
AD-A248 370

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC 7GA'"

ELECTE
1 APR071992

s D THESIS

MODELLING, VISIBILITY TESTING AND PROJECTION
OF AN ORTHOGONAL THREE DIMENSIONAL WORLD
IN SUPPORT OF A SINGLE CAMERA VISION SYSTEM

by

James Earl Stein

March 1992

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

92-088949 2 4 0 6 15 5 I[[|

, iNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

' NAME OFgE*FORMWG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONCmputer cince Dept. (if applicable) Naval Postgraduate SchoolNaval Postgraduate School CS

Ge. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

MODELLING, VISIBILITY TESTING AND PROJECTION OF AN ORTHOGONAL THREE DIMENSIONAL
WORLD IN SUIPPORT OF A SINGLE CAMERA VISION SYSTEM (U)
YV0O3LDJN SUPPRT OF A SINGLE CAMERA VISION SYSTEM2. PERSONAL AUTHOR(S)S~tem, James ar

a. TYP E OE.REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) I. PAGE COUNT

aster s esis FROM 01/90 TO03/92 March 1992 180
I. SUPPLEMENTARY NOTATIOr1he views expressed in this thesis are those ot the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Three Dimensional Modelling, Visibility Testing, Perspective Projection

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Proper interpretation of the environment is essential for mission planning and navigation of an autonomous mobile

robot. An on board vision system may provide the most useful raw data. This work develops part of a vision system
for the Naval Postgraduate School's mobile robot, Yamabico- 11. Accurately modeling the robot's environment is im-
perative to support position verification and path planning. The decision to use an extended two dimensional model,
an orthogonal wire-frame representation, is discussed. Additionally, to support pattern matching, a package of graph-
ic routines, utilizing traditional algorithms and an innovative sweep algorithm (to determine line segment visibility),
has been developed. This work demonstrates that an asymmetric model is appropriate to represent a three dimensional
environment in support of vision interpretation for mobile robots.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION[B UNCLASSIFIED/UNLIMITED ["] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
ra NAME OF RESPONSIBLE INDIVIDUAL M. TELEPHONE (incude Area Code) 22c E SYMBOL

r. utaka Kanayama (408) 646-2095 a

DD FORM 1473, e4 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

MODELLING, VISIBILITY TESTING AND PROJECTION OF
AN ORTHOGONAL THREE DIMENSIONAL WORLD

IN SUPPORT OF A SINGLE CAMERA VISION SYSTEM

by
James Earl Stein
Lieutenant, USN

B.S. of Computer Science, Pennsylvania State University, 1985

Submitted in partial fulfilment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: 2'h 7
James Earl Stein

Approved By: 'UuptyiQ is d - 4 -
utaka Kanayama , Thesis Ad if

Robert B. Mcghee, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Proper interpretation of the environment is essential for mission planning and

navigation of an autonomous mobile robot. An on board vision system may provide the

most useful raw data. This work develops part of a vision system for the Naval

Postgraduate School's mobile robot, Yamabico-11. Accurately modeling the robot's

environment is imperative to support position verification and path planning. The

decision to use an extended two dimensional model, an orthogonal wire-frame

representation, is discussed. Additionally, to support pattern matching, a package of

graphic routines, utilizing traditional algorithms and an innovative sweep algorithm (to

determine line segment visibility), has been developed. This work demonstrates that an

asymmetric model is appropriate to represent a three dimensional environment in support

of vision interpretation for mobile robots.

Accesion For

NTIS CRA&I
DT:C IAB r-
Uzamr;ou;,ced
Justification

By
Di~t ibijtion

AVditabiiity Codes

Avail and / or
Dist Spacial

37,

I. INTRODUCTION 1
A. BACKGROUND 1
B. CURRENT STATE OF YAMABICO 1
C. DESIRED VISION SYSTEM 2
D. PROBLEM STATEMENT 2
E. FOCUS OF WORK 4
F. RESEARCH METHODOLOGY 4
G. THESIS ORGANIZATION 5

II. LITERATURE REVIEW 7
A. RESEARCH APPROACH 7
B. GENERAL REVIEW 7
C. CONCLUSIONS 9

III. THE MODEL 12
A. REQUIRED USES 12
B. SURFACE MODEL 12
C. TAILORING TO THE APPLICATION 13
D. THE 2D+D MODEL 14

1. The Interface 19
2. Two Dimensional Path Planning 20

E. SUPPORT FUNCTIONS 20
1. Overview 20
2. Model Construction 21

IV. VISIBILITY CHECKING ALGORITHM 24
A. PURPOSE 24
B. 2D SWEEP ALGORITHM 24
C. 3D SWEEP ALGORITHM 29
D. PROBLEMS WITH THE 3D SWEEP ALGORITHM 34

V. STANDARD GRAPHIC SUPPORT 39
A. OVERVIEW OF OUR APPLICATION NEEDS 39
B. GENERAL PERSPECTIVE PROJECTION 40

1. Define the View Volume 40
2. Select a 2D Window 42
3. Determine the Normalizing Transformation 42
4. Apply the Normalizing Transformation to All Lines 45
5. Clip Normalized Lines Against Canonical View Volume 45
6. Perform Perpective Projection 46
7. Scale Window Coordinates to Device Coordinates 47

C. PERSPCTIVE PROJECTIVE FOR OUR APPLICATION 47
1. Define the View Volume 47
2. Select a 2D Window 47
3. Determine the Normalizing Transformation 48
4. Apply the Normalizing Transformation to All Lines 49
5. Clip Normalized Lines Against Canonical View Volume 49
6. Perform Perspective Projection 49

iv

7. Scale Window Coordinates to Device Coordinates 51
VI. IMPLEMENTATION AND CONCLUSIONS 52

A. MODEL 52
1. Appropriateness of 2D+D Model 52
2. Constraints 52

B. GRAPHICS 53
C. VISIBILITY ALGORITHM 53

1. Time Comparisons of Different Versions 53
a. Simple 2D Sweep 54
b. Partial 3D Sweep 57
c. Full 3D Sweep 57

2. Problems 59
D. IDEAS FOR FUTURE WORK 59

1. Data Separation 59
2. Interactive Interface 61
3. Extend 5th Floor Model 61
4. Complete Visibility Checking 62
5. Update Graphics Support 62
6. Expand Simulator 62
7. C+ + Implementation 62
8. Hardware Implementation 63

VII. USER'S MANUAL 64
A. INTRODUCTION 64
B. BUILDING A MODEL 64

1. Construction File 64
2. Declaration 65
3. Building the Model 67

C. CHECKING VISIBILITY 72
D. GRAPHIC PROJECTION FROM MODEL 73
E. SIMULATOR 74
F. FINDING A POLYHEDRON 76
G. DEALLOCATING MEMORY 77
H. TROUBLESHOOTING 77

VIII. REFERENCES AND BIBLIOGRAPHY 79
A. REFERENCES 79
B. BIBLIOGRAPHY 80

APPENDIX A (SOURCE CODE) 81 (A-I)

INITIAL DISTRIBUTION LIST 173

V

I. INTRODUCTION

A. BACKGROUND

Research to develop accurate sensors for robots continues world wide. Much of this

research is focused on developing robot vision systems. As a sensor, vision is intuitively

desirable since it parallels our own sight and a large amount of passive data resides in

a single image.

Yamabico- 11 is an autonomous, mobile robot which is under continuous development

by students and faculty at the Naval Postgraduate School (NPS), Monterey Ca. The

robot's operating environment is the fifth floor of an academic building, Spanagel Hall.

We are interested in expanding Yamabico's sensor systerr to include visual image

interpretation.

B. CURRENT STATE OF YAMABICO

Yamabico is currently fitted with a set of ultrasonic sonar transducers, which act as

its primary sensors. The sonar array has a limited range of about four meters (imposed

by the hardware) and returns from surfaces which are not perpendicular to the

transmitting transducer can be very poor.

Position within the operating environment is provided at the start of a mission and a

dead-reckoning (DR) system estimates current position by tracking rotation of the two

drive wheels. This estimate remains accurate so long as no wheel slippage occurs.

It is desirable to develop an additional sensor system with a greater range and the

ability to verify the estimated DR position.

C. DESIRED VISION SYSTEM

Yamabico is being developed to operate in a purely manmade, indoor environment.

For ease of implementation, this operating environment is assumed to be orthogonal. In

light of the many limitations that arise from having an active sonar array as the sole

sensor, we wish to add an on board vision system to Yamabico. The assumption of an

orthogonal environment greatly reduces the complexity of designing this system, since

only straight lines need be considered.

The vision system will receive input from a single RGB video camera. The system

will primarily be used to verify the DR estimate of Yamabico's position in the

environment. To meet this need a model of the environment must be maintained on

board. The DR position and course will be used to determine if the image provided by

the camera coincides with what is expected from the model. Discrepancies between the

model and camera views will be used to calculate and correct for any errors which occur

in the DR tracking system. Figure 1.1 illustrates the interrelation of major vision system

components.

D. PROBLEM STATEMENT

Three major components are necessary to implement a vision system, specifically a

model of the environment with supporting functions, image processing facilities and

pattern matching facilities. The thrust of this work will be directed at developing an

appropriate model and it's required support functions. These functions will be needed to

ensure proper storage and retrieval of model data. Another student, Kevin Peterson will

2

system components
designed and

DR implemented by thiswork

POSITION

ESTIMATE

VDEO~L CAE MODEL

awimageOF
5TH FLOOR

IMAGE

SPROCESSINGI set of
". eedges

l. es........... - VISIBILITY

PATTERN TESTING

MATCHING

POSITION

VERIFICATIO1 . EXTRACTIO

s et of lines

expected to be
seen by camera

position

correctio VISION SYSTEM

Figure 1.1
Block diagram of vision system
components and data flow.

3

develop the processing facilities needed to extract straight line features from a camera

image and the pattern matching facilities to match the model view to the camera image.

E. FOCUS OF WORK

The decision of what type of model to use must be considered carefully. The model

should support the current as well as the future functionality of Yamabico. The

representation used should eliminate redundant data storage wherever possible, and still

provide simple real-time recovery of information. Likewise, support routines for model

construction and determining the set of lines comprising a view in the model must be

developed.

With the above items in mind, we are primarily concerned with supporting the vision

system's pattern matching facilities. These will be used to compare a view from the

camera with a view from the model. The DR position estimate and orientation in the

horizontal plane will be used to extract the view, that Yamabico should see, from the

model. Pattern matching between the two views will determine if Yamabico's DR

estimate is correct, and if it is not, should provide the angle and magnitude of error.

F. RESEARCH METHODOLOGY

Prior to developing any algorithms and deciding on a model, review of available

literature pertaining to machine vision was conducted. A vast amount of theoretical and

experimental research is being conducted to develop useful machine vision systems. Some

4

theoretical works are attempting to find a generalized solution, but virtually all projects

are designed to solve a very specific vision problem. Our literature review attempted to

find research wit' ,imilar goals and to analyze their degree of success while gaining

exposure to so' mon approaches and theories.

The next stel o develop a simple surface model of Yamabico's environment.

This hands on expci.. e helped identify needs and problems which had to be addressed

in the final model decision. With these factors in mind and a good idea of what

information was required to support pattern matching and Yamabico's other functions,

a model was chosen. Routines for model construction were completed and data, "'dm

blue prints and physical measurements, was entered concurrent with the coding of

routines for data retrieval.

While work on the model took place, Kevin Peterson designed the image processing

routines needed to extract a set of lines from a camera image. The final position

verification system will use lines extracted from the model and the camera image as input

to determine the error in Yamabico's DR position estimate.

G. THESIS ORGANIZATION

Subsequent chapters will describe the following:

1. findings of the literature review

2. the model decision and design

3. visibility checking of model lines

4. graphic support functions for the model

5

5. implementation, conclusions and ideas for future work

Chapter VII is a user's manual to help the reader and those working on Yamabico

understand the code developed during this research. A complete listing of the final code

can be found in appendix A.

6

H. LITERATURE REVIEW

A. RESEARCH APPROACH

Two major o - ' ' ctives were pursued while conducting the literature survey. The first

was to gain insi, to the history of computer vision. Text books which described the

general goals, i. :tical foundations and traditional approaches to computer vision

were reviewed. ,eneral idea was to gain a sound understanding of vision

fundamentals and exposure to commercial systems currently in use.

The second objective involved reviewing more recent material to gain insight into the

current state of research in the field of computer vision and model representation. We

were specifically looking for projects with similar goals to our own. Identification of

such projects is necessary to avoid duplicating the work of others and can also yield

performance evaluations of methods which may be useful in our own project.

B. GENERAL REVIEW

As stated by [Ref. 1], there are three major phases of computer vision: choosing a

digital image representation, processing the image data and analyzing the processed

results to guide an application. The thrust of our work tends towards the last of these

phases. Modeling the world and extracting views are essential to support interpretation

of the processed camera image.

Since our work will interface with the image processing portions of the Yamabico

vision system, it was valuable to review the feature extraction techniques presented in

[Ref. 2]. Shirai presented traditional feature extraction methods using Hough's transform

7

and region merging. In contrast, [Ref. 3] describes straight line finding which combines

gradient image analysis and Sobel operators to recognize edges which exhibit a sudden

intensity change. [Ref. 4] detailed out the mathematical basis for image understanding,

concentrating on methods of applying statistics, i.e. using error probabilities to determine

the threshold values for decision rules.

Most of the projects reviewed were either targeting a different type of environment

for their vision system or were employing some type of sensor other than the single

camera which we are implementing on Yamabico. In the case of the Carnegie Mellon

Navlab, [Ref. 5], the environment is an outdoor scene with a pronounced road to follow,

while the on board vision system relies heavily on active range sensors. We find many

vision systems which utilize range data from either sonar or laser range finders. The

interpretation of stereo images, as in [Ref. 6] and [Ref 2], appears to be a major research

avenue also.

The representation used for storing information about a system's environment is

greatly influenced by the nature of that environment and is generally tailored to some

degree to support the target applications or sensors. [Ref. 7] uses midpoint representation

for lines which are tracked between successive images with a Kalman filter. A similar

parametric representation is presented in [Ref 8] for the same type of tracking. In [Ref

9] a more complex method of geometric hashing calculates affine transformations of

individual objects for storage and pattern matching.

Once a set of lines has been extracted from the camera image and a model of the

environment has been created, we are interested in extracting a view from that model and

8

using pattern matching to compare the two. [Ref 10] provides all the basic graphic

techniques which are needed to extract a view from a model. It covers the application of

rotation, transl2'O;n and scaling matrix operations on three dimensional objects.

Projection of th Aimensional objects onto a two dimensional plane along with the

associated clippii., gorithms are explained.

C. CONCLUSIONS

Although the scope of this work is only to develop part of Yamabico's vision system,

it is desirable to gain a firm understanding of the entire target system. This is true, to

some extent, when developing any software system. A preconceived notion of the

functional units required by the final system may allow for smoother interface

construction and lends validity to design decisions. Both these factors can minimize

changes late in the software life cycle. Review of the reference material has provided

us with useful background data on the entire vision process, from image digitization to

pattern matching.

Our vision system will incorporate a single camera and matching will need to be done

between the processed image and a view from an orthogonal world. The first stage of

development involves selecting an appropriate model representation for this world. Some

methods for representation of lines are mentioned above. These representations have been

developed to directly support pattern matching. One of these may prove useful for

depicting a view from the model, but they not entirely appropriate for storing the entire

world model. Several papers, i.e. [Ref. 11], [Ref. 12] and [Ref. 13], present innovative

9

vision analysis methods, but neglect to describe the model representation schemes used

to support them. Many papers, not appearing in the bibliography, were also reviewed in

an attempt to inspect different representation methods, but again a significant lack of

reference to underlying models was encountered.

The search for representation methods was not totally futile. Most references which

were books vice papers did present some methods. In [Ref. 2] the uses of generalized

cylinders, B-splines, extended gaussian images (EGI), and geometric models are

introduced. We also find a description of surface models in [Ref. 1], and terrain maps

in [Ref. 5]. Since we are attempting to model a straight line world generalized cylinders,

terrain maps and B-splines are not appropriate. EGI and surface model representations

seem to lend themselves more directly to storage of our world and will be considered in

the model decision.

There is a substantial amount of information available concerning computer vision.

Many basic ideas have been successfully implemented in industrial applications,

apparently proving the value of vision research. Over the last decade or so, researchers

have continued to modify these basic methods in an attempt to improve efficiency and

expand the problem domain. Additionally, many interesting, original techniques have

been developed to solve a variety of specific problem. This vast research effort has

swamped the field with a wide variety of claims and theories regarding these techniques

and their performance potential. Unfortunately, very few authors provide the reader with

proof, either empirical or mathematical, of their claims. Although many forums are

available to disseminate information on new techniques, there is a distressing lack of

10

expert review and analysis of them. This results in a huge body of unsubstantiated work,

each author claiming that a particular method is reasonable but that theirs is better. As

a new researcher, it was particularly daunting to sift through this ever increasing body

of information with no expert guidance from any organization within the field.

Due to the previous comments and differences between our goals and those of the authors

reviewed, it is unlikely that this work will take up where another has left off. Hopefully

the future will see the formation of a review committee of experts, within the field of

computer vision, which can investigate and report on the variety of claims being made.

11

111. THE MODEL

A. REQUIRED USES

The ultimate goal in Yamabico's development is to maintain a single, on board model

of the fifth floor which can be used to support all functions which may need environment

information. This model should also be flexible enough to accommodate the data storage

and retrieval needs of future Yamabico systems. The following requirements were taken

into consideration as items which must be supported by the model:

1. Accurate modelling of the three dimensional (3D) orthogonal world, fifth floor

Spanagel Hall.

2. Obstacle identification for the two dimensional (2D) path planning routines used

to control Yamabico's movements.

3. Position verification and displacement calculations through pattern matching of key

features viewed from an assumed position.

4. Relatively easy to use interface for entry and modification of 3D world structures.

B. SURFACE MODEL

To gain a more thorough understanding of the problems and complexity which could

be encountered in modeling the 5th floor of Spanagel Hall, we first developed a simple

surface model of the world. Although not trivial, the interface program is fairly straight

forward. The user is allowed to enter polyhedral shapes into the world. Each of these

shapes receives tags which specify if the shape is fixed in the model and if it is an

enclosure or an obstacle. Each polyhedron is defined by a list of surface polygons (walls,

12

floor and ceiling). These polygons are listed in arbitrary order and are tagged with a

boolean value labeling them as convex or concave.

During data entry, it became apparent that the interface required expansion to allow

for shape modifications and deletions. It also became evident that the user was wasting

effort when adding similar objects (such as doors) at different locations in the model. The

interface was modified to allow for the necessary deletions and modifications. In the final

version a user is able to store a shape he has created to a disk file and then add copies

of that object into his world model at any point while specifying the degree of rotation

desired about the z axis. Likewise, when the user is done working with the model, they

can store it to a binary file (from which it may later be retrieved).

A high degree of inefficiency is present in the above simple surface model. Many

edges are common to more than one surface polygon. For each of these, the vertices

which define the edge are redundantly stored in each polygon's vertex list. When we

consider that virtually all edges in a three dimensional model are shared between at least

two surfaces and each vertex between three edges, it becomes very evident that a

different representation is needed to help minimize storage requirements (especially for

large, complex models).

C. TAILORING TO THE APPLICATION

In addition to the question of redundancy, we ask ourselves how a representation

might be tailored to our target application. In this case, we are concerned with supporting

the movement of Yamabico- 11. Since this robot is of constant size and for all practical

13

purposes only moves in two dimensions (along a horizontal plane), we can indeed tailor

our thinking somewhat. Yamabico currently solves path planning problems through use

of a two dimensional model and associated algorithms. Although work to perfect path

planning under differing conditions continues, it seems reasonable to assume the basic

approach (which does very well) will change little. Furthermore, the addition of a third

dimension to the problem does not significantly alter it. The only added burden in a 3D

environment is to ensure the projection of all obstacles occurring along the height of

Yamabico into the 2D plane that is being used for path planning. When approached in

this fashion we find a certain asymmetric quality among the three dimensions.

Specifically, since Yamabico travels through the x-y plane we recognize that the

importance of explicit representations in x and y information is greater than that of z

information. This perspective has lead us to discard the symmetric surface model and

move on to an asymmetric 'two dimensional plus' (2D+D) model.

D. THE 2D+D MODEL

Bearing all of the afore mentioned in mind, it is important to remember that the prime

importance of developing a model is to ensure accurate representation of the world.

Information in the representation may be explicit within the chosen data structures, or

it may be implicit. In either case all information must be readily available or

reconstructible.

The 2D+D model will be represented in computer memory by a group of data

structures joined by pointers into linked lists. Basically, the model consists only of

14

horizontal surfaces and vertical edges. With this representation we can support two

dimensional path planning and all edges of an orthogonal world can be reconstructed for

pattern matching and graphic display. Each horizontal surface is represented by a

polygon which is d&-" ;ed by a list of vertices. We maintain the convention used in 2D

path planning, wh . polygons which are obstacle components have vertices listed

counter clockwise while those of enclosures are in clockwise order. The vertical edges

of objects in the model will be represented by pointers between vertices. Linked lists will

be used extensively, and doubly linked list will be implemented where necessary to

enhance performance. The following types of structures are used to describe a three

dimensional world: WORLD, POLYHEDRON, POLYGON, VERTEX and INSTANCE.

The full definitions of these structures can be found in Appendix A (pg A-3) while

Figure 3.1 illustrates the organization of them within memory. One parent WORLD is

used to reference a 2D + D world model. For Yamabico, this will generally be the current

model of the 5th floor of Spanagel Hall. This WORLD will point to a list of objects.

Each object is designated as an obstacle or an enclosure and is represented by a

POLYHEDRON structure. This structure in turn will point to a list of defining horizontal

POLYGONs and a list of INSTANCEs. The list of POLYGONs will be in a local

coordinate system and each INSTANCE will indicate a location in the world where a

copy of that POLYHEDRON resides.

