
DTIC
FINAL REPORT D I
Contract # N00014-88-K-0641 ELECTE

APRI 13 1-2,

AD-A248 435

Type Evolution and Instance Adaptation*

Stewart M. Clament
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213-3890

U.S.A.

March 2, 1992

Abstract

Schema evolution support is an important facility for object-oriented database
(OODB) systems. While existing OODB systems provide for limited forms of
evolution, including modification to the database schema and reorganization of
affected instances, we find their support insufficient. Specific deficiencies are 1)
the lack of compatibility support for old applications, and 2) the lack of ability to
install arbitrary changes upon the schema and database.

This paper examines the limitations of existing schemes, and offers a more gen-
eral framework for specifying and reasonipg about the evolution of class definitions
and the adaptation of existing, persistent instances to those new definitions.

Keywords: Schema evolution, ,oje_, orien-.ed databases, class versioning,
instance adaptation, compatibility

'This research was sponsored in part by the Avionics Lab, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Porce, Wright-Patterson AFB, OH 45433-6513 under
Contract F33615-90-C-1465, Arpa Order No. 7597; and by the Office of Naval Research under Contract
N00014-88-K-0641. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

tAuthor can be reached via email at clamen(adcs.cmu.edu, via phone at +1 (4.12) 268-2145, and via
facsimile at +1 (412) 681-5739.

.......... 92-07359
9 2 3 23 110Ill iiiIlIIU lll

Introduction

Database systems exist to support the long-term persistence of data. It is natural to
expect that, over time, needs will change and that those changes will necessitate a
modification to the interface for the persistent data. In an object-oriented database
(O0DD) system, such, a situation would motivate an evolution of the database schema.
-Fotrthis reason, support for schema evolution is a required facility in any serious
00DB system.

An OODB database schema consists of class definitions and an inheritance hierarchy.
A class is a ,uple of methods and attributes. The database is populated by instances of
those classes, with values for each of the attributes. The schema describes the interface
between the set of appUcation programs and the persisteat repository of objects. When
the schema changes so does the interface, possibly leaving incompatible elements on both
sides of the barrier. We are int-rested in the problem of managing existing database
object- .that we call the instance adaptation problem. This paper examines the
limitis i of existing adaptation schemes and offers a more general framework for
specifying and reasoning about the evolution of class definitions and the adaptation of
e:dIsting, persistent instances to those new definitions.

Two general instance adaptation strategies have been identified and implemented
by various OODB systems. The first strategy, conversion, restructures the affected
instances to conform to the representation of their modified classes. Conversion is
supported by the ORION[2, 13] and GemS""one[5] systems.

The primary shortcoming of the corversion approach is its lack of support for pro-
gram compatibility. By discarding the former schema, application programs that
formerly interacted with the database thr,)ugh the changed parts of the interface are
now obsolete. This is an especially significant problem when modification (or even
recompilation) of the application program is impossible (e.g., commercial software).

Rather than redefining the ;chema and converting the instances, the second strategy,
emulation, is based on a class versioning scheme. Each class evolution defines a
new version of the class, and old class definitions persist indefinitely. Instances and
applications are associated with a particular version of a class, and the runtime system
is responsible for simulating the semantics of the new interface on top of instances
of the old, or vice versa. Since the former schema is not discarded but retained as
an alternate interface, the emulation scheme provides program compatibility. Such a Aaw° -. F.r
facility has been developed for the Encore system. [18] NIS GRA "

Encore pays for this additional functionality with a loss in runtime efficiency. Under
a conversion scheme, the cost of the evolution is a function of the number of affected
instances. Once converted, an old instance can be referenced at the sanme cost is a

I Di'stribut "L W/

Avallabiaty Cod,

Statement A per telecon Dit AII and/r
Dr. Andre Van Tilborg ONR/Code 1133 Spolal

Arlington, VA 22217-5000

NWW 4/10/92

newly-created one. However, the cost of emulation is pald whenever there is a version
conflict between the application and a referenced instance.

We feel however that program compatibility among schema versions is a very (le-
sirable feature. It can be of great utility in situations where the database is shared by
a variety of applications, as in Computer-Aided Design or Office Automation Systems,
when the database acts as a common repository for information, accessed by a variety
of applications.

