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2 Detailed Summary of Technical Progess

This section presents background information, motivation, and a project de-
scription of my current focus of research, type evolution in the presence of per-
sistent instances.

Background

Over the past decade there have been a number of research projects dealing
with the integration of database features into programming language systems.
This was done in an effort to simplify the programming of applications requiring
such features. For example, efforts aimed at developing programming languages
for reliable, fault-tolerant applications have imported transactions and data re-
covery techniques from the database world [14, 18, 6]. At the same time, other
projects have worked to incorporate a notion of persistent data into program-
ming languages, in order to support applications requiring one or more of the
following features:

e Manipulation of very large amounts of data
¢ Sharing of data among application programs
e Sharing of data among users

o Persistence of data across program invocations

Design applications, exemplified by CAD/CAM systems, multimedia and of-
fice automation facilities, and software engineering systems, typically require all
of these features, but unlike traditional database applications, require a tradi-
tional computational facility as well. For this reason, available database facili-
ties, such as relational database management systems (RDBMS) are not accept-
able. To this end, a number of research projects have developed. programming
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language systems that incorporate a notion of data persistence. A detailed sur-
vey of persistent programming languages can be found in [5]. A survey of the
issues related to persistence and typing can be found in (1].

The first interfaces between programming languages and database systems
were made up of subroutine libraries, enabling programs to pass commands, in
the form of strings, to the process managing the database. Values of certain
types could be communicated between the database and the program via a pre-
defined set of variables. For applications requiring considerable database inter-
action at runtime, this communications medium was clumsy and inconvenient.
Also, the forms of data that could be entered into the database was typically
very primitive, restricted to tuples of strings and numbers. Early persistent pro-
gramming languages® concentrated on bridging the gap in form between data in
the program and in the database.

The first such persistent programming languages were designed as extensions
to existing Algol-like languages (17, 2]. In them, persistent data was stored
in disk-based objects that were manipulated very much like traditional files.
In PASCAL-R (17], these data repositories were typed similarly to PASCAL
files, restricted to contain a homogeneous collection of relation® records. A
number of control structures were provided for simple iteration and querying
over the elements of the database file. Applications in PASCAL-R, forced to
conform to the restrictive range of persistent data types, had to devote time
converting between the runtime and persistent representations of the data. This
characteristic, called impedance mismatch by a number of researchers, increased
application development time, and made the language inelegant.

PS-Algol [2], on the other hand, provided a model of persistent data that
was more integrated with the base language. All objects in a database file
were reachable by way of pointer reference from an easily accessible root. In
addition, any PS-Algol object could be stored in the database (not just simple
relations as in PASCAL-R). This improvement, called orthogonal persistence,
made PS-Algol much more interesting and useful than its predecessors.

With orthogonal persistence a desirable feature, many projects have found
object-oriented languages an appropriate platform for research, their data mod-
els and type systems being more closely related to the database and semantic
models than those of the Algol-like languages. Object-oriented systems are

1A persistent programming langsage is a language that provides to its clientele the ability
to preserve data across ive executions of a program, and even allows such data to be
used by many different programs. Data in a persistent programming language is independent
of any program, able to exist beyond the execution and lifetime of the code that created it.
A database programming language is a language that integrates some ideas from the
database programming model with traditional programming language features. Such a lan-
guage is distinguished from a persistent programming language in that it incorporates features
beyond persistence, such as transactions, locking, and query processing.
2The same type of object as is found in relational database systems.




characterized by the following features: object identity, abstract data typing,
inheritance (or subtyping), late (i.e., runtime) binding of methods to objects.
It turns out that these features are quite attractive to the developer of a design
database system, as they map quite well to the mental framework of the design
engineer [11]. The object-oriented data model is compatible with the Semantic
Data Model [16], which requires support for instantiation, aggregation, and
generalization, all of which are offered by the object-oriented system’s notion of
object classes and inheritance. It has also been shown that some other database
features, such as composite objects, object versioning, etc. can be built out of
the intrinsic features of an object-oriented database system {13].
Object-oriented database systems have a computation model better suited

for computationally extensive tasks requiring persistent data than the older -

database systems (such as relational databases) do. The older systems are op-
timized for queries over large collections of data, and provide little support for
much else. The object-oriented model allows for efficient navigational access
(i.e., browsing) over individual objects, and by associating procedural informa-
tion with types, allows for a wider range of functionality.

Examples of recently-developed object-oriented database systems include
ORION [13], GemStone [15, 3], Encore [12], and O, [7].

The Problem

Programming is an incremental process. Frequently, existing program elements
are enhanced to support additional functionality or a new application. Such
an operation often necessitates the propagation of changes to dependent ele-
ments throughout the program. Abstract data lyping was developed as a way
of building logical barriers between the specification of an interface to a type,
and the implementation of that interface and its internal representation. This
modularity fire wall effectively contains (type) implementation changes from the
various program elements which depend on the type. However, modularity does
not address the problem of modification to type specifications. In general, the
effects of an evolution of a type cannot be locally contained [8}.

Type evolution is the term used to describe the process of altering type defi-
nitions over time. It encompasses the problem of specifying the change, as well
as attempts to manage the affects of the evolution on dependent elements. In
an object-oriented system, types are implemented as classes, defined by a rep-
resentation and a set of (procedural) access methods. Type (or class) evolution
in such a context is concerned with the propagation of class changes to associ-
ated methods, and to the subclasses inheriting part of their definitions from the
parent class.

By way of example, consider the database of phone numbers managed the
local telephone company. The database associates phone number with customer,
billing address, service level, touch-tone vs. rotary dial, etc. Now, it is 1983,
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and the FCC requires the local phone company to associate an additional data
field, a default long-distance carrier, with each number in the database. Since it
obviously cannot afford to discard its records, the phone company must develop
a method for adjusting its database to cope with the creation and definition of
the additional field, as well as modify its database applications to recognize and
accept the new schema. Such is an example of type evolution in the presence of
persistent data.

While type evolution in traditional programs need only be concerned with
the effect of the change on code, the persistent data associated with a database
program, is another dependency that much be addressed.

It is also worth mentioning that the type modularity barrier resulting from
abstraction fails in the context of persistent data, which unlike non-local pro-
gram references, depends on the representation of the type. Barring some special
system support for change (as discussed below), those instances would have to
be modified or discarded, so as to conform to the (new) class specification.

Projects and Goals

In the realm of database programming languages, it is very hard to escape
the repercussions of change. Even the most traumatic type change cannot ef-
fect previously-compiled programs when those programs are run in isolation.
Database applications, by definition, manipulate shared data. A change ef-
fecting the definition of a type that is represented in the database renders uld
database program images obsolete. One major goal of this, my dissertation
project [4], is to examine the issues related to the goal of keeping the (shared)
data consistent and accessible in the presence of type evolution.

Existing database programming systems can be classified into three cate-
gories, according to how they handle old instances in the presence of a change
to the database schema:

1. No support. Either the modified type is distinct from the original and old
instances are not accessible as new instances, or the new type is the same
as the new, and serious errors result if old database items are referenced.

2. Database conversion. Instances of the original type are converted into
instances of the new type. Often evolutions are restricted to those for
which the system can determine how to convert the types, but sometimes
the programmer can supply conversion routines. The database instances
themselves can be converted at evolution time, or, as is more often the
case, when they are next accessed.

3. Emulation. Instances of the original type persist indefinitely, the system
instead insulating the applications expecting revised instances by provid-
ing a layer between the old objects and the new application. This layer
emulates the revised object semantics on top of the old object format.
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This approach has the significant advantage of not rendering old appli-
cations obsolete, as they can continue to access the data through the old
type interface.

One of the basic premises of my perspective is that neither of the two ac-
tive support strategies (i.e., conversion or emulation) is adequate for all circum-
stances. In situations where there are few applications (and copies of application
images), conversion is the preferable approach, as it is more efficient. However,
a site might decide that it wants to bear the price of emulation in cases where
it is impractical or impossible to upgrade all the applications, or when multi-
ple interfaces to the data is desirable (e.g., in a design system where multiple
users are typically modifying the database schema). One approach might be to
provide both mechanisms, and allow the programmer to select which strategy
is the more appropriate. While such a scheme is an improvement, it is stiil
insufficient, as there exist other strategies that would be more appropriate in
certain circumstances.

Imagine a type change that consists of a modification to a single
attribute of a type. Imagine that the conversion process would take
a considerable amount of time per object.

If our system supports conversion, the first access to any particular
object after the installation of the change will be delayed until the
database server can convert the object. This penalty would be paid
even if the client is not making use of this modified attribute.

If our system supports emulation, then the client will only have to
the (time) cost of conversion when he needs the value of the modified
attribute. However, unlike conversion, that cost will be paid on every
access, not just the first.

If we had a system which supported both conversion and emulation,
then the server could “emulate” the object on accesses until the first
reference to the new attribute is made. At that time, the object could
be converted. This strategy is preferable than either conversion of
emulation alone, because it avoids an expensive conversion when the
user does not require the results.

One further enchancement in a system supporting both emulation
and conversion could be to emulate during the day, and convert
objects incrementally at night, when there are cycles to spare.

A preferable general solution would be to combine the compatibility support
of emulation with the efficiency of conversion. Whether this is possible in general
is one of the project’s topics of research. Under certain conditions, hybrid
strategies more sophisticated than the one presented above might make better
use of the database servers time than any approach presented to date.




Tuning performance by playing with the time before which an object can be
converted can only take you so far. In general, the granularity of the options
(either the object is an instance of the old type-version or it is an instance of
the new) is too large. Better performance is likely possible for some mix of
applications if it were possible to somehow merge the specifications of the two
(or more) type-versions, supporting both backward and forward compatibility
at a (minimized) cost to both old and new clients.

In fact, we do not have to wish for this possibility for too long as there
exists a technology that addresses this very issue. That technology is view-
based abstraction.

Views[9, 10] are a mechanism for supporting multiple external specifications
on an abstract data type. The resulting system supports instances that may be
operated upon by different applications using different type specifications, but
which are all operating on a common instance, whose concrete implementation
represents all the facets (i.e., views of an instance) of the object.

A significant class of hybrid evolution support strategies can thus be rep-
resented as a view implementation problem, with full compatibility supported
though various views of a type (one for each active type-version).

Views were initially devised for situations where all the various interfaces
were known, prior to the creation (or persistence) of any instances. For views
to be useful as a type evolution mechanism, they will have be extended to
deal with 1) the dynamic addition of interfaces, and 2) the existence of objects
represented in multiple ways. In the context of an object-oriented ata model,
views will also have to be adapted to cope with class inheritance. How this will
be accomplished is a project research goal. Initial approaches to this task are
included in the author’s dissertation proposal [4].

This concludes the presentation of the perspective and goals of the ongoing
project. The following section lists related work done in the past year.

Past Accomplishments

My research into this field begun by conducting a detailed survey of the field
of persistent programming languages, programming languages which include a
notion of data persistence. The resulting survey can be found in [5].

Of direct relevance to my dissertation project, progress has already been
made in the following areas:

¢ Development of a cost model to evaluate various evolution support strate-
gies

¢ Research into real world expense of evolution management

If our system is to support multiple compatibility and conversion strategies,
some method of performance evaluation is necessary to assist in the selection of




the appropriate strategy. To this end, a simple cost model has been developed.
Currently, the model has only been used to compare the various basic strategies
(i.e., those supported by existing systems), but it is intended that the model be
generalized.

In order to gather information concerning the costs and importance of evo-
lution management under real world conditions, it is hoped that actual cases
can be studied. A few inquiries have been made to date, and many more are
expected, in pursuit of this goal.

Future Goals

In order to achieve our final goal of a flexible, customizable evolution manage-
ment system for database programming, the following tasks need to be per-
formed:

o Extend model of views to cope with multiple representations, inheritance,
and concurrent evolutions.

Develop prototype system on top of a real database system.

Develop/implement library of hybrid strategies.

Enhance and then use cost model to think about applicability of various
strategies in various database applications.

L]

Experiment with type evolution support in a particular application do-
main '

Current views technology only addresses the issue of multiple, static inter-
faces to a type. To be useful in our situation, the views model must be extended
to cope with:

1. Dynamic creation of views (corresponding to type evolutions after the
instantiation of (older) versions of the type).

2. Multiple representations of instances in the database
3. Inheritance (in the case of object-oriented databases).

4. Concurrent evolutions

In order to test and extend our initial ideas, a prototype database system
with advanced evolution management must be designed and built. Rather than
create a database system from scratch, the management subsystem will be built
on top of an existing database. It is expected, however, that the data model ex-
ported by the underlying database system will have to be masked from the user.




In this way, a consistent data mode] with evolution support can be presented
to the user.

The combined emulation-and-conversion strategy presented earlier (p. 6) is
but one example of a hybrid strategy. We expect many others to be developed
and evaluated (using both the cost model and experimental measurement) in
the course of our research.

In order to attract people to make use of the facility, our evolution manage-
ment system will be integrated with the various existing database systems of
a number of projects on campus. In this way, researchers requiring the use of
a database for their applications can benefit from our work, as well as provide
important feedback on the utility of our system.

Concluding Remarks -

The goal of my dissertation research project is to explore the dynamics of schema
evolution management in situations where there exists an associated database
of considerable size and value. Changes to the database schema are usually
motivated by a desire to increase the functionality of one or more of the appli-
cations operating on the database. However, such modifications (to the schema
and to the application) cannot be done in isolation, as they might require cor-
responding changes to be made to both the other database applications and to
the database itself.

In the course of research, a prototype system will be constructed exhibiting
some of the features described earlier in this report. It is intended that this
system will be used by a number of independent projects requiring database
support, in order to provide us with important feedback.
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3 Publications, Presentations and Reports
Below are the list of publications I have been involved with during the past year:

{1] Jeannette Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen
Kietske, Richard Lerner, and Su Yuen Ling. The Avalon language. In Jef-
frey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors, Camelot
and Avalon: A Distributed Transaction Facility, The Morgan Kaufmann Se-
ries in Data Management Systems. Morgan Kaufmann Publishers, Inc., San
Mateo, California, February 1991.

{2} Stewart M. Clamen. Data persistence in programming languages - a survey.
Technical Report CMU-C5-91-155, Cambridge, MA, Pittsburgh, PA, May
1991.

__.
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-

Stewart Clamen. Type evolution in the presence of persistent instances.
Thesis Proposal, August 1991.
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4 Research Transitions and DoD Interactions

As part of my plan of research, I have made arrangements with a number of in-
dependent research organizations here at Carnegie Mellon to make direct use of
my prototype system in their research projects. I have made such arrangements

for two reasons:

¢ To provide me with feedback about the utility and applicability of my
work.

e To provide a useful facility for database management in the respective
applications.
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Managing Type Evolution
in the Presence of Persistent Instances
(Thesis Proposal)

Stewart M. Clamen
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August 15, 1991

Abstract

A longstanding problem in the realm of database applications is how to manage
the data dependencies associated with a change in the database schema definition.
More specifically, how can a programmer modify the definition or implementation
of a data type without abandoning the instances of the current type which persist in
the database? While adequate solutions exist for relational database systems, the
problem is exacerbated in the new database programming languages, where more
elaborate type specifications are supported.

This proposal begins by exploring the various solutions to the problem, exam-
ining how existing database programming systems cope with type evolution and
database consistency. It then motivates and sketches a general and extensible
framework for the management of type evolution and its effects. Such a framework
would provide the programmer complete decision-making power over the conver-
sion of existing instances, thereby giving control over the obsolescence of application
programs which depend on outdated data type specifications.
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1 Background: Integrating Database Technology and Pro-

gramming Languages

Over the past decade there have been a number of research projects dealing with the
integration of database features into programming language systems. This was done
in an effort to simplify the programming of applications requiring such features. For
example, efforts aimed at developing programming languages for reliable, fault-tolerant
applications have imported transactions and data recovery techniques from the database
world [32, 43, 15]. At the same time. other projects have worked to incorporate a
notion of persistent data into programming languages, in order to support applications
requiring one or more of the following features:

o Manipulation of very large amounts of data
e Sharing of data among application programs
¢ Sharing of data among users

o Persistence of data across program invocations

Design applications, exemplified by CAD/CAM svstems, multimedia and office au-
tomation facilities, and software engineering systems, typically require all of these fea-
tures, but unlike traditional database applications, require a traditional computational
facility as well. For this reason, available database facilities, such as relational database
management systems (RDBMS) are not acceptable. To this end, a number of research
projects have developed programming language systems that incorporate a notion of
data persistence.! The remainder of this section presents a brief history of the devel-
opment of such language systems.

The first interfaces between programming languages and database systems were
made up of subroutine libraries, enabling programs to pass commands, in the form of
strings, to the process managing the database. Values of certain types could be com-
municated between the database and the program via a predefined set of variables.
For applications requiring considerable database interaction at runtime, this communi-
cations medium was clumsy and inconvenient. Also, the forms of data that could be
entered into the database was typically very primitive, restricted to tuples of strings
and numbers. Early persistent programming languages® concentrated on bridging the
gap in form between data in the program and in the database.

The first such persistent programming languages were designed as extensions to ex-
isting Algol-like languages {40, 3]. In them, persistent data was stored in disk-based

'A detailed survey of persistent programming languages can be found in [12). A survey of the issues
related to persistence and typing can be found in [2].

2 A persistent programming languageis a langnage that provides to its clientele the ability to preserve
data across successive executions of a program, and even allows such data to be used by many different
programs. Data in a persistent programming language is independent of any program, able to exist
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objects that were manipulated very much like traditional files. In PASCAL-R [40], these
data repositories were typed similarly to PASCAL files, restricted to contain a homo-
geneous collection of relation® records. A number of control structures were provided
for simple iteration and querying over the elements of the database file. Applications in
PASCAL-R, forced to conform to the restrictive range of persistent data types, had to
devote time converting between the runtime and persistent representations of the data.
This characteristic, called impedance mismatch by a number of researchers, increased
application development time, and made the language inelegant.

PS-Algol [3], on the other hand, provided a model of persistent data that was more
integrated with the base language. All objects in a database file were reachable by way
of pointer reference from an easily accessible root. In addition, any PS-Algol object
could be stored in the database {not just simple relations as in PASCAL-R). This
improvement, called orthogonal persistence, made PS-Algol much more interesting and
useful than its predecessors.

