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CHAPTER I

INTRODUCTION

Background

Airborne imaging systems that incorporate very high resolution, multisensing

technologies are presently under development for a variety of military and civilian

applications. Operational versions of these systems will be capable of collecting

extremely large volumes of data at very high rates and will place great demands on

transmission and storage resources. Therefore, processing designed to reduce the

raw bit rates produced by these sensors prior t" transmission or storage will become

a most important part of these multisensor systems. The purpose of the research for

this dissertation is to develop and test adaptive techniques that can be used to

compress image data collected from airborne multisensor systems and which will

result in acceptable levels of distortion of the reconstructed imagery.

The problem of compressing image data for transmission over bandwidth-

limited channels has generated a very active area of research in recent years. Most

of the work, however, has addressed standard imaging applications such as video

teleconferencing, high definition television (HDTV), facsimile transmission, and

satellite remote sensing [1-7]. The applications of the multisensor imaging systems

considered in this study are quite different from these, and normally require

discriminating very small objects located in highly cluttered backgrounds (e.g.

1
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detection of minefields from airborne platforms). These types of applications have

led to the development of imaging systems that can collect multiple channels of

image data having very high spatial resolution. These systems are required to

collect data at all times of day or night, and they normally operate in the thermal

infrared region and/or incorporate an active (laser) illumination source with

polarization-sensitive imaging capabilities. This type of high resolution,

multichannel active/passive imagery did not exist until very recently, and has not

been analyzed for the purpose of performing compression. Due to the substantial

differences between these image data sources and those considered in the standard

image compression literature, the applicability of existing source models and image

compression schemes must be investigated. It has been observed that a

compression scheme tnat has been developed and optimized for a given type of

imaging source will, in general, not be optimized for a different source, and in fact

may perform quite poorly. For example, when techniques based on the CCITT'

international digital facsimile data compression standard are applied to digital

halftone images, as much as z 50% data expansion can occur due to the fact that the

two sources have significantly different statistics [8]. In order to ensure high

performance compression of multisensor image data, this research has emphasized

the development and analysis of new mathematical source models and compression

techniques that account for the unique characteristics and applications of multisensor

Comitd Consultatif International de Tdldphonie et Tlgraphie.
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imaging systems.

Dissertation Outline

The organization of the remainder of this dissertation is as follows:

Chapter 2 provides an overview of current image compression techniques with

emphasis on those that take into account the nonstationary nature of real images.

These adaptive techniques, though resulting in higher implementation complexity,

have better performance characteristics (in a rate-distortion sense) than techniques

based on average statistics that have been obtained from a limited set of images.

Image modeling is discussed, and various performance measures, including the rate-

distortion function, are presented.

Chapter 3 describes the typical applications of multisensor image data, and

includes a description of the airborne multisensor imaging system that was used to

collect the images used in this study. The polarization phenomenology exploited by

this sensor, together with the reflectance and the thermal infrared sensing

capabilities are described.

Chapter 4 consists of in-depth analyses of a large number of images from

three different sensors (two polarization-sensitive active laser channels and a passive

thermal-infrared channel). Results of these analyses are used to develop and verify

a mathematical source model of the multisensor. A novel method of removing

coherent laser power variations from the active imagery is developed (Appendix A),

and its effect on bandwidth reduction is presented. A coordinate transformation
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matrix is developed for use in removing inter-channel redundancies and to

concentrate a major portion of the information content on one channel for efficient

coding. An inverse transformation is then used to obtain the original individual

channels during reconstruction.

Chapter 5 describes the development of a highly efficient compression

scheme. Selection of the compression system components are evaluated using the

adopted model, and an algorithm suitable for real-time implementation is

formulated. The compression scheme relies on block transform coding that

approximates the optimal Karhunen-Loeve transform, but which can be efficiently

implemented using fast algorithms. Adaptivity to the nonstationarities of the

imagery is provided by subdividing the images into small blocks and employing a bit

allocation strategy that relies on a novel model-based scheme for estimating the

distribution of transform coefficients in each block. Blocks with very high

information content are identified and coded using a different adaptive bit allocation

strategy.

Chapter 6 describes the mapping of the algorithm on a single-instruction

multiple-data (SIMD) processing system that consists of a two-dimensional array of

processors. Program listings of the algorithms coded in FORTRAN Plus (an

extension of FORTRAN that facilitates parallel operations) are included in Appendix

B. A large number of multisensor images collected at various times of day and in

different environments are used in the evaluation of the compression scheme.
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Chapter 7 presents an analysis of the reconstructed images, and documents

the performance of the proposed scheme. The effects of distortion levels for various

bit rates are evaluated by processing the reconstructed imagery with target detection

algorithms, and analyzing the resulting false alarm and missed target performance.

Finally, chapter 8 summarizes the main results of this study, and points out

areas requiring further work.



CHAPTER II

FUNDAMENTALS OF IMAGE DATA COMPRESSION

Preliminary Concepts and Definitions

In general, the goal of digital data compression is to minimize the number of

symbols required to transmit or store the information content of a given source while

at the same time limiting the distortion of the reconstructed signal. In order to

quantify this goal, definitions of information content and distortion are required. A

generally accepted definition of the information content conveyed by the occurrence of

a specific source symbol k is

1
ik = log 2 - = -log 2 pk  bits (2.1)

Pt

where Pk is the probability of the k-th source symbol occurring. This equation

embodies a fundamental concept of information theory that the occurrence of an

unlikely event (low pk) carries more information than the occurrence of a likely one.

In this study we are dealing with images that are composed of 8 bits per pixel (picture

element) so that k, which can range from 0 to 255, corresponds to the luminance or

gray level of a given pixel, and pk is the probability that the source generates a

particular gray level value.

If we assume a discrete memoryless source, that is, one that generates

statistically independent symbols, then the average information content of the source

6
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is given by its single symbol or zero order entropy H defined by:

H = -EPk log2 Pk bits per symbol (2.2)
k-1

where L is the total number of symbols (255 in the case of 8 bit pixels) and where it

is assumed that 0 log 2 0 = 0.

For sources that do not generate statistically independent symbols, conditional

or multisymbol probabilities are used in the equations above, and the resulting higher

order entropies can be significantly lower than those given by the single symbol

entropy. In the case of multidimensional sources such as images, the large number of

possible dependencies between symbols make accurate calculation of higher order

entropies very difficult. In these cases it is normally assumed that the source can be

modeled by a finite memory or low order Markov model where the number of

possible interdependencies are limited to a small neighborhood of each pixel.

Entropy measures are used to estimate the minimum number of bits necessary

to represent a given image without any loss of information. This concept is known as

Shannon's noiseless coding theorem for discrete sources [29] which states that a

source having entropy H can be coded without distortion by using H + - bits per

symbol (bit rate), where E is an arbitrarily small positive quantity. This theorem is

useful for predicting the compressibility of a given source, and for evaluating the

performance of specific compression techniques. The significance of this theorem lies



in the fact that it provides a lower bound of any information preserving compression

scheme and guarantees that a coding scheme that approximates that bound exists.

Unfortunately, the theorem does not provide any insight or methodology for

developing such a scheme. Compression schemes that approach the lower bound

given by the Shannon theorem make up a class of information-preserving coding

techniques known as lossless or entropy coding methods which are described later in

this chapter.

There are also techniques for coding image data at bit rates lower than the

entropy of the source. These techniques result in distortion due to some loss of

information and are therefore classified as lossy coding methods. These lossy

techniques are also covered in subsequent sections of this chapter.

To quantify the performance of lossy compression methods, a definition of

distortion and a functional relationship between bit rate and level of distortion are

needed. There have been a number of attempts to develop measures of image

distortion that match the image quality determined subjectively by human analysis.

Models of the human visual system (HVS) are being developed and coding schemes

that distribute the coding error or distortions over the less sensitive portions of the

HVS have been developed [3]; however, a robust measure of distortion that relates

coding error to visible image quality has not yet been formulated. For the image

applications considered in this study, this is not a serious drawback. In most cases,

the multisensor image data is used for computer-based automatic target detection or
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cueing, and as such, it is subjected to various filtering, thresholding and clustering

operations used in pattern recognition that are affected by signal-to-noise

considerations and not by HVS parameters. Therefore peak signal to (reconstruction)

noise ratio (PSNR) and mean square error (MSE) will be used as the distortion

measurement criteria in this study. If we let x(ij), where 1 <_ i < M and

1 5 j _ N, be the gray level value of each pixel in a given M x N image, and after

compression, error-free transmission and reconstruction, we obtain a distorted version

of x(ij) given by T(ij), then the error measures used in this study are defined as

M N

MSE E ( x (ij) _ i (ij) )2 (2.3)
MN i., j.,

and

PSNR = 10 10g2 ( 255 )2 (2.4)MSE

Having defined our error metrics, we need to also define the functional

relationship between the average number of bits per pixel (bit rate) used to code a

given source and the amount of resulting distortion. This relationship, called the rate-

distortion function R(D), was first described by Shannon [29] for simple memoryless

sources. Berger [30] and Gray [31] have expanded the theory and developed methods

for computing R(D) for more realistic sources. In general the rate-distortion function

of a source is found by minimizing the average information subject to a fidelity
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criterion; therefore, it indicates the minimum amount of information required to

reconstruct the source output with a specified maximum level of distortion. Azadegan

[8] has computed R(D) bounds for some of the more popular compression techniques

for image sources that can be modeled by 2-dimensional (2-D) separable first order

Gauss-Markov models. Empirical R(D) calculations for our selected compression

scheme and distortion measure are presented in Chapter 7.

Image Source Modeling Considerations

As the reader may have observed, most of the concepts discussed in the previous

section are prefaced by assumptions about the characteristics of the image source. It

is appropriate that we now consider more closely the characteristics of these sources

before proceeding to the review of compression techniques since their performances

are heavily dependent on the source model adopted.

A characteristic common to all image sources of interest is that they are spatially

nonstationary. Even over relatively short distances, the mean, variance, and the

autocorrelation (or covariance) statistics can vary significantly. As a result, coding

techniques that are based on statistics calculated from an ensemble of images (or from

large areas of one image under the assumption of ergodicity) will be less than

optimal. Such techniques tend to assign too many bits to areas of the imagery that

have little detail (low variance) while under-coding areas that have higher levels of

detail.

Various techniques have been proposed to deal with the problem of space-varying
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mean and autocorrelation function. Hunt [28] proposed the use of nonstationary

statistical image models to transform the original image into a stationary one that can

be efficiently compressed by non-adaptive techniques. This process required hybrid

digital/optical computing to carry out the computationally intensive spatial warping

operations. More practical approaches involve partitioning the image into blocks that

are sufficiently small to allow each block to be considered the realization of one of a

finite number of random processes. This type of model forms the basis for the

adaptive transform coding methods presented later in this chapter.

Another technique has been to model the image source as a Markov or auto-

regressive (AR) process with space-varying parameters. The most widely used is the

2 dimensional (2-D), separable, first order Gauss-Markov model in which the value of

the present pixel x(ij) is causally dependent on three of its nearest neighbors as given

by

x(i,j) = p, x(i-1j) + Ph x(i,j-1) - pI- Ph x(i-1j-l) + w(i,j) (2.5)

where Ph and p, are the horizontal and vertical correlation coefficients which can be

allowed to be space varying and w(ij) is a 2-D, zero-mean sequence of independent

ident;cally distributed (i.i.d.) Gaussian random variables with variance given by

a 2 = a 2 (1-p h2) (ip, 2 ) (2.6)

where o0,2 is the variance of the resulting sequence {x(ij)}. This model has been

found to provide a good approximation to a large class of real world images, and can
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be used to calculate the R(D) function explicitly. This relationship provides the

ultimate performance limitations of any encoding scheme that operates on sources that

can be modeled by Equation (2.5). Some of the adaptive predictive coding methods

discussed later in this chapter are based on this model.

Lossless Compression Techniques

Lossless coding methods are used in applications where perfect reconstruction of

the image data is required such as for storage and retrieval of medical images. A

characteristic that makes these techniques undesirable for most imaging applications is

that they do not produce significant bit rate reduction since most images of natural

scenes have single symbol entropies in the range of 6 to 7.5 bits per pixel. A more

common application of noiseless coding is at the output of a lossy scheme in order to

remove any remaining redundancy and further reduce the bit rate. Since our interest

is in the latter case, we will consider only those lossless techniques referred to as

entropy or variable length coding and we will ignore other techniques such as bit

plane encoding and lossless predictive coding that are used for coding complete

images.

Entropy or variable-length coding achieves compression by exploiting the fact

that the symbols (or group of symbols) generated by a source have unequally

distributed Pk. Techniques such as Shannon-Fano coding or the more popular

Huffman coding reduce bit rates by assigning the shortest code words to the symbols

that occur most often (high Pk) and reserve the longest code words for those that are
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very unlikely to occur. The average bit rate reduction is dependent on the unequal

probability distribution of the original data sequence. Huffman coding can be made

adaptive to changing image statistics by means of a two-pass technique where the data

sequence is buffered, an algorithm calculates single or multi-symbol statistics and

generates the codebook during the first pass, and the data is encoded during the

second pass. Unlike Huffman coding of stationary sequences, this adaptive (or

dynamic) Huffman coding technique requires that the codebook be included with the

coded data to allow for reconstruction.

Though Huffman coding has long been considered optimal, a recently developed

technique called arithmetic coding results in greater compression, is faster for

adaptive models, and does not require blocking symbols together. Huffman coding is

only optimal if all the symbol probabilities are integral powers of 1/2. Since this is

not normally the case, Huffman coding can require up to one bit per symbol higher

that the source entropy. Arithmetic coding, on the other hand, does not place

restrictions on the symbol probabilities and actually achieves the theoretical Shannon

entropy bound [32,33]. A tutorial on arithmetic coding theory was presented by

Langdon in [34].

Lossy Compression Techniques

The techniques considered in this section are classed as lossy schemes due to

the fact that by coding at rates below the Shannon entropy bound, they constitute

many-to-one mappings and cannot, in general, result in perfect reconstruction.
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However, they can achieve very high compression performance, on the order of less

than 1 bit per pixel, while maintaining acceptable levels of distortion. All of the

techniques that follow rely on the fact that most image data of interest have a high

degree of correlation between neighboring pixels.

Lossy image compression methods can be divided into two main classes,

predictive methods and transform methods. In addition, there are a number of

methods such as hybrid methods and vector quantization methods that do not fit into

these two major classes. A variety of adaptation techniques have been employed to

allow these methods to deal with the nonstationary characteristics of image data. The

purpose of the remainder of this chapter is to provide an overview of those lossy

coding techniques that are applicable to the goal of achieving high performance

compression of multisensor imagery.

Predictive Methods

Predictive methods have been widely employed for compressing I-D signals such

as speech. Because of their low implementation complexity, they have also formed

the basis for a large number of digital image compression schemes. Predictive

methods are based on the assumption that the source generates symbols that are highly

correlated and therefore contain considerable redundancy. The goal of predictive

techniques is to separate the redundant or predictable part of the source, which carries

essentially no information, from the innovative or information-conveying part. The

most popular predictive scheme is differential pulse code modulation (DPCM) shown
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in Figure 1.
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Figure 1. DPCM Structure

The predictor makes use of the correlation between samples to predict the

value of subsequent samples. In this case, the predictor is a linear combination of

past pixel values and is used to estimate the value of the present pixel. The estimated

value x'(ij) is subtracted from the actual value and this difference e(ij) is quantized.

Data compression is the result of the fact that the difference e(ij) has much lower

variance than the original data, the correlation or redundancy is significantly reduced,

and the quantized result P(ij) can be efficiently coded by entropy methods. The

reconstruction of the imagery is performed by using a predictor identical to the one
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used in the compression stage. In the case of image data, a 2-D predictor based on

the causal first order Gauss-Markov model given in Equation (2.5) is often used. The

predictor coefficients are then matched to the modeled or computed correlation

coefficients.

DPCM schemes can be made adaptive by changing either the predictor

coefficients or the quantizer characteristics or both. Two types of adaptation have

been employed in practical schemes, the difference being whether they use the source

samples or the reconstructed values to effect the adaptation. The first method is

called forward adaptation and requires the sending of side information which adds

transmission overhead and necessitates the use of synchronization strategies. The

second method is called backward adaptation and since the adaptation is based on

information available to both the receiver and the transmitter, no transmission of side

information is required [4]. For this reason, backward adaptive DPCM methods are

preferred in high-performance applications.

One of the main disadvantages of DPCM coding of image data is its poor

distortion performance when edges are encountered. Since images normally contain a

large number of edges, DPCM has not been as widely accepted for image coding

applications as it has been for speech coding.

Transform Methods

Transform coding methods are among the most efficient techniques for

compressing image data. As in predictive methods, the purpose of transform coding
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is to remove the redundancy between pixels. The difference is that the predictive

methods operate in the spatial domain while transform methods map the spatial data

into a different domain where the information is concentrated into a small number of

uncorrelated coefficients that can be more efficiently coded.
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Figure 2. Transform Coding Structure

In general, the technique for transform coding shown in Figure 2 entails

partitioning the image field into non-overlapping blocks which are then mapped via an

orthogonal transformation into a frequency-like domain. Selection of the transform is

based on its image energy (variance) or information compaction capabilities as well as

the existence of "fast" algorithms for implementation. Usually block sizes that are

powers of two are selected in order to employ fast Fourier transform (FFT) type

algorithms, and they can range from 4 x 4 to as large as 128 x 128 pixels. Due to
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the nonstationary nature of image data, the use of small blocks is normally preferred

since local stationarity assumptions usually hold for small neighborhoods, such as

8 x 8 blocks. In addition, small block transforms have significantly lower

implementation complexity than larger ones. However, small block sizes have the

disadvantage that significant amounts of interblock redundancies remain after coding,

and the resulting bit rates are higher than for larger blocks.

Four different methods have been described in the literature for adapting the

transform coding scheme of Figure 2 to the variations in the image statistics:

1. Modify the transform basis functions or change the transform used based on

the block statistics. Clarke [10] claims that performance differences between

practical transform types are small enough that significant bit reductions would

not result from this form of adaptation.

2. Vary the block sizes based on local image statistics; that is, partition the

imagery into non-overlapping blocks whose sizes depend on local activity

measures, and then apply suitably sized transforms to each block. Dinstein et

al [37] describe a variable block size technique that relies on complex

classification and clustering techniques to partition the image into nine

different square or rectangular block sizes. The advantage of this technique is

that selection of large blocks for homogeneous image areas results in lower bit

rates while the use of small blocks in high energy regions preserve the texture

or small details. A disadvantage of this method, other than computational
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complexity, is its requirement for manually pre-specifying the number of bits

to be allocated to each block size, and the overhead required to transmit the

block partitioning and clustering maps.

3. Adapt the bit allocation based on block statistics. Clarke [10] suggests that

progress in this area has the best payoff potential of all adaptive transform

coding techniques. Chen and Smith [26] and others have suggested

partitioning the imagery into fixed block sizes that are then sorted into four

equi-populated classes based on block activity measures. Each class would

then have its own fixed bit allocation strategy. Overhead requirements consist

of four bit allocation maps (run length or Huffman encoded), and an additional

two bits per block for identification of block class assignment. Clarke [10]

suggests that better results are obtained by having three equi-populated classes

and one highly unlikely, very high activity (high detail region) class.

4. Adapt the quantizer levels. In this adaptive scheme the bit allocation is

kept constant but the quantizer levels are adjusted according to changes in the

statistics of the transform domain samples [2]. This approach has not been as

popular as the adaptive bit allocation technique.

The theoretically optimal transform that results in minimum MSE for the

number of coefficients retained, and which also produces totally uncorrelated

coefficients having minimum entropy, is the Karhunen-Loeve transform (KLT) [4].

Unfortunately, the basis vectors of the KLT are signal dependent and no generalized
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fast algorithms are available. The difficulty in implementing the KLT is that the data

covariance matrix must be estimated for each block and the eigenvectors of the

covariance matrix must be calculated before the matrix of basis vectors which

diagonalize the covariance matrix are found. Since the basis vectors are different for

each data covariance matrix, they must be coded and transmitted (stored) along with

the coded coefficients in order to reconstruct the image at the receiver.

Implementation complexity and the large overhead required to transmit or store the

basis vectors make KLT methods impractical for real-time image compression

applications.