Our scheme supports program compatibility by maintaining multiple versions of the
database scheme. Old programs can continue to interact with the database (on both
new instances and old) using the former interface. Rather than emulating the evolved
semantics all at runtime, efficiency is gained by representing each object as an instance
of each version of its class. In this manner, our system affects a compromise between
the functionality of emulation and the efficiency of conversion.

Another failing common to the conversion-based evolution facilities is the limita-
tions placed on the variety of schema evolutions that can be performed. Most of the
existing systems restrict admissible evolutions to a predefined list of schema1 change
operations (e.g., adding/deleting an attribute or method from a class, altering a class's
inheritance list). The length of this list might vary from system to system, but they are
all similar in the way they support change: The set of changes that can be performed
are those which require either a fixed conversion of existing instances or no instance
conversion at all. Unfortunately, change is inherently unpredictable. A desired evolu-
tion is sometimes revolutionary and under such circumstances, these systems prevent
the database programmer from performing the desired changes.

We are interested in supporting evolution in a liberal rather than a conservative
fashion; rather than the system offering a list of possible evolutions to the prograimer,
the programmer should be able to specify arbitrary e.olutions and rely oil the system
for assistance and verification. Change is a natural occurrence in any engineering task,
and engineering-support systems should help rather than hinder when an evolution is
required.

Encore's emulation facility restricts the breadth of class evolution that can be in-
stalled, but the restrictions are of a different form. Since instances, once created. cannot
change their ciass-verion, evolutions that require additional storage to l)e a ssociated
with each instance cannot l)e defined. (cf4, p.5 for details.)

'Throughout this paper, schema iefers to the complete (oilcctioI of labs detinitions and ko iu,,ei,

to one a particular type.

2

newly-created one. However, the cost of emulation is paid whenever there is a version
conflict between the application and a referenced instance.

We feel however that program compatibility among schema versions is a very de-
sirable feature. It can be of great utility in situations where the database is shared by
a variety of applications, as in Computer-Aided Design or Office Automation Systems,
when the database acts as a common repository for information, accessed by a variety
of applications.

Our scheme supports program compatibility by maintaining multiple versions of the
database scheme. Old programs can continue to interact with the database (on both
new instances and old) using the former interface. Rather than emulating the evolved
semantics all at runtime, efficiency is gained by representing each object as an instance
of each version of its class. In this manner, our system affects a compromise between
the functionality of emulation and the efficiency of conversion.

Another failing common to the conversion-based evolution facilities is the limita-
tions placed on the variety of schema evolutions that can be performed. Most of the
existing systems restrict admissible evolutions to a predefined list of schema1 change
operations (e~g., adding/deleting an attribute or method from a class, altering a class's
inheritance list). The length of this list might vary from system to system, but they are
all similar in the way they support change: The set of changes that can be performed
are those which require either a fixed conversion of existing instances or no instance
conversion at all. Unfortunately, change is inherently unpredictable. A desired evolu-
tion is sometimes revolutionary and under such circumstances, these systems prevent
the database programmer from performing the desired changes.

We are interested in supporting evolution in a liberal rather than a conservative
fashion; rather than the system offering a list of possible evolutions to the progranmmer,
the programmer should be able to specify arbitrary e.olutions and rely on the sy.stem
for assistance and verification. Change is a natural occurrence in any engineering tahk,
and engineering-supl)ort systems should help rather than hinder when an evolution is
required.

Encore's emulation facility restricts the breadth of class evolution that can he in
stalled, but the restrictions are of a different form. Since instances, once created. cannot
change their ciass-version, evolutions that require additional storage to be ,.s.socited
with each instance cannot be define(. (cf.. p.5 for details.)

1'luoughout this paI)per, ic ena ieders to the conlip te (hmv lttion of tlas delinitiun and , l,, idl

to one a particular type.

2

In the remainder of this paper, we present a model for specifying schema evolutions
and instance adaptation strategies. Our system supports program compatibility, accepts
a larger variety of evolutions than existing systems, and supports a variety of options
to make it more efficient than the pure emulation facility of Encore.

31

4. **. g. j.~.. . ' 5 *9 5 . S *~ q'. 9 fl t~*a 6* .4 5 5 -
& S 5 5 5*5 * Sn I-

I

Related work

Before describing our system in detail, we present a more detailed description of im-
portant existing systems.