With orthogonal persistence a desireable feature, many projects have found object-
oriented languages an appropriate platform for research, their data models and type
systems being more closely related to the database and semantic models than those of
the Algol-like languages. Object-oriented systems are characterized by the following
features: object identity, abstract data typing, inheritance (or subtyping), late (i.e..
runtime) binding of methods to objects. It turns out that these features are quite
attractive to the developer of a design database system, as they map quite well to
the mental framework of the design engineer [24]. The object-oriented data model is
compatible with the Semantic Data Model [34], which requires support for instan-
tiation, aggregation, and generalization, all of which are offered by the object-oriented
system’s notion of object classes and inheritance. It has also been shown that some
other database features, such as composite objects, object versioning, etc. can be built
out of the instrinsic features of an object-oriented database system [29].

Object-oriented database systems have a computation model better suited for com-
putationally cxtensive tasks requiring persistent data than the older database systems
(such as relational databases) do. The older systems are optimized for queries over large
collections of data, and piovide little support for much else. The object-oriented model
allows for efficient navigational access (i.e., browsing) over individual objects, and by
associating procedural information with types, allows for a wider range of functionality.

Examples of recently-developed object-oriented database systems include ORION
[29), GemStone [33, 10], Encore [26], and O, [16].

beyond the execution and lifetime of the code that created it.

A database programming language is a language that integrates some ideas from the database pro-
gramming model with traditional programming language features. Such a language is distinguished
from a persistent programming language in that it incorporates features beyond persistence, such as
transactions, locking, and query processing.

3The same type of object as is found in relational database systems.




2 The Problem: Type Evolution in the Presence of Per-
sistent Data

This section describes the problem that the thesis will research. It examines existing
solutions to the problem and demonstrates their shortcomings.

2.1 What is Type Evolution?

Programming is an incremental process. Frequently, existing program elements are
enhanced to support additional functionality or a new application. Such an operation
often necessitates the propagation of changes to dependent elements throughout the
program. Abstract data typing was developed as a way of building logical barriers
between the specification of an interface to a type, and the implementation of that
interface and its internal representation. This modularity fire wall effectively contains
(type) implementation changes from the various program elements which depend on
the type. However, modularity does not address the problem of modification to type
specifications. In general, the effects of an evolution of a type cannot be locally contained
[20].

Type evolution* is the term used to describe the process of altering type definitions
over time. It encompasses the problem of specifying the change, as well as attempts
to manage the affects of the evolution on dependent elements. In an object-oriented
system, types are implemented as classes, defined by a representation and a set of
(procedural) access methods. Class evolution in such a context is concerned with the
propogation of class changes to associated methods, and to the subclasses inheriting
part of their definitions from the parent class. A list of common evolutions is included
in Figure 1 (p.4).

By way of example, consider the class hierarchy for a hypermedia system presented in
Figure 2 (p.5). The evolution, as depicted in Figure 3, involves the change of the domain
of the public DisplayFont attribute from string to font, affects all code elements
which refer to the domain of the DisplayFont attribute. This includes to the (local)
class methods of TextWindow (such as the Get_DisplayFont and Set DisplayFont
methods that implement the public attribute) as well as non-local methods in inherited
or dependent classes.

The problem as described so far is an issue in all program development systems.
Type abstraction and the modularity it affords protects against implementation changes,
but does not address the problem when the specification of the type interface changes.

‘The synonymous terms schema evolution and class evolution are also often used, depending on
the language context. Class evolution is used in the context of object-oriented language models.
where types are implemented as classes. Schema evolution is an older, database systems term, where
schema refers to the format of the data. Type evolutionis the term used most frequently by the author.
although it should be noted that he does exhibit a tendency to use schema evolution in contexts where
he wants to attract the attention of database people.
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(1) Changes to the contents of a node (a class)

(1.1) Changes to an instance variable
(1.1.1) Add a new instance variable to a class
(1.1.2) Drop an existing instance variable from a class
(1.1.3) Change the name of an instance variable of a class
(1.1.4) Change the domain of an instance variable of a class

(1.1.5) Change the inheritance (parent) of an instance variable (:.e.. inherit another
instance variable with the same name).

(1.1.6) Change the default value of an instance variable
(1.1.7) Manipulate the shared value of an instance variable
(1.1.7.1) Add a shared value
(1.1.7.2) Change the shared value
(1.1.7.3) Drop the shared value
(1.1.8) Drop the composite link property on an instance variable.®
(1.2) Changes to a.met_hod
(1.2.1) Add a new method to a class
(1.2.2) Drop an existing method from a class
(1.2.3) Change the name of a method of a class
(1.2.4) Change the code of a method of a class

(1.2.5) Change the inheritance (parent) of an method (i.e., inherit another method
with the same name).

(2) Changes to an edge (on the class-inheritance hierarchy)

(2.1) Make a class S a superciass of a class C
(2.2) Remove a class S from the superclass list of a class C

(2.3) Change the order of superclasses of a class C
{3) Changes to a node (on the class-inheritance hierarchy)

(3.1) Add a new class
(3.2) Drop an existing class
(3.3) Change the name of a class

“This relates to ORION’s composite object facility.

Figure 1: List of evolutions on classes and class hierarchy supported by the ORION
object-oriented database system. Some of these evolutions refer to data model features
particular to ORION (such as the composite objects, multxple inheritance) which not
be supported in other object-oriented systems.

o s e e [ [, . e - .-




Size: intx int
Location: intx int

Cursorloc: intx int
Charsize: int xint
Parent: Window Contents: string
ReDisplay: fn
Move: fn

DisplayFont: string
ReDisplay: fn

Figure 2: A sample hierarchy of classes, to be used to illustrate some examples of
type evolution. The line within the class definitions distinguishes private from public
features.

For this reason, type evolution support is an issue in all development systems, and is a
topic of research in many software engineering projects [44, 20, 11, 22].

In database programming systems, the repercussions of a type evolution are more
severe. Type evolution in traditional programs need only be concerned with affect of
the change on code. The persistent data associated with a database program, however,
is another dependency that much be addressed. In the context of our example. the
change to the type of DisplayFont would render all persistent instances of TextWindow
inconsistent with the new definition.

It is also worth mentioning that the type modularity barrier resulting from abstrac-
tion fails in the context of persistent data, which unlike non-local program references,
depends on the representation of the type. Barring some special system support for
change (as discussed below), those instances would have to be modified or discarded.
so as to conform to the (new) class specification. (The next section deals with this
problem in detail.)

In the realm of database programming languages, it is very hard to escape the
repercussions of change. Even the most traumatic type change cannot effect previously-
compiled programs when those programs are run in isolation. Database applications,
by definition, manipulate shared data. A change effecting the definition of a type
that is represented in the database, renders old database program images obsolete.
(These issues are discussed in more detail in Section 2.3.3 (p.10).) This thesis proposal
will examine the issues related to the goal of keeping the (shared) data consistent and
accessible in the presence of type evolution. While it may touch on some points relevant
to the management of change in programs, that is not its focus. It begins by discussing
the repercussions of type evolutions in the absence of any system support and proceeds
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Cursorloc: intx int ) Cursorloc: intx int
Charsize: int xint Charsize: intx int
Contents: string Contents: string

—>
) P ) Feea—— \
DisplayFonta stnnd‘ DisplayFont 1 fontname

ReDisplay: fn ReDisplay: fn B

Figure 3: The change in domain of the public attribute DisplayFont, from string to
fontname.

to discuss the various issues involved in providing integrated support. (Figure 4 (p.7)
presents the breakdown of those design choices and issues, most of which are elaborated
herein.)

2.2 Ad hoc Solutions

In a system lacking any evolutionary support, a modified type has no explicit rela-
tionship with its predecessor; from the perspective of the system, the type is totally
new. The programmer has a policy decision to make: whether or not to convert the
old instances into the new form. Since the database system lacks the means to assist
in the conversion, any solution arrived at by the programmer to maintain compatibility
between the existing instances and the new type will be done in an ad hoc manner, i.e.,
using special code written particularly for this type evolution.

The argument promoting conversion proceeds as follows. The programmer obviously
had a reason to redefine the type. Possibilities include: restructuring the representa-
tion to improve space and/or time efficiency, increasing functionality, deleting (now)
irrelevant data fields, etc.

The conversion of existing instances will propagate those advantages to all instances.
Without such a conversion, any application wishing to operate on the old and new forms
of instances will have to design their implementations to accept and successfully ma-
nipulate both types.> This results in increased code size and programming complexity.

A programmer can attempt to reorganize the database to conform to her new type
specification in one of two ways. She could work outside the confines of the database
model, bringing down the system and manipulating the native representation of the
data, or she could perform the conversion in the context of a database program, writing
in the database programming language. In systems such as Statice and IDL (36. 9],
database reorganization is only possible outside the context of the system. The rest of

*The effects of the change depend on both the degree of change and the modularity of the system.
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o No svstem support (§2.2)

o Reorganization within the system

o Reorganization without the system
o System support (§2.3)

¢ Type Change Specification (§2.3.1)
¢ Restrictions on Type Changes (§2.3.2)
o Restricted to compatible changes
o Restricted to precalculated changes
o Unrestricted
o Consistency and Compatibility (§2.3.3)
¢ Application dependencies
o Method dependencies
o Instance representations (§2.3.4)
o Conversion
o Specification
o Canned conversion routines
o Full inference
o Programmer coding
¢ Timing
o Eager conversion (§2.3.4.1)
o Lazy conversion (§2.3.4.2)
o Emulation (§2.3.4.3)
e Specification
o Canned conversion routines
o Full inference
o Programmer coding

Figure .t: Type Evolution Support Decision Tree. The light nodes represent design
choices that must be made, while the dark nodes represent issues that must be addressed
for each choice. The section numbers refer to where these issues are discussed in detail.




this section, however, will discuss the problems associated with converting the existing
instances of a changing type within the database system.

Database conversion following a type change is more than just generating one in-
stance of the new type for every instance of the old. In database programming systems,
objects are typically referenced by some type of universal identifier. This is in contrast
to relational databases, where data is only accessible by value (i.e., as the result of a
query).

In order to preserve the references to the converted objects. anyv ad Loc routine must
either (1) somehow preserve the identity of the object while changing its type. or (2)
determine and alter all references to the affected instance, so that they point to the
corresponding (new) instance. The ability to preserve the identity of an object while
changing its type is supported by few database systems, IRIS [18] bcing the only such
svstem familiar to the author.

In other systems however, a correct conversion program would need to accomplish
three things: generate one new instance for every old instance of the changed type, delete
all such old instances, and change all pointers to old instances to the corresponding new
instance. In order to accomplish this, the programmer would need complete access to
the database, so that the conversion routine could read and potentially alter all affected
instances. In general, such capabilities are restricted to a few people under special
conditions. Even more problematic is the case of external or proprietary databases.
where the local owners are often not permitted to modify the database format at all
(48].

It is clear that in the absense of some explicit system-based support for type evolu-
tion, the procedure is a painful and expensive one for programmers. The next section
explores what type of support a database programming system can provide to amelio-
rate the situation.

2.3 System-supported Solutions

There are two distinct yet related issues that must be addressed by any system pro-
viding support for type evolution. The system must define a way for the user (i.e.,
programmer) to specify her type change, and once in possession of this specification.
the system must cope with the problem of making existing code and data compatible
with it.

2.3.1 Specifying Changes to Type Specifications

Returning to our hypermedia example, consider the addition of a public attribute to
out TextWindow class. Here, the programmer wishes to extend her system to support
multiple font sizes. This is achieved by the addition of a new attribute, Fontsize.
So far, it has been left unspecified exactly how this reimplementation is specified by
the programmer. Basically, the change can be described either absolutely (similarly to
how the class was defined originally) or relative to the existing class definition, in the
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Cursorloc: int x int Cursorloc: int x int
Charsize: intxint Charsize: int x int
Contents: string > Contents: string
DisplayFont : fontname DisplayFont : fontname
ReDisplay: fn EFontsize: int -!
Redisplay: fn

Figure 5: TextWindow.AddAttribute("FontSize",integer,defaultfontsize):
The result of the hypothetical evolution, which adds the FontSize attribute to the
TextWindow class.

form of system routine calls on the class. (¢f., caption to Figure 3) Beth schemes have
advantages. Absolute redefinition is simpler from the point-of-view of the programmer,
who would not need to learn a special “evolution langi.ge.” However, if the system
wishes to assist in reorganizing the database, these meta-linguistic routines provide
explicit compatibility information to the system.

To illustrate a major advantage of relative vs. absolute specification. imagine a new
change to our TextWindow example: the renaming of the DisplayFont attribute to
DefaultFont. (cf.. Figure 6 (p.10)) All the system would be able to infer from a
redefinition of TextWindow would be the deletion of the attribute DisplayFont and the
addition of an attribute DefaultFont. However, renaming implies that the value of
DisplayFont in all instances be preserved under the name of DefaultFont after the
evolution.

The two approaches to specifying class evolutions are exemplified by the approaches
of CLOS [15] and ORION {5, 28]. In the former, a defclass call on a existing class
automatically converts all existing instances, by adding or removing slots as appropri-
ate. In order to support changes that cannot be fully specified by redefinition (e.g..
renaming), the programmer has access to the (class-specific) method that creates new
instances from old. The programmer can define functions to be invoked before or after
the conversion routine, or rewrite the conversion routine altogether.

ORION supports evolution by providing the programmer with a list (cf., Figure 1
(p.4)) of possible (that is, supported) evolutions she could perform. Associated with
each selection is a reasonable conversion procedure, which cannot be modified by the
progran.mer.




Cursoloc: int x int Cursorloc: int xint
Charsize: int xint Charsize: intx int
Contents: string Contents: string
{DisplayFont : fontname > {DefaultFont : fontname!
Fontsize: int Fontsize: int
ReDisplay: fn ReDisplay: fn

Figure 6: TextWindow.RenameAttribute("DisplayFont","DefaultFont"):

The result of the hypothetical evolution , which renames the DisplayFont attribute
in the TextWindow class to DefaultFont. This evolution is distinguished from the
sequence of removing the Font attribute and adding the Default attribute by the
preservation of the attribute values in all existing instances.

2.3.2 Type Change Restrictions

ORION, by listing the variety of class evolutions it supports, is restricting the range
of schema evolutions possible in its database system. Although the rationale behind
this decision is somewhat reasonable, it places unfortunate constraints on the program-
mer. Just because an evolution is hard or dangerous to support does not mean that
it would never occur. (In fact, restricting the domain of an attribute field, one of the
evolutions not supported by ORION, is not so uncommon.) By listing the range of
“reasonable changes”, ORION is essentially attempting to anticipate the changes the
database programmer will need. The problem with this approach is that change is
inherently unpredictable. Why can’t type evolutions be revolutionary?

CLOS provides enough programming hooks to support the full range of changes.
However, it does so by putting almost all (except for the task of locating the instances
to convert) the responsibility on the programmer. ORION’s list might not be compete.
but it does enumerate a set of common evolutions, evolutions for which there are well-
known, mostly undisputed, methods for preserving database consistency.

2.3.3 Database Consistency and Program Compatibility

In concert with how to allow the programmer to specify a type evolution. the system
must address the issue of maintaining database consistency in the presence of change.
As has already been illustrated, in addition to all the code references to the class,
existing (persistent) instances are also dependent on its definition.

It is often possible to determine how to maintain consistency between the new class
definition and its pre-existing instances. If evolution operations on the class definition
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(i.e.. relative specification) were used, the direct specification of the evolution is often
sufficient for the system to infer how to adjust the instance 12presentation to conform
to the revised type specification. For example, an addition of a class attribute can be
propagated to all existing instances, so long as a default value for the new attribute is
known. It is even earier to adjust for the deletion or renaming of an attribute. Often,
however, additional information is required on the part of the programmer [31].

ORION has database consistency operators associated with each of its supported
evolution operations. In fact. its designers support exactly those evolutions for which
they found obvious and (relatively) non-controversial consistency operations. (Exactly
how consistency is maintained is explained in later sections.) Some database systems
are even more restrictive. disallowing any evolution on a class with instances [1]. Others
only support the evolution of classes lacking subclasses, as that might complicated the
database consistency maintenance scheme.®

Few systems make any effort to detect incompatibilities among existing methods or
external applications. This is a hard problem in general, and the most existing systems
do is to keep track of references to classes and class attributes and alert the programmer
to potential incompatibilities resulting from the type evolution [59]. Perhaps a better
avenue is to adjust the data to conform to the program instead of tue other way around.

Before proceeding, a couple of definitions are in order:

Backward Compatibility is the provision for new programs (or, more generally, code
objects) to be able to operate on old data. In our context, it would mean that
instances created prior to the installation of the type change remain accessible
through the revised type. '

Forward Compatibility is the provision for programs compiled prior to the change
to be able to operate on new data, i.e., to be able to manipulate data created after
the type change as if it had been created earlier. (Note that the prior compilation
stipulation makes our definition more restrictive than the standard.)

Some evolutions are inherently backward or forward compatible. Changes which
only remove information from a class are naturally backward compatible, while changes
only adding information are forward compatible. Interface-preserving operations should
be both forward and backward compatible. In general, however, evolutions are not
program compatible, and systems wishing to preserve compatibility across evolutions
must do extra work.

2.3.4 Implementing Database Consistency: Conversion vs. Emulation

This section contrasts the various implementation strategies for maintaining database
consistency. The primary distinguishing factor is whether to actually adjust the data

%The problem is with multipie inheritance, I suspect.
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representation of the objects in the database (i.e., conversion) or to install code to
mediate among the interfaces (i.e., emulation).

The general merits of data conversion were discussed previously. (cf., Section 2.2
(p-6).) Integrated conversion facilities provide a built-in procedure to iterate over all
instances, often inaccessible to the programmer. This can solve the security and identity
problems attributable to ad hoc conversions.

2.3.4.1 Eager Conversion

In eager conversion, the transformation of the instances is done simultaneously with
the specification of the change.

