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The turbulence characteristics of a water jet flowing near a
free surface were studied. The focus of the project was to develop
two-point closure methods which may make possible a "universal"
description of the turbulence in the region where the jet interacts
with the free surface.

The interactions of a planar jet with an air-water interface
were determined by measuring turbulent velocity fluctuations and
pressure fluctuations using hot-film anemometry techniques. A two-
dimensional jet was formed by pumping water through a rectangular
slit into a channel filled with still water. The raw data are
sampled time records of the anemometer output voltages obtained at
different positions in the jet. These time records together with
the sensor calibration information are analyzed using digital signal
processing techniques. The double and triple velocity correlation
functions and pressure-velocity correlation functions as well as the
mean velocities, Reynolds stress, and turbulence intensities were
calculated.

These calculated results were used to develop a two-point
turbulence closure scheme for the jet flow. The closure model
contains the effects of small non-homogeneities and anisotropy,
since there is a preferred direction in the jet flow. Because of
the proximity to the free surface, the flow field is not symmetric
about the axis of the slit. By means of a projective
transformation, the jet flow turbulence results can be used to
predict the turbulence in the zone of interaction between a wake and

0 a free surface.

0( SUMMARY OF THE EXPERIMENTAL WORK

,.00- The chronology of the project is as follows. During the first
UA o year, the flow system was designed and built, velocity measurement

I techniques were developed, and velocity sensor calibration equipment
a) Cv and methods were developed. The unique feature of this calibration
.C: method was devising a systematic method for dealing with sensor

US fouling during long periods of continuous operation of the hot-film
110 sensors. This work was the subject of the M. S. thesis written by

Eric J. Hine. During the second year, techniques for measurinq
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turbulent pressure fluctuations were devised. A commercially
available sensor was used, but extensive development work was
required to adapt it to operation in water. This sensor system was
used along with a standard hot-film anemometer system to measure
two-point pressure-velocity correlations. These results were the
subject of the M. S. thesis written by Lisa R. Harris. During the
third year, the techniques developed were applied to an extensive
study of the jet flow. The mean velocities and jet boundaries were
measured along with single-point correlations--turbulent intensities
and Reynolds stresses. Two-point correlations were also measured.
The single-point and two-point measurements are the subject of the
M. S. thesis written by Eric Menning.

SIGNIFICANT EXPERIMENTAL RESULTS

A. Development of Experimental Techniqucs

Sensor Calibration One important accomplishment has been to
develop a method for allowing for fouling of hot-film sensors when
making measurements in untreated water. Fouling cannot be avoided,
but it has been shown that the decrease of anemometer output voltage
with time while making measurements in fouling conditions is linear
except for an initial "seasoning" period. By calibrating the sensor
periodically during the course of a series of experiments, and by
keeping careful account of the time at which individual measurements
were made, a sensor calibration relationship for each individual
measurement can be calculated. The sensor calibration was done
using a laminar jet apparatus supplied with the same untreated water
which was being used for the jet flow experiments.

Pressure Fluctuation Measurement Another important accomplishment
has been the successful application of a bleed type pressure sensor
to measuring turbulent pressure fluctuations in water. Until
recently, pressure sensors sensitive enough to measure turbulent
pressure fluctuations were not available, so the effect of the
pressure terms could not be included in two-point turbulence closure
models for nonisotropic turbulence. Jones (1981) and Spencer(1970)
report the development of a bleed-type pressure sensor based on a
hot-film anemometer system. A hot-film velocity probe connected to
a constant temperature anemometer circuit is enclosed in a tube open
to the pressure to be measured at the downstream end. The upstream
end is connected to a constant pressure source of fluid, and there
is a constant flow of fluid from the constant pressure supply, past
the velocity sensor, and into the flow field where the pressure is
being measured. The velocity of the fluid flowing through the tube
is related to the pressure difference, so the downstream pressure 0
can be related directly to the anemometer output. It is well-known
that hot-film velocity probes are very sensitive to changes in the
cooling velocity in the neighborhood of the sensor. This means that
pressure measurements based on the velocity determined using a hot-
film sensor are equally as sensitive. A13
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Pressure sensors such as described above are available
commercially from TSI, Inc. These pressure sensors were originally
developed for pressure measurements in gas flows using helium or
nitrogen as the bleed fluid. Such sensors had never been applied to
pressure measurements in liquids, so some development work was
necessary. The bleed fluid must be non-conducting to prevent
corrosion of the sensor, and the flow through the sensor must be
laminar. For measurements in water, the bleed fluid selected is
ethyl alcohol which is miscible with the main water flow. The
ethanol must be supplied at constant pressure to the pressure
sensor. In the system devised for doing this, ethanol flows to the
sensor from a reservoir which is pressurized with nitrogen. The
ethanol is pumped by a gear pump into the reservoir from a small
supply tank. There is a filter in the line to remove any particles
which may be in the ethanol. The pressure is maintained constant by
a system of bleeds and pressure regulating valves.

To calibrate the pressure sensor, the sensor is placed in still
water, and the bridge output is recorded as the pressure upstream in
the reservoir is changed. Since the flow rate through the sensor
depends on the pressure difference, it does not matter whether the
upstream or downstream pressure is changed during calibration.

The pressure fluctuation measurements required an exacting and
delicate experimental technique, and the sensor was rather fragile.
The sensor failed twice during the course of the work and had to be
returned to the manufacturer for repair. In November 1987, it
failed again and could not be repaired. This means that we never
were able to obtain data suitable for some of the calculations we
wanted to do.

B. Single-Point Results

The single-point results were obtained using a crossed-sensor
probe so that both longitudinal and transverse fluctuations could be
calculated. The results presented were obtained by calculating the
mean of time series records which had been converted to
instantaneous velocity values by applying the appropriate
calibration equation. These single-point quantities are presented
as functions of position in the jet. The results presented are not
synoptic--measurements were Diade at different times in a stationary
turbulent field. The complete results are included in the thesis
written by Eric Menning which is attached as an appendix to this
report. The highlights of the work are summarized below. The
notation used to describe the system is shown in Figure 1.

Mean Velocities The mean velocity profiles at different positions
downstream from the source for a submergence ratio of H/D = 6.9 are
shown in Figure 2. The dimensional data show that the jet decays
rapidly, and distortion due to the presence of the free surface is
evident. The center line of the jet is displaced toward the surface
as the distance downstream increases. At the point farthest
downstream, the profile is not well-defined. The jet boundary seems
to have intersected the surface at approximately
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x/D = 25. The mean velocity data are summarized in dimensionless
form in Figure 3 where the mean velocities have been made
dimensionless by dividing by the maximum velocity, and the vertical
position has been made dimensionless by dividing by the length scale
defined in the next paragraph. This figure shows that the jet
decays in a self-similar way, because the profiles nearly coincide
for all axial positions shown. The distortion due to the presence
of the free surface, and the displacement of the jet center line
toward the free surface are evident in this figure. This
displacement is plotted in Figure 4 which shows that in terms of
dimensionless coordinates, the displacement of the jet center line
approaches an asymptote as x/D becomes larger. The effect of the
proximity to the surface on the mean velocity profile at a single
axial position(x/D = 11.0) is shown in Figure 5. The jet centerline
is displaced toward the free surface from the nozzle centerline, and
the submergence of the jet seems to have a small influence on this
displacement. Velocity measurements close to the surface are rather
uncertain because of waves present as the jet intersects the free
surface.

The decay of the centerline mean velocities in a turbulent jet

is described by--

(Um/UO)(x/D)0 "5 = (2/1r)0 "25 (1/c)0 "5  (1)

c is Reichardt's constant which must be determined experimentally.
Mih(1975) reports c = 0.140. Equation (1) is plotted in Figure 6
along with the measured centerline mean velocities obtained in
several different jet flow experiments at different submergence
ratios. The velocities plotted are the velocities at the nozzle
centerline. Because of the distortion due to the presence of the
free surface, the jet centerline may not coincide with the nozzle
centerline. This effect could cause some of the data scatter
observed. There is general agreement with the work of Mih as
represented by Equation (1).

Jet Spreading The distance from the jet center line downward to a
point, y , where the mean velocity is one-half the maximum mean
velocity is a measure of the jet spreading. The lower half of the
jet was used for this measurement, in order to reduce the influence
of the free surface so that the results might be compared with the
work of others. Figure 7 shows the results for a submergence ratio
of H/D = 6.9. The jet expands linearly according to

y*/D = - 0.054 (x/D) - 0.094 (2)

(Correlation Coefficient = 0.994)

This equation is obtained when the three points closest to the jet
source are included, and it coincides with the results others have
reported for free Jets. The spreading is also approximately linear
when all four points are included in the analysis. The equation for
this is
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y /D= -0.134 (x/D) + 0.728 (3)

(Correlation Coefficient = 0.986)

There are two effects that make this situation studied different
from a true free jet. The confinement by the air-water interface
has an undetermined effect on the spreading of a jet. The jet was
also confined from below by the solid bottom of the tank which was
located at Ho/D = 39.4 in this case. The point farthest downstream
may have been influenced by back flow along the tank bottom, though
no backflow was observed directly. Gutmark and Wygnanski(1976)
report results obtained for measurements with free air jets in air
which indicate the following relationship.

y ~ 0.1 (x/D - xo/D) (4)

The effect of the free surface as was shown above is to distort the
centerline of the jet so that the distance from the centerline to
the surface becomes smaller as x increases. This could account for
the lower coefficient of (x/D) in equation (2).

Turbulence Quantities Turbulent velocity fluctuations were
calculated by subtracting the mean velocity from each instantaneous
velocity value in the time series which were calculated from the
anemometer output data as described above. The turbulent velocity
fluctuation results were combined in the appropriate ways and time-
averaged to give the Reynolds stresses and turbulent intensities.

1) Reynolds stress

The Reynolds stress depends on axial position as illustrated in
Figure 8 where the results are shown for a submergence ratio of 6.9.
Lines drawn in the figures show approximate trends and are not "best
fit" lines. These dimensional data show the distortion of the mean
velocity profile due to the presence of the free surface. As the
jet i.preads out downstream from the source, the upper and lower
parts of the profile become less and less antisymmetrical. If no
free surface were present, one expects the Reynolds stress profile
to be antisymmetrical about the centerline. In Figure 9, the
dimensionless Reynolds stress is plotted as a functi3n of the
dimensionless transverse position. This shows that as the jet moves
downstream, similarity of the turbulence is approximately maintained
in the part of the jet below the centerline away from the free
surface but not maintained in the part of the jet above the
centerline toward the free surface. As the jet moves downstream,
the position of the minimum Reynolds stress moves toward the
surface. Based on the Reynolds stress results, one cannot say
anything definitive about the position of the centerline of the jet.
As the jet moves downstream, the magnitude of the Reynolds stress
changes first increasing and then decreasing.

2) Turbulence Intensity

The turbulence intensities are plotted in Figure 10(axial
turbulence intensity) and Figure ll(transverse turbulence intensity)

i
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in terms of dimensionless position. The submergence ratio which
applies to these data is again 6.9. As the jet moves downstream,
the dimensionless intensity profiles are reduced in size, though the
magnitude of the maxima and the general shape are approximately the
same at all axial positions studied. This indicates that in terms
of the length scale y* similarity of the turbulence is not preserved
in the planar jet flow. This is a finding different from that based
on the Reynolds stress results for which similarity was observed in
the lower half of the jet.