A large number of transforms have been proposed as substitutes for the KLT.

These range from easily implementable Walsh-Hadamard and Haar transforms which

have rectangular basis vectors, to FFT methods which have complex valued sinusoidal

basis vectors. For those sources that have a high degree of inter-pixel correlations,

the two dimensional discrete cosine transform (DCT) has been found to perform

almost identically to the KLT [11].

One of the problems associated with transform coding is the "blocking effect"

caused by the fact that the imagery is first partitioned into blocks which are then

transformed and encoded independently, and thus any distortion within a block tends

to be discontinuous across block boundaries. As the bit rates are lowered, the

distortion increases, and the block boundaries become highly visible in the

reconstructed imagery and would be un,,acceptable in automatic target recognition
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(ATR) algorithms since they would be enhanced by the edge and shape detection

operators normally employed in these systems. Several methods have been proposed

for reducing "blocking effect" artifacts. Reeve and Lim [36] proposed low-pass

filtering the block boundary pixels of the reconstructed imagery; while this method

does not increase bit rate, it does blur the image data across block boundaries which

is not desirable if objects of interest are small. Reeve and Lim also suggested

dividing the image into overlapping blocks prior to transform coding. The drawback

of this method is the increased bit rate required to transmit redundant data. Hinman

et al [39] proposed a short space Fourier Transform technique which is intrinsically

free from blocking effects; the shortcoming of this scheme is that this transform

suffers from ringing around edges. Malvar and Staelin [40] suggested the lapped

orthogonal transform (LOT) which has the same benefits of overlapping blocks but

without increasing bit rates. A possible disadvantage of this scheme is that the LOT

does not have a D.C. basis vector so that coding a homogeneous image area requires

the use of high order (high frequency) components. Rose et al [23] suggested an

alternate DCT/DST transform which removes blocking effects at the expense of

considerable increase in implementation complexity.

Other Compression Methods

There are a number of methods for compressing image data that do not fall

into the types described in the preceding sections. The more popular of these other

methods include hybrid compression, vector quantization, and subband coding
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methods.

Hybrid methods basically consist of a combination of predictive and transform

schemes in an attempt to exploit the advantages of each. The hybrid method often

preferred consists of dividing the image into small blocks, transform coding the

individual blocks using a 2-D transform, and using DPCM to code the resulting

coefficients. The DPCM prediction for each coefficient in a block would be based on

the corresponding coefficient of the horizontally preceding block. Hybrid methods for

coding applications such as video telephony and teleconferencing have also been

proposed. Since this study does not deal with multiframe or time sequential images,

techniques that depend on temporal (interframe) redundancy will be ignored.

Vector quantization (VQ) consists of decomposing the image data into vectors

of equal length which are compared to a set of vectors stored in a codebook. Each

image vector is matched with a particular codevector by means of clustering

techniques using some minimum distance criterion. The address of the selected

codevector is then transmitted to the receiver which uses this address to fetch a

codevector from a codebook identical to the one in the compression stage. The

efficiency of this technique depends on designing a codebook that is representative of

all the possible image vector combinations. This is not a trivial design problem since,

even for small image blocks such as 4 x 4 pixels (i.e. vectors of length 16), there will

theoretically be 256"6 possible image vectors. It is possible to design a small

codebook that approximates the vast number of possible image vectors with acceptable
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overall distortion if an adequate set of training images is available [41].

Unfortunately, the imaging sensors considered in this study must operate in a wide

range of environments and such a training set may be difficult to assemble.

Subband coding (SBC) is similar to transform coding in that the image data is

decomposed into frequency components that can be more efficiently encoded than the

original image. The difference is that, while transform coding uses a set of basis

functions (e.g. sampled cosines) to decompose the image, SBC uses a set of bandpass

filters to decompose the image into a set of subimages, each of which contains a

limited range of spatial frequencies. The major components of an SBC scheme

consists of the following:

1. A bank of analysis filters which decompose and downsample the original

image data.

2. A bank of coders (normally DPCM or VQ) to efficiently compress the

downsampled data.

3. A corresponding bank of decoders at the receiver.

4. A bank of synthesis filters to upsample and reconstruct the subimages

which are then added together to form the reconstructed image.

In order to prevent distortions resulting from aliasing introduced during the

downsampling operations, quadrature mirror filters (QMF), which cancel out any

aliasing, are normally used [4]. An advantage of this technique is that, unlike

transform coding at low bit rates, blocking artifacts are not a problem with SBC since



24

the entire image is decomposed without partitioning into blocks. Additionally, SBC

schemes normally have lower implementation complexity than transform coders.

A technique that has recently received considerable publicity is the use of

wavelets for data compression. This technique lies between transform coding

methods (specifically the short space Fourier Transform technique), and subband

coding methods since it involves application of an orthogonal transform (the Wavelet

Transform) to decompose the original data into a multiresolution domain. References

[56] and [57] provide an excellent overview of this emerging field, and an extensive

list of references is included in [56].

The level of interest generated by Wavelet Theory is comparable to that

generated by fractals just a few years ago, and its proponents speculate that wavelet

techniques will result in tremendous performance improvements and will make

Fourier-based techniques obsolete; however, practical applications are still very

limited. It is expected that the major contributions of Wavelet Theory will be in

unifying the variety of techniques used in the field of nonstationary signal analysis.

At the present time, it may be premature to expect that drastic improvements in image

data compression will result from simple application of wavelets.



CHAPTER III

MULTISENSOR IMAGING SYSTEM DESCRIPTION

Overview

One factor common to most military sensing applications is the need to

discriminate objects (targets) that have been deliberately designed to blend with the

backgrounds in which they operate. Examples of concealment techniques range from

the simple application of camouflage paint schemes designed to degrade visual

identification, to complex applications of stealth technology that deny detection by

acoustic, oprl-1, and radar sensing techniques. In this study we are concerned with

image data collected with optical sensors designed to detect targets that have been

camouflaged to visually blend with natural backgrounds.

Systems designed to perform these detection tasks normally combine or fuse

information from several sensors in order to increase their capabilities to discriminate,

detect, and classify objects of interest in varying background conditions. This

multisensor concept exploits the fact that the spectral radiance of an object is

dependent on many parameters so concealment throughout the entire spectrum of

optical sensors is impossible. Thus, separation of the objects of interest from

backgrounds can be effected by means of a suite of sensors that are tuned to collect a

number of independent features. For example, if we consider sensors operating in the

25
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optical region (0.2 to 1,000 lim), then the spectral radiance L of an object at a

particular coordinate location (iQ) on the scene is a combination of an emission and a

reflectance component, and is given by

L(ij,,X,p) = (1-r(ijXp)) M() + r(ij,),,p) l(ij,X.p) (3.1)

where r(ij,Xp) is the spectral reflectance of the object, l(ij,X,p) is the spectral

irradiance or incident illumination of the object, M(X) is the spectral radiant emittance

of a blackbody source, X is the wavelength, and p is the polarization. L is also

dependent on the angle of illumination and on the viewing angle which, in the case of

the sensors used for this study, are small enough (within 200 of normal incidence) to

be negligible.

For wavelengths in the visible through the near-infrared region (0.4 to 2 Mtn),

the emitted component of L is negligible and the reflected component dominates,

while for wavelengths in the thermal-infrared region (8 to 14 ptm), the emitted energy

is the dominant component. The polarization dependence of L is a function of surface

roughness (as discussed later in this chapter). Therefore, a multisensor system that is

capable of measuring the radiance of a scene at two well separated wavelength bands,

X, and X2, and which is also capable of measuring the polarization state p, of the

reflected energy, will provide three basically independent sources of information

about each point on the scene. Each (i,j) coordinate or point imaged by such a sensor

would consist of a three dimensional vector composed of the three measured quantities
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such that

x (ij)= LA2 (3.2)
L ;2
LP1.

We can also visualize this vector as a point in three dimensional feature space defined

by three orthogonal basis vectors corresponding to each of the sensed L quantities.

Therefore, if we would like to separate an object based on a priori radiance

information, we could process the image data to search for all pixels that have values

such that

SL11 - j G L11 + 1
L 12 -021 :L V 2 + 2 (3.3)
L *P1 03 L~1 P 31

where the L' values correspond to the means of our a priori measured signatures, a,

a2, and 03 are threshold ranges based on the standard deviation of our a priori

measurements, and 11 • 11 is any suitable norm. Even fairly wide threshold ranges

result in a significant reduction in the number of pixels in the scene that could still

make up our objects of interest. If we add additional sensors that are tuned to

different parameters of L, such as a different wavelength or the polarization

characteristics, or even energy outside of the optical region such as millimeter wave
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radar, then we increase the number of elements or features of the x(ij) vector.

Further separation of our object of interest from the background can then be achieved

by application of additional thresholds and by exploiting shape and spatial distribution

of the objects in the scene.

An example of the operations performed on multisensor imagery for a typical

target detection application is shown in Figure 3. This type of processing will be

used in later chapters to determine the allowable distortion bounds, and to evaluate

the effects of the distortions produced by the compression and reconstruction process.
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Figure 3. Typical Application of Multisensor Imagery

In this example, each image channel is processed to locate and enhance any

edges. This is accomplished by convolving each image channel with a 2-D gradient

such as the Sobel operators followed by thresholding operations to create binary

images that contains all of the edges in each of the channels. The edge images are
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then convolved with 2-D filters designed to pass edges that correspond to objects that

are within the range of sizes and shapes of potential targets. The three resulting

images are then combined by means of a logical "OR" operation to form a combined

potential target image that contains all of the pixel locations of interest. The

significance of the processing up to this point is that targets can be discriminated as

long as there is adequate target to background contrast in at least one image channel.

The original three gray level values of the potential target pixel locations are then

used for the follow-on processing which consists of classification and screening. The

classification is accomplished by means of a clustering operation that groups the

pixels using Euclidian distance measures [12]. This step can use a priori target

signatures to perform the classification, in which case the pixels that are closest to the

target signatures are cued (e.g. color coded) on one of the image channels, and

presented to a human analyst for confirmation. In the case that a priori signatures are

not available, an unsupervised clustering can be performed in order to group all pixels

that have very similar signatures, and screenings based on number of objects or on

their spatial distributions can be performed [19]. In this example the sensors are

assumed to have identical field of view and footprint on the ground, and the three

images are assumed to be perfectly registered. If these assumptions were not true,

then geometric correction techniques [5] would have to be applied prior to performing

the operations shown in Figure 3.

In this study it is assumed that the image data is to be used for detection of a
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variety of target types. That is, it is assumed that the same imagery could be

processed a number of times by means of different algorithms, some of which may

require interactive threshold setting, filter selection, and human interpretation to

detect the presence of various types of objects. Otherwise, if the imagery were to be

used for a single type of object detection, the image data compression problem could

be significantly simplified by performing all of the target detection operations at the

sensor, and transmitting only the target locations. The flexibility resulting from

having the individual sensor images for analysis on the ground justifies the effort

required to efficiently compress the significant amounts of multisensor data.

Sensor Description

The imagery used in this study was collected using a helicopter-mounted,

multisensor line scanner developed by the U.S. Army Corps of Engineers for the

purpose of conducting surface minefield research. The scanner is configured to sense

three independent, optically aligned radiation quantities. The concept consists of

transmitting a beam of linearly polarized laser energy and sensing the reflected

electromagnetic components parallel and perpendicular to the transmitted polarization.

The relative magnitudes of these two components are dependent on the depolarization

and directional reflectance properties of the surface. In addition to these two

properties, the system also measures the thermal energy emitted by the same surface

area.

The multisensor scanner, shown in detail in Figure 4, is based on a diode
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array, side pumped Neodymium: Yttrium-Lithium-Fluoride (Nd:YLF) laser providing

1.2 watts of preferentially polarized energy at a wavelength of 1.053 lm. A half

wave plate rotates the polarization vector from a nominally vertical orientation to a

nominally horizontal orientation, and a calcite polarizer provides a linearly polarized

output beam. A beam expander focuses the laser and two relay mirrors redirect the

laser beam to the scan mirror. The four sided scan mirror rotates at 5250 rpm to

yield 350 scan lines per second with a 40' field of view, while the aircraft operates at

altitudes ranging from 100 to 400 ft above ground level (AGL) and 30 to 120 miles

per hour groundspeed. The resulting ground resolutions range from approximately

1.5 to 6 inches with a 1:1 pixel aspect ratio.
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Figure 4. Cutaway View of Multisensor Imaging System
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A portion of the backscattered energy, as well as passive thermal infrared

energy emitted by the scene, are collected by two faces of the scan mirror and

redirected along two receiver paths to a paraboloidal mirror for focusing. A dichroic

filter redirects passive thermal energy to a Mercury Cadmium Telluride (MCT),

liquid nitrogen cooled detector. The laser return is transmitted through the dichroic

filter and collimated before entering a beam splitting polarizer that separates the two

polarization components which are then focused onto two avalanche photodiode

detectors. In addition, a third detector (not shown) is used to record the variations of

the laser energy output.

Data from the sensors are input to an analog pre-processor that combines them

into six separate channels, and provides anti-aliasing filtering with cutoff frequency

440 KHz and 24 dB per octave attenuation. The individual channels are then routed

to six digitizers each operating at 1.05 MHz sampling rate with 11 bit resolution.

The six channels of digital image data consist of the following: (1) a parallel (P)

channel consisting of the laser return that has the same polarization as the transmitted

beam, (2) a cross (C) channel consisting of the laser return with polarization

perpendicular to the transmitted beam, (3) a polarization channel that corresponds to

the digitized ratio of the difference and the sum of the P and C channels, (4) a

reflectance channel that consists of the sum of the P and C channels, (5) a laser

power channel that records the variations of the power output of the laser, and (6) a

thermal-IR channel that consists of the thermal emittance of the scene in the 8.5 to 14
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micron band. Channels 1, 2, and 6 contain all of the independent image information

collected by the system, and the most significant 8 bits of these three channels will

comprise the data used in the compression/reconstruction tests conducted in this

study.

Physics of Polarization Imaging

Thermal infrared technology is a fairly mature field, and a variety of imaging

systems that sense emitted energy in the 3 to 15 micron wavelength region have been

commercially available for a number of years. In contrast, polarization sensitive

imaging systems are a recent development, and the physics underlying their

performance is not well understood. The purpose of this section is to present a

mostly qualitative explanation of the phenomenology of polarization imaging and its

application in remote sensing of man-made objects. References to theoretical and

quantitative methods are also presented should the reader be interested in a more

rigorous treatment of this subject.

The interest in polarization imaging is driven by the premise that man-made

objects tend to support the requirements for a polarization signature while natural

backgrounds do not. This premise has been based largely on surface roughness and

geometry arguments rather than on rigorous theoretical work. In addition, a

considerable number of experiments have been documented which provide a

qualitative explanation of the scattering of coherent light from random rough surfaces

[42 - 45].
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Figure 5 depicts a simple model of a rough surface illuminated by a laser

source, and the three mechanisms by which the incident energy can be backscattered

towards the source. The material surface is modeled as a statistically large

distribution of specularly reflecting planar microfacets [45]. In the first case (path

A), the laser energy strikes a single planar microfacet and is specularly reflected

back towards the source where the state of polarization can be determined by two

sensors properly oriented to measure the two independent polarization components.

Wr2 L..Oz' To 8.0.0

A BC

Plan"z MICa.cote

Figure 5. Possible Backscattering Paths

In path B, the incident light undergoes multiple specular reflections off the

planar microfacets before traveling back to the sensors. In path C, the incident

energy penetrates into the surface of the material before being reflected back out.

Paths A and B correspond to surface scattering, and path C to volume scattering

effects. If the incident laser illumination is linearly polarized, then the energy

reflected in A will be in the same direction as the incident energy. Path B, on the

other hand, will result in a rotation of the polarization direction (depolarized). Path C
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will result in diffuse, unpolarized reflection.

Assuming that surface roughness is related to the number and sizes of the

microfacets, then the premise in polarization sensing is that smooth surfaces such as

metallic or painted objects have predominantly path A reflections and that rougher

surfaces such as soils and vegetation support the multiple and volume scattering paths

depicted by B and C.

Figure 6. Multiple Scattering Within a Valley of a Rough Surface

Mendez and O'Donnell [43] conducted experiments that better illustrate the

effects of multiple reflections on the state of polarization. In these experiments, a

photoresist surface was etched and gold-plated to produce a surface profile that

approximated a Gaussian random process. This surface was then illuminated by

linearly polarized laser light. Figure 6 shows the geometry of a multiple (two)
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reflection path within a surface valley. In this illustration the linearly polarized

electric field orientation is shown as a double arrow in the plane perpendicular to the

direction of propagation. It is assumed that this electric vector strikes the surface of

the material at an angle with respect to the locally flat surface. If the material is

assumed to be a perfect conductor, then no electric field can exist inside the surface,

and application of the Ewald-Oseen extinction theorem [47] requires that the incident

field be exactly canceled by sources along the surface of the material. These sources

in turn produce the intermediate wave that propagates to the other side of the valley

with the polarization orientation rotated as shown in Figure 6. At the second

reflection point (also assumed to be at an angle), the polarization orientation is again

rotated so that the energy reflected towards the source has undergone a rotation within

the plane normal to the direction of propagation of the incident energy.

Figure 7 illustrates four of the infinite number of possible two-reflection paths

from a material that is modeled as a perfect conductor and which has a rough surface

consisting of random circular valleys. In these diagrams, E represents the

polarization orientation of the electric field, k represents the direction of propagation

(wave vector), and the circle represents a plan view of a valley or dimple on the

surface of the illuminated target. The surface is assumed to lie along the plane of the

paper, and the incident illumination is normal to this plane and linearly polarized in

the vertical direction. In Figures 7(a) and 7(c), the polarization of the backscattered

energy is in the same orientation (parallel polarized) as that of the incident
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Figure 7. Multiple Scattering of Linearly Polarized Light

illumination. In Figures 7(b) and 7(d), however, the incident wave strikes the wall of

the valley at a 45* angle between the locally flat surface normal and the polarization

orientation, and the resulting backscattered energy has a polarization orientation

orthogonal (or cross polarized) to that of the incident wave. If the laser illuminates a

sizable area of the surface, as is the case with the sensor system considered in this

study, then the backscattered energy will consist of the superposition of a large

number of contributions from the paths shown in Figure 7. The polarization state of

the backscattered energy will then depend on the relative intensities of the parallel (P)

and cross (C) polarized components measured by the two sensors. A generally
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accepted definition of the change in polarization state that linearly polarized energy

undergoes after being reflected from a rough surface is given by

D = (P-C) x 100 % (3.4)

(P+C)

From this definition, and the previous discussion, we can conclude that energy

backscattered from smooth surfaces will consist of predominantly P orientations and

will therefore have high values of D (near 100%). In contrast, rougher surfaces will

support multiple reflections that result in a higher C component, and which in turn

results in lower values of D.

In order to illustrate the practical advantages of using polarization imaging for

man-made target detection, an example of actual imagery is presented in Figure 8. It

consists of 710 by 1024 pixel areas of the Thermal (a), Reflectance (b), and

Polarization (c) channels collected over a test minefield placed in a desert

background. The targets are readily visible as bright objects in the Polarization

image, and have been automatically cued (encircled by red squares) by a simple

program that uses shape and polarization information to separate the targets from the

background. By comparison, the Thermal channel shows very little target to

background contrast, and the amount of clutter makes it very difficult to extract the

targets even by careful photo-interpretation techniques.

The preceding discussion represents a greatly simplified overview of

polarization sensing. An in-depth treatment would require consideration of real
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materials that have complex reflectivities, and derivation of analytical solution of the

electromagnetic boundary conditions present on realistic rough surfaces. For a more

complete study of the scattering of electromagnetic waves from randomly rough

surfaces, references [48] and [49] are recommended. It should be pointed out,

however, that a generalized theory which explains results of actual polarization

backscattering experiments has yet to be formulated.

Image Processing Equipment

The data from the multisensor imaging system were stored, processed, and

displayed by means of the equipment shown in Figure 9. The digital data are stored

on a Honeywell VLDS helical scanning magnetic tape recorder capable of storing

5.1 GBytes of data on one VHS tape cartridge. This recorder was used in this study

to feed the multichannel digital data into a massively parallel processor at the same

rate (3.3 MBytes/second) as the data were collected in order to conduct real-time

compression tests. The real-time processing system consists of a 64 by 64 array of

processors (Active Memory Technology's Distributed Array of Processors Model

DAP-610) operating synchronously at 10 MHz, and capable of 40 Giga Operations

per second at a maximum input/output data rate of 100 MBytes per second.

