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The diagonal forms are constructed for the translation operators for the Helmholtz equation
in three dimensions. While the operators themselves have a fairly complicated structure
(described somewhat incompletely by the classical addition theorems for the Bessel func-
tions), their diagonal forms turn out to be quite simple. These diagonal forms are realized
as generalized integrals, possess straightforward physical interpretations, and admit stable
numerical implementation. This paper uses the obtained analytical apparatus to construct
an algorithm for the rapid application to arbitrary vectors of matrices resulting from the
discretization of integral equations of the potential theory for the Helmholtz equation in
three dimensions. It is an extension to the three-dimensional case of the results of [13],
where a similar apparatus is developed in the two-dimensional case.
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Diagonal Forms of Translation Operators for the Helmholtz Equation

in Three Dimensions

1. Introduction

One of standard approaches to numerical treatment of boundary value problems for ellip-

tic partial differential equations (PDEs) calls for converting them into second kind integral

equations (SKIEs) with subsequent discretization of the latter via appropriate quadrature for-

mulae. Discretization of the resulting SKIEs usually leads to dense large-scale systems of

linear algebraic equations, which are in turn solved by means of some iterative technique, such

as Generalized Conjugate Residual algorithm. Most iterative schemes for the solution of linear

systems of this type require application of the matrix of the system to a sequence of recursively

generated vectors. Applying a dense matrix to a vector is an order n 2 procedure, where n is the

dimension of the matrix, which in this case is equal to the number of nodes in the discretization

of the domain of the integral equation. As a result, the whole process is at least of the order

n2, and for many large scale problems, this estimate is prohibitively large.

During the last several years, a group of algorithms has been introduced for the rapid ap-

plication to arbitrary vectors of matrices resulting from the discretization of integral equations

from several areas of applied mathematics. The schemes include the Fast Multipole Method for

the Laplace equation in two and three dimensions (see, for example, [7]), the fast Gauss trans-

form (see [9]), the Fast Laplace Transform (see [13, 161), and several other schemes. In all cases,

the resulting algorithms have asymptotic CPU time estimates of either 0(n) or 0(n log(n)),

and are a dramatic improvement over the classical ones for large-scale problems.

All such schemes axe based on one of two approaches.

1. The first approach utilizes the fact that the kernel of the integral operator to be applied

is smooth (away from the diagonal or some other small part of the matrix), and decomposes it

into some appropriately chosen set of functions (Chebychev polynomials in [13] and [2], wavelets

in [4], wavelet-like objects in [3], etc.). This approach is extremely general and easy to use,

since a single scheme is applicable to a wide class of operators.



2. The second approach is restricted to the cases when the integral operator has some special

analytical structure, and uses the corresponding special functions (multipole expansions for the

Laplace equation in [7], [8], Hermite polynomials in [9], Laguerre polynomials in [16], etc.

In this approach, a special-purpose algorithm has to be constructed for each narrow class of

kernels, and in each case the appropriate special functions and translation operators for them

(historically known as Addition Theorems) have to be available. However, once constructed,

such algorithms tend to be extremely efficient. In addition, there are several important sit-

uations where the first approach fails, but the second can be used (a typical example is the

n-body graviational problem with a highly non-uniform distribution of particles, as in [5]).

Both of the above approaches fail when the kernel is highly oscillatory, and simple counter-

examples show that it is impossible to construct a scheme that would work in the general

oscillatory case (the Nyquist theorem being the basic obstacle). However, several oscillatory

problems are of sufficient importance that it is worth-while to construct special purpose meth-

ods for them. A typical example are kernels satisfying the Helmholtz equation in two and three

dimensions, since this is the equation controlling the propagation of acoustic and electromag-

netic waves, and many quantum-mechanical phenomena. Unlike the non-oscillatory case, the

oscillatory one requires a fairly subtle mathematical apparatus, and for the Helmholtz equation

in two dimensions, such an apparatus is constructed in [14].

The present paper presents an extension of the results of [14] to the three-dimensional case,

and a description of an algorithm for the rapid application to arbitrary vectors of matrices

resulting from the discretization of integral equations of the potential theory for the Helmholtz

equation in three dimensions. The principal purpose of this paper are Theorems 3.1 - 3.3, de-

scribing the diagonal forms of the well-known translation operators for the Helmholtz equaticn

in three dimensions.

2. Analytical and Numerical Preliminaries

2.1. Notation. We will be denoting by (p, 0, 0) the spherical coordinates in R3 , with the

Euclidean coordinates denoted by (z, y, z). Given a point s on the two-dimensional sphere S2,

we will denote its spherical coordinates by (O(s), O(s)), and note that the north pole SN has

the coordinates (r, *), while the coordinates of the south pole ,s are (0, ,).
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We will denote by E the natural embedding S2 -- R3 , defined by the formula

E(s) = (cos(O(s)). cos(4(s)), cos(O(s)). sin(4(s)), sin(0(s))). (1)

For a non-zero vector u E R 3, we will denote by P(u) the point on S2 defined by the formula

P(u) = E-( ). (2)
Hull

Sometimes, we will use a more invariant notation, saying that the pair (r E R1, s E S2) is the

spherical coordinates of the point u E R3 , with r, 8 defined by the formulae

r = HIuIll (3)

8 = P(u). (4)

For a pair of points so, s E S2, we will denote by Ao(s) the angle between the vectors E(so),

E(s).