The uncertainty is rather large for the turbulence intensities
and for the Reynolds stresses as is seen from the data scatter of
the plotted points. The tests for similarity require plotting
dimensionless values which are calculated by multiplying toiether
two velocity fluctuation values which in turn are calculated by
subtracting a mean velocity from a measured velocity--two numbers
which differ by at most by 10 to 20 per cent. This product is then
divided by another quantity calculated in the same way. The
uncertainly in the measured velocities is approximately 3 to 15
percent. This means that the uncertainty in the calculated
turbulence results is 30 to 60 per cent. This is much larger than
the uncertainty in the mean velocities because it is likely that the
uncertainties associated with each individual velocity measurement
are normally distributed and that the time averaging process keeps
the uncertainty of the final calculated mean velocity approximately
the same as the uncertainty of an individual measurement. Since a
12-bit A/D converter was used with a 16-bit microcomputer for data
logging, the relative uncertainty associated with the electronic
data processing was 0.00024(1/4096). All the uncertainty in the
velocity measurements comes from sensor calibration and from not
being able to produce a true stationary jet flow.

3) Influence of the Free Surface

From the intensity results reported, it is not possible to say
anything definite about the effect of the proximity of the free
surface on the turbulence intensity. Others have postulated that
eddies are damped by the free surface and that, compared to a jet
which is well-submerged, the transverse intensity should be reduced
and the axial intensity should be increased. Intensity results for
three different submergence ratios are shown in Figure 12. The
intensity profiles are distorted as the submergence decreases. The
scatter in the results is large enough to mask the characteristic
shape with two maxima, but the magnitude of the intensity values
scaled by maximum velocity does not depend on submergence. Figure
13 shows the effect of submergence on the Reynolds stress. The
profiles are distorted as the distance to the free surface
decreases. The part of the Reynolds stress profile nearest the free
surface is most strongly affected. As the jet is submerged farther
from the free surface, the characteristic concave outward shape of
the Reynolds stress profile is restored.
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4) Pressure Fluctuations

The pressure probe proved to be sensitive enough to detect
pressure fluctuations of approximately 2000 Pascals. This is
illustrated in Figure 14 where the difference between the pressure
at the sensor tip and the reference pressure is plotted as a
function of time. Power spectra of the pressure signals are
presented in Figure 15. They show a large contribution at low
frequencies with a peak at 32 Hertz. When the probe is pointed
directly upstream, this peak is eliminated. The peak is greatly
reduced when the probe is pointed directly downstream. We could not
identify any noise or vibration in the system of this frequency, but
without more evidence, we should not infer that this peak indicates
some phenomenon related to the turbulence. These spectra were
originally calculated to give information about the best mounting
angle for the pressure probe to avoid an effect of impact in the
output of the instrument. We found that the best position for
reducing the effect of imp act and avoiding the effect of the wake of
the probe support was 1350 where zero degrees indicates that the
probe is pointed directly upstream.

5) Autocorrelation Functions

Taylor's hypothesis allows transformi-,g spatial and temporal
correlations for homogeneous flows--those which have constant mean
velocity. The autocorrelations--velocity/velocity correlations with
one of the velocities displaced in time--were calculated using the
single-point data , so that we could determine the magnitude of the
error which would be made in applying Taylor's hypothesis to our
non-homogeneous jet flow. The autocorrelations show the expected
shape and indicate something about the time scales associated with
the turbulence. The details of the autocorrelation results are
discussed in the attached thesis by E. Menning--pages 35 to 41.

C. Two-Point Results

The two-point measurements were to be one of the main features
of the whole project. The information is essential for developing a
turbulence closure model that is more universal than single-point
closure models such as the k-epsilon model. Flow features in
turbulence which persist over a time long compared to the time
required for a turbulent fluctuation--coherent structures--have been
identified in many different flow fields. Because of this, it makes
sense to try to describe turbulence in terms of the range of
interactions between two points in the flow. A governing equation
for the transport of the two-point correlation function can be
written, but it contains triple correlations and pressure-velocity
correlations. The triple correlations must be modelled for all
flows, and the pressure-velocity correlations must be modelled for
non-isotropic flows. These model functions must be evaluated from
experimental data. Once the model functions are available, they are
used in solv.ng the differential equation for the two-point velocity
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correlation which in turn can be used to calculate the velocity
field.

One objective of the work was to obtain experimental turbulent
velocity data which would be suitable for calculating the two-point
pressure-velocity correlations, <Pui'> , the two-point double
velocity correlation,.<uiu '>, and the two-point triple velocity
correlations, <uiu&u >. These measurements were not successful,
because of the exp rimental uncertainties which affected the
results. The same uncertainties as found in the single-point
measurements were present with the two-point measurements. The
uncertainty introduced by subtracting the mean value from all
velocity values which appeared in calculating the Reynolds stress
and turbulent intensity also appears in the two-point correlation
calculations. Using two hot-film sensors introduced further
uncertainty, because the interactions in the turbulence took place
over a short range in the jet flow. The wake of the upstream sensor
seemed to interfere with the measurements obtained from the down
stream sensor when the two sensors were placed along the same axis.
These difficulties together with the fact that the relative
uncertainty is increased when the turbulent velocities are
multiplied together in calculating the correlations combined to
decrease the signal-to-noise ratio to the point where no definitive
results were obtained from the two-point correlation measurements.

The two-point spatial correlation values calculated are not
accurate enough to be used to verify the results of closure
modelling. However, the results are consistent with measurements
made by others. The complete discussion of the double and triple
spatial velocity correlations appears on pages 35 to 50 in the
attached thesis.

D. Closure Modelling Work

During the three years of the project, the theoretical and
modelling work has been focussed on developing a model which
describes jet turbulence in terms of parameters which depend only on
Reynolds number and are therefore fundamental turbulence parameters.
To develop a two-point closure for anisotropic turbulence, it is
necessary to model two terms in the two-point velocity correlation
equation.

<pu'> related to anisotropy( this is zero for iso-
tropic turbulence)

<uuu'> related to the presence of scale independent
energy transfer modes or "preserved"
structure

These quantities may be modelled in terms of the invariants of the
separation position vector and a unit vector in the direction of the
flow. Using this latter vector is our method for introducing
anisotropy into the model. For example, the pressure velocity
correlation can be expressed as--
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<PUi'> = BI(r r, r. b, t)ri + B2 (r r, E. b, t)bi

whe..e r is the separation vector and b is a unit vector in the
direction of flow, and

p = p(x, t) and ui ' = ui(x + r, t)

As an approximation for the model being developed, let there be
small" anisotropy. This allows separating the model into two

functions--an isotropic part which depends on the separation vector
and an anisotropic part which depends on the preferred direction.

<PUi'> = BI(r. r, t)li + B2 (r° h, t)bi

This model has been chosen, because it provides a simple way to
include an explicit dependence on anisotropy and is distinctly
different from the corresponding expression for the isotropic case.
It has been determined that B1 is and even function of r and that B2
is an odd function of b. Because of mass conservation, B1 and B2
are not independent but are related by

Bl(r-r, t) = -r31r2 3r* dr

For b = (1,0,0) and r = (r,0,0), the expression for the pressure-
velocity correlation gives--

<p u'> = B1 r + B2

<p v'> = <p w'> = 0

The triple velocity correlation is modelled as a function of an
energy transfer parameter, k(r). It has been determined that a
reasonable form for k is--

k(r) = a1 (r/wl)3 exp[ -a2 (r/r)2]

where v is a "characteristic" length scale, a2 defines the value
of (r/y ) for which energy transfer is a maximum, and a1 defines the
corresponding amount of energy transferred. All of the functions
described are also functions of time, so they are related to the
decay of the turbulence a.! the water moves along in the jet. This
decay is modelled as the b .m of the decay of an isotropic part and
the decay of an anisotropic part with no interaction between the two
parts.

Because of the experimental difficulties encountered during the
co.,rse of the project, we do not yet have any suitable data for the
pressure-velocity correlations or the triple velocity correlations
to use for developing the closure model for a non-isotropic flow.
The model for two-point correlations of turbulent velocity
fluctuations has been developed using the two-point triple velocity
correlations for isotropic turbulence reported by Stewart(1951).
This theoretical model contains two parameters, a and b, which are
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pure numbers. Since the only number peculiar to the analysis of
turbulence is the Reynolds number, a and b cannot be arbitrary
parameters but must depend on Reynolds number in some well-
prescribed way. A formal representation could be written

a - F(NRe) and b - G(NRe)

F(...) and G(...) may be different for different turbulent flow
situations. One preliminary result of fundamental importance is
that the ratio, a/b, is insensitive to changes in Reynolds number.
This suggests an energy cascade autonomy or "self-governance" which
has not been reported in the literature. The properties of a and b
are as follows.

1) a #0 and b #0
2) a<b

It also appears that ( b - a ) is a measure of how much energy is
transferred in the fluid by eddy entrainment, and (b + a ) is a
measure of how much energy is transferred in the fluid by eddy
deformation.

E. Publications and Conference Presentations

Besides the four theses listed below under the heading of
participants, the following publications have appeared as a result
of research supported under this project. Copies of these
publications are included in the appendix.

Trevino, G. 1989 "Isotropic Analysis of Grid Turbulence",
Int Journal Eng Sci, 27, pp. 1463-1471

Trevino, G. 1989 "On the Invariant Functions of the Turbulence
Bispectrum", Int Journal Eng Sci, 27, pp. 529-537

Trevino, G. 1989 "Energy Transfer in Turbulence", Physics of
Fluids A, 1, pp. 2061-2064

Trevino, G. In Press "On the Theory of Isotropic Decay", Appl Mech
Rev,

The following papers have -en presented at technical meetings
and conferences.

Hubbard, D. W.(with E. J. Hine and G. Trevino), "Experimental
Techniques for Measuring Turbulent Velocity Correlations in a
Jet Flow Near an Air-Water Interface", Paper 6AM6-3, 22nd
Annual Meeting, Society gor Engineering Science, Penn State
University(October 1985)
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Hubbard, D. W.(with E. J. Hine, L. R. Heydenburg, and G. Trevino),
"Turbulence in Water Jets: A Two-Point Closure", Paper 131e,
1986 Annual Meeting, American Institute of Chemical Engineers,
Miami Beach(November 1986)

Trevino, G. "The Invariant Functions of the Turbulence Bispectrum",
International Conference on Fluid Mechanics, Beijing,
China(July 1987

Hubbard, D. W. (with L. R. Heydenburg), "Pressure-Velocity
Correlation Measurements in Turbulent Liquid Flows", 14th
Annual Mid-Western Universities Fluid Mechanics Retreat,
Rochester, Indiana(April 1987)

Trevino, G. "On the Theory of Isotropic Decay", Pan American
Conference of Applied Mechanics, Rio de Janeiro,
Brazil(January 1989)

F. Participants

Eric J. Hine, Graduate Research Assistant,
M.S. Thesis entitled "Two-Point Third-Order Velocity
Correlations in a Planar Jet Bounded by a Free Surface"
completed and M.S. Degree granted in June 1986.

Lisa R. Harris, Graduate Research Assistant,
M.S. thesis entitled "Two-Point Pressure-Velocity
Correlations in a Planar Jet Bounded by a Free
Surface" completed and M.S. degree granted in August
1987.