ORION

The most ambitious and effective example of a st.hema evolution support facility is
that provided by ORION [2, 13, 14]. ORION provides a taxonomy of schema evolution
operations. It also defines a database model in the form of invariants that must be
preserved across any valid evolution operation and a set of rules that instruct the system
how best to maintain those invariants. Under this model, a schema designer specifies an
evolution in terms of the taxonomy, the system verifies the evolution by determining if
it is consistent with the invariants and then adjusts the schema and database according
to the appropriate rides.

ORION can only perform those evolutions for which it has a rule defined. The set
of rules is fixed. For example, changes to the domain of an attribute of a class are
restricted to generalizations of that domain. This restriction exists because there is
no facility in ORION's evolution language for defining a procedure that to be used by
the system to convert old instance values. Generalizations of the attribute domain are
allowed since this evolution does not require existing instances to be modified.

In ORION, evolutions are performed on a unique schema. Instances are converted
under a lazy conversion scheme; that is, they are not converted when the evolution is
declared, but instead converted when they are referenced. Under this scheme, there is no
compatibility support for old programs and, depending on the evolution, information
contained in the instances might be lost at conversion time. (e.g., Deletion of an
attribute.)

GemStone

I ike ORION. GemStone supports a set of evolution operations. It is distinguished by
its employment of an eager conversion scheme, converting affected instances when
the evolution is specified. This scheme has the advantage that no runtinie support
is required or expense incurred; once installed, the restructuring of the database is
complete. This is in contrast to lazy conversion, which requires the runtime system to
check for the existence of still-unconverted instances indefinitely. On the other hand,
eager conversion makes evolutions very time-consuming to install.

Encore

Encore implements emulation via user-defined exception handling routines. Whenever
there is a version conflict between the program and the referenced instance, the routine
associated with that method or instance (and those pair of versions) is called. The
routine is expected to make the method's invocation conform to the expectations of
the instance or make the return value from the method invocation consistent with the
expectations of the calling program, whichever is appropriate. It is known, however,
that certain evolutions cannot be modeled adequately under this scheme. The problem
stems from the fact that each object can only instantiate a single version. If an evolution
includes the addition (subtraction) of information (e.g., the addition (deletion) of an
attribute), there is no place for older (newer) instances to store an associated value., The
best a programmer could do in such a system is associate a default attribute value for
all instances of older (newer) type-versions by installing an exception handling routine
to return the value when an application attempts to reference that attribute from an
old (new) instance. [18]

The Common Lisp Object System

CLOS[19, 12], while not an OODB system, provides extended support for class evolu-
tion nonetheless. As Common Lisp system development is performed in an interactive
context, class redefinition is a frequent occurrence. Rather than discard all existing
instances, CLOS converts them according to a policy under the control of the user.
The default policy is to reinitialize attribute values that no longer correspond to the at-
tribute domain, and to delete attribute slots that are no longer represented in the Jass
definition. Users can override this policy by defining their own method that is called
automatically by the system. This method is passed as arguments the old aud new
slot values, so relationships between deleted and added attributes can be enforced.[19,
p.859]

Adaptation and Extension of (Relational) Views

Bertino[4] presents a schema evolution language which is an 00)B adaptation of the
view mechanisn found in many relational database systems. 11er primary innovation.s
are the support of inheritance and obfrct ID. (OlDs) for view instances, two important
characteristics of OODB models that are not present in the relational mo, iel. View
instances with Ol)s are physically realized in the database, eiabliig the view nieclia-
nism to supl)port evolitions that specify the addition of an attribtie. .s (envis.ioned lb)
Zdonik[:) 1]. However, Bertino's scheme hfociuses on ho ('voltiti.th ,fec(t I he chemia. It

6i

is not concerned explicitly with the effects upon the instances nor with compatibility
issues.

CLOSQL

Monk's CLOSQL[16] implements an class versioning scheme, but employs a conversion
adaptation strategy. Instances are converted when there is a version conflict, but unlike
ORION and GemStone, CLOSQL can convert instances to older versions of the class if
necessary.

Lerner and OTGen

Lerner's OTGen design[15] addresses the problem of complex evolutions requiring ma-
jor structural conversions of the database (e.g., information moving between classes,
sharing of data using pointers) using a special-purpose language to specify instance
conversion procedures. As it was developed in an integrated database context, where
the entire application set is recompiled when schema changes, versioning and compati-
bility were not considered.