Finally, for any 80, 8 E S2, we will denote by c(so, s) the cosine of the angle between the

vectors E(so), E(s), so that

c(so, s) = (E(so), E(s)) = cos(A. (s)). (5)

2.2. Charges and dipoles. For a Helmholtz equation

V'f + k2f = 0 (6)

we will define the potential f,,o : R 3 \ {x} --+ C1 of a unit charge located at the point xo E R 3

by the formula

fko(z) = ho(kllx - xoll), (7)

where ho denotes the spherical Hankel function of order zero (see (16) below). For any h E R3

such that Ilhll = 1, we will define the potential fk0,h of a unity dipole located at xo and oriented

in the direction h by the formula

fzo,h(X) = -h(kllx - zoll) k(x - zo,h) (8)

lix - Xoll
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As is well known, both potentials f-o, f~k,h (as well as most other physically meaningful

potentials for the equation (6)), satisfy the radiation condition at oo, i.e., for any x E R3,

there exists c E C' such that when t --* 0o,

,/( C x) = ,.---7-- + o ( ). (9)

The following theorem is well-known, and is a direct consequence of the Gauss theorem.

Theorem 2.1

Suppose that b C D axe two balls in R 3 , and that D is bounded by a sphere S. Suppose

further that f : 3 \D~ - C is a radiation field satisfying the equation (6)) in R3 \ D and the

radiation condition (9)) at oo. Then there exist two analytical functions o, 71: S - C, such

that for all z E R3 \ D,

f(x) = s "(8) -fk(x)ds, (10)

and

f(X) =/j v() •  (11)is f.'N()(x)ds,

where N(s) denotes the exterior normal to S at the point s.

2.3. Spherical Bessel and Hankel functions. In agreement with standard practice,

we will denote by jm the spherical Bessel function of the first kind of order m, and by h,, the

spherical Hankel function of order m. As is well known (see, for example [18]), j,,, are analytic

on the whole complex plane for all values of m, while h. have a branch cut along the negative

real axis, and become infinite at the origin. The asymptotic behaviour of the functions jn, hn

for large m is given by the formulae

lim ~ ~ j z)2- (2n "+ 1) n + l

im. jm(Z) - - 1, (12)

and

e n+1 . Zn+I

lim hn(z). - (13)
n-o /2-.(2n + I)-
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(see [1], 9.3.1, 9.3.2, 9.1.3). For large z and fixed m, the asymptotic behavior of jm(z), hm(z)

is given by the formulae

z-j,(z)- cos(z m 2 e2' I12

e-Im(z)z hm(z) - 2- - = 0( ) (15)

when z --+ o, as long as Im(z) 2! 0 (see [1], 9.2.5, 9.2.7).

All spherical Bessel functions are 'elementary functions'. In particular,

o(-) =sin(z)
z

ho(z) = z
sin(z) cos(z)

(Z) z2 z 7
1 i

hi(z) = -(1 + - . et 'z, (16)
2 2

d
djo(z) = -ji(z),

d
dho(z) = -hi(z).

The following theorem is known as the Addition Theorem for spherical Bessel functions, and

is one of principal analytical tools of this paper. It can be found, for example, in [1].

Theorem 2.2

Suppose that r, p, 0, A are arbitrary complex numbers, q = 7 - 0, and that R E C is defined

by the formula

R=(r2 +p2 2.r.p.cos())2 =(r2 +p2+2.r.p.cos()) (17)

(see Figure 1). Then
00

Ej(2n + 1). j,(A . r) . j,(A , p) . P(cos(O)) =
n--O

0

E(- 1)r -(2n + 1) .j.(,. r). j.(A .p) . P(cos(i))= (18)
n--O

jo(,\ " R) = sin(A. R)

(\.R
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and
00

Z(2n + 1)e "l ' i . i(p) Pn(cos(O)) =

Z(2n + 1) i' n i(P)" P,(cos(O)) - C  .  (19)

If, in addition, r e' 8 1<1 p 1, then

00

Z(2n + 1). j,(, - r) -hn(A - p) . Pn(coS(O)) =
rn-O

00

(-1)" n (2n + 1) •jn(A r). hn(A -p) P.(cos(7)) = (20)

-i -
i 'X R

ho(A.R)= I

2.4. Integrals of spherical harmonics.

A function w : S2 --. C is referred to as a spherical harmonic of degree n if the function

f: R3 --+ C defined by the formula

fAz, , z) = w(O, 4,)- p, (21)

satisfies the Laplace equation in R3 (see, for example, [10]).