The scheme has some significant advantages and disadvantages. The primary feature
is that all the expense of the conversion is spent at evolution time, so no additional
runtime support is required. However, the disadvantages are serious. The cost of an
eager database reorganization is proportional to the number of relevant instances in the
database (sometimes even proportional to the size of the total database). During the
reorganization process, access to the database is monopolized by the conversion routine.
This is a serious deficiency in situations where high availability of the database is of
significant importance. As a result of the conversion, all existing database applications
must be (in the worst case) rewritten to conform to the new type definition. This
expense is notable if many copies of the applications exist, if the creators of the older
programs are no longer around to update them, etc. An aspect of an older issue is a
problem here as well. In a database supporting restricted access permissions on data.
the system must circumvent the security provisions in order to propogate the conversion.
In order to successfully convert each and every instance in the database, the system will
have to access all relevant instances, even those the programmer may not have access
to herself.

The most well-known system employing eager conversion is GemStone, which con-
verts its instances in concert with its garbage collection of the persistent store [10].

2.3.4.2 Lazy Conversion

Instead of converting all instances at type evolution time. the lazy conversion scheme
defers the conversion of a relevant instance until that object is accessed by an application
program. With respect to specifying how to perform the conversion, this procedure is
similar to the eager conversion scheme.

Notable advantages of lazy over eager conversion are:

(Access to data) The conversion is performed on behalf of the owner (or ward) of the
data, so the security problem associated with eager conversion is avoided. Also.
in distributed database systems, lazy conversion is easier to perform than eager
conversion, as a global synchronization on a type and all of its instances is not
required.
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(Reduced denial-of-service time) Only the installation of the new type requires
serial access to the database. The conversion of individual instances can be done
in association with other operations.

All is not rosy, however, as lazy conversion requires more system support than eager
conversion. One complication associated with this scheme is whether or not to perform
the conversion when the old object is not being modified; the conversion of objects at
read time would make those operations much more expensive. Also, unlike the eager
method. this procedure depends ou runtime system support (7, 10].

Although the CLOS specification allows systems to implement instance conversion
either lazily or eagerly. it should be noted that all known CLOS implementations (PCL,
Lucid. etc.) convert their instances lazily {17, 27, 13].

2.3.4.3 Emulation

Rather than actually convert old instances, under the emulation scheme, all interaction
with older objects is via a set of filters, which support the new-style operations on the
old-style data format. All of the information associated with the old type is retained.
the filter functions masking their presence from the programmer. It is also possible to
allow old programs to operate on new type definitions, by writing filter routines that
make new instances appear as old ones.

Emulation is considerably less efficient than the conversion schemes, as the cost of
emulation is paid every time an object is referenced.

Support for emulation instead of conversion changes the way programmers must
think about change. Although the actual object translation might be deferred, conver-
sion forces the programmer to consider her versions in a linear order, Version 1 in-
stances are converted into Version 2 instances which are then converted into Version
3 instances, /etc. With emulation. all the past versions of a type remain indefinitely,
so the programmer must consider how the new version of the type relates to all past
versions. not just the most recent one. This likely results in an increase in complexity,
as the programmer might have to define filter functions for every feature of the cur-
rent type for every possible past type-version.” Some system assistance, similar to the
automatic conversion routines supplied by ORION, might be possible, but the multi-
plicity of active type-versions is likely to complicate matters, and this area has not been
explored.

For all the additional expense, emulation delivers additional functionality over the
conversion schemes. In situations where the database cannot be converted (read-only or
proprietary databases, for example), emulation is the only alternative. Zdonik, the pri-
mary supporter of the emulation scheme in the literature, identifies three other reasons
why conversion is not always an option: Often it is impossible to define a conversion

"Note that the author has yet to actually define the term. It is hoped, that for time being, its
meaning can be deduced from context.

13




routine because of a lack of information in the old object; often the conversion wiil
result in a loss of information®

The most important practical advantage of this scheme is the inherent support
for forward compatibility, allowing old applications to continue to function after the
type evolution. This is particularly useful in cases where such applications cannot be
recompiled, or if copies of the application have been distributed [42].°

The ENCORE research system [26] is the only available system that supports em-
ulation. The old AVANCE research system [6, 7] supported it as well.

It is also worthy of note that relational database systems essentially provide em-
ulation support through relational views'® [14]. Under such a scheme. the reformed
table is give a new name. and the original table is replaced with a relational view.
which emulates the original relation through the use of relational SELECT and JOIN
operations.

2.4 Mid-proposal Review and Conclusions

So far, this proposal has presented the current state of technology with respect to type
evolution support, particularly in the context of object-oriented databases. It has made
the following points:

¢ Type evolution is inherent to programming in general, and characteristic of design
applications in particular.

e Object-oriented databases, created specifically to support design applications,
need to address type evolution.

¢ Database systems in general would benefit from database consistency support.

o Non-integrated {ad hoc) solutions offer limited functionality and some consider-
able disadvantages (such as downtime).

» With respect to specifying change, an evolution “shopping list” is convenient, but
as change is unpredictable and often unavoidable, the system should encourage
the programmer by providing as much support as possible, rather than placing
restrictions on the range of possible evolutions.

*There is an implicit and explicit loss of information attributable to some conversions. If the type
evolution resulting in the deletion of an attribute, than an explicit loss of information might occur. The
implicit loss is related to the implicit age of the object owing to its type-version. After conversion, the
object will be indistinguishable from newly-create ones [48].

*Depending on the modularity and linking properties of the programming language, a relinking might
be necessary to allow old applications to operate on new object instances. However, unlike previous
schemes, no reprogramming is necessary.

19Actually, it is a combination of relational views and runtime binding of programs to table that
makes this work in RDBMSs.
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¢ Emulation is inherent inefficient, but should not be casually dismissed by an
implementation supporting database consistency and program compatibility, as
it offers considerable functionality over strict conversion schemes.

There remains a considerable amount of space to explore between eager conver-
sion and pure emulation, representing implementations which return some of the per-
formance of conversion schemes while retaining some of the desirable functionality of
emulation. In some situations. programmers would be undoubtedly willing to sacrifice
some performance to realize additional versatility in their database applications.

In the next section, I motivate mixed approaches to database consistency support
and type evolutions specification.

15




3 Towards a More General and Effective Conversion Strat-
egy

The previous section presented the state of technology for type evolution in existing
modern database systems. This section proceeds to describe what features should be
supported by new database systems, and why.

3.1 Motivations for Hybrid Strategies

Three general strategies for supporting database consistency following a type evolution
were previously discussed (2.3.4 (p.1l1)). Since none of these three is ideal in all cir-
cumstances, it is unfortunate that none of the new OODB systems support more than
one of these schemes. The programmer is given no opportunity to select the database
consistency scheme best suited to her needs.

Even is such a possibility were available, however, the programmer would still be
limited to only three choices. In reality, there are many possible consistency schemes
that could result in better database performance, if only they could be made available
to the database programmer. For example:

¢ Imagine a very large and active database with a small set of “hot” entries (i.e..
items that are accessed very frequently). a relatively large set of “cold™ entries -
that are accessed very infrequently, and a still larger collection of entries that
will remain unaccessed for the foreseeable future (“frozen objects?”). Let us
assume further that the recompilation of applications is not an obstacle, making
backward compatibility a nonissue.!! Clearly none of the schemes is optimal.
Eager conversion is too impractical (the database is too large), emulation would
result in significant performance penalty on the hot items. and lazy conversion
would spend considerable time converting the cold entries, when emulation in
those instances might be more economical. It would seem that the following
hybrid strategy would perform better than any of the three basic schemes.

In an attempt to improde runtime performance, convert only the hot
entries, and emulate the cold ones. This can be achieved by recording
the number of times an item is accessed, converting it only when its
access count exceeds a certain threshold.

The value of the threshold depends on how expensive a conversion is as compared
to an emulation operation. Note that this mixed conversion/emulation scheme is
a generalization of the lazy conversion scheme; setting the threshold for conversion

""This example is reminiscent of an electrified library, where all reference materials are available
online.
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3.2

to 0 would implement lazy conversion exactly.!? This scheme could be extended
further to support different thresholds for different types (which presumably would
have different emulation-to-conversion cost ratios.)

Suppose that you wish to extend a data type by adding another component (e.g.,
a citizenship field to an employment record schema). Rather than convert all the
existing instances to the new format (and inserting citizenship:UNKNOWN into
their representations), it would be more space efficient (and no less time efficient)
to emulate the citizenship component with a special function. until such time (if
ever) as the citizenship of the employee can be determined and entered. Here,
one would like to emulate the new type-version (for space efficiency) as long as
possible.

Suppose your database system supports emulation only. After you have evolved
a new type-version, and execute with it for a while, you change your mind and
wish to “back out” of your upgrade. Within the emulation scheme, you could

" make the previous type-version the current one, so that all new instances and

applications would resolve against the that definition. However, there is still
the problem of your database being populated with some number of instances of
the experimental type-version. Given that there are no (longer any) applications
expecting that version, it would be preferable if you could convert those instances
into “old-new” ones. and rollback your change.

Desiderata

I have argued that type evolution support systems should be more flexible than those
provided by current implementations. Here is a list of the features I consider important
for an implementation of a multi-purpose type evolution support system:

1.

Old applications should be able to operate on new data, and new applications
should be able to operate on old data. (Full Compatibility)

. Emulation should be available as an option, since there are times when emulation

is the only reasonable solution.

3. Conversion should be supported, because there are times when conversion is most

appropriate.

The system should provide assistance in the generation of conversion and/or em-
ulation routines.

'Maier et al. see emulation (they call it screening) and lazy conversion as variations of the same
process. While lazy conversion performs the actual conversion on first access, emulation defers the

conversion operation indefinitely.[10]
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5. The system should be able to implement hybrid support strategies, such as those
described in Section 3.1.

6. All of the features should be optional, used at the discretion of the type imple-
mentor.

I envision a type evolution support system that is customizable and extensible. Just
as it is not possible for a type designer/programmer to anticipate the range of applica-
tions of her work. it is not possible to anticipate all the possible forms of changes that
could be made as part of the evolution of a data type specification and implementa-
tion. Rather. the support system should be able to accept conversion and backward
compatibility instructions from the programmer, and proceed to implement them as
efficiently as is possible. It should also be possible for the programmer to alter the
support strategy even after it has been installed.!® as more infomation about the costs
is available.

The features of conversion, emulation, and computer assistance have been discussed
previously. The remainder of this section will explain the other issues in more detail.

3.2.1 Full Compatibility

Full compatibility encompasses both forward and backward compatibility. as defined
earlier (p.11). It is worthwhile to elaborate upon the strict definition of backward
compatibility. which stipulates that old programs must continue to execute correctly,
unchanged, on new instances. Since the programmer of the type is often not the sole
user of the type, the fact that a change occurred must otherwise be communicated to all
application writers. If copies of the applications have been widely disseminated, then
we have a software distribution problem. Moreover, applications often come “shrink-
wrapped”, making recompilation impossible. The stricter definition of backward com-
patibility avoids both of these problems. An important feature of the emulation support
scheme for type evolution is basically the principal of full compatibility [48]. Full com-
patibility is not a quality exclusive to emulation, however. It is just that emulation
lends itself well to it. For instance, given only the ability to convert between instances
of two type-versions, one would be possible to implement full compatibility. the repre-
sentation of the object alternating between the two type-versions whenver necessary.
Clearly this strategy is far from efficient. A method for developing more appropriate
strategies will be illustrated later. (cf., Section 3.2.3.)

3.2.2 Emulation and Lazy Conversion

The existence of support for both emulation and lazy conversion in one system allows
for a number of interesting possibilities. Even if you wish to provide backward com-
patibility, you are not necessarily required to defer the (imminent) conversion of old

3gvolutionary evolution strategies!
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instances indefinitely. It is quite legitimate to convert the old objects and perform the
~ emulation backwards for old applications, as opposed to emulating the old objects for-
ward for the benefit of new applications. It would seem like the former option would
be preferred if old objects (either in general or a subset of them in particular) were
accessed more frequently by new programs than by old.

Another potential optimization is a generalization of the “version rollback” scheme,
mentioned in Section 3.1 (p.17). In situations where there are no remaining applications
expecting a particular type-version, and where the instances of that version could be
converted to an active version without loss of informatjon, conversion of those instances
would be potentially useful.

3.2.3 Hybrid Strategies

A set of possibly useful hybrid strategies have already been alluded to. A simple,
yet potentially useful one that w»="'scussed anecdotally earlier (cf., Section 3.1 (p.16))
extended lazy conversion by para:ieterizing the number of access operations required to
be performed on an object Le' .re it would be converted. It was also casually mentioned
that it could be further narameterized on the type (perhaps even on the type-version)
of the instance itself. An interesting extension of this strategy (with some theoretical
underpinnings) is presented in Appendix B.

Tuning performance by playing with the time before which an object can be con-
verted can only take you so far. In general, the granularity of the options (either the
object is an instance of the old type-version or it is an instance of the new) is too large.
Better performance is likely possible for some mix of applications if it were possible to
somehow merge the specifications of the two (or more) type-versions, supporting both
backward and forward compatibility at a (minimized) cost to both old and new clients.

In fact. we do not have to wish for this possibility for too long as there exists a
technology that addresses this very issue. That technology is view-based abstraction!t.
Views[21, 23] are a mechanism for supporting multiple external specifications on an
abstract data type. The resulting system supports instances that may be operated upon
by different applications using different type specifications, but which are all operating
on a common instance, whose concrete implementation represents all the facets (i.e..
views of an instance) of the object.

A significant class of hybrid evolution support strategies can thus be represented
as a view implementation problem, with full compatibility supported though various
views of a type (one for each active type-version). Precise details on how views can
assist with type evolution are the focus of Section 4.

'*These views are distinguished from the relational views referred to earlier.
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3.2.4 Opting Out, Programmability, and Extensibility

As mentioned before, I hardly expect to be able to anticipate the range of reasonable
conversion strategies, so I wish the system to provide a considerable amount of flags and
hooks to allow the programmer to tailor the system to her needs as much as possible.
Flags will allow the programmer to turn off certain (expensive) features that she has
decided are unnecessary for her situation, while hooks will provide the programmer with
ultimate control over the conversion/emulation process.

3.3 Evaluating Evolution Support Strategies

In Section 3.1, I argued that a hybrid strategy will often perform better than those
that have been proposed and implemented to date. My argument, however. was both
anecdotal and informal. As part of my thesis work, I propose to develop a (more)
formal framework within which I will be able to evaluate the various evolution support
strategies. This framework will have to model database object access patterns (variety
and frequency), as well as provide a method for comparing the costs of the applicable
compatibility strategies (total conversion of instance, total emulation, ete..).

As a first attempt at a model, I have formalized the economics of the three basic
evolution support strategies. The result is described in Appendix A (p.39).

Once I have an analytic method for evaluating evolution support schemes, I will
be able to quantitatively compare the tradeoffs involved in choosing one strategy over
another. This applies not only to the three basic schemes, but to the other strategies
that I intend to develop in the course of my research.




4 Type Views as Abstraction of Change

Earlier (cf., Section 3.2.3 (p.19)), I referred to views as an existing technology that
could be used to implement hybrid conversion strategies. This section explains what
views are and elaborates on how they can be applied to the problem of type evolution.

4.1 Brief Historical Interlude

Views were developed as a way to design a system that supports multiple methods
of access to a common body of data. These access methods are distinct and usually
motivated by different applications. For instance, in the design of a compiler. the various
modules (parser, typechecker, flow analyser, etc.) manipulate shared data, mainly, the
source program. Each module, however, views the source differently. The parser views
it as a sequence of lexical tokens; the typechecker — as a graph of language-level
constructs.

As is always the case when more than one agent influences the design of an entity,
independent specification is followed by a negotiation phase where all the factors are
considered and the various features of the entity are merged together to establish a
common design accomodating to all. In general programming, this would require es-
tablishing two things: a common data representation and a common type signature.
With views, however, although there is a common data representation, the type sig-
nature, the interface to the data, is application- (or view-) specific. Once the merged
representation (called the merged view) has been established, the various methods
associated with each of the views must be redefined. The individual applications do
not need to be altered, since their view of the data is unchanged.

For an implementation design of views, readers are referred to the work on Janus
[23], by Habermann et al..

4.2 An Abstraction for Compatibility

Views were developed as a way to cope with multiple interfaces to common data. The
full compatibility functionality touted in this proposal fits very well into a “views”
framework, with each view corresponding to a supported version of the type. In this .
way, a view-based type system can implement the versioning of types.

By way of example, it is certainly not hard to imagine a type evolution where the
representation and signature of the type ComplexNumber is changed from rectangular
to polar coordinates. In such a situation, program compatibility can be retained by
defining the type as a merged type, supporting both rectangular and polar views.

A view-based type system localizes the problem of specifying compatibility. In de-
veloping a merged view and by defining procedures for the signatures of all the views
(i.e., the supported type-versions), the type designer has defined compatibility proper-
ties between the various active versions.
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The Janus manual identifies four storage models for merged view representations:
disjoint, shared, derived, and “Anything Goes”. These models correspond roughly
to the various compatibility strategies described in the context of schema evolution, as
described in the following table:

original types. Values for the others | emulation
are calculated dynamically.

Storage Model Merged view is represented using... | Roughly corresponding evo-
lution compatibility strategv
Disjoint ...the disjoint union of the fields of
the component types. conversion!?
Shared ...the common fields of the compo-
nent types. (none)
Derived ...the representation of one of the

“Anything Goes” || ...some other representation. There
is no direct correspondence between | hybrid strategies
the merged representation and the

representation of the original types.

Consider the implementation of the attribution addition evolution example (cf.,
Section 2.3.1 (p.8)). Figure 7 (p.23) provides an implementation of that evolution
under Janus’ views.

It is within the context of the “Anything Goes” model that the programmer has
the opportunity to optimize her representation and view methods to the body of active
applications and type-versions. The fine granularity referred to wistfully earlier (cf.,
Section 3.2.3 (p.19)) is available in this context, allowing for optimizations at the level
of the constituent items of *he representation, as opposed to at the instance level.

4.3 An Abstraction for Conversion

While views as described are a useful abstraction for thinking about and program-
ming version compatibility, they do not address the problem of conversion of existing
instances.