Eric Menning, Graduate Research Assistant,
M.S. Thesis entitled "Pressure and Velocity Correlations
in a Plane turbulent Water jet" completed and M.S. Degree
awarded in November 1988.

Jiajin Qu, Graduate Research Assistant,
Ph.D. Thesis entitled "Decay Laws of Isotropic
Turbulence" completed and Ph.D. Degree awarded in June
1990.

Christine M. Cross, Undergraduate Research Assistant

Michael Bednar, Undergraduate Research Assistant

Craig Harris, Undergraduate Research Assistant

G. Plans for Future Work

Our main plan for future work for this jet flow turbulence
project is to improve the precision of the experimental data so that
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the closure model can be developed for non-isotropic flows. We need
to control the flow better to provide truly stationary turbulence.
The jet flow we used for our measurements was produced by pumping
water into a reservoir of still water. Using a centrifugal pump
caused small fluctuations in the flow because of speed variations
due to minor frequency variations in the line power. This
difficulty can be overcome by using a stand-pipe water supply system
which is available in the Department of Civil and Environmental
Engineering at Michigan Tech. This stand-pipe is approximately 50
feet high and has an over flow weir and a pumping system to maintain
a constant hydrostatic head. If such a system were connected to the
jet flow nozzle unit, the upstream pressure would be constant and
there should be no fluctuations in the mean flow. This supply
system would also eliminate any difficulty of temperature changes in
the water due to viscous dissipation when the nozzle is supplied
directly by a centrifugal pump.

The turbulent jet is supposed to be two-dimensional, but there
can be entrainment at the sides leading to transverse velocity
gradients. A refinement which would eliminate this difficulty would
be to design shields for the sides of the nozzle so that water would
be entrained only from above and from below.

The calibration system we developed during the course of this
project is effective, but the procedure is cumbersome and time
consuming. We have some ideas for devising an in-situ sensor
calibration device which would be a moveable laminar jet. Using
this kind of calibration device would allow leaving the sensor in
position for the frequent periodic calibration which is necessary
when making measurements in water. Calibration data would be
obtained with the calibration jet in one position, and the proper
relationship between velocity and sensor output would be determined
by the well-established equations giving the response of yawed
sensor elements.

The separation distance necessary to measure non-zero two-point
velocity correlation functions turned out to be quite small. This
made it difficult to mount the sensors directly in alignment because
of the arrangement of the supporting structures. With the close
spacing needed, the wake of the upstream sensor interferes with the
signal of the downstream sensor. This makes the output of the
downstream sensor noisy. Both the alignment and proximity problems
could be eliminated by used a laser doppler anemometer(LDA) as the
upstream sensor. This is a nonintrusive device which does not
disturb the flow. The downstream sensor could be a crossed-sensor
hot film probe just as was used in the present study. This idea was
first suggested by Thomas Sweam of the Naval Research Laboratory.
There is no LDA unit available at Michigan Tech.

The bleed type pressure sensor proved to be sensitive enough to
measure the pressure fluctuations which occurred in the jet flow,
but the device was not rugged enough for long term application in
liquid flows. If the pressure-velocity correlation measurements are
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continued, a more rugged pressure sensor is needed. A piezoelectric
pressure sensor might be appropriate.

Computer power increases all the time, and people at various
laboratories are able to simulate instantaneous turbulent velocity
fields by solving the Navier-Stokes equations. Results are
available right now for low Reynolds number flows in simple systems.
It would be interesting to try to extend this direct simulation
method to the case of a jet flow interacting with a free surface.
If that effort was successful, the results could be used to develop
the two-point closure scheme. These results could in turn be
compared with experimental data. The simulation might be more
effective for model development, because the velocity values are
synoptic and closely spaced if the numerical analysis grid is fine
enough.

H. References
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Figure 1. Jet Geometry and Notation
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ON THE INVARIANT FUNCTIONS OF THE
TURBULENCE BISPECTRUM

GEORGE TREVIqO
Mechanical Engineering-Engineering Mechanics Department, Michigan Technological University,

loughton, MI 49931. U.S.A.

Abstract-It is established that the invariant functions of the turbulence bispectrum can themselves be
represented in terms of basis functions which are independent of time. These basis functions are also
scale-independent, and therefore identical for large eddies and small eddies alike. Dynamical
implications of this result are discussed.

"What we observe is not nature itself but nature exposed to our method of
questioning" [1].

1. INTRODUCTION

Several papers concerning the application of the bispectrum to the analysis of noise and
turbulence have been presented to the community [2-13]. The accepted definition of the
bispectrum is very simple; it is the double Fourier-transform of the triple-moment function, and
for the homogeneous turbulence is typically written as

B,1 (k1 , k2, t) = f exp{-t(k -q + k2 - r)}S,,t(q, r, t) dq dr, (1)

where
S,,t(q, r, t) = (u,(x, t)u,(x + q, t)u,(x + r, t)).

The bispectrum is the three-point generalization of the power-spectrum concept already fully
developed for two-point moments, and is accordingly an energy-transfer spectrum. It provides
information about the turbulent flow which is not obtainable through the customary
energy-spectrum; in particular it supplies knov ledge about the degree of nonlinearity. The
bispectral tensor, B,t(ki, k2, ), can be written in terms of the invariant functions formed from
the wave-number vectors, kt and k2, and for isotropic turbulence characteristically expresses as
(cf. [14])

14

B,t(k 1, k2, I) A.F , )(ki, k 2). (2)
N-I

In equation (2) the F,1)(k,,k 2) are necessarily real, but the AN( ") may be complex
depending on the nature of B,,1(kj, k2, t), cf. eqn. (1); also the functional form of each
F(Nk), k2) is independent of the corresponding AN( • ), which afe strictly scalar functions of
the invariants, k, -k1, k, k,, k2 k2, and the time t. In fact the functional form of each
F(N)(k1, k2) is determined from purely invariant theoretic constraints while that of the AN(* -)
is determined strictly from fluid dynamical deliberations. Proudman and Reid [151 have
elegantly shown that indice symmetry conditions together with conservation of m-,- teduce the
complete specification of B,,I(k 1 , k,, t) to two (2) independent functions, say Ai A ') and
A 2 - A

The purpose of this note is to establish that for self-similar decay each of the A(,, N = 1, 2,
can themselves be represented in terms of a finite number of basis functions which are not only
scale-independent, but also independent of time; they are indeed independent of initial
conditions, and the temporal decay does not at all affect them. This result suggests that during
the attendant decay there are some aspects of energy-transfer which remain fully preserved
(invariant), and are therefore in some sort of universal equilibrium. It is compatible with recent
experimental findings that "turbulence" is indeed characterized by a remarkable degree of
structure and order [16], although quantitative evidence of the herein intended structure

529
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remains yet to be reported in the literature. This "invariance within decay" is a paradox which
rightfully belongs to the sub-structure of turbulence, but it can nonetheless be explained in
traditional terms provided the proper formulism is posed. Invariance in any phenomenon is
important because it fosters the search for those properties which are unique to the

phenomenon itself, properties which are independent of the particular choice of reference
system; it asserts that the substantive laws of a given field should be expressible in a manner
which is completely independent of the explicit scales chosen to measure the field variables.
For turbulence, which characteristically transfers and dissipates energy in a manner
(seemingly) consistent with the scale-sizes present within the flow, this feature is fundamental,
subtle, and new; it is strikingly "nonfluidic" in flavor. From a dimensional analysis viewpoint,
the existence of such structure is not to be unexpected since energy-transfer is by nature
inherent in turbulence decay, but length scales are for the most part subjective in the sense that
the scientist is virtually free to choose for analysis any particular length scale of practical
interest. Typical length scales whose growth during decay is commonly studied are the integral
scale, A. defined as

A(t) ="f(r, t) dr,

f(r, t) - longitudinal correlation function of turbulence, and the dissipation scale, A, defined as

A(t) {{- 2f/9r2},,-) 2, although other equally valid length scales could readily be
conceived and likewise studied; examples of such are

L,= A'(t) rf (r, t) dr

and 2
L2 = A-'(r)J r2f(r, t)dr}

Since a turbulence Reynolds number can be formed as

R Appropriate \Length\/Vc
Re-(velocity scale/\ scale )/(iscosity),

the proposed result infers that there is something about energy-transfer in a self-similar
turbulent flow which is independent of Reynolds number, regardless of how the flow is scaled.
The dimensional analysis approach to turbulence invariably assumes that a turbulent flow can
be made independent of Reynolds number only if it is "properly" scaled. For the case of
turbulence generated by, say a wire mesh, the present implies that there is then something
about energy-transfer which is independent of grid size (gauge invariance), and therefore
identical for all such generated flows. From an analytical dynamics viewpoint the presence of
such structure is also not to be unexpected since the presence of sufficient symmetry in a given
dynamical system almost invariably guarantees related constants of the system motion
(conservation laws). The knowledge that certain functions of a particular system actually
remain preserved during a considered motion can be of great help not only in simplifying the
governing equations, but also in eventually leading to their solution. At the very least it can
lead to new insights. It was indeed the attendant recognition that in isotropic decay there is
inauspiciously no natural length scale imposed on turbulence which prompted Karman and
Howarth [171 to initiate an investigation to determine if closure could be obtained solely from
the assumption of self-similarity (self-preservance). The bispectrum. therefore, in addition to
its use in studying such mechanisms as spectral-transfer and vorticity production, appears to
also be a tool for analytical characterization (and study) of preserved structure during the decay
of self-similar fluids. Because the ensuing has its genesis in topology-related research [18], it is
accordingly intended only as a description, not as a physical theory, of turbulent energy-
transfer.

2. THE CASE FOR SELF-SIMILARITY

Since the assumption of self-similarity is vital to the specific results of this communication, it
is therefore necessary to first establish tinder what conditions such behavior would be expected
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to persist in, say, a grid-turbulence or even a jet-turbulence. lHistorically. the assumption of
self-similarity during turbulence decay has been principally a mathematical de,,Ice. employed
solely to secure definite and explicit results. Nonetheless its existence and subsequent analysis
can be equally justified from purely dynamical system grounds. From such a perspective.
decaying turbulence is a time-varying (nonlinear) dynamical system. And even though
time-varying systems can be regarded as "filters" which select eigenfunctions in the most pure

sense rather than just simple sinusoids (i.e. they discriminate against the complex exponentials
as the natural eigenfunctions for related spectral decompositions). the natural tendency in their
analysis is to treat them as systems whose properties do not change "appreciably" with respect
to time. The underlying motivation for this approach is that classical modal analysis is not
explicitly restricted to systems which are time-invartant only; it is only necessary that the
differential equation governing the system as well as the boundary conditions be separable into
a function of time alone and in this case a function of non-dimensionalized length alone, i.e.
that temporal changes in the system be in some sense "uniform".

