
AD-A248 419

WRDC-TR-90-8007
Volume VIII
Part 5

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume VIII - User Interface Subsystem
Part 5 - Forms Processor Development Specification

S. Barker

Control Data Corporation

Integration Technology Services
2970 Presidential Drive
Fairborn, OH 45324-6209 ALUCTE

'PRI0.I 920
%L 199

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-09091
MANUFACTURING TECHNOLOGY D IRECTORATEI
WRIGHT RESEARCH AND DEVELOPMENT CENTER 'Inflm n1
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92 4 08 062

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It shoqid not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
Ibis report is releasable to the Natienal 1echuical

• Informatiso Service (NTLS). At Ills, it viii be t

Available to tke Je erl public," iscla4il ferile nations

DAV _ /SN, Pect Manager DATE

Wr it-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

-RUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DS 620344200 WRDC-TR-90-8007 Vol. VIII, Part 5

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City,State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
78011F 595600 F95600 20950607

2. PERSONAL AUTHOR(S)
Structural Dynamics Research Corporation: Barker, S., et al.

3a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1/87-12/31/90 1990 September 30 70

6. SUPPLEMENTARY N(, I....

WRDC/MTI Project Priority 6203

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.
1308 0905

9. ABSTRACT (Continue on reverse if necessary and identify block number)

This specification establishes the conceptual design of the system identified as the Form Processor.

BLOCK 11 :

INTEGRATED INFORMATION SUPPORT SYSTEM
Vol VIII - User Interface Subsystem

Part 5 - Forms Processor Development Specification

0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNCLASSIFIED/UNLIMITED x SAME AS RPT, DTIC USERS Unclassified

?2a. NAME OF RESPONSIBLE INDIVIDUAL f2b. TELEPHONE NO. 2c. OFFICE SYMBOL
(/nidude Area Code)

David L. Judson (513) 255-7371 WRDC/MTI
EDITION OF 1 JAN 73 IS OBSOLETE

DO FORM 1473,83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

DS 620344200
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii

DS 620344200

TABL OFCONTNTS30
September 1990

-~A 9~7~t)Page

SECTION 1.0 SCOPE.............-.......1
1.1 Identification...................1-1
1.2 Functikonal Summary...................... 1-1

SECTION 2 .0 DOCUMENTS................................. 2-1
2.1 Reference Documents..................... 2-1
2.2 Terms and Abbreviations..................2-3

SECTION 3.0 REQUIREMENTS............................. 3-1
3.1 -'Computer Program Definition 3-1
3.1.1 Syste--Capamities....................... 3-1
3.1.2 interface Requirements-............... 3-2
3 .1.2.1 Interface Block Diagram3-3
3 .1.2.2 Detailed Interface Definition.........3-3
3 .1.2.2.1 Application--.-,;........................ 3-3
3 .1.2.2.2 Device Drivers....................... 3-3
3 .1.2.2.3- Data Files........................... 3-4
3 .2 (4> Detailed Functional Requirements........3-4
3.2.1 Form Processing....................... 3-3
3.2.1.1 Open List............................. 3-4
3.2.1.2 ,Display List.......................... 3-4
3.2.1.3 4 Controlling the Form Processor 3-9
3.2.1.4 opening and Cl~aing Forms;. 3-10
3.2.1.5 creating dfid Modifying Forms 3-10
3.2.1.5.1 QCfeating and Saving Forms3-10
3.2.1.5.2 -- Adding or Removing Fields3-1.1
3.2.1.5.3 / Changing Characteristics 3-17
3.2.1.6 Modifying the Display List 3-20
3.2.1.7 ' -Transferring Data,.................... 3-23
3.2.1.8 Displaying Forms............. .. 3-24
3.2.1.9 Getting and setting teCro

Position3-24
3.2.1.10 Displaying Messag~es...................3-24
3.2.1.11 ,Cfeating and Modifying Logical

Devices............................ 3-25
3.2.2 Haintain~tng User Profiles. 3-25
3.2.3 $Virtual Terminal Pass-tftroug ~........3-26
3.2.4 1N~ a.,asajgs~n 3-26
3.2.4.1 < revice Driver Messages 3-27
3.2.4.2 Application Messages 3-27
3.2.4.3 IISS Environment Messages.... 3-27
3.2o4.4 PHIGS Support Messages................3-27
3.2.5 4 Function Key Processing3-27
3.2.5.1 Control Keys 3-28
3.2.5.2 Application Mode Keys.................3-28
3.2o5.3 ,Scroll/Page Mode Keys.................3-28
3.2.5.4 'Text Editor Mode Keys.................3-29
3.2.5.5 Window Manager Mode Keys........ o.... 3-30
3.2.5.6 XStatus Mode Keys..................... 3-30
3.2.6 jScripting 3-32
3.3 Special Requirements_ 3-33
3.3.1 rogzfAihnj-Methods.,...................3-33
3.3.2 Expandability o....3-313

iv

DS 620344200
30 September 1990

3.4 Human Performance ., 3-33
3.5 Data Base-Requirem6nts3-33

3.51 Surcs ad ypes of Input 3-33
3.5.1.1 Form Definition File................. 3-33
3.5.1.2 Message Definition File.............. 3-33
3.5.1.3 User Interface Database.............. 3-33
3.5.2 '-Destinations and Types of Output... 3-34
3.5.3 -v,.Internal Tables and Parameters3-34
3.5.4 PHIGS Data Structures *3-36
3.5.4.1 PHIGS Description Table.............. 3-37
3.5.4.2 PHIGS Traversal State List 3-39
3.5.4.3 PHIGS State List..................... 3-40
3.5.4.4 PHIGS Workstation State List3-41
3.5.4.5 PHIGS Workstation Description

Table.............................. 3-44

SECTION 4.0 QUALITY ASSURANCE PROVISIONS............. 4-1
4.1 >Introduction and Definitions 4-1
4.2 Computer Programming Test

and Evaluation.......................4-1

SECTION 5.0 PREPARATION FOR DIEY.........-
APPENDIX A F OTN RETURI CODES.................. A-1

DUOC Us (3

7 5

v

DS 620344200
30 September 1990

Figure TitleLIST OF ILLUSTRATIONS Pq

3-1 Form Processor Interfaces.................................... 3-3
3-2 Sample Display List................................. 3-6
3-3 Application Status Form............................ 3-31

Li ~t

vi

DS 620344200
30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the conceptual design of the
system identified as the Form Processor. This system will contain
the Graphics Support System (GSS). This system is a subsystem of
the User Interface System (UIS) which provides both two and three
dimensional graphics support for the IISS testbed.

NOTE: The conceptual design presented in this specification is
intended to encompass all of the desired characteristics of the
ultimate system. It is not intended to imply that all of these
capabilities will be implemented as a part of the current task or
of.any future task. An attempt has been pade to identify those
using phrases such as "eventually" or "in the future" when
referring to them within this specification. Additional
determinatons of-ap licability and scope will be made as design
proqeeds-and presented in subsequent life cycle documents.

1.2 Functional Summary

One of the objectives of the IISS testbed is to allow
applications to be run from a wide variety of terminals using
formatted screens for input and output of application data.
Instead of the application programs having to contain terminal
dependent code to send and receive formatted screens to and from
various types of terminals and to perform terminal control
functions, the program may use the set of callable execution time
routines of the FP.

The Graphics Support System (GSS) is a computing subsystem of
the User Interface System of IISS which provides two and three
dimensional graphics along with high level icon and business graph
support. The high level support is accomplished through the use
of compilers for static definitions and callable routines for
dynamic definitions. The GSS uses the Programmer's Hierarchical
Interactive Graphics System (PHIGS) as its basics. The IISS user
may access the PHIGS routines directly in order to display graphic
images.

The major functions provided by the FP are:

o Form Processing

o User Profile Maintenance

o Virtual Terminal Pass-through

o NTM Message Processing

o Function Key Processing

o Scripting

o Two and Three Dimensional Graphics Processing

1-1

DS 620344200
30 September 1990

The details of these functions are explained in Section 3.2
Detailed Functional Requirements.

1-2

DS 620344200
30 September 1990

SECTION 2

DOCUMENTS

2.1 Reference Documents

(1] General Electric Co., ICAM Integrated Support
System (11SS) Test Bed System Design
Specification (Draft), 7 Feb 83, SDS620140000.

(2] Systran, ICAM Documentation Standards, 15 September
1983, IDS150120000C.

[3] Structural Dynamics Research Corporation,
Form Processor User Manual, UM 620244200A, 16 February
1987.

[4] Structural Dynamics Research Corporation, Report
Writer Development Specification, DS 620244501A,
16 February 1987.

[5] Structural Dynamics Research Corporation, Rapid
Application Generator Development Specification,
DS 620244502A, 16 February 1987.

[6] Structural Dynamics Research Corporation, Text
Editor Development Specification, DS 620244600A, 16
February 1987.

[7] Structural Dynamics Research Corporation, Form
Processor Development Specification, DS 620244200 16
February 1987.

[8] Structural Dynamics Research Corporation, Application
Interface Development Specification, DS 620244700A,
16 February 1987.

[9] Structural Dynamics Research Corporation, Forms
Language Compiler Development Specification, DS
620244401B, 8 December 1987.

[10] Structural Dynamics Research Corporation, Forms
Driven Form Editor Development Specification,
DS 620244402A, 16 Fe ruary 1987.

[11] Structural Dynamics Research Corporation, User
Interface Services Development Specification,
DS 620244100A, 16 February 1987.

(12] Structural Dynamics Research Corporation, Virtual
Terminal Development Specification, DS 620244300A,
16 February 1987.

[13) General Electric Corporation, IISS System Design
Specification, SDS 620140000, 7 February 1983.

2-1

DS 620344200
30 September 1990

(14] Structural Dynamics Research Corporation, IISS Form
Processor Application Interface, DS 620244700A, 16
February 1987.

[15] Structural Dynamics Research Corporation, Form Editor
User's Manual, UM 620244400A, 16 February 1987.

(16] Structural Dynamics Research Corporation, Rapid
Application Generator User's Manual, UM 620244502A, 16
February 1987.

[17] American National Standards Institute, Programmer's
Hierarchical Interactive Graphics System, dpANS X3.144
(Draft Proposed Standard X3H3/87-100).

(18] American National Standards Institute, Graphical
Kernel System Functional Description, ANSI
X3.124-1985.

[19] International Organization for Standardization,
Graphical Kernel System (GKS) functional description,
ISO 7942-1985.

(20] American National Standards Institute, Computer
Graphics Metafile for the Storage and Transfer of
Picture Description Information, ANSI X3.122-1986.

[21] Structural Dynamics Research Corporation, C Coding
Guidelines, IISS Programmer's Guide

(22] American National Standards Institute, Additional
Controls for use with American National Standard Code
for Infor--aEi-on Int-erchange, ANSI X3.64-1975.

2.2 Terms and Abbreviations

American Standard Code for Information Interchange:
(ASCII), the character s--et def-ned by ANSI X3.4 and used by most
computer vendors.

Application Generator (AG): A subset of the IISS User
Interface that consi5sts of software modules that generate IISS
application code and associated form definitions based on a
language input. The part of the AG that generates report
programs is called the Report Writer. The part of the AG that
generates interactive applications is called the Rapid
Application Generator.

Application Interface: (AI), subset of the IISS User
Interface that consists of the callable routines that are linked
with applications that use the Form Processor or Virtual
Terminal. The AI enables applications to be hosted on computers
other than the host of the User Interface.

Application Process: (AP), a cohesive unit of software that
can be initiated as a unit to perform some function or
functions.

2-2

DS 620344200
30 September 1990

Archive: A file containing the definitions of one or more
structures. Structures can be saved into or retrieved from an
archive by means of subroutine calls.

Attribute: field characteristic such as blinking,
highlighted, black, etc. and various other combinations.
Background attributes are defined for forms or windows only.
Foreground attributes are defined for items. Attributes may be
permanent, i.e., they remain the same unless changed by the
application program, or they may be temporary, i.e., they remain
in effect until the window is redisplayed.

Cell Array: A geometric primitive which consists of a
number of adjoining colored or shaded parallelograms.

Closed Figure: A figure is closed if the path traced by a
moving point returns to its starting position. The starting
position may be arbitrarily assigned. "Fillarea" is synonymous
with "closed figure".

Common Data Model: (CDM), IISS subsystem that describes
common data application process formats, form definitions, etc.
of the IISS and includes conceptual schema, external schemas,
internal schemas, and schema transformation operators.

Complex Figure: A figure is complex if the path traced by a
moving point crosses itself. An arbitrary point may be
determined to be contained within the traced boundary if a line
drawn to infinity crosses the boundary an odd number of times.
If the number of crossings is zero or even, the point is outside
the traced boundary.

Computer Graphics Metafile (CGM): A file with a
standardized format which is used to store or transmit graphic
images.

Computer Program Confiuration Item: (CPCI), an aggregation
of computer programs or any of their discrete portions, which
satisfies an end-use function.

Conceptual Schema: (CS), the standard definition used for
all data in the CDM. It is based on IDEFI information
modeling.

Current Cursor Position: the position of the cursor before
an edit command or function is issued in the text editor.

Cursor Position: the position of the cursor after any
command is issued.

Dependent Data: Data correlated to a "ependent variable.

Dependent Variable: A mathematical variable whose value is
determined by that of one or more other variables in a function.

Device Drivers: (DD), software modules written to handle
I/O for a specific kind of terminal. The modules map terminal
specific commands and data to a neutral format. Device Drivers
are part of the UI Virtual Terminal.

2-3

DS 620344200
30 September 1990

Display List: An internal Form Processor list that contains
only those forms that have been added to the screen and are
currently displayed on the screen, along with information on
where those forms are used.

Display Size: the number of lines used in the edit area.

Element: A graphics line or other primitive composed of
graphics lines, such as an arc.

Extended Binary Coded Decimal Interchange Code: (EBCDIC),
the character set used by a few computer vendors (notably IBM)
instead of ASCII.

External Schema: (ES), an application's view of the CDM's
conceptual schema.

Field: In reference to the Forms Processor, "field" refers
to any object on the open or display list. These objects can be
forms, items, window, etc. In reference to graphs, "field"
refers to a collection of one or more graph figures. A graph
field can be an axis, curve, pie chart, grid, etc.

Field Pointer: indicates the ITEM which contains the
current cursor position.

Figure: A collection of elements. A figure may be closed
or open.

Fill Area: A geometric primitive consisting of a planar
area wh'ch is to be filled in with a particular color orpattern.

Form: structured view which may be imposed on windows or
other f-or-ms. A form is composed of fields. These fields may be
defined as forms, items, and windows, prompts, non-graphics
lines, and structures.

Form Definition: (FD), form definition language after
compilation. It is read at runtime by the Form Processor.

Form Definition Language: (FDL), the language in which
electronic forms are defined.

Forms Driven Form Editor: (FDFE), subset of the Form Editor
which consists of a orms-iTven application used to create Form
Definition files interactively.

Form Editor: (FE), subset of the IISS User Interface that
is usec to create definitions of forms. The FE consists of the
Forms Driven Form Editor (FDFE) and the Forms Language Compiler
(FLAN).

Form Hierarchy: a graphic representation of the way in
which--f-i,, items and windows are related to their parent form.