Each horizontal surface will be classified as a floor or a ceiling. Groups of surfaces

which make up a polyhedron will be linked together and sorted by their z values. Floors

will have a list of pointers to associated ceilings which, in the case of an obstacle, bound

15

WORLD

PHI 1 I PG2

PH I 2

Rest of polyhedraI2 4

Figure 3.1
illustration of data structure relationships in the
2d+ model (2nd polyhedron empty)
PH = polyhedron
PG = polygon in horizontal plane
I = instance of polyhedron

16

a solid column above that floor, and in the case of an enclosure bound a column of free

space above the floor. Figure 3.2a illustrates a simple object with one floor and ceiling

while 3.2b shows an obstacle with multiple ceilings.

Vertex x and y information for each POLYGON is found in a doubly linked list of

VERTEX structures. Each vertical edge is represented as a pointer from the VERTEX

of one POLYGON to a VERTEX in a different POLYGON. Since we are representing

an orthogonal world, each vertex of a polygon will be allowed only one vertical outgoing

edge. These vertical edges may be from floor to ceiling, floor to floor, or ceiling to

ceiling. Note that these pointers should only be in the direction of increasing z value to

avoid redundantly storing edge information (in both directions).

As previously mentioned, each POLYHEDRON will also point to a list of

INSTANCEs. An instance will have a label and define where in the world coordinate

system (x,y,z) a copy of that POLYHEDRON resides, what vertex in the object is to act

as the pivot point for rotation about the z axis and the number of degrees the

POLYHEDRON is rotated about the z axis (ROT). Storage of INSTANCES in this

fashion reduces the storage requirements of the model and also readily supports

movement of objects, i.e. opening doors.

17

V4 V3

LIN

V3

V 1 V2

Figure 3.2a

2d+ model
square obstacle representation

CEILING 2

_______ V2

Vi V2

Figure 3.2b

2di- model
complex obstacle representation

18

1. The Interface

This 2D+D model will require significant pointer and storage manipulation, but

each vertex in a world need only be stored at most once (and the z value stored only

once per polygon). We discovered during construction of the original surface model that

an interactive interface must address many areas. In particular the interface must provide

facilities for easy model creation and addition as well as component structure

modifications and deletions. Storage to and reconstitution from disk files was also

necessary to save model information which had been entered.

With the added complexity of the 2D+D model's numerous pointers, it became

apparent that construction of a useful, interactive interface would be very time consuming

and the final product cumbersome to use. For this reason, a simplified interface was

decided upon which still affords users the necessary functionality.

A core of functions for construction of a 2D+D world has been provided in the

tool file, 2d+d.h (see A-3). To create a model, a generation file of declarations and

function calls is made which uses these tools to make the various structures and assigns

them the correct information for the desired world. This generation file (or function) can

then be compiled and run with the resulting world structure sent to whatever routines are

desired (graphic display, path planner, pattern matching, etc.). This method has the dual

advantage of utilizing a text editor for world modifications and negating the need to store

and recover information to binary disk file after use. Functions are provided as tools for

constructing a model, textual display of the world and memory allocation/deallocation.

19

2. Two Dimensional Path Planning

Polygons and instances linked into their parent polyhedron structures will be sorted

by their z value. This will allow easy determination of surfaces that will obstruct

YAMABICO's movements by simply considering all polygons appearing along the height

of the robot (typically 0 to 42 inches) as input to the path planning algorithms (after

proper filtering merges overlapping polygons). Processing to determine the 2D projeztion

of the model will take little time and therefore should readily support future calculations

of path corrections in transit.

Routines for Yamabico's 2D path planning are currently lisp based and assume an

input worid of polygons from a text file. Future versions of these routines will be

implemented in C, and work directly on the two dimensional structures residing in the

2D+D model. Until these modifications are implemented, a process may need to be

written which generates the appropriate text file for input to the current path planner.

E. SUPPORT FUNCTIONS

1. Overview

As mentioned above, there are several functions which must be provided to

adequately implement the model we have decided upon. In general these fall into three

groups: model construction, visibility checking and standard graphic support.

In this chapter we will briefly reviev the set of functions which directly supports

construction of the 2D +D model. These functions reside in the file 2d + d.h and provide

20

the facilities for memory allocation/deallocation, pointer manipulation and data insertion

which are used to build the dynamic memory representation of our model.

Chapter IV will discuss a visibility checking algorithm and the functions in file

visibility.h used to implement it. This algorithm is used to determine which edges in the

model can be seen from a given position (x,y,z). Visibility is computed without regard

to camera orientation and view angle, the standard graphic functions will be relied upon

to filter out edges affected by these factors.

Chapter V describes the graphic functions from the file graphics.c. These are

required to extract a set of lines from the 2D+D model for use in pattern matching. The

generalized forms of these functions can be found in any standard graphics support

library, but we have tailored them to work directly on our model.

2. Model Construction

This section provides a brief, general description of the functions which provide

direct support to the 2D+D model. Our intention is not to provide full directions for the

usage of these function as that will be addressed in the users manual, chapter 6. These

functions fall into five general categories: memory allocation, memory deallocation,

model construction, data display and data location. We will briefly discuss each of these

categories and why they are needed.

Memory allocation routines (A-4) have been written to allow for easy creation of

the objects(C structures) used in the model. These functions each return a pointer to a

structure which has been created using the 'malloc' command from the C language. All

21

components of the structure created are initialized to appropriate values (generally NULL

for pointers, blank spaces for characters and zero for other types).

The functions have been named to reflect the structures they create (i.e. createworld

returns a pointer to a new WORLD structure). These creation routines are used

throughout the files 2d+ d.h and 5th.h for the creation of polyhedron, polygon, vertex,

instance, and world structures used in construction of the 2D+D model.

It is, of course, necessary to provide memory deallocation routines to release

memory, which is no longer needed, back to the control of the resident operating system.

The basic C command 'free' is appropriate for releasing the memory held by individual

structures. Three routines have been written to deallocate the memory used in linked

lists, these are: free.pg, free.ph and free_world (A-6). The first two functions are used

to deallocate lists of polygons and polyhedra respectively. The free world function makes

calls to the other functions and is used to free all of the memory used to store a world.

Six model construction functions (A-9) provide facilities for building the 2D+D

representation of a world. The first four of these functions allow creation and addition

of vertex, polygon, polyhedron and instance structures to a world. Again, these routines

are labeled to match their functionality (i.e. add-vertex, add.pg, add_.ph and

addinstance). Each of these four functions accepts information needed to create the

object being added and the label of the parent structure to which that object will be

added. The parent structure of a vertex is a polygon, of a polygon or an instance is a

polyhedron and of a polyhedron is a world structure. When the above functions are used

to add vertices to a particular polygon, the vertices are linked in the order they are

22

added. Likewise, polyhedrons are added to the world in the order they are created.

However, when polygons and instances are added to a polyhedron they are ordered by

ascending z values. Return values from these functions are pointers to the newly created

(and added) structures.

In the previously discussed functions, facilities for building polygons were

presented. Since all polygons in a 2D+D model are horizontal, it is necessary to provide

methods for assigning the pointers which represent vertical edges. We also need a way

to identify which ceilings polygons top the floors of each object. The remaining two

functions, addedge and addceiling, allow this information to be added to a world via

simple pointer manipulation. Input parameters to add-edge identify two vertices. The

vertical edge pointer from the first of these is set to the address of the second,

representing a vertical edge in the world. Add-ceiling accepts pointers to two polygons

as input, and the first polygon is added to the second polygon's list of ceiling.

The data display functions displaypg and display..ph print the information

associated with polygons and polyhedra to the standard input output (stdio) device. The

displayworld function uses both of these to display a textual listing of an entire world

to the stdio.

The data location category currently contains only one function,find.ph. The input

parameters are a string (array of characters) and a 2D+D world structure pointer. The

string is used to search through the world for a polyhedron with a matching label. Once

it is found the display_.ph function is called to list the various components of that

polyhedron.

23

IV. VISIBILITY CHECKING ALGORITHM

A. PURPOSE

When a view is being extracted from our model, it is desirable for that view to

accurately reflect what a person (or camera) would see if they were to stand at the same

point in the physical world. To satisfy this requirement, we cannot allow objects to be

transparent. Accomplishing this in the 2D+D model is rather tricky, since polygons

representing the walls of objects are not explicitly represented. We first developed a 2D

sweep algorithm which quickly determines the set of visible lines (or edges) in a two

dimensional world. This algorithm was then expanded to determine the visible lines in

a three dimensional space. We will detail out the 2D algorithm and then show the

modifications implemented to produce the 3D version. Although the 2D version is quite

fast and accurate, we will discuss some inherent problems with the 3D version which

limit the output to a close approximation of the set of visible lines. In both cases, the set

of visible lines represents an unrestricted 360 degree field of vision.

B. 2D SWEEP ALGORITHM

We will assume standard polygon representation is being used to store vertices in the

x-y plane. In this representation vertices of a normal (obstacle) polygon will be chained

together in counter clockwise (ccw) order while those of an inverse (enclosure) polygon

will be in clockwise (cw) order. In either case the function prev(V) represents the vertex

which preceded the vertex V in a polygon. Additionally, let the reference point (rp) be

the location of the camera in the plane and the function intersection(E,A) represent the

24

point of intersection of the edge E with a ray drawn from the rp along angle A. Two lists

must also be maintained: the sweep list (a list of endpoints ordered by theta) and the

considered list (a list of lines ordered by distance to the rp).

The 2D sweep algorithm follows:

1 for each vertex in a set of polygons loop
2 -calculate the angle, theta, from the rp to vertex
3 normalized to fall in 0-360 degrees
4 -insert in sweep list ordered by ascending values
5 for each vertex, V, on the sweep list loop
6 if circuit(rp, V,prev(V)) is ccw and V.theta >prev(V). theta then 7 -place
edge (Vprev(V) on the considered list since it
8 straddles zero degrees
9 -set first point of edge to intersection (edge, 0)
10 for each item, V, on the sweep list loop

I/remove all edges ending at V prior to adding the edge starting at V
11 for each edge, E, on the considered list
12 if V is the second point of E then
13 if E is the first item on the considered list then
14 -accept it as visible
15 -change the first point of the next item, El
16 to the intersection (El, V's theta)
17 -remove Efromn the considered list
18 -recalculate the distance from rp to E along V's theta
19 if the circuit from rp to V to prev(V) is ccw then
20 if distance to V is less than distance to 1st edge of
21 considered list, El then
22 -accept El up intersection with V's theta
23 -change 1st point of El to
24 intersection (El, V's theta)
25 -insert edge (Vprev(V)) in the considered list

Figure 4.1 demonstrates this execution of the algorithm for a simple 2D world. For

the purposes of this algorithm, an angle of zero degrees is defined as a line from the rp

which runs out in the positive X direction and parallel to the X axis. After all the vertices

have been sorted by their theta values and added to the sweep list, processing of edges

25

S 10 S3

S6 S2

S

S9 S4

0 degs

camnera sweep direction 360 degs

SI I S12

Figure 4.1
Sweep method of
Visibility testing

26

begins. The direction of an edge is from V to prev(V). If this direction is ccw with

relation to the rp, there is a possibility the edge is visible so it is added to the considered

list. If the direction of the edge is cw it is occluded from view by some other edge of the

polygon it is part of (see Figure 4.2). To ensure the effects of those edges straddling

zero degrees are not lost, they are added to the considered list (lines 5-8) prior to

processing the entire sweep list. Reassignment of each straddler's first point (line 9)

keeps us from blindly accepting the portion lying before zero degrees.

In the main loop (lines 10-25) each vertex of the sweep list is processed. If an edge

is under consideration which ends with the current vertex, it is removed from

consideration. In a 2D world there can only be one edge visible at any given point

around the sweep. Therefore if the edge being removed happened to be first on the

considered list, then it was closest to the rp and is accepted as visible (line 14). When

this is the case the next edge on the list becomes visible, and the first point must be

adjusted (line 15) so the portion occluded by the edge being removed will not later be

accepted as visible.

Once all lines ending at the current vertex are removed, the edge from the current

vertex to its predecessor is inspected. If the edge is ccw then it is added to the considered

list. If this new edge is the closest to rp, the former head of the considered list is

accepted as visible up to the current vertex's theta and its first point adjusted accordingly

(lines 20-24). Notice that the main loop will remove straddling edges with the artificial

first vertex at zero degrees, and then adds them again in the normal sequence. This

27

v4 prev(v4)=v3 prev(vl)=v8

11 1-., prev(v6)=v5 6

0/1 v6

prev(v2)=v -...... .. I I,1

t t ,-..

% 0e

c visib li on"

".... \ :5

\1,

(a) convex case (b) concave case

Figure 4.2
ccw visibility test on

polygons

28

allows non-straddling edges to still occlude the first portion of straddling edges when they

are added to the considered list a second time during the main processing loop (line 19).

The algorithm is complete when the last straddling edge has been removed from the

list and each vertex on the sweep list has been processed at least once. Notice that only

one edge is visible at any given time and the endpoint reassignments (lines 15 and 24)

ensure that only the visible portions of an edge are accepted.

C. 3D SWEEP ALGORITHM

When sweeping for visibility in a 3D world distance to edges is no longer sufficient

criteria to determine visibility. Since occlusion of more distant edges may be total, partial

or not occur along the Z axis, there can be any number of edges visible at a given point

around the 3D sweep. We also have the added need to accept vertical lines which may

reside at an edge's endpoints. The basis of the 3D algorithm is the same as that for the

2D sweep, but we need to add some information which denotes an edge's presents along

the z axis. This information effectively defines each edge as a vertical wall of some

height greater than or equal to zero.

Specifically, each sweep list item must indicate if a vertical line begins at that vertex

or not. Since we will be interested in determining which edges are occluded from the

view of a single point, rp, in 3D, simply comparing z information of edges and these

vertical lines is insufficient. For this reason, when a sweep link is formed the angle of

elevation from the rp to the vertex is calculated and stored in the variable MINZ.

Likewise, if a vertical line is present at the vertex, the variable MAXZ stores the angle

29

of elevation to the upper vertex of that line. A vertex which has MINZ equal to

MAX_Z will by definition have no vertical line associated with it.

As with each sweep list item, each item of the considered list will also contain a

C_MINZ and CMAX_Z angle. In the sweep list we are concerned with z information

mainly to represent vertical lines. In the considered list we need z information which

accurately reflects the extent of occlusion an edge can inflict (from floor to ceiling) on

edges behind it. Figure 4.3 demonstrates a case where z information for the considered

list edge must be different than that of either endpoint. The function findceilingz(E)

will be used to provide the height of the ceiling which tops a particular edge E.

As mentioned earlier, many edges may be visible in 3D at one time. For this reason

we have added two flags to each considered item: visible and bottom-visible. The first

flag indicates that some part of the edge's plane of influence can still be seen from rp.

The second flag indicates that the bottom of the edge is still visible indicating that an

output line must be generated if the edge is modified or the sweep passes it with this flag

set.

The algorithm we present has been trimmed somewhat to help increase clarity. Several

special cases occur within a model which require individual handling. Two such cases

arise since the ccw check fails to recognize all edges of a ceiling which occurs below the

rp and a floor which occurs above it. In these two cases the sweep list must be artificially

manipulated to generate all edges of these polygons as ccw with respect to the rp (so they

may be placed on the considered list).

30

e6

e4 e5

el e2 e3

area not covered
by verticals

CMAX i

z

MIN-Z

camera

Figure 4.3

A case where the z coverage of the vertical
lines originating at an edge's endpointd does
not match the coverage of the edge itself.

31

The 3D sweep algorithm follows:

I for each vertex in the model
2 -calculate the angle, theta, from the rp to vertex
3 normalized to fall in 0-360 degrees
4 -calculate MIN 2from rp to V
5 -if V has outgoing vertical edge then
6 -calculate MAX Z to top of vertical
7 else
8 MAX Z=MIN Z
9 -insert in sweep list ordered by ascending values
10 for each vertex, V, on the sweep list loop
11 if circuit(rp, V,prev(V)) is ccw and V.theta >prev(V).theta then 12
place edge (Vprev(V)) on the considered list since it
13 straddles zero degrees
14 -let C MIN Z = V.MIN Z
15 -calclate C_MAX_Z based on find ceiling__z(edge(V, prev(V)))
16 so angle falls benveen -90.0 and 90.0
17 for each item, V, on the sweep list loop
18 for each edge (E) on the considered list
19 if V is the second point of E then
20 if E's 2nd point has vertical edge then
21 -calculate visibility of vertical edge and
22 accept part of vertical line seen
23 if E's visible=1 then
24 -accept it as visible
25 -remove Efrom the considered list
26 for each edge on considered list loop
27 -recalculate C ZMIN and C Z MAX
28 -calculatevisibility(considered list, V. theta)
29 -recalculate the distance from rp to E along V's theta
30 if the circuit from rp to V to prev(V) is ccw then
31 if V has vertical edge then
32 -calculate visibility of vertical edge and
33 accept part of vertical line seen
34 -insert edge (Vprev(V)) in the considered list
35 -for each edge on considered list
36 -recalculate C ZMIN and C ZMAX based on V's
37 theta (since perspective changes angles)
38 -calculate-visibility (considered list, V. theta)

32

Execution of the 3D version closely parallels that of the 2D version, with some

notable enhancements. Since vertical edges can be associated with sweep list vertices, we

calculate the visibility of the first endpoint's vert edge when a new considered list item

is added (lines 20-22) and the second endpoint's vert edge when that considered item is

removed (lines 31-33). This calculation simply consists of looping through all the edges

appearing in front of the current edge on the considered list. For each of these edges the

MINZ and MAXZ values of the vertical edge under consideration are adjusted to

reflect any occlusions. When the loop is complete, if MINZ is less than MAXZ the

visible portion of the vertical edge is accepted.

Another essential, and expensive, addition to the 3D algorithm is the recalculation of

the elevation angles on each considered list item (lines 27,36). Since the occlusion of the

z axis by an edge is represented by limiting angles (C_MINZ,CMAX_Z), perspective

must be considered. We cannot simply calculate the z coverage of an edge when it is

added and assume it to be constant. The perspective changes with the distance to an

edge, so as the sweep progresses, the coverage of edges pointing towards rp increase

while those pointing away decrease. These calculations are performed after the addition

or removal of a considered edge and are followed by a new calculation of all edges

visibility.

The calculatevisibility function (lines 28,38) is the 'work horse' of the 3D sweep

which assigns visibility and adjusts Z coverage in response to occlusion. This function

is executed each time a change is made to the considered list. It scans through the list

and for each edge compares the Z coverage information to the edges behind it. The

33

visibility flags, C_MIN_Z and CMAX_Z are adjusted based on if and how each edge

is occluded. An additional variable associated with each edge on the considered list,

MINSWEEP is introduced in this function. MIN-SWEEP keeps track of the starting

sweep angle for which the visibility information is valid. When part of an edge is

accepted as visible or its status changes, the MINSWEEP must be updated. A basic

description of the function follows:

assumptions: all visibility flags set
C MIN Z and CMAX Z set to total coverage

(initially no occlusion)

input. THETA = current sweep angle
considered list

for each edge, E on the considered list
for each edge El farther down the considered list than E

-determine how E occludes El
-case type of occlusion.-

entirely occluded:
visible = bottom visible = 0

bottom occluded:
bottom visible = 0
E1. C MIN Z=E.CMAXZ

top_o#cluded-
El. C MAX Z=E. C MIN Z

for each edge, E on the considered list
if above ,oop changed E and E. bottoilvisible = 1 prior to

the loop then
-accept Efrom intersection(E, MIN_SWEEP) to

intersection (E, THETA) as visible line
-E.MIN SWEEP= THETA

D. PROBLEMS WITH THE 3D SWEEP ALGORITHM

Two major concerns arise when reviewing the usefulness of our 3D sweep algorithm:

can it support real time image processing and is the set of output lines correct.

34

Although the final goal of this work is to support a real time vision system, a hard and

fast definition of 'real time' is difficult to express. This is especially true in the case of

providing support to pattern matching facilities, which themselves may take more than

30 seconds to execute. In general, we would consider programs with a total run time

under two seconds to be classified as real time applications. Unfortunately, as the number

of polygons comprising our model increase to the number required to represent the target

environment (fifth floor hallway), we find run time increasing to approximately eight

seconds. In a hard real time system such a lag time would almost assuredly be

unacceptable, but if we take into consideration the amount of processing time likely to

be required by the entire vision system such performance may be tolerable. For this

reason we will classify the visibility algorithm as having 'near' real time performance.

The reason for this poor behavior can be attributed to the need to account for

perspective. Recalculating the z axis coverage and the visibility for the entire considered

list whenever an edge enters or leaves the list and at each increment of the sweep angle

becomes quite expensive. Even so, we still see that some inaccuracies in output can occur

since z coverage should ideally be updated continuously.

When reviewing the correctness of the set of visible lines generated we find several

small discrepancies. One of these is the above stated problem of not being able to

continuously update z coverage. Associated with this is the fact that, to save time, our

algorithm does not consider the possibility that the relative positions of edges on the

considered list may change. Figure, 4.4 illustrates how the distance to edges may call for

a resorting of the considered list as the sweep progresses. The benefits of resorting the

35

list at each sweep increment is overshadowed by the significant increase in processing

time which results.

The above section discussed the 'artificial manipulation' used to ensure floors

occurring above the rp and ceilings occurring below have all edges ccw. Those ceiling

edges which are forced to be ccw in general have no outgoing vertical edges and

therefore no associated z coverage and are therefore rendered transparent (see Figure

4.5).

The last two items problems have been knowingly designed into the a'2o;-ithm and are

not apparent from the previous description. When vertices from enclosure ceilings are

being entered on the sweep list, they are automatically given a MAXZ of 90 degrees.

This is the only simple way to prevent such ceilings from being totally transparent

(although edges directly over the ceiling can still be seen).

Lastly, to ease the complexity of our data structures, edges are not considered to be

occluded across the middle along their entire length (Figure 4.6). When this case does

occur, we allow the occluding object to cast a footprint by assuming the occlusion is

across the bottom along the entire length. To model the true situation, we require a

representation which can track more than one non-contiguous area of coverage along the

z axis. This would require a list of (MIN_Z,MAXZ) pairs with splitting and merging

functions to replace the single variables our algorithm uses.