For purposes of mean-value determination, the most fundamental mathematical tool
available to the turbulence practitioner is the Reynolds time-average. In any real flow
inhomogeneity is always present and therefore the best estimate to the mean quantities of a
steady-state flow are provided by averages such as

Q..(xi, x,) =- (u(x,, t)i r,, t)) T f. u(x,, t)u(x,, t) dt,

r

Q . x1,X) = 0 2x ,t)u(x,, )) 142(x,, tu(x,, t), dt,

etc.. where, in practice, measurements of flow quantities are most often taken along the
centerline of the (spatial) decay. In studies of turbulence it is customary to introduce a velocity
scale defined as u.(x) = {Q..(x, x)}i/ . This scale permits u(x, t) to be rewritten as u(x, t) =
a(x)Z(x, t), where (x, t) is a normalized turbulence velocity such that R(x, x)=
('(x, t)!(x, t)) M1 for all x. Note that u(x), in contradistinction to a length scale, is natural to
the turbulence itself in the sense that a particular turbulence will automatically define its own
peculiar a(x). With this velocity scale in hand. Q.(. .- ) and Q..(.--) immediately rewrite as
Q..(x,, x,)-- C(x, r) = a(x - r/2)o(x + r/2)R(x, r) and Q...(x, x,)- * D(x. r) = or(x -
r/2)c(x + r/2)S(x, r), where x = (x, +x 2 )/2 and r =x 2 -x . The coordinates, x and r, can be
considered as uncoupled principal or natural coordinates for the two physical coordinates. x,
and x2. Unlike modal analysis of dynamic systems, however, the principal coordinates here are
not abstract but indeed always have well-defined physical meaning. Choosing a generic length
scale, q(x), it is further customary to write R(- - R(r/i), meaning that the algebraic form
of R(--.) remains unchanged during the spatial decay, but the scaling along the abscissa
(r-axis) has stretched according to the growth of i(- ..) with downstream distance from the
grid (or jet). The physical condition necessary for this feature to manifest is that energy must
cascade in such a manner that all length scales of the turbulence grow with x at approximately
the same rate, and therefore knowledge of the growth of one length scale essentially provides
knowledge of the growth of all others: accordingly. there is no accompanying loss of
"information" in this process of energy transfer. By expanding a(x ± r12) in a Taylor's series
about r = 0, the result is

o(x ± r/2) = a(x)+ (r/2) + -. o(x){l ± r/2L +...}

where

L L() Ii

is a length scale over which o(.-- ) may he assumed to vary "appreciably". Since R(. .) scales
with i1(x), the net effect on C(x. r) of the diffcrent length scales. L(x) and il(x). can be

characterized by writing C(x, r) - ( ){i - (r!2r1)(q/L)2 )}R(x, r). If then L >> i1. Cx, r)
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G2(x)R(r/?7) for those values of r for which r :- q. Since

lir {R(x, r)} = 0,

if L is prohibitively larger than i7, C(x, r) &o(x)R(r/q) is true for all values of r. Remote
though these collectic conditions are from anything which could readily be established in
practice, the virtual impossibility of their manifestation constitutes no objection to their
empioyment in a purely theoretical investigation. It is indeed one of the more interesting
features of any physical theory that it invokes idealized behavior, yet the eventual results
obtained from same reveal substantial knowledge about real phenomena. Note that self-
similarity is always true for extremely small values of r. The formulation is ultimately aligned
with isotropic theory by expressing downstream distance, x, as x -Ut, where U is a (constant)
characteristic mean-flow velocity (typically a centerline velocity).

3. FORMULATION

For simplicity consider the case where k, -aki; (r- scalar. For this case the A"') become
A('I(k, .k1, k, . k,, ki .k2, t) - A('(k,, k,, t), N = 1, 2, where k, = 1kJ, i= 1.2. For self-
similar decay the time-dpendence of the A'"' is carried through appropriate scale-factors, viz.
a - c(t) and q - q(t), a - velocity scale-factor defined through 3(t) = f B,1 (k,, k,, t) dk, dk,,
while q -- subjectively defined length scale factor. Acc3rdingly, A"'%'(k,, k 2, t) =

o-3 (:t ('(k 1 , -k )=-(t) ('(K 1 , K,), where K, = rk, and K. =?lk, are tinie-dependent
dimensionless coordinates. Proudman and Reid (loc. cit.) have established that B,,(.. .) must
satisfy certain symmetries in the arguments, k, and k,. viz. that
B,I(kl, k2, t) -- B,,(k,, ki, t) B,1(k 2, -k, - k,, t). This symmetry is therefore also required of
the scalar functions, O(N"(K 1 , K 2); in particular, it must follow that

('P)(K 1 , K,) = 0('(K-), K ) - tp '( 2 , -KI - K 2 ). If each 4 (N)(...) is expanded in a Taylor's
series about KI = K, = 0, the generic result is

P(K1, K2) = 4)(0, 0) + ),,(0, 0)K I + 0-0 O)K, +-

where (p,,(...) and ,( .) denote respective appropriate partial derivatives. Suppose now
that the Taylor's approximation is restricted to the zeroth-order case, viz. the case
4(K,, K,) p(0, 0) = constant. It is obvious that 0(0, 0), because it is a constant, will
automatically satisfy the required argument svmmetry. Denote P(0, 0) by H,,(K,. K,). Suppose
now that the Taylor's approximation is restricted to the first-order case, viz the case

4(K,, K2) = HO(Ki, K,) + .,(0, O)Ki + 0..(0, O)K,.

Since HO(Ki, K,) constant already satisfies the required symmetry, imposition of the
K,, K,-invertibility on o(K,, K 2 ) then requires that PK(0, 0) -- (0. 0). However. imposition
of the remaining symmetry, viz. 4(K,, K,) = (K,. -K 1 - K,), demands that q ,(0. 0) 0.
Therefore, there is no linear homogeneous polynomial in K 1 , K, that under any circumstances
satisfies the entire required Ki, K--symmetry. Denote {0,,(0, 0)KI + 4PA.(0, 0)K,} by H(KI, K,).

Continuing to apply the same procedure to the second-order approximation, viz.

tP(K, K,) = HO(K,,v K,) + t1,(K,, K,) + (1/2)0.,(0, 0)K2,
+ (,, O)KK, + (l/2)q1 :,(0, 0)KOK,

produces lH2 (K1 , K,) = (any constant)(Ki + K1K2< + K2). The procedure applied to the third-order
approximation yields Ith(K,, K2 ) = (any constant)(K -2 : + K-K2). Strikingl,. though. the procedure
applied to the fourth-order approximation reveals that HJ(KI. K,) = (any constant)(K2 +

K1 Ki + K 2)2, while the procedure applied to the fifth-order approximation supplies
H5(K 1 , K.) = (any constant)(K1 + K,, + K )(K TK + KiK ) i.e. H.,(-. -) and H,( ... ) can be
constructed from H,(- ..) and t3( ." ). These collective results are not as surprising as they
appear, since the existence of a finite set of polynomial basis functions for any sequence of
systematically generated algebraic forms was established in an elegant theorem by Daid
Hilbert in 1890 [19]. The essence of the theorem formulated by him is that if an infinite
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sequence of algebraic forms (in the case at hand the sequence is H0( .. ), H,("),
H2(... ) ... ) is constructed according to some general over-riding rule (the "rule" here is the
dominating K I , K,-symmetry), then there comes a point in the construction kh'.re the set of
available independent such forms is exhausted and each form constructed thereinafter is merely
a repetition/modification of what has already preceded. What this means for the (P("(Kt, K,) is
that H6(K3 , K2) must be constructable from some combination of H1(KI, K,) and H 3(K 1 , Kz),

e.g. H6( .... H'( .... ) + H2( .... ), while H.7( .... ) must be of the form, H( .... )(some

constant){H2( .... )H3( .... )}. No other fundamental form different from H2 ( .... ) or//A....
may occur in the formulation.

4. DYNAMICAL IMPLICATIONS

Dynamical implications of the foregoing are best comprehended by examining the role that
the bispectrum pla)s in the decay of total turbulent energ. Keeping in mind that inertia forces
induce energy flow between different waenumbers for the same velocity component, it is
therefore accordingly necessary to analyze only the simple high Reynolds number case

au lau 2

at 2 ax

The two-point correlation method duly yields

a(uu') + Ia(1 .') a (u 2U')} ---0,
at 2 ar

where u' - u(x + r, t), and the bispectrum is thus introduced through

(UU 2 ) f. B(k, k2 , t)e (k,-k-)
" dk1 dk2

and

(u 2 u') = f B(kI, k 2 , t)e'k- dk, dk,;

ultimately.
, W(k, t)

at

where 4(k, t) = f (uu')e - k dr and W(k, t) = (ik/2) f {B(k, k', t) - B(k - k', k', t)} dk'. A
d, namical equation for the bispectrum (bispectral deca, equation) evolves through

6u a2u
at

in particular,

3B(k, k2, t)
+ 2v(ki + klk, + k )B(k, k2 , t)O.

An immediate feature of this equation is the explicit presence in it of the algebraic form,
H,(kl, k,) -(kI + kk, + k22); recall that the necessary presence of this form was earlier

established on purely kinematical grounds et the dynamics of the phenomenon establishes its
presence independent of kinematics. The fact that H( "-) emerges from two rather
independent lines of thinking suggests that between H2(- ) and H(' .), H2(- .- ) plays the
stronger role in the transfer of energy from wave-number k, to wave-number k, (or -vice versa).
The solution to the bispectral decay equation is

B(k 1 , k2 , t) = fi(k,, k,-)e - -
,(

i kk:: - k-)t

where P(---) is determined from initial conditions, and must be complex (i.e. have both real
and imaginary parts). This solution illustrates an interesting but not unexpected result, viz. that

ES 27 5-E
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(for "low" Reynolds number) the decrease of energy-transfer with time occurs at a higher rate
for the eddies with the larger wave-numbers; i.e. energy-transfer for the smallest eddies decays
due to viscous dissipation much faster than that for the largest ones. Note that for k, = k, = 0,
B( .- ) =constant. Since P(-..) must also be expressible in terms of the formulated
fundamental forms, the form suggested here is

fl~kj k,) flo + fl,(kl k , + k~k2) 2
fl(k1 , k2) =

[32 + P02(k + k,k,. + k2)"

This form substituted into the bispectral decay equation provides the right k-dependence for
4D(k, t); keep in mind that fl.v, N = 0, 1, 2, 3, may all be complex.

For purposes of the present analysis. however, it is best to consider B(- . ) as a function of
the kinematic invariant, a = k2 /ki = K/K I . Accordingly,

B(ki, k,, t)-- B(k, a, t) = , + fl(a + cr 2) 2k 6 e )A:2
02 + P.,(1 + av + c 2)k2

The forms, h (ar) = 1 + Cr + Cr2 and h,(or) = oa + o2, can be thought of as fully invariant (i.e.
scale-independent, time-independent, and Reynolds number-independent) "modes" of energy
transfer; note that there are only two such modes. In each mode the transfer resembles a
simple one degree-of-freedom system (the modes being discrete and independent of one
another), even though energy is transferred through a continuum of wave-number frequencies.
Also note that for "small" or. h,(cv) >> hit(c), while for "large" or, h,(or) - h,(o). 7T his result is
consistent with the widely held notion that the effect of a big eddy on a small eddy is composed
of two parts, one a deformation and the other an entrainment, ,ith the second part dominating
when the eddies in question differ widely in size. The implications here are that h,(o) -
entrainment while {i~a entrainment for "large" cv,

) deformation for "small" c.