2-4

DS 620344200
30 September 1990

Form Language Compiler: (FLAN), subset of the Form Editor
that consists of a batch process that accepts a series of form
definition language (FDL) statements and produces form
definition files as output.

Form Processor: (FP), subset of the IISS User Interface
that consists of a set of callable execution time routines
available to an application program for form processing.

Form Processor Text Editor: (FPTE), subset of the Form
Processor that consists of software modules that provide text
editing capabilities to all users of applications that use the
Form Processor.

Generalized Drawing Primitive (GDP): A geometric primitive
whose exact definition and representation is not specified.
This allows an implementation to support additional geometric
primitives such as arcs or conic sections in a standard
conforming manner.

Graph: A picture correlated with data that alters as the
data changes; by necessity, this is a dynamic (not predefined)
picture. A graph may be imposed on windows or forms.

Graph Definition Languaqe (GDL): An extension of the Forms
Definition Language (FDL) which is used to define business
graphs such as pie charts, X-Y plots, and bar charts.

Graph Figure: A collection of graphics primitives. The
primitives can be circles, lines, arcs, etc.

Graphical Kernel System (GKS): A 2-dimensional graphics
standard which is defined independently of any programming
language.

Icon: A collection of figures and points that is
predefined. An icon may be imposed on windows and forms.
"Icon" is synonymous with "picture".

IISS Function Screen: the first screen that is displayed
after logon. It allows the user to specify the function he
wants to access and the device type and device name on which he
is working.

Independent Data: Data that is correlated to an
independent variable.

Independent Variable: A mathematical variable whose value
is specified first and determines the value of one or more other
values in an expression or function. For example, in a business
graph of sales versus month, month is the independent variable
and sales is the dependent variable, because sales varies by
month.

Integrated Information Support System: (IISS), a test
computing environment used to investigate, demonstrate and test
the concepts of information management and information
integration in the context of Aerospace Manufacturing. The IISS

2-5

DS 620344200
30 September 1990

addresses the problems of integration of data resident on
heterogeneous data bases supported by heterogeneous computers
interconnected via a Local Area Network. (LAN).

Item: non-decomposable area of a form in which hard-coded
descrlp ive text may be placed and the only defined areas where
user data may be input/output.

Local Area Network (LAN): A privately owned network that
offers reliable, high-speed communications channels optimized
for connecting information processing equipment in a limited
geographic area.

Logical Device: a conceptual device that identifies a top
level window of an application. It is used to distinguish
between multiple applications running simultaneously on a
physical device. NOTE that a single application can have more
than one logical device. To the end user, this also appears as
multiple applications running simultaneously.

Message: descriptive text which may be returned in the
standard message line on the terminal screen. They are used to
warn of errors or provide other user information.

Message Line: a line on the terminal screen that is used to
display messages.

Network Transaction Manager: (NTM), IISS subsystem that
performs the coordination, communication and housekeeping
functions required to integrate the Application Processes and
System Services resident on the various hosts into a cohesive
system.

Open Figure: A figure is open if the path traced by a
moving point does not return to its starting position. The
starting position may be arbitrarily assigned. "Polyline" is
synonymous with "open figure".

Open List: An internal Form Processor list that contains
all forms that the application has opened for use along with
information on where the form is used.

Operatin System: (OS), software supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and peripherals.

Page: An instance of form in a window that is created
whenever a form is added to a window.

Paging and Scrolling: a method which allows a form to
contain more data than can be displayed with provisions for
viewing any portion of the data buffer.

Physical Device: a hardware terminal.

Picture: A collection of figures and points that is
predefined. A picture may be imposed on a window or a form.
"Picture" is synonymous with "icon".

2-6

DS 620344200
30 September 1990

Polyline: A geometric primitive consisting of one or more
connected line segments.

Polymarker: A geometric primitive consisting of one or
more marker symbols (such as a cross or a dot).

Presentation Schema: (PS), may be equivalent to a form. It
is the view presented to the user of the application.

Previous Cursor Position: the position of the cursor when
the previous edit command was issued.

Programmer's Hierarchical Interactive Graphics System
(PHIGSt: A two and three dimensional graphics draft standard
which is defined independently of any programming language.

Qualified Name: the name of a form, item or window preceded
by the hierarchy path so that it is uniquely identified.

Report Definition Language: an extension of the Forms
Definition Language that includes retrieval and calculation of
database information and is used to define reports.

Structure: A collection of graphic primitives much as a

form is a collection of textual primitives.

Subform: a form that is used within another form.

Text: A geometric primitive consisting of a number of
characers with a particular orientation arranged along a
particular path and aligned in a particular manner with some
point. In PHIGS, text may be specified as a part of the image
that participates fully in all transformations or as annotation
which remains in the plane of the screen at all times.

Text Editor (TE): A subset of the IISS User Interface that
consists of a file editor that is based on the test editing
functions built into the Form Processor (FP).

User Data: Data which is either input by the user or
output--yt eapplication programs to items.

User Interface: (UI), A subsystem of IISS that controls the
user'sterminal and interfaces with the rest of the system. The
UI consists of two major subsystems: the User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Development System: (UIDS), collection of
IISS User Interface subsystems that are used by applications
programmers as they develop IISS applications. The UIDS
includes the Form Editor (FE) and the Application Generator
(AG).

2-7

DS 620344200
30 September 1990

User Interface Management stem: (UIMS), the runtime UI.
It con ts of the Form Processor (FP), Virtual Terminal (VT),
Application Interface (AI), the User Interface Services (UIS)
and the Text Editor (TE).

User Interface Monitor: (UIM), part of the Form Processor
that Ra-les messaging between the NTM and the UI. It also
provides authorization checks and initiates applications.

User Interface Services (UIS): A subset of the IISS User
Interface that consists of a package of routines that aid users
in controlling their environment. It included message
manaqement, change password, and application definition
services.

User Interface/Virtual Terminal Interface: (UI/VTI),
another name for the User Interface.

Virtual Terminal: (VT), subset of the IISS User Interface
that performs the interfacing between different terminals and
the UI. This is done by defining a specific set of terminal
features and protocols which must be supported by the UI
software which constitutes the virtual terminal definition.
Specific terminals are then mapped against the virtual terminal
software by specific software modules written for each type of
real terminal supported.

Virtual Terminal Interface (VTI): The protocol used to
communicate with a device driver.

Window: dynamic area of a terminal screen on which
predeTined forms may be placed at run time.

Window Manager: a facility which allows the following to be
manipulated: size and location of windows, the device on which
an application is running, the position of a form within a
window. It is part of the Form Processor(FP).

Workstation: an abstract graphical workstation which
provides the logical interface to the applications program.
It is analogous to a form in a window.

2-8

DS 620344200
30 September 1990

SECTION 3

REQUIREMENTS

This section includes functional and performance
requirements for the FP. In addition, the FP interfaces to
other IISS Computer Program Configuration Item's (CPCI's) are
defined.

3.1 Computer Program Definition

3.1.1 System Capacities

The Form Processor supports simultaneous users each of
which may be running multiple applications and each of these
applications may require many forms. The maximum number of
users, applications, and forms is limited only by external
constraints such as the amount of available memory and the
number of available NTM logical channels.

The following minimum PHIGS capabilities will eventually be
supported:

Foreground Colors 1
Linetypes 4
Linewidths 1
Predefined polyline bundles 5
Settable polyline bundles 20
Marker types 5
Marker sizes 1
Predefined polymarker bundles 5
Settable polymarker bundles 20
Character heights 1
Character expansion factors 1
Character sets 1
String precision fonts 1
Character precision fonts 1
Stroke precision fonts 2
Predefined text bundles 6
Settable text bundles 20
Predefined interior bundles 5
Settable interior bundles 20
Predefined edge bundles 5
Settable edge bundles 20
Edgetypes 1
Edgewidths 1
Predefined patterns (see note 1) 1
Settable patterns (see note 1) 10
Hatch styles (see note 2) 3
Predefined view table entries (see note 3) 6
Settable view table entries 5
Structure priorities 2
Input classes 6
Prompt and echo types per device 1
Lenqth of input queue (see note 4) 20
Maximum string buffer size (characters) 72
Maximum stroke buffer size (points) 64

3-1

DS 620344200
30 September 1990

Workstations of category OUTPUT OR OUTIN 1
Workstations of category INPUT or OUTIN 1
MO workstations 0
MI workstations 0
Archive files 1
HLHSR identifiers 1
Modeling clipping operators 3
Modeling clipping half-spaces 6
Annotation styles 2

NOTES:

1) relevant only for workstations supporting PATTERN
interior style.

2) relevant only for workstations supportin47 HATCH interior
style.

3) view table entry 0 is always defined, cannot be changed,
and is set to the default values.

4) since available resources are finite and entries have
variable size, it may not always be possible to achieve
the minimal values in a particular application.

3.1.2 Interface Requirements

The FP interfaces with applications (which use the
Application Interface), the Virtual Terminal, and the IISS
environment by sendinq and receiving NTM messages. The
interface to the NTM is provided by the User Interface Monitor
(UIM) which is responsible for interpreting received messages
and processing them accordingly.

3-2

DS 620344200
30 September 1990

3.1.2.1 Interface Block Diagram

The structure of the FP interfaces is shown in Figure 3-1.

+------------------+
A
I I APPLICATION

--- ------- +

FP Calls
I and
v Results

FORM
PROCESSOR

User Interface
Monitor (UIM)
--------------------- +------------

FORM < ------- >1 FD Files I
PROCESSOR ------------
Callable -------------
Routines -------- >1 FDL Files I

+-------------
< --------------- +

------------ ---------- <-+ I

I - uI
Virtual ----- ------ Database
Terminal I Message ------
Protocol Files

V

----------IDevice
Driver

Figure 3-1 Form Processor Interfaces

3.1.2.2 Detailed Interface Definition

3.1.2.2.1 Application

The Form Processor interface for IISS applications is the
set of callable routines defined in the IISS Form Processor User
Manual[3]. The Application Interface intercepts these calls and
converts them into NTM messages. These messages are received by
the UIM and converted back into the original FP routine calls.

3.1.2.2.2 Device Drivers

The Form Processor interfaces with Device Drivers through a
Virtual Terminal Protocol which is documented in the Virtual
Terminal Development specification.

3-3

DS 620344200
30 September 1990

3.1.2.2.3 Data Files

The Form Processor interfaces with several data files.
These are message files, FDL files and FD files. The message
files are produced by the MM application and the format is
described in Section 3.5.1.2. The FDL files are output when
forms are created and modified by an application at execution
time. The structure of these files is described in [9] the
Forms Language Compiler Development Specification. The FD files
are generated when FDL files are compiled by the Forms Language
Compiler. The structure of these files is described in Section
3.5.1.1.

3.2 Detailed Functional Requirements

The following sections describe the detailed functional
requirements of the Form Processor. The Form Processor
includes a Graphics Support System based on the PHIGS Draft
Standard. Terminology for both the text-based Forms Processor
and PHIGS will be maintained in this implementation. Where
these concepts are similar or equal they will be noted. The
proposed C bindings routine names for the functions are enclosed
in parenthesis following the reference to the functions.

In PHIGS Structures are very similar in concept to "forms".
Structures provide, the vehicle for traversing the hierarchy.
The structures can execute other structures providing a
structure within a structure capability.

The PHIGS structures become active when they are "Posted"
to a workstation. In the From Processor, this is comparable to
adding a form to a window. The concept of a window in the Form
Processor is consistent with the workstation in PHIGS.

3.2.1 Form Processing

Forms consist of rectangular areas on the terminal screen
or hardcopy device. These areas are called fields and allow the
user to enter and view variable data. There are nine types of
form fields:

o Items
o Forms
o Windows
o Graphs
o Polymarkers
o Polylines
o Text
o Fill Areas
o Cell Arrays

In ITEM is a field that holds a specific piece of data.
Either the application program or the user can fill in the data
value.

As the number of forms and item fields per form increase,
there may be groups of items that are shared by more than one
form or that make sense by themselves. These logical groups of

3-4

DS 620344200
30 September 1990

items can be made into separate forms and incorporated into
others as a unit by defining an area on the host form as a FORM
field. Forms can be nested to any level in this manner.

WINDOW fields provided the capability of changing part of a
form at run time. The WINDOW is used as a place holder on the
form. At run time, the application determines what forms the
window will contain. A WINDOW field can contain more than one
form at a time although only one form will be visible. A WINDOW
can contain a WORKSTATION. Each form added to the window
creates a page and just as with a book, only the current page
can be seen.

WORKSTATIONS are representations of two or three
dimensional objects. A WORKSTATION is analogous to a FORM.

GRAPHS are pictures correlated with data that alters as the
data changes. GRAPHS are dynamic (not predefined) pictures. A
GRAPH may be displayed upon a FORM or a WINDOW.

POLYMARKERS are symbols (such as a cross or a dot) which
may appear in a FORM.

POLYLINES are geometric primitives consisting of one or
more connected line segments. They may appear in FORMs.

TEXT are character strings which may appear in two ways; as
characters which are displayed in planes (i.e. a perspective
view), or as 2-D annotations which are not part of any object.

FILL AREAS are geometric primitives consisting of planar
areas which are filled with colors or patterns.

CELL ARRAYS are geometric primitives which consist of a
rectangular grid of equal size rectangular cells each with an
assigned color or shade.

3.2.1.1 Open List

The Open List is an internal Form Processor list that
contains all forms that the application has opened for use along
with information on where the form is used.

3.2.1.2 Display List

The Display List is an internal Form Processor list that
contains only those forms that have been added to the screen and
are currently displayed on the screen, along with information on
where those forms are used.

In summary, windows can contain forms, workstations, and
graphs. Forms can contain items, forms, windows, polymarkers,
polylines, text, fill areas, and graphs. To display forms, an
application builds a Display List similar to that used in many
high-powered graphics terminals. The Display List begins with
the form PSCREN (the system form) which contains the
window SCREEN which is the root for all user forms. Since
windows contain forms which in turn can contain windows, items

3-5

DS 620344200
30 September 1990

and forms, the Display List could be a forms hierarchy like that
shown in Figure 3-2. Before a form can be put on the Display
List, it must be put on the Open List.

Window

I
Form

Window Form Item

rm Window Form Item
Form •

Window Form Item
* 0

* a

Figure 3-2 Sample Display List

The Display List allows users to easily transfer from form
to form or have forms within other high level forms. It also
provides the basis for running interactive programs
concurrently.

Fields on the Display List are identified using qualified
names. A fully qualified name specifies the name of each form,
window, and item on the path from a specified starting point to
the field being identified. The name of an array element is the
name of the array followed by subscripts enclosed in parentheses
(e.g., "array(2)"). The name of a page in a window is the name
of the window followed by a page number enclosed in angle
brackets (e.g., "window<l>"). Names are separated by periods
and the qualified name ends with a semicolon (e.g.,
"window<l>.form.item(2);"). A qualified name need not be fully
qualified provided the omitted elements are not necessary to
identify different fields with the same name.

A qualified name that begins with a period is an absolute
name which means the path starts at the top of the Display List
(i.e., PSCREN). A qualified name that does not begin with a
period is a relative name which means the path starts at the
current default field. The default field is initially set to
PSCREN but may be changed.

Fields can depend on other fields for their locations
and/or values. Each field contains lists of other fields that
depend on its horizontal location, vertical location and value.