Chapter VI compares usage of the full 3D sweep algorithm with some quicker, but

less accurate, implementations of the sweep method. Timing results and correctness of

output are both discussed.

36

no endpoint at intersection

. e2

" ""-.. ..':-r terseftion evaluated

- r angle at each endpoint

(a) initiaJviewing situation

e2
el

(b) correct set of visible lines

-- e2

el
(c) actual output of 2d sweep algorithm

Figure 4.4
Problem due to perspective with sweep algorithm

001"

ceiling rp

Figure 4.5
Artificial manipulation to make

all edges ccw.

37

B

F

(b)
(a)

(c)

Figure 4.6

a. original case b. desired occlusion c. approximated result from visibility sweep algorithm

38

V. STANDARD GRAPHIC SUPPORT

A. OVERVIEW OF OUR APPLICATION NEEDS

Although the personal iris system on which this work currently resides does provide

an extensive graphic support library, our vision system is being designed to reside on

board Yamabico. Since Yamabico's memory (both primary and secondary) is somewhat

limited and source code for the iris library is not available, it was necessary to write our

own graphic support functions.

After the visibility checking algorithm has been run on a 2D+D world, we are left

with the set of all lines which are visible from a specific point in the model. The reader

should recall that output from visibility checking does not take the orientation of the

observer (camera) into consideration but rather, provides a complete set of theoretically

visible lines based upon omnidirectional sensors. The graphics support routines will

determine which of these lines fall within the camera's field of vision and transform them

into a final format which can be used in pattern matching and graphic display. Since our

vision system will exploit a single camera as it's sole sensor, the processed image it

provides will be composed of 2D lines. Likewise, a standard display terminal can only

support drawing lines specified in it's 2D screen coordinate system. For these reasons,

the appropriate final format for our view from the model is a set of 2D lines. As with

the 3D lines provided by the visibility algorithm, we choose to use an endpoint

representation to specify these 2D lines.

[Ref. 13] thoroughly describes the mathematics and principles of computer graphics.

It was the primary reference used to design the support functions found in the file

39

graphics.h. When a view from the model world is needed, the getview function is

called. This function requires a pointer to the 2D+D world and the camera's 3D position

(PRP), orientation (DOP) and field of view in degrees (view-angle) as input. The world

and PRP are sent to the visibility checking algorithm and the returned list of lines is

worked with from then on.

Since we are simulating what is seen by a single camera, we need to extract a view

from our model which is based on a single point perspective projection. In a perspective

projection, line size is scaled to the inverse of the distance from the camera. This allows

distant objects to appear smaller than closer ones of the same physical dimensions. A

parallel projection does not perform this scaling and is therefore not suitable to our

application.

B. GENERAL PERSPECTIVE PROJECTION

There is a pipeline of several steps which is used to produce a perspective projection

from a model. The steps are:

1. Define the View Volume

Each candidate line, in a model, must be inspected to determine if it falls within

the observer's field of vision. This field of vision is defined by a semi-infinite pyramid

originating at the PRP and extending along the DOP (Figure 5.1). All lines within this

volume will be seen by the observer. The infinite length of this pyramid is difficult to

work with, so we define a near clipping plane and far clipping plane. These are defined

relative to the observer and form the truncated pyramid of Figure 5.2. The height and

40

Viewplane
w dow

PRP ...

Figure 5.1
Semi-infinite pyramid defining

view volume for perspective projection

Back
clipping r.
plan

Front

plane

PRP Figure 5.2
Truncated view volume.

41

width of the pyramid at the near and far clipping planes is determined by the width of

the observers view_. , or the defined size and location of the window (see section b).

2. Select a 2D Window.

Somewhere along the length (along the DOP) of the pyramid a projection window

must be placed. This window is parallel to the base of the pyramid and is the surface

onto which all accepted lines will be projected. Lines falling within the pyramid on the

far side of the window from the observer, will be scaled down in size when mapped to

the window, while those on the near side will be scaled.

If the viewangle is not used to define the slope of the view volume's sides, a

window can fully define the volume by giving its height, width, and distance down the

DOP from the observer.

3. Determine the Normalizing Transformation

Although it is simple to determine if a line falls between the far and near clipping

planes, it is difficult to calculate what portion of a line (if any) falls within the other four

sloped planes which make up the sides of the pyramid. To ease these calculations, the

pyramid is manipulated to form a unit pyramid which defines a canonical view volume.

The new pyramid's surfaces or clipping planes are represented by the following

equations:

right: x = -z (5.1)

left: x = z (5.2)

bottom: y = z (5.3)

top: y = -z (5.4)

42

front: z = z m (5.5)

back: z = -1 (5.6)

The general form of this transformation, Npr is:

Npr = Sper * SHpar * T(-PRP) * R * T(-VRP) (5.7)

where:

T(-VRP) Translate the view reference point (VRP) to the origin. For each 3D

point, P, which is being normalized, add the negative of the corresponding VRP

coordinate to each coordinate value of P. The VRP is the origin of the view coordinate

system. Since window limits are referenced from this point, it is a good idea to choose

a VRP position which readily supports window reference (i.e., center of the window or

a window corner).

R Rotate the view reference coordinate (VRC) system so it is aligned with the

(x,y,z) system. The VRC system has three components (u,v,n). Initially (Figure 5.3a)

v is vertically aligned with the window, u runs parallel to the lower edge of the window

and n is normal to the window surface. Proper alignment is achieved by rotation about

the x, y and z axis. Rotation takes advantage of the trigonometric sine and cosine

functions of the rotation angle (RA). These functions are applied to the original

coordinates of a point, (x,y,z) to produce the new point, (xl,yl,zl). As an example,

equations to determine rotation about the z axis are shown:

xl = x * cos(RA) - y * sin(RA) (5.8)

yl = x * sin(RA) + y * cos(RA) (5.9)

zl = z (5.10)

43

T(-PRP) Translate the PRP to the origin. The PRP is also known as the center of

projection and refers to the position of the observer or camera.

SHper Shear the view volume along the z axis so the DOP is parallel to the z axis.

Multiplication by a shearing matrix will augment the x and y terms to accomplish this.

We will not go into detail on how to derive this matrix, since shearing is not needed in

our application. The interested reader is referred to Reference 13 page 264.

Sper Scale the view volume into the canonical perspective-projection view

volume. We must determine a scaling factor for each coordinate system axis, which is

multiplied by the corresponding (x,y or z) component of the point to be scaled. Here the

goal is to map the back clipping plane so its new location is at z=-l. The apex of the

view volume will map to z=O, leaving the front plane (located on z,) at its relative

position between the two. Equations 5.1-5.6 must hold true after this scaling. To

guarantee this, all z components are scaled by -1/(vrp,'+B). The denominator of this

term is simply the position of the back clipping plane after it has been processed through

the previous normalization steps. Remember that we are targeting clipping plane

equations with unit slopes, x=z and y=z. The z scaling factor must also be applied to

x and y to ensure uniformity, but we first must scale to produce these unit slopes. This

is accomplished by scaling the window half-height and half-width to vrp,' (since this is

the transformed z position at which the window now resides). Therefore the appropriate

scaling factors for x and y are:

(2*vrp,')I((vrp ' + B)*(ivindoiv width)) (5.11)

44

(2*vrp,')/((vrp.'+B)*(vindow height)) (5.12)

respectively.

4. Apply the Normalizing Transformation to All Lines

Each of the lines from the model are transformed and those that fall within the

normalized canonical view volume will be seen.

The interested reader will note that [Ref. 13] expresses all of these manipulations

through use of matrix operations. To save the expense of writing a math package for

matrices our application uses series of linear equations to emulate matrix use. Although

these equations are basically equivalent, they may appear somewhat different since the

problem we are solving is a subset of the general case.

5. Clip Normalized Lines Against Canonical View Volume

Each endpoint of a line will be assigned a six bit clipping code. The coordinates

of the endpoint are compared to the equations of the canonical view volume's planes. The

meaning of each set bit follows [Ref. 13]:

bit 1 - point above view volume y > -z

bit 2 - point below view volume y < z

bit 3 - point to right of view volume x > -z

bit 4 - point to left of view volume x < z

bit 5 - point behind view volume z < -1

bit 6 - point in front of view volume z > z~M

45

When both endpoints of a line have clipping codes of all zeros, each endpoint falls

within the view volume and the line is trivially accepted. Likewise, when a bitwise

logical and of the endpoint codes does not produce all zeros the line is rejected since it

lays totally outside the volume. When neither of these cases is met, only a portion of the

line is within the view volume. In this case, the next step is to calculate the

intersection(s) with the volume's six clipping planes. This is where the advantage of

selecting unit slopes for those planes is realized. An extended 3D version of the Liang-

Barsky 2D clipping algorithm is employed to find the intersections [Ref. 13 pg. 274].

This algorithm uses the parametric representation of a line:

x = X0 + t(x 1 - x() (5.13)

Y = Yo + t(y - y0) (5.14)

z = Zo + t(z2 -4) (5.15)

where t is in the interval (0,1)

and subscripts specify which endpoint a

coordinate refers to.

These equations are set equal in accordance with equations 5.1-5.6 and t is solved

for. The two t values which fall in (0,1) define the new endpoints of the partial line to

accept. Notice that one t may be 0 or 1 if one endpoint is in the view volume and the

other is not.

6. Perform Perspective Projection

Once the 3D lines within the view volume are identified, we need to map them

onto the 2D window. This is simply accomplished by dividing each coordinate of the

46

endpoints by z/d. Where z is the z coordinate of the point and d is the transformed

position of the projection plane on the z axis. Notice that this will map the z coordinate

of each endpoint to d.

7. Scale Window Coordinates to Device Coordinates

In order for our final set of output lines to be useful, we must map them from the

window coordinates to some device coordinates. The lower left corner of our window

is (zmm,z.i) by equations 5. 11 and 5.12. The width and height of the window are both

2*z,,. If the new device coordinate limits are denoted by XMIN, XMAX, YMIN and

YMAX mapping is accomplished by:

X = ((x window coordinate-zim,)/2*z)*(XMAX-XMIN)+XMIN (5.16)

Y = ((y window coordinate-zm,)/2*z *(YMAX-YMIN)+YMIN (5.17)

C. PERSPECTIVE PROJECTION FOR OUR APPLICATION

1. Define the View Volume

The near and far clipping planes are located relative to the camera position at 1.4

inches and 5000 inches respectively. The near clipping plane is chosen to match the focal

length of our camera, and the far plane's distance is greater than the total length of our

model world (thus ensuring all lines which should be seen can be).

2. Select a 2D Window.

According to specifications, our video camera has a ccd element which is two

thirds of an inch square. This element is the camera's physical counterpart to the window

on which we need to project the model lines. Using this information along with empirical

47

testing, we have determined that the focal length of the camera is 1.4 inches. Again, this

value corresponds to how far from the camera (along the DOP) the window should be

placed.

3. Determine the Normalizing Transformation

Figure 5.3 shows each step of the normalization process. Some of the physical

restrictions we place upon our target system simplify the normalization transformation

from its general form:

Npe, = Sper * SHpar * T(-PRP) * R * T(-VRP)

to:

Nper = Sper * T(-PRP) * R, * T(-VRP) (5.18)

where:

T(-VRP) Translate the view reference point (VRP) to the origin (Figure 5.3b). We

select the lower left corner of our window as this point.

RY Rotate the view reference coordinate (VRC) system about

the y axis so it is aligned with the (x,y,z) system (Figure 5.3c). Rotational computations

have been simplified from a general three coordinate rotation to a single rotation about

the y axis. This is due to the fact that Yamabico will only rotate its camera freely in the

model's x-y plane'.

1 It is important to note that most graphics discussions assume
a 3d coordinate system where the -z axis goes into the page rather
than our model's coordinate system where the z axis denotes height.
Therefore all coordinates must be shifted from model to graphic
representation prior to performing normalization, and the R,
rotation is actually about the model's z axis, as it should be.

48

T(-PRP) Translate the PRP to the origin (Figure 5.3d). This will be the position

of Yamabico's camera which has gone through the previous two operations.

Sper Scale the view volume into the canonical perspective-projection view volume

(Figure 5.3e). This is performed as specified for the general case.

The most noticeable simplification is the omission of SHper . Since Yamabico's

camera will be mounted perpendicular to the floor there is no need to shear the view

volume. The DOP is always parallel to the z axis.

4. Apply the Normalizing Transformation to All Lines

Each line from the list of visible lines returned from getview is transformed and

if it falls within the normalized canonical view volume will be seen in the final output.

5. Clip Normalized Lines Against Canonical View Volume

This step is carried out exactly as for the general case. We have reserved space for

the clipping codes within each LINE structure. The function get clippingcodes (A-46)

assigns the six bit code to each endpoint, and the functions clip line and clipt (A-46)

make up our Liang-Barsky 3D clipping algorithm implementation.

6. Perform Perspective Projection

Since we are using the focal length of the camera to position our window, the value

of d will be zi,,,,. This indicates that our window overlays the near clipping plane.

49

0*PRP y

z

(a) (b)

y

- -, .x

n
n z

(c) z (d)

y

ux

(e)

Figure 5.3

(a) Initial viewing situation. (b) VRP translated to origin (T(-VRP)).
(c) Rotated about y axis to align (x,yx) with (u,vn) coordinates (Ry).
(d) PRP translated to origin (T(-PRP)). (e) View volume scaled into canonical
form (Sper).

50

7. Scale Window Coordinates to Device Coordinates

The final device for our projected lines will either be a window for pattern

matching or a portion of the graphics display screen. In either case, the variables

MINX, MAX_X, MIN_Y and MAXY are defined at the top of the file graphics.h.

Changing these variable will allow the map toscreen function to properly scale the final

set of lines.

51

VI. IMPLEMENTATION AND CONCLUSIONS

A. MODEL

1. Appropriateness of 2D+D Model

Our chosen representation has proven quite effective for modelling environments

that are orthogonal with respect to the z axis. Although we cannot model curved objects

such as door knobs, those objects which contain the major features needed for pattern

matching are readily represented.

Path planning has not yet been implemented using the 2D+D model, but the

asymmetric quality of the model seems to strongly support such an application. We

simply need to treat all horizontal polygons, which have a z value along the robot's

height, as objects for the path planner. To constrain the problem complexity, overlapping

2D polygons will need to be merged together.

2. Constraints

The 2D+D model is not useful for outdoors environments nor for ones with many

curved surfaces. Additionally, path planning cannot currently work directly from the

model. The main problem is that instances of polyhedra classes share storage of vertices

in the local coordinate system. As the model stands, a separate representation must be

used to store the polygons required for path planning. Note that even if dedicated storage

for each instance is allocated, the same problem may occur. This is because overlapping

polygons still must be merged, but the underlying model must not be altered.

52

Another constraint is placed on model construction. When a polyhedron is added

we only allow rotation about the z axis. To truly represent all possible straight edged

objects we need to allow for rotation about all axes.

B. GRAPHICS

The graphics projection of a model view into 2D coordinates works well. The entire

process takes approximately 0.5 seconds of processing time (not including the visibility

checking algorithm). As with the model, the graphics projection routines are not

generalized to account for camera rotation about all axes. Instead the camera is assumed

to only rotate about the z axis. For this reason, we cannot handle cases where the camera

is not perpendicular to the z axis (i.e., when Yamabico climbs or descends a ramp).

C. VISIBILITY ALGORITHM

1. Time Comparisons of Different Versions

In order to assess the level of visibility checking which must be applied to a model

we have tested three different versions of the sweep algorithm described in Chapter IV.

We wish to minimize processing time and receive output which is useful for pattern

matching against our camera image. Conclusions are based upon comparisons of

processing time2 and output quality from various configurations within the model of

2 Processing times are measured by stopwatch in seconds. Times
will reflect the total time required to extract lines from the
model, conduct visibility checking and project the lines into the
final 2d device coordinates.

53

Spanagel Hall's fifth floor. Figures 6. la and 6. lb show two of these views as they

appear with no visibility checking.

a. Simple 2D Sweep

This algorithm does not take any z information into consideration. All edges of

the model are assumed to lay within a single horizontal plane. Figures 6.2a and 6.2b

show the sets of visible lines accepted from configurations matching those used in

Figures 6. la and 6.2b respectively.

Total processing time for each view processed under this algorithm averaged 3.0

seconds. As expected, the algorithm is very quick, but it is doubtful that the output is

useful for pattern matching. When only two dimensions are considered there can only be

one edge visible at any point around the sweep. This obviously hold true for our output.

This is a major problem since the closest objects, no matter how small, will occlude all

objects which are more distant. Notice that the top of the molding along the left side wall

occludes everything behind it (even though the molding is only four inches tall).

Another unexpected problem occurs since lights on the ceiling often fall closest

to the camera (in the x-y plane). The camera position in Figure 6.2a had to be adjusted

to the left since the position (44,44,44) fell directly underneath a light. At the original

position the displayed image is blank, since the edges of the light are accepted by the 2D

visibility check but the camera view angle (30 degrees) is not wide enough to allow them

to be projected onto the 2D view plane. Even at the adjusted coordinates the entire right

side of the display appears blank due to this same light. The same phenomenon is

observed in Figure 6.2b.

54

X: 441. O0 Y: 44.00 Z: 4410
THETH(degs): 0.00

Figure 6.l1a

X: 50. 00 Y: 350. 00 Z:
THETR(degs): 260.00

Figure 6.l1b

55

//

X: 20.00 V: 44.00 Z: 44,00
THETR(degs): 0.00

Figure 6.2a

X: 50.00 V: 350.00 : oo
THETR(degs): 260.00

Figure 6.2b

56

b. Patial 3D Sweep

This algorithm takes z information into consideration but does not account for

perspective. The degree of coverage for each edge is calculated when the ccw sweep

reaches its first endpoint. To save processing time, this coverage is assumed to remain

constant as the sweep progresses along the edge's length. In reality, coverage along the

z axis will increase as the distance to the edge decreases (and visa versa). Figures 6.3a

and 5.3b show the output from this algorithm.

Total processing time for each view averaged 5.6 seconds. Although somewhat

slower than the 2D algorithm, we see a dramatic increase in the output quality. Here the

displays are close to what we would expect the camera to see. Unfortunately, numerous

short lines are present which should not be and several lines which should be seen are

not. Concentrations of these errors increase as we move along the visible edges (away

from the first endpoint). This happens because the error between the initial z coverage

and actual coverage increases as the sweep progresses along each edge.

The appropriateness of this algorithm depends on how well pattern matching

handles extra and missing line segments. If the matching algorithm is capable of

disregarding or filtering out lines and allows partial matchings between lines, the partial

3D sweep may be suitable.

c. Full 3D Sweep

This is the complete algorithm described in Chapter IV. Here we recalculate

each edge's z coverage and visibility for each angle around the sweep. As mentioned

earlier, continuous correction for perspective around the sweep is not feasible. Hopefully,

57

..... ,,..,.,,,/ -""- I -"

"- .__-

X: 44.00 Y: 44,00 Z: 44.06,
THETR(degs): 0.00

Figure 6.3a

X: 50.00 Y: 350.00 Z:
THETRi(degs): 260.00

Figure 6.3b

58

this discrete method of correction provides a reasonable approximation. Figures 6.4a and

6.4b show the output for this algorithm.

Here we find a very disturbing increase in processing time. The average time

for the full 3D sweep algorithm is 16.0 seconds. The majority of unwanted lines

appearing in Figure 6.3 are no longer present, but several short spikes still occur along

some edges. Noticeable 'tails' are present at intersections of leading door edges and door

jams. These 'tails' and spikes result from using discreet intervals to re-evaluate z

coverage. If a continuous method is developed to account for perspective, these effects

should be eliminated.

2. Problems

Our greatest concern with these results lie with the excessive processing time.

Sixteen seconds would not seem to readily support real-time processing, but does provide

on line support for development of Yamabico's prototype vision system.

The problems due to discreet perspective may interfere with pattern matching. The

particular algorithm Kevin Peterson has implemented for our initial position verification

system does not seem to be adversely affected.

D. IDEAS FOR FUTURE WORK

1. Data Separation

Building a model through the function calls of a construction file, such as our

5th.h, is somewhat wasteful. Since the construction file must be compiled and resides

in main memory, we gain a large chunk of executable code that is only executed once.

59

INr

-' '

X: 414.00 Y: 44.00 Z: 44.0
THETH(degs): 0.00

Figure 6.4a_

X: 50. 00 Y: 350.0 OD2:
THETR(degs): 260.00

Figure 6.4b

60

A logical solution to this problem is to separate the model data from the executable file.

A text data file could be made to hold the same information that is used in 5th.h. Unique

field separators or a tailored storage hierarchy will need to be employed to mark data.

This will allow an iterative function to read the data file and pass the appropriate

information to the add functions found in 2d+d.h.

2. Interactive Interface

If significant modifications and additions to the model are anticipated or if multiple

models need to be constructed, development of an interactive interface may be warranted.

Such a program could allow entry and modification of model data through a combination

of menu driven selections and keyboard entry of coordinates. An interface of this design

would also readily support separation of data into a text or binary file.

3. Extend 5th Floor Model

The model constructed by 5th.h contains most of the major features required for

pattern matching, but there are still modifications and additions which need to be made.

The most notable modification required is the need to properly model the interior of the

office spaces. The current data points within offices are estimates. Due to time

constraints, only room 512 is accurately modeled (most other office dimensions are based

on this room's measurements). Additions which may prove useful include double doors

at both ends of the hall, bulletin boards and chalkboards. The second half of the fifth

floor and the offices lying along it also need to be added to our model.

61

4. Complete Visibility Checking

The previous section identified some problems with our visibility checking

algorithm. Investigation into increasing efficiency and correcting for perspective is

needed to reduce processing time and increase output accuracy. More accurate output can

also be achieved if the method of tracking z coverage for edges is expanded to allow for

non-contiguous coverage. This will allow the occlusions of the type shown in Figure 4.7

to be properly represented.

5. Update Graphics Support

Current graphic projection only allows for a camera with three degrees of freedom

(mounted perpendicular to the floor and rotating about the z axis). Expanding the

functions in graphics.c to allow for six degrees of freedom will provide a generalized

solution to accommodate rotation of the camera about the x and y axes.