Furthermore, for "small enough" k, i.e. the larger scale-structure of the turbulence,

(k, cv, t) 02 + fl 3h(or)k2

indicating that large-scale energy-transfer occurs in only one mode. ',iz. the entrainment mode.
However, since entrainment between two eddies of different size can occur only when the
larger eddy totally dominates the smaller, not only do the "big slow eddies" interact very
weakly with the remainder of the turbulence (a phenomenon already well-known and
understood), but the present establishes that they also interact ',ery weakly (if at all) with each
other, i.e. eddies of roughly the same size cannot entrain one another. This is perhaps what
accounts for the fact that the turbulence spectrum. t(k, t), has a somewhat permanent form
around k --0. Because the mode, h,(cv), does not participate in the large-scale transfer of
energy, the dynamical system (i.e. the turbulent fluid), for this wavenumber domain behaves
like a degenerate or semi-definite system; from this perspective h,,(c) is like an ignorable
ccordinate and the corresponding "constant of the motion" is the permanence of the
large-scale turbulence structure. For the larger values of k, howeer.

B(k, a, t-hl(a)k e-
flzh,(cr)

indicating that for the smaller scale-structure boih modes, one mode (viz. h,(a)) determined
from pure kinematics only, participate in the transfer. This condition persists even for the
smallest scales. The different modal behavior for small and large scales re~eals that even
though kinematic similarity is assumed, formulated, and pursued. the system nonetheless
refuses to behave dynamically similar. The presence of the mode, hi(cv), in the respective
expressions for large- and small-scale energy-transfer alike supports the assertion made earlier
that this mode plays the stronger role in the transfer of energy.
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5. DEEPER IMPLICATIONS

Since self-similar turbulence must decay in a fashion which preserves the scale- and
time-independent forms, h,(a) and h,,(r) = h1(a) - 1, and since the bispectrum for any such
decay must be algebraically expressible in terms of hl(ac) and hi(a), then all universal
ramifications of same are embodied in the single absolutely invariant function, h(cr), and
eventually in the invariant, tr. The physical implication of this result is best comprehended by
recalling a simple experiment in physics which culminates in a precise operational definition of
the mass of a body. The experiment involves placing a spring between two isolated masses, A
and B, pushing them together so that the spring is compressed (the spring is not rigidly
attached to either of the masses), and then releasing them. By repeating the experiment a
number of times, each time with a spring of different constant, it will be found that although
the recoil velocities of A and B will be different each time, the ratio, VA/V, will be identical
for all cases, i.e. vA/V = invariant, regardless of the amount of initial energy in the system.
The fact that this result provides a means for unambiguously defining the mass of a body, viz.
m/mA VA/tlB, and that it is consistent with the principle of linear momentum conservation,
is well established. Put simply, the invariance of VA/Vs means that energy cannot be transferred
from the potential energy of the spring to the kinetic energy of the masses in an arbitrary
fashion but must indeed be transferred in a manner consistent with linear momentum
conservation. In thermodynamics, a correspondingly simple experiment will establish that in a
Carnot cycle the heat, QH, flowing in at a high temperature, TH, is related to the heat, QL,
flowing out at a lower temperature, TL, by the relation

Q- T -- -- nvarint;QL T

the invariance of this ratio is a consequence of the principle of conservation of entropy, i.e.,
heat is not transferred arabitrarily through the engine. In geometrical optics the fact that the
sines of the angles of incidence and refraction stand in a constant ratio to each other, regardless
of the magnitude of each, leads to the formulation of Snell's Law. In the study of relativity,
Mermin [20] has invoked the invariance of the ratio of collinear lengths for both the fixed and
moving observers to cleverly derive the Lorentz transformation equations without making use
of the principle of the constancy of the velocity of light. It appears, therefore, that the
invariance of cr = k,/k 1 , as herein formulated, is a manifestation of some consernation law or
principle which governs the transfer of energy in a decaying turbulence. Such a conservation
law must describe, for self-similarity, the means of (scale-independent) "communication"
between turbulence events of different scale-sizes such that in the limit, events distinguished by
a great disparity in scale-size should exert minimal influence on one another. Moreover, such a
principle is consistent with the traditional wisdom that turbulence does not transfer energy
arbitrarily but indeed does so in some well-prescribed fashion. If we think of a "parcel" of
turbulence of a particular scale-size as a dynamical system which recei',es energy from those
parcels of turbulence of larger scale-sizes, dissipates some of this energy, and transfers the rest
to those parcels of smaller scale-size, then a possible such law is

E_(k) (k (, 

ER(kl, k,) k/ Ki

in this expression ET(k) is the total energy transferred by a turbulence parcel of scale-size,
k-1. to all other turbulence parcels of smaller scale-size, E,(kl, k,) is that portion of Er(ki)
which is eventually received by a pracel of scale-size, k s, y , a non-adjustable constant greater
than zero, and k2>k, (see Fig. 1). The t-dependence of both Er(" .• ) and ER(" • ") is explicitly
deleted in the above expression in order to emphasize the time-independence of the ratio,
ET(." ")IER(" ). The ultimate consequences of such a law (or others like it) need to be fully
investigated.
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TurbuLence

porcet" of sco.esize,

i (---)

transferring energy to turbulence parcels of smaller scale-sizes.

6. CONCLUDING REMARKS

In closing it remains to affirm that regardless of the nature of the decay-whether self-similar
or non-self-similar, isotropic or non-isotropic-some aspect(s) of the turbulence will always be

preserved. This follows from the nature of scaling effects (transformations) in general that

regardless of how a geometric figure may be deformed, something about it nevertheless

remains intact and unchanged during the deformation process 21]. The geometric figure in
question here is the shape of the longitudinal correlation function f(r, i), of turbulence, and

how this function evolves in time determines where the first evidence of preserved structure can

be found. For self-similar decay, viz. f(r, t) -f(r/I,), where r/ - n(t) only, invariant structure,
as herein formulated. is found in the energy-transfer mechanism. This invariance accordingly

admits a representation of this mechanism in terms of a finite number of transfer modes which

are independent of the magnitudes of the coordinates originally chosen to describe the motion.

In each mode the transfer resembles a one-degree-of-freedom system (with no interplay

between the modes), even though energy is transferred and dissipated in the entire system

through a continuum of wavenumber frequencies. For a more general strain of decay, say

where possibly ud For l , r), preserved structure will necessarily be found only in the

higher-order moments 1181. This means that independent of adventitious disturbances.

preserved structure of some sort will exist in any and all types of decay: furthermore, it can be

definitely concluded that the degree of particularly endowed structure is not affected by the

"age" of the flow.
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Abstract-IThe principles of self-similar isotropic turbulence are applied to the analysis of grid-deca%
In particular it is theoretically established that energy-transfer occurs in only two distinct in%anant
modes. The deca constant of third-order correlations is posed in terms of the "amounts" of each

mode present in the deca%. This constant is determined empirically, and is found to be relati.ely

insensitive to changes in Re The related deca% of turbulence intensity is computed.

1. INTRODUCriON

The theory of isotropic turbulence centers upon solving the dynamical equation.

t Sr r 8r r or.

to explicitly obtain the time dependence of a peculiar length scale. rq(t), in terms of the
time-decay of the velocity scale. a(t). The velocity scale is a parameter which is "natural" to
the turbulence itself (typically a turbulence rms value) while rq(t). on the other hand, is a
"subjective" parameter in the sense that the analyst is virtually free to choose for analysis any
length scale of particular interest. Tpical length scales whose growth during decay is studied in
the literature are the dissipation scale, defined as

or the integral scale, defined as

A(t) = jf(r. 1) dr.

The only natural length scale of turbulence is characteristically that imposed by the mechanism
which generates the turbulence. say for example. the mesh size in a grid-turbulence or the jet
diameter in a jet-turbulence. but this scale is (almost) alavs constant and essentially
inappropriate for decay analyses. In a practical scenario. a( -- ) is inariably approximated
from steady-state turbulence measurements as

02x f u1(x. 0) d.

where x is the dov nstream distance from the turbulence-generating mechanism: further,
x = 0r. & =convective mean-flo1 %elocit%. Similarly. f( • ) and k(- - ) are approximated as

0(x)f(r. x) - u(x. t)u(x + r. t) dt

and

'Wk (r. x - ij. Ju(x. t)u(x + r. t) di:

in all these approximations. u is the x-component of the three-dimensional turbulence velocity.
u = (u. t', w). T is a long averaging time. and all mea-uienents are typically taken along the
flow centerline where because of the attendant zero mean-flow gradients the isotropic theory is
most applicable.

1463
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In order to solve equation (1) from a purely theoretical perspective. some rather ad hoc but
nonetheless plausible assumption needs to be rna~k about the function. k k (r. x ) -- Ak(r. [).

An especially useful one Ahich has on occasion been in'oked [I] Is that of self-similarity in
both f (r, t) and k(r, r). historically, ihis a-.sumiption requires that f ( -- ) and k( -- -) boIth scale
in the same way %~ith a length scale %%hich is a function of time alone (and coinpletel',
independent of r). but it Ni11 be shoun momentariy that such a requirement is strictly
unnecessary and f(-- and k( .. may in fact each scale %%ith totally different leneth scales
without this condition affecting the fluid decay. EBidence that f() and k(... ). in
grid-turbulence. do indeed scale in different ways has already been provided b,6 Ste%%art 12]
%%hen he plotted values of h(---*) vs. rjM. M -mesh size: Ste%%art's graphic description of the
large-scale behavior of h(r/M) is that it falls remarkabl% sIo%%Ih to%&ard zero, and does not
disappear until %ell beyond the position at %hich the double correlation bCoUmes Undetec-
table.- Since k( --- ) -- 2h( ... the same description is therefore applicable to k(--- ). The
decay equation which emerges from the self-similarity assumption is

d(&;C~iq) .ivo 7 . (2)

where C,~ is a constant u~hich is unity if q A and greater than unity if q1A C, is a constant
defined as

Cf =f'0-1d . 0= r/j.

and

C, 4f r- k (r. t) dr.

Note that for self-similariy. k(r. t) - k(rIL). L -any time-dependent only length scale, and
accordingly

Also note that

C f (0) d

is not independent of C.. The subsequent decay law is folund b% assuming ribI 1' and
G(z) - 1d. from 'shich it folio-,%s that for self-similarity the only possible values of c and d are
c =0.5 = -d. This same result %%as originally established by Dryden 1I. A peculiar conse-
quence of this result is that the turbulence Re. defined as, Re arj r. is constant throughout
the decay.

On occasion. equation (1) is addressed in its inviscid (infinite Re) fo~rm. viz.

Sr &c --- k.(4)

vieldine for the self-similar ease the fa;niiv of solutions. c I di. Re -O(r *) lio'ue~er.
such a farnily of soluzions should be- siewed %%ith caution, since it is inconsistent *-ith the
fundamntnal precept of turbulenice that mass consers~ition together v ith mo'mentum ct~nserva-
tion duly prov ides four equaitions and four unkiio'ns. thus rigorously requiring one solution
only to the decay problem. Furthermore, since for ~saFr. k- -) OW (). an-. so-lution to
the iniscid equatioan cannot be valid for the small-cale Ntruc-ture of the turbulence (and
therefore not a viable solut ion at all): recall that for small r. f (r. 0) -~ I - (r - q):.