Implementing the User Interface forms based style of
interaction includes the following form processing activities:

3-6

DS 620344200
30 September 1990

o Controlling the Form Processor
o opening and closing forms
o Creating and modifying forms
o Adding and removing forms from the current display
o Transferring data between forms and applications
o Displaying forms and processing user input
o Getting and setting the cursor position
o Displaying messages
o Creating and modifying logical devices

These activities are performed by callable routines that operate
on a network of statically and dynamically allocated data
structures.

The data structures for text-based forms and as graphics
primitives on forms are:

UID - allows access to the network.

USR - contains information about each logged on user.

PD - contains information about each physical device.

AP - contains information about each running application.

FPD - represents information about logical devices.

FIELD - represents forms.

RELPOS - represents a relative position.

FORM - points to all the displayed instances of the form and
a list of attributes for the form.

ITEM - points to the help message for the item and a data
buffer which contains the current and previous values
of the item.

PROMPT - points to the prompt text.

ATTMAP - represents background and display attributes.

MSGBUF - represent messages.

ENODE - represents field values.

COORD - represents a list of horizontal and vertical positions
which may or may not be relative

The data structures for Graphs are:

AXIS - points to an axis definition for a graph form.

PLOT - contains information common to pie, bar, and line
graphs.

LEGEND - contains legend information for a graph form.

SEGINFO - contains information about a pie segment.

3-7

DS 620344200
30 September 1990

LABEL - contains information for graphics text string.

IDAT - contains independent data information for a curve.

DDAT - contains dependent data information for a curve. A
total curve definition for either a bar or line graph
consists of the DDAT node along with the parent IDAT
vertex.

The data structures for 3-D Graphics are:

This is PHIGS data which needs to be incorporated into the
Forms data structures.

PHIGS Description Table -
contains information on the number of
available workstation type, number of
open workstations, available character
sets.

PHIGS Traversal State List -
contains information on text font,
attributes, and index values for
Polylines, Polymarkers, etc.

3-8

DS 620344200
30 September 1990

PHIGS State List - contains information on the set of open
workstations, name of open structure,

current element pointer, and edit mode.

PHIGS Workstation State List -
contains information on the open
workstation, workstation
identifier,connection identifier, and
workstation type.

PHIGS Workstation Description Table -

contains information on the type of
workstation , whether output,input,
metafile, etc.

Sections 3.5.3 and 3.5.4 contain the detailed definitions
of these structures. The following sections describe how these
structures are used by the callable routines to perform the form
processing activities.

3.2.1.3 Controlling the Form Processor

The routine INITFP must be called by an application before
any other FP routines are called to perform initialization
activities such as initializing the internal data structures.

The routine TERMFP must be called when all form processing
is completed to allow the Form Processor to perform necessary
cleanup activities such as freeing internal data structures.

The routine SETDQN sets the default field in the FPD
structure, and the routine GETDQN returns the absolute fully
qualified name of the current default field.

The routine REDRAW ALL STRUCTURES (PREDRAWALLSTRUCT) will
execute all deferred actions, and will cause all structures
posted to this workstation to be redisplayed.

The routine UPDATE WORKSTATION (PUPDATEWS) will execute all
deferred actions, and will depending on flag status, either
cause updated blocks to be displayed or, cause all structures
posted to this workstation to be redisplayed.

The routine, INQUIRE LIST OF AVAILABLE WORKSTATION TYPES,
returns the list of workstation types which can be used as
parameters to popenws.

The routine, INQUIRE WORKSTATION CONNECTION AND TYPE,
returns the connection identifier and specific workstation type
associated with the specified open workstation.

The routine, PARFQN, lets you find out the name of the
field and its type at a specified level of a specified fully
qualified name.

The routine, EVLINT, evaluates an integer value expression.

3-9

DS 620344200
30 September 1990

The routine, EVLREA, evaluates a real value expression.

The routine, EVLSTR, evaluates a string value expression.

The routine, GPAGE, returns the name of the form that a
specified page of a window contains.

This routine, GWINDO, returns the number of pages in a
window.

The routine, INQDEV, returns the width and depth of a
physical device, and whether or not the device supports
graphics.

The routine, Inquire Display Space Size, returns the
display size of the specified workstation.

The routine, Inquire Display Space Size 3, returns the
display size of the specified workstation.

3.2.1.4 Opening and Closing Forms

The routine OPNFRM reads a fort. definition file and creates
the corresponding FIELD structures which are then added to the
Open List. The routine CLSFRM releases the FIELD structures on
the Open List when that form is no longer required for
processing.

3.2.1.5 Creating and Modifying Forms

The routines described in this section enable application
programs to create new forms, add or remove fields from forms,
change form and field characteristics, and store forms at
execution time. Both the Open and Display Lists are modified by
the routines that perform set and remove operations. Only the
Open List is modified by the routines that perform create and
save operations.

3.2.1.5.1 Creating and Saving Forms

The routine CRTFRM creates a FIELD structure for a form
which may then be further defined using other routines to
include such things as prompts, fields, or particular
attributes. The form size defaults to 0 0 meaning it is not a
fixed size and the attribute is transparent. The routine MAKFRM
creates a FIELD structure for a form with a specified size and
attribute. The form may then be further defined using other
routines as described for CRTFRM. The routine SAVFRM saves the
FIELD structures for a form as an FDL source file, a compiled
form definition, or both.

The routine REPFRM creates a copy of the FIELD structures
for a form with a new form name. All characteristics of the
original form are replicated in the new form at the time of the
copy operation. After the copy, the two forms are entirely
separate entities.

3-10

DS 620344200
30 September 1990

The routine CPFORM copies a form on the display list to a
new instance of the form on the display list. The data from the
copied form is replicated to the new form.

3.2.1.5.2 Adding or Removing Fields

The routines described in this section modify the Open List
and then make the same changes on the Display List by following
the next use pointers.

Text-Based Forms

The routine CRTFLD creates a new FIELD structure on a form.
Required field characteristics have default values. The field
is a non-displayed ITEM. This means that the location must be
specified using the routine SETLOC in order for the item to
appear on the screen. The size of the field defaults to one and
its display attribute is text. Other routines may be used to
change such things as prompts, help and array dimensions. The
routine ADDFLD also creates a new FIELD structure on a form but
allows the location, size, field type and display attribute to
be specified without calling additional routines.

The routine REPFLD creates a copy of a FIELD structure with
a new name. The form containing the field copy may be the form
containing the original field or a different form. All
characteristics of the original field are replicated in the new
field at the time of the copy operation except the location.
The field copy will not have a location and will not appear when
its containing form is displayed unless another routine is used
to define a valid location for it. The routine MVRFLD creates a
copy of a FIELD structure with a new name and a specified
location. After the copy using either routine, the two fields
are entirely separate entities.

The routine RMVFLD removes an existing FIELD structure from
a form. If other locations depend on the field being removed,
an error is returned. If other field values depend on the
field, the values become undefined (i.e., the next time the
value is calculated, *'s will be displayed in the field). The
routine GFMFLD returns the fields that are contained on a
specified form.

The routine GDPFEX returns the fields whose values depend
on a specified field. The routine GDPFLC returns the fields
whose locations depend on a specified field.

3-D Graphics Forms

The routine POLYLINE (PPOLYLINE) will depending on the edit
mode, insert a Polyline element into the open structure. During
a structural traversal a connected sequence of straight lines is
generated starting from the first point and ending at the last
point. The current values of the Polyline attributes are bound
to the parameter.

The routine POLYMARKER (PPOLYMARKER) will depending on the
edit mode, inset a Polymarker element into the open structure.
During structure traversal a sequence of markers is generated to

3-11

DS 620344200
30 September 1990

identify all the given positions. The current values of the
marker attributes as defined in the PHIGS traversal state list
are bound to the parameter.

The routine TEXT (PTEXT) will during structure traversal,
generate a character string. The local coordinate system is the
x y plane as defined in the modeling coordinate system. The
current values of the Text attributes are bound to the
parameter.

The routine FILL AREA (PFILLAREA) will during structure
traversal, generate an implicitly closed polygonal area. This
function specifies the three dimensional form of the fill area
parameter. The current values of the fill area (interior)
attributes is defined in the PHIGS traversal state list are
bound to the parameter.

The routine CELL ARRAY (PCELLARRARY) specifies the form of
the cell array parameter. During structure traversal a cell
array is drawn using the cell rectangle corners, the number of
cells along each axis and the color irdex array.

The routine EXECUTE STRUCTURE (PEXECUTESTRUCT) will
during a structure traversal, execute a specific structure.
During structure traversal the following actions shall occur.
Traversal of the current structure will be suspended, the
current state of the PHIGS traversal state list is saved, the
execute structure network is completely traversed, the saved
PHIGS transversal state list values are restored, and the
transversal of the current structure is resumed.

The routine OPEN STRUCTURE will create the specified
structure if necessary and open it.

The CLOSE STRUCTURE routine will close the current open
structure.

The DELETE ALL STRUCTURE will delete all existing
structures (as if by PDELSTRUCT).

The routine DELETE STRUCTURE, unposts the specified
structure from all workstations and deletes the specified
structure and all references to it. If the specified structure
is currently open, it is closed prior to deletion and reopened
afterwards.

The routine, DELETE STRUCTURE NETWORK deletes (as if by
pdelstruct) the specified structure and all structure referenced
by it whether directly or indirectly except that if ref flag is
KEEP, referenced structures which are also referenced by
structures outside of the network are not deleted.

3-12

DS 620344200
30 September 1990

Graph Forms

The routine GRALOC specifies the location of a graph with
respect to its containing form. This routine affects the
display list only. Inputs are qualified name, qualified name of
the vertical reference, vertical point on the reference (l=top,
2=center, 3=bottom), vertical reference (l=top, 2=center,
3=bottom), point on the graph, vertical distance from reference
field to graph reference point, qualified name of horizontal
reference, horizontal point on the reference field (1=top,
2=center, 3=bottom), horizontal reference point on the graph
(l=top, 2=center, 3=bottom), and horizontal distance from
reference field to graph reference point. The only output is a
return code.

The routine DELWHR deletes a "where data is located"
expression on a graph. The routine effects the display list
only. The qualified name of the graph or the curve is input. A
return code is the output.

The routine ADDWHR adds a "where data is located"
expression to a dataset. If the clause is to be a list, the
routine can be called more than once. Only the display list is
effected by the routine. Inputs are the qualified name of the
graph or curve, the qualified name of the field containing the
where clause, and the type (independent or dependent). A return
code is the only output.

The routine ADDIAX specifies the axis that is to be used
for the independent axis. If the graph is a pie chart, an error
is returned. Only the display list is effected by the routine.
The qualified name of the graph and the name of the independent
axis are inputs. A return code is the output.

The routine PGDATA provides data to the Form Processor in
lieu of a "where data is located" clause. If the data location
clause is already present, an error is returned and the clause
must be removed. Inputs are the qualified name of the graph, the
number of data points that are being passed in by the following
argument, the data that is to be plotted and the type
(independent or dependent). A return code is the output.

The routine DELBUN deletes a graphics attribute bundle. If
the name of the bundle is omitted, all bundled attributes are
deleted. This routine effects both the open and display lists.
Inputs are the qualified name of the graphics field and the name
of the attribute bundle. The only output is a return code.

The routine DEFBUN defines a graphics attribute bundle.
This routine effects the open and display lists. Inputs are the
qualified name of the graph, the name of the attribute bundle,
the length of the attribute string, and the list of attributes
for the bundle being defined. A return code is the output.

The routine DELTLA deletes the tick mark labels from a
particular axis instance on the display list. The qualified name
of the axis and the type of labels (major or minor) are inputs.
A return code is the output.

3-13

DS 620344200
30 September 1990

The routine DFMXMN defines the maximum and minimum values
on an axis instance on the display list. If the values are
set,the FP will determine the appropriate values based on the
data. Inputs are the qualified name of the axis, the maximum
value on the axis, and the minimum value on the axis. A return
code is the output.

The routine ADDTLA adds tick mark labels to an axis
instance on the display list. Multiple labels may be added by
repeating the routine call. inputs are the qualified name of the
axis, the type of label (major or minor), the length of the tick
mark label string and the tick mark label string. The output is
a return code.

The routine DEFWIN defines a graph window. The limits of
the window allow the data coordinates to be correlated to the
screen coordinates. If the maximum and minimum coordinates of
the window are not specified, the default for business graphs
will be the maximum and minimum data values adjusted for a 10%
margin. Only the display list is effected by this routine.
Inputs are the qualified name of the graph, the maximum
horizontal value, the minimum horizontal value, the maximum
vertical value and the minimum vertical value. A return code is
the output.

The routine DEFGVU defines the extent that the graph is to
fill the graph window (the range is 0 to 1). Only the display
list is effected by this routine. Inputs are the qualified name
of the graph, the maximum horizontal value, the minimum
horizontal value, the maximum vertical value and the minimum
vertical value. A return code is the output.

3-14

DS 620344200
30 September 1990

The routine ADTICS adds tick marks to a particular axis
instance on the display list. Inputs are the qualified name of
the axis, the name of the graphics attribute bundle to be used
to display the tick mark labels, an indicator to determine
whether the following value is a value step between ticks or an
absolute number of ticks, or value of ticks. The output is a
return code.

The routine DEFSEG creates or redefines a segment of a pie
chart. This routine affects the display list only. Its input
consists of a qualified name, a segment number, an explosion
factor, fill color, pattern name and alternate pattern name. The
only output is a return code.

The explosion factor is the percentage of the radius to
project the segment from the center of the circle. For example,
an explosion factor of 2 will project the segment a factor of
(radius + (0.02 * radius)) from the circle. Fill color is the
color with which to fill the segment. The available colors are
BLACK, WHITE, MAGENTA, BLUE, RED, CYAN, YELLOW, GREEN.

Pattern name is the name of the pattern with which to fill
the segment. Alternate pattern name is the name of the pattern
to use if the physical device is monochromatic.

The routine PERQUA adds a percent or quantity definition to
a segment. This routine affects the display list only. Inputs
include the qualified name, the segment number, the percent or
quantity, and an inside or outside flag. The only output is a
return code.

The routine LABSEG adds a label to a pie segment. A
segment may have more than one label by calling this routine the
desired number of times. The routine affects the display list
only. Inputs are qualified name, segment number, length of the
segment label, and the segment label. the only output parameter
is a return code.

The routine LEGLAB adds a legend label for a curve or
segment. Any number of legend labels may be added for a entity
by callinv the routine repeatedly. The routine affects the
display list only. Inputs are qualified name, legend type
(curve or segment), segment number (if type is segment), curve
name (if type is curve), length of the legend string, and the
name of the attribute bundle that will be used to display the
legend string. The only output is a return code.

The routine DELSEG deletes a pie segment. The data
will also be deleted, and this will affect the drawing of the
other segments in a pie chart since the total value of the pie
will be altered. This routine affects the display list only.
Inputs are qualified name and segment number. A return code is
the only output.

The routine DEFGRA defines a graph. This routine affects
the open and display lists. Inputs are graph name, graph type
and the name of the attribute bundle the is used for the
background of the graph. A return code is the output parameter.