6. Expand Simulator

The simulator can easily be expanded to read configurations from path or mission

planning routine output. Restrictions could also be imposed upon speed and turning

radius to mirror those of Yamabico. These steps would allow the simulator to be used

for mission simulation and analysis, rather than just for inspecting the model.

7. C - + Implementation

The class inheritance, virtual functions and other features available in C + + may

prove ideally suited to implementing the 2D+D model structure. Investigation into this

possibility is encouraged.

62

8. Hardware Implementation

All of the work presented in this thesis has been implemented on a personal-iris

workstation. The video camera used for collecting data needs to be incorporated into

Yamabico's hardware design. It may also be possible to install an additional processor

which is dedicated to supporting the vision system. Once hardware is in place, software

installation will follow.

63

VII. USER'S MANUAL

A. INTRODUCTION

This manual discusses the use of the files residing on the turing personal-iris machine

under the /yamabico/model directory. Turing is located in room 506 of Spanagel Hall

at the Naval Postgraduate School, Monterey, California. These files, 2d+d.h, 5th.h,

visibility.h, graphics.h, 2d+ dsini.h and interface.c, contain functions written in C. The

files are part of the vision system being developed for use on-board Yamabico- 11 (an

autonomous, wheeled robot).

The vision system for Yamabico utilizes a single video camera for input. Information

about the robot's operating environment is stored as an asymmetric 2D+D model. The

2d+d.h file contains the functions, called by 5th.h for construction and textual display

of this model. Visibility.h and graphics.h provide functions for extracting a view from

the model, which may be used in the vision system's pattern matching applications or for

graphic display. 2d+ dsim.h contains a basic simulator which allows the user to perform

graphic walk-throughs of a modelled world, while the final file, interface.c, 'includes'

all of the previous files and provides a simple interface through which the user can access

and test the various functions.

B. BUILDING A MODEL

1. Construction File

A 2D+D model (Chapter III) is used to represent an orthogonal operating

environment. A model is created by successive calls to the various construction functions

64

in 2d+d.h. We have created the construction file, 5th.h, to model the fifth floor of

Spanagel Hall. This file consists of one primary construction function, makeworld,

which conducts these calls in the proper order and returns a pointer to the newly built

world. All coordinates of our model are entered in inches. The hallway floor is

considered to be at a z height of zero inches. The origin of the x-y plane is located at the

north east corner of the hall. When looking at the double doors to room 506 this is the

lower corner on the right hand side. Orientation with respect to the model is zero (or

360) degrees looking down the x axis (across the hallway) and increases in the ccw

direction (Figure 7.1).

Construction files must use the C #include 2d+d.h command to ensure access to

the model support, functions. In turn, the construction file can be included to allow its

compilation and use by an application program. Each add function from 2d+d.h returns

a pointer to the specific structure which is added. The primary construction function

takes advantage of this property to keep track of structures within the model and uses the

returned pointers as input parameters to future calls. This approach to building a model

requires it to be put together in a top down fashion. To accomplish this, a higher level

structure such as a polyhedron must be added to the model prior to adding any of its

component vertex or instance structures.

2. Declarations

The structure types which are used to build a model are declared at the start of the

2d+d.h file (A-3). Of these, one world and several polyhedra, polygons and vertices

must be declared for use in the construction file. You will notice a significant number

65

+Y

9O~

0

0
0

elevators

1800 0 0
-X . .. + X

360

270f

-Y

Figure 7.1
Orientation of 5th floor model.

66

of such declarations in our construction file, 5th.h. We have adopted a convention in

naming pointers to help keep track of relationships between structures. Examples are:

label representing

H3 Third polyhedron declared and added.

H3PI First polygon of polyhedron H3.

H3P1V1 First vertex of polygon H3P1.

3. Building The Model

Once declarations have been made, the first step is to call the add-world function

in the following format.

WORLD *W;

W = add world("name of world",13);

PARAMETER TYPE

1st character array (30 maximum length)

2nd integer

The input parameters are simply the label we wish assigned to the world and the number

of characters in that label. The function will allocate memory, create an empty world,

assign the indicated label to that world and initialize the other fields to indicate the world

is currently empty.

Once a world has been created, we can begin to add the various objects which

make up the world. Each object is treated as a class of polyhedra. Instances from a class

can be instantiated into the model at different positions and with different orientations.

67

This allows the polyhedron class to be described in a local coordinate system (usually

originating at (0,0,0) in the (x,y,z) coordinate system). Recall that a 2D+D model

representation contains only horizontal polygons and vertical edges. Groups of these two

types will make up each polyhedron. To add an object to the world we use the

addpolyhedron function.

POLYHEDRON *H1;

HI = addpolyhedron ("class name" ,9, W,obstacle,rixed);

PARAMETER TYPE

1st character array (30 element maximum length)

2nd integer

3rd world structure pointer

4th boolean (0 or 1)

5th boolean (0 or 1)

Again, the first two parameters represent a class label and its length. The third field must

be a pointer to an existing world structure to which this polyhedron should be added. Of

the last two boolean parameters, the first indicates if the polyhedron is an obstacle or not.

Objects with a 0 in this field are viewed as enclosures and component polygons are

expected to have their vertices in cw order. Obstacles will have a 1 here, and component

polygons will have ccw lists of vertices. The final boolean tells if the object is fixed in

the model or not. Polyhedra like doors should have a 0 in this position to indicate that

they can move, while hallways would contain a 1.

68

When an empty polyhedron has been added to a model, it is important to complete

its definition by adding at least one component polygon to it. This is accomplished by a

call to add polygon.

POLYGON *HIPI;

H1PI = add_polygon(Hl,z_value,floor,convex);

PARAMETER TYPE

1st polyhedron pointer

2nd float

3rd boolean (0 or 1)

4th boolean (0 or 1)

The first parameter must point to a polyhedron which has already been added to the

model. The 2nd parameter indicates the height along the z axis at which the vertices of

this polygon will be found. Floor indicates if the polygon is a floor or ceiling of H1. The

final field indicates if the polygon is convex or not.

A minimum of three vertices must be added to a polygon to properly define it.

Polygons are assumed to be a closed list of vertices so the first vertex should not be

repeated as the last vertex. It is important to ensure these lists are in cw order for

enclosure polyhedra and ccw order for obstacle polyhedra. The addvertex function links

vertices into a parent polygon in the order they are added.

69

VERTEX *HIPIV1;

H1PIVI = addvertex(H1Pl,x,y);

PARAMETER TYPE

1st polygon structure pointer

2nd float

3rd float

Each vertex must be added to an existing polygon pointer. The last two parameters

denote the x and y coordinates at which the vertex is located.

Once all of the polygons making up a polyhedron have been added, we need to

indicate the location of vertical edges. The add edge function accepts two vertices as

input and creates a pointer from the first to the second which represents a vertical edge.

add edge(P1V ,P2V2);

PARAMETER TYPE

1st vertex structure pointer

2nd vertex structure pointer

Vertical edges should only be placed once between each pair of vertices. Each vertex

must be from different polygons residing in the same polyhedron structure. Notice that

there is no value returned.

To properly identify which ceilings enclose a floor we must use the add-ceiling

function. Here the two parameters are polygons. The first is a floor and the second a

ceiling. Ceiling associations are maintained as a list which allows more than one ceiling

70

to cover a floor. Although it is not required, vertical edges will usually be present

between floors and their ceilings.

add_ceiling(H1PI,H1P2);

PARAMETERS TYPE

1 st polygon structure pointer

2nd polygon structure pointer

After all the polygons, vertices, vertical edges and ceiling associations have been

added to a polyhedron class, we can instantiate the object into our world model using

addinstance. This conserves storage space within the model and allows for easy addition

of the identical objects often found indoors (i.e., doors and lights).

addinstance("label",5,H 1,X,Y,Z,PIVOTX,PIVOTY,ROT);

PARAMETER TYPE

1st character array (30 maximum)

2nd integer length of label array

3rd polyhedron structure pointer

4th-6th float, (x,y,z) position in model coordinates

7th-8th float, (x,y) position of polyhedron's pivot

point in local coordinate system

9th float, number of degrees to rotate object about

pivot point

71

When an instance neds to be used, all vertices are translated so the pivot point becomes

the local origin. Then the object is rotated about the z axis ROT degrees and placed at

the (X,Y,Z) coordinates of the world.

It is not mandatory for instances of a polyhedron class to be added to the model. When

no instances are added, views from the model will not include the polyhedron.

The construction file, 5th.h, is solely responsible for building our world model.

To modify the model, we can simply edit the function calls made in this file. The use of

instances makes adding new objects very straight forward and allows the orientation of

existing, movable objects (i.e., doors) to be altered.

C. CHECKING VISIBILITY

The file visibility.h (A-14) contains the functions which conduct visibility checking

on a 2D+D model. When a view from the model is being extracted for use in pattern

matching or graphic display, lines that are not visible should be filtered out. The

conductvisibilitysweep function is called to provide the list of lines which can be seen

from a specific point in the model3. These lines do not take the type of camera or its

orientation into consideration. This means that even lines behind the camera will be

returned as visible. The next section tells how to get rid of these unwanted lines. Format

of function call:

3 The getview function from the graphics.h file calls this
function automatically. If you are retrieving a view from the model
through this function a separate call to conductvisibilitysweep
need not be made.

72

LINEHEAD *LH;

LH = conductvisibility sweep(W,X,Y,Z);

The LINE-HEAD type allows output from the visibility sweep to be separated into two

lists. One list is of vertical lines and the other contains non-vertical lines. Input consists

of a pointer to the world being checked and the camera position in (x,y,z) coordinates.

D. GRAPHIC PROJECTION FROM MODEL

The graphics.h file contains the function get view. This function calls the

conduct_visibilitysweep function, and removes those lines (and partial lines) which

cannot be seen by the camera. The resulting set of visible 3D lines is then projected onto

a 2D window and mapped to a set of final device coordinates. Output is a LINEHEAD

pointer which consist of two lists: a list of 2D vertical lines and a list of 2D non-vertical

lines. Vertical lines are sperate to help in the pattern matching process. The format for

calling getview is:

LINEHEAD *LH;

LH = getview(W,X,Y,Z,ORIENTATION,FOCALLENGTH);

PARAMETER TYPE

1st world structure pointer

2nd-4th floating point (x,y,z) coordinates

5th float, camera orientation in degrees

73

6th float, focal length of camera

A group of definitions can be found at the top of graphics.h (A-37). These values are

integral to proper projection. The CCD is set to two thirds of an inch, which is the

physical dimension of our camera's sensing element. This value is used as the 2D

projection window dimension (CCD by CCD square), and when used with the input

FOCALLENGTH determines the viewing angle of the camera. The variables MAX_X

and MAXY denote the limits of the desired output coordinates to which the 2D lines

should be mapped. If the camera, camera zoom setting or output device is changed the

user should inspect these variables to determine if their definitions are in need of

revision.

E. SIMULATOR

A basic simulator resides in the file 2d+dsim.h. The primary function, simulator, is

passed a world structure pointer. The user is queried for the starting configuration within

this world ((x,y,z) coordinates and orientation). This simulator is mouse driven. The left

and right buttons are used to turn to the left and right respectively. The center button

brings up a menu of options (Figure 7.2). To move past the initial view the 'start/restart'

option must be selected. The speed of the walk-through starts at zero and can be

increased or decreased by choosing the appropriate menu option. Speed can be reset to

zero through the 'stop' option, while 'pause' suspends execution until 'start/restart' is

selected.

74

47

TL0HEBdg):00

Figure 7.2

75

The simulator currently uses the get view function to retrieve the set of lines seen

from each configuration as we move through the model. If the simulation speed is too

slow the get_full view function can be substituted for both the calls (A-51). This will

draw all lines from the model to the screen. It may be useful to make this change when

inspecting entry of new objects to the model. Configurations are displayed across the

bottom of the display window. Coordinates are shown in inches while the orientation is

in degrees.

F. FINDING A POLYHEDRON

The function find ph (A-13) is provided to display a text listing of a polyhedron and

all of its instances.

findph (LABEL, W);

PARAMETER TYPE

1st array of characters (maximum length of 30)

2nd world structure pointer

Polyhedra structures in the world, W, are searched to find the class named LABEL. If

the need arises, the user can easily modify this function to return a pointer to the

polyhedron that is found.

76

G. DEALLOCATING MEMORY

It is important to release memory which is no longer needed back to the operating

system. We provide two functions, free_world and freelines to release memory held in

a world and list of lines respectively.

freeworld(W);

freeiines(LH);

Both functions use the C free function to release each substructure held in all lists that

make up the world or line list.

H. TROUBLESHOOTING

The following suggestions are made to help track down the cause of problems which

may arise when using this software. If the user wishes to gain a more thorough

understanding of why the 2D+D model was selected or how the underlying structures

interrelate, they are referred to the first five chapters of this thesis and to the code and

documentation found in Appendix A.

PROBLEM POSSIBLE CAUSE(S)

1. missing vertical lines -add-edge calls not made properly in

construction file

2. objects missing -add-instance not called in construction file

3. objects facing wrong direction -rotation angle in addinstance incorrect

4. view stretched or shrunk -camera or camera zoom setting changed causing

incorrect definition of CCD or focal length

77

5. views do not match actual -incorrect CCD or focal length camera image

-device coordinates (MAX_XMAX_Y) incorrect

6. all model lines seen -call to get Jull.view vice get view

being made from simulator

7. cannot turn simulator -start menu option not yet selected

8. turns too much/little -adjustment needed on increment of left and right

cases found in simulate function

9. for each mouse click -adjustment needed on increment of speed changes

too slow/fast speed options (3&4) in processinenuhit

function. (File 2d+dsim.h)

10. labels for model structures -global variable MAXLEN in 2d+d.h truncated

too short needs to be increased

II. core dumps during execution -a polygon used in the model has no

vertices added to it

-a structure in construction file is

used prior to being added to the model

78

VIII. REFERENCES AND BIBLIOGRAPHY

A. REFERENCES

1. Galbiati, Louis J., Machine Vision and Digital
Image Processing Fundamentals, Prentice Hall,
1990.

2. Shirai, Yushiaki, Three-Dimensional Computer Vision
Springer-Verlag 1987.

3. Fairhurst, Michael C., Computer Vision for Robotic
Systems: an Introduction, Prentice Hall, 1988.

4. Therrien, Charles W., Decision, Estimation, and
Classification: an Introduction to Pattern
Recognition and Related Topics, Wiley, 1989.

5. Thorpe, Charles W. (ed.), Vision and Navigation:
The Carnegie Mellon Navlab, Kluwer Academic
Publisher, 1990.

6. Robert, L., Vaillant, and Schmitt, "3-D-Vision-Based
Robot Navigation: First Steps," European Conference
on Computer Vision Proceedings, 23-27 April 1990.

7. Deriche, R., and Faugeras, 0., "Tracking Line
Segments," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

8. Crowley, J. L., and Stelmaszyk, P., "Measurement and
Integration of 3-D Structures by Tracking Edge
Lines," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

9. Holder, D., and Buxton, H., "SIMD Geometric
Hashing," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

11. Andersen, J. D., "Combinatorial Characterization of
Perspective Projections From Polyhedral Object
Scenes," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

79

12. Leavers, V. F., "The Dynamic Generalized Hough
Transform," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

13. Foley, James D., and others, Computer Graphics.
Principles and Practice, Addison-Wesley Publishing
Company, 1990.

B. BIBLIOGRAPHY

1. Barr, A., Cohen, P. R., and Feigenbaum, E. A.,
The Handbook of Artificial Intelligence, vol. IV,
Addison-Wesley Publishing Company, Inc., 1989.

2. Gardner, J., From C to C: An Introduction to ANSI
Standard C, Harcourt Brace Jovanovich, Publishers
and its Subsidiary, Academic Press, 1989.

3. Kelley, A., and Pohl, I., A Book on C: Programming
in C, 2nd ed., The Benjamin/Cummings Publishing
Company, Inc., 1990.

4. Lowe, D. G., "Stabilized Solution for 3-D Model
Parameters," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

5. Provan, G. M., "An Analysis of Knowledge
Representation Schemes for Higher Level Vision,"
European Conference on Computer Vision Proceedings,
23-27 April 1990.

6. Vieville, T., "Estimation of 3-D Motion and
Structure From Tracking 2-D Lines in a Sequence of
Images," European Conference on Computer Vision
Proceedings, 23-27 April 19.

80

APPENDIX A

#include < math .h >
#include < stdio.h >
#include < device.h >
#include <gl.h >
#include "2d+.c"
#include "Sth.c"

* #include "mygrphics.c"
#include "visibility.c"
/*#include "vis2d.c"*/ /*2d and partial 3d visibility checks*/
/*#include "vjs3d.c"*/
#include "2d+sim.c"

FILENAME: interface.c
AUTHOR: LT James Stein
DATE: Mar 1992
Project: Thesis, supporting Yamabico's vision system
COMMENTS: This file has been written as an interface to help test the various functions needed to support the 2d + model. The construction

file Sth.h is used to build the 2d + model of Spanagel Hall's 5th floor into memory. Once this is done the user can choose to dump a test listing
of the model to the screen. search for a polyhedron class by name, get a view from the model, or conduct a graphics walkthru of the model.

l* constants *

#define P1 3.141592653589793
#define MAXLEN 30

void mnain()

WORLD *W= NULL-,
char PH -LABEL[MAX_LEN]. c:
mnt OPTION = 1;
int i. PHNUM;
float X.Y,Z,OR1ENT,FOCALLENGTH= 1.24; /*FOCALLENGTH must be adjusted for*l
LINEHEAD *LIST=NULL; /*different cameras or zoom settings*/

W = make worldO: /*from file Sth.c*/
while (OPTION> >0)(

printf("\n\n\nl Find a polyhedral)

printf("\n2. Display world (text listing)");
pfintf(\n3 Conduct graphics walkthru (iris terminal required)");
printf("\n4.Get view for pattern matching");
pfintf(*\n\nChoose one (0 to quit):)

scanf(*\n%d,&OPTION);
switch (OPTION)
easel1: / find aph/

for (i=0;i<MAXLEN.+ +i) (/*clear old labe*/
PHLABELiJ""

pfintf("\nPlease enter the label of the polyhedron you wish to see");
printf("\n(20 char max): ");
scan f("\n% s".PHLABEL),
printf(\nlndexing on label: (%s)\n".PHLABEL):
findjth(PHLABEL,W); /*file 2d + .h/
break;

case 2: /*dump text listing of world to screen*/
display worldMW; /*file 2d+ .h*/
break:

A-1

case 3: /*conduct graphics simulation of walkthru*/
simulate(W). /*file 2d+sim.h*/
break:

case 4: /*get a set of lines making up a view in the model*/
printf(\nWnEnter coordinates for position of camera:\nX:)
scanf("\n% f,&X);.
printf("\nY: ");
scanf(*\n%fr.&Y);
printf('\nZ: ");
scanfQ'\n%r.&Z),
printf("\nOrientation (0.0 is down y-axis):")
scanf(*\n%rf.&ORIENT);
LIST =get full view(X,Y,Z.ORIENT,W,FOCALLENGTH): /*file graphics.h*/
if (LIST)

free_lines(LIST); /Odeallocate the memory used*/
break.

case 0:
printf("Exiting program\n\n");
break;

default:
printf("tnvalid choice!!!")-.
) / end case statement ~
/* end while loop */

free-world(W): /* deallocate world memory ~
/0 end main procedure: make world *

A-2

FILENAME; 2d+d.h
AUTHOR: LT James Stein
CONTENTS: 2d + model support tools (for building, displaying, searching,

and deallocating a model)
DATE: Mar 1992
COMMENTS: A 'world' consists of a list of polyhedrons (PH) Each PH is in

turn a list of polygons (PG). Each PG is a list of VERTICIES which contain
the X,Y. and Z coordinates of that point in the world.-

File 5th.h is an example construction file which uses these functions to
build a model of the I1st half of Spanagel Hall's 5th floor.

1* constants *1
#define PI 3.14 1592653589793
#define MAX-LEN 30

I' typedefs: Define structures to be used for rcpresenting, a 3-d world *1

typedef struct vertex
float X.Y:,
struct vertex

*NEXT. 'PREy.
*VERT EDGE;

)VERTEX:

1* WHERE: VERT-EDGE = pointer to upper vertex of vertical edge

----------- --- -- - - --

typedef struct poly link
struct polygon 'REF POLY:
struct poly link *NEXT. *PREV;
POLY-LINK:

/*------------ ----- ------

typedef struct polygon
int DEGREE. CDEGREE. FLOOR. CONVEX:
float Z VALUE;
VERTEX 'VERTEX-LIST:
POLY_-LINK 'CEILINGLIST;
struct polygon

'NEXT. 'PREV;
)POLYGON;

I' WHERE: DEGREE = # of vertices
FLOOR. CONVEX = booleans
Z-VALUE - local Z position poly located at
CEILING-LIST. FLOORLIST = list of associated poly's

-- -------- ---- ---------

typedef struct instance
char NAME(MAXLENI.
float X. Y, Z. ROTATION.

PIVOT X, PIVOTY;
atruct instance *NEXT. 'PREV.
INSTANCE;

A-3

/* WHERE: NAME = something like "rm501"
X, Y. Z = position to instantiate PH into world
ROTATION = degrees to rot about Z axis

----------------- -/-------- - -

typedef struct polyhedron 4
char CLASS[MAX_LEN];
int DEGREE, I DEGREE, OBSTACLE, FIXED;
POLYGON *POLYGONLIST; /*ordered by Z value*/
INSTANCE *INSTANCELIST; /*ordered by Z value*/
struct polyhedron ONEXT, *PREV;
) POLYHEDRON;

/* WHERE: CLASS = general name like 'door'
DEGREE = # of polygons
OBSTACLE and FIXED = booleans
CEILING LIST. FLOORLIST = list comprise all polygons
INSTANCELIST = all tranformations of object into world

typedef struct world {
char NAME(MAXLEN];
int DEGREE.
POLYHEDRON *POLYHEDRONLIST.
WORLD:

/* WHERE: NAME = label for world
DEGREE = number of object representations
POLYHEDRONLIST points to them

*/

The following routines are called to allocate memory for a structure
(WORLD. POLYHEDRON. POLYGON. or VERTEX). Pointers are initialized to NULL
and the DEGREE field is set to 0:

WORLD *create.worldO

WORLD *W;
int i;

/0 allocate memory for a world /
if((W = (WORLD 0)malloc(sizeof(WORLD))) = - NULL) 4

printf("'ncannot create a world\n');

/* initialize fields */
W- >DEGREE = 0;
W- > POLYHEDRON-LIST = NULL:
for (i-0; i<MAXLEN; + +i)(
W->NAME[i='';

return(W;

I.--------- --------- ---- ------- --------- I

A-4

POLYGON Ocmeteolygou()

POLYGON *P;

/0 allocate memory for a polygon *
if((P = (POLYGON *)malloc(sizeof(POLYGON))) ==NULL)

pnintf(-\cannot create a polygon"D.