Becau!se the theory of turbulence strictly prohibits the presenrce in the analysis of an%
aidjustable or "tunecable- constants, a c omplete solution of the dynamital equation is thcrefore
not achieved until a value for C. is determined, or at least a viable method for so determining it
-xplicitly formulated. In other words, since the only flov.-relaited number unique to turbulecec
is Re. any other flo'm-rela',ed number(s) present in a gisen turbulence analysis necessarily
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has(have) to ultimately depend through some well-prescribed method on Re. The fomulation
of such a method and its implications for grid-turbulence are presented in the following. The
fact that CA is formed from an iitegral of k(...) fortunately suggests that aside from some
fundamental limiting constraints, viz.

lim {k( . O(r')

and
lim k(..)} .

the exact functional form of k(.....), although important is not devastating. Since,

C; -4 r-k(.. )dr.

k(....") also does not have to be integrable over all positive values of r; ie. because k( .) is an
odd function,

Jk(.. )dr=O

while

fk(. .)dr

itself may be undefined. Furthermore, because of the role it plays in decay,

r-'k(. .)dr

must always be less than zero.

2. FORMULATION

The transfer of energy in a system obeying nonlinear equations is a dynamical process
explicitly dependent upon the equations. Bounds on the transfer, however, can be imposed
from pure kinematics only, although not much more can be said about the functional form of
the transfer without employing dynamical arguments. The first step in the formulation is
therefore to invoke kinematics to establish said bounds and accordingly develop a repre-
sentative algebraic form for k(r. t) - k(rlo): recall that the exact algebraic form of k( . ) is
not central to the problem. To fundamentally accomplish this while simultaneously saying as
little as possibie about the transfer mechanism itself, it is here proposed to kinematically
describe the three-point correlation,

Q(q. r, x) .j ,u(x. )u(x + q, t)u(x + r, t) di.

where again u(x, t) is only one component of the steady-state three-dimensional turbulence
velocity field and x a one-dimensional position vector. In a strict nonhomogeneous turbulence,
such as that generated by (say) a gri, the correlation, Q(q, r, x), accordingly scales as

Q(q, r, x) = o(x)o(x + q)(Y(x + r)s(q/q, r/r).

However, the self-similar theory assumes that the length scale. 1, which scales (-... ) is "large"
in comparison to qj: large enough that

o(x)o(x + q)o(x + r)s(q/i, rl) = c(x)clx I + r \ 1 xI, + \-(/\}

x s(q/q, r/1q) =- o(x)s(q/rl, r/q).

Through its dependence on q and r, Q(... ) analytically described how a turbulence eddy of
scale-size, q, "inteiacts with" (transfers energy to) a turbulence eddy of scale-size, r, or
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vice-versa; i.e. Q(...) quantities how turbulence eddies of differing size "communicate" with
one another and thus measures the "strength" of the nonlinearity. For this reason, Q(. .

must approach zero as the difference between q and r grows without bound.
A simple property of Q(q, r, x) is (cf. Ref. [41) Q(q, r, x) - Q(r, q, x) = Q(-q, r - q, x);

this q, r-argument symmetry must therefore also be satisfied by s(...). If s(...) is then
expanded ii. ' Taylor's series in q and r, the formal result is

s(q/iq, rlq) --s(0, 0) + alq + blr + aq 2 + cqr + bgr2 + - • •.

where the a,, b, c, n = 1, 2, 3 .... represent the appropriately evaluated partial derivatives
of s(. • .). Following the procedure outlined in Refs [5] and [6], it can be readily shown that due
to the required argument symmetry in s(. •. ), aside from s(0, 0) which automatically satisfies
the required symmetry, the only algebraic forms which can appear in the expansion are the
homogeneous polynomials,

F(q, r) = q 2 - qr + r2 and F(q, r) = 2q 3 - 3q 2r - 3qr2 + 2r3 ,

and those higher-order homogeneous polynomials which can be formed from F(... ) and
F2(' ." ), e.g. F (.-.), FF(.2. )F2'" "), F2('" "), etc. No other fundamental algebraic form
different from F1(-..) and R(... ) satisfies the required symmetry and can therefore not appear
in the expansion of s( ..- ); specifically, the (q, r)-dependence of s(q/q,,r/i) can be fully
characterized by Fi(... ) and F2(..), i.e. as far as q and r only are concerned, s(--.)
s{F(q, r), F,(q, r)}.

The physical significance of F( ..-) and F(- .) is determined by writing F1(q, r) = (a 2 - a +
1)r' = h,(a)r2 and F(q, r) = 2(a-' - 1.5a 2 - 1.5a + 1)r3 = 2h2(cr)r "A, where a = qir is a scale-
independent parameter which is an invariant of the decay, i.e. during the decay a= q/r1
(q/7)/(r/q)-=_a, or in words, as the big eddies are "scaled down" into little eddies in a
unilaterally self-similar fashion, the ratio of two eddies remains preserved and unaffected.
Consequently, the forms h,(a) and h2 (a) are also invariants of the decay, and upon further
reflection are seen to be identical for both homogeneous turbulence and nonhomogeneous
turbulence alike. It is instructive to momentarily divert here to point out that in a 1981
communication, Deissler [7] concluded that even for a general nonhomogeneous turbulence,
certain terms in the two-point stochastic-averaged Navier-Stokes equation can be interpreted
as "transfer" terms. He accomplished this by introducing a third point, defined as x, =
x + n(x' -x), 0<-n :- 1, into the two-point geometry of the flow and cleverly deducing that the
appropriately formulated "turbulence self-interaction" terms produce zero total contribution to
the decay of (uu'); u - u(x, t), u' - u(x', t), x' = x + r. The impact of his result (duly pointed
out by him) is that turbulence self-interaction plays the same role in nonhomogeneous
turbulence that it does in homogeneous turbulence, viz. to transfer energy from one part of
wave-number space to another without changing the total amount. Furthermore he makes
perfectly clear that the interpretation of self-interaction as energy-transfer is correspondingly
conceptually independent of the condition of homogeneity; recall that the condition of
homogeneity is typically invoked in making the "transfer" interpretation. More fundamentally,
though, Deissler's result suggests that the two types of turbulence, through the energy-transfer
mechanism, are somehow "unified". In the present, the forms hl(cr) and h(a), because of
their insensitivity to the condition of homogeneity/nonhomogeneity, are collectively one
manifestation of this unity. Because the entire transfer mechanism can be characterized in
terms of these time-independent, scale-independent forms, these forms then can be thought of
as fully invariant dynamical "modes" of energy-transfer. Note that there are only two such
modes, and that the "two-mode" behavior is a direct consequence of argument symmetry only
in s( ... ), while the formulated scale-independence is a consequence of the imposed
self-similarity. Accordingly, it is not at all unreasonable to envision the herein considered
transfer-modes analogous to the modes of classical heat-transfer, viz. conduction, contection,
and radiation, save that here there are two distinct transfer modes only in contradistinction io
the three of heat-transfer. The two-mode behavior is consistent with the already known [8]
phenomenon that the effect of a large eddy on a smaller eddy is composed of two parts---one a
deformation, the other an entrainment. As in classical modal analysis, h,(ar) ani h,(a) are
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Fig. 1. Schematic of invariant cnergy-transfer modes

intended to remain intact and unaltered during the decay and an orthogonality condition
between them is found by setting a - 0.5, whereupon ht(a)--f,(=3) = 2+ 0.75, h2(t)--3*

f2(/) =3- - 2.253, and

f (P)f2(p) d3 M 0 for any 0.

Plots of h,(tr) and h2(ar) for 0- a(=q/r)- I are shown in Fig. 1. From purely dimensional
arguments, then it follows that s{ .. } --s{B(t)h(&)r 2, 2A(t)h,(a)r } where A(t) = a/1q3,
B(t) = b2!I 2, (a, b) - flow constants which depend only on Re, and thus on initial conditions.
and the explicit algebraic expression for s{ .} varies from flow to flow, i.e. s{. ..) will have a
given form for grid-turbulence, another form for jet-turbulence, etc.

It is a rather simple analysis to deduce that the flow constants, a and b, define explicitly "how
much" of each transfer-mode is present in the decay. Since for self-similarity Re =_ constant, it
follows that a = constant = F(Re), b = constant = Fb(Re), where F( ... ) and ,(. . ) have to
be somehow postulated and their collective peculiar consequences compared with available
data. The F(..-) and Fb(-" ) proposed here are such that

b 2 - 2a 3 = Re'
and

b2 + 2a 3  Re:,
viz.

a = 0.63(Re- - Re' )0 33

and
b = 0.71(Re- + Re')" 5.

3 APPLICATION TO GRID-TURBULENCE

The formulated theory vas formally applied to the grid-turbulence results of Stewart (loc.
cit.). First. a test for sel' -milarity in his data was performed by determining whether the
two-point transfer function for all three of his cases (1. Re = 5300: 2. Re = 21.200; 3. Re =
42,400; Re = UM/v) could collectively be reasonably approximated by a single function of r3
and r2 (or combinations of r 3 and r2) only, i.e. no terms in "r" or r to a fractional power; recall
that for the two-point case, q - 0. The result of that test is

k 213(rIM )3

[1 + y(r/M)212'

where the particular values of (f3, y) for each of his Re are specified in Figs 2-4. Thus, for
theoretical analyses of grid-decay, a viable approximation of two-point third-order correlations
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Fig 2. Triple-velocity curve, k(- .. obtained by Stewart. broken line is theoretical curve (Re= 5300).
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Fig. 3. Triple-,6elocity curve. k( ... obtained by Stewart-, broken line is theoretical curve (Re =21,200)
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Fig. 4. Triple-velocity curve. k( .. .) obtained by Ste~art, broken line is theoretical curse (Re =42,400),
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is
-2a1(r/tj) 3

k(r, t) -1 +

where (a, b) can be quickly determined from the Stewart data by visually approximating the
value of dimensionless length. (r/l) in the theory and (rIM) in the data, at which k(r/rq)
reaches its maximum value, viz. at (r/r) = V3/b, and similarly the corresponding maximum
valise of k(r/I), viz. k,. = k(V3/b) ==0.65(a/b)3. For the three available cases these values
are accordingly

a~ ={i~is} b= 2.47 }.
11.35J 3.46J

providing the values of

(0.43, Re = 5300

(a/b)- 0.41, Re = 21,200.

0.39. Re = 42,400

Note that although b, through the relation. k(\V3b)=k ,,, explicitly defines that point along
the abscissa where k( -. ) peaks, through the "normalized" expression,

K(br/rq) = (bla)3k(brlq) = - (r/ 22'  qh = 711b ,
2 [1 + (r/Yj 1)2j

b also defines how the length scale, il, which is inherently peculiar to f(.- ) only, is itself
"scaled" by the Re-dependent b to produce the length scale, nj, peculiar to k(- -.). Also note
that the series expansion,

K(br/lq) = -(br/rl)"[1 - (bril)212 +...

is not bilinear infl(r/l) and is in fact quadratic inf(r/1q) only for b -0.7 which as suggested by
the above data is true only for extremely low Re. Bilinearity in f( ..) of the leading term in an
infinite series expansion of k( .- ) has been (rather authoritatively) claimed to the author by
Kraichnan [9]. Note further the '.irtual Re-independence of (a/b), a feature already suggested
by the scale-independence of C, (cf. equation (3)); this feature and its implications will be
addressed later. The appropriate values of y and z in the postulated F(.. ) and Fb(" • ") are
then v=0.17 and z=0.25, so that for any Re (for grid-turbulence only) a=F(Re)=
0.63(Reo 25 - Re" 17)033 and b = Fb(Re) =0.71(Re"2' + Re" 7)o .. Actually. the specific values
of v and z for each case are:

Re= 5300; y = 0.17, z = 0.25
Re =21.200, y = 0. 17, = --0.25

Re = 42,000; y -- 0.18, z = 0.27:

these values suggest that z t-1.5Y. Values of the flow constants as defined by F(Re) and
Fb(Re). as well as the ratio of a over b, for representative values of Re are tabulated in Table
1. The therein specified (a/b) are "counter-intuitive" in the sense that knohing a priori there
are tvNo modes manifesting in the flow, the natural inclination is to suspect some sort of
"equi-partition'" among them to the extent that ideally a = b or equivalently (a/b) = 1.