3-15

DS 620344200
30 September 1990

The routine ADDLEG adds a legend definition to a graph.
The legend labels are added separately. The routine affects the
display list only. Inputs are the qualified name, a flag to
indicate whether or not the legend should be enclosed by a box,
the qualified name of the vertical reference point, the vertical
point on the reference field (1=top, 2=center, 3=bottom),
vertical reference point on the graph (1=top, 2=center,
3=bottom), vertical distance from the reference field to the
graph reference point, qualified name of the horizontal
reference, horizontal point on the reference field (l=top,
2=center, 3=bottom), horizontal reference point on the graph
(l=top, 2=center, 3=bottom), and horizontal distance from
reference field to graph reference point. The output is a return
code.

The routine ADGLAB adds a label to a graph. A graph may
have any number of labels by calling the routine repeatedly.
The routine effects the open and display list. Inputs are graph
name, length of the label string, the label string, the name of
the attribute bundle used to display the label, the qualified
name of the vertical reference point, the vertical point on the
reference field (l=top, 2=center, 3=bottom), vertical reference
point on the graph (l=top, 2=center, 3=bottom), vertical
distance from the reference field to the graph reference point,
qualified name of the horizontal reference, horizontal point on
the reference field (l=top, 2=center, 3=bottom), horizontal
reference point on the graph (l=top, 2=center, 3=bottom), and
horizontal distance from reference field to graph reference
point. The output is a return code.

The routine DELLEG deletes a legend from a graph. The
routine effects the display list only. Input is the qualified
name of the graph and the output is a return code.

The routine DELGLA removes all the graph labels. The
labels on the axes or segments are not effected. This routine
effects the display and the open lists. Input is the qualified
name of the graph and the output is a return code.

The routine DEFCRV defines a curve for a bar or linear
plot. This routine effects the display list only. Inputs are
the qualified name of the graph, the name of the curve, the name
of the dependent axis, the name of the graphics attribute bundle
that the curve itself is to be displayed with, the name of the
alternate graphics bundle that is to be used for display when
the physical device is monochromatic, the name of the fill color
(BLACK, WHITE, MAGENTA, YELLOW, RED, BLUE, CYAN, or GREEN), the
name of the pattern that is to used to fill the area under the
curve, the name of the alternate fill pattern to use if the
physical device is monochromatic , type (additive or absolute)
and the name of the curve that is being added to. A return code
is the only output parameter.

The routine DELCRV deletes a curve from the display list.
The qualified name of the curve is input and a return code is
output.

3-16

DS 620344200
30 September 1990

The routine DELSLA deletes the labels from a pie segment.
This routine effects the display list only. The qualified name
of the axis and the segment number are inputs. A return code is
the output.

The routine DELALA deletes all the labels from an axis
instance on the display list. The input is the qualified name of
the axis and the output is the return code.

The routine DELAXS deletes an axis definition from both the
open and display lists. Inputs are the qualified name of the
graph and the axis name. The output is a return code.

The routine DFAXLC determines where the axis is to be
placed. This routine effects the display list only. Inputs are
the cualified name of the axis, the qualified name of the
vertical reference point, the vertical point on the reference
field (1=top, 2=center, 3=bottom), vertical reference point on
the graph (1=top, 2=center, 3=bottom), vertical distance from
the reference field to the graph reference point, qualified name
of the horizontal reference, horizontal point on the reference
field (1=top, 2=center, 3=bottom), horizontal reference point on
the graph (1=top, 2=center, 3=bottom), and horizontal distance
from reference field to graph reference point. The output is a
return code.

The routine ADDALA adds axis labels to an axis instance on
the display list. Multiple labels may be added by repeating the
routine call. The qualified name of the axis, the length of the
axis string and the label string are inputs. A return code is
the only output.

The routine DEFAXS defines an axis. Both the display and
open lists are effected. Inputs are the qualified name of the
graph the axis is linked to, the axis name, the direction, the
scale (linear or logarithmic), the grid, the length of the axis,
and the name of the attribute bundle to be used for display
purposes. A return code is the output.

3.2.1.5.3 Changing Characteristics

Any form and field characteristics that can be specified
using the Forms Definition Language can be changed using the
routines described in this section.

Text-Based Forms

The routine SETATT sets the ATTDEF structure in an ATTMAP
structure attached to a form FIELD structure. The ATTMAP
structure is created if it doesn't already exist. If the
primitive conflicts with an existing primitive, the existing
primitive is removed. The routine RMVATT removes either a
specific attribute definition or all attribute definitions from
a form. The routine INQATT returns the attributes which are
defined for a form or the primitives that are contained in a
specific attribute definition.

3-17

DS 620344200
30 September 1990

The routine SETDIS sets the permanent attribute of a FIELD
structure. The routine INQDIS returns the current permanent
attribute of a FIELD structure.

The routine SETHLP sets the help string of an item FIELD
structure. The routine INQHLP returns the current help string
of an item FIELD structure. The routine RMVHLP deletes the
current help string of an item FIELD structure.

The routine SETSIZ sets the size of a FIELD structure. The
routine INQSIZ returns the size of a FIELD structure.

The routine ADDRPT creates a new array FIELD structure
which contains a specified number of the previously existing
FIELD structures. The routine RMVDIM eliminates an array FIELD
structure.

The routine SETRPT sets the members of the ARRAY structure
in an array FIELD structure. The specified FIELD structure must
exist. The RMVRPT removes all of the array FIELD structures
associated with a FIELD structure, resulting in the FIELD
structure being attached directly to its parent form FIELD
structure. The INQRPT returns the members of an ARRAY
structure.

The routine SETVAL parses the supplied value expression
into a tree of ENODE structures which is then attached to the
specified FIELD structure (replacing any previous value). The
routine INQVAL traverses the ENODE structure tree to regenerate
the value expression which it returns. The routine RMVVAL
deletes the ENODE structure tree.

The routine SETAPR parses the supplied appears if
expression into a tree of ENODE structures which is then
attached to the specified FIELD structure (replacing any
previous value). The routine INQAPR traverses the ENODE
structure to regenerate the appears expression which it returns.
The routine RMVAPR deletes the ENODE structure tree.

The routine SETDOM sets a domain field of the ITEM
structure in a FIELD structure. If the new setting conflicts
with the settings of other domain fields, the other fields are
adjusted to conform to the new setting (e.g., if justl is set
and SETDOM is called to set justr, justl will be cleared). The
routine RMVDOM clears all of the domain fields. The routine
INQDOM returns the value of a domain field or fields.

The routine SETNAM changes the name in a FIELD structure.
An error is returned if there are references to the field (e.g.,
relative locations or calculated values).

The routine SETLOC sets the location in a FIELD structure.
The horizontal and vertical components of the location are
specified separately. Each component consists of a reference
point on the field being positioned, a field to position it
relative to, a reference point on the related field, and the
distance between the two reference points. If the related field
is not specified, the second reference point defaults to the
upper left corner of the containing form. Setting the location

3-18

DS 620344200
30 September 1990

of a FIELD structure to 0 0 makes it non-displayed. The routine
INQLOC returns the location as specified of a FIELD structure.
The routine INQABS returns the absolute row and column location
of a FIELD structure relative to its containing form after
resolving relative positions.

The routine SETTYP changes the type of a field. Any
previously defined characteristics which do not apply to the new
field type are deleted. Any required characteristics not
previously specified, will automatically be defined with
appropriate defaults. The routine INQTYP returns the type of a
field.

The routine, INQDSZ, returns the size and depth of a
particular instance of a field on the display list.

The routine, SETSLN, redefines a non-graphics line field.
If the field does not previously exist, one is created.

The routine SETPRO adds a prompt to a FIELD structure. The
routine RMVPRO removes a specific prompt or all prompts from a
FIELD structure. The routine INQPRO returns a prompt defined
for a field.

3-D Graphics Forms

The routine SET POLYLINE INDEX (PSETLINEIND) will during
structure traversal, set the current Polyline index entry in the
PHIGS traversal list to the value specified by the parameter.
This value is used when creating subsequent Polyline and
Polyline three output primitives.

The routine SET POLYMARKER INDEX (PSETMARKERIND) will
during structure traversal, set the current Polymarker index
entry in the PHIGS traversal state list to the value specified
by the parameter. This value is used when creating subsequent
Polymarker and Polymarker three output primitives.

The routine SET TEXT INDEX (PSETTEXTIND) will during
structure traversal, set the current Text index entry in the
PHIGS traversal state list to the value specified by the
parameter. This value is used when creating subsequent Text
output primitives.

The routine SET LINE TYPE (PSETLINETYPE) will during
structure traversal, set the current line type entry in the
PHIGS state list to the value specified by the parameter. This
value is used when creating subsequent Polyline output
primitives. This value does not effect the display of
subsequent Polylines output primitives created when the current
line type entry PHIGS traversal state is bundled. Line type
values which are legal are 1) solid line 2) dashed line 3)
dotted line 4) dashed dotted line 5) reserve for registration,
and less than zero are implementation dependent. During
structure traversal if the specified line type is not available
on a workstation, line type 1 is used on that workstation.

3-19

DS 620344200
30 September 1990

of a FIELD structure to 0 0 makes it non-displayed. The routine
INQLOC returns the location as specified of a FIELD structure.
The routine INQABS returns the absolute row and column location
of a FIELD structure relative to its containing form after
resolving relative positions.

The routine SETTYP changes the type of a field. Any
previously defined characteristics which do not apply to the new
field type are deleted. Any required characteristics not
previously specified, will automatically be defined with
appropriate defaults. The routine INQTYP returns the type of a
field.

The routine, INQDSZ, returns the size and depth of a
particular instance of a field on the display list.

The routine, SETSLN, redefines a non-graphics line field.
If the field does not previously exist, one is created.

The routine SETPRO adds a prompt to a FIELD structure. The
routine RMVPRO yoves a specific prompt or all prompts from a
FIELD structure. The routine INQPRO returns a prompt defined
for a field.

3-D Graphics Forms

The routine SET POLYLINE INDEX (PSETLINEIND) will during
structure traversal, set the current Polyline index entry in the
PHIGS traversal list to the value specified by the parameter.
This value is used when creating subsequent Polyline and
Polyline three output primitives.

The routine SET POLYMARKER INDEX (PSETMARKERIND) will
during structure traversal, set the current Polymarker index
entry in the PHIGS traversal state list to the value specified
by the parameter. This value is used when creating subsequent
Polymarker and Polymarker three output primitives.

The routine SET TEXT INDEX (PSETTEXTIND) will during
structure traversal, set the current Text index entry in the
PHIGS traversal state list to the value specified by the
parameter. This value is used when creating subsequent Text
output primitives.

The routine SET LINE TYPE (PSETLINETYPE) will during
structure traversal, set the current line type entry in the
PHIGS state list to the value specified by the parameter. This
value is used when creating subsequent Polyline output
primitives. This value does not effect the display of
subsequent Polylines output primitives created when the current
line type entry PHIGS traversal state is bundled. Line type
values which are legal are 1) solid line 2) dashed line 3)
dotted line 4) dashed dotted line 5) reserve for registration,
and less than zero are implementation dependent. During
structure traversal if the specified line type is not available
on a workstation, line type 1 is used on that workstation.

3-19

DS 620344200
30 September 1990

The routine, ROTATE X, generates the three dimensional
transformation which performs the specified rotation about the X
axis.

The routine, ROTATE Y,generates the three dimensional
transformation which performs the specified rotation about the Y
axis.

The routine, ROTATE Z, generates the three dimensional
transformation which performs the specified rotation about the Z
axis.

The routine, SCALE, generates the two dimensional
transformation which performs the specified scaling.

The routine, SCALE 3, generates the three dimensional
transformation which performs the specified scaling.

The routine, SET CHARACTER HEIGHT, inserts a set character
height element into the currently open structure. During
traversal, this element will set the character height entry in
the traversal state list which affects subsequent text
primitives.

The routine, SET GLOBAL TRANSFORMATION, inserts a two
dimensional set global transformation element into the currently
open structure. During traversal, this element will set the
global transformation entry in the traversal state list which
affects subsequent primitives.

The routine, SET GLOBAL TRANSFORMATION 3, inserts a three
dimensional set global transformation element into the currently
open structure. During traversal, this element will set the
global transformation entry in the traversal state list which
affects subsequent primitives.

The routine, SET INTERIOR COLOR INDEX, inserts a set
interior color index element into the currently open structure.
During traversal, this element will set the interior color index
entry in the traversal state list which affects subsequent fill
area primitives.

The routine, SET INTERIOR STYLE, inserts a set interior
style element into the currently open structure. During
traversal, this element will set the interior style entry in the
traversal state list which affects subsequent fill area
primitives.

The routine, SET LOCAL TRANSFORMATION, inserts a two
dimensional set local transformation element into the currently
open structure. During traversal, this element will modify the
local transformation entry in the traversal state list by
composing the specified transformation with the current entry in
the specified manner which affects subsequent primitives.

The routine, SET LOCAL TRANSFORMATION 3, inserts a three
dimensional set local transformation element into the currently
open structure. During traversal, this element will modify the

3-21

DS 620344200
30 September 1990

local transformation entry in the traversal state list by
composing the specified transformation with the current entry in
the specified manner which affects subsequent primitives.

The routine SET TEXT COLOR INDEX (PSETTEXTCOLOURIND) will
during structure traversal, set the current Text color index
entry in the PHIGS state list to the value specified by the
parameter. During structure traversal if the specified text
color index is not available on the workstation, color index 1
is used on that workstation.

3.2.1.6 Modifying the Display List

The routine ADDFRM copies a form FIELD structure from the
Open List to the Display List underneath a window FIELD
structure. References to other fields in locations and values
are resolved into pointers to the fields and the final locations
and values are computed. Likewise, references to attributes are
resolved into pointers to the attributes' definitions. If the
form being added is not already on the Open List, it will be
opened automatically. The added form creates a new page in the
window which "covers up" any previous pages but does not remove
them.

The routine RPLFRM replaces the form FIELD structure
currently on a specified page in a window with a different form
from the Open List. The routine RMVPAG removes a specified page
from a window as well as any subsequently added pages,
uncovering the previously added page. The routine GWINDO
returns the number of pages in a window, and the routine GPAGE
returns the name of the form that a specified page of a window
contains.

The routine ADDELM adds an element to the end of an
open-ended array (i.e., an array with no specified number of
elements) by copying the prototype element FIELD structure from
the Open List to the Display List underneath the array FIELD
structure. The routine NUMELM returns the current number of
elements in a specified open-ended array.

The routine, DELELM, deletes an element from an open-ended
array.

The routine PUTATT sets the permanent or temporary
attribute in item FIELD structure. The temporary attribute is
in effect the next time the form is displayed only. The
permanent attribute is en effect for all subsequent displays.
If a form is specified instead of a specific item, then PUTATT
is applied recursively to all of the fields contained in the
form. If a window is specified, then PUTATT is applied
recursively to all of the pages contained in the window. The
routine GETATT returns the values for temporary or permanent
display of an item.

The routine PUTBAK sets the permanent attribute of a form
or window FIELD structure. Temporary attributes are not
supported for forms or windows. The routine GETBAK returns the
permanent attribute of a form or window field.

3-22

DS 620344200
30 September 1990

The routine APRFLD modifies the display flag for any type
of FIELD structure.