Additional analyses were conducted off-line by means of an International Imaging

Systems IVAS image processor which uses a Concurrent Computers MC-6450

multiprocessor as its host. The hardcopies of the imagery included in this study were

produced on a Toyo TPG-4300 color video printer and by photographic devices.
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CHAPTER IV

ANALYSIS OF MULTISENSOR IMAGERY

Introduction

The purpose of this chapter is to present a systematic analysis of three image

channels (P, C, and Thermal) of the multisensor system. The goal of this analysis is

to develop a methodology for exploiting the source characteristics, and for

determining the range of parameters that affect the compressibility of the multisensor

image data. A careful attempt has been made to prevent this study from becoming an

ad-hoc attempt at developing a compression algorithm that is optimized for a limited

number of specific images. It is envisioned that the techniques developed will be

applicable to future generation multisensor systems whose operational characteristics

(e.g. spatial resolution and wavelengths) may vary from those considered here.

The analysis consists of initially defining the interchannel correlations and

developing decorrelating techniques that take into account the physics and

characteristics of the image sources. The decorrelated channels are then analyzed in

order to develop mathematical models that will be used in the next chapter for the

development and evaluation of the adaptive image compression algorithms. The

42
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analysis of the individual channels is divided into spatial (or data) domain, and spatial

frequency (or spectral) domain characterization of the multisensor data. In the spatial

domain analysis, individual channel's entropy, dynamic range, interpixel correlation

coefficients, probability density, and covariance functions are examined. Spatial

frequency domain analysis is also included in order to evaluate the applicability of

various transform-based compression methods.

It should be noted that the analyses of the P and the C image channels

described in this chapter were performed after any required pre-processing to remove

coherent laser power noise (Appendix A).

Interchannel Correlation Analysis

A large percentage of published multichannel image compression schemes tend

to ignore the significant correlations present between channels. The primary reason is

that implementation of standard techniques to remove these correlations result in a

considerable increase in system complexity. For example, the optimal decorrelating

technique, the Karhunen-Loeve (KL) transform, requires estimating the interchannel

covariance matrix, solving its characteristic equation to find the eigenvalues, and then

solving for the corresponding eigenvectors. These eigenvectors are then used to form

linear combinations of the original channels that result in totally decorrelated channels

which can then be efficiently coded for transmission. An inverse transform operation

is also required at the receiver in order to reconstruct the original channels. The

computational expense of this technique has led to some simplified schemes that
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circumvent the difficulties of implementing the KL transform. For example, when

compressing three-channel red, green, blue (RGB) imagery, a fixed transformation to

the luminance, inphase, quadrature (YIQ) space is made so the varying sensitivities of

the HVS can be exploited. The coding scheme involves allocating more bits to the Y

channel since it contains most of the visible detail, and significantly fewer bits to the I

and Q channels that contain the chrominance information where the HVS has reduced

bandwidth [9]. In the majority of other multichannel schemes, the individual channels

are coded independently. This results in decidedly suboptimal coding if there are

significant interchannel correlations. In this section, we will employ statistical

methods using MSE rather than HVS criteria to decorrelate the channels of the

multisensor system.

A large number of 3-band images, ranging in size from 710 x 1024 to 710 x

20,000 pixels per band were analyzed. There images were collected at various times

of day, background environments, and resolutions. Table 1 shows that the

correlations between the P and C channels were consistently around 0.9 while the

correlations between the thermal and the P and C channels varied significantly with

the time of day, but were consistently below 0.30.

The conclusion that can be drawn from this analysis is that there is a

considerable amount of redundancy in the P and C channels that should be removed

for efficient compression. In addition, it can be seen that there is little to be gained

from attempting to remove the redundancies between the active and the thermal
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channels since their correlations are quite low and are very time of day and

background type dependent. This characteristic of the imagery is to be expected,

since the thermal channel is sensing a totally different phenomenon (emitted IR

energy) than the polarization sensitive reflectance measured by the P and C channels.

The remainder of this section will be devoted to decorrelating the P and C channels

only.

TABLE 1

INTERCHANNEL CORRELATION COEFFICIENTS

BACKGROUND TIME AVERAGE AVERAGE CORREL. COEFF.
GROUND RES. P/C P/Th C/Th

Tall Grass, 1800 2" 0.937 -0.172 -0.186
Standing Water

Tall Grass, 0800 1.8" 0.914 0.179 0.183
Standing Water

Short Grass, 1350 2" 0.864 0.256 -0.50
Plowed Fields

Short Grass, 0010 2" 0.830 -0.297 +0.276
Plowed Fields

Short Grass, 1430 2" 0.963 -0.149 -0.240
Plowed Fields

Bare Soil/Sand 1600 3" 0.938 -0.021 -0.066

Several characteristics of the sensor and the image data can be used to define a

simple but robust decorrelating technique for the P and C channels. First of all, the

vast majority of the imagery consists of natural backgrounds that have predictably
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stable ranges of polarization. Additionally, the sensing method is such that P is

always greater than or equal to C so that the allowable values of C are quite restricted

once P is known. This is illustrated in Figure 10 which is a representative plot of the

P & C values for each pixel in a small section of actual imagery that contains targets

in grass background.
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Figure 10. Plot of P and C Image Data

Figure 10 illustrates the fact that the image data tend to cluster tightly around a
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line (linear regression line) that defines a constant relationship between P and C.

This characteristic results from the fact that a very large percentage of the imagery

consists of natural background areas which tend to have limited ranges of

polarization. Even over target areas such as a surface-laid minefield, background

pixels make up over 99% of all the data in each 1024-line frame of imagery. In

order to decorrelate the two channels, a rotation of the principal components (P

and C) can be performed such that the maximum amount of variance is

concentrated on one of the components (i.e. image channels).

Analysis of very large data sets obtained during airborne and ground-based-

polarization field experiments [48], indicate that the backgrounds have polarizations

that range from 0.10 for bare soil or sand backgrounds to 0.30 for very dry, dense

vegetation. Normal, healthy vegetation such as grass and crop fields have

polarizations of approximately 0.20. Assuming that the average polarization of a

given background is d, then from the definition of polarization,

E [D] = E P - _ = d (4.1)

where 0 < d < 1 and E is the expectation operator.

From equation 4.1 and Figure 11, we can calculate the angle 4 as

-tan-I [_dld (4.2)
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And the transformation matrix required to rotate the P and C components to the P'

and C' components is given by

[s [Al [l(4.3)

cos4 sinai1
where [A] = - si]
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Figure 11. Principal Components Transformation

The [A] matrix corresponds to the discrete KL transform if the angle

defines the least mean squares fit to the data. Since we are using the mean of the
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polarization (d) to define 0, it is prudent to examine the effect of approximating

the optimal KL transform by this simple technique.

A large data file consisting of 14,500 lines (710 pixels per line) of imagery

collected over a grassy, wet background was analyzed, and the statistics shown on

Table 2 were computed. The KL matrix was formed by column ordering the

eigenvectors corresponding to the eigenvalues of the covariance matrix.

TABLE 2

STATISTICS OF P AND C IMAGERY

Mean of Channel P = 55.388
Mean of Channel C = 38.091

[ 203.894 127.226 1
Covariance Matrix = 127.226 97.052

[1.000 0.906 1
Correlation Matrix = 0.906 1.000

Eigenvalues of Coy. Matrix = 0.959 , 0.041
ro.833 0.554 1

KL Matrix = [A) = 0.833 0.554

1-0.554 0.833 

Using the average values for P and C, we can calculate d=O. 1850 and from
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equation 4.2, 4 = 34.5190. Therefore the computed [A] matrix is

[A] =[ 0.8239 0.56661

i -0.5666 0.8239

It should be noted that a slightly more accurate approximation of the KL

transform matrix can be obtained by calculating the average of the polarization

channel (or polarization computed from P and C) directly, but the added storage

and calculations required are not justifiable.

The approximation given by equation 4.3 does not require calculation of

covariances, eigenvalues or eigenvectors, yet the resulting transformation matrix is

very close to the optimal KL transform. The approximation of equation 4.3 was

used to rotate the original P and C data, and the computed statistics of these new

images are given on Table 3. Comparison of the correlation matrices before and

after transformation show that the interchannel correlation is reduced from 0.906 to

0.086. In order to compute the decorrelating efficiency of the approximation we

use the formula

_ E X1% (4.4)

wh= s v alu o t i

where E"X =sum of the absolute values of the off-diagonal terms of the original
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data covariance matrix and Y"IY is the sum of the off-diagonal terms of the

transformed data covariance matrix [59]. In the case of the KL transform, the data

covariance matrix is diagonalized so that EY = 0 and q = 100%. Using the

data from Tables 2 and 3, the calculated efficiency of the approximate

transformation is 96.84%.

TABLE 3

IMAGE STATISTICS AFTER ROTATING BY EQUATION (4.3)

[ 90.703 2.0111
Covariance Matrix = 2.011 5.668

Correlation Matrix = 0.0891.000 j

Eigenvalues of Covariance Matrix = 0.942 , 0.058

New KL Matrix = 1.000 0.024

For the remainder of this study, unless otherwise stated, the analyses and

processing will be performed on the rotated P and C image data, and these rotated
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channels will be denoted as P' and C'.

Spatial (Data) Domain Analysis

The previous section presented a technique that will be included in the

compression algcrithm developed in the next chapter. This technique is effective

in removing interchannel redundancies prior to coding. In this section we seek to

define the amount of intrachannel redundancy that can be removed from the three

individual channels (P', C', and Thermal). In the process, those parameters that

will be required for the development of an image model will be identified.

One important image property that is useful in estimating the amount of

redundancy in a given image is its first order, or single symbol, entropy which was

previously defined in equation 2.1. While the actual application of this parameter

is very limited, it is nevertheless useful in estimating the compressibility of the

image data. Before rotating the P and C channels, the first order entropies of a

number of large image files (approximately 1 MBytes each) were calculated. The

calculated values ranged from 5.1 bits per pixel to 6.1 bits per pixel, whereas the

original data contained 8 bits per pixel. Huffman coding of these image produced

a best case of 35.8% compression and a worst case of 23.6%. While the

compression ratios achieved by Huffman coding are not high, comparison with

documented analyses of standard images of natural scenes [9] whose entropies

range from 6 to 7.5 bits per pixel indicate that the multisensor imagery used in this
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study has greater redundancy and should therefore be more compressible. Higher-

order entropies that determine the redundancy present between groups of pixels are

significantly more difficult to compute since the number of possible combinations

of groups of pixels increase rapidly. Clarke [10] has speculated that the results

obtained using higher order entropies do not justify the computational effort

required. In addition, since such calculations are too computationally intensive to

be of use in real-time implementations, they are not consioered in this study.

A more useful set of parameters are the interpixel correlation coefficients,

in particular, the single step horizontal and vertical correlation coefficients Ph

and pv. Considering a single line of image data as a 1-D sequence x(i) for i 1 to

N, then the single step horizontal correlation coefficient is defined as

N-1

E~ (X()- X)(X(i-) - )
P N-I (4.5)

, (x(i) - )
N 1

That is, Ph is the ratio of the one-step autocovariance of a horizontal line of image

data to the zero-step autocovariance of the same line. Performing the calculation

of equation 4.5 down a column of image results in the vertical correlation

coefficient p. Application of equation 4.5 to all ,ows or columns of an image

and averaging the results provides a usable estimate of these parameters. At this

point it should be noted that the nonstationarities of actual image data have been



54

neglected. In this case we have assumed at least wide sense stationarity since we

are assuming constant mean (X) for each line or column and an autocovariance that

is a function of shift (step) and independent of spatial location. Regardless of these

simplifying assumptions, the parameters thus obtained will prove to be useful in

estimating the compressibility of the data, selecting the type of transform, and

developing an image model. The nonstationarities of the actual imagery will be

accounted for by other means described in the next chapter.

Again, a large number of images (P', C', and Thermal) were processed to

determine the range of correlation coefficients. The lowest correlation coefficient

found was p, = 0.58 in one of the P' images, while most of the Thermal images

had correlation coefficients in the range of 0.85 to 0.95. Due to the imaging

sensor characteristics, it was observed the vertical correlation coefficient was

affected by the ground speed variations of the helicopter platform. The magnitude

of p, was found to be inversely proportional to groundspeed, which is as expected

since low groundspeed results in stretching (or replication of lines of imagery)

which would tend to increase p, while too high a groundspeed results in a faster

change of background than normal (lower p, ). Since it is expected that an

operational sensor would incorporate automatic velocity to height (V/H) correction,

only images that were visually confirmed to have approximately the right aspect

ratio were selected. It should be emphasized, however, that even scenes with
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proper aspect ratios did not, in general, exhibit isotropic (Ph = Pv) behavior.

The range of correlation coefficients magnitudes (>0.5) provides an

indication that transform coding methods are applicable for incorporation in the

data compression scheme. The actual transform type will be selected by examining

the image model developed later in this chapter.

There are a number of other spatial parameters that are of interest, such as

probability density function (pdf) and amplitude distributions (histograms), but

since our scheme will incorporate transform coding, these parameters are less

important than their counterparts in the transform domain. In subsequent sections

we will consider the pdf and distributions of the transform coefficients.

Spatial Frequency (Spectral) Domain Analysis

In view of the fact that the compression scheme developed in this study is

based on a 2-D transform, which is basically a spatial frequency domain process, it

is appropriate that we examine the properties of the multisensor imagery in this

domain.

In this section, some representative samples of multisensor imagery are

presented in both the data and the frequency domain in order to illustrate a number

of properties of the imaging source. In addition, spatial frequency (or spectral)

analysis of the image data was performed to estimate the compressibility of the

source and the applicability of transform-based compression schemes. Finally,

spectral analysis was used to identify and remove image distortions caused by noise
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in the laser imaging system (Appendix A).

The 2-D power spectra shown in this section were calculated by computing

the square of the magnitude of the 2-D FFT of 512 x 512 pixel areas of image

data. No data windowing or smoothing was used since these techniques are not

normally used in transform coding applications. The computed magnitudes were

mapped into the range of 0 to 255 (8 bits) and displayed as images where the

lighter tones correspond to the higher values. The horizontal and vertical axis

have been normalized by the sampling frequency (1.05 MHz horizontal and 350 Hz

vertical) and range from -.5 to +.5 of the sampling frequency. The zero

frequency component has been moved to the center of the image by using the

technique described in [5]. As was the case in the spatial domain analysis, we

must assume that the image data is stationary in order to apply transform

techniques.

Examples of P', C' and thermal imagery are shown in Figures 12, 13 and

14 respectively. The corresponding 2-D spectral domain representations are shown

on Figures 15, 16 and 17. For comparison purposes, a single channel (Red) of

RGB imagery is shown in Figure 18 and its corresponding spectrum in Figure 19.

Two important properties that are common to line scanning sensors in

general and to thermal-IR sensors in particular, can be observed in these images:

(1) the effects of striping caused by the scanning mechanism which result in high

amplitude (bright) components along the vertical axis and (2) the fact that thermal-
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IR scenes, which appear as smooth, slightly out-of-focus images, have most of

their power concentrated in the low frequency components.

Other properties of the imagery, which are unique to this particular sensor,

are the vertical stripes that are caused by the high frequency laser power

fluctuations (see Appendix A), and the fact that the C' channel has a very low-pass

spectrum. This property of the C' imagery is largely due to the fact that the

rotation operation applied to the P and C channels removes a large portion of the

variance from the C' data.

Comparison of the multisensor image spectra with that of the mandril

(Figure 19) indicate that the former should be much easier to compress. Since

standard transform-based compression methods, such as JPEG's DCT [9]

technique, have successfully compressed the mandril imagery, it should be

expected that these techniques would be effective for our purposes. It should be

noted, however that JPEG's algorithm exploits the nonlinearities of the HVS,

which we are not able to do in this case since MSE is our fidelity criterion, not

subjective image quality.
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Figure 12. P' Channel Imagery
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Figure 13. C' Channel Imagery
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Figure 14. Thermal Imagery
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Figure 15. Two Dimensional Power Spectrum of P' Imagery
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Figure 16. Two Dimensional Power Spectrum of C' Imagery
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Figure 17. Two Dimensional Power Spectrum of Thermal Imagery
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Figure 18. Mandril Imagery (Red Channel)
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Figure 19. Two Dimensional Power Spectrum of Mandril Imagery
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Source Model Selection

The goal of digital image compression can be formulated in a general signal

processing framework as the problem of estimating and extracting the useful

information from a signal and discarding the non-essential portions. As such, a

general approach for attaining this goal consists of three steps [20]:

1. Specification of a criterion function by which the efficiency of various

candidate techniques can be evaluated.

2. Development and selection of an adequate model for the source of signal

data.

3. Development and implementation of an algorithm.

Step 1 was accomplished earlier when MSE was selected as our distortion

metric, and distortion as a function of rate as our efficiency criterion. In this

section we focus on step 2, and the model developed in this section will be

required for accomplishing step 3 in later chapters.

The importance of selecting an adequate source model is based on the fact

that it will be used to determine the following critical components of the adaptive

transform coding system:

a) The choice of transform

b) The bit allocation strategy

c) The design of coefficient quantizers

d) The method of adapting the scheme to nonstationarites of the
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actual image data

e) The type and amount of overhead information that must be

transmitted in order to reconstruct the imagery at the receiver.

As mentioned in previous chapters, a number of image source models have

been proposed in the literature [11] and these have given rise to a variety of

DPCM, transform, and hybrid coding schemes. Since transform coding has been

demonstrated to be superior to other coding techniques, this section will focus on

image source models that are directly applicable to transform methods. As stated

previously, transform coding is used to decorrelate the source data so that the

transformed data has the major portion of the variance (energy) concentrated in a

small number of coefficients that can in turn be coded with fewer bits. The

desired model, therefore, should be such that it can be used to determine the

efficiency of different transforms to "pack" the variance into few coefficients, and

to predict the distribution of variances so that bits can be optimally allocated to

higher energy coefficients. Correlation (or covariance) models are ideally suited

for this task since the spatial correlation function can be readily used to determine

the variances of the coefficients of any 2-D transform [11]. In this section we will

show how the covariance model provides a straightforward link between the spatial

domain statistics (i.e. correlation coefficients) and the transform or spectral domain

statistics (i.e. distribution of coefficient variances).

In image modeling, the two most widely used correlation models are the
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2-D separable and the isotropic models. In the separable model, the 2-D image

data is decomposed into independent horizontal and vertical 1-D processes with

correlation functions that are assumed to be exponential, that is,

Ph(x) = e' (4.6)
and

p,(y) = e - Py  (4.7)

where a can be estimated from equations 4.5 and 4.6 by setting x = 1, and 0 can

be likewise computed. The separable 2-D correlation model results from

combining equations 4.6 and 4.7 into

p(x,y) = e- ax e - PY = exp[-(ax+ Py)] (4.8)

Natarajan and Ahmed [59] showed that this is a poor model for image data

sources. This is due to the fact that the model correlation falls off much more

rapidly with increasing diagonal distance than the actual data. In an attempt to

correct this problem, Natarajan and Ahmed proposed a nonseparable model which,

because it assumed that P, = p,, is called the isotropic model and it is given by

p(x,y) = exp[-(x 2 +y2) 2 ]4.9)
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Mauersberger [54] showed that this model overcompensates for the

shortcomings of the separable model and therefore fails to decrease as rapidly as

the actual data. Mauersberger, therefore, proposed what he called a generalized

correlation model defined as

rXPi (4.10)
p(x,y) -- exp[(axrl)h+(fyr2)h -h

where a and 0 are found, as before, from equations 4.5, 4.6, and 4.7. The

parameters rl, r2 and h must be estimated by solving a constrained optimization

problem using actual image data. It can be observed that both the separable and

the isotropic models can be derived from the generalized model by proper selection

of the parameters.