Tablei

Rc i0 10' 10"i 10 0"

a 138 i72 2.14 264 325
b 3 54 461 601 787 1033
a/b 039 037 036 034 031
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Assuming through that a characteristic value of (a/b) is roughly 0.4, the corresponding value
of Ck is then

Ck = -8(a/b) 3  ( +o'-)- dw = -2r(alb)3  -0. 13r.
(1+

4. CONCLUDING REMARKS

In concluding, it remains to examine some of the fundamental implications of the formulated
theory. First, the complete solution of the r-integrated Karman-Howarth equation, equation
(2), for grid-turbulence is now possible. With the empirically determined value of Ck -- -0.41
in hand, the solution for o(t)= 1t-  and r1(t)=A(t)= t ' is determined through
(y/y)C, = -2C. - 16C Re'. Re = oil/v. Acceptable values of C, and Cf are fou.d by
assuming f(r/) = exp{-r2/212 }, yielding C, = -C = V = 514: accordingly,

71I ,- ( e 2,r Re +80

where Y2 = (10v)o 5. As to the constant, Ck, and its virtual insensitivity to changes in Re, the
physical explanation of this behavior appears to be that even though the "scales" of the largest
turbulence eddies initially created by a turbulence-generating source are roughly of the same
order to magnitude of the physical dimensionst of said source (sort of like a "spatial-
frequency" resonance), the particular mechanism through which these eddies are "scaled
down" and directed to the sink provided by viscous dissipation is defined not by the source,
sink, or fluid, but rather by the mechanisms of turbulence itself; i.e., the turbulent fluid, to a
large extent, exhibits what could be described as "energy-cascade autonomy" or "self-
governance". Keep i, mind that the fluid has a strong inherent tendency to return to the state
in which it existed before the turbulence was created, and that therefore the artificially
produced eddies, now in a state of excitement, are eager to "unload" (on the smaller eddies)
whatever portion of their energy they themselves cannot dissipate: this "unloading" process
apparently depends only on turbulence mechanisms. More specifically, when an eddy of
scale-size r transfers some of its total energy. either by entrainment or deformation, to a variety
of eddies of smaller scale-size q, dissipates the remainder of its energy (itself eventually
disappearing unless, of course, it is fed energy from those eddies of larger scale-size), the
"transfer" part of such behavior, and its effectiveness, is governed by turbulence mechanisms
only. and like a Carnot engine in thermodynamics, is independent of the "working fluid".

Second. the empirically derived expression for k(r/q) suggests that

s(q/, ri) = -2a~ h(a)(r/q)
3

[1 + b2h(a')(r/) 2j 2

Note that for small enough r, s(.-.- -2a3h,(a)(rlrj) while for larger r.

S ( 2a ~ h ,( c)(r / r) 
"

s(.)--h2(o)(rlo) .

This result establishes that only one mode participates in the transfer of energy for the small
scale-structure of the turbulence %%hile both modes participate in the large scale-structure. This
means that even though kinematic self-similarity is assumed. formulated, and pursued, the
system (unsurprisingly) refuses to nonetheless behave dynamically self-similar.

Third. a few remarks about self-similarity. This rather idealized condition is tantamount to
saying that the two "scaling-effects" of turbulence, viz. a(... ) and q('". "), are both simply
functions of time alone. i.e. a - a(i-only) and q - ij(t-only). and that as the turbulence decays
all terms in the dynamical equation consequently maintain the same relative balance. While

Actually, they arc ;omenhat smaller owing to some dissipation of energy by the generating source.
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within the scope of the isotropic theory the t-dependence only of turbulence intensity may be
completely justifiable. the t-dependence only of the length scale is unfortunately not. In fact
the question of different length scales for turbulence, viz. the dissipation scale, A., for the
small-scale structure and the integral scale, A, for the large-scale structure (non self -Aitmlarity ).
has received considerable attention in the literature, and the related issue of a single universal
length scale has never been fully resolved. The approach to a multiple length scales formulation
proposed here (for future inestigation) is to instead regard q( • ) as a function of both r and
t, i.e. q(. - (r, t). Since the length scale is an even function of r, a possible expression for
il(r, t) is then

q(r, t) = X + (A - A)(r/A)2 .

where A and A are those determined from the self-similar theory, such that for r << A.
71(r, t) A X while for r = A, ?(r, t) A. Note that this formulation automatically provides for
differing length scales for those values of A < r < A. Correspondingly, k(r, t)--- k{ril(r, t)} and

-2a3(r/rl)3  -2a 3(r/.)[1 + (r/2A)2]

[1 + b2(r/ln)212  [1 + 2(r/2A)2 + b2(r/;.)2 + (r/2A)412'

where A = 1.25).
Finally, the formulated thoery is not intended as a "closure" since the value of C, had to be

determined empirically; a bonafide closure to the turbulence problem w.ill for self-similar decay
theoretically predict the value of Ck.
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It is theoretically established that energy transfer in nonhomogeneous turbulence occurs in two
distinct scale-independent "modes." The physical significance of these modes is examined.
Further, evidence is presented that suggests the existence of a conservation principle that
governs the transfer of energy between turbulence eddies of differing size. A possible algebraic
form of such a principle is formulated.

Recent work1-3 has produced evidence suggesting that law is predicated on the fact that during self-similar decay
there exists in self-similar isotropic turbulence a "law" that the "scaling down" process of a turbulent eddy is invariably
governs the transfer of energy from an eddy of one scale size anal) tically modeled by introducing a length scale i into the
to an eddy of smaller scale size. This la% is independent of decay formulation such that the dimensionless %ariable q/77
momentum conservation (Nay ier-Stokes equation) and ful- in effect kinematically captures and/or reflects the evolving
ly consistent with the "traditional wisdom" that a turbulent state of an eddy from its inception (say, at the grid or jet) to
fluid does not transfer energy in an arbitrary fashion but its demise at that point -A here the fluid, as a result of viscous
indeed does so in some well-prescribed manner. Recall that dissipation, returns to its original unagitated condition.
in turbulence, because it is a nonlinear phenomenon, eddies (The distance of this point from the grid or jet is usually
of differing (but nonetheless comparable) size do indeed referred to as the "decay length" L, and L is converted into a
"communicate" with one another, and their respective beha- "decay time" Tby scaling out a characteristic flow velocity,
viors can accordingly not be treated independently. The im- viz., T L /U, where U-centerline mean-flow velocity.)
portance of such a law to the field ofturbulence, in general, is Note that in any such dimensionless formulation
twofold. First, it is widely held 4 that the transfer of energy in
a system obeying nonlinear equations is a dynamical process a = qlr- (q/7))(rhr),
(completely) dependent on those equations; yet the results regardless of whether 7i-dissipation scale or 27-integral
of Refs. 1-3 suggest that, at least in the self-similar isotropic scale, etc. The natural scale independence of a automatically
case, there are some aspects of energy transfer that are strict- translates for turbulence into Re independence, and to the
ly independent of said equations and in fact answer to some turbulence practitioner any feature offluid turbulence that is
other (as yet unformulated) calling. Second, once formulat- independent of Re immediately signals properties of the tur-
ed, such a law will provide a fundamental method for speci- bulence that are unique and peculiar to turbulence mecha-
fying how turbulence energy cascades, and thus supply a nisms themselves and independent of the physical character
unified "closure" for the analysis of turbulence decay. of the fluid. In a practical scenario where the turbulence
Specifically, the available evidence suggests that when an under consideration is usually in the steady-state condition,
eddy of scale size r transfers energy to an eddy of scale size q, these unique and peculiar properties are also independent of
there is a universal feature of said transfer, which is fully reference-frame origin (homogeneous), even though the
independent of both q and r, and dependent only on the ratio, turbulence under investigation may itself be reference-frame
a = qir, of scale sizes. This feature manifests for the ideal origin dependent (nonhomogeneous). Such "homogeneity
self-similar isotropic case in two distinct "modes" of energy within nonhomogeneity" merits a special place in turbulence
transfer, denoted hereashI (a) andh , (a),which arejoint- phenomenology and deserves a careful investigation of its
ly analogous to the entrainment Ideformation effects typical- ultimate ramifications.
ly observed' between eddies in traditional experimental Although formulated here for turbulence in general for
studies of turbulence, e.g., grid turbulence, jet turbulence, the first time, the initial motivation for such an endeavor was
etc. Accordingly, it is not inappropriate to envision such furnished by Deissler when he concluded" that even for a
modal behavior of turbulence energy transfer in some sense general nonhomogeneous turbulence, certain terms in the
analogous to the different modes of classical heat transfer, two-point stochastic-averaged Navier-Stokes equation can
save that in turbulence there are only two modes whereas in be clearly interpreted as "transfer" terms. He accomplished
heat transfer there are three. This point is made here in order this by introducing a third point, defined as
to emphasize the complexity of the overall turbulence ener-
gy-transfer mechanism, and perhaps suggest the need to ini- x, =x + n(x' - x), 0<n( 1,
tially investigate the said mechanism mode by mode only into the two-point geometry of the flow, and cleverly deduc-
rather than in both modes simultaneously. Kraichnan and ing that the appropriately formulated "turbulence self-inter-
Spiegel,6 similarly, have already made the analogy between action" terms produce zero total contribution to the decay of
the transfer of kinetic energy in turbulence and the radiative (u, u); u, - u, (x,t), u, -u, (x',t), x' = x + r. The impact of
transfer ofelectromagnetic energy in an inhomogeneous me- this result (duly pointed out by Deissler) is that turbulence
dium that both reflects and absorbs. The existence of such a self-interaction plays the same role in nonhomogeneous tur-
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bulence that it does in homogeneous turbulence, viz., to correlation length scale, 77 - 77(x), results in
transfer energy from one eddy to another (smaller) eddy S(xq,r) -oa(Yc - q/3 - r/3)a(.E + 2q/3 - r/3)
without changing the total amount of mechanical energy
present in the flow. Furthermore, he makes clear that the Xu(. - q/3 + 2r/3)s[q/l(. ), r/(T) 1,
interpretation of self-interaction as "energy transfer" is and because of the explicit presence of q and r in a( ), the
accordingly conceptually independent of the condition of spatialevolutionofS(- ) is not ofa self-similar nature, self-
homogeneity, recall' that the condition of homogeneity similarity follows only wvhen the length scale that "scales"
is typically invoked in making the energ,-transfer inter- ( --) is -large," in comparison to 71(O).' Note that the
pretation. More fundamentally, though, Deissler's result form ofvelocit) scaling emplo ed here is quite differ nt from
suggests that the two types of turbulence, through the self- that reported in Refs. 9 and 10, in the sense that for q=0,
interaction mechanism, are so'nehow "indistinguishable." viz., Q(x,,xl,x 3) = (u2 (x,)u(x, + r)), S(i,0,r)
In this Brief Communication a correspondingly similar =-a 2ti- r/3)ar(3i + 2r/3)k{r/7i(.)} and not
scheme is employed to show that for nonhomogeneous tur- or -(x,)u(x, -t- r)k[r/i;(x,)], as implied therein. The form
bulence the algebraic form of the self-interaction tensor, employed here duly reflects the maximum possible amount
Q,1("..) = (u,uju;),whenproperlyformulated, canalsobe of symmetry (w.r.t. xx,x,) in the definition of i while
characterized in terms of two in ariant "modes" of energy simultaneously retaining the classical definitions of q and r.
transfer, which are identical for both homogeneous and non- The rather "uns)mmetric" velocit) scaling of Refs. 9 and 10
homogeneous turbulence alike. The impact of this new result is perhaps why their triple correlation curves do not pass
is that it strengthens the unity perceived in the Deissler through the origin of coordinates, and are in fact all shifted
scheme and suggests the existence of an energy-transfer law to the left to the origin, thus suggesting a unilaterally positive
for all types of turbulence; the latter implies that the premier % alue for k (0). A significant nonzero % alue of k (0) means
results of Refs. 1-3 are indeed a genuinely unique feature of that the probability density function (pdf) of u(x,t) is mar-
turbulence, and not an artifact of the attendant simplified kedly skewed about u -0, and is accordingly inconsistent
theory. with the known" approximately normal distribution of tur-