The routine POST STRUCTURE (PPOSTSTRUCT) add the specified
structure to the table of posted structures in the workstation
state list of the specified workstation. If the specified
structure does not exist, a new empty structure is created.

The routine UNPOST STRUCTURE (PUNPOSTSTRUCT) will unpost
the specified structure from the specified workstation by
removing the structure from the table of posted structures from
the workstation state list of specified workstations. If the
specified structure does not exist, no action takes place. Note
that unposting a structure does not delete the structure.

The routine UNPOST ALL STRUCTURES (PUNPOSTALLSTRUCT) will
unpost all structures from the specified workstation by
removing all structures from the table of posted structures from
the workstation state list of the specified workstation. Note
that unposting any structure does not delete the structure.

The routine OPEN WORKSTATION (POPENWS) is called by the
application. PHIGS will request that the operating system
establish the specified connection for a workstation
characterized in the workstation description table by the
workstation type. The workstation state list is allocated and
initialized. The workstation identifier is added to the set of
open workstations in the PHIGS state list.

The routine CLOSE WORKSTATION (PCLOSEWS) executes an UPDATE
WORKSTATION (PUPDATEWS) for the specified workstation. The
workstation state list is released. The workstation identifier
is deleted from the set of open workstations in the PHIGS state
list and from the list of workstations to which posted in the
structure state list. The input queue is flushed of all events
from all devices on the workstation for which are being closed.
The specific workstation description table, created when the
workstation was opened, becomes unavailable and the workstation
type value associated with this specific workstation description
table becomes undefined. The connection to the workstation is
released.

3.2.1.7 Transferring Data

The routine PDATA puts data into a field. If the field is
an item, then data is copied into the data buffer pointed to by
the item FIELD structure. If the field is a form, sequential
chunks of data are placed in each field on the form. If the
field is a fixed-size (i.e., not open-ended) array, sequential
chunks of data are placed in each element of the array. All
other field types are skipped over.

The routine GDATA returns data from a field on a form
analogous to PDATA. Either the current data values or the
values prior to the previous OISCR (section 3.2.1.5) may be
retrieved. The routine GDATLN returns the length of the data
contained in a field.

3-23

DS 620344200
30 September 1990

3.2.1.8 Displaying Forms

The routine OUTSCR updates the terminal screen with the
current Display List and the current cursor location. The
routine OISCR al3o updates the terminal screen, but it waits for
user input before processing continues. The name of the window
where input is to occur must be specified; all fields outside
this window are guarded and not enterable. Input data is
received from the Device Driver whenever a function key is
pressed. The data associated with enterable items is stored in
the buffer pointed to by the items' FIELD structures. The
function key is processed as specified in Section 3.2.4. If the
key is an Application mode key, it is returned to the
application. Otherwise, OISCR waits for additional input data.

Every item defined for a form has a value associated with
it. If the value depends on another field, it is referred to as
a calculated field and its value is recomputed prior to updating
the terminal screen when a field it depends on has been chanqed
since the last time the screen was updated. The order in which
field values are recomputed is undefined and a field is only
recomputed once per display. Consequently, using one calculated
field in another field's value is not supported.

The routine, RMVPAG, removes a specified paqe from a window
as well as any subsequently added pages, uncovering the
previously added page.

The routine, ROTWND, rotates a window a given times 90
degrees in the counter-clockwise direction.

3.2.1.9 Getting and Setting the Cursor Position

Icons may be thought of as graphical figures that may be
picked. There are many ways to identify the location of a
cursor or the result of a graphical pick. Since graphical
figures may be incorporated into forms, one may use the FP
routine GETCUR to retrieve the cursor location of the form.
Similarly, the OUTCUR routine may be used to set the cursor
position. Graphical figures may also be PHIGS structures.
Therefore, some PHIGS location routines are included for
completeness.

The routine GETCUR returns the fully qualified name of the
field and the row and column within that field where the cursor
was located at the end of the previous OISCR. The routine
PARFQN breaks a qualified name into its component parts. The
routine PUTLOC sets the output cursor position in the FPD
structure to the specified row and column within a field. The
routine PUTCUR is identical to PUTLOC but the row and column are
are both assumed to be one rather than being specified in the
call.

3.2.1.10 Displaying Messages

The routine PMSGLS displays a specified message to the
user. The routine PMSGLC displays the message that corresponds
to a specified return code. The MM application is used to

3-24

DS 620344200
30 September 1990

create the message definition files whose format is described in
Section 3.5.1.2. Messages are displayed when the terminal
screen is updated and are removed at the end of the next OISCR.

3.2.1.11 Creating and Modifying Logical Devices

The FPD structure corresponding to an application is called
a logical device. By creating additional logical devices, an
application can appear to the user as multiple applications.

The routine INQLDV returns the id of the current FPD
structure. The routine OPNLDV creates a new FPD structure for
an application. The routine CHGLDV makes the specified logical
device the current Display List for all following Form Processor
calls. The routine CLSLDV deletes the FPD structure associated
with a logical device. Neither the current logical device nor
the default logical device can be closed.

The routine GETLDV returns the size and location of the
specified logical device. The routine SETLDV is used to set the
size and location of the specified logical device. The routine
MOVLDV moves a logical device to a different physical device.

These are program callable functions. Section 3.2.5.5
describes the Window Manager function keys which allow the
terminal user to change the size and location of a logical
device on the actual terminal screen.

The routine, CLRLDV, removes a logical device from the
screen. The definition is removed only from the VT and not from
the FPD list in the Form Processor.

The routine, SCRLDV, scrolls a logical device by modifing
the row and column.

The routine OPEN PHIGS (POPENPHIGS) must be called by the
application before any other graphics routines are called. The
PHIGS state list is allocated and initialized.

The routine CLOSE PHIGS (PCLOSEPHIGS) must be called by the
application on completion of graphics. The PHIGS state list and
the workstation description tables become unavailable. All
PHIGS related buffers are released and all PHIGS files are
closed.

3.2.2 Maintaining User Profiles

When a user first connects to the IISS environment, a USR
structure, a PD structure for the logon terminal, and an FPD
structure to be used by the UI are created. The Form Processor
displays a form where the user enters logon inforration (user
id, password, and role) and validates this information against
the User Interface (UI) database. If the entered logon
information is not valid, an error message is displayed and the
user is allowed to correct the information. If valid
information is not entered after five attempts, the user is
disconnected. When valid information is entered, the user name
and role are stored in the USR structure. The user's templates
for Form Definition (FD) file names and Form Definition Language

3-25

DS 620344200
30 September 1990

(FDL) source file names which were retrieved from the UI
database while validating the logon information are also stored
in the USR structure. The IISS Function Screen is then
displayed.

The routine GTUINF returns the name and role of the user
running the application from the USR structure. The routine
GTUSYM returns the file name templates from the USR structure.
It is intended for use only by components of the UI (e.g. FLAN)
and should not be called by user written applications.

A user invokes a function by filling in the IISS Function
Screen and pressing the <ENTER> key. If the user has changed
his role, the new role is validated against the user's user id
as defined in the UI database. If the role is not valid, an
error message is displayed and no other processing occurs. If
the role is valid or was not changed, the selected function, if
any, is validated against the user's role as defined in the UI
database. If the function is not valid, an error message is
displayed. When a valid function is entered, the definition of
the function in the UI database is checked. It it is an
internal function (an integral part of the UI), it is simply
called.

If the specified function is a remote application (user
written), a startup message (type UM) specified in the function
definition is sent to the application. The list of PD
structures associated with the user is searched for the device
name and device type specified on the IISS Function Screen. If
a matching PD structure is not found, one is created and a
device startup message is sent to start the device. An AP
structure associated with the user is created for the
application and an FPD structure is also created for the
application and associated with the AP and PD structures.

3.2.3 Virtual Terminal Pass-through

Virtual Terminal (VT) pass-through allows an application to
use the Virtual Terminal protocol to communicate directly with
the Device Driver. The routine INITVT enables the VT
pass-through mode. While in this mode, the application talks
directly to the terminal and no form processing routines may be
used. The routine PUTVTI sends a buffer of VT commands to the
Device Driver. The routine GETVTI returns a buffer of VT
commands generated by the Device Driver in response to user
input. The routine TERMVT disables VT pass-through mode
allowing form processing routines to be used again.

3.2.4 NTM Message Processing

The Form Processor processes three kinds of messages:

o Device driver messages
o Application messages
o IISS environment messages
o PHIGs support messages

3-26

DS 620344200
30 September 1990

3.2.4.1 Device Driver Messages

Device driver messages control devices, communicate their
status, and transfer data.

A device startup message (type DE) is sent to initiate a
new slave device. A shutdown message (type SD) is sent to
terminate a device. Receiving a device startup message (type
DE) indicates a new user connection and results in logon
processing (Section 3.2.2).

A device intitated message (type DI) is received from a
slave device and contains device specific information. A device
error message (type ER) is received when a device driver
encounters an application specific error and causes the
application to be terminated. A device abort message (type AB)
is received when a device driver encounters a fatal error and
causes all applications on the device to be terminated. If this
device is the user's logon device, all of the user's
applications are terminated and the user is logged off. A
device acknowledgement message (type DA) is received when the
device driver has finished processing commands and an
acknowledgement was requested by sendin9 a device query message
(type DQ).

Device data messages (type DD) are received as a result of
user input. The data is used to update the current display and
then function key processing is performed. Device data messages
are sent to update the terminal screen.

3.2.4.2 Application Messages

An application message (type AI) is received from the an
Application Interface routine and is processed by calling the
corresponding FP routine. An application message containing the
results of the call is then sent back to the Application
Interface routine.

3.2.4.3 IISS Environment Messages

Shutdown pending messages (type SP) are received from the
time a shutdown is scheduled until it actually occurs. The time
remaining until actual shutdown is displayed as a message to all
users. A cancel shutdown message (type CS) is received when a
shutdown is cancelled and is also displayed to all users. A
shutdown message (type SD) is received when the actual shutdown
occurs. All applications are terminated and all users are
logged off.

3.2.4.4 PHIGs Support Messages

Messages which may be as a result of an operation error
from PHIGS will displayed on the form.

3.2.5 Function Key Processing

Function keys are used to perform user controllable versus
program controllable Form Processor and application functions.
To allow for a large number of functions, modes are defined.

3-27

DS 620344200
30 September 1990

The function performed by a key depends on the current mode
setting which is displayed in the message line of the terminal
screen. Some keys, called control keys, perform the same
function in all modes. The following sections describe these
keys and the keys available in each mode.

Additionally, mouse buttons may be used as function keys if
supported by the application mode.

3.2.5.1 Control Keys

The <ENTER> and <QUIT> keys are normally processed as
Application mode keys, but they are also used by the Form
Processor functions as described in this and following sections.

The <MODE> key is used to cycle through the available
modes.

The <HELP> key is used to invoke help for an input item.
If the item containing the cursor has a help message defined,
the message is displayed. If it has a help form defined, the
form is added to the window SCREEN and is removed when the
<QUIT> key is pressed. If it is defined as having application
help, any currently displayed help forms are removed and the
<HELP> key is processed as an Application mode key as described
in Section 3.2.5.2. If there is no help defined for the item or
the cursor is not in an item, a "no help available" message is
displayed.

There is a message queue associated with each application
the user is running. Any of these messages can be displayed in
the message line on the terminal screen. The most recent
message is displayed by default and a different message can be
selected by changing the message number. The <MESSAGE QUEUE>
key displays a form containing all of the messages for the
application containing the cursor.

3.2.5.2 Application Mode Keys

Application mode keys normally operate as defined by the
application, but the <ENTER> and <QUIT> keys are also used by
Form Processor functions as noted in the previous section. When
an application mode key is pressed, the FP canonicalizes the
user entered data (e.g., justification, case conversion) and,
except when the <QUIT> key is pressed, validates the data on the
form. If validation eriors occur, the offending fields are
highlighted and the user is given the opportunity to correct
them.

3.2.5.3 Scroll/Page Mode Keys

The definition of an array of fields can indicate that
fewer elements are to be displayed than actually exist.
Scrolling may only take place if the array elements are
homogeneous (e.g., in an array of windows, each window must
contain the same form). When a user asks for scrolling in a
specified direction (either horizontally or vertically), the
Form Processor searches backwards along the path to the field
containing the cursor for the first field which may be scrolled

3-28

DS 620344200
30 September 1990

in the requested direction. This field is then scrolled by one
element in the requested direction. Error messages are
displayed if no field is found or the field is already scrolled
as far as possible.

Paging is identical to scrolling by the number of elements

displayed on the screen.

The Scroll/Page mode function keys are:

<SCROLL UP>
<SCROLL DOWN>
<SCROLL LEFT>
<SCROLL RIGHT>
<PAGE UP>
<PAGE DOWN>
<PAGE LEFT>
<PAGE RIGHT>

If the field is defined as application scrolled, the
Scroll/Page mode keys are processed as Application mode keys.

3.2.5.4 Text Editor Mode Keys

The Text Editor mode function keys move, copy, delete and
substitute text among item fields. These function keys are:

<SEARCH> Makes a forward or backward search for the first
occurrence of the specified string.

<SEARCH NEXT> Continues a search for the next occurrence of
the previously specified string.

<REPLACE> Replaces the first occurrence of a specified
search string with a specified new string.

<REPLACE NEXT> Replace the next occurrence of the specified
search string with the previously specified new
string.

<INSERT LINE> Inserts a blank line in the text.

<DELETE LINE> Deletes a line of text from the current cursor
position to the end of the line.

<PASTE> Pastes previously deleted into the current
buffer. The format of the text is maintained.

<FILL> Pastes previously deleted text into the current
buffer reformatting the text according to the
current fill margins.

<MIDLINE BREAK> Breaks a line of text and moves it to the next
line.

<DELETE LINE> Removes all the text from an item.

<RESTORE> Replaces the original text in an item that has
been edited.

3-29

DS 620344200
30 September 1990

<REPEAT> Specifies a number of times to perform the
action of the next TEXT EDITOR mode function
that is pressed.

<FILL MARGINS> Sets up margins to be used when the fill
function is performed.

3.2.5.5 Window Manager Mode Keys

In using the Display List and form hierarchy concepts,
windows become stacked on forms and logical devices become
stacked on the terminal screen. The Window Manager mode keys
are used to manipulate the stacks of windows and logical
devices. These function keys are:

<SELECT> Makes a window on the current display the top
window in the stack so that its size and
location can be changed and the information in
it can be scrolled. It also allows the window
to be viewed completely.

<RESTORE> Returns the selected window to its previous
position in the stack.

<SIZE> Makes the selected window larger or smaller.

<LOCATION> Moves the selected window to a new location on
the screen.

<SCROLL UP> Scrolls the form which is displayed in the
selected window up.

<SCROLL DOWN> Scrolls the form which is displayed in the
selected window down.

<SCROLL LEFT> Scrolls the form which is displayed in the
selected window to the left.

<SCROLL RIGHT> Scrolls the form which is displayed in the
selected window to the right.

<HOME VIEW> Returns a form that has previously been scrolled
to its original position in the window.

<FUNCTION> Displays the IISS Function Screen so another
application can be started.

<APPLICATION> Makes an application the top application in the
stack so that you can view and manipulate its
initial window.

These functions can also be performed using the information
displayed on the Application Status Form (see section 3.2.4.6).