In [54] Mauersberger estimated the parameters of the generalized

correlation model by assuming that a = p, and then using a set of fourteen test

images obtained from a wide variety of sources. Akansu and Haddad [55]

performed the parameter optimization with the same test set as Mauersberger, but

without constraining the horizontal and vertical correlation coefficients (i.e a and

13) to be equal. Their optimized parameter values are r, = 1.137, r2 = 1.09, and

h = V-. Clarke [10] also determined that h = V was optimal for a different

test image set. Since in this study we are interested in methodology, rather than in

optimizing a scheme for a particular (and unique) sensor, we will use these



70

parameters as a starting point. The interested reader can apply the iterative

algorithm described in [60] in order to optimize the model for a particular source.

Having selected a correlation model for our study, it is now necessary to

define the process required to transition to the transform domain whe'e the image

data compression will be effected. The process is best illustrated by considering

the 1-D case, where our data is assumed to be a stationary random sequence

defined in vector form as

x = [x(1),x(2),... x(N)] T (4.11)

If this sequence is transformed by means of a unitary matrix [A] (i.e. A- = AT)

then the transformed data is given by the vector of coefficients X such that

X = [A]x where X = [X(I),X(2),... ,X(N)J (4.12)

Each component of X is found from equation 4.12 to be

N

X(i) = E a(i,m)x(m) for i = 1,2,...,N (4.13)
M-I

Without loss of generality, we can assume that our data sequence x has zero

mean, and this will result in a covariance function equal to the correlation function.

Under this assumption, the expected value of each of the coefficients will be zero,
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and their variances will be

o2(i) = E[(X(i))2 ]

= E Ea(i,m)a(in)x(m)x(n) (4.14)

N N

= E a(i,m)a(i,n)R(m-n)
MI f

where R(m-n) represents the autocorrelation function which is defined as

R(m) = E [x(m+n)x(n)] (4.15)

In [55] and [61] Haddad and Akansu derive a new expression for equation

4.i4

N-k

o2 (i) = w(i,k+1)R(k) (4.16)
k=O

where

w(ik+l) g(i,k) for k= 0 (4.17)
2g(i,k) for k =1,2,...,N-1

and

N-k
g(i,k) = r a(ij)a(i,j+k) (4.18)

j=1

Equations 4.14, 4.16, and 4.17 can then be combined in vector/matrix form as
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2 = [W]R (4.19)

In equation 4.19, the W matrix provides the link between the signal's

autocorrelation function in the spatial domain, and the distribution of coefficient

variances in the spectral or transform domain. In [55] and [61] Haddad and

Akansu computed the W matrix for some of the more commonly used transforms,

the DCT and the Walsh-Hadamard transform (WHT), and also for the less popular

Modified Hermite transform (MHT). It should be noted, however, that both

references have numerous typographical errors in the tabulation of all three W

matrices. A tabulation of the correct W matrices for these three transforms is

presented in Chapter 5 (Table 11).

Akansu and Haddad extended the 1-D case to include the nonseparable

2-D correlation function R(m,n), and derived the link between th,. spatial and the

transform domains as

IV] = [W] [R] [W T  (4.20)

where

[V] = [o 2(ij)] (4.21)

and

[R] = [R(m,n)] for Om,n N-1 (4.22)
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Equation 4.20 represents a closed form expression that separates the

transformation from the correlation or covariance model so that, for a given model,

the effect of selecting a specific transform can be studied. This will be done in the

following chapter after we have validated the image model.

At this point we need a method for scaling the model so that it can be applied

in equation 4.20, and for subsequent bit allocation and coefficient normalization and

quantization calculations. Since the model provides an estimate of the normalized

covariance, it can be readily re-scaled to the actual covariances by multiplying by the

overall data variance which for an N x N image is given by

2 _.) 2  (4.23)
N 2 rn-i n=1

where x is the mean of the image data values.

Thus our adopted model for the remainder of this study is

R(x,y) = 2 exp[-[(aX1137)v' / + (p3yl.9)vl] (4.24)

Source Model Verification

A number of 512x512 sections of multisensor images were analyzed for the

purpose of verifying tt, z coefficient variance estimates derived from the generalized

covariance model given in equation 4.24. The procedure used was to divide each

image into 4096 blocks of 8x8 pixels. These blocks were then individually
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transformed via a fast DCT algorithm (described in Chapter 6), and the actual

variances of the 64 individual DCT coefficients were calculated over the 4096 values.

The actual variances were then compared with those obtained from the generalized

covariance model. The model parameters were estimated by computing global

averages of the horizontal and vertical single-step correlation coefficients (equation

4.5) and of the overall data variance (equation 4.23). These parameters were then

used to calculate the 8x8 matrix of covariances (equation 4.24). Lastly, these

covariances were then used to calculate the DCT coefficient variances by means of

equation 4.20.

The actual and modelled DCT coefficient variances for 3 channels of typical

imagery are shown in Tables 4, 5, and 6. In these tables, the top left hand value of

each 8x8 array corresponds to the DC coefficient, and the bottom right hand value

corresponds to the highest 2-D frequency coefficient. Inspection of these results

indicate that the model provides a reasonably accurate approximation to the actual

coefficient variances. The model is quite accurate in estimating the variances of the

coefficients corresponding to the horizontal frequencies of the P' and C' channels, but

is considerably poorer in predicting the variances of the vertical frequency

coefficients. Conversely, the model is quite accurate in predicting the variances of

the vertical frequency components of the Thermal channel, and has larger deviations

for the horizontal frequencies. It should be pointed out that the model parameters,

other than the correlation coefficients, were not optimized to the actual image data;
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TABLE 4

DISTRIBUTION OF DCT COEFFICIENT VARIANCES - P' CHANNEL

Actual Variances

10478.9 1064.67 357.99 115.57 55.44 26.33 14.36 8.18

1013.0 353.11 186.89 93.84 45.09 25.55 13.49 7.88

426.27 201.59 134.15 77.64 40.60 22.74 13.27 7.79

231.93 130.67 98.57 59.52 36.92 20.54 12.74 7.59

189.91 108.36 76.11 50.69 31.90 20.18 11.22 7.25

150.66 95.27 70.02 45.04 30.23 18.79 11.55 7.59

138.85 84.55 64.44 43.20 28.07 17.88 11.39 6.97

131.89 75.98 63.10 41.09 26.48 17.28 10.75 6.71

Modelled Variances

6747.07 1226.6 321.7 111.2 58.76 37.40 26.13 22.40

2972.12 669.75 208.1 79.98 44.04 28.86 21.17 18.19

1368.33 383.5 141.6 61.04 35.26 23.89 18.17 15.73

628.37 218.84 96.30 47.17 28.90 20.36 15.99 14.00

350.50 140.87 70.66 38.47 24.90 18.17 14.62 12.92

225.78 100.81 55.75 32.94 22.32 16.76 13.73 12.24

164.68 79.42 47.09 29.51 20.69 15.86 13.16 11.80

137.03 68.97 42.59 27.64 19.79 15.37 12,84 11.57



76

TABLE 5

DISTRIBUTION OF DCT COEFFICIENT VARIANCES - C' CHANNEL

Actual Variances

285.0 77.55 30.34 12.89 6.38 3.53 2.13 1.40

88.68 39.26 19.86 9.91 5.48 3.23 2.02 1.37

44.95 22.51 13.56 8.15 4.83 3.01 1.95 1.30

23.05 15.56 9.76 6.54 4.24 2.76 1.76 1.28

15.74 10.94 7.74 5.56 3.74 2.39 1.61 1.21

11.57 8.39 6.505 4.92 3.41 2.39 1.63 1.23

9.88 7.96 6.399 4.45 3.26 2.26 1.60 1.14

9.02 6.85 5.71 4.27 2.95 2.13 1.56 1.06

Modelled Variances

197.1 76.73 31.04 12.7 6.75 4.27 3.10 2.60

117.0 49.8 22.06 9.79 5.44 3.56 2.65 2.24

67.4 31.81 15.55 7.58 4.44 3.01 2.30 1.98

36.1 19.08 10.46 5.69 3.57 2.53 2.00 1.74

21.2 12.27 7.39 4.42 2.96 2.19 1.78 1.58

14.1 8.68 5.62 3.63 2.56 1.96 1.63 1.46

10.4 6.76 4.61 3.14 2.30 1.82 1.54 1.39

8.74 5.82 4.09 2.88 2.17 1.74 1.48 1.35
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TABLE 6

DISTRIBUTION OF DCT COEFFICIENT VARIANCES - THERMAL CHANNEL

Actual Variances

2439.96 260.9 75.54 21.36 9.12 4.03 1.49 1.33

413.79 92.63 33.15 13.50 6.78 3.19 1.36 .729

135.93 46.04 21.69 12.39 5.71 3.32 1.38 .572

42.02 21.23 14.62 8.95 4.96 3.35 1.53 .569

32.37 14.13 10.27 6.88 4.49 3.01 1.54 .539

21.18 10.33 8.57 6.53 4.27 3.04 1.50 .538

13.71 9.62 7.85 6.51 4.06 2.99 1.48 .526

16.35 8.58 7.33 5.67 4.07 2.83 1.62 .529

Modelled Variances

1851.4 332.85 87.07 29.78 15.44 9.64 6.60 5.61

577.75 139.29 46.01 18.23 10.01 6.51 4.76 4.06

213.91 67.26 27.44 12.62 7.41 5.05 3.87 3.34

87.07 34.29 16.91 9.02 5.73 4.12 3.28 2.88

47.03 20.91 11.65 6.94 4.73 3.56 2.92 2.60

29.75 14.45 8.80 5.69 4.09 3.19 2.68 2.42

21.33 11.12 7.21 4.94 3.69 2.96 2.53 2.31

17.75 9.55 6.41 4.55 3.48 2.83 2.44 2.24
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therefore, some mismatch in the variance predictions is to be expected. The

remainder of this section is devoted to quantifying the effects of the model mismatch

on the variance predictions, and on the resulting bit allocation.

A quantitative measure of the accuracy of the coefficient variances predicted

by the model is the mean mismatch ratio defined by Mauersberger [54] as

N N " max ad 2 ._.a2.(4.25)
N 2 . j., 62i ' a 2

where a is the modelled variance, and 6, is the actual variance. Mauersberger, and

Akansu and Haddad [55] used the mean mismatch ratio to optimize the model

parameters to a set of images. The purpose of selecting the maximum of the ratios of

the two variances is to avoid any preference towards too large or too small a

variance. The computed mean mismatch ratios for variances shown in Tables 4, 5

and 6 are given in Table 7.

TABLE 7

MEAN MISMATCH RATIOS

P' Channel 1.453

C' Channel 1.227

Thermal Channel 1.899



79

Mauersberger [54] calculated a mean mismatch ratio of 1.260 for the set of 14

images that he used for the optimization of the generalized correlation model, and as

high as 8.670 when a separable model was assumed for the same set of images. The

results shown on Table 7 are close to those calculated in [54], and indicate that the

generalized covariance model provides a good match to the multisensor imagery

without any attempt to adjust or optimize the model parameters.

A quantitative evaluation of the usefulness of the model can be performed by

comparing the bit allocation matrices obtained from the actual and the modelled

variances. The bit allocation matrix defines the number of bits that will be transmitted

for each of the 64 transform coefficients in each 8x8 block. Jayant and Noll [4] have

derived the optimal bit allocation strategy for coding coefficients for any arbitrary

block size (NxN) using MSE as the optimization criterion. This optimal bit allocation

depends only on the distribution of the coefficient variances, and is given by

BW = + 1 10 2 2 (ij) 1
S=B + -log 2  

2 (ij) (4.26)

where B is the desired overall bit rate (in bits per sample), and B,, is the number of

bits allotted to code the (i,j/' coefficient. Difficulties in implementing this technique

are due to the fact that fractional bit allocations normally result, and also negative B,

are possible when low average bit rates are used. These shortcomings are due to the
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fact that the optimization used to derive equation 4.26 was not constrained to only

non-negative integer solutions. This property makes actual implementation of

equation 4.26 suboptimal, and Rost [24] and Clarke [10] have shown that achievable

distortions and rates increase when the computed bit rates are rounded to the nearest

integer values and negative bit allocations are set to zero. These problems can be

avoided by employing vector coding of the block of coefficients [621, but this

technique will not be used in this study because of implementation considerations.

The results obtained from 4.26 by rounding values to the nearest non-negative

integer are shown in Tables 8, 9 and 10. These results correspond to the DCT

coefficient values given in Tables 4, 5, and 6, and assume an average bit rate B of

one bit per pixel. The fact that the bit allocations calculated from the actual variances

and from the modelled variances do not deviate by more than one bit for any DCT

coefficient, and match exactly in most cases, indicate that the model is adequate for

our multisensor image source. Application of this model to the development of the

adaptive multisensor image compression scheme is described in the next chapter.
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TABLE 8

BIT ALLOCATION MATRIX - P' CHANNEL

Computed from Actual Coefficient Variances

53211100

43211100

32211000

32111000

22110000

21110000

21110000

21100000

Computed from Modelled Coefficient Variances

53221110

32211100

32211000

22211000

2211 1000

21111000

21111000

21111000
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TABLE 9

BIT ALLOCATION MATRIX - C' CHANNEL

Computed from Actual Coefficient Variances

43221100

32211100

32211100

22111100

22111000

21111000

11111000

11111000

Computed from Modelled Coefficient Variances

43221110

33211100

32211100

22111000

22111000

21110000
11110000

11110000
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TABLE 10

BIT ALLOCATION MATRIX - THERMAL CHANNEL

Computed from Actual Coefficient Variances

53321111

43211100

32211000

32111000

21110000

21110000

21100000

11100000

Computed from Modelled Coefficient Variances

53221110

32211100

3221 1000

22211000

22111000

21111000
21111000

21111000



CHAPTER V

DEVELOPMENT OF MULTISENSOR IMAGE COMPRESSION SCHEME

Introduction

In this chapter we make use of the previously developed generalized

covariance image model to select the transform type, and to design the bit allocation

and quantization strategies that will be incorporated in the multisensor image

compression scheme. The tradeoffs involved in adapting the transform type, bit

allocation, and quantization strategies to the changes in data statistics are considered.

A method of adapting the scheme to compensate for the nonstationarities of the image

data is developed, and the complete adaptive transform compression algorithm is

described. The implementation considerations are covered in the next chapter, and

the evaluation of the algorithm is documented in Chapter 7.

Selection of Transform Type

Selection of a transform to be used in image data compression applications

involves a number of tradeoffs between MSE performance, implementation

considerations, and overhead transmission requirements. For example, for certain

types of sources that can be modelled by Markov processes with correlation

coefficients approaching 1.0, the KL transform has been shown to be optimal in the

MSE sense. However, no general fast algorithm exists for implementing the KL

84
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transform, and its computational complexity makes this transform impractical for real-

time applications. In addition, the KL transform's basis vectors are data dependent

and must be computed and transmitted as overhead information for proper

reconstruction at the receiver. Conversely, transforms that have minimal

implementation and overhead requirements such as the Walsh-Hadamard transform

can have poor MSE performance for the same class of image data sources.

This section presents a procedure for evaluating the MSE performance of 2-D

transforms. It is assumed that the transforms under consideration are limited to those

that can be implemented via fast algorithms, and whose basis vectors are data

independent so that overhead requirements are reduced. We therefore illustrate the

procedure by evaluating the performance of the DCT, the Modified Hermite

Transform (MHT), and the Walsh-Hadamard Transform (WHT) whose W matrices

are listed in Table 11. W matrices for other transforms can be derived by means of

Equations 4.14 through 4.19 [55].

It has been shown [10] that the DCT is superior to other transforms that have

data independent basis vectors when the correlation coefficients are near unity and

minimum MSE is used as the fidelity criterion. Therefore, the aim of this section is

to determine if there are any advantages in changing the transform type when the

correlation coefficients of the multichannel imagery are low. Analysis of a large

number of 512x512 sections of multisensor images collected at various altitudes and

background types indicates that the horizontal correlation coefficients range from 0.99
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to 0.75, and the vertical correlation coefficients range from 0.98 to 0.58. A large

percentage of the Thermal channel imagery had horizontal and vertical correlation

coefficients near 0.96, while the P' and C' imagery averaged 0.93 and 0.90 for the

horizontal and vertical correlation coefficients respectively. These values, and also

the worst case values of 0.75 and 0.58, will be used to determine the effect of

transform selection on compression performance.

The procedure used involves computing the 8x8 data covariance matrix by

means of the generalized covariance model of Equation 4.24 using the previously

stated correlation coefficient values. Equation 4.20 is then used to calculate an 8x8

coefficient covariance matrix for each of the three transforms of Table 11. Then we

make use of a technique developed by Jayant and Noll [4] for determining the

performance of a given transform as compared with PCM coding. This technique

uses minimum MSE criterion, assumes optimum bit allocation, and is based on

calculating the degree to which the total variance is concentrated in a small number of

coefficients. The calculation of the gain of transform coding over PCM coding, GC,

for a 2-D non-separable image model is given by

1 N N a 2 (ij)

G=- N J _.1 (5.1)

n i f siicn
In effect, Equation 5.1I states that the gain of a specific transform over PCM coding
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TABLE 11

W MATRICES FOR THREE TYPES OF TRANSFORMS

1 1.750 1.500 1.250 1.000 0.750 0.500 0.250
1 1.367 0.599 -0.125 -0.653 -0.890 -0.816 -0.480
1 0.987 -0.353 -1.133 -1.000 -0.280 0.353 0.426
1 0.419 -1.252 -1.051 0.270 0.796 0.162 -0.345

WDCT 1 -0.250 -1.500 0.250 1.000 -0.250 -0.500 0.250
1 -0.919 -0.869 1.258 -0.270 -0.589 0.544 -0.154

1 -1.487 0.353 0.633 -1.000 0.780 -0.353 0.073
1 -1.867 1.522 -1.081 0.653 -0.316 0.108 -0.019

1 1.855 1.479 1.002 0.563 0.252 0.082 0.015
1 1.510 0.415 -0.586 -0.996 -0.820 -0.413 -0.019
1 1.019 -0.606 -1.167 -0.392 0.565 0.744 0.328
1 0.365 -1.288 -0.579 0.825 0.637 -0.413 -0.546

- 1 -0.365 -1.288 0.579 0.825 -0.637 -0.413 0.546

1 -1.019 -0.606 1.167 -0.392 -0.565 0.744 -0.328
1 -1.510 0.415 0.586 -0.996 0.820 -0.413 0.109

1 -1.855 1.479 -1.002 0.563 -0.252 0.082 -0.015

1 1.750 1.500 1.250 1.000 0.750 0.500 0.250
1 -1.750 1.500 -1.250 1.000 -0.750 0.500 -0.250

1 0.250 -1.500 -0.250 1.000 0.250 -0.500 -0.250
1 -0.250 -1.500 0.250 1.000 -0.250 -0.500 0.250

WW -- 1 1.250 0.500 -0.250 -1.000 -0.750 -0.500 -0.250

1 -1.250 0.500 0.250 -1.000 0.750 -0.500 0.250
1 0.750 -0.500 -0.750 -1.000 -0.250 0.500 0.250

1 -0.750 -0.500 0.750 -1.000 0.250 0.500 -0.250
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equals the ratio of the arithmetic mean of the coefficient variances to their geometric

mean.

Analysis of the results presented in Table 12 indicates that, as expected, DCT

is considerably superior to the other transforms at higher values of correlation

coefficients. The advantage of DCT over the other transforms and over PCM

decreases with decreasing correlation coefficients; however, DCT is still the best

performer for the range of coefficients representative of the multisensor imagery.

The conclusion that can be drawn from these results is that, for the image data

sources considered in this study, there is little to be gained from switching transform

types to adapt to changing data statistics.

TABLE 12

TRANSFORM GAIN FOR THREE TYPES OF TRANSFORMS

Ph PV Transform Grc

DCT 17.8315

0.96 0.96 WriT 13.9843

MHT 11.0523

DCT 9.970

0.93 0.90 WiT 7.832

MHT 7.038

DCT 2.442

0.75 0.58 WHT 2.090

MHT 2.297
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This conclusion agrees with Clarke's conjecture [10] that the important gains

in an adaptive transform coding scheme are to be found in the bit allocation and

quantization schemes rather than in the optimization or adaptation of the transform

type. Therefore, the adaptive transform coding scheme used in this study will

incorporate a single transform type, the DCT. In general, however, the procedure

described in this section is useful for evaluating performance of candidate transforms

for a given image source. It also is essential when selecting a transform for sources

that have negative correlation coefficients where the DCT can be inferior to a number

of other transform types [10, 61].