.t.*~?%qt r-W*$&..?A -- ~ I * '. *~i*~ ~W ~S~Y & . A..eC."t. .4 Pt
~~6~a

S

Conversion and Compatibility

Schema Modification vs. Class Versioning

The schema evolution support provided by such systems as ORION and GemStone is
restricted to what Kim calls schema modification, that is, the direct modification of a
single logical schema. [14] When only one database schema exists, it is appropriate for
.the system to convert all existing instances. From a database consistency perspective,
it must appear2 that all instances have been converted when the evolution operation is
applied. In fact, we would claim that it is the only sensible approach.

As has already been stated, however, conversion might render the instances inac-
cessible to applications that had previously referenced them. The adaptation strategy
converts the instances but does not alter procedural references. Thus, application pro-
grams written and compiled under the old schema may now be obsolete, unable to access
either the old, now converted, instances, or the ones created under the new schema.

A reasonable direction of research here would be to provide some automated mech-
anisms to assist with program conversion; it is an active line of research. [11, 1] In
the OODB context, some work has been conducted at providing support to alert the
programmer about the procedural dependencies of their evolution operation. [8] But
this is not the only possible solution. Rather than adjust programs to conform to the
data, it would seem easier to adjust the data to conform to the existing programs.
Also, it is not always possible to alter, or even recompile, programs (e.g., commercial
software). This lack of compatibility support is our primary motivation for adopting a
class versioning design for evolution management and support.

Under a class versioning scheme, multiple interfaces to a class, one per version, are
defined. When compiled, application prograias are associated with a single version of
each of the classes it refers to; a schema configuration, if you will. With the database
populated with instances of multiple versions of a class, the runtine system must resolve
discrepancie6 between the version expected by the application and that of the referenced
instance.

Objects Instantiating Multiple Versions

Under the original Encore scheme[18], instances never change their type-version. Aware
of the restrictions this causes (cf., previous section), Zdonik proposed a scheme whereby
an existing instance can be "wrapped" with extra storage and a new interface, enabling
it to be a full-fledged irstance of a new type-version. [21] While stil! able to be accessed
through its original interface/version, the wrapped object can also be manipulated

2Whether the instances are converted eagerly or lazily becomes au implementation issue.

9

new attributes orignal aribues

Figure 1: Zdonik's Wrapping Scheme: as in the Encore lesign, multiple
interfaces to the class are preserved. Here, extra space is allo.ated for the
attributes added as a result of the evolution, and applications can access
the instance through either the old or new interfaces.

through the new interface. Thus, if tile class evolution specifies the addition of al
attribute, the wrapping mechanism could allocate storage for the new slot in existing
instances, without denying backward compatibility. (cf., Figure 1)

Our proposed scheme is a generalization of this approach. Much like each .class
has multiple versions, each instance is composed of multiple facets. Theoretically,
these multifaceted instances encapsulate the state of the instance for all the defined
interfaces (versions). The representation of these instance resembles a disjoint union of
the representation of each of the versions, and it is useful to consider the representation
as exactly that. As will be explained later, however, the process of actually allocating
and initializing the facets "can be deferred until needed.

As an example, consider a class Undergraduate, originally including attributes Name,
Program, and Class, and a new version of the class with the atributes Name, Id Number,
Advisor, and Class Year. (Class is one of {Freshman, Sophomore, Junior, Senior}, while
Class Year is the year the student is expected to graJuate.) Program is the degree
program in which the student is enrolled, and Advisor is his academic advisor. While
instances of Undergraduate in the database will contain all seven distinct attribute slots,
any particular application will be restricted to one version alnd thus only have explicit
access to one facet.

In reasoning about the relationship between any two versions 3 of a class, it is useful
to divide the attributes into these four groups:

Shared: when an attribute is common 4 to both versions,

3 For explanatory purposes, imagine that we are describing a -labs conbisting of only two trsoiunb,

and where the database is populated by instances of both.
'Comrnmo in the semantic sense, not just having the hame name or type.

to

Name - N- shared attribute
6 Id Number

Degree Pgm - v derived attribute

Cass 0-- dependent attribute

Figure 2: Disjoint.union representation of the versioned class Undergraduate

Independent: when an attribute's value cannot be affected by any modifications to
the attribute values in the other facet.