Let us return to the attribute addition example implemented in Figure 7. While
supporting both the old and new versions of TextWindow. the merged representation is
only consistent with instances created after the evolution. As it stands, the merged class
only provides forward compatibility, allowing both new and old programs to manipulate

131 we could imagine a system attempting to support full compatibility, but which only has conversion
routines (as opposed to emulation filters) available, a reasonable implementation would be to maintain
multiple copies of the object, one for each type-version, and to reinitialize each following the modification
of one. This is not strictly true, which is why this is only a rough analogy.
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merged class TextWindow is
interface
facet TextWindow’vil;
facet TextWindow’v2;
end interface;

implementation
field Cursorloc: Int x Int;

field Charsize: Int x Int;
field Contents: String;

field Font: fontname;
field Fontsize: Int;

facet TextWindow’vl is
operation Redisplay() is ...
operation Get Font() is ...
operation Set Font(fn: fontname) is ...

end TextWindow’vl;

facet TextWindow’v2 is
operation Redisplay() is ...
operation Get Font() is ...
operation Set Font(fn: fontname) is...
operation Get Fontsize() is ...
operation Set Fontsize(i: int) is...

end TextWindow'’v2;

end implementation
end TextWindow

-

Figure 7: The attribute addition example (cf., Section 2.3.1 (p.8)) implemented as a
Janus view definition. The merged class is implemented using the representation of the
new TextWindow specification, and the procedures related to the ’vi and ’v2 views
just pass the values across.
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the new multi-faceted instances.!® It fails, however, to explain how instances existing
prior to the evolution, which lack a value for the Fontsize field, can be manipulated
by new programs, which expect instances with a ’v2 facet.

This shortcoming will have to be solved before this view-based approach can be
used as part of a type evolution support system. Here is an approach currently under
consideration that I believe will lead to a good solution.

First., we associate a Consistent flag with each facet of a (merged) object.
A set Consistent flag means that the object’s fields accessible via this
facet's operations are consistent with the state of the object as a whole.
When an object is created, only one of its facet is consistent — the one
corresponding to the view used to initialize the object. When a program
accesses an object via an inconsistent facet, the object must first be made
consistent with that view, before the access can proceed. The method used
to make a facet consistent is similar to the method used by the old lazy
conversion strategy to convert from one type-version to another. However,
since the view implementation supports sharing among the various facets,
the conversion routines here should be more efficient.

With the use of these flags, there are, in effect, 2V — 1 virtual representations
(v = the number of active type-versions) of the object, corresponding to the
2¥ possible states of the v Consistent flags. (The state where all the flags
are clear has no meaning.)

4.4 Problems Inherited from the View Model

There remain a number of issues, related to the database consistency problem and the
views model as a whole, which must be addressed as part of the thesis research. Some
of these were acknowledged by Habermann et al. {23, pp. 74-82].

Subclassing and Inheritance. The scheme as described did not support subclass-
ing or inheritance. Since most object-oriented language systems provide these
mechanisms, some resolution in this area is required.

N-Way Merging. The compatibility problem has been focused on the case of two
type-versions. (cf., Section 13) The abstraction will have to be able to handle the
case where other versions are added.

Concurrent Evolutions / Non-linear Versions. The version space of type defini-
tions throughout this proposal has always been linear (i.e., successive evolutions
on a type specification). It would be interesting to see if this approach could be
reasonably extended to support version hierarchies.

1€ This is possible because old and new programs can manipulate the object via the 'v1 or 'v2 view,
as appropriate. ’
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5 Related Work

There are a number of other research threads that relate to this work.

Balzer’s stuff

Balzer (1] has done some work on the enhancement of Knowledge Representations,
which I tend to perceive as Al databases. Balzer was primarily concerned with what
he calls structural enhancement, modifications which involve the restructuring of the
(database) format.

Object Versions

The versioning mechanism on objects can be easily extended to types as well, especially
in an object-oriented framework, where the classes are objects. AVANCE [6] took that
direction. However, the issue of version management is different in focus than the main
problem addressed in this thesis, which is the conversion of old instances.

Views

Application of views technology will obviously be an important aspect of my research.
I expect to draw upon the body of work that has been done or is in progress in that
field.

Garbage Collection Strategies

Incremental and stop-and-copy garbage collectors have been around for a while, and
their implementations might help me to develop conversion strategies. The garbage
collection process has a number of similarities with database conversion. Consider stop-
and-copy garbage collection, where the collector scans through the entire heap (which is
a form of short-lived database) following pointer references. This scan phase is similar
to the procedure an eager conversion program would have to follow if it were attempting
to update objects in a similar environment. The difference between the (stop-and-copy)
collector and the {eager) conversion program is what they do once they have located an
object. The collector copies it to a new heap partition unaltered, while the conversion
routine, in certain instances performs its conversion.

This analogy holds up across implementations. Consider the similarities between
lazy conversion and an incremental garbage collector, which spreads the process of
object migration out over the course of the computation.

For this reason, I believe that the field of garbage collection schemes and implemen-
tations has applications in the world of object conversion and database reorganization.
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Program Restructuring

There are some similarities between the problem of the automatic restructuring of
programs after a module or procedure modification. [22] The analogy works if you
consider the specification of a module or procedure as its schema (or type), and the
references (uses) to the module or procedure as an instance.

Functional Databases

In functional databases, all previous states of types and instances are preserved forever.
but eventually moved to slower storage media for economical reasons. Their perspective
on change is a valuable one. [25]

Formal Module Manipulation

Nord et al. [37], for example, are using formal techniques to develop a mechanized way
of merging different representations of modules. This technology would be ideally suited
to the process of finding a type representation that could support the functionality of
emulation, but with costs approaching that of conversion. In our view-based model,
this technology could automatically develop the merged type representation.
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6 Research Plan

In the preparation for this proposal, I have already begun work on the following relevant
items:

o Compare, contrast and evaluate various existing approaches to support for schema
evolution.

o Develop performance evaluation model for evolution support strategies.

o Search for real world information regarding importance of various tvpes of evolu-

tions. Also acquire access to existing (research) systems incorporating persistence
(e.g., . Alexandria [46], ASCENT [38], Garnet [19]).

In the course of my research I will have to accomplish the following additional things:

e Extend model of views:

1. So they can better function as abstraction of conversion. (§4.3)
2. To cope with inheritence, and other object-oriented concepts. (§4.4)

3. To cope with concurrent evolutions (§4.4)

¢ Develop propotype system on top of a real database system. This will involve
building an Evolution Management Layer in which the notion of type-versions
and views will be supported.

¢ Experiment with different hybrid strategies (i.e., merged (view) representations),
supported by the weakening of consistency constraint between views (§4.3), and
motivated by competitive algorithms, (user-provided and inferred) access models,
etc.. ’

o Using performance evaluation model, identify system and application character-
istics and constraints which would tend to favor certain evolution strategies over
others. To accomplish this I will need access to some realistic database applica-
tions (see above).

o Experiment with system and various strategies in a number of domains, e.g..
design databases, traditional database apnlication, hypermedia database. I plan
to use toy (and possible real) versions of the database applications I acquire access
to.
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In the course of my research the following issues might come up, but I hope to be able
to keep from addressing them:

¢ Type systems and type evolutions. One can consider the relationship be-
tween type-versions as a hierarchy orthogonal to the inheritance graph, with can-
stmulate arcs connecting them, instead of is-a or is-refinement-of arcs. Simulation
relationships can possibly exist between objects that are not strictly evolutions
(e.g.. a box can function as a chair, under certain conditions), making the hierar-
chy resemble a partial lattice more than a graph.

¢ Evolution and Transactions. What are the transaction semantics of a schema
evolution?

¢ Evolution and Database Queries. How can the representation of objects be
adjusted over time, without unduly penalizing the efficiency and correctness of
database queries?

Figure 8 illustrates the various dependencies between the research goals while figure
9 associates the research goals to a timetable.
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7 Contribution

The continued integration of computers into our society has been hailed as part of the
March of Progress. It is time that the developers of computer-based systems examined
the costs of change in their own contexts. This thesis will explore but one aspect of
the ramifications of change within computer systems. As new or modified applications
necessitate a change in the form of the persistent data, how can one best continue and
maintain its substance?

The research plan that I have outlined here focuses on the evolution of types within
an integrated. tvped. database system. Hopefully, its conclusions will illustrate the
following points:

o It is feasible and reasonable to have a DBMS that has the ability to support
multiple applications and muitiple versions of the same application, all operating
on the same data. One of the functions of persistence is to support sharing; my
work will extend the range of such support.

o Such functionality can be added without significant performance degradation.

e An extension of the principle of modular system design. In situations where no
information has been lost in the database reorganization. old applications can
continue to operate correctly. unobstructed by the type change.

I further to make secondary contributions towards these goals:

¢ Partial automation of programming to support database conversion and program
compatibility benefits the system by reducing programming complexity, encour-
aging reliability, and minimizing the costs of the labor-intensive process of data
conversion.

e The described mechanism might provide a course of action for coping with the
Software Release Problem, i.e., how to deal with the variety of source files in the
context of multiple versions of a software product.

o The described mechanisms could help in the design of support for long-lived trans-
actions, as programmers would be able to make changes to instantiated type def-
initions without interfering with other programmers.
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A A Simple Cost Model

This section describes my preliminary attempts at deriving a model to evaluate costs
of a particular database consistency strategy. For our current purposes, only the three
established schemes, eager and lazy conversion and emulation, were considered. Using
this model, more elaborate strategies can be defined and evaluated.

A.1 Data and Access Model

We will consider the database as a heterogeneous collection of tuples, tagged with their
type, and addressable by name. Database objects can be accessed in only two ways:
directly, by address, or indirectly, via the instance collection associated with each type.
Also. the database is not strictly “Object-Oriented”, as it lacks both a type hierarchy
and procedural information.

A.2 Description of Evolution in a Homogeneous Database

For the time being, let us imagine that the database consists only of instances of a
single type. (We will generalize this later.) Let us consider the case of a change to the
representation to the instantiated type. In this context, we will evaluate the costs of
the three aforementioned strategies.

A.2.1 Eager Conversion

The entire cost of eager conversion of our database is borne at the time the evolution
is specified. At this time, the system must convert all the objects in the database. The
cost of such a process is:

Cec = dT+dx

where d is the number of objects of the changed type in the database (i.e.. the size of
the database),  is the cost required to determine the type of the object, and y\ is the
cost required to convert an old instance of the type into a new instance.

A.2.2 Emulation

In emulation, all the cost is borne at object-access time. The per-access cost of emula-
tion can be expressed as:

Cem = T+¢

where ¢ is the cost of emulation. (In reality, the cost of emulation would likely depend
on the feature of the object being accessed, but this cost is simplified to a single value
in this model.)
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A.2.3 Lazy Conversion

Under lazy conversion, the cost is deferred at evolution time until the first access of any
relevant object. As in the emulation case, the cost can be expressed on a per-access
basis. However, unlike emulation, the per-access cost is not fixed, as it depends on the
probability of the accessed object having already been accessed since evolution time.

Before we can establish this probablity, we must define a pattern of access on objects
in the database. Possibilities for such an access model include:

¢ A fixed number of objects are repeatedly accessed, while the rest are ignored.

e Objects in the database are accessed uniformly, i.e., on any access, each object
stands an equal chance (1/n) of being selected.

¢ All objects are accessed in turn.

P’ve selected the uniform access pattern as our model because it is fairly pessimistic,
and because, of the three, it lends itself best to extensions later on.

Given a uniform model of object access, we can know derive a cost function for the
ath object access since the evolution:

The expected number of distinct objects of the evolved type that have been accessed
so far (i.e., since the evolution) can be expressed as the following recursive function:

€9 = 0

€at1 = €4+ 252
which can be reduced to:

e = (1-(21)%)

where a is the total number of database accesses so far.
Given a value for e,, we can define the cost of access as:

Cl(-_ = T+ (€at1 —€a)X
T+ (1= %)
= T‘+(";I)GY

1]

A.3 Introduction of Multiple Types

We can now generalize our model to support multiple types and multiple type evolu-
tions. We do this by defining the emulation or conversion cost per type; types that have
no active evolution have a cost set to 0. The cost functions for eager conversion and
emulation now become:
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P
Cec = NT+Y nixi (total)

z=pl
Cem = 1+ % Z ni€; (per-access)
=1

where p is the number of tyvpes instantiated in the database, n; is the nnmber of ob jects
of each type. N is the total number of objects (V = 3"F_| n;). and \; and ¢; are the
conversion costs, and emulation costs per type.

In generalizing the per-access cost of lazy conversion, our access model selection
pays off. Note that since we have employed a uniform access model, the probability
that the next object accessed will be of a certain type is 3. Given that the type
of the object and whether it requires conversion!” are independent, the (conditional)
probability that the object of a certain requires conversion is the simple product of the
respective probablities (% and ('—"n—T-]-)“'). Thus,

n; —

2 n; 1
Cc = T+Zy\’;‘( )**  (per-access)

=1

n;
where a; is the number of accesses of objects of each type.

The model presented here remains very simplistic. A number of importa.nt param-
eters have been omitted, including:

1. The setup cost {(consumed at evolution specification time) for the emulation and
lazy conversion strategies.

2. Some measure of the availability expectation factor of the database, i.e., are the
costs associated with having an inaccessible database. as a function of time down.

3. The relationship between the cost of emulation (¢;) and the cost of conversion
{\:) for any given pair of type-versions.

'"This is true if we assume all types require conversion, albeit with a possible conversion cost of zero.
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B The Rental Problem Made Concrete

One of the canonical problems motivating the study of competitive algorithms is known
as the Tuxedo Rental Problem!®, which can be described as follows:

Assume that you will be invited to an unknown number of events in your
lifetime that will require you to wear a tuxedo. Let the cost of a tuxedo
rental be r per event, and the cost of a (new?) tuxedo be p > r. Your goal
is to minimize the amount of money vou spend on formal attire over the
course of your lifetime.

A simple-(and nice) solution to the problem, which is guaranteed to be within a
factor of 2 of the optimal solution, is this:

Keep a running total of the amount of money spent to date on tuxedo rental.
Rent tuxedoes on a per-event basis until such time as the rental of a tuxedo
for the (next) imminent affair would cause you to spend more on rentals than
a tuxedo purchase would have cost you had you bought at the beginning.

This form of online algorithm maps quite well into the domain of conversion strate-
gies. Emulation, just like the rental, incurs constant cost per-event. while conversion.
like the purchase, incurs a (higher) flat rate and no marginal cost. This has led me to
think that online competitive algorithms might assist me in the design of an efficient.
pliable, conversion strategy.

The anecdotal strategy described on p. 16 with the three object pools. distinguished
by their access frequency, can be implemented using the Rental Problem algorithm.
Given the relative costs of emulation and conversion. the implementation is obvious.
Here is a simple (albeit space-consuming) algorithm that does not rely on knowledge of
costs:

e W

At type evolution time (i.e.. when a new version-type is installed), or when
an object of a previous type version is first accessed, perform a conversion
and record the amount of (CPU) time it required. For each additional object
accessed, maintain a tally of the time expended to emulate (and record!) the
operation on it. When the tally exceeds the previously-measured conversion :
time, convert the object. i k

'8 The search for a publication reference for this important problem is in progress.
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Abstract

Avalon is a set of linguistic constructs designed 10 give programmers
explicit control over transaction-based processing of atomic objects
for fauli-tolerant applications. These constructs. designed as exten-
sions to familiar programming languages such as C++ and Com-
mon Lisp, are wilored for cach base language so the syniax and spirit
of each language arc maintained. We present here an overview of
these novel aspects of Avalon/Common Lisp: (1) suppon for remote
evaluation through a new evalustor data type: (2) a generalization of
the traditional client/server model of computation. allowing clients to
extend server interfaces and server writers 10 hide aspects of distribu-
tion, such as caching. from clients: (3) support for failure atomicity
through automatic commit and sbort processing of transactions; and
(4) support for persistence through automatic crash recovery of atomic
data. These capabilities provide programmers with the flexibility to
exploit the semantics of an application to enhance its reliability and
efficiency. Avalon/Common Lisp runs on {BM RT's on the Mach op-
erating system. Though the design of Avalon/Common Lisp exploits
some of the features of Common Lisp, ¢.g.. its packaging mechanism.
all of the constructs are applicable t0 any Lisp-like language.

1. Introduction

Large networks of computers supporting both local and distributed
processing are now commonplace. Application programs running in
these environments concurrently access shared, distributed, and possi-
bly replicated data. Examples of such applications include electronic
banking, library search and retrieval systems, nation-wide electronic
mail sysiems, and ovemnight-package delivery sysiems. Such applica-
tions must be designed to cope with failures and concurrency. ensur-
ing that the data they manage remain consistens, that is, are neither
lost nor corrupted. and available, that is, accessible even in the pres-
ence of failures such as site crashes and network panitions.

A widely-accepted technique for preserving consisiency in the
presence of failures and concusrency is t0 organize computations as
sequential processes called transacdons. Transactions must satisfy
three properties: serializability, failure somicity, and persistence. Se-
rializability means that transactions appear 10 execute in some serial
order. Failure atomicity (“all-or-nothing™) means that a transaction
cither succeeds completely and commizs. or abores and has no effect.

Persistence means that the effects of a committed transaction survive
failures. We use the term atomic 10 stand for ail three proncrues.

Although transactions are widely used in the database commu-
nity, demonstrating that they can be a foundation for general purpose
distributed sysiems remains a challenge and is currently of active
interest. Appropriate programming language suppon for application
programmers would greatly enhance the usability and thus. generality,
of such systems.

Avalon is a set of linguistic constructs designed as exiensions to
familiar high-level programming languages such as C++ [25] and
Common Lisp {16). The extensions are tailored for each base lan-
guage, so the syntax and spirit of cach language are maintaincd. The
constructs include new encapsulation and abstraction mechanisms. as
well as suppon for concurrency and recovery. The decision 10 exiend
existing languages rather than to invent a new ianguage was based on
pragmatic considerations. We felt we could focus more effectively
on the new and interesting issues such as reliability if we did not
have 1o redesign or reimplement basic language features. and we icht
that building on top of widely-used and widely-available languages
would facilitate the use of Avalon outside our own research group.

This paper presents an overview of some of the more novel as-
pects of Avalon/Common Lisp. The distinguishing characteristic
of Avalon/Common Lisp, in contrast to Avalon/C++ [6] and other
transaction-based distributed programming !anguages (see Section 6),
is its suppon for remote evaluation (23). Lisp's ueatment of code as
data provides a natural and easy way 0 implement remote evalua-
tion since we simply transmit code, as well as data. between clients
and servers. Moreover, we exploit remote evaluauon to extend and
genenalize the traditional client/server model of distributed comput-
ing. Thus, the programmer gains more flexibility 1n structuring an
application, while often simulianeously improving its performance.