Remark 2.1

As is well-known (see, for example, [11]), for any integer n > 0, there exist exactly 2n + 1

linearly independent spherical harmonics of order n, and a standard representation of a spherical

harmonic of order n is by an expression

W(0,04) = E , .iPn~(COS(O)). ei'#, (22)
m-n

with Pn the associated Legendre function of degree n and order m (see, for example, [1]), and

7fi, i = 0, 11, -±2,..-- ±n a finite sequence of complex numbers. However, in this paper we will

not be using the representation (22), remembering only that the spherical harmonics of order

n constitute a complex linear space of dimension 2n + 1.
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We will need the following three well-known lemmas involving the integration of spherical

harmonics over the surface of the sphere. Lemmas 2.1, 2.2 below can be found, for example, in

[10]), [1], respectively. Lemma 2.3 is a simple consequence of Lemma 2.2, and can be found in
[1].

Lemma 2.1.

For any spherical harmonic Y of degree n > 0,

] Y(s) . Pn(cos(0(s)))ds = 2 + 1 Y(SN)
2n + 1" (N (23)

Lemma 2.2.

For any n > 0 and z E C,

j,(z) = (2) J e ' ' ( °())- P74cos(O(s)))ds. (24)

The following theorem is a simple consequence of the preceeding two lemmas, Theorem 2.2,

and the formulae (12), (13).

Theorem 2.3.

Suppose that p E R, n is a natural number, and k E C is such that Im(k) _ 0. Suppose

further that u E R3 is such that hull < p, and that the functions Tn : S2 --+ C, Fn: R3 -- C

are defined by the formulae

Tn(s) = Tn (O,) = itm .(2m + 1). hn(k .p) . P(cos(O)), (25)
M=O

F 4 -(u) = $. T7 (). e' ' E'),")d. (26)

Then

lim F,(u) = ho(k -(p2 + i11u12 + 2 .p. Iull. cos(17))2), (27)nq--Zoo

with t7 the angle between the vector u and the z axis. Furthermore, for large n,

(P2I + I1 (8
I F.(u) - ho(k. (p2 + lull2 2p. IIull. coS(1))I) = O(( ItlII)n).
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Proof.

Combining (25) with (26), we have

Fn (u) 7- it . (2m + 1). hm(k'p)'/s2 T-($). Pen( e )'4 ds, (29)
M=0

and, substituting (19) into (29), obtain

1 n
F. (u) = -. F i' -(2m+l)-h,,,(k.p). (30)

m=0

J Pn(cos(O(s))) 0(21 + 1) • j(k. Iu)- PI(c(P(u),)ds
1--0

For any m 0 1,

s Pmn(cos(e(8))) .P(c(P(u), s))ds = 0, (31)

since in this case Pm(cos(e(s))), P(c(P(u), s)) are two spherical harmonics of different degrees,

and, therefore, orthogonal on S2. Combining (30) with (31), we have

F,(u) - v (2m+ 1)2- h, (kp)-j-m(k-IIull) (32)
m--O

S Pm(cos(O(s))) -P(c(P(u), s))ds.

Due to Lemma 2.1,

4-v
iPm (cos(O(s))) -.P. (c(P(u), s))ds = (2mn + 1). McSOPU) (3

and (32) assumes the form

n

Fn(u) - (2m+ 1) hmJk p) jm(k - hlull) -Pm(co9(O(P(u))). (34)

m=0

Now (27) follows from the combination of (34) and Theorem 2.2, and (28) follows from the

combination of (27) with (12), (13).

2.5. Partial wave expansions of radiation fields. Suppose that the function 4:

R3 --+ C1 satisfies the Helmholtz equation (6) outside an open ball D of radius R with the

center at the point z0 E R 3, and also satisfies the radiation condition (9) at co. Then there
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exists a unique sequence of spherical harmonics a = {c,}, m = 0, 1,2,---, such that for any

x E R3 \ D,

00

E - a. (s), hm(kp), (35)
m=0

with (p, s) the spherical coordinates of the vector x- o, and for each m E [0, oo), am a spherical

harmonic of degree m.

If a function 0 satisfies the equation (6) inside D, then there exists a unique sequence

of spherical harmonics / = {Im.},m = 0,1,2,..., such that for each m, 8m is a harmonic of

degree m, and for any x E D,
o

(x)- (s -/ m ')'j.(kp). (36)

A derivation of the formulae (35), (36) can be found, for example, in [11], and we will refer

to functions satisfying the Helmholtz equation as radiation fields, to expansions of forms (35),

(36) as h-expansions and j-expansions respectively, and to the point xo as the center of the

expansions (35) (36).

The following lemma is a direct consequence of the formulae (12), (13). It establishes the

convergence rates of the expansions (35), (36).