Derived: when an attribute's value can be derived directly from the values of the
attributes in the other facet,

Dependent: when an attribute's value is affected by changes in the values of attributes
in the other facet, but cannot be computed solely from those values.

In our example, the Name attribute is shared by the versions,,while Id Number is
independent. Class and Class Year are both derived attributes, since, given the current
date, it is possible to derive one from the other. Advisor is a dependent attribute,
since a change in Program might necessitate a change in advisor. Likewise, Program
is a dependent attribute, since a change in advisor might imply t!-- the student has
switched degree programs. (cf., Figure 2)

Zdonik et a/. [18, 21] almost always cite evolutions involving independent or derived
attributes in their examples. The original Encore emulation scheme is adequate for
supporting evolutions that introduce shared and derived attributes. Zdonik'b wrapping
proposal addresses the problems associated with independent attributes. Our proposed
scheme, however, will provide a mechanism for managing class evolutions that include
dependent attributes. (See Table (p.11) for a comparison of the evolution capabilities
of various systems.)

Classes, and thus cla.s-versions, are made up of methods as well as attributes. Most
object-oriented data models allow for the sl)ecification of private attributes that call
only be manipulated by the methods of the class. With respect to class evolution, the
addition, deletion, or alteration of a method that does not change the bemantics of the
component instances can only affect the database schema, and thus no adaptation of
existing instances is required. For such changes, existing .chema e~olutiun techmwlogie.
perform adequately.

11

A ode A A .I. A

c -- --- -- cj - " ' -.
LO=D sum

(a) (b)

Figure 3: Some simple evolutions: (a) illustrates the relationships following
the addition of an independent attribute, (b) shows the addition of a derived
attribute.

Interacting with Multifaceted Instances (Example)

Consider an evolution specification language which can categorize attributes. This is
accomplished by associating extra information with each attribute.

Shared attributes have the name of the corresponding attribute from another ver-
sion,

Derived attributes have a function for determining its value in terms of the values
of the attributes in the other version, and

Dependent attributes have a function for determining its value in terms of the

values of the attributes in both versions (i.e., the entire object), and

Independent attributes have nothing extra at all.

Representing the class instances as a disjoint union of the version facets, as described
earlier, consistency between the facets can be maintained according to the following
procedure:

Whenever an attribute value of a facet is modified, those attributes in the
other facet that depend on it must be updated. FBor shared attributes. the
new value is copied; lbr dependent and derived attributes, the dependenc'
functions are applied and the result written into the (attribute) slot in the
other facet.

12

Description of Evolution ORION Encore Bertino[4] Us
Add/delete/rename a method V/ V V V
Adan attribute x × V V
Delete an attribute V V V V
Generalize the domain of an attribute V V a V
Change (arbitrarily) the domain of an attribute x V V1 V
Telescoping' V x / ×C

Change supertypes V ?/ X

Table 1: Some evolutions and which systems support them.

'This evolution cannot be define directly, but can be implementing by replacing the attribute in the
new version with generic methods for reading and writing./3]

bDefinition appears in conclusions

'cf., (p.16) for clarification.

The remainder of this section consists of an example.

Consider a multifaceted instance of the Undergraduate versioned class, rep-
resented graphically as follows:

John Smith
John Smith

123.45.678
Cetmp Sci & Eng

Dr. Mary Jones

Sophomore
1994

Imagine that John Smith returns to university after.his first summer vaca-
tion and wishes to change to the undergraduate Math program. Also, he
had taken some summer classes that have given him enough credits to grad-
uate a year early. The change to his data record are recorded through an
application program employing the firit version of the Undergraduate class.
The system must now propagate those modihcations to the second facet.

The attri!tes Class and Class Year can be derived in terms of each of other.
A reasonable derivation function for Class Year is:

13

cy + 3 if Year = Freshman

ClassYear + 2 if Year = Sophomore
cy + I if Year = Junior
cy if Year = senior

Where cy is the current year. The Advisor attribute is dependent upon the
value of the Program attribute, but not completely derivable. A reasonable
dependency function is:

Advisor= Advisor if Advisor E Program faculty
A nil otherwise

Since there is not enough information to derive it, the student's advisor will
have to be filled in later.

Applying these functions in concert with the desired changes to John Smith's
record, the multifaceted instance becomes:

John Smith
John Smith

123.45.678
Mathniatcs

JuniorNI
1993

Representing Multifaceted Instances

In the previous section we descibed the semantics of our schema versioning scheme. In
this section we address the issue of how to realize these multifaceted instances physically
in the database.