Bit Allocation Strategy

The bit allocation strategy involves using the individual DCT coefficients'

variances to calculate the number of bits to be assigned to each of the coefficients.

As is standard practice [10, 63], a full 8 bits will be allocated to the DC coefficient in

order to prevent blocking artifacts caused by coding errors that result in brightness

level differences between adjacent blocks. Techniques such as ADPCM, where the

DC coefficient of each block is coded as the residual of a prediction based on DC

coefficient values from preceding blocks, can be used to reduce the number of bits

required to code these coefficients [10]. Due to its small effect on the overall bit

rate, ADPCM of the DC coefficients will not be used in this study, but should be

considered in cases where channel capacity is very limited.

The available bits for coding the remaining 63 AC coefficients will be
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allocated by means of the optimal bit allocation scheme presented previously in

Equation 4.26. The variances used in this equation will be derived from the

generalized covariance model in order to maintain low overhead requirements.

Mauersberger [64] has investigated the effect of variance mismatch on quantizer

performance, and he has concluded that the matching of a quantizer relative to the

variance is not very critical. Since the results of the previous chapter indicate that the

model accurately predicts the distribution of coefficient variances, the errors that will

result from using modelled rather than computed variances should be small. In order

to test this assertion, a number of images were coded using actual variances and

modelled variances computed over 512x512 pixel areas (assuming stationarity), and

the reconstructed images were analyzed. These images were visually

indistinguishable, and the PSNR's of images coded by both methods were computed

using Equation 2.4 and showed very small variations. For example, the P' Channel

image shown in Figure 12 had a PSNR of 34.42 dB when coded using actual

variances, and a PSNR of 34.20 dB when modelled variances were used.

Model parameter updating, and adaptivity of the bit allocation scheme to deal

with changing image statistics will be considered later in this chapter.

Ouantization of Transform Coefficients

In order to implement an efficient transform coefficient quantization scheme, it

is important that the variance of the individual coefficients and their probability

density function (pdf) be estimated. The variance is used to normalize the individual
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coefficients, and the pdf is used to select the decision intervals and reconstruction

value for minimum MSE quantization. If it is assumed that all of the AC coefficients

have the same pdf, they can be normalized by dividing by their individual standard

deviation, and then identical unit variance quantizers for each integer bit allocation

can be used to code and reconstruct the data. If this assumption is false, then

individual quantizers must be implemented for each integer bit allocation and each pdf

type, and information matching the specific quantizer to each coefficient must be

supplied to the receiver for proper decoding. As described later in this section, we

will operate under the assumption that all of the AC coefficients have the same pdf

while the DC coefficients may have a different pdf; therefore, normalization of the

AC coefficients will be required for efficient quantization.

As in the case of transform selection and bit allocation, the normalization

procedure also involves tradeoffs between implementation complexity and overhead

transmission requirements. The transformed data can be used to calculate the

variances of each of the 63 AC coefficients, and those variances can be used to

normalize and code the data; however, this requires added computations and also the

matrix of normalization factors has to be transmitted as overhead for proper

reconstruction at the receiver.

Chen and Smith [63] developed a technique for estimating the normalization

factors that reduce the overhead requirements. Their technique involves calculating a

normalization constant c which is set equal to the maximum standard deviation of
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those DCT coefficients which were assigned 1 bit for coding. The normalization

factors for the remaining AC coefficients are then dependent on the number of bits

assigned. For a given normalization constant c and allocated number of bits NB, the

normalization factor k is given by

k = c2 - 1 (5.2)

Therefore, assuming that the bit allocation matrix is available at the receiver, only the

factor c is required to reconstruct the normalization matrix.

The largest standard deviation is used in this procedure in order to prevent

coefficient clipping. This technique was applied to the multisensor imagery using the

generalized covariance model for bit allocation and variance estimation. The resulting

imagery was of very poor quality with excessive blocking artifacts particularly in low-

detail areas. This problem was due to the fact that this technique places greater

emphasis on the high frequency DCT coefficients that have the greatest amount of

modelling error. As Tables 4 through 6 show, the modelled variances do not

decrease with increasing frequency as rapidly as the actual variances. As a result, the

k factors for the low frequency coefficients that have 3 or more bits allocated are

much larger than required since they include an exponential increase in the error

present in the c estimate. The resulting coarse quantization of the low frequency

coefficients affects those blocks that have little detail due to large coding errors in the

critical low frequency coefficients.
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The normalization technique used in this study consists of employing the

covariance model to estimate the coefficient standard deviations which are then used

to normalize the corresponding AC coefficients. Overhead requirements are limited

to the horizontal and vertical correlation coefficients. The same model is then used at

the receiver to reconstruct the normalization and the bit allocation matrices. This

technique avoids the error growth inherent in Equation 5.2.

After allocating the bits and normalizing the DCT coefficients, the next

requirement is to optimally quantize these coefficients. In order to accomplish this,

an estimate of the pdf of each coefficient is required. A considerable amount of

research effort has been devoted to determining the pdf of DCT coefficients, but the

results have been inconsistent. The conclusions based on theoretical considerations

differ substantially from those based on empirical analyses, and the latter also vary

depending on the type of image data sources used. For example, Pratt [66] and

Netravali and Limb [3] have postulated that the DC coefficients should have Rayleigh

pdf's since they are composed of the sums of positive values, and that the AC

coefficients should have Gaussian pdf's due to the Central Limit theorem.

Conversely, Clarke [10] theorizes that the DC coefficients are best modelled by

Uniform pdf's, and the low order AC coefficients have Gaussian pdf's while the high

order AC coefficients are Laplacian. Azadegan [8], and Reininger and Gibson [65]

have documented tests that indicate that the DC coefficients are best approximated by

a Gaussian pdf while the AC coefficients have Laplacian statistics.



94

As a result of these conflicting conclusions, it is important to estimate the

effect of pdf mismatch on quantizer performance. Mauersberger [64] conducted an

in-depth analysis of quantizers operating over a range of parameter mismatches. He

concluded that the quantizers are relatively robust to variance mismatches, but they

are quite sensitive to pdf errors. His results show that the performance of optimum

quantizers designed for a Gaussian pdf perform poorly when applied to sources having

Laplacian statistics. On the other hand, the performance of optimal Laplacian

quantizers did not deteriorate significantly when used to code a Gaussian source. In

cases where the pdf of the DCT coefficients cannot be accurately determined a priori,

the selection of Laplacian quantizers would therefore be preferred.

To test this hypothesis, a number of 512 X 512 sections of multisensor images

we,'e transformed and the coefficients normalized and then quantized by means of

non-uniform Laplacian and Gaussian optimum quantizers that were designed using

Max's method [4, 10]. No adaptivity to changing statistics were incorporated in these

tests, and an average bit rate of 1 bit per pixel was used in the bit allocation scheme.

The results clearly show that the images processed with the Laplacian quantizers were

of considerably higher visual quality and had very slightly higher PSNR than those

coded with the Gaussian quantizers. For example, the images shown on Figures 20

and 21 show the P' channel data of Figure 12 after compression and reconstruction

using Laplacian and Gaussian non-uniform quantizers at an average rate of 1 bit per

pixel. Since for this test a single bit allocation matrix was used to code the
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Figure 20. Reconstructed P' Imagery Using Laplacian Non-Uniform Quantizers
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Figure 21. Reconstructed P' Imagery Using Gaussian Non-Uniform Quantizers
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entire frame, the portions of the imagery that have sharply different statistics such as

the edges of the circular targets are distorted. However, it can be observed that the

image coded with the Gaussian quantizer has higher levels of edge distortion,

particularly around the two circular objects on the right side of the image. The PSNR

of the image in Figure 20 is 34.30 dB while that of Figure 21 is 34.27 dB. In the

remainder of this study, non-uniform optimum Laplacian quantizers will be used. For

critical image compression application, reasonable estimates of transform coefficients

pdf's can be obtained by the Kolmogorov-Smirnoff (KS) test which is described in

[22] and [65], and its implementation is presented in [27]. A real-time Ompression

scheme that incorporates KS testing to provide quantizer adaptivity would result in a

significant increase in system complexity and computational performance

requirements. From the results presented here and in [64] and [65], the expected

improvements in compression performance are not sufficient to justify the

incorporation of the KS technique.

To summarize the conclusions of this chapter up to this point, we have

identified the parameters that can be made adaptive to changes in the statistics of the

image data source. These include the transform type, the bit allocation strategy, and

the quantizer selection. The results presented in this chapter indicate that adaptation

of the transform and quantizer types does not substantially affect the performance of a

compression scheme for the image sources considered in this study. Therefore, the

scheme developed in the remainder of this chapter will focus on adapting the bit
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allocation strategy to the changes in source statistics.

Adaptivity to Nonstationary Statistics

In the previous chapter, the properties of the imagery in both the spatial and

frequency domains were determined assuming a wide-sense stationary source. In this

section we incorporate techniques that adapt to the fact that real world images have

spatially varying mean and covariance function. A number of techniques have been

proposed to deal with these nonstationarities. The formally correct approach to

characterizing an image is to assume the existence of a very large set of typical test

images and then to examine the sequence of intensity values at a particular location

(fixed over all test images) as a member of the "ensemble" of outputs of the source

which was assumed to generate the test images in the first place [101. While

theoretically correct, this approach is unrealizable since we normally only have a

single realization of an image, not an "ensemble" from which to compute the statistics

of each pixel location.

A more practical and widely used approach is to divide the imagery into small

blocks each of which is assumed to be wide-sense stationary. That is, each block is

treated as a sample function of a stationary process, but there is a different process

for each block. Pearlman [52] devised a scheme where each individual block of

imagery is characterized by a I-D AR model of order ranging from 6 to 16. The

computational expense of calculating AR model parameters for each block makes this

approach unsuited for real-time applications. This is illustrated by Pearlman's
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published results which show that coding of a single 512 x 512, 8 bit image requires

from 16 to 33 minutes of CPU time on a Micro Vax II.

The model-based approach that we have incorporated in this study assumes

that the majority of the 8x8 blocks of pixels in large sections of the multisensor

imagery can be modelled by a single 2-D model. This model is then used to adapt

the bit allocation and coefficient normalization strategies for that particular section of

imagery. In contrast to Pearlman's approach, the fact that a single model is used for

a large number of blocks greatly reduces the implementation complexity as well as the

overhead transmission requirements resulting in a scheme that is suitable for

implementation in real-time systems.

The first level of adaptivity of our compression scheme involves updating the

model parameters to compensate for changes in the image data. The technique

developed in this study consists of loading and buffering square sections of image data

from corresponding portions of each channel. The sections, which can range from

64x64 to 512x512 pixels, are used to calculate the parameters of the covariance model

which in turn are used to develop the bit allocation matrices and the normalization

factors. The sections are then partitioned into small blocks (8 x 8) which are then

transformed and coded. The mean of each small block is assumed to be spatially

varying so that the DC coefficient of the covariance model is ignored, and the mean

of each 8x8 block (which is calculated by proper scaling of the first DCT coefficient)

is coded separately with 8 bits. The model parameters are updated every time a new
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section of image data is loaded, and new coefficient variance estimates, bit allocation

matrices and normalization factors are computed. The result of coding coding the

images previously shown in Chapter 4 are presented in Figures 22 through 25. The

average bit rate for coding was 1 bit per pixel, and the model parameters were

computed on the overall image section (512x512). The original and the reconstructed

images are presented for side-by-side comparison. It is very apparent that while the

scheme is very good for preserving overall fidelity, it is very poor for coding areas

that vary considerably from the average area of the scene. For example, the

multisensor images show considerable coding errors around the round objects and in

the high contrast area near the top center of the imagery that corresponds to a small

bush. The mandril imagery exhibits the greatest coding error around the original low

detail areas of the nose and cheeks. No noticeable improvement was achieved by

coding the multisensor imagery using smaller blocks for the model estimates.

Based on these results, it is obvious that another level of adaptivity is required.

The specific application of the multisensor imagery employed in this study is used as

the basis for the next level of adaptivity. Since the application of this type of high

resolution imagery is to search large areas in order to find very small targets, and the

multisensor is specifically designed to assure an adequate level of contrast (in at least

one channel) when imaging a target of interest, the compression scheme will be made

adaptive to these characteristics. The result of these sensor-specific considerations is

that we can assume that the areas of interest (that is, the targets) will correspond to
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anomalies in the imagery, and these anomalies can be expected to comprise a very

small portion (less than 1 %) of the data collected. The anomalies are characterized

by relatively sharp discontinuities (edges) which can be found in one or more of the

image channels, and therefore can be characterized by a DCT coefficient distribution

that differs considerably from the average of the scene. The variance of the AC DCT

coefficients has been used effectively as a measure of discontinuities (edges) that

occur within given block [23], [63] and will likewise be used in our scheme for

defining the blocks of interest and coding these differently. The fact that the targets

are very small place an upper bound on the number of blocks that must be coded

differently.

The second level of adaptivity, therefore, involves calculating the variance of

the AC coefficients of each block by means of Equation 5.3.

7 7

CVAR= , [(X(u,v) )2 - (X(OO) )2] (5.3)
u=0 v-0

A specified number of blocks having the highest variance are flagged in each channel,

and these are used to calculate the variances of the individual DCT coefficients. The

values of the DCT coefficient variances are then used in the same manner as the

modelled variances to compute bit allocation and normalization factors for coding.

Since these high variance blocks have more detail than the average, they are allocated

higher average bit rates. However, since they comprise a very small percentage of

the total blocks, the fact that rates of up to 4 bits per pixel are allocated for these
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blocks has a small effect on overall rates. The results presented in Chapter 7 show a

marked improvement in the reconstruction of the imagery that contains small targets.

Adaptive Transform Coding Algorithm Description

The algorithm used for compression of the multisensor imagery is shown in

block diagram form in Figure 26, and it consists of the following operations:

1. Read in corresponding sections of P, C, and Thermal Channels ( up to

512x512 pixel sections).

2. Compute mean of P and mean of C over entire section.

3. Calculate mean polarization d (Equation 4.1), rotation angle

(Equation 4.2), and transformation matrix (Equation 4.3).

4. Calculate P' and C' by rotating P and C channels using Equation 4.3.

5. Calculate data variance, and horizontal and vertical correlation coefficients

of the P', C', and Thermal channels for each section.

6. Compute 8x8 covariance matrix for each channel using computed

correlation coefficients in the generalized covariance model (Equation 4.26).

7. Compute bit allocation matrices using Equation 4.26 for the desired

average pixel rate.

8. Compute normalization factors for each channel.

9. Divide each section of image data into 8x8 blocks and perform 2-D DCT

on each block.

10. Determine variance of the AC coefficients in each 8x8 block and select
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those blocks that have variances in the top 1 % in each channel.

11. Calculate variance of each of the AC coefficients in the high variance

blocks, and calculate bit allocation matrix for each channel.

12. Use appropriate normalization and bit allocation matrix to quantize and

code each block of coefficients.

The image decompression scheme for reconstruction at the receiver is

presented in block diagram format in Figure 27. In order to simplify the diagram, the

decompression of the Thermal channel is not shown in Figure 27. However,

decompressic- of the Thermal channel is identical to the decompression of the P' and

C' channels except that it does not require the final channel rotation stage. The

decompression scheme basically consists of reversing the compression steps outlined

above. Overhead information required to calculate the covariance model, bit

allocation matrices, normalization factors, and inverse rotation matrix are indicated by

large arrows. It should be noted that since the rotation matrix [A] (Equation 4.3) is a

unitary matrix, the inverse rotation matrix is easily computed by transposing [A].

The implementation of this adaptive transform coding algorithm is described in the

following chapter, and examples of the markedly improved reconstructed image

quality are presented.
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CHAPTER VI

IMPLEMENTATION AND TESTING

Introduction

In this chapter, the compression scheme developed in Chapter 5 is adapted to a

fine-grained (SIMD) parallel processor. The inherent parallelism involved in

subsectioning each image channel into small blocks and then independently

transforming each block is exploited by appropriate mapping into the local memory of

the array of processors. An efficient and stable implementation of the DCT is used,

and the adaptivity described in the previous chapter is incorporated in the algorithm.

Efficient implementation of the model and the normalization and quantization

strategies are also described. Timing analysis and possible bottlenecks are identified.

The implementation is tested by processing a large number of multisensor images, and

the average bit rates and SNR are calculated.

DCT Implementation

The DCT was first defined in 1974 by Ahmed, Nataharan and Rao [38] who

also proposed an efficient implementation using FFT techniques. Since that time, a

number of improved DCT algorithms have been developed. One of the most efficient

techniques was developed by Hou [49] and it results in a fast, numerically stable

algorithm that requires fewer multiplications and avoids overflow problems caused by

110
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inversion of the cosine coefficients as required by other methods (e.g. Lee's algorithm

[50]). In addition, Hou's technique consists of a recursive algorithm that is efficiently

mapped into a SIMD architecture.

For these reasons Hou's 1-D algorithm was selected, and the required 2-D

transform is obtained by sequentially applying the 1-D algorithm to the rows and

columns of the image data. It should be noted that slightly more efficient techniques

are available such as those that directly compute 2-D DCT's, but these are not easily

extended to large block sizes, and their implementation is considerably more

complicated [51]. An overview of the DCT and Hou's method is presented prior to

describing the implementation method.

The DCT of a 1-D data sequence x(n) , n=0,1,... ,N-1 was defined by Ahmed

et al as

N-I

X(o) = E x(n)
N ,-O (6.1)
2v I os((2n~l) kn)

X(k) = 2 E x(n) cos
N n-0 2N

for k = 1,2... N-1, and X (k) is the k' DCT coefficient.

The inverse DCT is defined as

N-1 (2n+l) kT
x(n) = E X(k) cos (6.2)

k-0

Equation 6.1 can be written in matrix form as
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X 2T(N)x (6.3)
N

where X and x are column vectors composed of the elements of the original and

transformed data sequences arranged in natural order, and T(N) is an N x N matrix

whose elements are the factors of x(n) defined in equation 6.1. Hou chose to neglect

the 2/N factor in the development of the fast algorithm, and it must be inserted at the

end of the computation to preserve the orthonormality of the DCT.

Hou's fast algorithm is based on the fact that, by properly rearranging the X

and x vectors, the transformation matrix can be decomposed recursively until only

simple 2 point DCT's are required. For any size N input vector, the permuted DCT

matrix t(N) can be recursively computed from

2 )  
(6.4)

K t(A)Q -K ~{Q

where

Q = Diag [cos 4,] (6.5)
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where 4,m = (4m + 1) rT for m = 0 ,1, 2 .. _N -1 (6.6)
2N 2

and K = R L R (6.7)

where R is the permutation matrix for performing the bit reversal, and L is a lower

diagonal matrix defined as

1 0 00 0 0"

-12 00 0 . 0

1 -2 2 0 0 0

L -12-220 0 (6.8)

-1 2 -22 -2...2

Equation 6.3 can therefore be rewritten as

= T^(NM (6.9)

In this equation, 9 is obtained by bit reversing the transformed data sequence. To

rearrange the original data sequence x(n) into 1, we first divide the sequence into

even-indexed and odd-indexed samples, then column order it by placing the former

samples in the top half and the latter samples in the bottom half. Next, the samples

in the bottom half (odd-indexed samples) are bit inverted (e.g the sequence x(1), x(3),
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x(5), is reordered as x(5), x(3), x(l) ). After this reordering, the matrix

implementation becomes

1N
Kt(A~ tQ-KT )Q [ -R (6.10)

The block diagram implementation of equation 6.10 is shown in Figure 28.

N /2

Figure 28. Block Diagram of Hou's Algorithm (Decimation-in-Frequency DCT)

From Figure 28, it is apparent that higher order DCT's are calculated from

two identical lower order DCT's, so that any finite data sequence of length 2 ' can be

decomposed to a number of 2 point DCT's. In this study we employ 8 x 8 point 2-D

DCT's that are implemented by sequential application of 8-point 1-D DCT's. The

implementation of Hou's algorithm that was used in this study is as shown in Figure



29, where (a) is the top level (8-point DCT), and (b) and (c) are recursively lower

levels.