We have implemented the Avalon/Common Lisp constructs pre-
sensed herein on top of Camelot {21), a distnibuted ransaction man-
agemem system (writien in C) built & Camegie Mellon. Camelot
provides low-level facilities like lock management. two-phase com-
mit protocols, and logging to stable storage.
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The particular extensions we designed for Common Lisp are ap-
plicable 1o any Lisp-like language, though for concreteness. all our
examples will be expressed in Avalon/Common Lisp. We assume the
reader has a reading kmowiedge of Common Lisp.

In Section 2 we give an overview of Avalon/Common Lisp’s
mode!l of computation and program structure as they reiate w0 dis-
tribution, persistence, and concurrency. Sections 3 and 4 explain
the novel features of Avalon/Common Lisp related to distribution, in
particular remote evaluation and our generalization of the :raditional

clienyserver model. Section § illustrates features of Avalon/Common Lisp

related to persistence. Section 6 compares Avaion/Common Lisp
with other transaction-based, distributed programming languages and
closes with a summary of our current status.

2. Overview

Distribunon

An Avalon/Common Lisp computation executes over a distributed
set of evaluators (Figure 1), cach of which is a distinct Lisp process.
An evaluator resides at a single physicai site. but each site may be
home to multiple evaluators. A user starts a computation at an ininias-
ing evaluator, which may communicate with other remote evaluators.
To a first approximation, evaiuators communicate through remote
procedure calls with call-by-value semanucs. The dotted lines in the
figure indicate possible call paths between evaluators.

E: Evaluator
R: Recoverable Store

Figure 1: Mode! of Distributed Evaluators and Recoverable Storage

As in Common Lisp. an Avalon/Common Lisp program consists
of a set of packages. Each evaluator is host to one or more packages.
We map the standard client/server model of distributed computing
onto our more general architecture as follows: We put 2 client’s code
in one package and execute it on the initisting evaluator, and for
each server, we put its code in a separate package and execute it on
a remote evaluator.

Section 3 will explain how we extend this standard client/server
model by using remote evalustion in comb.naion with the feature
that an evalustor can be bost 1o multiple packages. The combination
frees us from the above one-t0-one comrespondences between client

code (or server code) and a package, and between a cliemt process

" (or server process) and an evaluator. In shon, in our full extended

client/server model, client code can cross evaluator boundaries, can
be split into more than one package. or can coexist with server code
at the same evaluator. Similar remarks hold for server code.

Persistence

Since Avalon/Common Lisp provides transacrions, we need to
provide a way t0 suppon failure atomicity and persistence. When a
crash occurs, we need to recover the state of the sysiem to some pre-
viously saved consistent state, one that reflects all changes performed
by all committed transactions.

Each evaluator has access 10 at most one pnvate recove able store
(see Figure 1), which itself is managed by a separate process.! Nor-
mally, there would be no recoverable store associated with the evalua-
tor where the client code resides, but there would be one per evaluator
that is host to a server.

At the programming language level, each server package encap-
sulates a set of object bindings and expons a set of fuacuons. Each
object binding is a mapping between a symbol and an object. A bind-
ing can be declared to be persistens. otherwise it is considered 10 be
volatile. Persisient bindings (and the objects to which they map) are
allocated from recoverable store: hence. persistent bindings survive
crashes, while volatile ones do not. By convention. a server’s func-
tions should provide the only means for a client and other servers to
gain access to the server's object bindings. and thus its recoverable
objects.

It makes sense to access recoverable objects only when executing
a transaction so Avalon/Common Lisp provides control pnmitves 10
begin, commit and abon transactions. Section § shows a use of these
primitives. ’

Concurrency

Avalon/Common Lisp supports concurrent transactions (“heavy-
weight” processes), but no concurrency within a transacuon. Ser-
alizability of transactions is guaranteed by using standard two-phase
read/write locks on objects (8]. A transaction holds its locks until it
commits or abons.

Since Common Lisp does not suppont multiple threads of control.
in panticular “light-weight” processes as in C Threads (5], we have a
simpler model of computation with respect to concurrency than that
for other languages such as Avalon/C++. Specifically, only one thread
of control executes within an evalusor at once. For example. suppose
two clients each make a request at a single server. The (server’s)

IEsch recoversbie siorage mamsger is & C process since we cumenuy use
C“'-Mdmﬂhwmmdwunm
communicans with & C process wh recoversbie ge 15 sccessad.
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evaluator processes these two requests senally. On behaif of the first
request. it accesses the recoverabie store. acquires appropriate read

or write locks. and rerums appropriate result values. The evaluator-

then services the second request. If the second request creates a
lock conflict, the (server's) evaluator blocks until the lock is freed.
Lock conflicts can arise because locks are released as transactions
complete, not when function calls retum.

Avalon/Common Lisp supports nested transacuons. but. again be-
cause of the limited kind of concufrency we can support in Common
Lisp. each transaction can have at most one acuive child transaction.
A transaction commits only if its child has committed or aborted: a
transaction that aborts aborts its child. A transacuon'’s effects become
persistent only when it commits at the top level.

The most interesting and novel aspects of Avalon/Common Lisp
relate to its way of handling distnbuted computing. and not persistent
storage or concurrency. Thus, the next two secuons will focus on the
issues related to distribuuon: remote evaluauon and the extended
client/server model.

3. Remote Evaiuation

3.1. Exampie Uses of Extensions

Suppose. for simplicity. there are two evaluators, one local and one
remote. where the local evaluaior might be the imtiaung evaluator for
some computauon. The following expressions:

(let ((a 123 (b 451 (= a &)
(let ({a 123) (b 45)) {(remote (+ a D}))
(let ((a 123} (b 45))

(remote (+ (locai a) (iocal b))

ail return the same value 0 the user. namely the number 168. Given
that the function + refers 10 the built-in genenic addition function, all
three expressions have the same semantic meaning. How they differ
1s where the various subexpressions are evalqateu.

In the first expression, all computation (new binding creation,
vanable lookup. function application) occurs on the local evaluator.

In the second expression. the creation of bindings for a and b
occurs on the local evaluator, while the remote special form di-
rects the evaluation of the (+ a b) to be performed on the remote
evaluator. The lexical environment. containing the local bindings for
a and b, is trangmitied along with the expression (+ a b) (o the
remote evaluator.

The evalustion of the third expression occurs similarly (0 the sec-
ond, except that the evaluations of the expressions a and b (within the

(+ (local a) (local b)) expression) are performed back on
the local host. Since + is already defined on the remote evaluator,
this process is equivalent 10 a traditional remote procedure call (RPC),
where the arguments (and not the actual function) are evaluated lo-
cally and then transmitied to a remote server for application.

3.2. New Functions, Special Variables, and Macros

As an cxiension, Avalon/Common Lisp provides one new data type.
the evaluator. two new special variables, *remore-evaluator®
and *local-evaluator*, and a small number of new special
forms, the most important of which are remoze and loca:. Intw-
itively, the two forms are used to translate the thread of ~ Jmputation
from one evaluator to another, ¢.g., from the designated locai evalu-
ator to some remote evaluator. Below we give the meaning of each
in the style of the Common Lisp manual [16].

make-evaluator sring (Function)

This function finds and retums the evaluator whose name is speci-
fied by the string argument. If none exists. it buiids and retumns a new
evaluator object. Evaluators are firsr-class objects: one can store an
evaluator away in other data structures, perform remote evaluations
on it at some future time, and transmit them.

*remote-evaluator* [Variable]

This special variable names the evaluator used t0 evaluate expres-
sions of the form (remote expr). On an initiating evaluator. it is
bound by default 1o the initiating evaluator itseif until the user changes
it to point t0 some other (remote) evaluator. On a remote evaluaior.
it is bound by default to the remote evaluator itself. If desired. the
piogmnmer can explicidy reset this binding dynamically.

*local-evaluator® [Varable]

This special variable names the evaluator used to evaluate ex-
pressions of the form (lccal expr). In the case of an initating
cvaluator. it is normally unbound. In the case of a remote evaluator,
it is bound by default to the evaluator from which the remote was
called. If desired. the programmer can explicitly reset this binding
dynamicaily.

remote expr &opticnal evaluator [Macro)

This special form's semantics is identical 10 1dentity except
that: (1) The actual computation is performed by the evalustor bound
10 *remote-evaluator* (or 1o the evalustor specified as the
optional argument) with the same lexical environment as the currem
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evaluator, but a different current package and dynamic state: and
(2) the object retumed is a copy of the result, as opposed 10 the
result object itself. Even in the case where the evaluator bound t0
*remote~-evaluator* is specified 10 be or defaults 10 the current
evaluator, a copy of the resulting object is retumed.

Since the process for transmitting data from one evaluator 10 an-
other necessitates creating copies of objects, mutable objects® are
not eq to their remotely referenced snalogues. This is the primary
incompaubility introduced by the use of remote expressions in a
program. Despite the loss of identity. we still preserve sharing of
common substructures among transmitted objects, so that values that
are comparable on one evaluator are still comparable on another.
Hence. we have:

(let* ((a (the (not (or number symbol character)
<arburary lisp object>))

(b a))
(eq a (remote a)) => nil
(remote (eq a (remote a))) => nil
(equalp a (remote aj) = t
(remote (equalp a (remote a))) = t
(remote (eq a b)) = t
{eq (remote a) (remcte b)) => unspecified

Here an object that is neither a number, symbol. nor character is
locally bound to a and b. The first two comparisoas retum nil since
the object bound to a and its copy are different objects. regardless of
where the comparison is evaiuatied. The next two comparisons return
r. because the vaiues of a’s object and its copy are the same. The next
comparison shows that remotely comparing the identities of a and b
is identical 10 comparing them locally. Finally, the last comparison
shows that while remote and local copies are not identical, the results
of different remot e calls to the same evajuator may retum the same
object.

lccal expr {Macro]

This special form has meaning only when evaluated dynamically
within 2 remot e expression. Its semantics is identical o identity
except that: (1) Computation occurs at the evaluator specified in
vlocal-evaluator~: nomally, this is the evaluator where the.
most dynamically immediate remot e expression was evalusted: and
(2) the object returned is a copy of the object, insiead of the object
itself.

3n Common Lisp. all objects. sxcept for nembers, characeers and symbols, wre
metable.

Avalon/Common Lisp gives the pmgummenhe flexibility to redi;
rect the thread of computation. if desired, by using the optional param-

cter 1o remote, or by explicitly senting *remote-evaluator~

to an evaluator different from the default. Hence, the user can make
third-party calls, i.e., calls by one remote evaluator 1o another eval-
uator. Third-party calls would be common when one server calls
another server on bebalf of the original computation performed for
the client. The calling evaluator is then defined to be the local evaiu-
ator and the third evaluator to be the remote evaluator. For exampie.
in Figure 1, if E1 remotely calls E2 which then remotely calls E3.
then E3’s *1ocal evaluator=* is automatically set 10 E2 and its
*remote-evaluator®*, to E3.

Note that since special variables can be set dynamically, they need
nox reflect the call chain, though normaily they would. In the previous
scenanio, for example, if E3's *local-evaluator~ is explicitly
reset to El, then local(...) expressions would be evaluated at
El, not E2, even though E2 made the remote call 10 E3. Results are
sti}] rerumed 10 the evaluator that initiated the remote call; hence
they would be returned 10 E2, not El.

3.3. Abstract Interpreter

Figure 2 shows a simplified abstract interpreter, giving a more
formal semantics w0 the evaluation of the special forms, remote
and local. It does not handle the case of preserving (remote) side
cffects on shared. mutable objects. .

We first define a dynamic-state 10 include the (curremt) lexical
environment, controi-related tags and labels. and names of the local
and remote evaluators. The lexical environment includes both local
variable and local function bindings. We define an evaluatcr 10
be a name and a set of packages.

To see what eval does, we first explain what the helping func-
tion handle-remote does. It takes four arguments: the expression
being evaluated: a dynamic state that includes some lexical environ-
ment: and two evaluators, one to indicate where local expressions
are 10 be evalusted and one 10 indicate where remot e expressions are
10 be evaluated. A new dynamic state is created and used as the state
in which the argument expression is evaluated. The deep-copy
function preserves internal sharing of objects. It is similar to the
read of a print on printsble Common Lisp objects. The recursive
calls 10 eval and deep-copy ensure that expressions with nested
remote’s and local's are handled properly.

The eval function itself takes three argumems. the expression
being evalusted. a dynamic state that includes some lexical envi-
ronment, and an evaluator. If the expression to be evaluated is a
remote then first a check is made w0 see if a specific evaluator is
bound t0 the optional argument in the remote call: if not, then the

PR v AR



(defstruct dynamic-state
' lexical-env
catch-tags
labels
local-evalr
remote-evalr
)

(defstruct evaluator
name
packages
)

(defun eval (expr stacte evalr)
(case expr

:; other cases ...

(remote

(handle-remote (remote-body expr)

state evalr

(or (remote-evalr expr)
(dynamic-state-remote-evalr evalr))))

(local

(handle-remote (remote-body expr)

state evalr

(dynamic-state-local-evalr evalr)))))

(defun handle-remcote (expr state cevalr nevalr)

(deep-copy
(eval
expr
(make-dynamic-state

:lexical-env (deep-copy (dynamic-state-lexical-env s-ate))

:catch-tags
:labels
:local-evalr oevalr
iremote-evalr nevalr
)

nevalr)))

(dynamic-state-catch-tags staze)
(dynamic-state-labels state)

Figure 2: Abstract Interpreter for Handling Remote Evaluation

remote evaluator bound in the dynamic state is passed as the new re-
mote evaluator to handle-remote. Handling & 1ocal is simpier;
the local evaluator bound in the dynamic siaie is passed as the new
remote evaluator 10 handle~remote.

34. More Exampies

The environment passed as part of a zemot e call does not include the
Common Lisp “special” (global) bindings. In the following example:

(defvar a 123)
(let ((b 43))
(zemote (+ (local a) b)))

an explicit call back to the initialing evaluator (using local) is
required in order o ensure that the special value of a is retrieved:
otherwise, the giobal binding of a on the remote evaluator would be
used. Note that the default binding of *local-evaluator* will
cause local to direct a computation back 10 its originating evaluator.

Since onc of Avaloa's design goals is 10 minimize interference
with the target language's semantics, nearly all Common Lisp ex-
pressions can be “wrapped in” a remote to give the desired and
expected effects. The lambda expression below is transmitted to the
remote evaluator along with its argument for evaluation, illustrating
that even procedural objects are permissible within remote expres-
sions:

(remote {((lambda (x) (* x x)) 4))
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We also suppon the remote application of recursively defined
functions such as:

(labels ((fact (n) (if (< n 2)
1 (* n (fact (- n 1))))))
(remote (fact 20)))

since the current lexical environment is transmided along with the
expression. During the evaluation of the above code. the recursive
function fact, bound in the lexical environment, is applied 1o 20 on
the remote evaluator, and the result is transmitted back to the local
evaluator.

The effects of mutating operations in the lexical environment are
preserved across evaluator boundaries. For example. the following
retums 10:

tlet ((a 5))
(remote (setq a 10))
a)

We also handle exits. both local and dynamic, transparently. The
result below will be 12, just as if the remote call had never existed:

(block tag
(remote (+ 9 (return-from tag 12}})))

Likewise with the following, the result is also 12:

(progn
(remote (defun add9 (x)
(+ x {thxow ’'foo 12))))
(catch ‘foo (remote (add9 1))))

3.5. Transmission of Objects

Avalon/Common Lisp supponts transmission of all Common Lisp
readable types. A type is readable if all its instances can be created
through the Common Lisp reader using the type's default print repre-
sentation. Some exampies of readable types include simple-arrays.
1ists. and structs. Most readable types are trivially transmissible
since from one evalustor we simply pass an object’s print represen-
tation and & the other evaluator we reconstitute a copy of the object
using the built-in read function. We also suppon transmission of
some non-readable Common Lisp types like functions snd hash
tables. For a more complex type, like object classes, users would
need to define their own marshall function, which traverses an ob-
ject’s abstract representstion and creates a traasmissible versioo. and
unmarshall function, which reversss that mapping.

As an optimization, we pian t0 add to our current implementation
suppon for both partial transmission of large objects and ransmission
of partially evaluated objects. For large readable objects. such as a
complex network of structs, we would not copy and transmit the
entire object but just its root and its descendants up 10 n-levels decp.
where » is user-definable. Hence transmiaed objects might include
remote references, ic., names of objects that reside remotely. Cur-
reatly our support for panial transmission of large objects is limited
to only immutable structs. Finally, for conceptually infinite ob-
jects akin 0 sereams in Scheme (1], we need transmit only a panial
evaluation of their values.

4. Extended Client/Server Model

The client/server model is a common paradigm for distributed com-
puting, especially in systems based on remote procedure call. By
introducing remote evaluation into Avalon/Common Lisp we can ex-
tend this model in useful and powerful ways. In this section. we
explore these extensions, by presenting several models of how dis-
tributed programs may be structured in Avalon/Common Lisp .

In the traditional client/server model, the RPC interface serves two
purposes. It defines both the calling interface between 2 client and
server and the boundary along which a computation is distributed.
The caller (cliemt) is also the initiator process of some computation:
the callee (server) is also some initiated process executing on behaif
of the caller.

Avalon/Common Lisp separates these two functions. We use the
terms cliens and server to distinguish between the caller and callee.
This client/server distinction defines the interface between the facil-
ities provided by the server programmer. and those provided by the
client programmer, just as is true for interfaces in non-distributed
programs. We use the terms local and remote to distinguish between
the initiator and initisted processes, i.e., evaluators. of a distributed
computation. The local/remote distinction serves to define the bound-
ary along which a computation is distributed. A computation is local
if it is performed a1 the evaluasor initiating the computation, while it
is remote if it occurs at some evaluator differemt from the initiator.
Remote evaluation is the mechanism by which Avalon/Common Lisp
expresses this change in computational locus.

In what fnllows, we suggest aliemative ways 10 organize the re-
mote and local aspects of clieat and server interfaces. ranging from
traditional RPC t0 a scheme where both the client and the server do
computation both remotely and locally.