/* initialize fields *

P- >DEGREE = 0;
P->ZVALUE= 0.0;
P. > VERTEX-LIST = NULL;
P->CEILINGLIST= NULL:
P->NEXT = NULL;
P->PREV = NULL-.

return(P):

INSTANCE *create-instance()

INSTANCE *I-.
in i

I = (INSTANCE *)maloc(sizeof(INSTANCE));
for (i =0: i<MAX-LEN. + +i)~
I-> NAMEjiJ =-

I- >NEXT = NULL:
1->PREV = NULL-.
return 1:

/* --- '

POLY LINK *create_.poly likO

POLYLINK *P;
P = (POLY_-LINK *)malloc (sizeof(POLY LINK));
P- >REFPOLY = NULL.
P->NEXT = NULL:
P-> PREV = NULL-,
return P-.

I.- ---- -- --- - --- -- / ----------

POLYHEDRON Ocreate~polyhedroaO

POLYHEDRON *P;
int i.

P- (POLYHEDRON *)mallocfaizeof(POLYHEDRON)).
for (i-0; i <MAX_LEN; + +i)

P- > CLASSIij

A-5

P- >DEGREE -O0
P- >POLYGONLIST= NULL:
P- >NEXT=NULL;,
P- >PREV=NULL;.
P- > INSTANCE-LIST = NULL,
return P;
/01 end createypolyhedron *

VERTEX *create-vertexo

VERTEX *V;

V =(VERTEX *)malloc(sizeof(VERTEX));.
V- >NEXT= NULL;
V- >PREV = NULL;
V-> VERT-EDGE =NULLi
return V.

The following routines are used for memory deallocation. Each type of
list is stepped through to free it's component structures. Higher level
structures call the free routine for the next lower level to deallocate
side lists (i.e. free-world calls freejpolyhedron).

void free _pg(PG)
POLYGON *PG.

VERTEX *NEXTV. *TRASH;
POLY-LINK *NEXT-LINK, *TRASH2-.

NEXT_-V-PG->VERTEXLIST;. /*free vertex list*/
while (NEXT V)(
TRASH=,NEXTV;
NEXT_-V=NEXTV->NEXT:
free(TRASH);

NEXT LINK-PG- >CEILINGLIST;
while (NEXT _LINK) (/'free links used to reference ceilings/1
TRASH2-NEXT LINK;
NEXT_-LINK-NEXTLINK- >NEXT-.
free(TRASH2);

free(PG); Mirce parent polygon structure 0/
10 end free j'g *1

void freejb(PH)
POLYHEDRON *PH-.

POLYGON *NEXT -PG, TRASH;
INSTANCE *NEXT I. *TRASH2;

A-6

NEXT PG-PH-> POLYGON-LIST;
while (NEXT_PG) 4 /*free the list of polygons*/

TRASH - NEXT_PG;
NEXTPG=NEXT PG- >NEXT;
freepg(TRASH);

NEXT I = PH->INSTANCELIST;
while(NEXTIl) { /*free the list of instances*/

TRASH2- NEXT_I;
NEXT- 1= NEXTI->NEXT;
free(TRASH2);

free(PH); /* release parent structure */
S/* end free_ph */

void free world(W)
WORLD *W;

POLYHEDRON *NEXTPH, *TRASH;

if(W) (
NEXTPH=W- >POLYHEDRONLIST;
while (NEXTPH) I /*free the list of polyhedra*/

TRASH =NEXTPH;
NEXTPH-NEXTPH- > NEXT:
free_ph(TRASH);

free(W);
/* end free_world *1

The next group of functions is used to display the world. A single
polygon. a single polyhedron. or the entire world can be displayed.
Display is in text format to the standard output device.

void displaypg(PG)
POLYGON *PG;

POLYGON *NEXT PG;
POLY LINK -NEXT C;
VERTEX *NEXTV;
int V_NUM, 1, PRINTED=0;

printf('\nDEGREE: %d FLOOR: %d Convex: %d ",PG- > DEGREE,PG- > FLOOR.
PG- > CONVEX);

printf(*\nZ = %.2f:\n',PG- >Z_VALUE);
NEXTV = PG- > VERTEXLIST;
while (NEXTV) {

if (PRINTED> 3) (/* three vertices per line*/
printf("fnV#%d(%.2f,i.20 ",VNUM,NEXTV- >X,NEXTV- > Y);
PRINTED- 1;

else
printf('V#%d(% .2f,% .20 ",VNUM.NEXTV- > X,NEXTV- > Y);

A-7

PRINTED + +.

NEXT_-V=NEXTV->NEXT;
VNUM ++;
/*end while */

if (PG- > FLOOR = = 1)
printf("'.nAssociated ceilings (%d): *,PG- >CDEGREE):

NEXT_-C= PG->CELINGLIST;
} 1 end displayypg

void displnypb(Pi)
POLYHEDRON *PH;

POLYGON *NEXTP0;
int PG _NUM,FCNT= I.CCNT= I,ICNT= 1;
char dummy;
INSTANCE *NEXTI;

printf("\nPOLYHEDRON (%b,):\n Obstac:le: %d Fixed: %~d \n".
PH- >CLASS,PH- > OBSTACLE.PH- > FIXED):

printf("\nComponent polygons (%~ d):\n ".PH- > DEGREE);
NEXT -PG =PH- >POLYGON-LIST;
printf("\nnList of floors:')-.
while (NEXT_-P0)(

if (NEXT PG- >FLOOR=1){
printf("\n\nFLOOR# %d ",F-CNT);,
displaypg(NEXTP0); /*display floor polygons*/
FCNT+ +;
/*I end if 'I

N EXTPG=NEXTPG- >NEXT:
/* end while */

NEXT_-PG =PH- >POLYGON-LIST.
prinifCnWnList of ceilings:"):
while (NEXTP0)f

if (NEXT PG- >FLOOR= = 0)
printf(".\n\nCEILING #f %d ",CCNT).
displaypg(NEXT_P0); /*display ceilings*/
CCNT+ +;
}/* end if *I

NEXT -PG =NEXT_PG- >NEXT;
/* end while *1

printf("WnnThe following instantiations of this polyhedron exist:"):
ffush(stdout);
if (PH == NULL)

prmntf("\nndereferencing null pointer in displayph\n\n");
Mtush(stdout);

I
NEXT_1 = PH-> INSTANCELIST;
whjle(NEXTJ) (
prinif("nnstance #%d (%s): *.ICNT,NEXTI- >NAME);
fflush(stdout);
printf("\nLocation: (% .2f, % .2f. % .2f0".NEXT--> X,NEXT_--> Y,NEXT I- > Z);
Mfush(stdout);
printfC"Rotated: %.2f degrees about point: (% .2f, % .2f0\n",

NEXT-1 > ROTATIONNEXT--> PIVOTXNEXT--> PIVOT_Y):.
Mfusls(stdout),
ICNT + + -
NEXT -I -NEXT--> NEXT;
/* end while *1

)1* end displayph

A-8

void displayworld(W)
WORLD *W:

POLYHEDRON *PH;
POLYGON *PG:
int NUMPH= 1;

if (Wv {
printf(*\nWorld Name: %s",W->NAME);
printf("\n\nWorld has:\n %d POLYHEDRONS\n ",W- > DEGREE):
PH = W- > POLYHEDRONLIST;
while (PH)

printf(*\n\nPH #%d \n',NUM_PH):
NUM PH++-
displayph(PH):
PH=PH->NEXT;

} /*end if*/
/ end display world /

The following functions are used by the construction file
to add structures (i.e.- POLYHEDRON. POLYGON, VERTEX. and INSTANCE)
and associations (i.e.- vertical edges and floor-> ceiling associations)
to a world.

void addedge(VI.V2)
VERTEX *Vl, *V2; /*lower and upper vertices of edge*/

if (Vl->VERTEDGE)
printf("\nWarning reassignment of vertical edge attempted!!!"):

else
VI->VERTEDGE = V2:

/ end add-edge ./

void add ceiling(PGC)
POLYGON *PG, *C; /*floor and its new ceiling*/

POLY LINK *NEWC.*NEXTC;
imt FOUND-0;

if (PG- > CEILINGLIST)
NEXT C= PG- >CEILINGLIST;
if (NEXT C- > REFPOLY = = C)

FOUND= 1;
else

while (NEXT_C- > NEXT)
if (NEXT_C- > NEXT- >REFPOLY ==C)

FOUND= 1;
NEXT C =NEXTC-> NEXT;

/* end while */
if (FOUND= =0)

NEW_ C-create_polylinko; *link onto end of list*/
NEWC->REFPOLY = C;
NEWC->PREV'=NEXT_C:
NEXTC- > NEXT= NEW C:

A-9

PG->CDEGREE+ +:
}/* end if*/
else

printf("\nWarning - attempted to add ceiling which exists"):
} /* end if */
else I

NEW C=create_polylinko0 /*adding 1st ceiling to list*/
NEW C-> REFPOLY = C.
PG->CEILINGLIST=NEWC:
PG->CDEGREE+ +;
/ end else 0/

/* end addceiling */

X,Y,Z is the position in the parent world at which the pivot point
is to be placed.
PIVOT X and PIVOT Y specify th local coordinates (in POLYHEDRON) of
the objects pivot point.
ROT is the number of degrees the object should be rotated about this
pivot point.

void *add instance(NAME,LEN.Pl I,X.Y.Z.PI'OTX.PIVOTY.ROT)
POLYHEDRON *PH:
float X,Y.Z.PIVOTX.PIVOTY.ROT:
char NAME[J; /label for instance and number of characters in label*/
int LEN:

INSTANCE *I.*TEMPI.*NEXTI:
int ;,

I=create instanceO; /*allocate and initialize memory*/
for (i=O;i< =LEN;+ +i) {

I-> NAMEfiJ=NAME[i];

I->X=X:
I->Y=Y:
I->Z=Z;
I- > PIVOT_X = PIVOT_X;
I- > PIVOT_Y=PIVOT_Y
I- > ROTATION = ROT:
/*order by z*/
if (PH-> INSTANCELIST= =NULL) {

PH-> INSTANCE LIST= I;
I
else

NEXT 1= PH-> INSTANCELIST;
if (Z < = NEXT_I- > Z)(

l->NEXT=NEXT_I;
NEXTI->PREV=I; /* add to head of list*/
PH-> INSTANCE_LIST= I"

} /* end if *
else (

while (NEXT I- > NEXT&&NEXTI- > NEXT- > Z < Z){
NEXTI=NEXTI-> NEXT. /*scan to insertion point*/

if (NEXT I-> NEXT)
1-> NEXT- NEXTI-> NEXT; /*add to middle of list*/
I- > PREV =NEXT I:
NEXT l->NEXT=I:
I- > NEXT- > PREV =I;

} * end if */
else {

l->PREV=NEXTI: /*add as last instance*/

A-10

NEXT _I->NEXT=1:
/* end else */

t*(end else *1
/* end else */

PH- > I DEGREE+ +; (*keep trak of the number of instances*/
}/* end add-instance ~

The remaining add functions create and add structures to the world.
Pointers to each newly added structure arc returned to the caller for
future use.

VERTEX *add-vertex (PG.X. I)
POLYGON *PG; /* parent polygon to add vertex to*/
float X.Y; /iocal coordinates of vertex*/

VERTEX *V. *NEXTV:.

V=create -vertexo;
V-> X=X-.
V- > YY:
if (PG- >VERTEXLIST= =NULL)

PG->VERTEXLIST=V:
else

NEXT_-V=PG->VERTEXLIST:
while (NEXT_V > NEXT)(

NEXT V =NEXTV- > NEXT: /* scan to end of list *

NEXTV- >NEXT=V: /* add to end of list to retaint order adde4*1
V->PREV=NEXT V:
/* end else */

PG- > DEGREE+ +;
return V.
/* end add_vertex

/* --

POLYGON *addjVg(PH.Z,FLOOR,CON VEX)
POLYHEDRON *PH: /*parent structure*/
float Z; /*height in local coordinates*/
mnt FLOOR,CONVEX /*boolean values*/

POLYGON *P0,ONEXT PG;

PG=crcatejoygon0.
PG->Z VALUE=Z;
PG- >FLOOR= FLOOR.
PG- >CONVEX = CONVEX;
if (PH- > POLYGON -LIST ==NULL) /*soiled by Z height*/

PH->POLYGONLIST=PG;
else

NEXT -PG =PH- >POLYGON-LIST;
if (Z<NEXTP0-> Z VALUE)(/*put at head of list*/

NEXTP->PREV=PG;
PG- >NEXT=NEXT P0;
PH->POLYGONLIST=PG:
} 1 end if*/

else

A-l I

while ((NEXT -PG- >NEXT)&&(NEXTP0- >NEXT- >Z_VALUE> Z))j

NEXT PG =NEXT PG- > NEXT;

if (NEXT -PG- >NEXT)
PG- >NEXT =NEXTPG- >NEXT; /* put in middle of last
PG->PREV=NEXTPG;
NEXT P0- >NEXT= PG;
PG->NEXT- >PREV=PG.

/ I end if *i
else

NEXT -PG->NEXT=PG; 1* put at end of list */
PG->PREV=NEXTP0;

/* end clse

/* end else *

f* end else */
PH->DEGREE+ +;
return MG
} 1 end addjpg

--------- --- -- -------------------------- 1

POLYHEDRON *addjpb(CLASS.LEN.W,.FIXED,OBSTACLE)
char CLASSM] /*class name*/
WORLD *W; /*world to add polyhedron to*/
mnt FIX ED.ORSTACLE, LEN. /* 2 booleans and the length of CLASS*/

POLYHEDRON *PH,*NEXTPH;
imt i;

PH =createypolyhedrono:.
for (i=O;i <=LEN-,+ +i){

PH-> CLASSjiI=CLASS[ij;

PH-> FIXED= FIXED-,
PH- >OBSTACLE= OBSTACLE;
if (W- >POLYHEDRON-LIST = = NULL)

W- > POLYHEDRON-LIST = PH:
else

NEXT -PH=W->POLYHEDRONLIST:.
while (NEXT -PH- > NEXT)(

NEXT_PH=NEXT PH->NEXT: /*scan to end of list*/

NEXT PH->NEXTr=PH:
PH->PREV=NEXT PH:
/* end else *I

W- >DEGREE+ +;
return PH;

/*1end addyph/

/------------------------ -- ------ ---- -- ----

WORLD *add-world(NAME.LEN)
char NAME[]; /*label and its length*/
int LEN;

WORLD *W-
int i;
W-create -worldO;
for (i=0i<LEN;+ +i) /*assign label*1

W- >NAMEjij-NAME(i];

return W..
1* end add-world

A-12

find_ph will find and display a polyhedron based on its class
name. Component polygons and instances will be listed to the screen.
If the pointer to a polyhedron is needed: change this function
return PH.

void rtd_ph(LABEL.W)
char LABEL[MAXLEN]: /*class label to look for*/
WORLD OW; /*world to search*/

POLYHEDRON *NEXTPH. *PH;
int FOUND=0, i, MATCH;

if (W) {
printf(\nsearching for label: ():
for (i=0:i<MAX_LEN+ +i){

printf(" %c*.LABELIi]):
)
prin1f()\n'):
NEXT PH=W->POLYHEDRONLIST:
while (NEXT_PH)

MATCH = I ;
for (i=0;i<MAXLEN:+ +i)

if (NEXT PH- > CLASSIi]! =LABEL[i]){
MATCH=O: /*at least one character is different*i

if (MATCH==1) 1
FOUND+ +.
PH=NEXT PH:

NEXT PH= NEXTPH-> NEXT;
/* end while */

if (FOUND= =0)
printf("\nNo polyhedron found under this label!\n"):

else {
display_ph(PH); /*show the polygon found*/
if (FOUND> 1)

printf("\nWaming non-unique label (last occurance listed).\n").
/* end else 4/

} /*end if*/
else

printf(\n\nCannot find polyhedron since world is empty !!!\n"):
} /* end findph

A-13

FILE NAME: visibility.h
AUTHOR: James Stein
PROJECT: Thesis, supporting Yamabico vision system
DATE: March 1992
ADVISOR: Dr. Kanayama

COMMENTS: This file implements a algorithm which determines the set of
visible line seen from a given position in a wire frame model. The observer is
assumed to have omni-directional vision. To impose the physical limits of
a camera's field of view, the function gct view in file graphics.h can be
sent a model (as it in turn uses this file).

Primary Function(s):

-conduct-vsiibility-sweep

INPUT: W a pointer to a 2d + world model
EYEX,EYEY.EYEZ position of observer in model W

OUTPUT: LINE-LIST structure pointing to 2 lists of
visible vertical and non-vertical lines

/4 ------------- Structure definitions: --------------------

typedef struct sweep_linkI
double THETA. X. Y. Z.

MINZ. MAX_Z. UPPER Z. DIST:
VERTEX *V-.
INSTANCE 'I;
POLY-LINK *CEILINGS:
struct sweep link *PREV. *NEXT;

SWEEP-LINK:

/*---- -------------------------------

typedef struct considered link(
double MIN-SWEEP.

MIN_Z, MAX_-Z. DIST.
NEW -MIN -Z.NEWMAXZ,UPPERZ;

int VISIBlLlTY.BVISIBJLITY,NEWVISJBILITY.NEW-B VISIBILITY:I
POLY-LINK *CEILINGS.
SWEEPLINK *SLI, *L2:
struct considered-link *NEXT;

CONSIDERED-LINK;

A- 14

/* --- * /-- - - - - - - - - - -- - -- - - - - - - - - - -

typedef struct considered head {
CONSIDERED-LINK *LINKS:

CONSIDEREDHEAD;

/* - ..-------------.-.--------.------- ----- -- 1

/* global variables: /

static double X,YZ; /*Position of observer within the model*/
static THETA: /*Current angle of visibility sweep*/
int IN-MAIN; /*if 0 we are still preprocessing straddlers*,

void line ray intersection(CONSIDERED LINK *CL.double ANGLE.
double *INTX.double *INT_Y.double *DIST);

/* Doubles can be truncated to 4 decimal places to compensate for inexactness

of floating point operations*/

double tnmc(X)

double X;

int DUMMY;
double XX = X;

DUMMY=XX*i0000;
XX-DUMMY;
XX=XX/iO000.0;
return XX;

*******************************C***ERS**WNF*CT**************************/

double degs(RADS)
double RADS;

{
return trunc(RADS* I 80.0/Pl):

double rads(DEGS)
double DEGS;

return trunc(DEGS*P/180.0);

A-15

10 Determines if the edges from 2 considered links are colinear*!

imt colinear(F.B)
CONSIDERED-LINK *F.*B-:

double MI.M2; /*we will compare slopes and distance*/

MI =trunc((F- >SLl- >Y-F- >SL2- >Y)/(F- >SLI- >X-F- >SL2- >X))-.
M2=trunc((B- >SLI- > Y-B- > SL2- > Y)/(B- >SLI- > X-B- >SL2- >X));
if ((Ml 1= =M2)&&(F- > DIST = = B- >DIST))

return 1;
else

return 0:

f******************************COUNTERLOCKWISE CHECKS*********************,

int ccw(SL.PREN'_SL)
SWEEPLINK *SL. *PREV SL-.

double AREA.

AREA = 0.5*((SL- >X-X)*(PREVSL- >Y-Y)-
(PREV_SL- > X-X)-(SL- > Y-Y)):

if (AREA> >0.0)
return I-.

else
return 0:

1end ccw */

int ccw2(SLI.SL.2.SL3)
SWEEPLINK *SLI,*SL2.*SL3:

double AREA:

AREA= 0.5((SL2- >X-SLI- >X)*(SL3 > Y-SLI-> Y)-

if (AREA> >0.0)
return 1;

else
return 0;

)/0 end ccw *1

A- 16

I* Finds the angle from X |.Y I to V for use in determining if XI .Y I lies
within the bounds of a polygon.*/

double rind theta(XI,Yl.Vl)
double XI.YI:
VERTEX *V;
INSTANCE *1;

double X2,Y2,T:
double LOCALX.LOCAL_Y.ROTX,ROT_Y.RADS:

LOCAL X = V->X - I->PIVOT X:
LOCALY = V->Y - I->PIVOTY:

!* rotate about the z axis */

RADS = I- >ROTATION * P1 / 180.0; /* convert degs to rads */
ROT X = (cos(RADS)*LOCALX)+(sin(RADS)*LOCALY);
ROTY = (cos(RADS)*LOCALY)-(sin(RADS)*LOCALX):

/* translate to proper position in world model */

X2 = I->X + ROTX.
Y2 = 1->Y + ROT Y:
if ((X I = =X2) I ((Y1 - =Y2)&&(X I = =X2)))

T=0.0;
else

T=atan2(Y2-YI.X2-XI): /* both won't be 0 */
if (T<0.0)

T+ =rads(360.0); /* normalize to 0-360*/
return T;

/* end find theta /

/* This function determines if the point X I.YI lies within the polygon. PG.
The angle formed between lines drawn to each edge of PG is calculated.
CW angles are added and CCW ones are subtracted from the sum.
If the sum is not equal to 0.0 the point is within PG and I is returned.*/

hit in_polygon(XI.YI.PG.I)
double XI.YI ;
POLYGON *PG:
INSTANCE *1

VERTEX *FIRST_V, *V = PG- > VERTEX-LIST:
double THETAI .THETA2.FIRSTTHETASUM= 0.0.SUMi 0.0:
double XX,YY;

THETA2-find-theta(X 1,YI ,V,l);
FIRST =V.
FIRST THETA =THETA2;
while (V- >NEXT) (

if ((Xl = =V- > X)&&(Y l = =V- > Y))

SUMI =1.0; /*if directly under a point accept*/
THETA I =THETA2.
THETA2 = findtheta(X I .Y I ,V- > NEXT.!):

if ((0.5((V- >X-X I)*(V- > NEXT-> Y-Y I)-
(V->NEXT- >X-XI)*(V-> Y-YI))) >0.0)

if (THETA2< THETA I)
SUM+ = (THETA2 + rads(360.0))-THETAI:

A-17

else
SUM +=THETA2-THETA I.