Lemma 2.4

If D1 C D is a ball of radius R 1 < R with the center at xO then there exists c > 0 such that

for any z E D1 and N > Iki- R1,

N (37)
10(-) - L crm(O, O)jm(kp)I < oNj- (7

M=O

If D2 D D is a ball of radius R 2 > R with the center at Zo then there exists c > 0 such that

for any z E R 2 \0 2 and N> Ikl- R,

N RAI 10x) E m (0 O~,.(p) I< cT-)(38)

m--O 2

Remark 2.2

9



In numerical calculations, expansions (35), (36) are truncated after a finite number of

terms, and the resulting expressions axe viewed as approximations to the fields 4,, ik. If we

want to approximate 46 by an expansion of the form (37) with an accuracy c then according

to the above lemma, we have to choose

N > max(Ikl. -R, In(c) + In(c)" (39)

In(R) - ln(RI)

Since logarithm is a very slowly growing function, for medium and large scale problems,

max(RI - IkI, -ln() ln(cR)) ,nc RI. IkI, (40)

ln(R) - ln(RI)

i.e. the number of terms in the approximation is almost independent of c, and must be roughly

equal to IkI R 1 . A similar calculation shows that for medium to large scale problems, the

expansion (36) can be truncated after approximately N > IkIR terms.

2.6. Numerical integration on S2.

In this subsection we formulate two lemmas describing the optimum quadrature formulas

for two situations: smooth functions on a circle, and smooth functions on an interval. Then,

we use these lemmas to construct a high-order quadrature formula on S2 (Theorem 2.4 below).

Both Lemmas 2.5, 2.6 are well-known, and can be found, for example, in [15].

Lemma 2.5

For any integer m, n such that n > 21mI, the n-point trapezoidal quadrature rule on the

interval [0, 27r] integrates the function eimz exactly.

Lemma 2.6

For any natural n, there exist a unique pair of finite sequences X '}, w'}, i = 1, 2,., n,

such that for any integer k E [1, 2n - 1],

n 1
"W' (') tkdt. (41)

Furthermore, X!' E [-1,1] and to E [0,1] for all i = 1,2,..-n.
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The points X? and the coefficients wtv axe known as the nodes and coefficients of the n-point

Gaussian quadrature rule, which is the unique n-point quadrature rule that integrates exactly

all polynomials of order up to 2n - 1.

For a natural n, we will define a finite sequence 0, 2, -- , On by the formula

S= . (U _ 1), (42)
n

and the finite sequence 01, 02,--,On by the formula

6j = arccos(wi). (43)

Now, we define a discretization of Dn C S2 as a collection of n2 points s;,k defined by the

formula

.7,A" = (oj, Ok), (44)

and given a function f : S2 -- C, will be approximately representing it by a table of n 2 values

fjk = f(0j,,k). (45)

Our choice of this discretization scheme is motivated by the following theorem, which is an

immediate consequence of Lemmas 2.5, 2.6.

Theorem 2.4.

Suppose that the function f : S2 --, C is a spherical harmonic of degree n. Then

n

]f(s)ds k - fk, (46)

with the coefficients wj,k defined by the formula

Furthermore, the condition (46) defines the nodes s', and the weights Wjk uniquely, except

for obvious transpositions and rotations.

3. Translation Operators For h and j Expansions.
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3.1. Sequences of spherical harmonics and functions on S 2. We will denote by Y

the set of all sequences a = {a,..}, m = 0, 1,2,-.., such that for each m, am is a spherical

harmonic of degree m. We will define a norm on Y via the formula
00I1, 1 - 11-112), 

(8Hall = VrA E2 Hamll) (48)

denote by X the subspace of Y consisting of such sequences a that h11il < oo, and observe that

the norm (48) converts X into a Hilbert space. For a real number r > 0, we will denote by X,

the subspace of X consisting of all sequences a = {am}, m = 0, 1, 2,-.-, such that
2m r

Ilal-11- 2m)m "Vf < C (49)

for all m > r. We will denote by Y, the subspace of Y consisting of all complex sequences

/ a {m}, m = 0, 1,2, ---, such that for some c > 0,

er) " V < e (50)
IImI2m * <

for all m > r. It is easy to see that X, C Yr, and that the condition (49) is a very restrictive

one, since in order to satisfy it, the elements of the sequence {am} must decay roughly as

(r/2)m /m!, while the condition (49) is a very mild one - it prohibits the elements of {3,m} from

growing faster than approximately (2/r)m . im!. By applying formulae (9.3.1), (9.3.2) from [1],

it is easy to show that in (35) (36), a E YkjR and /3 E Yk R- Conversely, for any sequence

a E Yk; R, the expansion (35) converges inside D, and for any /3 E Yk R, the expansion

(36), converges outside D. For a natural n, we will denote by T,1 a linear mapping Y, --+ Y

converting a sequence a = {am},m = 0,1,2,-.- into a sequence i = {&m},m =0,1,2,...,

defined by the formulae

&m = a,, for Iml<n

&m = 0 for Iml>n+1. (51)

Clearly, Tn(Y) C X,, and for obvious reasons, we will refer to Tn as truncation.

We will define the mapping F: X --+ L2(S2 ) by the formula

00 i(m41).,r)

F(a)(s) = am(s) e- 2 (52)
M=2
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with a = {ao, a1 , } E X, and the mapping F_: X -- L2 (S 2 ) by the formula

Foo(a)(s) = E a,,-(s) -e 2w (53)
M=O

It is easy to see that the mappings F, F._ are unitary in the norm on X defined by (48), since

the expansion into spherical harmonics is a unitary transformation, and any two spherical

harmonics of different degrees are orthogonal to each other ( see, for example, [10])).