Our basis for consideration is a system which implements the design as (lescribed:
class evolutions are defined by creating a new version of the class; new facets (cor-
responding to the new versior,) are associated with every im ance of the class and
initialized accotding to a user-defined procedure. Each application program intera('ts
with the instance. through a single (interface) version and modificationh to attribute

14

slots on the "visible" facet are immediately propagated to the other facets, using a
mechami.s, simiihr to the trigger facility found in many relational and Al database
systems [20, 10].

The most obvious target for improvement in this scheme is how new facets are added.
The allocation and initialization of new facets for existing instances at evolution time
is subject to some of the same criticisms as eager conversion (cf., pA). Thus, it is
advantageous to defer the addition of the new facet as long as possible, i.e., until an
application program attempts to reference the new facet.

The strategy of deferring the actual maintenance of a dependency constraint until
its effect is actually required can be applied as well to the propagation of information
among the facets of an instance. Rather than update the attribute values of the other
facet(s) each time a facet attribute is modified, one need only bring a facet up-to-date
when there is an attempt to access it. This scheme can be supported by associating a
flag with .'each facet indicating whether the facet is up-to-date with respect to the most
recently modified facet. Read operations on facets with an unset flag are preceded by
a resynchronization operation, which performs any necessary updates and sets the flag.

This scheme reduces overall runtime expense, since the resynchronization step is not
performed in concert with every update operation, as was previously the case. However,
it does increase the potential cost of inexpensive read operations.

To this point, we hie been very liberal with our allocation of space for instance
representation. Although the lazy allocation of facets conserves some space in the short
run, the disjoint union model implies that every instance of a versioned class will have
a complete collection of facets. There are a few optimizations that could be performed
to reduce space requirements.

The first space-saving improvement entails having each set of shared attributes
occupy a single slot in the multifaceted version. A performance improvement might
also be realized here, since slot sharing reduces the expense and/or frequency of update
propagations. (cf., Figure 4 (p.14).)

Under certain circumstances, the slot associated with a derived attribute can be
recovered as well. If an inverse procedure to the derivation function is known to the
system, then the attribute can be implemented using the appropriate reader and writer
methods to simulate it. For many evolutions, the inverse procedure a)l)ear, as the
derivation function for the related attribute in the other facet. lhe Year and Class Year
attributes in our examl)le (p.8) are related in that way. (cf., Figure 5 (1.I-).)

From a runtime performance l)erspective, this space optimization reduces the ,,x-

pense of write operations while making read operations more costly. The blot allocated
for a derived attribute acts as a cache for its derivation function and. depending oil

15

F John-Smith

EComp Sci & Eng 123-45.678

Sophomor.] Dr. Mary Jones

1994

Figure 4: Multifaceted instance representation using common slot for
shared attributes

FJo-h SmithA- FJohn- Smith

Comp Sed g 123.45.678 CompSci&£ng 12345.678

Sophomore Dr. Mary Jones (" " wY.: Dr. Afary Jones

1994

(a) (b)

Figure 5: Multifaceted instance representation minimizing derived at-
tribute allocation. For the Undergraduate class, two minimizations exist.

the frequency of modifications to its depen(lent attributes in the other facet(s), its
maintenance might be more time-efficient.

Forcing an Adaptation Strategy

While an important feature in general, program compatibility is not always required
(e.g., a database with a single application program and a single user). In such situations
one should be able to improve performance by instructing the system to convert fully
the existing instances and discard (or perhaps archive) the old information. Further-
more, conversion an(l compatibility are not mutually exclusive. As long as an inverse
conveision procedure is known, one could convert and emulate the former versioi. This
might l)e .useful when you want to preserve coml)atibility, but expect that it xkill be
needed infreqimently enough that you are willing to pay the cost of emulation in those
instances. If it is the case that an applications then to access a distinct subset of the

16

instance collection, one could use a strategy that converts (on access) instances to the
version of the application. (This is the approach taken by Monk's CLOSQL system[J6].)

Sometimes, modification of the database or its schema is impossible. Databases
might be read-only for permission (e.g., remote database exported as a public service) or
licensing reasons (e.g., reference materials on CD-ROM). In such situationm, something
resembling Zdonik's wrapping scheme (cf., p.7) must be used, with the wrapper actually
residing in a separate database.