21(0 *~X, - X(4)

21(2. -' X to

x (0) -*x to)

x (a) IA *1

X(3)*x x'

x ~~ --------

C(C)

a X2

Xl T(2

0 A"

~t I . 1 1,1 W

Figure 29. Recursive Computation of DCT for N = 8

In Figure 29, the constants a, ft, k, X9 A, v, and -y, are derived from equations

6.5 and 6.6 by applying the appropriate m.

For efficient implementation in a massively parallel processor that has limited

interprocessor connectivity, it is required that the image data be mapped so that all of

the pix~els in an 8 x 8 block are assigned to the same processing element PE, and all
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PE's can then execute the same instruction simultaneously. This is accomplished by

remapping the incoming image data into a crinkled format where the three channels of

image data are sub-sectioned into 8x8 blocks, and each block is stored in column

major order in the local memory of one of the 4096 available PE's. This can be done

very rapidly by means of parallel data transforms (PDT's) to remap the image data

from one format to another [53].

The calculation of an 8x8 DCT on the DAP therefore consists of the following

steps:

(1) Reorder each row (or column) of data

(2) Perform butterfly addition/subtraction

(3) Multiply bottom half by cos(o ,)

(4) Call T(N/2) subroutines for top and bottom halves

(5) Perform bit-reversal reordering of the bottom half

(6) Perform multiplication by 2 (shift) and subtraction for bottom half

(7) Perform bit-reversal reordering for the bottom half

(8) Repeat steps (1) through (7) for each column of transformed data

The actual FORTRAN Plus code used to implement this DCT algorithm is

listed in Appendix B.

Adaptivity Implementation

The adaptivity described in the previous chapter consists of periodically

updating the model parameters and of selecting a percentage of the high activity
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blocks. The goal of both of these data-dependent operations is to assign the

appropriate number of bits and normalization factors to the significant transform

coefficients of each 8x8 block. This section describes the tradeoffs that were involved

in implementing the adaptivity portions of the compression algorithm on a massively

parallel processor.

The model parameter update operation was implemented by dividing each

frame of imagery into square sections and mapping each section of imagery in

crinkled format (all the pixels in each 8x8 block are assigned to the same PE). The

algorithm operations are then performed simultaneously over all the PE's and the

process is looped as many times as required to complete the frame. For example, if

the model parameters are recomputed for every 64x64 pixel section of imagery, then

the algorithm must be looped 64 times in order to process each 512x512 section of

imagery. In addition, only 64 of the 4096 processors available are utilized. This

looping technique was found to be very slow, with processing times of approximately

1 minute required for the compression/reconstruction operation. Fortunately, there

were no advantages to updating the model parameters at this fast rate. Excellent

results were obtained at bit rates as low as .55 bits per pixel when the model

parameters were updated only once for each 512x512 pixel section. Execution times

were substantially improved by processing these large sections simultaneously, since

all 4096 PE's were then utilized, and the times to compress/reconstruct each 512x512

section of imagery were reduced to under I second.
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The second part of the adaptive scheme, the identification and separate coding

of the high activity blocks was implemented using a scheme that did not reduce the

parallelism exploited in the model parameter updating operation. The technique used

involved creating a logical matrix that corresponds to the address of each of the 4096

8x8 blocks in one section of image data. The AC coefficient variances of all the

blocks are computed simultaneously by application of Equation 5.3, and the algorithm

searches through each of the 4096 variance values for the maximum. Once a

maximum is found, the logical mask is set to false at the corresponding address

location, and the process is repeated until the preset number of high variance blocks

are selected. The logical mask is then used to block the model-based coding

computations for those PE's that contain the high variance blocks. In effect, all of

the low variance blocks are coded simultaneously using the modelled variances, and

then all of the high variance blocks are coded simultaneously using the actual DCT

coefficient variances. The code for this technique is contained in the FORTRAN-Plus

subroutine "adapt" which is listed in Appendix B.

Another important part of the compression scheme is the coefficient

quantization section. In this study, unity variance, optimum non uniform Laplacian

and Gaussian quantizers were utilized. A number of tests in which actual imagery

data were compressed and reconstructed indicated that the Laplacian quantizers

resulted in higher PSNR. Each of these quantizers were implemented using two

lookup tables. One lookup table (named "bound" in the program listing) is used to
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define the decision levels for a given number of coding bits, and a second table

("cval") defines the assignment values. Each normalized AC coefficient is assigned a

particular location in the decision table based on the number of bits allocated and the

range of levels that bracket its value. The coefficient's assigned location then defines

the assigned value that is found in the "cval" matrix. The program listing in

Appendix B shows the decision and assignment values that correspond to the

Laplacian quantizers having 2 to 32 quantization levels (1 to 5 bit quantizers). It

should be noted that the bit allocation method (Equation 4.26) is limited to a

maximum of 5 bits for any AC coefficient (in order to keep the lookup tables small).

Any coefficient which requires more than 5 bits by application of Equation 4.26, is

therefore only allocated 5 bits.

To illustrate the high quality of the reconstructed imagery using the adaptive

compression algorithm, the multisensor images previously shown in Figures 12, 13,

and 14 were compressed at an average rate of 0.8 bits per pixel with the number of

high-variance blocks fixed at 64. The final channel rotation was not performed in

order to compare results with those obtained in the previous chapter. The results

presented in Figures 30, 31 and 32 for the P', C', and Thermal channels show that

even extremely small details such as the dark centers of the round objects in the

Thermal image are preserved. Comparison with the results obtained by coding with

the partially adaptive algorithm (Figures 22, 23 and 24) illustrate the decided

advantage of adapting the scheme to changes in block variances. Even at the lower
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bit rate, the images shown here do not exhibit any of the blocking artifacts observed

earlier. Additional examples of results obtained from application of the adaptive

algorithm are presented in Chapter 7. Also included in that chapter is an evaluation

of the rate distortion performance and of the effects on automatic target cueing

algorithms.

Fi

Figure 30. P' Channel Image Coded at 0.8 Bits Per Pixel



121

Figure 31. C' Image Coded at 0.8 Bits Per Pixel
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Figure 32. Thermal Image Coded at 0.8 Bits Per Pixel



CHAPTE.r, VH

ANALYSIS OF RESULTS

Introduction

In this chapter, a number of compressed and reconstructed images are

presented and analyzed to determine the rate versus distortion performance of the

adaptive compression scheme. The utility of the imagery is evaluated by processing

the original and the reconstructed multisensor imagery with automatic target cueing

algorithms that rely on shape and edge contrast fidelity, as well as grey level value,

for object detection. In addition, examples of original and reconstructed images that

contain very small man-made objects in background clutter are presented in order to

qualitatively evaluate the effects of compression/reconstruction, and also to estimate

the usefulness of the imagery in applications that require human photo-interpretation.

Rate-Distortion Performance

The rate distortion function of an adaptive transform coding scheme is very

difficult to define mathematically even for those cases where simple image models and

distortion metrics are used [8]. Analytical expressions for rate distortion functions

that do not account for adaptivity are not very useful in this study, because our

scheme is designed to maintain high fidelity of only a small percentage of important

blocks while allowing the background blocks to be coded less accurately. This

123
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characteristic of the adaptive scheme would be neglected by rate-distortion functions

that estimate average, non-adaptive performance. The approach that is implemented

here is to select a number of representative images, compress and reconstruct them

over a range of average bit rates, and then compute the PSNR for each bit rate

considered. In addition, sections of the original and reconstructed images are visually

inspected for artifacts that may affect the performance of automatic target cueing

algorithms. The bit rates considered range from 0.2 to 1.5 bits per pixel.

Performance improvements at higher bit rates cannot be evaluated because the

compression scheme, as presently implemented, allows a maximum of 5 bits for any

single AC coefficient. It is unlikely, however, that an adaptive transform coding

scheme would be considered for applications allowing such high bit rates. Simpler

non-adaptive transform and predictive schemes can satisfactorily operate at rates

greater than 1.5 bits per pixel.

The rate distortion performance of the scheme using a fixed number (64) of

allowable high variance blocks is as shown in Figures 33, 34 and 35 for the P, C and

Thermal channels respectively. Sections of original and reconstructed imagery at two

different average bit rates are presented in Figures 36 through 44.

The bit rates used in these results were calculated by means of the actual

number of bits in the two bit allocation matrices used for each channel. One matrix,

called bit all in the source code, corresponds to the bit assignment calculated from the

model, and the second matrix, bitall2, is determined from the actual coefficient
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variances of the 64 high AC variance blocks. The average bit rate for each 512x512

section of imagery is given by

bitrate = (4096-64) • [bit all+(64) * [ [bitall2j (7.1)

512 * 512

The three rate distortion curves presented here show that the scheme's PSNR

decreases significantly below 0.4 bits per pixel, and the improvement with increased

bit rate tapers off after approximately 1.0 bits per pixels. Inspection of the

reconstructed imagery also indicates that significant blocking artifacts become visible

when operating below 0.60 bits per pixel. Thus, without modifications (such as

entropy coding of the output data), this scheme should be considered for applications

requiring average bit rates of approximately 0.8 bits per pixel.

40

25 .& .. .... .- a . L L .1

0 02 0.4 0.6 0.8 1 12 1.4

Average Bit Rate - bits/pixel

Figure 33. Rate Distortion Performance for P Channel Data
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Figure 34. Rate Distortion Performance for C Channel Data
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Figure 35. Rate Distortion Performance for Thermal Channel Data
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Figure 36. Original P Channel Imagery
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Figure 37. Original C Channel Imagery
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Figure 38. Original Thermal Channel Imagery
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Figure 39. P Channel Imagery Compressed at 0.55 Bits Per Pixel
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Figure 40. C Channel Imagery Compressed at 0.55 Bits Per Pixel
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Figure 41. Thermal Channel Imagery Compressed at 0.55 Bits Per Pixel
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Figure 42. P Channel Imagery Compressed at 0.80 Bits Per Pixel
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Figure 43. C Channel Imagery Compressed at 0.80 Bits Per Pixel
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Figure 44. Thermal Channel Imagery Compressed at 0.80 Bits Per Pixel
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Utility of Reconstructed Imagery

The image shown in Figure 45 consists of three rows of man-made targets

placed in a tall grass background. An automatic target cueing algorithm [17] similar

to that shown in Figure 3 was applied to the three image channels, and the results are

displayed as red boxes overlaid on one of the image channels. All of the 14 boxes

correspond to actual targets, with no false alarms or missed targets. The three

channels were then compressed and the results processed with the same algorithm (no

changed thresholds or filter settings). The bit rates were lowered equally for all

channels until either false alarms or missed targets were observed. It was found that

the target detection algorithm is quite robust, since imagery that had considerable

blockiness in one or more channels was still perfectly cued. This is due to the fact

that the adaptive coding preserves the sharp edges even at low overall rates. A false

alarm was finally observed when the bit rate was lowered to 0.5 bits per pixel (Figure

46). It should be noted, however, that the C' channel bit rates could be reduced to

below 0.3 without affecting the target cueing performance. This is due to the fact

that the image rotation (Equation 4.3) transfers most of the variance of the C channel

into the P' data thereby leaving the C' channel with very low level of detail. The

number of high variance blocks could also be reduced to as low as 12 with no

measurable increase in distortion of the C' data.

A second set of tests were performed to determine the ability to visually detect

very small targets in the reconstructed imagery. In this case, the targets had
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signatures ranging from one to five pixels. Figure 47 shows two such targets that

consist of lx4 pixels each. Figure 48 shows that the small targets are still very

visible after compression at 0.8 bits per pixel.

In summary, it can be concluded that the multisensor image considered in this

study can be rapidly compressed by the adaptive transform coding algorithm

developed in Chapter 5, and the reconstructed imagery can be used for automatic and

manual target detection applications over a range of very low bit rates.

FI

Figure 45. Target Cueing Performance - Original Imagery
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Figure 46. Target Cueing Performance - Image Coded at 0.50 Bits Per Pixel
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Figure 47. Small Targets in Background Clutter - Original Thermal Imagery
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Figure 48. Small Targets in Background Clutter - Thermal Imagery at 0.80 Bits Per

Pixel



CHAPTER VIJI

CONCLUSIONS AND RECOMMENDATIONS

Results

This study has presented the development and testing of a DCT-based

multisensor image compression scheme that adapts to changing source statistics and is

suitable for real-time applications. After describing the imaging system used to

collect the imagery for this study, a detailed analysis of three channels of image data

was conducted. An efficient and robust method of removing a major portion of the

correlation between the laser channels (P and C) by means of an approximation to a

principal components rotation was developed. The spectral and spatial domain

statistics of the two rotated laser channels and the Thermal-IR channel were

computed. These statistics were then used to develop a generalized covariance model

under wide-sense stationarity assumption. The model was used to determine the

efficiency of various transforms, and to develop the bit allocation strategy and the

coefficient normalization and quantization scheme. The nonstationary nature of the

imagery was considered, and a method of updating the model parameters and

classifying the blocks that have high information content was developed. The

resulting scheme was implemented in a massively parallel processor using fast

algorithms. The compression scheme was tested using a number of images from a

141
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very large multisensor image database, and its performance characteristics were

defined. The goal of developing an efficient scheme that compresses the imagery

while maintaining adequate performance of target cueing algorithms was

demonstrated.

A summary of the major contributions of this study is as follows:

1. Developed a methodology for the design and implementation of adaptive

compression schemes for multisensor image data.

2. Adopted and verified a mathematical model for the multisensor source, and

applied it to the development and implementation of an adaptive image compression

algorithm.

3. Developed and tested a transform based image compression technique

suitable for real-time applications.

4. Developed a technique for removing multiplicative noise from laser

imagery.

5. Developed a novel technique for rapidly removing interchannel

correlations.

6. Demonstrated that multisensor image data can be substantially compressed

without affecting the performance of automatic target cueing algorithms.

7. Demonstrated that multisensor image data can be substantially compressed

without degrading photo-interpretation capabilities.
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Future Work

During the course of the research for this dissertation, a number of areas

requiring further work were identified. Some topics were considered outside of the

scope of this study, but they will need to be fully explored before a truly optimal

multisensor image compression scheme can be designed. Some of the topics which

were not considered in detail include:

1. The optimality of the generalized covariance model should be investigated

further. In particular, the fixed model parameters derived by Mauersberger [54]

should be optimized using actual multisensor image data, and the effect of varying the

update rate of the adaptive parameters of the model should be fully investigated.

2. The scheme for classifying the high information (high AC variance) blocks

should be made more adaptive to changes in source statistics. For example, rather

than establishing the number of high variance blocks a priori, a scheme that

determines when the block variances approach the model variances should be

considered.

3. The effect of varying the transform block size was not considered. It is

very likely that larger block sizes can provide higher compression ratios for the same

allowable distortion. However, the tradeoffs between higher compression

performance and resolution of very small targets need to be considered before going

to larger blocks.

"4. Recently developed transforms such as the wavelet transform should be
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considered.

5. Since the proposed scheme generates variable length codes, buffering will

be required if a constant rate transmission channel is used. The buffer fill state

should be considered as a method of adjusting the adaptivity of the compression

scheme for improved performance.

6. The effects of channel errors on the compression scheme should be

investigated. It is expected, since this scheme relies on transform coding of small

blocks which limits the extent of distortions caused by channel errors, that only a

small portion of the overhead information needs to be transmitted with error

correcting codes. The effects of errors in the received values of the model parameters

and the rotation angle on image reconstruction should be investigated.

A number of techniques are readily available for improving the scheme

presented in this work. These techniques are relatively uncomplicated to implement,

and should be included in any high performance DCT-based adaptive compression.

These improvements include:

1. Replacement of the indirect 2-D DCT implementation (applying 1-D

algorithm twice) with a more computationally efficient, direct 2-D DCT

algorithm [51].

2. Implement the DCT using integer arithmetic rather than the floating point

implementation used in this study. However, the effect of reduced dynamic range and

possible truncation and overflow problems must be evaluated.
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3. Increase the execution efficiency by coding the algorithms in assembly

language rather than using relatively inefficient high level languages such as

FORTRAN - Plus.

4. Make the scheme adaptive to changes in sensor resolution (a function of

altitude and groundspeed).

5. Arithmetic coding of the quantized transform coefficients and some of the

overhead data such as the variance matrices and the model parameters should be

incorporated in order to increase the compression ratios.



APPENDIX A

REMOVAL OF COHERENT LASER POWER VARIATIONS

Introduction

The purpose of this appendix is to describe the operations performed on the P

and C laser channels in order to correct image distortions caused by instabilities of the

laser source. It is assumed that future operational laser imaging systems will be

capable of preventing or eliminating these distortions prior to the image compression

stage. For this reason, noise removal processing was not included as part of the

image compression system requirements. Coherent laser noise removal techniques are

included here as separate pre-processing steps needed in order to ensure that the

models and algorithms in this study are developed using imagery with the highest

signal-to-noise ratio possible.

Removal of Coherent Laser Noise

Figures 49,50, and 51 show 512 by 512 pixel sections of imagery from the

thermal, P, and C channels respectively of a scene composed of a camouflaged truck

in a desert environment. The high frequency noise that is very visible in the active (P

and C) channels, but absent from the passive thermal-IR channel has been attributed

to instabilities in the output of the laser source induced by mechanical vibrations in

the helicopter platform. A laser power monitor circuit was added in an attempt to

pre-process the active imagery prior to digitization. This effort was unsuccessful, and

146
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Figure 49. Unprocessed Thermal Infrared Channel Imagery
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Figure 50. Unprocessed P Channel Imagery
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Figure 51. Unprocessed C Channel Imagery
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post-processing of the digital data using the digitized laser power monitor data is

presently required to clean the active imagery. Figure 52 shows the digitized laser

power variations from the power monitor circuit.

Two dimensional power spectra plots of these images are shown in Figures 53,

54, 55, and 56, which correspond to the thermal, P, C, and laser power channels

respectively. The horizontal and vertical frequency axes have been normalized by the

sampling frequencies (1.05 MHz horizontal and 350 Hz vertical). Comparison of

these plots show a high degree of similarity between the active channels and the laser

power. In addition, from a data compression perspective, comparison of the power

spectra of the active channels with the thermal channel indicate that the laser power

noise significantly increases the bandwidth of the image data and therefore decreases

the compressibility of the data. It should be pointed out that spatial domain analysis

of this data also shows that the vertical correlation coefficients (A) of the P and C

image data are considerably lowered by the laser noise.

In these spectra plots, the variations in laser power, being almost pure

sinusoids of fixed horizontal spatial frequency, appear as impulses on the horizontal

axis. Since the onsets of the power fluctuations are random, the phase of the

observed image oscillations is also random, and therefore the impulses tend to form

noise stripes parallel to the vertical axis [5]. Initially it would appear to be a simple



151

Figure 52. Laser Power Monitor Channel
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Figure 53. Two Dimensional Power Spectrum of Figure 49
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Figure 54. Two Dimensional Power Spectrum of Figure 50
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Figure 55. Two Dimensional Power Spectrum of Figure 51
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Figure 56. Two Dimensional Power Spectrum of Figure 52
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problem to remove these noise spikes by using the techniques described by Moik [5].

These techniques, however, are not applicable in this case because here we are

dealing with multiplicative rather than additive noise. In addition, the noise frequency

components fall within a band that contains a significant amount of image

information.

In a standard restoration problem where the image data has been corrupted by

additive noise, one technique that has proven successful involves isolating the noise,

creating a noise-only image, and subtracting it from the original degraded image.

The gains and offsets of the two images are iteratively (or interactively) adjusted in

order to reduce the noise component on the original image to zero. In the present

case where we are dealing with multiplicative noise, the goal is to adjust the noise

image so that the noise component in the original image is reduced to a factor of one.

In order to define the operations required to achieve this goal, a close analysis of a

large number of images was performed. Figures 57, 58, and 59 show single line

plots of corresponding lines of P, C, and laser power image data. These plots consist

of the intensity values of one 710 pixel wide line which transects the truck shown in

the previous imagery. The truck image data corresponds to the sharply lower

intensity values located between pixels number 200 and 300. The laser power

variations are predominant near the beginning and the end of the scan line.

Expanded plots of a noisy section of image data together with the

corresponding laser data are shown in Figures 60 and 61. From these plots it can be
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determined that scale factors, offsets, and phase adjustments of the laser power data

are required to remove the multiplicative noise from the image channels. Figure 62

shows the magnitude of the one dimensional FFT of the noisy section of P channel

data from Figure 60. The laser power contribution appears as a sharp peak that was

used to estimate the phase correction and scale factor to be applied to the laser power

data. The image correction operations required to remove the coherent laser power

variations are shown in the flowchart of Figure 63.