3.2.5.6 Status Mode Keys

The Status mode keys are used to display and modify the
status of the applications a user is currently running.

3-30

DS 620344200
30 September 1990

The <DEBUG> key toggles debug mode ON and OFF. When debug
mode is ON, system status and error messages are displayed in
the message line on the terminal screen and recorded in the
system message queue.

The <APSTAT> key displays the Application Status Form shown
in Figure 3-3. This form displays information about the status
of the applications (logical devices) on the terminal screen.
All the functions that can be performed using the Window Manager
mode function keys can also be performed from this form.
Applications can also be aborted or moved to another physical
device.

Application Status

Devic tet e 9;30le9 Vievpert

Wisd Size Offset
AppliCeties Tvpe Wam Pri Neme "v Col W 0 Rav Cal

I sg:E status

Figure 3-3 Application Status Form

The following is an explanation of the fields on this form.

Application The name of the application using the window.
This field cannot be changed.

Device Type The device driver type which the application is
running. This device driver is a special
application which allows the application to
communicate with the terminal. It must be an
application name recognized by the NTM being
used.

3-31

DS 620344200
30 September 1990

Device Name The name of the port for the physical device that
the application is running on. It must agree
with the device type named. This value may be
changed to move the application to any other
device that is hardwired to the system. The
device type field value must be appropriate for
the device name.

Priority The number that represents the order in which the
windows are stacked on the screen. The last
application to be initiated has a priority number
of 1. It is on top of the stack of initial
windows and is totally visible. The priority can
be changed to give any application top priority.
This has the same effect as selecting a winndow
using the <SELECT> key in Window Manager mode.

Window Name The name of the window or windows in the current
stack that can be manipulated for each
application. These names cannot be changed.

Location The physical location on the screen of the upper
Row/Col left corner of the window relative to the
upper left corner of the containing window. The
row and column values can be changed to change
the location of the windows on the screen.

Display Size The physical size of the window on the screen
Width/Depth expressed in terms of columns wide and rows deep.

Window sizes can be changed. This includes
restoring visibility by giving dimension to a
window that has been hidden (i.e., its size is 0
0).

Viewport The row and column of the form displayed in row
Offset 1, column 1 of its containing window. If the
Row/Col offset is 0 0, then the upper left corner of the

form is in the upper left corner of the window.
Offsets can be changed to scroll the form
currently displayed in the window.

The <ABORT> key aborts an application. Pressing this
function key causes the NTM to be notified via a SIGABT call
that the application containing the cursor should be terminated.
The application must be defined in the NTM tables as being able
to be terminated in this manner. For applications that been
removed from the user's terminal screen or directed to another
device, this key can also be used from the Application Status
Form. When the <ABORT> key is pressed, the application named in
the line containing the cursor is aborted.

3.2.6 Scripting

The Form Processor has the capability of recording all user
input from a session in a script file. The script file can then
be played back to duplicate the session. The Form Processor
also has the capability of recording all output from a session
in a save file. The combination of these capabilities allow for
regression testing. By creating a script file and a save file

3-32

DS 620344200
30 September 1990

and later playing back the script file and generating another
save file, the save files can be compared to detect any
differences in the behavior of an application or the Form
Processor itself. Scripting functions are specified in the
startup message from the device driver.

3.3 Special Requirements

3.3.1 Programming Methods

The Form Processor is programmed using structured design
and coding techniques. Basic programming standards for
readability and ease of debugginq are followed. The FP is
implemented using the C programming language to insure
portability of the FP code with minimum effort.

3.3.2 Expandibility

The modular design of the Form Processor allows new
functionality to be added simply. Additional functions may be
new callable routines, additional types of NTM messages, or
additional function keys (including new modes).

3.4 Human Performance

Performance requirements for the FP have not yet been
determined. These requirements should include a statement of
response time for displaying and entering a screen and the ease
of use of the features such as function keys.

3.5 Data Base Requirements

3.5.1 Sources and Types of Input

3.5.1.1 Form Definition File

The definition of each form is contained in a form
definition file. This file contains a record specifying the
file structure and the linearized version of the internal
representation of the form.

3.5.1.2 Message Definition File

The definitions of routine status codes are contained in
message definition files. Each file contains the code number,
code name, and descriptive text for a block of 100 messages.
The file name indicates the contained codes (e.g., MSG703
contains codes 70300 through 70399). These files are used to
display messages to the user. The MSGLIN structure specifies
the message file record format.

3.5.1.3 User Interface Database

The User Interface database contains the authorization and
descriptive information required by the Form Processor. This
includes:

3-33

DS 620344200
30 September 1990

o a definition of each authorized user
o the roles valid for each user
o the functions valid for each role
o a definition of each available function

The UI Database comprises four files: the user definition
file, USRDEF, the user-role file, USEROL, the role-application
file, ROLAPP, and the application definition file, APPDEF.
Since the C programminq language does not support indexed files,
access to these files is provided by COBOL routines.

User Definition File

The user definition file contains information about each
user of the IISS system. This is an indexed file named USRDEF
which has one key which must be unique.

Application Definition File

The application definition contains information about each
function which is available on IISS. It is an indexed file
named APPDEF containing one key which must be unique.

User - Role File

The user - role file specifies the roles that are valid for
each user of the IISS system. This is an indexed file named
USEROL which contains two keys; although both keys can contain
duplicates, the entire record must be unique.

Role - Application File

The role - application file specifies the applications that
are valid for each role. This is an indexed file named ROLAPP
which contains two keys; although both keys can contain
duplicates, the entire record must be unique.

3.5.2 Destinations and Types of Output

The Form Processor generates the messages described in
Section 3.2.2 and FDL and FD files when forms are created and
modified at execution time. The structure of FDL files is
described in the Forms Language Compiler Development
Specification. The FD file structure is contained in Section
3.5.1.1.

3.5.3 Internal Tables and Parameters

All of the Form Processor's internal data is collected into
a network of statically and dynamically allocated structures
which are linked by pointers. Access to the network is through
the root structure called UID.

The MSGFIL structure contained in UID relates error numbers
to message files.

3-34

DS 620344200
30 September 1990

Information about each logged on user is kept in a USR
structure. UID points to a list of these structures. The USR
structure points to lists of the logical devices, applications,
physical devices, and messages belonging to the user.

Information about each physical device being used is kept
in a PD structure. The UID points to a list of all of these
structures, and USR points to those which belong to the same
user. The PD structure points to a list of the logical devices
associated with the physical device.

Information about each running application is kept in the
AP structure. The UID points to a list of all of these
structures, and USR points to those which belong to the same
user. The AP structure points to the logical devices associated
with it.

Information about logical devices is represented by the FPD
structure. The USR structure points to the UI logical device
(i.e., the logical device where system forms such as the IISS
logon and function screens are displayed). The PD structure
points to the logical devices associated with the physical
device and the AP structure points to the logical devices
associated with it.

Forms are represented by a tree of FIELD structures. The
FPD structure points to the forms which are currently open and
the current display. The FIELD structure points to its prompt
fields and other fields which are contained in it (e.g., a form
field points to the fields on the form and a window field points
to the forms in the window). The FIELD structure contains
either a FORM, WINDOW, ITEM, ARRAY, or PROMPT structure
depending on the type of field.

The RELPOS structure contained in FIELD is used to
represent relative positions. It points to the field being
referenced and each FIELD structure points to a list of RELPOS
structures which reference it.

The FORM structure points to all the displayed instances of
the form and a list of attributes for the form.

The ITEM structure points to the help message for the item
and a data buffer which contains the current and previous values
of the item.

The PROMPT structure points to the prompt text.

The ATTMAP structure is used to represent background and
display attributes. FORM structures point to the attributes
which are defined for the form and FIELD structures point to the
background or display attribute defined for the field.

The MSGBUF structure is used to represent messages. USR
points to all the messages for the user, and FPD points to the
messages for the logical device.

3-35

DS 620344200
30 September 1990

The ENODE structure is used to represent field values. The
FIELD structure points to a tree of ENODE structures which
represent the expression specified as the value of the field.
ENODE structures point to other ENODE structures and to fields
being referenced. A FIELD structure points to a list of all
ENODE structures which reference it.

The union EXPARG contained in the ENODE structure
represents expression arguments.

The union EXPVAL is used by reutines which evaluate
expressions to represent the expression value.

The POSITION structure contained in many of the other
structures represents a position as a specific row and column.

The SIZE structure contained in many of the other
structures represents size as a number of columns wide and rows
deep.

3.5.4 PHIGS Data Structures

The following sections list the contents of the PHIGS data
structures. Each structure includes the following information:

o The name of the element.
o The coordinate system (if appropriate)
o The allowable values.
o The data type (integer, charatter, etc.)
o The initial value if needed.

The following is a description of the notation used to in
the structure list:

I integer whole number
R Real floating point number
S string sequence of ASCII characters.
P2 2D poi-t 2 real values specifing the x= and

y -coordinates of a location.
P3 3D point three dimensional location (as above)
N Name identification of a workstation or a

number of primitives
E Enumeration type an identifier which is a enumeration

of the value represented.
NS name set A data type consisting of a set of

entries with one entry corresponding
to each item of an enumeration type.

PP pick A compound data type containing the
following items: structure
identifier (I), pick identifier (N),
and element number (I).

ER executive reference A compound data type containing the
following items: a point (P3), a
normal vector (3xR).

C connector identifier
F file
W workstation type

3-36

DS 620344200
30 September 1990

For reference purposes, the following coorainate systems
abbreviations are provided:

MC Modelling coordinating system
WC World coordinate system
VRC View.ng reference coordinate system
NPC Normalized projection coordinate system
DC Device coordinate system

An occurence of n (as in 1..n) indicates the variable
integer value.

Initial values which may be required occur on the last
column of the data structure list. The following are the
appropriate abbreviations:

undef undefined value.
i.d. implementation dependent
p.d.t. initial value taken from the PHIGS description table
w.d.t. initial value taken from the workstation description

table.
empty list contains no values.

3.5.4.1. PHIGS Description Table

The Description Table contains the supported miniumu
functions (as specified in section 3.1.1.) and the allowable
limits for each function. The following is a list of the table
elements:

number of available workstation types (l..n) I i.d.
list of available workstationtypes L(W) i.d.
maximum number of simultaneously open (l..n) I i.d.

workstations
maximum number of simultaneously open (l..n) I i.d.

archive files
number of available character sets (l..n) I i.d.
list of available character sets (l..n) I i.d.
(The first entry designates the ANSI X3.4-1977
character set, represented as character set 0.
The coorespondence between character set identifer
1 through n and their respective character set
definitions is defined in implementation
documentation.)
default polyline index (1..n) I 1
default linetype (-n..n) I 1
default linewidth scale factor R 1.0
default polyline colour index (0..n) I 1
default linetype ASF (BUNDLED, INDIVIDUAL) E see note 1
default linewidth scale factor ASF

(BUNDLED, INDIVIDUAL) E see note 1
default polyline colour index ASF

(BUNDLED, INDIVIDUAL) E see note 1
default polymarker index (1..n) I 1
default marker type (-n..n) I 3
default marker size scale factor R 1.0
default polymarker colour index (0..n) I 1
default marker type ASF (BUNDLED, INDIVIDUAL) E see note 1
default marker size scale factor ASF

3-37

DS 620344200
30 September 1990

(BUNDLED, INDIVIDUAL) E see note 1
default polymarker colour index ASF

(BUNDLED, INDIVIDUAL) E see note 1
default text index (1..n) I 1
default text font (1..n) I 1
default text precision (STRING,CHAR,STROKE) E STRING
default character expansion factor R 1.0
default character spacing R 0.0
default text colour index (0..n) I 1
default text font ASF (BUNDLED, INDIVIDUAL) E see note 1
default text precision ASF (BUNDLED, INDIVIDUAL) E see note 1
default character expansion factor ASF

(BUNDLED, INDIVIDUAL) E see note 1
default character spacing ASF (BUNDLED, INDIVIDUAL) E see note 1
default text colour index ASF (BUNDLED, INDIVIDUAL) E see note 1
default character height R 0.01
default character up vector 2xR (0.0,1.0)
default text path (RIGHT,LEFT,UP,DOWN) E RIGHT
default text alignment (horizontal & vertical)
(NORMAL, LEFT,CENTRE,RIGHT;NORMAL,TOP,CAP,HALF,BASE,
BOTTOM) 2xE

default annotationtext character height R 0.01
default annotation text character up vector 2xR (0.0,1.0)
default annotation text character width R 0.01
default annotation text character base vector 2xR (1.0,0.0)
default annotation text path (RIGHT,LEFT,UP,DOWN) E RIGHT
default annotation text alignment (horizontal & vertical)
(NORMAL,LEFT,CENTRE,RIGHT;NORMAL,TOP,

CAP,HALF,BASE,BOTTOM) 2xE
(NORMAL,NORMAL)

default annotation style (-n,n) I 1
default interior index (1..n) I 1
default interior style (HOLLOW,SOLID,PATTERN,
HATCH,EMPTY) E HOLLOW
default interior style index (-n..n) I 1
default interior colour index (0..n) I 1
default interior style ASF (BUNDLED,INDIVIDUAL) E see note 1
default interior style index ASF (BUNDLED, INDIVIDUAL) E see note 1
default interior colour index ASF (BUNDLED,INDIVIDUAL) E see note 1
default edge flag (OFF,ON) E OFF
default edgetype (-n..) I 1
default edgewidth scale factor R 1.0
default edge colour index (0..n) I 1
default edge flag ASF (BUNDLED, INDIVIDUAL) E see note 1
default edgetype ASF (BUNDLED, INDIVIDUAL) E see note 1
default edgewidth scale factor ASF (BUNDLED,INDIVIDUAL)

E see notel1
default edge colour index ASF (BUNDLED,INDIVIDUAL) E see note 1
default pattern size MC SX, SY>0 2xR (1.0,1.0)
default pattern reference point MC P3 (0.0,0.0,0.0)
default pattern reference vectors MC 2xP3(l.0,0.0,0.0)

MC (0.0,1.0,0.0)
default pick identifier N see note 2
default view index (0..n) I 0
default HLHSR identifier (0..n) I 0
default name set NS no classes
default global modelling transformation 4x4xR Identify
default local modelling transformation 4x4xR Identify
default modelling clipping volume MC all of WC space

3-38

DS 620344200
30 September 1990

default modelling clipping indicator (CLIP,NOCLIP) E NOCLIP
number of available generalized structure
elements (O..n) I i.d.

list of available generalized structure elements
(may be empty)
for every GSE: N i.d.
workstation dependency indicator

(WORKSTATION-INDEPENDENT,WORKSTATION-DEPENDENT) E i.d.
number of available modelling clipping

half-spaces (6..n) I i.d.
number of available modelling operators (4..16) I i.d.
list of available modelling clipping operators(O..15) nxI (1,3,5,15)

NOTE 1 - All of the initial ASF values are the same. They are all
INDIVIDUAL

NOTE 2 - The pick identifier default is the language dependent

equivalent of zero (0).