Inheritance

When a class is evolved, it may not only its direct instances, but the instances of its
subclasses as well. If we consider class instances as represented by slices, each slice
instantiating the superclass, then it is easy to see what would happen. The instance
adaptation scheme that applies to direct instances applies to the appropriate slices in
each of the subclass instances.

However, that does not explain how our system handles evolutions that affect the
inheritance graph of the schema. Changes to the inheritance list of a class (i.e., addition
or deletion of a superclass, or the reordering of the superclass list) can be viewed as
a compound evolution, incorporating many additions and deletions of attributes. The
mechanisms described for the addition or deletion of single attributes work similarly
here.

Support for evolutions that merge or Split existing classes into new classes is dis-
cussed in the Future Work section.

17

18

Conclusions and Future Work

In this paper, we have described a.specification model for schema evolution that has
the following features:

* Schema versioniig instead of modification to a single schema, go that program
compatibility ca, be supported, if desired.

* Compatibility support is provided at less runtime cost than the Eniore facility.
For each version of a class, each instance has a corre.,ponding facet. For attributes
which can be deriv, solely from attributes from other facets, this facility is like
a cache, sacrificing space for time. For attributes which are not reflected in the
representation of the versions, the facet provides space for the value to stored,
thereby preserving information that would be lost under a conversion scheme.

* A broader variety of evolutions are supported than in existing systems (ORION,
GemStone, Encore). However, not all evolutions, (e.g., telescoping (see below)
and the more complex reorganization evolutions of Lerner[15]), are currently pos-
sible. (See beloW)

* Fine tuning of the adaptation scheme is possible, by allowing the programmer to
decide how much duplication of information is present in each instance. If one
version is used very infrequently, the programmer can save space and time, by
emulating its interface instead.

The remainder of this section discusses topics and goals for ongoing and future
research.

Complex Evolutions involving Inheritance

There are some complex evolutions that we have not addressed: tele.,coping, and clash
splitting.

A telescoping evolition is one that collect. attributes from the component classeh
and installs them as attrvbut, s in the evolved class. (17] The problem our scheme
has with thes. evolutions is that the derivation function in such a cahe refers to other
instances whose value can change without the first instance being notified. In order
to supl)ort this type of evolution, the programmer miubt be able to force the attribute
to be derived each time it is reftrenced, ad a generic write method would need to be
supplied.

19

The problem associated with the act of splitting a class up is that it might involve
a splitting of the instance collection as well. We have yet to examine how this might
be accomplished in our model.

Version Configurations

A requirement that was not addressed at all in this paper is the ability to version groups
of classes. For evolutions affecting component classes, it might be convenient to be able
to collect a group of classes into a version. This will allow a class to specify the class-
versions of its attributes' domains. Such a facility might also assist in the support of
the aforementioned complex evolutions.

Programming an adaptation strategy

Our system as described has more versatility than ORION's facility because it supports
user-defined instance adaptation information. Consistent with our desire to aid the
schema designer, we would like to provide the ability to install user-defined adaptation
strategies based on disjoint union data model. For example, a database that must be
highly available during business hours could maintain a log of the instances touched
(luring the day and spend the idle overnight hours converting them.

20

References

[1] Arnold,;R. S. Tutorial on Software Restructuring. Institute of Electrical and
Electronic Engineers. IEEE Society Press, Washington, DC, 1986.

(2] Banerjee, J., Kim, W., Kim, tH.-J., and Korth, H1. Semantics and hnplementa-
tion of Schema Evolution in Object-Oriented Databases. in: Proceedings of the
SIGMOD International Conference on Management of Data, edited by
U. Dayal and I. Traiger. San Francisco, CA, 1987.

[3] Bertino, E. 1992. Personal Communication.

[4] Bertino, E. A View Mechanism for Object-Oriented Databases. in: Advances in
Database Technology - EDBT '92 International Conference on Extend-
ing Database Technology, edited by . Vienna, Austria, 1992. to appear.

[5] Bret, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams,
E. H., and Williams, M. The GemStone Data Management System. in: Object-
Oriented Concepts, Databases and Applications, edited by W. Kim and
F. H. Lochovsky. Addison-Wesley, Reading, MA, 1989.