As a motivating example, we consider a simpie distributed database
of bibliography entries such as that used for Scribe or LaTex .bib files.
We assume that the user of the database is computing on some local
site, .g., & personal worksiation, while the daabase itsclf resides on
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some remote site. The database interface consists of set operations
like intersection and union: a matches function that takes
as input 3 query and returns a set of maiching bibliography entries;
and a print-bib-entrys function that takes as input a set of bib-
liography entries and retums its print representation. Thus, a typical
bibliography database user might write:

(prant-bib-entrys
(union
(matches author-named-£dsger)
(matches author-named-Butler))

10 print all the database entries authored by people named Edsger or
Butler.

The Traditionai ClienttServer Model

To get the effects of RPC as used in the traditional client/server
model in Avalon/Common Lisp, we simply put a zemote around the
outermost function call. If the database, the set operations, and the
printing and matching functions all reside remotely, then the following
code fragmemt shows how our original single-site query would be
expressed:

(remote
{prant-bib-entrys
(union
(matches author-named-Edsger)
(matches author-named-Butlerx)))})

The Extensible Server Model

In Avalon/Common Lisp, a client can exiend a server’s interface
by transmitting function definitions to the server and can then execute
them remotely. In our exampie. the client first uses a remote defun
10 define 3 more complicated match function:

{remote
(defun match-Edsgers-or-Butlers ()
{union
(matches author-named-Edsger)
(matches authoz-named-Butler))))

The client executes the following code locally, which evaluates the
newly defined function remotely:

{(remote
(prant-bib-entrys (match-Edsgers-or-Butlers)))

A client would normally make multipie remote definitions at one
time, perhaps as pan of its initialization code. There are several

advantages 10 providing extensible servers. The client programmer
gains flexibility by tailoring the server interface 10 the needs of his
or her application. Concrete exampies of sofiware with extensible
interfaces are Emacs and Posuscript {26]. The programmer also can
greatly enhance the application’s performance by allowing a complex
computation to take place near the resource it is manipulating. For
cxample, NeWS [13], an extensible windowing system. can support
the smooth rubber-banding of spline curves. while X [20], which
essentially uses the standard RPC paradigm, has difficulty smoothly
rubber-banding even straight lines.

The Hidden Distribution Model

By permitting some or all server code to run locally. .hat is, at the
local evaluator, Avalon/Common Lisp allows clients 1o be completcly
unaware of the distributed nature of a computation. Server writers
are free to hide some or all of the distributed aspects of the program
from a client. In the most extreme case. the client may never even
know that it is using a distributed service.

In the hidden distribution model, our example looks as follows.
On the local side. the server writer makes the following definitions

(we define macros instead of functions to suppress one level of eval-
uation):

(defmacro matches (query)
‘(remote (matches ,query)))

(defmacro union (setA setB)
'(remote (union , setA ,setB)))

(defmacro prant-bib-entrys (dk)
‘(remote (print-bib-entrys ,db)))

The client code is the same as for the non-distributed case:

{(print-bib-entrys
(union
(matches author-named-Edsger)
(matches author-named-Butler)))

Here, when the client calls the three functions provided in the
local side of the server code. the server makes the explicit remotc
calls to the remote side of the server code.

The Full Model

The full model allows both the client and the server to comput
both st the local and the remote evalustors. Figure 3 depicts thi
situstion where again, the doned lines indicae possible call path:
Support for this generality is useful if we want both the ability t
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perform complex client computations ai the remote site, and to allow
the server to hide key aspects of the distnbuted computation. such as
caching.

R: Remote
C: Client
S: Server

Figure 3: The Full Extended Client/Server Model of Distributed Eval-
ualors

To illustraie both of these capabilities. suppose the server writer
implements the matches and union functions o manipulate the
database entries using some compact, but incompiete representation
of each entry, while print-bib-entrys must have the entire
entry before printing it. Caching the complete entries at the local
site prevents them from being repeatedly shipped from evaluator to
evaluator (i.e.. remote to local) while hiding this caching in the server
interface allows the client to ignore the complications introduced by
the cache.

For our example. on the local side. the server wniter makes the
following definitions:

(defun print-bib-entrys (s)
(set-map # print-db-entry s))
(defun print-db-entry {set-entry)
(unless (value-cached-p set-entry)
(add-to-cache (get-remc-e-cobject set-entry)))
(prant-entry (cached-value set-entry)))

The clicnt makes the following remote definition (as before in the
Extensible Server Model):

(remote
(defun match-Edsgers-or-Sutlers ()
(unaon
(matches author-named-Edsger)
(matches author-named-Butler)))})

The client executes it:

{print-bib-entrys (remots
(match-Edsgers-or-Butlers)))

The reader should compare the above call to that used in the Extcn-
sible Server Model.

The above example illustrates what would commonly be done f

for querying a large database. In general. application programmers
need the ability to write split queries. where pan of the query is
performed remotely through a server interface. and pan performed
locally through client code. A typical query might be split into a
search predicate executed remotely and a filter predicate executed
locally. For exampie, the search predicate might retumn a stream of
bibliography entries to the client who might then funher filter out
every fifth entry.

5. Persistence

In this section we show how Avalon/Common Lisp suppons failure

alomicity through the with-transaction consuuct and persis- _,"
tence through declarations of persistent bindings. We first illustrate ";_‘_‘ )
these features by showing the relevant pieces of the package for the v
bibliography database server.

5.1. Example Uses of Extensions
Here we make the database’s binding persistent and initalize i

(defpersistent Sbib-databases$ 5"
(make-persistent (empty-sez)))

By convention. we use the “$" characters 10 distinguish those sym-
bols used for persistent bindings from those used for volatile oncs.
Make-persistent creates a recoverable object: defpersisten:
defines Sbib-database$ as a special symbol whose binding 1s
recoverable, and creates a binding between Sbib-database$ and
the recoverable empty set.

We use transactions for standard database operations such as adding
modifying. and deleting entries. Consider the function for adding a
bibliography entry:

(defun add-bib-entry (entry)
(with-transaction
(if (valid-bib-entry-p entcry)
(adjoin Sbab-databases$
(make-persistent entry))
(abort-transaction ‘invalid-bib-entry)))

If the entry is valid, i.c.. well-formed and not already in the database.
then we make the volatile value of the ent ry argument persistent and
add it 10 the databese. Otherwise, we abon the transaction signalling




the abon condition invalid-bib-entry. Since- the update is
done within a transaction, if a crash occurs during the update, the state
of the bibliography database will be as if the update never occurred:
Camelot’s recovery algorithm will guarantee the database is restored
10 a previously saved consistent state.

The counterpant 10 make-persistent is make-volatile.
Since an evaluator communicates with a recoverable store, retriev-
ing a persistent binding from it gives us a handle on a recoverable
object. Upon retrieval, we are free to continue to use the object as
a recoverable object until we need 10 either call a standard Com-
mon Lisp function or trezismit the object back to the local evaluator.
Thus as a server writer, we have some latitude as to when to make the
make-volatile call. For example, both prant-bib-entrys
below have the same eventual effect:

(defun print-bib-entrys ()
{ser~mapc #' (lambda (set-entry)
- (prant-bib-entry
(make-volatile set-entry)))
Sbib-database$))

{defun print-bib-entrys ()
(set-mapc #’'print-bib-entry
(make-volatile Sbib-database$)))

In the first version. set -mapc operates on a persistent set (and uses
rec-car, rec-cdr. eiC. 1o traverse the Sbib-database$?). In
the second. set~mapc operates on a volatile object. Make~
persistent and make-volat:le are each idempotent and are
inverses of each other.

Avalon/Common Lisp currently supporns recoverable versions of
a large subset of Common Lisp’s built-in types. e.g., £ixnum, list,
simple-string, simple-vector, as well as any type con-
structed using struct’s.

§.2. New Macros and Functions

Here is the programmer’s interface to the new macros and functions:

defpersistent variable ( initial-value ) {Macro)

This form is similar to the defvar form. except that any binding
10 varigble is recoverable, i.c.. survives crashes and suppons failure
atomicity. If given, initial-value is assigned 10 variable. as long as

}Avalon/Common Lisp supports ‘‘recoverabie™ versions of some standard Lisp
functions like car. cdz. eq. eqi. sic. They operasis on objects retrieved from
recoverable siore. rather than normal non-recoverable Lisp objects.

variable has not previously been bound. /nisial-vaiue must evaluaie
10 a recoverable object and is only evaluated if it is used 0 initialize
the binding.

All subsequent setq operations to variable will change the bind-
ing atomically; set q operations to persistent variables can be aboned
if evaluated within a transaction.
make-persistent object {Funcnion)

make-volatile object [Function)

These functions create a persistent (volatile) representation of ob-
ject. If object is already persistent (volatile), it is returned as the
result.

with-transaction body {Macro}

with-top-level-transaction body [Macro}

Both forms initiate a new transaction and evaluate body.
With-transaction, if evaluated dynamically within another trans-
action, will begin s nested transaction: otherwise it stants a top-ievel
transaction. With-top-level-transaction always initiales a
new top-level transaction. Both forms return a mutiple value consist-
ing of a status signifying whether or not the transaction committed.
and the result of the last expression in body.

Normal evaluation of either form results in a committed trans-
action. Exceptional exits from the body (via catch/throw and
local exits) result in the transaction aborting. Transactions can aiso
be explicitly aborted via use of abort-transaction.

abort-transaction remval &optional top-leveli[Macro}

This form aborns the currently executing transaction. If the op-
tional argument is nil (the default), the innermost dynamically nested
transaction is aborted and the value of retval is returned as the status
in the muitiple-value resuit of with-transaction. Otherwise.
the current (dynamically scoped) top-level transaction is aborted.

6. Related Work and Discussion

Our work on remote evaluation is closest in spirit to Stamos’s Ph.D.
work (23] for which he designed extensions t0 the programming lan-
guage CLU to support remote cvaluation in the context of atomic
transactions. Since the target languages differ. so do our concrete
designs. We designed and packaged our language extensions in a
way that avoids modifying the compiler and instead exploits the in-
terpretative programming style of Common Lisp. Since CLU is a
compile-time (strongly) typed language, Stamos defines static checks
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that must be performed to ensure a remote evaluation request is valid.
Client extensions to servers and code arguments further complicate
both these checks and the compiler’s subsequent encoding of a re-
mote evaluation request. We avoid some of these difficulties since
our new evaluator data type gives us not only a run-time bound-
ary (each is a process), but a compile-time boundary (each defines a
global namespace for a set of packages).

Our extensions to the client/server model are similar to that sup-
poried by Falcone's Heterogeneous Distributed System architecture,
prototyped at DEC (10]. Falcone focuses on support at the operating-
system level, rather than at the programming-language level, though
he does provide a small Lisp-like language interface to the sysiem
facilities. By our extending Common Lisp rather than defining a new
language. we have the advantage of completely integrating our exten-
sions with an existing, familiar, and widely-available programming
language. Also, Falcone handles only primitive data types such as
lists and byte vectors, and does not address persistent and recoverable
storage of data.

Avalon/Common Lisp is distinct from other distributed program-
ming languages such as CSP [15], SR (2]. Linda {12}, Nil [24]. and
Ada (19]. since we have direct suppont not only for remote evalu-
ation, but for transactions. and in particular the following features:
commit and abon processing, crash recovery. atomic objects, and
management of persistent data.

Even though Avalon/Common Lisp lacks light-weight processes.
there are some similarities between it and other “concurrent Lisp”
efforts such as Qlisp (11] and Multilisp (11}, both of which sup-
port concurrent computation using light-weight, shared-memory pro-
cesses. Qlisp’s glambda consiruct creates a closure and a process that
will be used to evaluate any future application of the closure. Like
glambda instances, Avalon/Common Lisp's evaluators are each iden-
lified with a separate process. The lexical environment inherited in a
remote call could be passed to a Qlisp process as an argument, and
the evaluator-specific global environment could be simulated using
the environment of the qlambda’s closure. Avalon/Common Lisp's
remote construct is also similar to Multilisp's fusure construct. Both
allow the programmer to dispatch arbitrary forms to another pro-
cess for evaluation. A key difference is that Multilisp's processes,
being light-weight, are created on-demand. while the evaluators in
Avalon/Common Lisp are heavy-weight, and. therefore, long-lived.

Transactions themselves have been a primary focus in both dis-
tributed and centralized data bases ({3], {8), [14], [9]). Several re-
search projects have chosen transaciions as the foundation for con-
structing relisble general-purpose distributed programs, including Ar-
gus [17). Arjuna (7], Clouds [18). TABS [22], and Camelot (21]. Of
these projects, however, only Argus and Arjuna have addressed the
linguistic aspects of the problem. Argus exiends CLU and Arjuna
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extends C++. None of these projects have direct suppon for remote
evaluation or our exiended client/server model.

Avalon/C++ and Avaion/Common Lisp differ in significant ways
even though they address the same appiication domain, reliable dis-

. tributed computing, and are motivated by the need to provide pro-

gramming level support for transactions. Avalon/C++'s primary de-
sign focus was on user-defined atomic data types, in particular. sup-
port for hybrid atomicity. Programmers can define (hybrid atomic)
objects that provide higher degrees of concurrency than that provided
by using standard two-phase read/write locks. such as that used for
Avalon/Common Lisp. In contrast. Avalon/Common Lisp's primary
design focus is on remote evaluation and suppon for a clienyserver
model more general and flexible than the traditional one such as that
used for Avalon/C++. Thus, Avalon/Common Lisp relies on well-
known techniques for dealing with serializability (read/write locks)
and persistence (write-ahead logging, recoverable virtual memory).
but introduces a new model for distributed computing.

Currently, all Avalon software runs on IBM RT's in the Mach
and Camelot environments. Avalon/C++ runs on Sun's and Vaxes as
well. Avalon/C++ has been operational for 2 year and we are not
doing any further design or implementation work with it.

Avalon/Common Lisp is nearly complete as of this writing. All
Avalon/Common Lisp code presented in this paper runs. Besides the
bibliography database, other Avalon/Common Lisp exampies include
a simple array server and a factory-pans database. Further details on
the Avalon/Common Lisp programmer's interface are in [4).

In summary, Avalon is a set of linguistic constructs that extend
the capability of existing programming languages by directly support-
ing transactions. For each of our target languages, C++ and Com-
mon Lisp, we designed our exteasions to be unintrusive and modular.
For exampie, a Common Lisp programmer can load one set of pack-
ages if support for only remote evaluation is desired, a different sct
if support for only recoverable store is desired. or both sets if both
features are desired. These language exiensions relieve users from
the burden of doing low-ievel system acuvities such as locking and
managing stable storage, and insiead allow them to concentrate on
the logic required of their application. At the same time, however,
they are given enough flexibility 1o exploit the semantics of their
applications to increase their programs’ reliability and efficiency.
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1. Introduction

This note assesses the Avalon/Common Lisp implementation effort. Shortcomings in CMU Com-
mon Lisp, Camelot’s Lisp interface and our own design decisions resulted in an unnecessarily fragile
and complex system. We will examine each area in turn, as well as note where the CMU Common
Lisp - Camelot platform made implementation easy.

2. CMU Common Lisp

CMU Common Lisp provided a number of features which permitted rapid development of key
pieces of the system. Some of these attributes were specific to the Common Lisp language, others
were specific to the CMU implementation [4]. The language features which proved to be most
useful are listed below.

o Lisp’s syntax is easily extended. Augmenting the existing language was trivial.

¢ Lisp’s treatment of code as data made remote evaluation easy to implement since both code
and data were readily transmitted between evaluators.

o The Lisp reader and printer provided much of the marshalling functionality for free.

¢ The ability to incrementally add definitions to a package made it easy for clients to extend a
server’s interface.

o First class conditions and dynamically bound condition handlers made it trivial to implement
Avalon/Common Lisp’s exception semantics and to properly handle non-local transfers of
control.

Several CMU-specific features were heavily exploited. These included:

¢ The interprocess communication support provided by Matchmaker and the CMU Common
Lisp scheduler was used extensively. Matchmaker generated interfaces from specifications
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while the scheduler directed the receipt and processing of IPC messages. Hemlock's [3] use ' t

of these facilities to support limited remote evaluation and compilation provided a starting
point for our development efforts.
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o Common Lisp source code and local expertise were readily available. This made it both
possible and reasonably easy to extend the semantics of Common Lisp’s primitives (ex.

defstruct).

While CMU Common Lisp provided an attractive environment for prototyping, it did not pro-
vide a suitable environment for long term development. The language deficiencies included:

¢ Global package namespace. Each Lisp process maintains a single package namespace, with
no security features. Without careful design, clients of a remote evaluator can inadvertently
modify each other’s definitions. '

e Symbol semantics. Lisp's read-time symbol lookup and symbol creation, inclusion of a
package name as part of a symbol’s representation, and a design decision to transmit both
a symbol’s name and package combined to require a server’s exported symbols to be defined
on both the initiating and remote evaluators (1).

o Language size. Lisp’s size and lack of formal semantics make it difficult to rigorously
evaluate and specify proposed language extensions.

While the language deficiencies proved to be annoying, the implementation deficiencies were
more limiting. These included:

e No concurrency. CMU Common Lisp supports only a single thread of control. In particular,
“lightweight” process creation, protection of critical regions with mutexes and synchronization
using condition variables is not supported. These limitations posed problems for both the
remote evaluation and Camelot Lisp implementations.

In the case of remote evaluation, the lack of support for multiple threads of control combined
with an inability to save the current state of a computation restricted évaluators to processing
requests serially. Once processing begins on a request, it is taken to completion. An initiating
evaluator blocks until it receives a reply. Hence, there is no concurrency at the level of a single
evaluator.

Third party calls and transactions exacerbate the problem. When third party calls are made,
all intermediate evaluators in the call chain block. At this point, even the coarse-grained
concurrency of different evaluators concurrently executing requests is limited. Client initiated
transactions also add to the problem. A transaction may include several remote expressions
and thus may outlive a single server call. Because locks are released as transactions complete,
not when a remote call returns, the probabilities of lock conflicts and deadlock escalate.

