commercial sites include Microsoft, Texas Instruments,
Hewlett Packard, and NCR. Academic sites include Boston Univeristy, University of
Massachusetts - Amherst, Concordia University (Montreal), and University of New
South Wales (Australia). (A more detailed list is available upon request.)

Our research with Common Lisp has not had much publicity as yet, so not much
interaction on that topic has yet occured. Our upcoming publication should remedy
that situation.

8



Nico Habermann
Camegie-Mellon University
School of Computer Science
(412) 268 - 2592
anh@cs.cmu.edu
ONR Funding for Mir6 and Avalon
Student Reporting - Stewart Michael Clamen
N00014 - 88 - K - 0641
1 Oct 88 - 30 Sep 89

6 Software and Hardware Prototypes

Avalon/C++ is stable and available for distribution. Avalon/Common Lisp is not
quite stable, but efforts within the next few months will improve its condition. Plans
over the next year are to redesign and reimplement the Avalon/Common Lisp on a
different testbed and to design and build a new system to achieve Cani.lot's without
the unnecessary overhead Camelot currently possesses.

9