[6] Casais, E. Managing Class Evolution in Object-Oriented Systems. in: Object
Management, edited by D. C. Tsichritzis. Universite de Geneve, Centre Univer-
sitaire d'Informatique, Geneva, 1990, pp. 133-195.

[7] Casais, E. Managing Evolution in Object Oriented Environments: AIn Algorithmic
Approach. Universitd de Gen~ve, Geneva, 1991.

[8] Delcourt, C. and Zicari, R. The Design of an Integrity Consistency Checker (ICQ)
for an Object Oriented Database System. in: Proccedings of the European
Conference on Object-Oriented Programming (ECOOP). Lecture Notes
in Computer Science, vol. 512, Springer-Verlag, Geneva, Switzerland. 1991. .1
more detailed version is available as [9].

[9] Delcourt, C. and Zicari, R. The Design of an Integrity Consistency Checker (ICQ
for an Object Oriented Database System. Dipartimento di Elettronica Technical
Report, no. 91.021, Politecnico di \,ilano, Milan, Italy, 1991. A short version of
this paper appears in the 1991 ECOOP proceedings.

[10] Giuse, D. KR: Constraint- Based Knowledge Ihpretntation. no. C,I U-CS-89-1 12.
Carnegie Mellon University School of Computer Science, Pittsburgh, PA. April
1989.

21

-7-

[11] Griswold, W. G. and Notkin, D. Program Restructuring to Aid Software Mainte-
nance. Technical Report, no. 90-08-05, Dept. of Computer Science and Engineering,
University of Washington, Seattle, WA 98195 USA, September 1990.

(12] Keene, S. E. Object-Oriented Programming in Common Lisp: A Pro-
grammer's Guide to CLOS. Addisun-Wesley, Reading, MA, 1989.

(13] Kim, W., Garza, J., Ballou, N., and Woelk, D. Architecture of the ORION next-
generation database system. IEEE Transactions on Knowledge and Data
Engineering, vol. 2 (1990), pp. 109-24.

[14] Kim, W. Introduction to Object-Oriented Databases. Computer Systems,
MIT Press, Cambridge, MA, 1990.

[15] Lerner, B. S. and Habermann, A. N. Beyond Schema Evolution to Database Reorga-
nization. in: Proceedings of the ACM Conference on Objected-Oriented
Programming: Systems, Languages and Applications (OOPSLA) and
Proccedings of the European Conference on Object-Oriented Program-
ming (ECOOP). Ottawa, Canada, 1990, pp. 67-76.

[16] Monk, S. and Sommerville, I. A Model for Versioning Classes in Object-Oriented
Databases. Internal Report, no. SE-91-07, Computing Department, Lancaster Uni-
versity, Lancaster, UK, July 1991.

[17] Motro, A. .Superviews: Virtual Integration of Multiple Databases. IEEE Trans-
actions on Software Engineering, vol. 13 (1987), pp. 785-98.

[18] Skarra, A. ff. and Zdonik, S. B. Type Evolution in an Object-Oriented Database.
MIT Press Series in Computer Systems, MIT Press, Cambridge, MA. 1987,
pp. 393-415. An early version ol' this paper appears in the OOPSLA '86 proceed.
ings.

[19] Steele, Jr., G. L. Common Lisp: The Language. Second Edition. Digital Press.
1990.

[20] Stonebraker, M. inplementalion of Integrity Constiints and Ic' os by Qwry
Modification. in: Proceedings of the SIGMOD International Conference
on Management of Data. San]ose, ('A, 1975.

[21] Zdonik, S. Object-Oriented "'pr l"volution. in: Advances in Database Pro-
gramming Languages. edited by F. Bancilhon and P. luneman. A('.1 l re..s.
New York, NY. 1990, pp. 277-288.

22

[22] Zicari, ft. A Framework for Schema Updates in an Object-Oriented Database Sys-
tent. in: Proceedings of the IEEE Data Engineering Conference. Japan,
1991. Short version of [23].

[23] Zicari, ft. A Framework for Schema Updates in an Object-Oriented Database Sys-
tem. in: Building an Object-Oriented Database System: The Story of
02. Morgan Kaufmann, 1991. Also available as Politecnico di Milano, Research
Report no. 90-025.

[24] Zicari, R. A Framework for 02 Schema Updates. Rapport Technique, no. 38-89,
GIP Altair, Rocquencourt, France, October 1989.

23