-Iffs-Calee

_P

pha.. hoirect.

Im g a nt d Ima~g O

- D FPTr 
& magnitude

Phacu=e 0 '

Figure 63. Flowchar't of Image Correction Operations

In this processing scheme, the laser power data is transformed line by line

using a one dimensional FF1 that outputs the complex-valued results in polar format

(magnitude and phase). The non-zero frequency component having the largest

magnitude is found, and the magnitude, phase, and frequency (f) are determined.

The frequency f.o is used to select the corresponding component in the image channel.
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The corresponding magnitudes and phases at f. are used to scale and shift the laser

power data. It should be noted that the phase shifts required ranged from 0 to 45

degrees so that there are no phase unwrapping requirements in this application. The

D.C. level of the laser power channel is also changed by an offset computed from

global averages of the image and laser power data. The original image channel data

are then divided pixel-by-pixel by the corrected laser power data. The results are

then re-scaled by the global mean of the original image data.

Figure 64 shows the results of these operations ou a single line of noisy data

from the P channel. Figure 65 shows the results on the 512 by 512 pixel image data

from Figure 50. It can be observed that the high frequency laser noise has been

significantly attenuated. Processing of the active channel imagery by this technique

resulted in an average 25 dB attenuation of the laser power noise.
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Figure 65. Processed P Channel Imagery



APPENDIX B

IMAGE PROCESSING ALGORITHM SOURCE CODE

Introduction

This appendix includes the source code of the program used to implement the

multichannel adaptive transform coding scheme developed in this study. The

algorithm is coded in FORTRAN-Plus which is an extension of FORTRAN-XX that

facilitates parallel operations. A complete description of the language is included in

[58]. It should be noted that the objective of this study is to develop and test

techniques that are broadly applicable to compression of imagery generated by

multisensor systems; therefore, no attempt has been made to optimize the software

implementation of a scheme used for the specific imagery used in this study.

FORTRAN Plus Source Code

entry subroutine start

c This subroutine contains the main DAP program that performs all of the
c model calculations, compression and decompression, and display operations

#include compress.h

integer*1 obuf(,,sxx)
integer*4 obufi(8192)
real vcor(3), hcor(3), var(3), covar(8,8,3), cvar(8,8,3),btrate
integer bit all(8,8,3), norm(8,8,3)
character filein(32)
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character fileout(32)
character* 1 keyboard(32) /'/dev/tty I/
character mess(32,8)/'Enter p filename

& 'Enter c filename
& 'Enter thermal filename
& 'Enter rotated p filename
& 'Enter rotated c filename
& 'Enter decompressed p filename :
& 'Enter decompressed c filename :
& 'Enter decompressed t filename: V
equivalence (obuf, obufl)

#pdt MAP sh2 = (a: 8...6^12 2...O0A0 1r:5 ...O0A2i1c:5 ... OA1)
#pdt MAP in = (a:5 ... 0A2 ir:8 ... 3A11 c:2 ... 0A12 2...O0^0)

c Initialize display

call startgraphics(0,disp,ierr)
call set lut (1,ierr)
do 5 i=1, sx

do5 j =1, sy
disp(,,j,i) = 0

5 continue
call put-frame (ierr)

c Open terminal for reading and writing

call amt5_open (keyboard, 'r, ifd, ifail)
call amt5 open (keyboard, 'W. ofd, ifail)

c Read input files and display

do 50 k=1, 3

c Open input file

call write-char (mess(1,k), 32)
call read-Char (filein)
call amt5_open (filein, Yr, ifd2, ierror)

c Read image and convert format
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do 201i= 1, syy
call amt5_-read (ifd2, obufi, 32768, numsent, ifail)

#pdt REMAP FROM =in, TO =sh2, DATA obuf, LENGTH 1
do 10 j =1, sxx

im(,,i,j,k) = obuf(,j)
10 continue
20 continue

c Zoom image and display

do 30 i =1, sxx
do 30 j =1, syy

disp(,,j+4,i+4) =im(,,j,i,k)
30 continue

call zoom
call put -frame (ierr)

50 continue

c Rotate P and C images into P' and C' and display

call rotpc (m,1,),im(,, 1,1, 2),pol, theta)
do 70 k=1, 2

do 60 i =1, sxx
do 60 j =1, syy

disp(,,j+4,i+4) = im(,,j,i,k)
60 continue
c Zoom image 2x to fill 1024x1024 display

call zoom
call put -frame (ieff)

70 continue

c Calculate data variances for each 5 12x5 12 section of imagery

call variance (im(,, 1,1,1), var(l))
call variance (im(,, 1, 1,2), var(2))
call variance (im(,,1, 1,3), var(3))

c Calculate the vertical and horizontal correlation coefficients



167

call autoc- Comrrll) vcor(l), hcor(1))
call auto- Corr (im(,,1,l,2), vcor(2), hcor(2))
call auto-Corr (im(,,1,1,3), vcor(3), hcor(3))

c Calculate the data covariances using the generalized covariance model

call covariance (var(1), vcor(l), hcor(1), covar(1,l,l))
call covariance, (var(2), vcor(2), hcor(2), covar( 1,1,2))
call covariance (var(3), vcor(3), hcor(3), covar(1,l,3))

c Estimate the DCT coefficient variances using the model and the W matrix

call coef var (covar(1,1,1), cvar(1,l,1))
call coef- var (covar(1,1,2), cvar(l,1,2))
call coef var (covar(1,1,3), cvar(l,1,3))

c Select the desired average bit rate and
c generate the bit allocation matrix and
c the normalization factors for each channel

btrate = .25
call bit -alloc. (cvar(l,1,1), bit-all(1,l,l), norm(l,1,1), btrate)
btrate = .25
call bit -alloc (cvar(1,1,2), bit-all(l,1,2), norm(l,l,2), btrate)
btrate = .25
call bit alloc: (cvar(1,1,3), bit-all(1,1,3), norm(1,1,3), btrate)

c Compress/decompress and display result

do 100 k=1, 3
do 80 i=l1, sxx

do 80 j =1, syy
disp(,,j+4,i+4) = im(,,j,i,k)

80 continue
call zoom
call put-frame (ierr)
pause 400
call det (im(,, 1,1,k),bit-all(l, l,k),norm(l,1l,k),cvar(l,lI,k))
do 90 i=l1, sxx

do 90 j=l1, syy
disp(,,j +4,i+4) = im(,,j,i,k)

90 continue
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call zoom
call put-frame (ierr)
pause 500

100 continue
c Perform inverse rotation to recover P and C channels

call revrot(im(,, 1,1,1),im(,, 1,1,2),pol,theta)
do 102 k=1,3
do 101 i=1,sxx

do 101 j=l,syy
disp(,,j+4,i+4) = im(,,j,i,k)

101 continue
call zoom
call put frame (ierr)
pause 501

102 continue
c Write decompressed images to disk

do 120 k=1, 3

c Open output file

call writechar (mess(1,k+5), 32)
call read-char (fileout)
call amt5_open (fileout, 'w', ofd2, ierror)

c Convert format and write image

do 110 i=1, syy
do 105 j = 1, sxx

obuf(,,j) = im(,,ij,k)
105 continue
#pdt REMAP FROM=sh2, TO=in, DATA=obuf, LENGTH= 1

call amt5_write (ofd2, obufi, 32768, numsent, ifail)
110 continue
120 continue

call amt5 close (ifd2, ifail)
return
end
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subroutine dct (imI, bitall, norm, cvar)

c This subroutine implements an 8x8 2-D DCT using Hou's
c recursive method. It also performs the quantization of
c the coefficients by means of optimal non-uniform
c Laplacian quantizers.

#include compress.h

integer*1 iml(,,syy,sxx)
integer bit all(8,8), norm(8,8), bitall2(8,8)
real cvar(8,8)
integer*2 itemp(,)
logical 11(,), mask2(,)
real dctblk(,)
real temp(,)

c
c The following matrix defines the decision levels of an optimum non-uniform
c Laplacian quantizer with number of bits allocated ranging from 1 to 5
c

real bound(33,4)/-9999.0,-1.127,0.0,1.127,9999.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,
& -9999.0,-2.380,-1 .253,-.533,0.0,.533,
& 1.253, 2.380,9999.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& -9999.0,-3.725,-2.597,-1.878,-1.345,-.92,
& -.577,-.264,0.0,.264,.577,.92,1.345,1.878,
& 2.597,3.725,9999.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& -9999.0,-5.13,-4.0,-3.28,-2.75,-2.32,-1.97,
& -1.67,-1.4,-1.17,- .0,-.76,-.59,-.43,-.27,-. 13,
& 0.0,. 13,.27,.42,.59,.76,1.0,1.17,1.4,1.67,
& 1.97,2.32,2.75,3.28,4.0,5.13,9999.0/

c

c The following matrix defines the assigment values of an optimum non-uniform
c Laplacian quantizer with number of bits allocated ranging from 1 to 5
c
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real cval(32,4)/-1.834,-.42,.42,1.834,0.0,0.O,0.0,0.0,O.O,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& -3.087,-1.673,-.833,-.233,.233,.833,1.673,
& 3.087,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& 0.0,0.0,-4.432,-3.017,-2. 178,-1.578,-1.111 ,-.729,
& -.405,-.124,.124,.405,.729,1.111,1.578,
& 2. 178,3.017,4.432,0.0,0.0,0.0,0.0,
& 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
& -5.83,-4.42,-3.58,-2.98,-2.51 ,-2. 13,-i1.81,-i1.53,
& -1. 28,-1.06,-.86,-.67,-.5,-.35,-.2,-.06,.06,.2,
& .35,.5,.67,.86, 1.06,1.28,1.53,1.81,2.13,2.5 1,
& 2.98,3.58,4.42,5.83/

integer*2 qdct(, ,syy,sxx)

do 10 i=1, sxx
do 10 j =1, syy
dctbuf(,,j,i) = iml(,,j,i)
dctbuf(dctbuf(, ,j ,i). lt.0,j ,i) =dctbuf(, ,j ,i) + 256

10 continue
call sheet-crink (dctbuf, 32, syy, sxx)
do 20 i =1, sxx

call dct8(dctbuf(,, 1,i))
20 continue

do 22 i=1,sxx
do 22ji=1l,syy

if(, .eq. 1) then
dctbuf(,,j,i) = dctbuf(,,j,i) * .353553

else
dctbuf(,,j,i) = dctbuf(,,j,i) * .5

endif
22 continue
#pdt MAP coim =(a:2 ...OA1 2 ... 0A2 4 ... 0'0 ,r: 8... 3^21c:8 ... 3^1)
#pdt MAP rowm =(a:0 ... 2A2 2 ... 0A14 4... 0^0 1r:8 ... 3'2 1c: 8... 3'1)
#pdt REMAP FROM =colm, TO =rowm, DATA =dctbuf, LENGT~H I

do 25 i =1, sxx
call dct8(dctbuf(,, 1 ,i))

25 continue

do 26 i =l,sxx
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do 26 j = ,syy
ifj .eq. 1) then

dctbuf(,,j,i) = dctbuf(,,j,i) * .353553
else

dctbuf(,,j,i) = dctbuf(,,j,i) * .
endif

26 continue
#pdt REMAP FROM =colm, TO =rowm, DATA = dctbuf, LENGTH 1

pause 3250
dctblk =0

do 27 i=1, sxx
do 27 j =1, syy

if (i. eq. 1 .and. j .eq . 1) goto 27
dctblk = dctblk + (dctbuf(, ,j ,i)* dctbuf(, ,j ,i))

27 continue
call adapt(dctblk, mask2)
btrate = 4
call bit alloc(dctvar, bitall2, norm, btrate)
do 30 1=1, sxx

do 300 j =1, syy
if (i. eq. I.and. j. eq. 1) then

qdct(,,j,i) = dctbuf(,,j,i) /8.0 + .5
dctbuf(,,j,i) = qdct(,,j,i) *8

go to 300
endif
sd =sqrt(cvaroj,i))

sd2 =sqrt(dctvaroj,i))

temp(.not. mask2) = dctbuf(,,j,i) /sd
temp(mask2) = dctbuf(, ,j ,i) / sd2
nb = bit-alj,i)
nb2 = bitall2(j,i)
if (nb .gt. 5) nb = 5
if (nb2 .gt. 5) nb2 = 5
if(nb .eq. 0) then

qdct(.not. mask2,j,i) = 0
dctbuf(.not. mask2,j,i) = 0.0

else if(nb .eq. 1) then
qdct(.not. mask2j,i) = 0
qdct((temp.gt.0).and.(.flot. mask2),j ,i) I
dctbuf(. not. mask2,j,i) = -0.707*sd
dctbuf((temp. gt.0). and. (. not. mask2),j,i) = 0.707*sd
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else
do 290 k=1, 2**nb

11 =(.not. mask2) .and. (temp. gt. bound(k, nb- 1)) .and.
& (temp.lIt.bound(k+ 1,nb-1))

qdct(11,j,i) = k-i
dctbuf(11,j,i) =cval(k,nb-l)*sd

290 continue
endif
if(nb2 .eq. 0) then

qdct(mask2,j,i) =0

dctbuf(mask2,j,i) = 0.0
else if(nb2 .eq. 1) then

qdct(mask2,j,i) = 0
qdct((temp. gt. 0). and. (mask2) ,j, i) = I
dctbuf(mask2,j,i) = -0.707*sd2
dctbuf((temp. gt. 0). and. (mask2),j , i) =0.707 *sd2

else
do 295 k=1, 2**nb2

11 =(mask2) .and. (temp. gt. bound(k, nb2- 1)) .and.
& (temp.lIt.bound(k+ 1,nb2-1))

qdct(i1,j,i) =k-i
dctbuf(1 ,j ,i) = cval(k,nb2- 1) *sd2

295 continue
endif

300 continue
pause 120

#pdt REMAP FROM=rowm, TO=colm, DATA=dctbuf, LENGTH= 1
do 28 i =l,sxx

do 28 j =l,syy
ifj .eq. 1) then

dctbuf(,,j,i) = dctbuf(,,j,i) * 2.828427
else

dctbuf(,,j,i) = dctbuf(,,j,i) * 2.0
endif

28 continue

do 30 i =1, sxx
call idct8(dctbuf(,, 1,i))

30 continue
#pdt REMAP FROM = rowm, TO =colm, DATA = dctbuf, LENGTH= I
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do 32 i =1,sxx
do 32 j =1,syy

ifj .eq. 1) then
dctbuf(,,j,i) = dctbuf(,,j,i) * 2.828427

else
dctbuf(,,j,i) = dctbuf(,,j,i) * 2.0

endif
32 continue

do 35 i =1, sxx
call idct8(dctbuf(,, 1 ,i))

35 continue
call crink -sheet (dctbuf, 32, syy, sxx)
do 40 i =1, sxx

do 4Oj =1, syy
itemp = dctbuf(,,j,i)
itemp(itemp .gt. 255) = 255
itemp(itemp At. 0) = 0
itemp(itemp .gt. 127) = itemp - 256
iml(,j,i) = itemp

40 continue

return
end

subroutine dct8 (raw)

real raw(,,), t(,,)

t(,, 1) = raw(,, 1) + raw(,,)
t(,,2) = raw(,,3) + raw(,,6)
t(,, 3) = raw(,,5) + raw(,,4)
t(,,4) = raw(,,7) + raw(,,2)
call dct4 (t)
t(,,5) = (raw(,,l1) - raw(,,)) *cos(0. 19635)
t(,,6) = (raw(,,3) - raw(,,6)) *cos(0.98l

75)
t(,,7) =(raw(,,5) - raw(,,4)) *cos(l.

767 l5)
t(,, 8) =(raw(,,7) - raw(,,2)) *cos(2.552

54 )
call dct4(t(,,5))
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t(,,7) =2*t(,,7) - t(,,5)
t(,,6) =2*t(,,6) - t(,,7)
t(,,) =2*t(,,8) - t(,,6)
do 10 i=1, 8

raw(,,i) = t(,,i)
10 continue

return
end

subroutine dct4 (raw)

real raw(,,4), t(,,4)

t(,,1) = raw(,1) + raw(,,3)
t(,,2) = raw(,,2) + raw(,,4)
call dct2 (t)
t(,,3) =(raw(,,1) - raw(,,3)) *cos(O.39270)

t(,,4) =(raw(,,2) - raw(,,4)) *cos(l.96350)

call dct2 (t(,,3))
t(,,4) = 2*t(,,4) - t(,,3)
do 10 i= 1,4

raw(,,i) = t(,,i)
10 continue

return
end

subroutine dct2 (raw)

real raw(,,2), t(,,2)

t(,,1) = raw(,,l) + raw(,,2)
t(,,2) = (raw(,,l) - raw(,,2)) *cos(0.78540)

raw(,,l) =t(,,l)

raw(,,2) =t(,,2)
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return

end

subroutine idct8 (raw)

real raw(,,), t(,,)

t(,, 1) = raw(,, 1)
t(,,2) = raw(,,2)
t(,,3) = raw(,,3)
t(,,4) = raw(,,4)
call idct4 (t)
t(,,5) = raw(,,5)
t(,,6) = (raw(,,7) + raw(,,6)) /2.0
t(,,7) = (raw(,,5) + raw(,,7)) I2.0
t(,,) = (raw(,,6) + raw(,,))/ 2.0
call idct4(t(,,5))
t(,,5) = t(,,5) / cos(0. 19635)
t(,, 6) = t(,,6) I cos(0.98175)
t(,, 7) = t(.,7) / cos(1.76715)
t(,, 8) =t(.J8) / cos(2.55254)
raw(,,) = (t(,,1) + t(,,5)) /2.0
raw(,,3) = (t(,,2) + t(,,6)) /2.0
raw(,,5) = (t(,,3) + t(,,7)) / 2.0
raw(,,7) = (t(,,4) + t(,,)) / 2.0
raw(,,) = (raw(,,1) - t(,,5))
raw(,,6) = (raw(,,3) - t(,,6))
raw(,,4) = (raw(,,5) - %(,7))
raw(,,2) = (raw(,,7) - t(,,))

return
end

subroutine idct4 (raw)

real raw(,,4), t(,,4)
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t(,)=raw(,,l1)
t(,,2) =raw(,,2)

call idct2 (t)
t(,,3) = raw(,,3)
t(,,4) = (raw(,,3) + raw(,,4)) I2.0
call idct2 (t(, 3))
t(,,3) = t(,,) / cos(0.39270)
t(,,4) = t(,,4) / cos(1.96350)
t(,, 1) = (t(,, 1) + t(,, 3)) /2. 0
t(,,2) =(t(,,2) + t(,,4)) /2.0

do 10 i =1,4
raw(,,i) = t(,,i)

10 continue

return
end

subroutine idct2 (raw)

real raw(,,2), t(,,2)

t(,,1) =raw(,,l)

t(,,2) =raw(,,2) / cos(0.78540)

t(,,2) = t(,,1I) + t(,,2)) .

raw(,,2) =t(,,2)

return
end

subroutine read-char (char)

#include compress. h
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character*1 char(32)

call amt5_read (ifd, cbuf, 128, numsent, ifail)
call convhsl (cbuf, 128)

if (numsent .gt. 33) numsent =33

do 10 i= 1, numsent - 1
char(i) = cbuf(i)

10 continue

do 20 i=numsent, 32
char(i)-

20 continue

return
end

subroutine write-char (char, numchar)

#include compress. h

character char( 128)

do 10 i =1, numchar
cbuf(i) = char(i)

10 continue
call convshl (cbuf, 128)
call amt5 write (ofd, cbuf, numchar, numsent, ierr)

return
end

subroutine zoom

#include compress. h
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ix =sxf4

iy sy/4
nx =sx/2

ny =sy/2

do 10 i =1, nx
do 10 j =1, ny

disp(,,j,i) = disp(,,j+iy,i+ix)
10 continue

do 20 i=1, nx
do 20j=1, fly

disp(,,j+ny,i) = disp(,,j,i)
disp(,,j,i+nx) = disp(,,j,i)
disp(, ,j +ny,i +nx) = disp(, ,j ,i)