I~cw*/else
if (THETA2 >THETAI)

SUM+ =THETA2-(THETAI +rads(360.O))-:
else

SUM +=TI-ETA2-THETAI:

V=V->NEXT-:
/0 end while */

/*Lastly: check the closing edge to see if we add or subtract its angle*,'
THETAI =THETA2:
THETA2= FIRST TH ETA;
if ((0.5*((V- >X-X l)(FIRST_V- > Y-Y l)-(FIRSTV. > X-X l)*(V- > Y-Y 1))) >

0.0) { Iccwf/
if' (THETA2 <THETA 1)

SUM + = (THETA2 + rads(360.0))-THETA I
else

SUM+ =THETA2-THETAI:

else
if' (THETA2 > THETA 1)

SUM+ =THETA2-(THETA I +rads(360.0)):.
else

SUKI+ =THETA2-THETAI;.

if (((trunc(SUM[) =0.0))&&(SUMI = =0.0))
return 0:.

else
return I-.

/* Function checks to see which ceiling of CL's ceiling list [he Is(endpoint
falls under. This height is returned and is used to determine how much
coverage the CL has along the z-axis (that is what angle bound the portion
of the z-axis which CL occludes*/

double rind ceiling z(CL)
CONSIDEREDLINK *CL;

double IX,IY.DISTCEILINGZVALUE= (-9999999.9);,
POLY-LINK *NE)(rC=CL- >CEILINGS-.
int FOUND=0;

IX=CL->SLI-.
IY=CL->SLI->Y;
while (NEXT-C)(

/*keep track of highest ceiling over CL*/
if ((Qnyolygon(IX,IY.NEXTC- >REFPOLY.CL- >SLI- >I) ==I&

(NEXT C- >REF_-POLY- > Z_-VALUE+ CL- > SLI - >I- > Z > CEILINGZVALUE))(
CEILING Z VALUE= NEXTC- >REFPOLY- >ZVALUE+ CL-> SLI- >1-> Z;
FOUNDI;,

NEXT C =NEXT C- >NEXT;

if (FOUND= =0)
CEILING Z VALUE=CL->SLI->UPPE-RZ: /*if none ht same as endpoint*/

return trunc(CEILING_ZVALUE); /return highest ceiling ht*/
/*I end find ceilingjz

A-18

/* Calculate the minimum and maximum angles which SL covers on the z-axis.
Any object which is farther away and behind SL that falls within these
limits will not he able to be seen.

void cakczcoverage(SL)
SWEEPLINK *SL;

double dz.LEN;

dz=SL->Z-Z;
LEN =SL- >DIST; /*dist to line in X-Y plane*/
if (LEN= = 0)

LEN =0.00001;
SL- >MIN_Z=trunc(atan(dz/LEN));
dz=SL->UPPERZ-Z;
SL- >MAXZ=trunc(atan(dz/LEN)):

/4 end calc_z_coverage */

/*Absolute value of a double*4/

double my_abs(A)
double A;

if (A > =0.0)
return A:

else
return -A:

/4 Calculates the limiting angles along the z-axis for each item on the
considered list. These limits are based upon the height of each
candpoint (value of CL- >MIN -Z) and the height of the ceiling (if any)
lying above CL (CL- >UPPER Z). *I

void caic-current_z -coverage(CLIST)
CONSIDERED-HEAD *CLIST;

CONSIDEREDLINK *CL=CLIST- >LINKS:
double MIN,MAX,DIST;
double dx~dy.dz.IX.IY.LEN LLEN2.

CEILINGZ:

while (CL)(
CL- > NEWMAXZ=trunc(atan((CL- > UPPERZ-Z)/CL- > DIST)).
CL- > NEWMINZ= trune(atan((CL- > SLI - > Z-Z)/CL- > DIST)):
CL-> NEW VISIBILITY =I; /*reset visibilities*/
CL- > NEWBVISIBILITY = I;
CL=CL-> NEXT.

/* end calc_current_z coverage *1

A-19

/s***.*e.*************ME4ORYALLQCATION FUNCrIONS***.********************/*

LINE_-HEAD *make line beadO

LINE-HEAD *LH=(LINEHEAD *)mafloc(sizeof(LINEHEAD)):

LII-> LINES=O:
LII->VERT UINES=O;
LU- > LINELIST= NULL:
LII->TAIL=NULL:.
LII->VLJNE LIST=NULL:
LII- > VTAIL= NULL:.
return LII;

/* end make line-head *

CONSIDERED-HEAD *mte-considered-head()

CONSIDERED-HEAD *CH;

CH = (CONSIDERED_HEAD *)malloc(sizeof(CQNSIDEREDHEAD)):
CH- >LINKS= NULL:
return CHU:

1/* end make considered head */

A-20

SW~EEP-LINK nsake-Sweepliik(PlI.PG..V.l.PG-Z)
POLYHEDRON *PH
POLYGON *PG;
VERTEX *V.

INSTANCE *1:
double PGZ;

SWEEP LINK *SL:
double LOCALX,LOCALY.ROTX.ROT-Y.RADS:

SL= (SWEEPLINK *)malloc(sizeof(SWEEP LINK)):
SL->PREV= NULL:
SL->NEXT= NULL:
SL->V=V;
SL->11:
SL- > CEILINGS = PG- > CEILINGLIST:
LOCAL_X = V- >X - I- >PIVOTX:
LOCALY = V- >Y - I- >PIVOTY;

/* rotate about the z axis *I
RADS =I- >ROTATION * P1180.0 : /* convert degs to rads */
ROT~X = (cos(RADS)*LOCALX) i-(sin(RADS)*LOCAL Y):
ROTY = (cos(RADS)*LOCALY)-(sin(RADS)*LOCALX):

/* translate to proper position in world model */

SL->X = trunc(I->X + ROTX): /*must be truncated*/
SL- >Y = trunc(I- >Y + ROTY):
SL- >Z = trunc(I- >Z + PG_Z):

SL- >THETA= (atan2(SL- >Y-Y.SL- >X-X)): /* both won't be 0*
if (SL- >THETA< <0.0)

SL- >THETA = (2 .G*PI +SL- >THETA):/1* normialize to 0-360 *

SL- > DIST= trunc(sqrt(pow%((SL- > Y-Y).2.0) +pow((SL- > X-XX.2.0)))-.
if (V- >VERTEDGE)

SL- > UPPERZ = find z(PH.V- > VERT_EDGE) + I- > Z.
else

SL->UPPER Z=SL->Z.
if ((PH- > OBSTACLE= = 0)&&(PG- > FLOOR ==0))

SL- >UPPERZ =99999999999.9. /*nmax float to cover 90 degs*/
calc_z_coverage(SL):
return SL-.

}/* end make sweep link/

A-21

CONSIDEREDLINK *make-considered Iink(SL)
SWEEP-LINK *SL;

CONSIDEREDLINK *CL= (CONSIDERED LINK *)rnaIoc(!iizeof(CONSIDEREDLINK));

CL- >SLI =SL;
CL- > DIST=SL- >DIST:
CL- >SL2=SL- >PREV:
CL- >CEILINGS=SL- >CEILINGS:
CL- >VISIBILITY = 1:
CL- > BVISIBILITY = I;
CL- > NEWVISIBILITY = I.
CL- > NEWBVISIBILITY = 1:
CL-> NEXT= NULL:
CL- >MIN-SWEEP =SL- >THETA :/*set min to reflect sweep so far*/
CL->MIN Z=SL- >MINZ;
CL- >MA-XZ=SL->MAX Z:
if (CL-> SLI-> UPP ER Z >9999999.9) /*need to trunc????*/

CL- > UPPERZ=99999999999.9:
else

CL- >U PPER Z= find ceiling _z(C L):
return CLU

/* make-considered-link ~

void free-sweep Iist(SLIST)
SWEEPLINK *SLIST;

SWEEPLINK *TRASH= SLIST:

while (TRASH)(
SLIST=SLIST- >NEXT:
free(TRASH).
TRASH =S LIST:

/* end free sweep_list/

void free-clist(CLIST)
CONSIDEREDHEAD *CLlST

CONSIDERED-LINK *NEXT CL=CLIST- > LINKS.OTRASH:

while (NEXTCL)
TRASH=NEXT CL:
NEXT_-CL= NEXT CL- >NEXT:
free(TRASI-).

free(CLIST);
/* end free clist/

A-22

NOTE: These functions were used in debugging. but the), have been left
in case inspection of intermediate results is needed in the future.*/

void print_1(L)
LINE *L-;

printf("\n\nline: XI = %~.21f YI = % .2lf Zl =%.2Wf ".L- >XI.L- >YI,L- >Zl);
printf("\n X2= % .21f Y2= % .21f Z2= %.21f \n' .L- >X2.L- >Y2.L- >Z2).
fflush(stdout);

void print_llist(LIST)
LINEHEAD *LIST;

LINE *NEXTL=LIST->VLINELIST:

pintf("\n\n\nVertical lines (% d) are :\n\n",LIST- > VERTLINES);
while (NEXT-L)

print I(NEXT_)
NEXTL=NEXTL->NEXT:

printf(\ nnnnon-verlical lines (% d) are :\n\n" .LIST- > LINES).
flush(stdout);
NEXT L= LIST- > LINE-LIST;
while (NEXTL)

print_l(NEXTL):
NE.XTL=NEXTL- >NEXT:

void print sl(SL)
SWEEPLINK *SL:

printf("\n THETA=~ %.201f DIST= -%.2lf". ;-s(SL- >THETA).SL- > DIST):
printf("\n MIN_-Z= %.21f MAXZ=%.21t".

degs(SL- > MINZ).degs(SL- > MA.XZ)):
if (SL- > PREV = = NULL)

pfintf("\nWarning no previous link"),
if (SL- > NE)Cr= = NULL)

printf("Warning should be last link").
flush(stdout):

/* end print sl*/

void print_slist(SL)
SWEEPLINK *SL-.

SWEEPLINK *NEXTSL=SL:

printf("\n\nSWEEP LIST:\nn");
while (NEXT-SL)(

prnntsl(NEXT_SL);
NEXTSL=NEXT-SL- >NEXT;

A-23

void print cI(CL)
CONSIDEREDLINK *CL;

printf("\n~n MIN_Z='X.2IfMAX_-Z=SV.
degs(CL- >MINZ).degs(CL- >MAX_Z));

printf("\n\n NEWMINZ = .21f NEW_-MAX_-Z= %.21r,
degs(CL- > NEWM IN Z).degs(CL- > NEW-MAX-Z)):

printfQ"\n MIN_-SWEEP=%1.21f DIST=%1.21f.
degs(CL- > MIN_SWEEP),CL- > DIST);

printfC'\nUPPERZ: %1.21f .CL- > UPPERZ):
printf("\nOLD: VISIBLE= %d B VISIBLE= %d",CL- >VISIBILITY,CL- >B_ViSIBILITY):
printf("\nNEW: VISIBLE=% d B_-VISIBLE%d",

CL- > NEW VISIBILITY.CL- > NEWBVISIBILITY);.
print sI(CL- >SLI):.
print -sl(CL- > SL2);

/*end print ci */

void print-clist(CLIST)
CONSIDERED-HEAD *CLIST:

CONSIDEREDLINK *CL=CLIST- > LINKSi

printf("\n\nConsidered list (THETA=%. .21f): \n\n".de.s(TH ETA)):
while (CL)(

print_cl(CL-):
CL=CL- >NEXT;

/* end print clist 0/

/* Sweep links are added to the list in order of their THETA values*/

SWVEEP-LINK *add-sweep linkd(LIST.LINK)
SWEEPLINK *LIST, *LINK:

SWEEPLINK *TEMP-.

if (LIST)
TEMP=LIST:
if (TEMP- >THETA > LINK- >TH ETA)

LINK- > NEXT= LIST:
LIST= LINK:. /* inserted as Ist element *

else
while ((TEMP- > NEXTr)&&(TEMIP- > NE.XT- >THETA < = LINK- >THETA))

TEMP=TEMP- > NEXT:

LINK- > NEXT=TEMP- > NEXT:
TEMP- > NEXT = LINK;

/0 end else
) 1 end if/

else
LIST= LINK; /0 is first element to add to list *1

return LIST;
f* end add sweep link

A-24

/* This function scans through the entire world model (W). A sweep link is
made for each vertex of the model. The angle from the observer (global
variable) to the vertex is calculated and used to sort the links.
When a link is made, we also inspect its - > VERTEDGE pointer to see
if a vertical line leaves it. Calculate-zecoverage uses the height of
this vertical line to determine coverage of the vertex along the z-axis.

Each sweep link has its PREV pointer assigned to indicate the link
which preceeded it in the polygon list. In latter processing only sweep
links with a ccw relationship to this PREV link will be considered as
visible.

Since we will latter require all floors residing above the observer and
all ceiling below them to be visible, we inspect each polygon for these
properties. When a polygon satifies one of these, it's vertices are
processed a second time in reverse order. This ensures that every edge
of the polygon will swho up as a ccw CONSIDEREDLINK.
*/

SWEEPLINK *make sweep list(W)
WORLD *W;

SWEEP LINK *SWEEPLIST= NULL.*NEXTL,*LAST-L,*FIRSTL:
POLYHEDRON *NEXT PH:
POLYGON *NEXTPG:
VERTEX *NEXTV. *LASTV.
INSTANCE *NEXT_I. *LASTI.

NEXTPH =W- > POLYHEDRON LIST:
while (NEXT PH) (

NEXTI=NEXTPH- > INSTANCELIST:
while (NEXTI)

NEXTPG =NEXTPH- > POLYGONLIST:
while (NEXT PG) (

NEXT_V=NEXTPG- >VERTEX LIST:
NEXTL=make-sweeplink(NEXTPHNEXTPG.NEXT_V.NEXT_I,

NEXTPG- > ZVALUE):
SWEEPLIST=add_sweeplink(SWEEPLIST.NEXTL):/*make and add links*/
FIRSTL=NEXT_L;
LAST_L=NEXTL;
NEXT_V=NEXTV- >NEXT:
while (NEXT V) {

NEXTL'= makesweeplink(NEXT PH. NEXTPG.NEXT_V.NEXTI.
NEXTPG->ZVALUE):

NEXTL->PREV=LASTL:
SWEEP_LIST =addsweep_link(SWEEP_LIST.NEXTL):
LASTL=NEXT_L:
NEXT_V=NEXT V- >NEXT:

)/* end while */
FIRSTL->PREV=LASTL: /* add line which closes polygon */

/* Make entire polygon ccw so it may be visible */
if ((((NEXT PG- >Z VALUE+ NEXT I- > Z < Z)&&(NEXTPG- > FLOOR = =0)):

((NEXTPG- > Z_VALUE+ NEXT l- > Z > Z)&&(NEXT_PG- > FLOOR==1)))::
((NEXTPH- > OBSTACLE= = 0)&&(NEXT PG- > FLOOR ==0)))

A-25

/0 To cut down on processing time the above if statement can be commented
out and the below one used. This. has the effect of assuming a model

is composed of only large objects (observer doesn't look down or up to them).
We still must make enclosure ceiling visible since items such as door jam
ceilings will not always be above the observe*/

if ((NEXT_PH- >OBSTACLE= = 0)&&(N EXT_PG- > FLOOR = =0)) *

NEXT_-V=NEXTPG->VERTEXLIST:.
NEXTL=make-sweep Iink(NEXT_-PH-.NEXT_-PG.NEXT_-V.NEXTI.

NEXTPG->ZVALUE):
if ('((NEXT_PH- >OBSTACLE= =0)&&(NEXTPG- > FLOOR = =0)))(

NEXTL->MAX -Z=NEXT_-L->MINZ; Make away height if any~j
NEXTL- >CEILINGS= =NULL.
NEXTL- >UPPER-Z= NEXTL- >Z-.

FIRSTL=NEXTL:
NEXTV= NEXTV-> NEXT;
while (NEXT -V)

LASTL~make sweep Iink(NEXT_-PH.NEXT -PG,NEXT_-V,NEXTI.
NEXT PC- >Z-VALUE),

if (!((NEXT_-PH-- > OBSTACLE= =0)&&(NEXT PG- > FLOOR = =0))){
LAST_-L->MAX -Z =LAST_-L- > IIINZ:/*take away height if any*/
LASTL- > CEILINGS= = NULL;
LASTL- >UPPERZ =ZLAST L- >Z:

NEXT_-L- >PREV =LAST L:
SWEEP_-LIST= add sweep link(SWEEP-LIST.NEXTL);
NEXT_-L=LAST-L:
NEXTV=NEXT-V- >NEXT.

NEXT L- >PREV =FIRST-L:
SWEEPLIST =add_sweep link(SWEEPLIST.NEXTL):

NEXT -PG =NEXT-PG- > NEXT:
/* end while NEXTPG'(

NEXT-I= NEXTJ- >NEXT-.
/* end while NEXT I *I

NEXT_-PH=NEXTPH- >NEXT-.
/* end while NEXTPH ~

return SWEEP-LIST.
/* end make sweep_list/

A-26

/* Searches considered list (CL). if sweep link (SLINK) is the 2nd endpoint
of an edge. that edge is returned to complete its processing. If no
match is found a null pointer is returned*/

CONSIDEREDLINK wtnder-consideratiou(SLIN*K.CL)
SWEEP-LINK *SLINK.
CONSIDEREDHEAD *CL:

CONSIDERED-LINK *NEXT CL =CL- >LINKS.

while (NEXTCL)
if (NEXTCL- >SLI = =NULL)

printf("\nWarning CL witht no SLI).
if (NEXT_CL->5L2= =NULL)

prnrf("\nWamin- CL with no SL2").
if (NEXT CL- >SL2= =SLINK)j

return NEXT_CL:, /* retrun pir if in lit/

else
NEXT CL= NEXT CL- >NEXT:

return NEXT CL; /* returns NULL if not in list ~
/* end under-consideration */

/* Determine the point of intersection along CLs edge which occurs with
the ray originating iroin the observer's position (X.Y.Z) along ANGLE.
The distance te this intersection ios also falculated.

NOTE: Intersection and distance are returned by reference in variable
addresses INTX.INT Y and DIST.

It is assumed an intersection does take place (dictated by usage
in algorithm).*/

void line-ray_intection(CL.ANGLE.INTX.INTYl.I)IST
CONS IDEREDLINK *CL;
double ANGLE.INTX. INT-Y.*DIST.

double XX.YY-. /*values at intersection
double dx.dy: /*delta values*/
double MLINE,M RAY: /*slope of line and ray*/
double BLINE,BRAY: /*y-intercepts*/

dy=CL->SL2- >Y-CL- >SLI- >Y:
dx=CL- >SL2- >X-CL- >SLI- >X;
if ((ANGLE= =CL- > SLI- >THETA)&&(ANGLE= =CL- > 5L2- >THETA))({

if (CL->SLI->DIST< =CL- >SL2- >DIST)
XX=CL->SLI->X;
YY =CL-> SLI -> Y.
*DIST=CL- >SLI- > DIST.

else { /colinear cases*/
XX=CL->SL2->X;
YY-CL->SL2->Y;
*DIST=CL- >SL2- > DIST:

else
if ((ANGLE- =90.0): 1(ANGLE= = I180.0)) (/*ray has no slope*/

XX=X.
M LINE-dv/dx;

A.-27

YY =M LINE*XX + (CL- > SLI - > Y-(M_LINE*CL- > SLI - > X));

else
MRAY=tan(ANGLE):
B_-RAY=Y-MRAYOX;
if (CL->SLI->X= =CL- >SL2- >X) (/fline has not slope *1

XX =CL-> SLI -> X;
YY=MRAY*XX+BRAY;

else 1* both line and ray have a slope1
M -LINE~dy/dx;
B_LINE=CL->SLI-> Y-M -LINE*CL->SL1->X:
XX =(BLINE-B RAY)/(M_RAY-M_LINE):
YY=M-RAY*XX+B RAY.