3.5.4.2 PHIGS Traversal State List

The traversal state list is created each time a traversal is
initiated, the initial values for the state list are copied from
the PHIGS description table. The PHIGS traversal state list exist
only during a traversal. The values in the PHIGS traversal state
list cannot be read.

current polyline index (1..n) I p.d.t.
current linetype (-n..n) I p.d.t.
current linewidth scale factor R p.d.t.
current polyline colour index (0..n) I p.d.t.
current linetype ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current linewidth scale factor ASF(BUNDLED,INDIVIDUAL) E p.d.t.
current polyline colour index ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current polymarker index (l..n) I p.d.t.
current marker type (-n..n) I p.d.t.
current marker size scale factor R p.d.t.
current polymarker colour index (0..n) I p.d.t.
current marker types ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current marker size scale factor
ASF (BUNDLED, INDIVIDUAL) E p.d.t.

current polymarker colour index ASF(BUNDLED,INDIVIDUAL)E p.d.t.
current text index (l..n) I p.d.t.
current text font (1..n) I p.d.t.
current text precision (STRING,CHAR,STROKE) E p.d.t.
current character expansion factor R p.d.t.
current character spacing R p.d.t.
current text colour index (0..n) I p.d.t.
current text font ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current text precision ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current character expansion factor

ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current character spacing ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current text colour index ASF (BUNDLED,INDIVIDUAL) E p.d.t.
current character height R p.d.t.
current character up vector 2xR p.d.t.
current character width R p.d.t.
current character base vector 2xR p.d.t.
current text path (RIGHT,LEFT,UP,DOWN) E p.d.t.

3-39

DS 620344200
30 September 1990

current text alignment (horizontal & vertical)
(NORMAL, LEFT,CENTRE,RIGHT;NORMAL,TOP,CAP,HALF,

BASE, BOTTOM) 2xE p.d.t.
current annotation text character height R p.d.t.
current annotation text character up vector 2xR p.d.t.
current annotation text width R p.d.t.
current annotation text path (RIGHT,LEFT,UP,DOWN) E p.d.t.
current annotation allignment (horizontal & vertical)

(NORMAL, LEFT,CENTRE,RIGHT;NORMAL,TOP,CAP,HALF,
BASE,BOTTOM) 2xE p.d.t.

current annotation style (-n,n) I p.d.t
current interior index (1..n) I p.d.t.
current interior style (HOLLOW,SOLID,PATTERN,

HATCH,EMPTY) E p.d.t.
current interior style index (-n..n) I p.d.t.
current interior colour index (O..n) I p.d.t.
current interior style ASF (BUNDLED, INDIVIDUAL) E p.d.t.
current interior style index ASF (BUNDLED,

INDIVIDUAL) E p.d.t.
current interior colour index ASF (BUNDLED,

INDIVIDUAL) E p.d.t.
current edge flag (OFF,ON) E p.d.t.
current edgetype (-n..n) I p.d.t.
current edgewidth scale factor R p.d.t.
current edge colour index (O..n) I p.d.t.
current edge flag ASF (BUNDLED, INDIVIDUAL) E p.d.t.
current edgetype ASF (BUNDLED, INDIVIDUAL) E p.d.t.
current edgewidth scale factor ASF (BUNDLED,

INDIVIDUAL) E p.d.t.
current edge colour index ASF (BUNDLED,

INDIVIDUAL) E p.d.t.
current pattern size MC SXSY>O 2xR p.d.t.
current pattern reference point MC P3 p.d.t.
current pattern reference vectors MC 2XP3 p.d.t.
current pick identifier N p.d.t.
current view index (O..n) I p.d.t.
current HLHSR identifier (O..n) I p.d.t.
current name set NS p.d.t.
current global modelling transformation 4x4xR p.d.t.
current local modelling transformation 4x4xR p.d.t.
current modelling clipping volume MC L(O,L(HS)) p.d.t.
curent modelling clipping indicator (CLIP,NOCLIP) E p.d.t.

3.5.4.3 PHIGS State List

The following is a description of the PHIGS state list.

set of open workstations nxN empty
name of open structure I empty
current element pointer (0..n) I 0
edit mode (INSERT,REPLACE) E INSERT
list of structure identifiers L(I) empty
archive file list (one entry for each open archive file) emtpy
archive file L(F) undef
archice file identifier L(N) undef

archival conflict resolution flag (MAINTAIN, ABANDON,
UPDATE) E UPDATE

retrieval conflict resolution flag (MAINTAIN, ABANDON,

3-40

DS 620344200
30 September 1990

UPDATE) E ABANDON
input queue (one entry for each event report) empty
for every entry:
workstation identifier N undef
device number (1..n) I undef
last of group of simultaneous events (NOTLAST,LAST) E undef
(a single event is indivated by last)

input class (LOCATOR,STROKE,VALUATOR,CHOICE,
PICK,STRING) E undef

if LOCATOR
view index (0..n) I undef
position WC P3 undef
if STROKE
view index (0..n) I undef
list of points in stroke WC L(P3) undef

if VALUATOR
value R undef
if CHOICE
status (OK,NOCHOICE) E undef
choice number (O..n) I undef

if PICK
status (OK,NOPICK) E undef
pick path L(PP) undef
if STRING
string S undef

current event report containing:
input class (NONE,LOCATOR,STROKE,VALUATOR,CHOICE,

PICK,STRING) E none
if LOCATOR
view index (O..n) I undef
position WC P3 undef
if STROKE
view index (O..n) I undef
list of points in stroke WC L(P3) undef

if VALUATOR
value R undef
if CHOICE
status (OK,NOCHOICE) E undef
choice number (O..n) I undef

if PICK
status (OK,NOPICK) E undef
pick path L(PP) undef
if STRING
string S undef

more simultaneous events (NOMORE,MORE) E NOMORE

3.5.4.4 PHIGS Workstation State List

One workstation state list exists for every open workstation.

workstation identifier N
connection identifier C
workstation type W

The above 3 entries are initialized by OPEN WORKSTATION.

Entries in this group do not exist for workstations of category
MI.

3-41

DS 620344200
30 September 1990

The initial value of view table entries may be predefined. The
initial value of view table entries that are not predefined is the
same as view table entry 0.

number of view table entries (6..n) I w.d.t.
table of defined view representations ordered by view
transformation input priority
(initially in numerical order with view index 0 highest priority)
for every entry:
view index (0..n) I w.d.t.
view transformation update state (NOTPENDING,PENDING) E

NOTPENDING
current view orientation matrix 4x4xR w.d.t.
current view mapping matrix 4x4xR w.d.t.
current view clipping limits 6xR w.d.t.
current x-y clipping indicator (CLIP,NOCLIP) E w.d.t.
current back clipping indicator (CLIP,NOCLIP) E w.d.t.
current front clipping indicator (CLIP,NOCLIP) E w.d.t.
requested view orientation matrix 4x4xR w.d.t.
requested view mapping matrix 4x4xR w.d.t.
requested view clipping limits 6xR w.d.t.
requested x-y clipping indicator (CLIP,NOCLIP) E w.d.t.
requested back clipping indicator (CLIP,NOCLIP) E w.d.t.
requested front clipping indicator (CLIP,NOCLIP) E w.d.t.

HLHSR update state (NOTPENDING,PENDING) E
NOTPENDING

current HLHSR mode (-n..n) I 0
requested HLHSR mode (-n..n) I 0

transformation update state (NOTPENDING,PENDING) E
NOTPENDING

requested workstation window NPC 6xR (0,1,0,1,-1,0)
current workstation window NPC 6xR (0,1,0,1,-1,0)
requested workstation viewport DC 6xR

max display space from w.d.t.
current workstation viewport DC 6xR

max display space from w.d.t.
Entries in this group do not exists for workstations of category
INPUT and MI
table of posted structures empty
For every entry:
structure ID I
posted priority R

deferral mode (ASAP,BNIG,BNIL,ASTI,WAIT) E w.d.t.
modification mode (NIVE,UWOR,UQUM) E w.d.t.
display surface empty (EMPTY,NOTEMPTY) E EMPTY
state of visual representation

(CORRECT, DEFERRED,SIMULATED) E CORRECT
number of polyline bundle table entries (5..n) I w.d.t.
table of defined polyline bundes

for every entry:
polyline index (l..n) I w.d.t.
linetype (-n..n) I w.d.t.
linewidth scale factor R w.d.t.
polyline colour index (0..n) I w.d.t.

number of polymarkder bundle table entires (5..n) I w.d.t.
table of defined polymarker bundles

3-42

DS 620344200
30 September 1990

for every entry:
polymarker index (l..n) I w.d.t.
marker type (-n..n) I w.d.t.
marker size scale factor R w.d.t.
polymarker colour index (0..n) I w.d.t.

number of text bundle table entries (5..n) I w.d.t.
table of defined text bundles

for every entry:
text index (l..n) I w.d.t.
text font (-n..n) I w.d.t.
text precision (STRING,CHAR,STROKE) E w.d.t.
character expansion factor R w.d.t.
character spacing R w.d.t.
text colour index (0..n) I w.d.t.

number of interior bundle table entries (5..n) I w.d.t.
table of defined interior bundles

for every entry:
interior index (1..n) I w.d.t.
interior style (HOLLOW,SOLID,PATTERN,HATCH,EMPTY) E w.d.t.
interior style index (-n..n) I w.d.t.
interior colour index (0..n) I w.d.t.

number of edge bundle table entries (5..n) I w.d.t.
table of defined edge bundles

for every entry:
edge index (l..n) I w.d.t.
edge flag (OFF,ON) E w.d.t.
edgetype (-n..n) I w.d.t.
edgewidth scale factor R w.d.t.
edge colour index (0..n) I w.d.t.

number of pattern table entries (0,1..n) I w.d.t.
table of pattern representations

for every entry:
pattern index (1..n) I w.d.t.
pattern array dimensions (l..n) 2xI w.d.t.
pattern array (0..n) nxnxI w.d.t.

current colour model (-n..n) I w.d.t.
number of colour table entries (2..n) I w.d.t.
table of colour representations

for every entry:
colour index (0..n) I w.d.t.
colour (component triplet) [0,1] 3xR w.d.t.

highlighing inclusion set NS no classes
highlighting exclusion set NS no classes
invisibility inclusion set NS no classes
invisibility exclusion set NS no classes

Entries in this group do not exist for workstation of category
OUTPUT, MO and MI

for every logical input device of class LOCATOR
locator device number (1..n) I w.d.t.
operating mode (REQUEST,SAMPLE,EVENT) E REQUEST
echo switch (ECHO,NOECHO) E ECHO
initial view index (O..n) 0
initial locator position WC P w.d.t.
prompt and echo type (-n..n) I 1
echo volume DC 6xR w.d.t.
locator data record D i.d.

3-43

DS 620344200
30 September 1990

for every logical input device of class STROKE:
stroke device number (1..n) I w.d.t.
operating mode (REQUEST,SAMPLE,EVENT) E

REQUEST
echo switch (ECHO,NOECHO) E ECHO
initial value R w.d.t.
prompt and echo type (-n..n) I 1
echo volume DC 6xR w.d.t.
valuator data record containing at least D i.d.

low value R w.d.t.
high value R w.d.t.

for every logical input device of class CHOICE:
choice device number (1..n) I w.d.t.
operating mode (REQUEST,SAMPLE,EVENT) E

REQUEST
echo switch (ECHO,NOECHO) E ECHO
initial status (OK,NOCHOICE) E NOCHOICE
initial choice number (1..n) I undef.
prompt and echo type (-n..n) I 1
echo volume DC 6xR w.d.t.
choice data record D i.d.

for every logical input deavice of class PICK:
pick device number (1..n) I w.d.t.
operating mode (REQUEST,SAMPLE,EVENT) E

REQUEST
echo switch (ECHO,NOECHO) E ECHO
initial status (OK,NOPICK) E

NOPICK
pick inclusion set NS all classes

detectable
pick exclusion set NS no classes
initial pick path L(pp) empty
prompt and echo type (-n..n) I 1
echo volume DC 6xR w.d.t.
pick data record D i.d.

intial pick path order (TOPFIRST,BOTTOMFIRST) E TOPFIRST

for every logical input device of class STRING:
string device number (l..n) I w.d.t.
operating mode (REQUEST,SAMPLE,EVENT) E

REQUEST
echo switch (ECHO,NOECHO) E ECHO
initial string S empty
prompt and echo type (-n..n) I 1
echo volume DC 6xR w.d.t.
string data record containing at least: D i.d.

input buffer size (characters) (l..n) I w.d.t.
initial cursor position (l..n) I w.d.t.

3.5.4.5 PHIGS Worstation Description Table

The five types of workstations are:

o OUTPUT (output only)
o INPUT (input only)

3-44

DS 620344200
30 September 1990

o OUTIN (both input and output)
o MO (metafile output)
o MI (metafile input)

The following descriptions may contain entries which are used
in one or more of the above workstation types. More than one
workstation identifier may belong to a workstation type, and a
number of different workstation types may exist for each of the
categories depending on the capabilities of particular physical
device.

Entries in this group exist for all workstation categories

workstation type W i.d.
workstation category (OUTPUT,INPUT,OUTIN,MO,MI) E

Entries in this group do not exist for workstations of category
MO and MI

device coordinate units (METRES,OTHER) E i.d.
maximum display space size

(visible volume of the display surface or available volume for
use of physical input devices for workstations of category
INPUT)

in device coordinates DC >0 3xR i.d.
in device address units (integer by integer)>0 3xI i.d.
(for vector displays, for example, the device address units

give the highest possible resolution; for raster displays, the
number of columns and lines of the raster array)
number of available HLHSR identifiers (1..n) I i.d.
list of available HLHSR identifiers (in..n) nxI i.d.
number of available HLHSR modes (l..n) I i.d.
list of available HLHSR modes (-n..n) nxI i.d.
number of predefined view

indices (representations) (6..n) I i.d.
table of predefined view representations,

for every entry:
view orientation matrix
view mapping matrix 4x4xR i.d.
view clipping limits 6xR i.d.
x-y clipping indicator (CLIP,NOCLIP) E i.d.
back clipping indicator (CLIP,NOCLIP) E i.d.
front clipping indicator (CLIP,NOCLIP) E i.d.

Entries in this group do not exit for workstations of category
INPUT

raster or vector display (VECTOR,RASTER,OTHER) E i.d.
(VECTOR = vector device, RASTER = raster device,

OTHER = other device, e.g., vector + raster)
dynamic modification accepted for:

view representation (IRG,IMM,CBS) E i.d.
polyline bundle representation (IRG,IMM,CBS) E i.d.
polymarker bundle representation (IRG,IMM,CBS) E i.d.
text bundle representation (IRG,IMM,CBS) E i.d.
interior bundle representation (IRG,IMM,CBS) E i.d.
edge bundle representation (IRG,IMM,CBS) E i.d.
pattern representatoin (IRG,IMM,CBS) E i.d.
colour representation (IRG,IMM,CBS) E i.d.

3-45

DS 620344200
30 September 1990

workstation transformation (IRG, IMM,CBS) E i.d.
highlighting filter (IRG,IMM,CBS) E i.d.
invisibility filter (IRG,IMM,CBS) E i.d.
HLHSR mode (IRG,IMM,CBS) E i.d.