The following obvious lemma can be found, for example, in [6]. It connects the speed of

convergence of an expansion of the form (52) with the analyticity of its sum.

Lemma 3.1

Suppose that a E X, with some (arbitrarily large) r. Then F(a) : S2 -- C is an analytic

function on S'.

While the definitions (52), (53) might seem arbitrary, they are motivated by the following

two lemmas, which are a direct consequence of the formulae (14), (15).

Lemma 3.2

If 4: R 3 \b - C 1 is defined by (35), then

lir O(zo + t . E(s)) . t - i'k't = F(a)(s). (54)

Lemma 3.3

Suppose that 0 : D --+ C1 is defined by (36), and that, in addition, # E X. for some

(arbitrarily large) a. Then

lim t. (O(zo + t E(s)) - (F(/3)(s) . eik * ) + F(13)(s). e-i'k't). (55)
t-t0o

Remark 3.1

The above two lemmas can be viewed as describing the far-field behavior of the potentials

, in terms of the mappings F(a), F(3) : S2 - C, and we will refer to F(a), F(3) as far-field
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representations of 0, 10, respectively. Alternatively, we will be calling F(a), F(P) far-field forms

of expansions (35), (36).

For a point so E S2, a natural n, and a complex z, we will define the function An: S 2 
-+ C 1

by the formula

A\"(s)= i -(2m + 1). Pm(c(so, s)' jm(z). (56)
O =O

It immediately follows from (19) that
0o

im -(2m + 1). P(c(so, s)) - jm(z) = ei'z'C(S° 'S)  (57)
M=0

and for n = w, (56) assumes the form

='00(s) = eiZC(SO,). (58)

For a point so E S2, a natural n, and a complex z, we will define the function ,,,n: S2 --I C 1

by the formula
n

pin(s) - - (2m + 1) . Pn(c(so, s)) . hn (z), (59)
m=O

and observe that no analogue of the formula (58) is possible in this case (at least in the proper

sense), since the series

0O

E i ' -(2m + 1) -Pj(c(so, s)). h.(z) (60)
m---O

does not converge.

Finally, we will define mappings As', M n : L2(S 2) -- L2(S 2) via the formulae

Azo (f)(s) = Az'a(s) .f(s), (61)

Ms'n(f)(s) = pn(s)- f(s) (62)

respectively, with f E L2(S 2).

3.3. Definition of translation operators. For the remainder of this section, D1 , D2,

D3 will denote three balls in R 3 such that D2 C D1 and D1 n D3 - 0 (see Figure 2). The
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centers and radii of these disks will be denoted by cl, C2, c3 and RI, R2, R 3 respectively. We

will denote the spherical coordinates of the vector c2 - c1 by (p12, 512), the spherical coordinates

of the vector cl - c2 by (P21,821), the spherical coordinates of the vector c3 - cl by (p13,813),

and the spherical coordinates of the vector cl - c3 by (p31,831). For a point z E R3 , we will

denote by (P, 81), (P2,82), (P3,83) its spherical coordinates with respect to the centers cI, c2,

c3 respectively.

Suppose now that i : R 3 --* CI is a radiation field analytical in R3 \ b 2 and satisfying the

radiation condition (9) at oo. Suppose further that ik is represented by an expansion
00

= 0 8.(8 2 h>h(kP2) (63)
m=O

valid in R3 \ D2, and by an expansion
00

= 4 f3 (s,) ' h,(kpi) (64)

valid in R3 \ D1. It is easy to see that / E XIkI.R, depends linearly onfl E XIkI.R 2, and we will

denote by U,2,, the operator XIkI.R 2 -+ XkIj.R such that

/3 = U02,0l(/). (65)

Suppose that 0: R 3 -, C1 is a radiation field analytical in D, and represented by an expansion
00

= amsi) .jm(kpi) (66)
m--O

valid in D 1, and by an expansion
00

00 &ii(8 2 ) -j.m(kP 2 ), (67)
m--O

valid in D 2. Again, it is easy to see that & E YkI.R2 depends linearly on a E YIkl.R,, and we
will denote by Vci,, 2 the operator YYkI-R k.R2 such that

= Vclc 2(a). (68)

For any r > 0, we will denote by Vj,c2 the restriction of Vcl,c 2 on the subspace X, of YIkI.R,

so that

Vcl,,2 = (Vc,c2)IX,. (69)
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Finally, suppose that ¢ : R3 \DI --- CI is a radiation field analytical outside the ball D, and

satisfying the radiation condition (9) and that it is represented in R3 \ 1i by the expansion

(63). Then inside the ball D3, the function 0 can be represented in the form

OW= Y 7(S3). j.(kp3) (70)
M=O

with -f E YIkI.R 3 a linear function of a E Xlkl.R2 , and we define the operator W,,c 2 : XjkI.R-

Ylkl.Rs via the formula

-Y = Wcl, (a). (71)

3.4. Diagonal Forms of Translation Operators. This subsection describes the diagonal

forms of the translation operators U, V, W for the Helmholtz equation. These diagonal forms

are provided by the Theorems 3.1 - 3.3 below, and are the principal purpose of this paper.