/* end else */
/0 end else */

DIST= trunc(sqrt(pow(XX-X.2.0) + pow(Y'Y-Y.2 .0))) ; /assign distance/
/* end else */

*INT_-X=trunc(XX): /*assign x-y coordinates of intersection*/
*INTY=tninc(YY);

/* end line ray intersection *1

f* Searches currently accepted lines. If L duplicates one of these. a I is
returned. Duplications will naturally occure since each vertical line is
common to 2 edges. */

int duplicate-vert-line(L.LIST)
LINE *L;
LINEHEAD *LIST;

int DUP=0:
LINE *NEXTL=LIST-> VLINELIST;

while (NEXTL)
if ((L->XI ==NEXT_-L->XI)&&(L->YI = =NEXT_L->YI)&&

(L->ZI ==NEXT L->ZI)&&(L->Z2= =NEXT L->Z2))
DUPI;L

NEXTL= NEXT_L- >NEXT:

return DUP;
/* end duplicate yert line *

void add-veil -line(CL,SL.LIST)
CONSIDEREDLINK *CL:
SWEEP-LINK *SL-
LINEHEAD *LIST;

LINE *NEW-LINE=(LINE*)malloc(sizeof(LINE)):
double len;

len-SL->DIST;
NEW LINE- >XI =SL- >X-.
NEW LINE- >YI=SL-> Y;
NEWLINE- > MODEL X -SL- >X;
NEW LINE- >MODELY = L- > Y.
if (CL- >MIN-Z > =SL- > MINZ)

NEWLINE-> Z = tan(CL- >MINZ)lecn +Z; /*clipped short*/

A-28

else
NEW -LINE-> ZI =tan(SL- >MINZ)*len+ Z:

NEW LINE- >X2=SL- >X:
NEW LINE->Y2=SL->Y:
if (CL- >MAX-Z< =SL- >hMXZ)

NEWLINE-> Z2=tan(CL- >MA.XZ)*Ien+ Z: /*clipped short*/
else

NEW_-LINE- >Z2=tan(SL- >MAXZ)lensZ:
NEW LINE- > NEXT= NULL;
if (duplicate_veil_line(NEW_-LINE,LIST)= =0)(

LIST- > VERTLINES+ +;
if(LIST-> VTAIL) (

LIST- >VTAIL- >NEXT = NEWLIN E: /*add as last vert, line*l
LIST- > VTAIL =NEWLINE,

else
LIST-> VTAIL= NEWi'LINE: I* 1st vertical line added */

LIST- >VLINELIST=NEW LINE:

}/* end if*~/
else

free(NEWLINE):
/* end add_vert_line *1

1* Adds only bottom edge of a considered link (CL). Lines are only accepted

from their MINSWEEP angle to the current sweep angle (THETA).*/

void addIine(CL.LIST)
CONSIDERED-LINK *CL:
LINE-HEAD *LIST;

LINE *NEW-LINE:
double IX.IY.DIST:

/*DIST req for call to intersection but value not used*/
/*bottom line is visible and not just a single point*/
if ((CL-> BVISIBILITY ==I)&4&(my abs(CL- > MNSWEEP-THETA)> 0.0001))(

NEW-LINE= (LINE *)maloc(sizeof(LINE)):
NEW LINE- >NEXT= NULL:
LIST- > LINES + +:
if (LIST-> TAIL) (

LIST- >TAIL- >NEXT= NEW LINE: /* add non-vertical line*/
LIST- >TAIL= NEW-LINE;

else
LIST- >TAIL=NEWLINE; I' 1st non-vertical line added*/f
LIST-> LINE LIST=NEWLINE:

/* rand first endpoint to accept*/
line -ray intersection(CL.CL- > MIN-SWEEP.&IX.&IY.&DIST).
NEW LINE- >X I = X.
NEW LINE- > YI = Y;
NEW LINE- >Z I =CL- >SL I- >Z:

/find second endpoint/
line -ray interaection(CL,THETA.&IX,&IY.&DIST):,
NEW LINE-> X2-= X:,
NEW LINE- > Y2 = IY;
NEW LINE- > Z2 = CL- > SL2- > Z:

/*Iend if*/
CL- >MIN SWEEP=THETA:
/*1'end add-line *1

A-29

1* This fuznction calculates distances from the observer along the current
THETA to each edge on the considered list. Distances~ do not account for
z infromation (height). but reflect straight line distance to the
intersection lying in the x-y plane./

void calculate distanees(CLIST)
CONSIDEREDHEAD *CLIST:

CONSIDERED -LINK *NEXT CL =CLIST- > LINKS.
double IX.IY. /*pointers and values at intersection/
double DIST, /*distance to intersection values*/

while (NEXT L)j
line ray -intersection(NEXT_-CL.THETA.&IX,&IY.&DIST);,

NEXTCL- >DIST=DIST;
NEXT_-CL=NEXTCL- >NEXT-.

I* end while */
/* end calculate-distances *

1* When a link is put on the considered list, we must determine how much of
it is blocked from view (along the z axis) and what affect it has on
more distant edges.

Notice that ease 2 is not accounted fior since we are dealing with a
wire frame representation.*/

void calculate -visibility add(CLINK.CLIST.LLIST)
CONSIDEREDLINK *CLINK:
CONSIDEREDHEAD *CLIST;

LINEHEAD *LLIST:

CONSIDEREDLINK *CL=CLINK- > NEXT.
mnt TYPEOCCLUSION:

if (CLINK-> NEW-VISIBILITY==1) (/-if visible it may occlude others*/
while (CL)I

if (CL- >NEW -VISIBILITY = = 1) (/*can only block visible lines*/
TYPE OCCLUSION =occlusion(CLINK.CL):

switch (TYPEOCCLUSION)(
case 4: /totally occluded*/

CL- > NEW-VISIBILITY =0-.
CL- >NEWBVISIBILITY =0:
break:

case 3: /*bottom occluded/
CL- >NEWBVISIBILITY =0-,
CL- >NEW-MIN-Z= CLINK- >NEWMAXZ:
break,

case 2:
CL- >NEW_MIN_Z-CLINK- >NEWMAXZ:.
break;

case 1: /*top occluded*/
CL- >NEW MAXZ ZCLINK- >NEWMIN_Z;
break;

}/*end switch*/
/*1end if */

CL'.CL- >NEXT;

/*end while*~/
/*1end if*~/

/0I end calculate-visibility~add/

A-30

/* Calculate the visibility of the vertical edge (if any) residing on the
2nd endpoint of a link which is being passed by the sweep (thus removed
from the considered list)*/

void cakvisremove(CL.CLIST)
CONSIDERED-LINK *CL
CONSIDERED-HEAD *CLIST,

CONSIDEREDLINK *NEXTCL = CLIST- > LINKS:
int TYPEOCCLUSION;

/*now calc visibility bounds of SL2"s vertical line if there is one*/

if (CL- > SL2- > V- > VERT-EDGE) (
while ((CL! = NEXTCL)&&(CL- > NEW-VISIBILITY= 1)) 4

if (CL- > SL2- > THETA = = NEXT CL- > SLI- >THETA)
TYPEOCCLUSION=O:

else
TYPEOCCLUSION = occlusion(NEXTCL.CL),

switch (TYPEOCCLUSION)
case 4:

CL-> NEWVISIBILITY =0:
break:

case 3: case 2:
CL- > NEWMIN_Z= NEXTCL- > NEWMAXZ:
break:

case I: /*top of B occluded*/
CL- >NEW_MAX_Z=NEXTCL- > NEWMINZ:
break:

S/*end switch*/
NEXT CL=NEXTCL- >NEXT:

/* end while */
CL-> VISIBILITY = CL-> NEWVISIBILITY:

CL->MIN Z=CL->NEWMINZ:
CL->MAX Z=CL-> NEWMAXZ:

S/* end if*/
else

CL- >VISIBILITY=0;
/* end calevis remove */

/* If visibility has been altered from last time. we must accept lines which
were already visible and reset the value of MIN-SWEEP to reflect where along
the edge these new values start.*!

iut visibilityjchanges(CL)
CONSIDERED-LINK *CL:

int CHANGES=0:
double EXPMIN_Z, EXPMAXZ: /*expected coverage based on perspective*/

EXPMIN_Z-trunc(atan((CL- > SLI - > Z-Z)/CL- > DIST)):
EXPMAX_Z= tnInc(atan((CL- > UPPERZ-Z)/CL- > DIST)):

if (CL- > VISIBILITY! = CL- > NEW-VISIBILITY)
CHANGES+ + :

if (CL- > BVISIBILITY! - CL- > NEW_B_VISIBILITY)
CHANGES+ +;

if (EXPMIN Z!=CL->NEWMIN_Z)
CHANGES + +:

if (EXPMAXZ!=CL->NEWMAX_Z)
CHANGES+ +;

return CHANGES;

A-31

void update-visbflty(CLIST,LLIST)
CONSIDERED HEAD *CLIST
LINEHEAD *LLIST;

CONSIDERED-LINK OCL =CLIST- > LINKS;

while (CL)
if (visibility changes(CL) = 0){

if ((CL- > B VISIBILITY = = I)&&(IN_MAIN))
add line(CL.LLIST):

CL- > VISIBILTY =CL- > NEWVISIBILITY;
CL->B BVISIBILITY =CL- > NEW B-VISIBILrrY:.
CL- >MIN = CL- >NEWMINZ:
CL- >MAX-Z=CL- >NEWMAXZ.
CL->MINSWEEP=THETA: /*values only affect here on*/

CL=CL->NEXT;

/* Visibility must be periodically recomputed to account for the effects of
perspective as the sweep progresses around 360 degrees.*.'

void recosnpttte-Visibiity(CLIST.LLIST)
CONSIDERED-HEAD *C LIST
LINEHEAD *LLIST:,

CONSIDEREDLINK *CL=CLIST- > LINKS:

calc-current3.coverage(CLIST); /*will change due to perspective*,'
while (CL) (/*add each link again*/

calculate -visibiltyadd(CL.CLIST.LLIST):
CL=CL->NEXT:

update visibility(C LIST,.LLIST); /*see if changes occured*/
}/* end recompute-visibility */

1* Add a new link to the considered list (sorted by distance from observer
in the x-y plane). If a vetical edge resides on the links first endpoint
accept it based on the edges computed visibility*/

void add-consideredI ink(CL.CLIST.LLIST)
CONSIDEREDLINK *CL-:
CONSIDERED-HEAD *CLIST;

LINEHEAD *LLIST:

CONSIDERED-LINK *N EXT CL=CLIST- > LINKS.

if (CLIST- > LINKS) I /*ecalc distances for insent'
calculate-diatances(C LIST);
if (CL- > DIST < NEXT CL- > DIST)

CL- > NEXT= CLIST- > LINKS;
CLIST- >LINKS =CL; /*add as I1st element*/

/*I'end if*/1
else {

while ((NEXTCL- >NEXT)&,&(NEXTCL- > NEXT-> DIST <CL- >DIST))(
NEXT CL= NEXT CL- >NEXT;

fkeep ones leaning in towards camera I1st on lit/
while (((NEXT CL- > NEXT)&&(NEXTCL- > NEXT- > DIST =CL- > DIST))&&

(ccw2(CL- > SLI ,CL- > SL2.NEXT CL- > NEXT- >L)) SU

A-32

NEXT CL=NEXT-CL- >NEXT;

CL- > NEXT=NEXT CL- >NEXT:
NEXT CL- >NEXT= CL:

1' end else */
recompute visibilitv(CLIST.LLIST):
)/*end if*/

else
CLIST- >LINKS =CL. /*I st element added to nill list*/
CL- >VISIBILITY = 1; /*so must be visible*/
CL- > B VISIBILITY = I:- /*so must be visible*/

if ((INMAIN)&&(((CL- > VISIBILITY = I)&,&(CL- > MINZ < CL- > MAX_ Z))
&&(CL- > SLI - > V- > VERTEDGE)))

add_verl_line(CL.CL- >SLI.LLIST):
/' end add_considered-link '

/* Remove a CL from the list*/
void remnove cl(CL.CLIST)

CONSIDEREDLINK 'CL:
CONSIDEREDHEAD *CLIST:

CONSIDEREDLINK 'NEXTCL=CLIST- > LINKS:

if (CL= = NEXTCL) (/0 removing 1st link ~
CLIST- > LINKS = NEXTCL- > NEXT:
free(CL-): /*deallocate memory*/

else
while ((NE.XTCL- >NEXT)&&(NEXTCL- > NEXT!= CL))

NEXTCL=NEXT CL- >NEXT.

if (NEXT CL- > NEXT)
NEXT CL-> NEXT=CL- >NEXT:
free(CL): /'desllocate memory'/

/* end else*/
/' end remove ci 'I

/* The sweep has progresses to the end of link CL. We need to inspect the
visibility and accept both the bottom edge and vertical line (at 2nd
endpoint) if required.

Once this is done. visibility of the entire considered list (CLIST)
must be recomputed to account for perspective and the deleted edge'!

void complete - ine(CL,CLIST.LLIST)
CONSIDERED LINK 'CL;
CONSIDEREDHEAD *CLIST.
LINE-HEAD 'LLIST;

LINE OL-

if ((CL- > VISIBILITY = I)&&(CL- > BVISIBILITY 1))
addI ine(CL,LLIST). /*also cheeks for and adds right veil line*/

calculate-distances(CLIST):
calccurrcnt-zcoverage(CLIST);
calc-viasremove(CL.CLIST):.
if ((CL- > L2- > V- > VERTEDGE)&&(CL- > VISIBILITY 1))

add vet ine(CL.CL- > SL2,LLIST):
remove cl(CL,CLIST); /*if not visible no changes needed before removal'!
recompute visibility(CLIST,LLIST):.

/*I end complete-line '

A-33

1* These occlusion codes apply if both links begin at the same vertex1t
int overlay ocdtsion(F,B)

CONSIDERED-LINK *F. *B;

int TYPE=0; /*default is no occlusion occurs*/
if (F- > NEW MIN Z < = B- > NEW MINZ)

if (IT> NEWMAXZ > =B- >NEWMAXZ)
TYPE=4-: 1 totally occluded*!

else
if (F->NEWMAX Z> =B->NEWMIN-Z)

TYPE=3: /* bottom of B3 occluded*/

}/* end if ~
elsec

if (F- >NEW_-MAX_-Z<B->NEW-MAX_Z)
TYPE=2; /*middle prtion of B occluded*/

else(
if (F- >NEWMINZ < =B- >NEWMAXZ)

TYPE= 1; /*top of B occluded*/

/* end else *

f* otherwise there is no occlusion *

return TYPE;
/* end overlay occlusion */

/* The type of occlusion imposed upon the back edge (B) by the front edge (F)
is determined: return value is 0.1.2,3. or 4 *1

int occlusion(F.B)
CONSIDERED-LINK *F. *B:

mnt TYPE=0; /*default is no occlusion occurs*/

/*No occlusion if edges fall on the same plane or are end-to-end*f
if (((F- >SLl- >THETA= =B- >SL2- >THETA) II(F- >SL2- >THETA= =B- >SLI- >THETA))~

((F- >MIN Z= =F- >MAX-Z)j (colinear(F.B))))
TYPE=0:

else (
if (((F- >SLI->DIST= =B- >SLI- > DIST)&&(F- >SLI- >THETA= =B->SLI- >THETA))

&&(B- > UPPERZ < 9999.0))
TYPE= overlayocclusion(F.B);

elsej
if (F- > NEW MINZ < B- > NEW -MINZ)

if (F- >NEW_-MAXZ>B->NEW MAXZ)
TYPE=4; /* totally occluded*/

else(
if (F- >NEWMAXZ Z>B- >NEWMINZ)

TYPE=3; /bottom of B occludcd*/

/*I end if
else {

if (F-> NEW_-MAXZ <B- >NEWMAXZ)
TYPE=2, /*middle prtion of B occluded*/

else(
if (F- >NEW-MIN-Z< B- >NEWMAXZ)

TYPE= I ; /top of B occluded*/

} / end else *

/01 end else */
/01 end else 01

/* otherwise there is no occlusion
return TYPE;

1* end occlusion/

A-34

1* This is the primary function which will be called from outside this file.
A list of sweep links is constructed based on the model (W) and the observer's
position (EYEX.EYE_Y.EYE_Z).

Next edges straddling 0 degrees are placed on the considered list (if they
are ccw). Then main processing begins and each sweep link and its predicessor
pair is inspected. If the circuit from observer to SL to prev(SL) is ccw. the
SL's are put into a considered link (CL) and added to the considered list
(CLIST).

As the sweep progresses throught the sweep links: visibility is updated.
lines are accepted, and edges are removed from CLIST (as they are passed).

OUTPUT: LINE-LIST structure pointing to 2 list of lines
(vertical and non-vertical accepted lines)

LINE HEAD *conduct_visibility_sw eep(WN.EYEX.EY'E Y.EY EZ)
WORLD *W;
double EYEXEYEY.EYE Z:.

SWEEPLINK *NEXTSL. *SWEEPLIST=NULL:
CONSIDEREDLINK *CL. *PAST_CL:
CONSIDEREDHEAD *CLIST=make:_considered_hcadO:
LINEHEAD *LIN ELIST = make_line-head:
mnt STRADDLERS=O:

INMAIN =0. /*still processing straddlers*!
X=EYE X:,
Y=EYEY:
Z=EYEZ:
SWEEP LIST= make sw.eep list(\%V):
NEXT_-SL=SWEEPLIST:

1* Add all visible straddlers*/
while (NEXTSL)

THETA=NEXT-SL- >THETA:
if ((ccw(NEXT_SL.NEXT_SL- > PREV) 1 I)&&

(NEXTSL- >THETA > NEXTSL- > PREy- >THETA))
CL=nmake-considered-link(NEXTSL):
add-considered-link(C L.CLIST. LIN ELIST);
CL- >MIN_SWEEP=0.0;
STRADDLERS= 1:

NEXT_-SL=NEXTSL- >NEXT:
/* end while */

NEXTSL=SWEEP LIST:
THETA =0.0;
INMAIN=I-.

/* Process all of sweep list*/
while (NEXTSL)

THETA=NEXTSL->THETA;
while (PASTC CL = u nder considerat ion(N EXTS SL.C LIST))

complete line(PASTCL.CLIST.LINELIST):

if (ccw(NEXT_-SL,NEXTSL- >PREV)=1)(
CL =make-considered_link(N EXTSL):
add considered link(CL.CLIST, LIN ELIST):

NEXT_-SL=NEXTSL- >NEXT-.
/*end while*/

A-35

if (STRADDLERS)i 4 have lines crossing ZERO degrees*/1
THETA =0.0.
calculate distanccs(CLIST);
CL=CLIST- > LINKS-.
while (CL)(

if ((CL- > VISIBILITY = I)&&(CL- > BVISIBILITY I)
add - ine(CL.LINE LIST);

CL=CL- >NEXT;

/*I~end if*/I
free clisi(CLIST).
free sweep - ist(SWEEPLIST);
return LINELIST

}/*end conduct visibility swecp *

A-36

/4o

FILE NAME:graphics.h
AUTHOR: Lt James Stein

PROJECT: Thesis. supporting Yaniabico- lI vision system
Date: March 1992
ADVISOR: Dr. Kanayama

COMMENTS:
This file contains the routines neccessary to support the projection of our

2d+ model world into a 2 dimensional window. This view will then he used for
pattern matching against the processed images extracted from the raw camera
data.

Two primary functions are provide: "et view and get full view

- getview calls the function conductvisibilitysweep in fic "visibility.h"
the set of output lines represents a2d proiection of all lines which should be
visible from a given position and orientation within the model world. W.

- getfull_view does not call the visibility checking function. Its output
represents all model lines which are seen if everything in the model were
transparent

- The memory deallocation function free lines is provided also. The user can
send an uneeded LINEHEAD pointer to this function for deallocation.

INPUT: Position in the model (PRPX.PRPYPRPZ)
orientation (ORIENT) with 0 degs being down the y-axis

a world (W)
focal length (FL)

The view angle of the camera is calculated based upon the camera's sensir
element size (constant CCD) and the supplied focal length (FL).
*/

/*CCD and clipping planes are in inches*/

#define CCD (2.0/3.0)
#define NEARCLIP 1.0
#define FARCLIP 5000.0
#define MAX X XMAXSCREEN /*destination device (iris screen) limits*/
#define MAXY YMAXSCREEN

/*coordinates used by pattern matching*/

/*#define MAX X 686.0

#define MAX Y 486.0
*/

double VIEWANGLE: /*width of camera's field of view in radians*!

A-37

typedef struct line(
double X I,X2.Y 1,Y2.ZI.Z2: /*will hold final 2d device coordinates*/
double MODEL_-X.MODEL -Y-, /*original c oordinates: line in the modcl*
int CLIP I 16].CLIP2I6I: /*clipping codes*/
struct line *NEXT,

LINE;

/* ------------------- ---------------------

typedefstruct line head (/*vertical lines kept separate from others*/
int LINES.VERTLINES;
LINE *LINELIST,*VLINELIST. *TI.VAL

LINEHEAD:

/* --- *

typedef struct window { /* surfac.e on which to project visible lines*/
double XMIN, XMAX, YMIN. YMAX.

ZMIN. ZMAX;
WINDOW;

/*--*

/*ORIENTATION within a world:

y
0

-x 90 -90 x

ISO
-Y

NOTE: sin and cos functions use radians as input

/* this function resides in file: visibility .h*/
LINE-HEAD *conductwisibilitysweep(WORLD*,doble.doule.dotible);

A-38

The following display functions were used in debugging. They have been
left here to aid in future inspection of variables*~/

void displavwutiidowv(1N)
WINDOW *W

int DUMMY;

printfC(nWnWindlow limits calculated: D

W- >XNIINW- >XMAX.W-> YMIN.W- >YMAX.W- > ZMIN.W- > ZMA-X):
ffush(stdout);
printf("\n\nEnter a number to continue"):

void Iprint_1(L)
LINE *L;

printf("\n X2= %~.2lf Y2= % .21f Z2- %~.2lf\n" .L- >X2.L- >Y2,L- >Z2):
fflush(stdout).

void lprintjllst (LIST)
LINEHEAD *LIST:

LINE *NEXTL LLIST-> VLINE LIST:

print f("\n\n\nVerticalI lines (%cd) are:\n\n".LIST- > VERT LINES):
while (NEXTL)

lprintl(NEXTL):
NEXTL= NEXT L- > NEXT-.

prnlf("\n\n\nnon-vertical lines ('. d) are:\n\n".LIST- > LINES):
fflush(stdout),
NEXT L = LIST- > LINE-LIST;
while (NEXT -L)f

lprintl- (NEXT_-L).
NEXTL =NEXT_L- >NEXT:

void prut-ine(L)
LINE *L;

L- >XI.L- >YI.L- >ZI.L- >X2.L- >Y2.L- >Z2):
1* end print -line 0/

void print_lineI ist(LH)
LINEHEAD *LH:

LINE *NEXTL;

NEXT L=LH->LINE LIST:
print f(*\n\nThere are %d lines: \n\n".LH- >LINES);
while (NEXTL) I

print line(NEXTL;
NEXTL=NEXT L- > NEXT;

A-39

/0 Determines absolute values for doubles./

double auyabs(X)
double X;

if (X <0.0)
X=0.O-X;

return X;

f* Find what z coordinate of the vertex, V, from the model *

float rfid z(PII,V)
POLYHEDRON *PH-, /*parent polyhedron*/
VERTEX *\7.