(IRG:implicit regeneration necessary;
IMM:performed immediately;
CBS: can be simulated)

default value for deferral state:
deferral mode (ASAP,BNIG,BNIL,ASTI,WAIT) E i.d.
modification mode (NIVE,UWOR,UQUM) E i.d.

number of available linetypes (-n..-4,4..n) I i.d.
(a negative value returned indicates that the

characteristics of the implementation dependent
linetypes are derived from the linetype values
directly. The absolute balue of the value returned
indicates the number of registered linetypes supported.)

list of available linetypes (-n..n) L(I) i.d.

number of available linewidths (0..n) I i.d.
(a value of 0 indicates that a continuous
range of linewidths is supported)

nominal linewidth DC >0 R i.d.
minimum linewidth DC >0 R i.d.
maximum linewidth DC >0 R i.d.
number of predefined polyline indices (bundles)(5..n) I i.d.
table of predefined polyline bundles

for every entry:
linetype (-n..n) I i.d.
linewidth scale factor R i.d.
polyline colour index (within range of predefined
colour indices) (O..n) I i.d.

number of available marker types (-n..-4,4..n) I i.d.
(a negative value returned indicates that the
characteristics of the implementation dependent
marker types are derived from the marker type values
directly. The absolute value of the value returned
indicates the number of registered marker types
supported)

list of available marker types (-n..n) L(I) i.d.
number of available marker sizes (O..n) I i.d.
(a value of 0 indicates that a continuous
range of marker sizes is supported)

nominal marker size DC >0 R i.d.
minimum marker size DC >0 R i.d.
maximum marker size DC >0 R i.d.
number of predefined polymarker indices(bundles)(5..n) I i.d.
table of predefined polymarker bundles.

for each entry:
marker type (-n..n) I i.d.
marker size scale factor R i.d.
polymarker colour index(within range of
predefined colour indices) (O..n) I i.d.

number of text font and precision pairs (4..n) I i.d.
list of text font and precision pairs (-n..n;STRING,
CHARSTROKE) L(I,E) i.d.

number of available character expansion factors (O..n) I i.d.
(a value of 0 indicates that a continuous range of
character expansion factors are supported)

minimum character expansion factor >0 R i.d.

3-46

DS 620344200
30 September 1990

maximum character expansion factor >0 R i.d.
number of available character heights (0..n) I i.d.
(a value of 0 indicates that a continous range
of character heights is supported.)

minimum character height DC >0 R i.d.
maximum character height DC >0 R i.d.
number of predefined text indices(bundles) (6..n) I id.d
table of predefined text bundles

for every entry:
text font (-n..n) I i.d.
text precision (STRING,CHAR,STROKE) E i.d.
character expansion factor R i.d.
character spacing R i.d.
text colour index (within range of predefined colour
indices) (0..n) I i.d.

number of available annotation styles (2..n) I i.d.
list of availalbe annotation styles (-n..n) L(I) i.d.
number of available interior styles (1..5) I i.d.
list of available interior styles (HOLLOW,SOLID,
PATTERN,HATCH,EMPTY) L(E) i.d.

number of available hatch styles (-n..-3,0,3..n) I i.d.
(a negative value returned indicates that the
characteristics of the implementation dependent hatch
styles are derived from the hatch style values
directly. The absolute value of the value returned
indicates the number of registered hatch styles supported.)

list of available hatch styles (-n..n) L(I) i.d.
number of predefined interior indices(bundles) (5..n) I i.d.
table of predefined interior bundles

for every entry:
interior style (HOLLOW,SOLID,PATTERN,HATCH,

EMPTY) E i.d.
interior style index (-n..n) I i.d.
(for interior style PATTERN is within the range

of predefined pattern indices)
(for interior style HATCH is within the range
of predefined pattern indices)
interior colour index (within the range of

predefined colour indices (0..n) I i.d.
number of available edgetypes (-n..-l,l..n) I i.d.

(a negative value returned indicates that the
characteristics of the implementation dependent
edgetypes are derived from the edgetype values
directly. The absolute value of the value returned

indicates the number of registered edgetypes supported.)
list of available edgetypes (-n..n) L(I) i.d.
number of available edgewidths (0..n) I i.d.
(a value of 0 indicates that a continuous range
of edgewidths is supported)

nominal edgewidth DC >0 R i.d.
minimum edgewidth DC >0 R i.d.
maximum edgewidth DC >0 R i.d.
number of predefined edge indices(bundles) (5..n) I i.d.
table of predefined edge bundles

for every entry:
edge flag (OFF,ON) E i.d.
edgetype (-n..n) I i.d.
edgewidth scale factor R i.d.
edge colour index (within range of predefined

3-47

DS 620344200
30 September 1990

colour indices) (0..n) I i.d.
number of predefined pattern indices

(representations) 0..n) I i.d.
table of predefined pattern representations

for every entry:
pattern array dimensions (1..n) 2xI i.d.
pattern array (o..n) nxnxI i.d.

number of available colour models (2..n) I i.d.
list of available colour models (-n..n) L(I) i.d.
default colour model (-n..n) I i.d.
number of available colours or intensities (0,2..n) I i.d.
(a value of 0 indicates that a continuous
range of colours is supported)

colour available (COLOUR,MONOCHROME) E i.d.
number of predefined colour

indices (representations) (2..n) I i.d.
table of predefined colour representations

for every entry:
colour (component triplet) [0,1] 3xR i.d.

number of available generalized drawing
primitives 3 (GDP3)
(may be empty)
for every EDP3:
GDP3 identifier N i.d.
number of sets of attributes used (0..5) I i.d.
list of sets of attributes used

(POLYLINE,POLYMARKER,TEXT,INTERIOR,EDGE) L(E) i.d.
number of available generalized drawing

primitives (GDP) (0..n) I i.d.
list of available generalized drawing

primitives (GDP)
(may be empty)
for every GDP:

GDP identifier N i.d.
number of sets of attributes used (0..5) I i.d.

list of sets of attributes used
(POLYLINE,POLYMARKER,TEXT,INTERIOR,EDGE) L(E) i.d.

number of available generalized structure
elements (O..n) I i.d.

list of available generalized structure elements
(may be empty)

for every GSE:
GSE identifier N i.d.

number of structure priorities supported (0,2..n) I i.d.
(a value of 0 indicates that a continuous range
of priorities is supported)

maximum number of polyline bundle table entries (20..n)I i.d
maximum number of polymarker bundle

table entries (20..n) I i.d.
maximum number of text bundle table entries (20..n) I i.d.
maximum number of interior bundle table entries (20..n)I i.d.
maximum number of edge bundle table entries (20..n) I i.d.
maximum number of hatch styles (3..n) I i.d.
maximum number of pattern table entries (0,10..n) I i.d.
maximum number of colour indices (2..n) I i.d.
maximum number of view indices (6..n) I i.d.
dynamic modification accepted for:

structure content modification (IRG,IMM,CBS) E i.d.
post structure (IRG,IMM,CBS) E i.d.

3-48

DS 620344200
30 September 1990

unpost structure (IRG,IMM,CBS) E i.d.
delete structure (IRG,IMM,CBS) E i.d.
reference modifications (IRG,IMM,CBS) E i.d.

where:
IRG: Implicit regeneration necessary (may be deferred)
IMM: Performed immediately
CBS: Can be simulated

Entires in this group do not exist for workstations
of category OUTPUT, MO or MI

number of logical input devices of class
LOCATOR (0..n) I i.d.

for every logical input device of class LOCATOR:
locator device number (1..n) I i.d.
default intial locator position WC P3 i.d.
number of available prompt and echo types (1..n) I i.d.
list of available promt and echo types (-n..n) L(I) i.d.
default echo volume DC

6xR i.d.
default locator data record d i.d.

number of logical input devices of class STROKE (0..n) I i.d.
for every logical input device of class STROKE:

stroke device number (l..n) I i.d.
maximum input buffer size (64..n) I i.d.
number of available prompt and echo types (1..n) I i.d.
list of available prompt and echo types (-n..n) L(I) i.d.
default echo volume DC 6xR i.d.
default stroke data record containing at
least: D i.d.
input buffer size (1..n) I i.d.

number of logical input devices of class
VALUATOR (0..N) I i.d.

for every logical device of class VALUATOR
valuator device number (1..n) I i.d.
default initial value R i.d.
number of available prompt and echo types (1..n0 I i.d.
default echo volume DC 6xR i.d.
default valuator data record containing at least D i.d.

low value R i.d.
high value R i.d.

number of logical input devices of class CHOICE (0..n) I i.d.
for every logical input device of class CHOICE

choice device number (l..n) I i.d.
maximum number of choice alternatives (l..n) I i.d.
number of available prompt and echo types (l..n) I i.d.
list of available prompt and echo types (-n..n) L(I) i.d.
default echo volume DC 6xR i.d.
default choice data record D i.d.

number of logical input devies of class PICK (0..n) I i.d.
for every logical input device of class PICK:

pick device number (1..n) I i.d.
number of available prompt and echo types (1..n) I i.d.
list of available prompt and echo types (-n..n) nxI i.d.

3-49

DS 620344200
30 September 1990

default echo volume DC 6xR i.d.
default pick data record containing at least: D i.d.
pick path order (TOPFIRST,BOTTOMFIRST) E

TOPFIRST

number of logical input devices of class STRING (0..n) I i.d.
for every logical input device of class STRING:

string device number (1..n) I i.d.
maximum input buffer size (72.n) I i.d.
number of available prompt and echo types (1..n) I i.d.
list of available prompt and echo types (-n..n) L(I) i.d.
default echo volume DC 6xR i.d.

default straing data record containing at least: D i.d.
input buffer size (characters) (l..n) I i.d.
initial cursor position (1..n) I i.d.

3-50

DS 620344200
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

The FP is tested using the following tests:

Computer programming test and evaluation. This testing
primarily involves testing all the FP interface routines and
internal functions for correct processing and output.

System test. This testing involves testing all the FP
interface routines and internal functions within the integrated
system.

4.2 Computer Programming Test and Evaluation

The test developed for the FP consists of another computer
program which uses the FP interfaces routines by an application
program. Every FP interface routine is exercised directly by the
computer test program and every internal function is indirectly
exercised by the computer test program. Variations on the computer
test program may be provided by user interaction with the computer
test program.

The same computer test program is run to test the FP during the
system test process with the other components of the IISS.

4-1

DS 620344200
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software is the
ICAM Integrated Information Support System (IISS) Testbed site
located at Arizona State University, Tempe, Airzona. The software
associated with each FP CPCI release is delivered on a media which
is compatible with the IISS Testbed. The release is clearly
identified and includes instructions on procedures to be followed
for installation of the release.

5-1

DS 620344200
30 September 1990

APPENDIX A

FP ROUTINE RETURN CODES

The following errors are warning errors:

Name Message

OK (Blank - normal completion)
FPMSGS Form Processor Messages
INVPAG Invalid page number
FNOTFND Form not found
FISOPEN Form is already open
ALCERR Memory allocation error
OPNERR Open error - Unable to read form definition file
EXPERR Error in expression
TRNCFLD Field value too long - truncated
UNKTYPE Internal error - Unknown field type
PNOTARY Qualified name is not an array
NILKEY Non-functional key
SYSERR System error - Call System Administrator
PBFULL Paste buffer full
INVEDT Field can not be edited
FILRERR File read error
PATHERR Invalid path name
NOMACH String not found
PNOTFND Path not found
WRDWRAP Word too long to fit between fill margins - wrapped
INVMRG Invalid fill margins
PNOTUNQ Path not unique
PNOTWIN Qualified name is not a window
FNOTOPN Form is not open
NOHELP No help available
NOHLPFRM Error opening help form
INVRPT Tnvalid repeat count
IMBBLK Field must not contain blanks
BLKFLD Field must be entered
INOTNUM Field must be numeric
OUTRNG Field value is out of range
ATNOTFND Attribute does not exist
FINUSE Can not close form - Form is in use
MFOPNERR Message file can not be opened
INVKEY Requested function can not be performed on this

screen
INVIID Invalid instance ID
NTMREJ Network Transaction Manager (NTM) reject
MAPFAIL Virtual terminal buffer format error
BUFOVFL Virtual terminal buffer overflow
GTCURERR GETCUR could not build fully qualified name
PARSERR Level specified does not exist
PNOTITEM Qualified name not an item
OLDFORM Old form definition file format - Recompile
ENDARY End of scrolling section reached
NOTSCROL Field is not scrollable
PNOTBACK Qualified name not a window or form
FILFRMMM Form name does not match form definition file name
APKEY Function key is to be processed by application
INTADDER Internal error - Unable to add form to window

A-1

DS 620344200
30 September 1990

INDEB In debug mode
OUTDEB Out of debug mode
MSGRANGE Message number specified does not exist
FLANERRS Errors in Forms Language Compiler (FLAN) compilation
FDLOPERR Error opening Forms Definition Language file
DUPFRM FLAN compilation would produce duplicate open forms
EXITFDFE Exit fdfe
FRMEXST Form already exist
NFLDEXST No field exists
NFLDMRKD No field marked
LAYOUTER Please correct errors marked before going to detailed

mode
INTGETER Internal error - Unable to get data from forms
INTRMVER Internal error - Unable to remove form from window
ROLNCHG Role not changed
WNDNSEL Window not selected
UISWNNF UIS window not found
SDPNDNG Shut down pending
SDCNCLD Shut down cancelled
INVRLFNC Invalid role/function
NFPDSTRC No FPD Structure found
NWNDIDFN No unused window ID found
BADFPD Bad logical device data structure - (Bad FPD)
WNDSEL Window is selected
WMARCHSZ Cannot change size of window which is an element in

an array
WMARCHLC Cannot change pos. of window which is an element in

an array
SCPWNOPN Script file could not be opened for writing
SCPRNOPN Script file could not be opened for reading
SCPSNOPN Script output save file could not be opened for

writing
SCPBADFL Script file is bad
SCPSVERR Could not write to script output save file - close

save file

A-2

DS 620344200
30 September 1990

SCPWRERR Could not write to script file - terminating
scripting

SCPRDERR Could not read script file - terminating scripting
session

OVRFLW Adding an element would exceed bounds of form
BADDATA Non-printable characters in data - replaced with "?"
WNDUNSEL Window is unselected
APNOTFND Application not found
CURFPDST Cannot remove or close current logical device

standalone
NINVTIMD Not in Form Processor bypass mode (VTI mode)
INVTIMD In Form Processor bypass mode (VTI mode)
INTPUTER Internal Error - Could not put data into field
INTPATER Internal Error - Could not charge attribute for a

field
GTNAMERR Could not find name
GTDQNERR Could not find default qualified name
INTADLER Internal Error - Could not add element to open-ended

array
BADDEV Unable to access specified device
BADAP Unable to start specified application
BADAPS Unable to create application data structures
FILWERR File write error
BFOVRFLW Data will not fit into buffer provided

The following errors are fatal errors:

LOGERR Errors that are logged
NTMINT Bad return from Network Transaction Manager (NTM)

INITEX routine
NTMLOG Bad return from NTM LOGON routine
NTMLO Bad return from NTM LOGOFF routine
BSEND Bad send from UI to AP
CROLER Bad return from NTM CHGROL routine
UOPFRM Bad return from OPEN FORM routine
NTMMSGNA NTM message not accepted
NTMPRCNT NTM terminate process message not accepted
FPABORT Form Processor abort
USRABRT User aborted
FLDTBIG Field too big to be sent by the NTM and was truncated

A- 3 U.S. Government Printing Office: 1992--848-1 27/8219gg