While implementing some priority based request handling scheme and restricting transactions
to a single server would reduce the deadlock problems, these are stopgap measures at best.
Eliminating useful functionality to regain a limited degree of concurrency is not an acceptable
solution.

e No continuations. The absence of first-class continuations assumes added importance
in light of the lack of concurrency. Continuations provide a mechanism for implementing
coroutines, thereby allowing us to effect concurrency without multithreading. In addition.
storable continuations are one of the elements needed to provide checkpointable workspaces.
The lack of continuations eliminates interesting avenues of exploration.
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3. Camelot

Camelot’s distributed transaction support and Lisp interface to recoverable storage provided us
with considerable functionality. Little additional investment was required to explore transactions
and persistence in a Lisp environment. Two Lisp packages, camelot and 1ro, and a C executable,
the lisp recoverable ob ject (Irec) server, form the core of Camelot’s Lisp interface. Before discussing
our experiences with this interface, it may be helpful to review each component’s role.

Camelot exports a set of macros that permit Lisp processes to function as Camelot clients.
Do-transaction and abort-transaction bundle the necessary calls to the Camelot transaction
manager to begin, end and kill transactions. Server-call invokes operations exported by Camelot
data servers.

Note that while this interface provides Lisp processes with access to Camelot, the processes
may only participate as clients, not servers. No Lisp equivalent to the Camelot C library exists.
McDonald 2] cites several difficulties in developing such a library: servers require multiple threads
of control and primitives that guarantee exclusive access to shared data; and CMU Common Lisp
uses most of the address space of the IBM RT, thereby limiting the amount of recoverable storage
that can be conveniently mapped into the Lisp address space.

Given only the camelot package, Lisp’s access to recoverable storage is restricted to operations
exported by C data servers. The remaining components of the Lisp interface, 1ro and the lrec
server, attempt to address this limitation.

The Irec server is a full fledged data server, written using the Camelot C library. It operates on
chunks of recoverable, untyped bytes which are referenced by unique object identifiers. Lrec_malloc
allocates a specified number of bytes and returns a unique object id; lrec.rec and lrec_modify
read and modify a specified number of bytes after acquiring appropriate locks; lrec_checkin
associates a name with an object id; and lrec_lookup maps names to object identifiers.

Lro exports an interface which permits Lisp users to manipulate recoverable ob jects without
directly accessing the Irec server. It is at the 1ro level that types are associated with recoverable
objects. For example, 1ro:rec-malloc takes a type and name, allocates storage in the Irec server,
associates name with the Irec server object, and returns a CLOS instance which provides a handle
to the object. This CLOS instance contains all the information needed to retrieve the object from
the Irec server and coerce the returned bits to the correct Lisp type. Existing recoverable objects
may be accessed by providing lro:rec-connect with the object’s name and type. A handle is
returned.

The problems we encountered in using this interface are itemized below. Instances where our
design decisions created or contributed to the problem are noted.

¢ Manual recovery. Cameliot’s Lisp interface provided no support for automated recovery.
Applications must explicitly recover any objects of interest by providing 1ro:rec-connect
with an object’s name and type. Avalon/Common Lisp automated the recovery process by
adding support for declaring and maintaining persistent bindings. Among other things, this
required type information and a symbol to object identifier mapping to be maintained in
recoverable storage. Support for automatic recovery was implemented entirely at the Lisp
level rather than redesigning the lrec server to operate on typed objects. This decision
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noticeably impacted performance since multiple transactions and lrec server calls were now
required to create a persistent ob ject.

¢ Disjoint recoverable and volatile heaps. Recoverable storage is managed by a C process
which requires space to be explicitly malloced and freed. Volatile storage is dynamically
allocated and garbage collected by a Lisp process. This storage division is painfully obvious
to the user. Operations on persistent objects are perceptibly slower. Also, standard Lisp
functions cannot be directly applied to recoverable ob jects; a persistent object must be coerced
to a volatile form or a “recoverable” version of the desired function must be applied.

o Mismatched clients and servers. From Camelot’s perspective, only the Irec servers are
legitimate data servers; all Lisp processes are clients. From Avalon/Common Lisp’s perspec-
tive, a server is a Lisp process plus its associated lrec server. These differing views, combined
with a design decision to support distributed transactions (from ACL clients to ACL servers),
resuited in our using Camelot in a way its designers never intended. A transaction contain-
ing a remote typically has three participaats, two Camelot clients (the initiating and remote
evaluators) and one Camelot server (Irec). This notion of a single transaction having multiple
clients is foreign to Camelot. One consequence of this is that only one client gets notified of
aborts, when several clients may need the information. To insure that all interested parties
are notified of transaction aborts, initiating evaluators maintain a list of all evaluators vis-
ited under the scope of a particular transaction. Each evaluator on the list is notified upon
transaction abort.

4. Conclusions

In retrospect, better design decisions could have alleviated some implementation probiems. In
particular, limiting transactions to a single evaluator reduces the potential for deadlocks and elim-
inates the Avalon/Common Lisp-to-Camelot server mismatch. Addressing some of the recoverable
storage deficiencies at the Irec server level rather than at the Lisp level would provide improved
performance and simpler code.

CMU Common Lisp’s lack of concurrency hobbled the implementation in a muititude of ways.
In addition, Lisp provided a poor langnage foundation to build on. It was much too easy to become
sloppy in our thinking.

If Camelot is to be used as a platform, a Lisp equivalent to the Camelot C library must be
built. Substantial additional effort is required to get the ob ject-oriented, garbage collected view of
recoverable storage we ultimately want.

CMU Common Lisp and Camelot both provided functionality which enabled rapid development
of a prototype system. However, neither provide an appropriate foundation for future work.
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1. Introduction

Avalon/Common Lisp provides a set of language extensions enabling programmers to develop
distributed, fault-tolerant applications. It supports remote evaluation, failure atomicity, and per-
sistence through a collection of packages which export a small number of forms. These packages
can be mixed and matched to obtain the desired combination of functionality. This note describes
the interface exported by each Avalon/Common Lisp package.

We begin by taking a brief look at Avalon/Common Lisp’s architecture. Our intent is to provide
just enough background so that terms and concepts used later in the interface descriptions make
sense. Clamen et al., [1] provides a more complete description of our computational model and
design. Readers familiar with our model can skip immediately to Section 3.

Section 3 introduces an application which we use as a source of examples throughout the note.
Sections 4.1 and 6.1 present sample uses of three key packages, remote-eval, rstore and trans,
providing support for distributed computation, persistence and failure atomicity, respectively. Sec-
tions 4.2, 6.2 and 7.1 define their exported interfaces. We also supply two other packages: The
transmit package exports forms that permit user-defined transmission functions and the avalon
package provides a convenient way of accessing Avalon/Common Lisp’s complete functionality.
Sections 5.1 and 5.2 demonstrate uses of the basic and extended transmission facilities; section 5.3
defines the transmit package interface.

The note concludes with a summary of the implementation’s status and instructions for running
Avalon/Common Lisp.

2. Overview

Distribution

An Avalon/Common Lisp computation executes over a distributed set of evaluators (Figure 1),
each of which is a distinct Lisp process. An evaluator resides at a single physical site, but each site
may be home to multiple evaluators. A user starts a computation at an initiating evaluator, which
may communicate with other remote evaluators. To a first approximation, evaluators communicate
through remote procedure calls with call-by-value semantics. The dotted lines in the figure indicate
possible call paths between evaluators.
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E: Evaluator
R: Recoverable Store

Figure 1: Model of Distributed Evaluators and Recoverable Storage

As in Common Lisp, an Avalon/Common Lisp program consists of a set of packages. Each eval-
uator is host to one or more packages. The standard client/server model of distributed computing
maps onto our more general architecture as follows: We put a client’s code in one package and
execute it on the initiating evaluator, and for each server, we put its code in a separate package
and execute it on a remote evaluator.

This standard client/server model can be extended by using remote evaluation in combination
with the feature that an evaluator can be host to multiple packages [1]. The examples in this note
will focus on the standard model.

Persistence

Since Avalon/Common Lisp provides transactions, we need to provide a way to support failure
atomicity and persistence. When a crash occurs, we need to recover the state of the system to
some previously saved consistent state, one that reflects all changes performed by all committed
transactions.

Each evaluator has access to at most one private recoverable store (see Figure 1), which itself
is managed by a separate process.! Normally, there would be no recoverable store associated with
the evaluator where the client code resides, but there would be one per evaluator that is host to a
server.

At the programming language level, each server package encapsulates a set of object bindings
and exports a set of forrs. Each object binding is 2 mapping between a symbol and an object. A
binding can be declared to be persistent; otherwise it is considered to be volatile. Persistent bindings
(and the objects to which they map) are allocated from recoverable store; hence, persistent bindings
survive crashes, while volatile ones do not. By convention, a server’s functions should provide the
only means for a client and other servers to gain access to the server's object bindings. and thus
its recoverable objects.

[t makes sense to access recoverable ob jects only when executing a transaction, so Avalon/Common Lisp

'Each recoverable storage manager is a C process since we curreatly use Camelot’s implementation of recoverable
storage; hence, each of our Lisp processes communicates with a C process whenever recoverable storage is accessed.
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provides control primitives to begin, commit and abort transactions.

Concurrency

Avalon/Common Lisp supports concurrent transactions (“heavy-weight” processes), but no con-
currency within a transaction. Serializability of transactions is guaranteed by using standard two-
phase read/write locks on objects {5]. A transaction holds its locks until it commits or aborts.

Common Lisp’s lack of support for multiple threads of control, in particular “light-weight”
processes as in C Threads (3], simplifies our model of concurrency. Specifically, only one thread
of control executes within an evaluator at once. For example, suppose two clients each make a
request at a single server. The server’s evaluator processes these two requests serially. On behalf
of the first request, it accesses the recoverable store, acquires appropriate read or write locks, and
returns appropriate result vaiues. The evaluator then services the second request. If the second
request creates a lock conflict. the server’s evaluator blocks until the lock is freed. Lock conflicts
can arise because locks are released as transactions complete, not when function calls return.

Avalon/Common Lisp supports nested transactions, but each transaction can have at most one
active child transaction. A transaction commits only if its child has committed or aborted; a
transaction that aborts, aborts its child. A transaction’s effects become persistent only when it
commits at the top level.

3. Sample Application

We will draw examples from a single application, that of a simple distributed database of bibliog-
raphy entries.

Assume the database user is computing on some local site, e.g., at a personal workstation. while
the database itself resides on some remote site. The database interface consists of set operations
like intersection and union; a matches function that takes as input a query and returns a set
of matching bibliography entries; and a print-bib-entrys function that takes as input a set of
bibliography entries and returns its print representation. In the single site case, a bibliography
database user might write:

(print-bib-entrys
(union
(matches author-named-Edsger)
(matches author-named-Butler)))

to print all the database entries authored by people named Edsger or Butler.

4. Remote Evaluation

We begin our discussion of the remote-eval package by showing how its exported forms might be
used to provide distributed access to our bibliography database.




4.1. Example Uses of Extensions

The server’s evaluator loads the database, set operations, and printing and matching functions. As
the final step in its initialization process, it registers its name with the system name server:

(init-evaluator "bib")

When this call completes, the server is available to accept requests. A client wishing 10 make a
query executes

(setq sremote-evaluator* (find-evaluator "bid"))

to find an evaluator which has registered as a bibliography server and stores the returned handle
for use in subsequent requests. To make a query, the client simply wraps the outermost function
call with a remote.

(remote
(print-bib-entrys
(union
(matches author-named-Edsger)
(matches author-named-Butler))))

By default, the evaluator bound to the special variable *remote-evaluator* performs the query,
using its current package and dynamic state and the client’s lexical environment. A copy of the re-
sult is returned to the client. Supplying a second argument to remote explicitly directs computation
to the specified evaluator.

It should be noted that output sent to #*standard-output* as part of remote processing, prints
on the remote, not the initiating evaluator. In cases where the client needs this generated output,
steps must be taken to capture and return the items of interest. As an example, consider the
definition for the print-bib-entrys function used above.

(defun print-bib-entrys (set)
(vith-output-to-string (s)
(let ((*standard-ocutput+ s))
(mapc #’print-bib-entry set))))

The helper function print-bib-entry takes a single entry as input and outputs a formatted version
of the entry to *standard-outputs. Print-bib-entrys temporarily rebinds *standard-outputs
to a stream that saves its output in a string, successively applies the helper function to each element
of the set and returns the string containing the saved output as its resuit.

With the exception of the copy and input/output semantics mentioned above, nearly all Com-
mon Lisp expressions can be wrapped in a remote to give the expected effects. In particular, both
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local and dynamic exits are handled transparently. In the example below, a client searches for all
bibliography entries having the keyword “object-oriented”. Rather than transmit large amounts
of data on searches that were not sufficiently constrained, an appropriate message is thrown back
to the initiating evaluator. Hence, the value returned by the catch is either a listing of matching
bibliography entries or a string indicating the number of matches found.

(catch ’too-many-matches
(remote
(let ({set (matches has-key-object-oriented)))
(vhen (> (size set) 500)
(throw ’too-many-matcheu
(format nil "Found °S matches. Narrow query.” (size set))))
(print-bib-entrys set))))

Similarly, all errors and signaled conditions resulting from evaluation on a remote evaluator are
passed back to the initiating evaluator, where they are re-signaled. The following shows how to
handle the case of too many matches.

(remote
(let ((set (matches has-key-object-oriented)))
(when (> (size set) 500)
(error "Found ~S matches. Narrow query."” (size set)))
(print-bib-entrys set)))

If a condition contains non-transmissible data, an error message is generated and transmitted back
as a string.

4.2. Exported Forms

The remote-aeval package defines one new data type, evaluator handle, and exports the following
forms, presented in the style of the Common Lisp manual [6).

remote-eval:init-evaluator name [ Function]

This function initializes and registers the calling evaluator with the network name server. VName
is a string that will be used by other evaluators to locate the caller. An error is signaled if the
registration fails or if the evaluator is already registered under a different name.

remote-eval:find-evaluator name &optional host [ Function]

This function finds an existing evaluator, registered under name, that resides on host. Both
name and host are strings, where host must be a valid host name. By default, host refers to the
caller’s machine. An evaluator handle is returned. If no matching evaluator is found, an error is
signaled.




remote-eval:sremote-evaluators _ ( Variable]

This special variable names the evaluator used to evaluate expressions of the form (remote
ezpr). On an initiating evaluator, it is bound by default to the initiating evaluator itself until the
user changes it to point to some other (remote) evaluator. On a remote evaluator, it is bound by
default to the remote evaluator itself.

remote-eval:remote erpr koptional evaluator [Macro]

This special form does most of the work. Semantically, it is identical to identity except that:
(1) The actual computation is performed by the evaluator bound to sremote-evaluator* (or to
the evaluator specified as the optional argument) with the same lexical environment as the current
evaluator, but a different current package and dynamic state; and (2) the object returned is a copy
of the result. as opposed to the result abject itself. Even in the case where the evaluator bound to
sremote-evaluator# is specified to be or defaults to the current evaluator, a copy of the resulting
object is returned.

It is an error for ezpr to contain reads to sterminal-io#*.? In the absence of callback support,
such reads cause deadlock. Writes or prints to »terminal-io» send output to the remote evalua-
tor. If this output is of interest to the initiating evaluator, either the server or client must explicitly
capture and return it.

Finally, the remote facility ignores non-transmissible ob jects in the initiating evaluator’s lexical
environment. If the remote evaluator references a non-transmissible component, an error is signaled.

5. Transmission of Objects

The transmit package provides basic transmission support for the remote facility and exports
forms that permit user-defined transmission functions. A user may provide a marshall function,
which traverses an object’s abstract representation and creates a transmissible version. and an
unmarshall function, which reverses that mapping.

We begin by discussing Avalon/Common Lisp’s default transmission support. Transmit’s han-
dling of both symbols and structures impacts the construction of remote expressions in non-intuitive
ways. Section 5.1 outlines the issues and presents successful and unsuccessful approaches to ad-
dressing the problem.

We follow with a look at sample uses of transmit’s exported forms, and conclude our discussion
by defining each of the package’s interfaces.

5.1. Example Uses of Basic Transmission Support

Transmit provides transmission support for all readabie plus a few non-readable types (see Table 1).
A type is readable if all its instances can be created through the Common Lisp reader using the

?sStandard-inputs, sstandard-cutpute, serror-outputs, strace-outpute, squery-io® and sdebug-io® are all
initially bound to synonym streams that forward all operations to the stream bound to eterminal-ios.
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Transmissible number, character, symbol, list,
simple-vector?, simple-array,
simple-bit-vector, simple-string,
uncompiled function, hash-table,
random-state, pathname, structure
Non-Transmissible | compiled function, stream, package,
readtable, CLOS instances®

Table 1: Transmissible and Non-Transmissible Types

2Simple arrays, vectors, etc. have no fill pointers, can not dynamically adjust their size,
and are not “displaced to” another array.

*Programmers may define marshall and unmarshall methods for any class they wish
to transmit.

type’s default print representation. Some examples include simple-arrays and lists. Functions
and hash tables are examples of non-readable, but transmissible, types.

In most cases, readable types are trivially transmissible. From one evaluator we simply pass
an object’s print representation and at the other evaluator we reconstitute a copy of the object
using the built-in read function. While both symbols and structures are readable. neither type is
trivially transmissible.

5.1.1. Symbols

A symbol is composed of a symbol name, package name and a property list. When the Common Lisp
reader parses a form, any token thought to be a symbol name is looked up in the current package
(assuming no package qualifier is given). If the name is found, the associated symbol is returned.
Otherwise, a new symbol is created.

In Avalon/Common Lisp, a symbol’s package name is part of its transmissible representation.
Transmitted symbols are interned in an identically-named package on the remote evaluator. Unin-
terned symbols, which have no package association, are never interned.