For simplicity consider only the u component of a three- bulence ,elocity at any one point in the flow. The scaling of
dimensional turbulence ,elocity field, and further restrict Refs. 9 and 10 follows from that employed herein by impos-
the analysis to the case where x = (x,0,0), , here x - down- ing the transformations 3i -x, + r/3 for the rms scale and
stream distance from the grid or jet. In its simplest form, 7c-x, for the length scale.
then, the energy-transfer mechanism of turbulence is most It is a simple property of Q(' -) that Q(x,,x 2,x3)effectiely modeled through the three-point correlation =Q(X,,X,.X,) = Qtx,x1,x), or equialently that S(.i,q,r)

Q(x,,x,,x 3 ) -- (u(xt)utx,t)ux,t)); ---S(.E,rq) =S( . - q,r, - q). Since the product lo(! - q1
3 - r/3)a(.R + 2 q/ 3 -. r/3)or(. - q/3 + 2r/3)] automati-the t dependence of Q(-") is suppressed by restricting the

analysis to steady state turbulence only. Note that by intro- cally satisfies the sa symmetry, it follows that s(--- ) itselfmust

ducingalso satisfy the same symmetry, i.e., s,q,r) =s(,rq)
adin the spalation variable, q= x- , x-, =s(i, - q,r - q). If s( ) is thus expanded in a Taylor'sand the spatial location variable, 3E = (X, + X1 + X3)13,
Q( ... ) immediately converts into S(i,q,r). Through its de- senes in q and r, the result is
pendence on q and r, S( ..) analytically describes how a s(.i,q,r) _--s(.i.0,0) -4 a, (.)q + b,(. )r +a_,(.i)q2
turbulence eddy of size q "interacts with" (transfers energy
to) an eddy of size r or vice versa; i.e., S( -.) reveals the + c2(.,)qr + b,(.i)r2 + -
strength of the nonlinearity of turbulence by quantifying
how turbulence eddies of differing size communicate with where the a, (3i), b, (.), c, (7c), n = 1,2,3-.. , represent the
one another. In studies of turbulence, it is customary to in- appropriately evaluated partial derivatives of s(.',q,r). It
troduce a velocity scale (typically a rms value) defined in can be readily shown: "' that because of the required q,r
practice as argument symmetry in s(.i.q,r), aside from s(.,O), which

automatically satisfies the symmetry the only algebraic
ai~x) =( u,t~dt' .forms that can appear in the Taylor's expansion are the ho-

T ,7 j mogeneous polynomials, F(i.,q,r) = a.(.G)(q2 - qr + r2)
riQaand G(qr) =a )(2q - 3q'r- 3qr2 - 2r), and those

This scale permits Q(---) to be naturally written as higher-order homogeneous polynonials, which can be
Q(xl,x,,x 3 ) = a(x ) r(x.)o(x.0 formed from F('") and G(--), viz., F2(---).

. , )F(. .. )G(' ), G 2('- ), etc. No other fundamental algebra-x "t " )ic form different from F("-) and G('") satisfies the re-
w here o(x)(x,t) = utx,t), or in terms of ( .q.r) as quired symmetry and can therefore not appear in the ex-

S(.,q,r) = a(. - q/3 - r/3)o(. + 2q/3 - r/3) pansion. Specifically, the q,rdependence of s(.i,q,r) can thus
be fully characterized by F( .) and G(".) only, i.e.,

x a(.i - q/3 + 2r/3)s(9,q.r), s(2,q.r) -s{F(.,q,r), G(ti,q,r)}. From purely dimensional

where s(") = (2,(x,,t)(x,,t)(x 3 A,)) is a normalized grounds, then, it follows that a,(. ) = b2/712(3i) and a, (9)
three-point correlation and x, = 3i - q/3 - r/3, x, = 1 = a '/r'(i), where a and b are dimensionless numbers,
+ 2q/3 -- r/3, and x3 = 3 - q/3 + 2r/3. Introducing the hence
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1 s{" .}-s{b 2(q2 - qr + r)/tl( ), a precise operational definition of the mass of a body. The
2a3( _ q2r _experiment involves placing a spring between two isolated

(q' - 1.5q~r -. 5qr2 + r')ii )}. masses, A and B, pushing them together so that the spring is

The physical significance of F( -) and G( --- ) is estab- compressed (the spring is not rigidly attaLhed to either of the
lished by writing them as masses), and then releasing them. By repeating the experi-

F(,,q,r) = b 2(a 2 - a + 12 ment a number of times, each time with a spring of different
constant, it will be found that although the recoil velocities

G(i,q,r) -2a3(a3 - W.5a2 - l.5a + 1)r/7 3 (x), of.A and B wil be different each time, the ratio' v, / uwill be

and a=qir, such that a2-a+ 1-hi(a) and a 3  identical for all cases, i.e., v,Iv, =invariant, regardless of
- 1.5a- - 1.5a + I =h,, (a) are scale-independent invar- the amount ofinitial energy in the system. The fact that this
iant forms. Since s{ } can be fully characterized in terms result provides a means for unambiguously defining the
of the ] independent h I (a) and h i (a), these algebraic mass of a body, viz., mB/mA -rA/vI and that it is consis-
forms are then the homogeneous invariant "modes" of non- tent with the principle of linear momentum conservation, is
homogeneous energy transfer referred to earlier. The entire well established. Put simply, the inariance of t'4v/ means
nonhomogeneous transfer of energy, at any spatial location that energy cannot be transferred from the potential energy
defined by 3 = (x, + x. + x3 )/3, from an eddy of size of the spring to the kinetic energy of the masses in an arbi-
r = x 3 - x, to an eddy of size q = x, - x , can be construct- trary fashion, but must indeed be transferred in a manner
ed fromh, (a) and h , (a), while the related "spatial decay" consistent with linear momentum conservation. In thermo-
of energy transfer leaves h, (a) and hil (a) preserved and d)namics, a correspondingly simple experiment will estab-
unaffected. The physical significance of a and b is thus that lish that in a Carnot engine the heat Q,,, flowing into the
they explicitly define "how much" ofeach mode is present in engine from a high temperature reservoir of fixed tempera-
the flow; because they are dimensionless both a and b must ture T,, is related to the heat QL, flow ing out to a low tem-
dependon Re.The modeinterpretation ofh , (a) andh, (a) perature reservoir of fixed temperature TL, by the relation
is reinforced by introducing 6-a - 0.5, whereupon Q/QL = T,,/TL =invariant;
h I (a) -f, (fl), h,, (a) -fi, (.6), and noting that

S () )the invariance of this ratio is a consequence of the principle

ft (fl)fn1 (/B) df-O of conversation of entropy, i.e., heat is not transferred arbi-

-e trarily through the engine. In geometrical optics the fact that

for any 0 (orthogonality). The interesting feature of this the sines of the angles of incidence and refraction stand in a
formulation is that depending on the (as yet unknown) ex- constant ratio to each other, regardless of the magnitude of
act algebraic form of s(---), for "small enough" r, each, leads to the formulation of Snell's law. It appears,

s(.,q,r) =s(,0,0) + b -(q2 - qr + r2)/772(.) therefore, that the in%ariance of a = q/r is a manifestation
of some conservation law or principle which governs the

-s(30,0) + b 2h, (a)r 2/772(Gi) transfer of energy in turbulence. Such a conservation law

or must describe the means of (scale-independent) communi-
s(.i,q,r) -s(.iO,0) + 2a' h (a)ra/r/' (.i), cation between turbulence eddies of different size such that

Sin the limit, eddies distinguished by a great disparity in size

while for "larger" r should exert minimal influence on one another. Moreover,

s(1,q,r) - s(3,O,0) + b 2 h, (a)r/iq (.) such a principle is consistent with accepted wisdom that tur-
bulence does not transfer energy arbitrarily but indeed does

2o'h,, (a)r?/773i) + - -- so in some well-prescribed fashion. If a turbulence eddy of a

this means that for the smaller eddy sizes only one mode particular size is regarded as a dynamical system which re-
participates in the transfer, while for the larger eddies both cei',es energy from those eddies of larger size, dissipates
modes participate. More specifically, even though h, (a) some of this energy, and transfers the rest to those eddies of

and h , (a) are themselves "immune" to the effects of scale smaller size, then a possible such law is
size, there is nonetheless some mechanism manifesting in the
flow which denies joint participating of both modes in the E,(r)/AE, (rq) = (r/q):

transfer of energy for all scale sizes in the flow This different in this expression Er (r) is the total energy transferred by an
modal communication between eddies for the large eddy eddy of size r to all other eddies of smaller size, JAER (r.q) is
structure versus the small eddy structure has long been sus- that portion of E r (r) that is eventually received by an eddy
pected by turbulence practitioners, but insubstantially docu- of size q, r is a nonadjustable constant greater than zero, and
mented in the literature. r> q. The unavoidable i dependence of both E. ('") and

Since turbulence must transfer energy in a fashion that ,ER (---) is explicitly deleted in the above expression in
preserves the scale-independent forms, h, (a) and h, (a), order to emphasize the location independence of the ratio
and since Q(--. ) for any turbulence must be algebraically E,( )/AE, ( ). The total tnergy received b, an eddy of
expressible in terms of h I(a) and h , (a), then all universal size q is thus
ramifications of same are embodied in these absolutely in-
variant functions, and ultimately in the invariant a. The ER (qg) = X AER (r,,qR),
physical implication of this resut is best comprehended by "= I

recalling a simple experiment in physics which culminates in where r., n = 1,2,3 .,N are all greater than q. The ultimate
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