Theorem 3.1.

If the operator U2,,, : XkI.R2 -- XjkI.Ri is defined by the formula (65), then

Uc2.l = F - ' o A,12 '00 o F. (72)

Proof.

We will prove (72) by showing that

F o Uc2 ,cl = Ak*P12'00 o F. (73)

Suppose that s E S 2 , and 3 E XkR2 . Combining (61) with (58), we have

A k.12.0(s) = F(f(s) . .c(P(ci -C2),I) (74)

On the other hand, due to Lemma 3.1,

F(1)(s) = lim 0 (c, + t . E(s)) . t .e - ' k t

t400

= im 4O(c2 + (CI - c2) + t. E(s))- t- e - i ' k't (75)

= m (c2 + .1 Iv u + t. vII)- t-e-'',
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with u = c1 - C2 , and v = E(s). Denoting Du + t. vIl by r, we obtain after simple analysis

t = r- (u, v) + o( 1), (76)

and (75) assumes the form

- u + (" - (u, V) + O()) .V )I-( )( ) = .2o4(c1+ Il+ ( -(u, v)+O( .)).v(7

( - (u, v) + O(-)).

which, due to the radiation condition (9) can be reduced to

= Ji ~ + +(r -(u, v)) -v
iHU + (r - (u, V))- v T) (78)

r • ei'k '(u'v) • - i 'k '

Finally, combining Lemma 3.1 with (78) yelds

= Jim 4(C2 + V • r) - 7 . e - i k '
*r . ei k (u ,v )

= lim O(c 2 + E(s) -r) - 'k .Te k(c,- 'E(")) (79)

= F(3)(s) . 6i k ' (c -c 2 ,E( s ))

Now, the conclusion of the theorem follows from the combination of (79) with (74).

The above theorem provides the diagonal form of the operator U2,c, shifting the origin

of an h - expansion. Theorem 3.2 below is the analogue of of Theorem 3.1 for the case of

j-expansions. Since the proofs of the two theorems are virtually adentical, we omit the proof

of the following theorem.

Theorem 3.2.

If the operator Vcl,c2 : YIjkI.RI -+ Yvkj.R 2 is defined by the formula (68), then for any r > 0,

Vcl,,2 = F - 1 o Ak-,12,- o F. (80)--12

The following two lemmas are an immediate consequence of Theorems 3.1, 3.2. Lemma 3.4

provides the far-field representations of the potentials (7), (8) of charge and dipole. Given a
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far-field representation of a potential of the form (36), Lemma 3.5 provides an expression of

its value (and the value of its gradient) at any point within the region of its validity.

Lemma 3.4

Suppose that in (35),

0 = O', (81)

with z an arbitrary point in R3 . Then for any s E S2 ,

F(a)(s) = Ak_1ro) IOO -- = ei'k'(=°-zE(s)) (82)

If h E R3 is such that llhil = 1, and

' = Ok,h, (83)

then for any .s E S 2,

F(a)(s) = k'zo-11,-S-. i G . ( z o - xi, E(a))

P(o-X) I" o- z-II
= ei-k.(zo-z,E(&)), i k . c(P(zo - x1), s). (84)

Lemma 3.5

Suppose that the potential ib is defined by (36), and that P3 E X, with some 0 < r < oo.

Then for any z E D and h E R 3 such that lihll = 1,

b(z) = J F(/)(s). .. ,p(xo_ (8)ds =J F(#)(s) .ei'k'(x-xE())ds. (85)

and

d(z + t -h)It=o =J F(fl)(s) 4k'llz-zlOjOO (.i .k. (xo - z, E(s))dsS "--.. "PCO-X) ,"0IIo - l
- J F(#)(s)e .k 'cx - E (s )) . i . k . c(P(xo - z), s)ds. (86)

While the preceeding two theorems are fairly obvious, and appear to be known (though

in a somewhat different form) among certain groups of physicists, the following theorem is

considerably more technical, and appears to be quite new.
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Theorem 3.3.

Suppose that the operator Wcl,c : Xjk.R -- Yk.R 3 is defined by the formula (71). Suppose

further that 0 : R 3 \ D -+ C is a radiation field represented by the expansion (64) outside

D1, and by the expansion (70) inside D3 . For any n > 1, we will denote by ?kn the radiation

field D 3 - C defined by the formula

n(x)= M 7(83) .jm(kp 3), (87)
M--O

with 7yn = {,n, 7 ,n, "} defined by the formula

7n= F- 1  a k'P13,no F(a). (88)

Then for any x E D 3 ,

lim ?bk(x) = n b(x). (89)

Furthermore,

- O((R 1 +R3 ),
max I O(z) - () I= 0(( +). (90)

Proof.