All of this combines to produce some unexpected results. Let’s assume the database, set. and
printing and matching functions for our bibliograph; server have been loaded into one evaluator
and the appropriate functions exported from the bib package. A user at another evaluator might
query the server as follows:

(remotse
(bib:print-bib-entrys
(bib:matches bib:author-named-Butler)))

Evaluation of this form typically produces one of two errors; either the bib package does not
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exist or at least one of the symbols cannot be found, since it has not been exported from the bid
package. These errors are signaled by the initiating evaluator as it marshalls the request. While
the bib:print-bib-entrys expression is not evaluated by the initiating evaluator, the expression
itself must be built. The errors result from the read-time symbol lookups. As a second attempt,
the user might try:

(remote
(Let ((*packages ’'bib))
(print-bib-entrys
(matches author-named-Butler))))

This too will fail, but this time on the remote evaluator. When the initiating evaluator packages
up the print-bib-entrys symbol for transmission, it includes the package name, which may or
may not be bib. Let’s assume it is user. When the form is evaluated by the remote evaluator,
it looks for print-bib-entrys in the user package, not bib, resuiting in an undefined function
error.

To avoid these problems, we recommend that the export list for a server be placed in a separate
file and loaded into any evaluator that may act as a client or server. For our bibliography example,
this file includes:

(in-package ’bib)

(export
’(union intersection difference matches print-bib-entrys))

The client may now use either of the following to execute his query succeésfully. N

(remote
(bib:print-bib~entrys
(bib:matches bib:author-named-Butler)))

(use-package 'bib)
(remote

(print~bib-entrys
(matches author-named-Butler)))

Note that no evaluator can make assumptions about the value of another evaluator’s current pack-
age.

A symbol’s property list is considered to be part of a process’ global environment and is.not
transmitted.

5.1.2. Structures

Structures pose a problem in that accompanying any structure definition is a collection of functions
that operate on it. The remote facility only transmits a representation of an object. It does not
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guarantee that a structure’s accessor or constructor functions are defined on the remote evaluator.
The programmer must ensure that structure types are defined on each evaluator that may operate
on an instance of the structure. As with symbols, we recommend that any relevant defstructs be
placed in a file that is loaded into both client and server evaluators.

5.2. Example Uses of Extensions

A programmer may wish to define his own transmission functions for several reasons - to provide
a more efficient representation. to take advantage of application-specific knowledge, or to make an
unsupported type transmissible. As before, our bibliography application provides an example.

The database represents annotations by structures having three slots. Bibid contains an
identifier that pairs an annotation with its corresponding bibliography entry; access may be
either public or private and controls who sees the annotation; note contains the actual text.
Avalon/Common Lisp’s default transmission support has no knowledge of annotations and would
ship the complete object, even if access is private. Hence, we need to supply our own marshall
routines.

(defstruct annotation
bibid
access
note)

(defun marshall-annotation (annote stream)
(let ((access (annotation-access annote)))
(cond ((eql access ’private)
(marshall-object nil stream))
(t (marshall-object (annotation-bibid annote) stream)
(marshall-object (annotation-access annots) stream)
(marshall-object (anmotation-note annote) stream)))))

(defun unmarshall-annotation (stream)
(let. ((bibid (unmarshall-object stream)))
(if bibid
(make-annotation :bibid bibid
:access (unmarshall-object stream)
:note (unmarshall-object stream))
nil)))

(defmarshall ’annotation ’‘marshall-annotation ’'unmarshall-annotation)

Marshall-annotation simply checks the access field and invokes Avalon/Common Lisp ’s standard
marshalling function to package up the appropriate value(s). Unmarshall-annotation reverses the
process. The defmarshall call notifies Avalon/Common Lisp that marshall-annotation and
unmarshall-annotation should be used to encode and decode annotations.

Transmit supplies marshall and unmarshall methods for defining transmission functions for
CLOS insiaaces. While the defmarshall form could be used, the marshall methods provide a
mechanism more consistent with an object-oriented style. Methods cannot be used exclusively
because of the poor integration of CLOS classes with the standard Common Lisp type system.
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When a type is defined with deftype, no associated class is created.

Since CLOS instances are not transmissible by default, users must define methods for each
class they wish to transmit. In the simplest case, marshall uses previously defined transmission
functions to package up each of the instance’s slots. For example,

(detclass bib-entzy ()
((author :initform nil :initarg :author)
(title :initform nil :initarg :title)
(publisher :initform nil :initarg :publisher)
(year :initform nil :initaxg :year)))

(defmethod marshall ((entry bib-entry) stream)
(with-slots (author title publisher year) emtry
(marshall-ocbject ’bib-entry stream)
(marshall-object author stream)
(marshall-object title stream)
(marshall-object publisher stream)
(marshall-object year stream)))

(defmethod unmarshall ((code (eql ’'bib-entry)) stream)
(let* ((anthor (unmarshall-object stream))
(title (unmarshall-object stream))
(publisher (unmarshall-object stream))
(year (unmarshall-object stream)))
(make-instance ’bib-entry :author author :title title
:publisher publisher :year year)))

Note that the first item marshall packages up, the symbol bib-entry, must match the parameter
specializer of unmarshall’s first argament, (eql ’bib-entry). Like structures, classes have asso-
ciated methods that operate on them. The programmer must ensure that all relevant defclasses
and defmethods are loaded on each evaluator that operates on instances of the class.

5.3. Exported Forms

The transmit package provides two mechanisms for defining new transmission functions, defmarshall
and paired marshall and unmarshall methods.

transait:defmarshall type marshall-fn unmarshall-fn [Macro]

This macro defines how objects satisfying the type specifier, type, are to be transmitted.
marshall-fn names a function which takes two arguments, an object and a stream, and appends an
encoded representation of the object to the stream. Unmarshall-fn reverses the process. It takes
a single argument, stream, from which it reads the encoded representation. This representation is

decoded and an object is built and returned.

Defmarshall adds the new definition to a partially ordered list of user-defined transmission
functions and returns this updated list. A continuable error is signaled if type already has a

marshall definition.
10
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When an object is transmitted, the most specific (as determined by subtypep), available mar-
shall function is called to do the encoding. Subtypep cannot always determine the relationship
between two types, particularly when a type specifier contains a satisfies clause. Defmarshall issues
the warning:

Warning: Uncertain about precedence ordering between (Iype! and Iypel.

if it cannot definitively order the marshall functions. The programmer should check that typel
and type?2 are disjoint. There is currently no mechanism for supplying hints to defmarshall as to
how to resolve ambiguous type relationships. In the worst case, the programmer must sequence his
defmarshall calls carefully, but this scenario should not arise.

When defining a new transmission function, it may be helpful to use existing representations
for some components of the type. The following functions are used for this purpose.

transmit:marshall-cbject object stream [Function)

This function appends a transmissible representation of object to streamn. The partially ordered
list of user-defined marshall functions is searched first. If no match is found, (by applying the typep
predicate to object and the user-provided type specifiers) one of Avalon/Common Lisp’s default
functions is called. Sharing is preserved within the transmitted object. An error is signaled if no
transmissible representation exists.

transmit:unmarshall-object stream [Function)

Stream contains a representation constructed by a call to marshall-object. This function
creates and returns a new object built from this representation.

transmit:lookup-marshall-def type [Function]

This function returns a list containing the names of the user-defined marshall and unmarshail
functions for type. Wil is returned if no definition is found.

transmit:delete-marshall-def fype [Function]

This function removes the marshall definition for type and returns the new list of user-defined
transmission functions. An error is signaled if no definition is found for type.

An alternate mechanism is provided for defining transmission functions for instances of user
defined classes. The programmer provides a pair of methods for the class that satisfy the following
definitions.

transait:marshall instance stream [Method)

This method appends two items to stream, a code and a transmissible version of instance. The
code controls which unmarshall method is dispatched to on the remote evaluator.

11
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transait:unmarshall code stream (Method]

This method builds and returns a new CLOS instance from the representation in stream.

8. Persistence

Avalon/Common Lisp supports persistence through declarations of persistent bindings. Since it
makes sense to access recoverable ob jects only when executing a transaction, we also provide control
primitives to begin, commit and abort transactions (Section 7). We begin by showing how these
features might be used by our bibliography database server.

8.1. Example Uses of Extensions
We start by making the database’s binding persistent and initializing it:

(defpersistent $bib-database$ (make-persistent (empty-set)))

Make-persistent creates a recoverable object; defpersistent defines $bib-database$ as a bind-
ing to be recoverable, and creates a binding between $bib-database$ and the recoverable empty
set. (By convention, we use the “$” characters to distinguish those symbols used for persistent
bindings from those used for volatile ones.)

We use transactions for standard database operations such as adding, modifying, and deleting
entries. Consider the function for adding a bibliography entry:

(defun add-bib-eatry (entry)
(vith-transaction
(i (valid-bib-entry-p entry)
(adjoin $bib-database$ (make-persistent entry))
(abort-transaction ‘invalid-bib-emntry))))

If the entry is valid, i.e., well-formed and not already in the database, then we make the volatile
value of the entry argument persistent and add it to the database. Otherwise, we abort the
transaction signaling the abort condition invalid-bib-entry. Since the update is done within a
transaction, if a crash occurs during the update, the state of the bibliography database will be as
if the update never occurred; Camelot’s recovery algorithm will guarantee the database is restored
to a previously saved consistent state.

The counterpart to make-persistent is make-volatile. Since an evaluator communicates with
a recoverable store, retrieving a persistent binding from it gives us a handle on a recoverable ob ject.
Upon retrieval, we are free to continue to use the object as a recoverable object until we need to
either call a standard Common Lisp function or transmit the object back to the local evaluator.
Thus as a server writer, we have some latitude as to when we make the make-volatile call. For

12
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rec-eq rec-null  rec-list rec-elt

rec-eql rec-car  rec-nth rec-length

rec-equal rec-cdr  rec-svref  rec-symbol-name
rec-equalp rec-cons rec-vector rec-symbol-package-name

Table 2: “Recoverable” Versions of Standard Lisp Functions

fixnum symbol simple-string
single-float  list simple-vector
double-float structure

Table 3: Recoverable Types

examplie, both print-bib-entrys below have the same eventual effect:

(defun print-bib~entrys ()
(set~mapc #’(lambda (set-entry)
(print-bib-entry (make-volatile set-entry))) $bib-databases$))

(defun print-bib-entrys ()
(set-mapc #’print-bib-entry (make-volatile $bib-database$)))

In the first version, set-mapc operates on a persistent set (and uses rec-car, rec-cdr, etc. to tra-
verse the $bib-database$). In the second, set-mapc operates on a volatile ob ject. Make-persistent
and make-volatile are each idempotent and are inverses of each other.

The rstore package exports “recoverable” versions of some standard Lisp functions (see Ta-
ble 2). These functions operate on objects retrieved from recoverable store, rather than normal
non-recoverable Lisp objects.

Table 3 lists those Common Lisp built-in types which currently have recoverable versions.
Structures must be defined as recoverable if persistent instances are to be created. This is ac-
complished by using an extended version of the defstruct macro.

In the example below, we include the recoverable option in our structure definition. indicating
that both volatile and recoverable instances may be created. Defstruct generates two constructor
functions, make-book-entry and make-recoverable-book-entry that create volatile and recov-
erable instances respectively, and supplies accessor functions and setf methods that work on both
instance types.

13
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The second expression builds a recoverable instance, while the third constructs a recoverable
instance from a volatile one. The last expression simply updates the value of entry’s publisher
slot.

(defstruct (book-entry :recoverable)
(author nil)
(title nil)
(publisher nil)
(year nil))

(make-recoverable-book-entry
:author “H. Abelson and G.J. Sussman”
:title "Structure and Interpretation of Computer Programs"
:publisher "MIT Press"
:year 1988)

(make-persistent
(make—-book-entry
:author “H. Abelson and G.J. Sussman”
:title "Structure and Interpretation of Computer Programs"
:publisher "MIT Press"
:year 1986))

(set? (book-entry-publisher eatry)
{make-persistent "Springer Verlag"))

8.2. Exported Forms

The rstora package exports forms to define persistent bindings and construct and access persistent
objects while the trans package provides transaction support (Section 7).

rstore:defpersistent variable [initial-value [documentation]] (Macro]

This form is similar to the defvar form, except that any binding to variable is recoverable, i.e.,
survives crashes and supports failure atomicity. If given, initial-value is assigned to variable, as
long as variable has not previously been bound. Initial-value must evaluate to a recoverable object
and is only evaluated if it is used to initialize the binding.

All subsequent setq operations to variable will change the binding atomically; setq operations
to persistent variables can be aborted if evaluated within a transaction.

rstore:make-persistent object [Function]
rstore:make-volatile object [ Function]

These functions create a persistent (volatile) representation of object. If object is already per-
sistent (volatile), it is returned as the resuit.
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rstore:defstruct name-and-options [doc-string] {slot-description} [Macro]

This macro extends the standard defstruct macro to include definitions of recoverable struc-
tures. A new option, recoverable, indicates that recoverable instances may be created. The
standard constructor function, make-name, builds volatile instances; a new constructor function,
make-recoverable-name builds recoverable ones. Accessor functions and setf methods may be

applied to both volatile and recoverable instances.

7. Failure Atomicity

The trans package supplies forms for beginning, committing and aborting transactions. Placing
the transaction forms in a separate package permits evaluators without recoverable stores to group
sets of server operations into atomic actions. Sample uses are given in Section 6.1.

7.1. Exported Forms

The exported forms include:

trans:with-transaction body [Macro]
trans:vith-top-level-transaction body [Macro)

Both forms initiate a new transaction and evaluate dody. With-transaction, if evaluated
dynamically within another transaction, will begin a nested transaction; otherwise it starts a top-
level transaction. With-top-lavel-transaction alwaysinitiates a new top-level transaction. Both
forms return a multiple value consisting of a status signifying whether or not the transaction
committed, and the result of the last expression in body.

Normal evaluation of either form results in a committed transaction. Exceptional exits from the
body (via catch/throw and local exits) result in the transaction aborting. Transactions can also
be explicitly aborted via use of abort-transaction.

trans:abort-transaction retval toptional top-level (Macro]

This form aborts the currently executing transaction. If the optional argument is nil (the de-
fault), the innermost dynamically nested transaction is aborted and the value of retvalis returned as
the status in the multiple- value result of with-transaction. Otherwise, the current (dynamically
scoped) top-level transaction is aborted.

8. Implementation Status

Several features described in Clamen et al., 1] are not implemented. No callback support (via
the local and *local-evaluator* forms) is provided. Side effects on objects contained in the
transmitted (lexical) environment are not propagated across evaluator boundaries. Only minimal
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facilities for registering and locating evaluators are available. No mechanism exists for locating
an evaluator by specifying a set of attributes it must possess and no make-evaluator function is
provided. Existing evaluators can be found, but remote evaluators cannot be created automatically.

Currently, a complete copy of an object, that is, its transitive closure, is transmitted. Partial
transmission of large objects or transmission of partially evaluated objects as described in [1] is
not supported. One version of the bibliography application uses its own marshalling functions to
provide partial transmission of highly networked, readable objects. It transmits an object’s root
and its descendants up to n-levels deep.
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A Running Avalon/Common Lisp at CMU

Al. Environment

Avalon/Common Lisp runs on IBM RT’s and is impiemented on top of CMU Common Lisp and
Camelot. A Lisp process’ recoverable storage is managed by a Camelot data server, hereafter called
the Lisp recoverable object or lrec server [4].

A2. Paths

The following lines should be added to your .login file.

setpath -ib /usr/cs /afs/cs/project/avalon-1/cam.beta
setpath PATH -i /afs/cs/project/avalon-1/acl/ky/cam/nca_tools
setenv LREC.SERVER “/afs/cs/project/avalon-1/acl/stable/cam/bin/lrec"

The first command adds the Camelot directories to your path, the second adds a directory contain-
ing tools for automatically starting the Irec server and shutting down Camelot. The $LREC_SERVER
environment variable specifies the complete pathname of the Irec server to be used.

A3. Starting the Lrec Server

Camelot must be started first. If you want to start with a clean world, include the -init switch in
the command line. Camelot will then ask whether the logger and paging areas should be initialized.
Answering yes to both questions clears the old data from the system. Otherwise, Camelot will
restart all servers that were running the last time it went down. In the sequences that follow. user
input is shown in italics.

% camelot -init
log: Initialize the Logger? (yes or mo): [no] y
disk: Initialize the Paging area? (yes or no): [yes]

Sending output to /usr/camelot/log/camelot.out.

4
Camelot release 0.99(75) [beta] initializing.
Camelot compiled Thu Nov 16 13:50:47 1989 on KY.AVALON.CS.CMU.EDU.

Once Camelot is running, the Irec server can be started.

% start_lrec

server: 2 owner: admin auto-restart: no

segment: 2 quota: 10 chunks

cmdline: /afs/cs/project/avalon-1/acl/stable/cam/bin/lrec
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To shut down both Camelot and the lrec server, simply enter

% cam_shutdoun

A4. Loading Avalon/Common Lisp

Avalon/Common Lisp uses the Ergo Box facility to manage its load and compile time file depen-
dencies. From a running Lisp, enter the following:

(load "/afs/cs/project/avalon-1i/acl/stable/adm/acl-init")

This loads the necessary pieces of the box facility as well as the box definitions for the Avalon/Common Lisp
components. You are now ready to load and use whichever pieces of Avalon/Common Lisp you
need.

In each of the following, include the boxload forms in the file that loads the application and
the use-package forms in the application code.

To use remote evaluation:

(box:boxload "remote-eval®)
(use~package ’'remote-eval)

To define your own transmission functions:

(box:boxload "transmit")
(use-package ’'transmit)

To use transactions:

Start Camelot and then enter these forms.

(box:boxload "trans")
(use-package ’trans)

To use both remote evaluation and transactions:

This combination is most often used by client evaluators. The remote-eval+trans box simply
loads the remote-eval and trans boxes plus a bit of glue. Start Camelot before executing the
following:

(box:boxload “remote-eval+trans")
(use-package ’'remote-eval)
(use-package ’trans)
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To use the recoverable store:

Start Camelot and the lrec server and then execute the following:
(box:boxload "rstore")
(shadow ’(setq defstruct))

(shadowing-import ’(rstore:setq rstore:defstruct))
(use-package ’‘ratore)

To use everything:

Start Camelot and the Irec server and then enter:

(box:boxload "avalon")

(shadow ’(setq defstruct))

(shadowing-import ’(avalon:setq avalon:dafstruct))
(use-package ’avalon)

This is equivalent to loading both the remote-eval+trans and rstore boxes.

AS5. Example Programs

Directory /afa/cs/project/avalon-1/acl/stable/examples contains several small example pro-
grams. Each example is located in a separate subdirectory that includes a README file containing
instructions for executing the program.
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