20 continue

#pdt MAP sheet = (a:9 ...6^19 9... 6A2 2 ... 0^0 r:5 ... 02i1c:5 ... 0^1)
#pdt MAP yshuff = (a:9 ...6018 8... 5A2 2 ... 0^0 1r:4 ...0^2 9^2 1c:5 ...O0^1)
#pdt REMAP FROM=sheet, TO=yshuff, DATA =disp, LENGTH=1
#pdt MAP xshuff = (a:8 ... 5A19 9... 6A2 2 ... 0'0 1r: 5 ...0A2 1,c:4 ... O'l9^1)
#pdt REMAP FROM =sheet, TO =xshuff, DATA =disp, LENGTHI-I

return
end

subroutine rotpc (p, c,pol,theta)

#include compress. h

integer*1 p(, ,syy,sxx), c(,,syy,sxx)
real ptemp(,), ctemp(,)
integer*4 itemp(,)

c Convert images to signed values

call unsig two (p, 8, syy, sxx)
call unsig two (c, 8, syy, sxx)
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c Find mean of p and c

meanp =0
meanc = 0
do 10 i=1, sxx

do 10j=1, syy
meanp = meanp + sum(p(,,j,i))
meanc = meanc + sum(c(,,j,i))

10 continue
meanp =meanp /(xx*yy) + 128
meanc = meanc /(xx*yy) + 128

c Calculate rotation angle

pol = float(meanp-meanc) / float(meanp+meanc)
theta = atan((1.0-pol)/(1.O+pol))

c Transform images

costh =cos(theta)

sinth =sin(theta)

do 20 i= 1, sxx
do 20 = 1, syy

ptemp = length(,p(,,J,i),2) + 128
ctemp =length(c(,,j,i),2) + 128
itemp =ptemp*costh + ctemp*sinth + .5

itemp(itemp.gt.255) = 255
p(,,j,i) =itemp - 128
itemp =ctemp*costh - ptemp*sinth + .5

itemp(itemp.gt. 127) = 127
itemp(itemp Ilt. -128) = -128
c(,,j,i) = itemp

20 continue

c Convert images back to unsigned values

call two -unsig (p, 8, syy, sxx)

call two-unsig (c, 8, syy, sxx)

return
end
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subroutine revrot (p1, ci ,pol,theta)

#include compress. h

integer*1 pl(,,syy,sxx), cl(,,syy,sxx)
real ptemp(,), ctemp(,)
integer*4 itemp(,)

c Convert images to signed values

call unsig two (p1, 8, syy, sxx)
call unsig two (ci, 8, syy, sxx)

c Reverse transform PT and C' images

costh = cos(theta)
sinth = sin(theta)
do 20 i =1, sxx

do 20 j =1, syy
ptemp =length(p1(,,j,i),2) + 128
ctemp =length(cl(,,j,i),2)

itemp =ptemp*costh - ctemp*sinth + .5
itemp(itemp.gt.255) = 255

itemp(itemp.1t.0) = 0
pl(,,j,i) = itemp - 128
itemp = ctemp*costh + ptemp*sinth + .5

itemp(itemp.gt.255) = 255
cl(,,j,i) = itemp -128

20 continue

c Convert images back to unsigned values

call two -unsig (p1, 8, syy, sxx)
call two-unsig (ci, 8, syy, sxx)

return
end
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subroutine auto-corr (im 1, vcor, hcor)

#include compress.h

integer*1 iml(,,syy,sxx), im2(, ,syy,sxx)
integer*4 itemp(,), itempl1(,), rsum00, csumO0
integer*4 rsum 10, csum 10, itemp2(,)
real hcorl0, vcorl0

c Convert image to signed values in crinkled format

call unsig two (imi, 8, syy, sxx)
call sheet crink (imi, 8, syy, sxx)

c Find mean

mean = 0
do 10 i=1, sxx

do 10j=1, syy
mean = mean + sum(iml(,,j,i))

10 continue
mean = mean / (xx*yy)

c Calculate horizontal correlation

call shift image,_east..p (imi, 8, syy, sxx, im2, 1)
rsum0 = 0
rsuml = 0
do 20 i =1, sxx

itemp =iml(,,1,i) - mean
itempi im2(,,1,i) - mean
itemp2 =itemp * itemp
rsum0 rsum0 + sumc(itemp2)
itemp2 =itemp * itempi
rsuml =rsuml. + sumc(itemp2)

20 continue
hcorl = float(rsuml) / float(rsum0)
hcor = sum(hcorl) / 64.0

c Calculate vertical correlation
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call shift -image northjp (imi, 8, syy, sxx, im2, 1)
csum0 = 0
cSUM I 0
do 40 i =1, syy

itemp =iml(,,i,1) - mean
itempi, = im2(,,i,l) - mean
itemp2 = itemp * itemp
csum0 csum0 + sumr(itemp2)
itemp2 =itemp * itempi
csuml =csuml. + sumr(itemp2)

40 continue
vcorl = float(csuml) / float(csumO)
vcor = sum(vcorl) / 64.0

c Convert image back to unsigned values in sheet format

call two unsig (imi, 8, syy, sxx)
call crink-sheet (imi, 8, syy, sxx)

return
end

subroutine variance (imi, var)

#include compress. h

integer*1 iml(, ,syy,sxx)

call unsig two (iml, 8, 8, 8)
itot = 0
do 10 i =1, sxx

do 10 j =1, syy
itot = itot + sum(iml(,,j,i))

10 continue
xmean = float(itot) / 262144.0

Xtot =0.0
do 20 i =1, sxx

do 20 j= syy
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xtot = xtot + sum((iml(,,j,i)-xmean)**2)
20 continue

var = xtot/262144.0
call two unsig (iml, 8, 8, 8)

return
end

subroutine covariance (var, vcor, hcor, covar)

#include compress.h

real covar(8,8)

alpha = -log(hcor)
beta = -log(vcor)
do 10 i=1, 8

do 10j=1, 8
templ= ((alpha*(i-1)**1.137)**1.4142135)
temp2 = -((tempi+((beta*(-1)**1.09)**1.4142135))**.707106 8 )
covar(j,i) = var * exp(temp2)

10 continue

return
end

subroutine coef.var (covar, cvar)

real covar(8,8), cvar(8,8)
real dctmat(8,8)/1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
& 1.749,1.367,0.987,0.419,-0.250,-0.919,-1.487,-1 .867,
& 1.499,0.598,-0.353,-1.252,-1.500,-0.869,0.353,1.522,
& 1.250,-0.125,-I. 133,-1.051,0.250,1.258,0.633,-1.081,
& 1.000,-0.653,-1.000,0.270,1.000,-0.270,-1.000,0.653,
& 0.750,-0.890,-0.280,0.796,-0.250,-0.589,0.780,-0.316,
& 0.500,-0.815,0.353,0.162,-0.500,0.544,-0.353,0.108,
& 0.250,-0.480,0.426,-0.345,0.250,-0.154,0.073,-0.019/
real d(,), dt(,), cv(,), temp(,)
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external real matrix function F0lGMM

d =0.0

dt -0.0

cv =0.0

temp = 0.0
do 10 i=l, 8

do 10j=1, 8
dt(ij) = dctmatoj,i)
dj) = dctmatoj,i)
cvj) = covaroj,i)

10 continue

temp =F01iGMM (d, cv, 8, 8, 8, ifail)
cv = FOlGMM (temp, dt, 8, 8, 8, ifail)

do 20 i=1, 8
do 20 j =1, 8

cvaroj,i) = cvj)
20 continue

return
end

subroutine bit-alc (cvar, bit-all, norm, btrate)

real btrate
real cvar(8,8)
integer bit-all(8,8), norm(8,8)
real*8 vprod

vprod = 1.0
do 10 i=l1, 8

do 10j=1, 8
vprod = vprod * (cvaroj,i)**0.25)

10 continue
vprod = vprod**(1.0/16.0)

do 20 i=l1, 8
do 20 j =1,8
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temp = log(cvaroj,i)/vprod) / log(2.O)
bit alloj,i) = btrate + 0.5 * temp + 0.5
if (bit -alloj,i) Ilt. 0) bit-alloj,i) =0

20 continue
vmax = 0.0
do 30 i=1, 8

do 30j=1, 8
if (bit -alloj,i) .gt. 1) go to 30
if(cvaroj,i) .gt. vmax) vmax = cvaroj,i)

30 continue
maxsd = sqrt(vmax)

do 40 i=1, 8
do 40 j=1, 8

if (bit alloj,i) .eq. 0) then
normoj,i) = 0

else
c normoj,i) = maxsd * 2**(bit-a1(,i)-1)

normoj,i) = maxsd * bit alloj,i)
endif

40 continue
bit = l~,1 8
norm(1, 1) =8

return
end

subroutine adapt(dctblk, mask2)
#include compress. h

real dctblk(,)
logical mask2(,)
logical maskl(,)
real temp(,)
mask2 = .true.
do 13 i =1, 64

maski maxp(dctblk, mask2)
mask2 =mask2 .and. (.not. maski)

13 continue
mask2 = not. mask2

do 35 i=l1, sxx
do 35 j =1, syy
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temp = dctbuf(,,j,i)
temp(.not. mask2) = 0
dctvaroj,i) = sum (temp*temp)/64.O

35 continue
return
end



REFERENCES

[1] Davisson, L. D. and Gray, R. M., Data Compression, Dowden, Hutchinson
and Ross, Pennsylvania, 1976.

[2] Jain, A. K., "Image Data Compression: A Review", Proceedings of the
IEEE, vol. 69, No. 3, March 1981.

[3] Netravali, A. N. and Limb, J. 0., "Picture Coding: A Review", Proceedings
of the IEEE, vol. 68, No. 3, March 1980.

[4] Jayant, N. S. and Noll, P., Digital Coding of Waveforras - Principles and
Applications to Speech and Video, Prentice Hall, New Jersey, 1984.

[5] Moik, J. G., Digital Processing of Remotely Sensed Images, NASA SP-431,
Washington, 1980.

[6] Moorhead, R. J. and Rajala, S. A., "A Survey of Video Teleleconferencing
Algorithms", North Carolina State University Report CCSP-WP-84/11,
March 1984.

[7] Ng, S. B. and Schiff, L., "Two-Tier DPCM for Video Conferencing", IEEE
Transactions on Communications, vol. 37, No. 4, April 1989.

[8] Azadegan, F., "Rate-Distortion Performance of Image Compression
Schemes", Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, New
York, December 1988.

[9] Rabbani, M. and Jones, P. W., Digital Image Compression Techniques, vol.
'/, SPIE Optical Engineering Press, Washington, 1991.

[10] Clarke, R. J., Transform Coding of Images, Academic Press, London, 1985.

[11] Jain A. K., Fundamentals of Digital Image Processing, Prentice Hall,
Englewood Cliff, New Jersey, 1989.

[12] Gonzalez, R. C. and Wintz, P., Digital Image Processing, Addison
Wesley, Massachusetts, 1988.

187



188

(13] Hall, E. L., Computer Image Processing and Recognition, Academic Press,
New York, New York, 1979.

[14] Cress, D. H. and Smith, P. A., "Airborne Active / Passive Scanner For
Surface Minefield Detection (U)", Proceedings of the IRIS Specialty Group
on Active Systems, Naval Postgraduate School, Monterey, Calif., November
1985.

[15] Cespedes, E. R. and Cress, D. H., " Analysis of Passive Imaging Concepts
For Remote Minefield Detection Applications (U)", Proceedings of the 1986
Army Science Conference, US Military Academy, Westpoint, N. Y.

[16] Cress, D. H., Cespedes, E. R., and Ginsberg, I. W., "Active/ Passive
Airborne Scanner: Development And Processing For Standoff Surface
Minefield Detection (U)", Proceedings of the IRIS Specialty Group On Active
Systems, Orlando, Fla., October 1987.

[17] Cespedes, E. R., Goodson, R. A. and Ginsberg, I. W., "Multisensor Image
Processing Techniques For Real-Time Standoff Minefield Detection",
Proceedings of the First National Sensor Fusion Symposium, Orlando, Fla.,
April 1988.

[18] Hansen, G. M., Cress, D. H., Smith, P. A., More, K. A., and Stanich, C.
G., "Development of a Multisensor Airborne Scanner For Remote Minefield
Detection," Proceedings of the First National Sensor Fusion Symposium,
Orlando, Fla., April 1988.

[19] Goodson, R. A., Cress, D. H., and Cespedes, E. R. "Application of Expert
System Concepts To Remote Detection of Surface Minefields (U)", Technical
Report EL-89-3, US Army Engineer Waterways Experiment Station,
Vicksburg, Miss., May 1989.

[20] Candy, J.V., Signal Processing: The Model-Based Approach, McGraw-Hill,
New York, New York, 1986.

[21] Rogne, T. J., Smith, F. G., and Rice, J. E., "Passive Target Detection
Using Polarized Components of Infrared Signatures", OptiMetrics Inc.
Report, 1990.

[22] Press, W. H. and Teukolsky, S. A., "Kolmogorov-Smirnov Test for Two-
Dimensional Data", Computers in Physics, August 1988.



189

[23] Rose, K., Heiman, A., and Dinstein, I., "DCT/DST Alternate Transform
Image Coding", IEEE Transactions on Communications, vol. 38, No. 1,
January 1990.

(24] Rost, M. C., "Data Compression Using Adaptive Transform Coding", Ph.D.
Dissertation, University of Nebraska, Lincoln, Nebraska, 1988.

[25] Jain, A. K., "A Fast Karhunen-Loeve Transform for a Class of Random
Processes", IEEE Transactions on Communications, September 1976.

[26] Chen, W., Smith, C. H., and Fralick, S. C. "A Fast Computational
Algorithm for the Discrete Cosine Transform", IEEE Transactions on
Communications, vol. COM-25, No. 9, September 1977

[27] Press, W. H., et al, Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press, Cambridge, Massachusetts, 1988.

[28] Hunt, B. R. "Nonstationary Image Models (And Their Application to Image
Data Compression)", Image Modeling, Academic Press, New York, 1981.

[29] Shannon, C. E., "Coding Theorems for a Discrete Source with a Fidelity
Criterion", IRE National Convention Record, 1959

[30] Berger, T., Rate Distortion Theory, Prentice Hall, Englewood Cliffs, New
Jersey, 1971

[31] Gray, R. M., Source Coding Theory, Kluwer Academic Publishers,
Massachusetts, 1990

[32] Witten, I. H., Neal, R. M., and Cleary, J. G., "Arithmetic Coding for Data
Compression", Communications of the ACM, vol. 30, No. 6, June 1987.

[33] Moffatt, A., "Linear Time Adaptive Coding", IEEE Transactions on
Information Theory, vol. 36, No. 2, March 1990.

[34] Langdon, C. G., "An Introduction to Arithmetic Coding", IBM Journal Res.
Dev. vol 28, No. 2, March 1984.

[35] Sayood, K., and Schekal, S. M, "Use of ARMA Predictors in the
Differential Encoding of Images", IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 36, No. 11, November 1988.



190

[36] Reeve, H. C., and Lim, J. S., "Reduction of Blocking Effects in Image
Coding", Optical Engineering, vol. 23, Jan 1984.

[37] Dinstein, I., Rose, K., and Heiman, A., "Variable Block-Size Transform
Image Coder", IEEE Transactions on Communications, vol. 38, No. 11.
November 1990.

[38] Ahmed, N., Natarajan, T., And Rao, K. R., "Discrete Cosine Transform",
IEEE Transactions on Computers, January 1974.

[39] Hinman, B. L., Bernstein, J. G., and Staelin, D. H., "Short Space Fourier
Transform Image Processing", Proceedings of ICASSP 84, San Diego,
California, 1984.

[40] Malvar, H. S. and Staelin, D. H., "The LOT: Transform Coding Without
Blocking Effects", IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, No.4, April, 1989.

[41) Nasrabadi, N. M. and King, R. A., "Image Coding Using Vector
Quantization: A Review", IEEE Transactions on Communications, COM-36,
1988.

[42] Knotts, M. E. and O'Donnell, K. A., "Anomalous Light Scattering from a
Perturbed Grating", Optics Letters, vol.15, No. 24, December 1990.

[43] Mendez, E. R. and O'Donnell, K. A., "Observation of Depolarization and
Backscattering Enhancement in Light Scattering from Gaussian Random
Surfaces", Optics Communications, vol. 61, No. 2, January 1987.

[44] O'Donnell, K. A. and Mendez, E. R., "Experimental Study of Scattering
from Characterized Random Surfaces", Journal of the Optical Society of
America, vol. 4, No. 7, July 1987.

[45] Wolff, L. B., "Classification of Material Surfaces from the Polarization of
Specular Highlights", Proceedings of the Conference on Optics, Illumination,
and Image Sensing for Machine Vision 2, SPIE, Cambridge, Massachusetts,
1988.

[46] Leader, C. J., "Analysis and Prediction of Laser Scattering from Rough-
Surface Materials", Journal of the Optical Society of America, vol. 69,



191

No. 4, April 1979.

[47] Pattanayak, D. N., and Wolf, E., "General Form and a New Interpretation
of the Ewald-Oseen Extinction Theorem", Optics Communications, No. 6,
1972.

[48] Ballard, J., Miles, B.H., Castellane, R.M., and Cress, D.H., "Reflectance
and Polarization Study Conducted During Standoff Detection Technical
Demonstration Fort Hunter Liggett, California". Technical Report EL-91-,
U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS,
March 1991.

[49] Hou, H.S., "A Fast Recursive Algorithm for Computing the Discrete Cosine
Transform," IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-35, 1987

[50] Lee, B.G., "A New Algorithm to Compute the Discrete Cosine Transform,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol 32,
December 1984..

[51] Wu, H.R., and Paoloni, F.J., "A Two-Dimensional Fast Cosine Transform
Algorithm", IEEE Transactions on Signal Processing. Vol. 39, No. 2, 1991.

[52] Pearlman, W.A., "Adaptive Cosine Transform Image Coding with Constant
Block Distortion", IEEE Transactions on Communications, vol. 38, No. 5,
May 1990.

[53] "Parallel Data Transforms", Active Memory Technology Corporation
Technical Publication man022.02, November 1988.

[54] Mauersberger, W., "Generalised Correlation Model for Designing
2-Dimensional Image Coders", Electronics Letters, vol 15, No. 20,
May 1990.

[55] Akansu, A.N., and Haddad, R.A., "Factorization of the Coefficient Variance
Matrix in Orthogonal Transforms", IEEE Transactions on Signal Processing,
vol. 39, No. 3, March 1991.

[56) Rioul, 0., and Vetterli, M., "Wavelets and Signal Processing", IEEE Signal
Processing Magazine, October 1991.



192

[57] Mallat, S., "A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, No. 7, July 1989.

[58] "FORTRAN-PLUS Enhanced", Active Memory Technology Corporation
Technical Publication manl02.01, October 1990.

[59] Natarajan, T.R., and Ahmed, N., "Performance Evaluation of Transform
Coding Using a Nonseparable Covariance Model", IEEE Transactions on
Communications, vol. 26, 1978.

[60] Powell, M. J., "An Efficient Method for Finding the Minimum of a Function
of Several Variables Without Calculating Derivatives", Computer Journal,
vol. 7, 1964.

[611 Haddad, R.A., and Akansu, A.N., "On Asymmetrical Performance of the
Discrete Cosine Transform", IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 38, January 1990

[62] Segall, A., "Bit Alocation and Encoding for Vector Sources", IEEE
Transactions on Information Theory, vol. 22, No. 2, March 1976.

[63] Chen, W.H., and Smith, C.H., "Adaptive Coding of Monochrome and Color
Images", IEEE Transactions on Communications, vol. 25, No. 11,
November 1977.

[64] Mauersberger, W., "Experimental Results on the Performance of
Mismatched Quantizers", IEEE Transactions on Information Theory, vol. 25,
No. 4, July 1979.

[651 Reininger, R.C., and Gibson, J. D., "Distributions of the Two-Dimensional
DCT Coefficients for Images", IEEE Transactions on Communications,
vol. 31, No. 6, June 1983.

[66] Pratt, W.K., Digital Image Processing, Wiley-Interscience, New York, New
York, 1978.

[67] Schaming, W.B., and Bessette, O.E., "Empirical Determination of
Processing Parameters for a Real Time Two-Dimensional Discrete Cosine
Transform Coding (2D-DCT) Video Bandwidth Compression System",
Advances in Image Transmission II, SPIE vol. 249, 1980.