Due to Theorem 2.1, it is sufficient to prove (90) in the special case of

= fk0, (91)

with X0 an arbitrary point in D1 . Combining (91) with (82), we have

F(f3)(s) = e i 'k' ( o-c,E(s)) (92)

for all s E S 2, and combining (92) with (62), (59), obtain

Mko*P3,to F(3)(x) = (93)81,3

n
eik(xO-c'E(s))" E ir " (2m + 1) Pm(C(81,3)) hm(k P13). (94)

m--0
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Now, combining (93) with (85), (87), we have

'k(W =

S2 ei-k-(xo-cI,E(s)). ei-k(x-c3,E(s)) .(95)

n

E (2m + 1) . P.(C(8 13, S)). hm(k. P13),
M=0

and (90) follows from the combination of (95) and Theorem 2.3.

3.5. Numerical evaluation of translation operators. For the rest of this paper,

we will view the asymptotic representations F(a), f(,) defined by (52) (as opposed to the

expansions of the forms (35), (36)) as our principal tool for representing radiation fields.

Lemma 3.4 permits one to calculate asymptotic representations of fields of distributions of

charges and dipoles without evaluating the coefficients of their h-expansions, and Lemma 3.5

provides a tool for calculating the fields and derivatives of the fields with given asymptotic

representations without having to evaluate the coefficients of j-expansions of these fields.

For a radiation field 0 : R 3 -. C1 analytical outside D1 given by the expansion (64), and

an integer n > 2, we will denote by 1, the function F( ) tabulated at the n2 nodes Sk

defined by the formulae (42) - (44), so that

F, (j, k) = F(13(s7,k). (96)

Similarly, for a radiation field 4' analytical inside DI defined by (66) and possessing an asymp-

totic representation F(a), we will denote by Gn, the tabl of n 2 complex numbers defined by

the formula

#,o,(j, k) = F~a)(ai). (97)

and view Im",,, Go,, as finite-dimensional projections of the asymptotic representations of the

radiation fields ik, 4.
Given a function G : Dn --, C (see (44), we will consider a radiation field 0 : R3 

-+ C1

defined by the formula
n

G(-)= W Gnoc (j, k) . eik'z*°-*'E,)). (98)
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Clearly, (98) is a quadrature formula approximating the integral (85) and we will look upon

(98) as an approximation to the field 0. Differentiating (98) with respect to z, we obtain the

formula

d
tTG(z + th)lt=h =

n
i k- 11hl-Z wj',k (j,k). c(P(xo - z), a) eik' - E( 7, )), (99)

j,k= l

CI ,2 I CnXn C,nb th
with any h E R3. Finally, we will define mappings P~n, Q , S, : -- " by the

formulae

.c Ak2, n  1 (100)

,C A -k-P2,M (101)

1 C3 kn, . (102)

Observing that P , Qm", Scn are restrictions to the nodes sj of the discretization (45) of

the mappings OnAPl', AkPi2m, A, I92 1 93'm respectively, we will look upon the operators PI ,
QC, SCn, as approximate discretizations of diagonal forms of the operators UW., V W'3

Remark 3.5

By combining the above lemma with Remark 2.2, it is easy see that the number n of nodes

in the discretization Gn,c, of the function Go,,, : S2 -- C1 has to be approximately equal

to (2. IkI R 1)2, and is almost independent of the accuracy e with which the field 4 is being

calculated.

Theorems 3.1 - 3.3 provide a tool for shifting the origins of asymptotic expansions of radi-

ation fields, and for converting asymptotic representations of the form (54) into asymptotic

representations of the form (55) for a cost proportional to n, where n is the number of nodes

in the discretization (45) of the interval S2. In the following two sections, this apparatus is

used to construct an algorithm for rapid evaluation of radiation fields of charge (and dipole)

distributions.
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4. Rapid Evaluation of Radiation Fields of Charge Distributions

In this section, we describe an algorithm for rapid evaluation of the field and the normal

derivative of the field created on a surface IF C R3 by charge and dipole distributions on that

same surface. For definitiveness, we will be discussing the evaluation of the field created by

a charge distribution. The algorithms evaluating the normal derivative of the field created by

a charge distribution, and the field and the normal derivative of the field created by a dipole

distribution are quite similar.

4.1. Notation. We will consider the situation depicted in Figure 3. The surface F C R3

is discretized into n nodes Xl, X2, ... , Xn, and we will assume that these nodes are distributed

on the surface in a roughly uniform manner. Suppose that for each i = 1,2,-- -, n, a charge

ai of strength oi is located at the point xi. In this section, we describe an algorithm for rapid

calculation of approximations gi = 1, 2,..., n to the sums
n

G(i)- a () (103)
*7=1, 3~i

for i = 1,2,---, n. Clearly, this is an order n2 process (evaluating n fields at n points).

However, if we are interested in evaluating (103) with a finite accuracy (which is always the

case in practical calculations), Theorem 3.3 and Lemmas 3.4, 3.5 can be used to speed up the

process.

For an integer m > 4, we will subdivide the surface r into m non-intersecting patches Pi,

each patch roughly rectangular in shape, and containing approximately Z of the nodes xi.

For each i E [1, m], we will denote by ri the radius of the smallest circle containing Pi, and

define r E R by the formula

r = max ri. (104)
:E[I,ml

Remark 4.1

Obviously, for sufficiently large m,

L
r , , (105)
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where L is the diameter of the surface r. This will be important in Subsection 4.3.

For each i = 1,2,-.., m, we will denote by zi the center of the i - th patch, by Ai the set

of all charges aj such that a3 E Ai, and by Dj the disk of radius r with the center at Zj.

We will denote by Wj the union of all Ai such that Ilzj-zi[1 > 3.r, and by W~j the union of

all Ai such that Izj - zi II 3 .r. Obviously, A, C Di for any j = 1,2,- -., m. Also, it follows

from the triangle inequality that

rain Ij_-- yll> r (106)
XEAi, yEAj

for any ij such that Ai C W,. Finally, we will denote by Oj the field of all charges ai such

that xi C Aj and observe that if zn E Ai then

ACWi ziW,

4.2. Detailed description of an order N 3/ 2 algorithm. In this subsection, M, N will

denote "sufficiently large" integer numbers. The actual choice of the numbers M, N is discussed

in the following subsection.

We will evaluate the fields (103) in five steps.

Step 1.

Using Lemma 3.4, obtain discretized asymptotic representations F N  of the fields 4O for

all j = 1,2,...,m.

Step 2

For every pair of natural numbers ij E [1, m] such that Ai C Wi, calculate the representa-

tion

G SV(FM,N(FN (108)
tj = "zi,zj j,-'jzi

of the field kij (N., and view it as a finite - dimensional approximation to the asymptotic

representation of the field Oi on Dj.

Step 3
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For each natural j E [1, m], calculate the suma
N N

= E G*, (109)

and view the field ibj = ' ,jij as an approximation to the field ZAjCW, 0ji, and N as a

finite-dimensional approximation to the asymptotic representation of Oi on Di.

Step 4

For each natural j E [1, m], evaluate

)= (110)

for all i such that xi E P and look upon (110) as an approximation to &(xi).

Step 5.

For each j = 1, 2,.--, m, evaluate the sum

-pEVW,

for all i such that zi E P, and view (111) as an approximation to G,(x1 ).

4.3. Choice of parameters and CPU time estimate. In the estimates below, a, b, c, d, e

axe coefficients determined by the computer system, language, particular implementation of the

algorithm, etc.

Step 1

Obviously, this step will require order n -N2 operations (tabulating FN  at N 2 nodes on

D' for each of the nodes X, X2,. ,zn ). Combining Remarks 3.5, 4.1, we observe that N

Iki.L/ V 'm , and the CPU time estimate for this step becomes a.n.(Ik .L/m) 2 = a.n.(Ikl.L) 2/m.

Step 2

For each of the pairs ij such that Aj C Wi, evaluating (108) will require order N 2

operations (see (102) ), and the total number of such pairs is less than M2 , which results in

the CPU time estimate of b. m2 . n -,, b. m2 . (jkj- L//M) 2 = b. m. (Ikj- L)2 for this step.

Step 3

Obviously, evaluating the sums (109) for all j = 1,2,.. ,im is an order c - m - N 2

c. m. (IkI. L / )2 = c. (IkI- L) 2 procedure.
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Step 4

Evaluating (110) for each i = 1,2,- . ., n is an order N 2 procedure, resulting in the total

CPU time estimate for this step of d . n- N 2 - d- n. (Iki. L)2/m.

Step 5

Evaluating the sum (111) for each i = 1,2,-- -, n is an order n/m procedure, with the

resulting CPU time estimate of e- n2im for this step.

Summing up the time estimates for the steps 1-5, we obtain the following time estimate for

the whole process:

T = A .n.(Ik . L) 2 + b.m.(IkI. L) 2 c.(Ik.L)2 + e 'n2  (112)
m m

with A = a+d, and we would like to choose m in such a manner that (112) would be minimized.

Differentiating (112) with respect to m, and setting the resulting derivative to zero, we obtain

i A n. (Ikl. L) 2 + e.n 2 (
rm~fl~l = b. (IkI-L)2  (113)

and the corresponding minimum of (112) is equal te

Tm=in2/A-n-(kI L) 2 +e.n 2 . b.(IkI.L) 2 +c.(Ikl-L) 2. (114)

If the calculations are performed with a 'xed number of nodes per wavelength (which is often

a reasonable assumption), n is proportional to (IkIL) 2, and (114) assumes the form

Train (I (k I-L)', (15

or

3

Tmin n2, (116)

which for large n is considerably smaller than n2 .

4.4. Further reduction of the CPU time estimate of the process. The approach

of the above subsection can be used recursively by subdividing each of the sets Ai into subsets

S{Bi}, j = 1,2,-.., fn with appropriately chosen fn and representing the fields 4' as sums Oi =

4 ,ij where 4,ji is the field created by all charges ap such that ap E Bij. A calculation similar
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to the one in the preceeding section shows that such an algorithm will have an asymptotic CPU

time estimate of n4/3 .

By continuing this process recursively until only a finite number of nodes is left on a surface

patch on the finest lavel, one can obtain an order nlog(n) algorithm for evaluating (103).

However, our estimates indicate that for problems of practicable size (n < 1000, 000), the

improvement in actual computation times obtained by replacing an order n4 / 3 algorithm with

an order n log n algorithm would not be very significant.
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