POLYGON *NEXTPG;
VERTEX *NEXTV;
float ZVALUE=66.6;,
int FOUND=0.PGCNT=0;

NEXT_-PO=PH->POLYGONLIST:
while ((NEXTPG)&&(FOUND==0))(Moop until parent polygon is found*/

PGCNT+ +;
NEXT V =NEXTPG->VERTEXLIST-,
while ((NEXTV)&&(FOUND= =0)) I /*oop until we find the vertex*/

if (NEXT -V= =V)(
ZVALUE=NEXT PG-> ZVALUE:

FOUND=I:.

NEXT_-V=NEXT-V->NEXT;
1* end while 1/

NEXT PG=NEXTPG- >NEXT:
1* end while */

return(ZVALUE); /*returnthe zheieht of V*/
/* end find_z */

/* calculate where the viewing window lies in model coordinaes*/
WINDOW *caic-window(X,Y.Z.ORIENTFOCALLEN)

double XY.Z.ORIENT.FOCALLEN:

WINDOW *WIN;
double IIYP;

WIN =(WINDOW *)malloc(sizeof(WINDOW)):

HYP = FOCAL LEN/cos(VIEWANGLE/2.0);
WIN-> YMIN =Y +cos(90.0*P11 0.o-ORIENT-VlEWANGLE/2.o)* HYP;
WIN-> YMAX Y +sin(ORIENT-VIEW-ANGLE/2.0) 0 HYP.
WIN-> XMIN =X+ uin(90.O*PI/I 80.0-ORIENT-VIEW ANGLE/2.0) * HYP.
WIN-> XMAX =X +cos(ORlENT-VIEW ANGLE/2.0)# HYP-.
WIN->ZMIN =Z-CCDI2.0;

WIN->ZMAX =Z+CCD/2.0O;

return WIN;
/0 end calc-window 0/

A-40

/4 Deallocate the memory uses in a line list*/

void free lines(LII1)
LINE-HEAD L0M

LINE *NEXTL. *TRASH. /*TRASH is temporary variable for freeing*/

NEXTL=LH- >LINE LIST;
while (NEXTL)I

TRASH = NEXTL:
NEXTL=NEXTL- >NEXT;
free(TRASH);

NEXT L'= LH- > VLINE LIST;
while (NEXTL)(

TRASH=NEXT L;
NEXT_-L=NEXTL->NEXT:
free(TRASKH)

free(LH) /* free parent struc:ture*
/4 end free_lines 4/

LINE -HEAD *create-line-head()

LINE-HEAD *LH

if ((LH =(LINEHEAD 4)malloc(sizeof(LINE -HEAD))) == NULL)
printf(*\n\ncannot create line head\n"):

LH-> LINES = 0.
LH->LINELIST = NULL:
LH- >TAIL =NULL.
return LHW

/4 end create line head 4

/4 Called by get full view to pull lines from the 2d+ inodel'

LINE *inake fine(l.V1,V2.Z1.Z2)
INSTANCE *1:
VERTEX *VI. *V2:
double ZI.22;

LINE *NEW LINE;
double LOCALX.LOCALY. ROTX.ROT Y. RADS:

NEW_-LINE = (LINE *)malloc(sizeof(LINE)):
NEWLINE- >NEXT = NULL;

/0 adjust all local coordinates to pivot point*/
LOCAL_-X - Vl->X. - ->PIVOTX:
LOCAL-Y = VI - >Y - I- >PIVOT Y.

/4 rotate about the z axis */
RADS = I- >ROTATION * P1 / 180.0. /4 convert degs to rads .
ROT_-X = (coa(RADS) 4 LOCALX) +(sin(RADS) 4LOCAL-Y);
ROTY = (cos(RADS)*LOCAL_Y)-(sin(RADS)*LOCALX):

/0 translate to proper poaition in world model/

NEW LINE->XI =I->X + ROTX;
NEW -LINE->YI = 1->Y + ROT Y;
NEW LINE->ZI =I1>Z + ZI;

A-41

/0 calc second vertex 01
LOCAL -X - V2- > X- I- >PIVOTX;
LOCAL Y = V2- >Y - I- >PIVOTY

/* rotate about the z axis *
RAPS = I- >ROTATION * PI / 180.0, / convert degs to rads ~
ROT_-X = (cos(RADS)*LOCAL X) +(sin(RADS)LOCAL-Y);

ROTY = (sos(RADS)*LOCAL Y)-(sin(RADS)OLOCALX):.

/* translate to proper position in world model *

NEW LINE->X2 = I->X + ROT X;
NEW -LINE- >Y2 = I- >Y + ROTY:
NEW LINE->Z2 =I->Z +4 Z2-.

return NEWLINE;
/* end make-line 0/

void addIines(LIST,L)

LINEHEAD *LIST.
LINE *L-

LINE *NEXT-LINE-.

if (LIST- >LINE -LIST= =NULL)(/*add 1%1 line to empty list*/
LIST- >LINELIST =L

LIST- >TAIL=L:.
LIST- > LINES = I;

else {/*add to end of existing list*/
LIST- >TAIL- > NEXT= L:
LIST- >LINES+ +:
LIST->TAIL=L:

/* end add-lines '

void scale line(L,SX.SY.SZ)

LINE *L;
double SX,SY,SZ;

L->Xl = L->Xl * SX;
L->X2 -L->X2 *SX;
L->YI - L->YI * SY:
L->Y2 = L->Y2 * SY:
L->ZI - L->ZI * SZ;
L->Z2 = L->Z2 * SZ:

10 end scale-line 0/

A-42

void scale wsindow(W,SX.SV.SZ)

WINDOW *W;
double SX.SY.SZ:

W- >XMIN =W- >XMIN * SX;
W->XMAX =W->XMAX * SX
W- >YMIN =W- >YNI IN *SY :
W->YMAX =W->YMAX * SY;
W->ZMIN =W->ZNIIN *SZ:
W- >ZMAX =W- >ZMAX * SZ.

/* end scale-line */

/4 shift from world coordinates to machine coordinates 4

void shift coord line(L)
LINE 'L:

double TEMPI. TEMP2:

TEMPI = L->ZI:
TENIP2 L->Z2-:
L->ZI L->Xl:
L->Z2 = L->X2:.
L->XI = L->Yl;
L->X2 = L->Y2;
L->YI =TEMPI;
L- >Y2 = TEMP2;
/4 end shift_coord-line 4

/* shift from world coordinates it) machine coordinates ~

void shift coord %indow(W)
WINDOW *W:

double TEMPI. TEMP2-

/*Z=X Y=Z X=Y~i
TEMPI = W->ZMIN;
TEMP2 - W->ZMAX:.
W->ZMIN =W->XMIN:

W->ZMAX =W->XMAX:

W->XMIN =W->YMIN;

W->XMAX =W->YMAX:

W->YMIN =TEMPI.

W- >YMAX =TEMP2-,

/4 end shift-coord window 4

A-43

/* translates a line to reflect a new origin (X.Y,Z)

void translate line(LA,XYZ)

LINE *L-;
double X,Y,Z;.

L->I+=X
L->XI + =X;

L- > Y + = Y-,
L- >Y2 + = Y,
L->ZI + =Z;
L->Z2 += Z-,

/END TRANSLATELINE -1

I* translates a window to reflect a new orig-in (X.Y.Z)/

void traslate-window(W.X.V.Z)

WINDOW *W:
double X.Y.Z;

W->XMIN += X;
W->XMAX += X:
W->YMIN += Y:
W->YMAX += Y;
W->ZMIN += Z:
W->ZMAX += Z;

/* END TRANSLATEWINDOW '

/* rotate about the vertical axis/

void rot z(L.ORIENT)

LINE *L;
double ORIENT-.

double XI =L- > Xl.
X2=L->X2.
Y I = L-> Y)I.
Y2=L->Y2;

L- > Xl I= X I coa(ORIENT)-Y I *sin(ORIENT);
L- > X2 - X2*cos(ORIENT)-Y2*in(ORIENT);
L- > Y I - Y I cos(ORIENT) + X I Osin(ORIENT).
L- >Y2 = Y2*cos(ORIENT)+X2sin(ORIENT);

* /end rot-z0/

A-44

/* rotate the window about the vertical axis 4

void rot-window(W,ORIENT)

WINDOW *W;
double ORIENT;

double XMIN=W- >XMIN.
XMAX =W- >XIA.X.
YMIN=W- >YMIN.
YMAX=W- >YMA-X.

W- >XMIN =XMINcos(ORIENT)-YMIN~sin(ORIENT):

W- >XMAX =XMAXcos(QRIENT)-YMAX~sin(ORIENT):

W- >YMIN =YMIN~cos(ORIENT) +XMINsin(ORIENT);
W- >YMAX =YMAXcos(ORIENT) +XMAX~sin(ORlENT).

/*en f 4 t-z */

/* adjust size of line to reflect change in size due to
distance from the viewing window's plane4/

void perspective-transfonni(L.LNIIN')
LINE *L:

double ZMIN:

double WI =L- >ZI/ZMIN .W2= L- > Z2/ZNIIN:

L- > Xl=L- > XIl I
L~- >Y I=L- >Y IAPV I;
L->ZI =L->ZIIWI:

else
pfintfR"\nERROR -- tried to divide by WI =On:

if (W2! =.0) (
L- >X2=L- > X2W2;
L->Y2=L->Y2/W21

L->Z2=L->Z2fW2:

else
printf("\nERROR -- tried to divide by W2O\n")-

/* end perspective-transform/

A-45

/0 Calculate the clipping codes for line L. */

void getclippingjodes(L,ZMI1N)
LINE OL;
double ZMIN:

ins i;

for (i=0;i< =5;+ +i) {
L- >CLIPIij=0;
L- >CLIPi-[i] =0;

if (L->YI >-L->ZI)
L- >CLiPIIO = 1.

if (L- >YI <L- >Z1)
L- >CLIPI[I = 1;

if (L->XI >-L- >Z1)
L- > CLIPI[21= 1;

if (L->XI <L->Zl)
L->CLIPI[3]=1;

if (L->Z1 <-I.0)
L- > CLIPI [41 = 1:

if (L->ZI >ZMIN)
L- >CLIPI [5]= 1.

if (L- > Y2 > -L- > Z2)
L- > CLIP2[01 = I ;

if (L- > Y2 <L- > Z2)
L- >CLIP2[I I]= 1

if (L- > X2 > -L- > Z2)
L- > CLIP2[2] = I

if (L- > X2 < L- > Z2)
L- >CLIP2[31 = I:

if (L- >Z2 < -1.0)
L- > CLIP2I41 = 1.

if (L- >Z2 >ZAIN)
L- > CLIP2[51 = 1:

/* end getclippingcodes /

/* Clips will determine new increments (TE and TL) along line
being clipped */

void clip(NUM.DENOM.TE.TL)
double NUM. DENOM:
double *TE, *TL;

double t;

if (DENOM <0.0)
t= NUM/DENOM;
if (t > *TL)

--t;
else

if (t > -TE)
*TE-|;

if (DENOM >0.0)
= NUM/DENOM;

if (t < *TE)
t=t;

else
if (< OTL)

A-46

*TL =t-:

)/* end clipt

/0 Parametric equations of' line are used to clip it against the
canonical view volume*/

void cip_line(L.ZM1IN)
LINE *L-
double ZMIN.

double dx. dy, dz,
double TMIN=O.O. TMAX= IAO

dx = L- > X2-L- >X 1;
dy= L- >Y2-L- >YI;
dz= L- >Z2-L- >ZI;

clipt((-L- >X I-L- > ZI),(dx-4dz).&TMIN.&TMA.X);
clipt((L- > X l-L- > ZI).(-dx+ dz).&TMIN.&TMAX);
clipt((L- > Y l-L- > ZI).(-dy +dz).&TMIN .&TMAX):
clipt((-L- > YI-L- > ZI).(dy +dz),&TMIN,&T4A-X):
clipt((-L- > ZI + ZMIN),(dz).&TNIIN.&TMAX):
clipt((-L- > ZI -I1)(-dz).&TMIN.&TMAX);
if (TMAX < 1)4(/* endpoint adjusted *

L->X2 = L->XI + (TMAX*dx):
L->Y2 = L->YI + (rMAX*dy):
L->Z2 = L->Zl + (TMAX*dz);

/* endpoint adV ised ~
if (TMIN>O0) (
L->XI = L->XI + (TMIN~d
L->Yl = L->YI + (3I"J' y.y
L->ZI = L->ZI + (TNIINdz):

/* end clip line

/* COMPARES POSITION OF LINE TO VIEW VOLUME:
returned codes: 0 outside of' view volume

I partially inside volume
2 entirely in view volume

int clip line_3d(L)
LINE OL;

int INVOLUME =I,i.C I = 0C2=0;

for (i0;i< =5;+ +i)
CI + =L- >CLIP I[i 1;
C2 + = L- >CLIP2[IiI:
if ((L- >CLIP I I= = 1)&&(L- > CLIP2[I= =i)

IN-VOLUME=0;, 1 outside view volume *1

if ((IN_VOLUME= = 1)&&((CI = =0)&&(C2 = =0)))
IN-VOLLJME=2; /*entirely in view volume*/

return IN VOLUME.
1* end clip line 3d *

A-47

/0 Maps the final line coordinates (from the canonical volume) to
the desired destination device coordinates.
MAX_-X and MAX-Y are declared at the top of this file and can be
modified as needed*/

void map-to screen(L,XMfINVNMIN)
LINE $L;
double XMINYMIN:.

L-> Xl = myabs((L- > Xl XMIN)/(2*XMIN)*MAXX);
L- >X2 = myabs((L- >X2-XMIN)/(2*XMIIN)*MAXX):
L- >Y I = myabs((L- >Y I-YMIN)'(2*YM N)MAXY);
L->Y2 = myabs((L->Y2-YMlN)/(2YMIN)*MAXY);

I* standard limits on inis are: 1279.0. 1023.0*/
)/1 end map to screen */

/* A raw line goes thru the normalizing transfon-nation and clipping.
A I is returned if line was not totally clipped out of view ~

int project line(X.Y,Z.ORIENT.L, .WI .FL,)

double XYZ.ORIENT-.
LINE *L;
WINDOW *W.*WI:

double FL-.

double ZMIN.SCALEX .SCALEY.SCALEZ.VRPZ:
mnt USEDLINE=1. CLIPr:
double fi = 1.24;
double XL YI I.XTEMP.YTEMP;

translate-line(L.-W- > XMIN,.W- >YMIN .-WA- > ZhIN);. IMak,: VRP origin*/
rot z(L.-ORIENT):
Xl =X-W->XMIN: /*TRANSLATE and rotate the camera position*/
Y I = Y-W- >YMIN;
Z I = Z-W- >ZMIN.
XTEMP=XI;
YTEMP=Yl.
X) = XrEMPcos(-ORIENT)-YTEMIP*sin(-ORIENT).
YI = YTEMPcos(-ORIENT) +XTEIPsin(-ORIENT):

translate line(L.-X I.-YIl.-ZI1):
/* change from world to view coords */

/* shear so view volume centered on z-axis is not needed*/

/* now scale view vol to unity using sper *1
/* NOTE: FAR-CLIP is global value */

VRP-Z = -YI; /*since still in world -.oords*/
SCALEX = 2.0OVRP -Z/((WI - > XMAX-WlI- > XMIN)*(VRP Z + FARCLIP)):
SCALEY = 2.0*VRP -Z/((WI- > YMAX-WI- > YMIN)O(VRP-Z+FARCLIP)):
SCALEZ = -Il.0/(VRPZ +FARCLIP);
shift coord line(L);
scale line(L,SCALEX,SCALEY.SCALEZ):
ZMIN-SCALEZO(VRP-Z+ NEARCLIP);
get clipping_codes(L.ZMIN)-.
CLIVr=clip_line_3d(L); /*see if any of line is showing*/
if (CLIPT! = 0) (/*if so clip off unwanted parts*/

if (CLIPT = = 1)
clip line (L.ZMIN);

A-48

perspectivetransforn(L.ZMIN). /*project onto window*/
map to sceen(L.ZNIIN,ZMIN): /*map to device coords*/

else
USED LINE=O:

return USED LINE: /let caller know if line accepted or not*/
I' end project-line */

/* Remove unwanted lines from final list. Notice that this is only used by
gel view to filter out the set of line returned from condu,:t visibility sweep*/

void remsoveIine(L,LII)
LINE *L;
LINE-HEAD *LH

LINE *NEXTL= LH- >LINE-LIST, *TRASH:

if (L= =LH- >LINELIST)(
LH- > LINELIST= LH- > LINE LIST- > NEXT:
free(L);

else
while ((NE.XTL- > NEXT)&&(NEXT_-L- > NEXT! L))

NEXTL L=NEXT_L- >NEXT:

NEXT -L- > NEXT = NEXT L- >NEXT- > NEXT:
f'ree(L):

LH- > LINES--
/* end remove-line */

void remove -vert-line(L.LII)
LINE *L;
LINEHEAD *LH;

LINE *NEXTL=LH- >VLINELIST. *TRASH:

if(L==LH->VLINE LIST)(
LH- >VLINELIST=LII- >VLINELIST- > NEXT:
free(L):

else4
while ((NE.XTL- > NEXT)&&(N EXT L- >NEXT! =L)){

NEXTL=NEXTL- >NEXT.

NEXT -L->NEXT=NEXT L- >NEXT- >NEXT:
free(L);.

LH- >VERT LINES---.
/* end remove-veil line ~

A-49

/* Called from outside the file. This function calls conduct visibility_sweep
(file visibility.h) to generate a list of lines which may be visible froin
the camera position (PRPX.PRPY.PRPZ). The returned lines arc then inspected to
determine if they fall within the camera., field of vision (view volume' Those
that don't are removed from the list. Those that are seen are projected into
2d coodinates and mapped to an output device (i.e.- an iris screen). The camsera
field of vision is determined by focal length (FL) parameter and the CCD size
declared at the top of this file.

INPUT: camera position PRPX,PRPY,PRPZ
camera orientatiunon ORIENT (0.0 is down y-axis of model)
target world pointer W
camera focal length FL

LINE h1EAD *getviewv(PRPIX,PRPY,PRfL.ORIEN'T.W%,FL)

double PRPX.PRPY,PRPZ.ORIENT,FL-:
WORLD *W

LINE *NEXT-L.*TRASH:.
LINE-HEAD *LH M~ist of visible lines*,'
WINDOW *WIN. *WI.
double ZI. Z2. XX. YY, ZZ. XTEMP. YTEMIP:
int count =0:

VIEWANGLE=2.0*atan(CCD!(2.0*FL)).
ORIENT= ORIENT* Pill 80. 0: /* onvert ito rads*1
WIN =calc window(PRPX.PRPY .PRPZ.ORIENT.FL): 1*2nd window for reference*/
Wi calc window(PRPX .PRPY.PRPZ.ORIENT.FL):
translate-window(WI .-(WIN- >XMIN).-(WIN- >YMIN).

-(WIN- > ZMIN)):
rot-window(WI .-ORIENT):
XX=PRPX-WIN- >XMIN /*calculate PRP'*,'
YY=PRPY-WIN- >YMIN:
ZZ=PRPZ-WIN- > ZMMN
XTEMP XX:.
YTEMP= Y'Y
XX = XTEMP*cos(-ORIENT).YTEMIP*sin(-ORIENT):
YY = YTEMPcos(-ORIENT) +XTEMIP*sin(-ORIENT):.
translate_window(WI.-XX.-YY.-ZZ):

/*shift from model to graphics coordinates*/
shift coord window(W I):

/*Get the set of all lines which may be visible*/
LH =conduct visibility sweep(W, Pktr'X.PRPY'.PRPZ):
NEXT -L=LH- >VLINE LIST:
while (NEXTL)

if (project Iine(PRPX.PRPY.PRPZ.ORIENT.NEXTL.WIN.WI .FL) 1) I1
TRASH=NEXTL:
NEXT L=NEXT L->NEXT:
remove-veil-line(TRASH.LH); /*delete unseen lines*/

else
NEXT L=NEXT L- >NEXT.

/* end while *

NEXTL=LH->LINE LIST:
while (NEXTL)I

if (project line(PRPX.PRPY.PRPZ.ORIENT.NEXT L.WIN .W I FL)' = 1)
TRASHl=NEXTL;
NEXT -L=NEXTL- >NEXT-.
remove-line(TRASH.LH): /*delete unseen lines*/

else

A-50

NEXT L=NEXT L- >NEXT;

)/* end while 5

free(W~IN)-; /5 deallo ;at memo1(ry*/
free(WOI:
return LMI /*return list of' lines seen (in final devij:e coords*/

/* end get view */

/* This function operates exactly like get view except that no call is made
to conduct -visiblity sweep. Instead the model is stepped through and
make Tline is called to construct each line from the model. The resulting
output is a list of all model lines (as if' everything was transparent).*/

LINEIEAD *get fufl_viem(PRPX, PRPY,PRPZ, ORIENT, W, FL)

double PRPX.PRPY,PRPZORIENT.FL;
WORLD *W.

POLYHEDRON *NEXT_PH:
POLYGON *NEXT PG:
VERTEX *NEXTV.

INSTANCE *NEXTIL
LINE *NEXT L:
LINEHEAD *LH= reate line _heado:
WINDOW *WIN. *W1
double ZI. Z2. XX. YY. ZZ. XTEMP. YTEMIP:
int count =0:

ORIENT= (ORIENT-0.0)*P1/ 180.0: /*convert to rads*/
VIEW ANGLE= 2.0*atan(CCD!(2.0*FL)):
WIN =calc_window(PRPX.PRPY.PRPZ,ORIENT. FL):
WI =calc-window(PRPX.PRPY.PRPZORIENT.FL):.
translate-window(WI .-(WIN- > XNIN).-(WIN- > YMIN).

-(WIN- > ZMIN)):
rot-window(WI.-ORIENT);
XX=PRPX-WIN- >XMIN;
YY=PRPY-WIN- >YMIN.
ZZ=PRPZ-WIN- >ZMIN:
XTEMP= XX.
YTEMP= YY.
XX = XTEMP~eos(-ORIENT)-YTEMP~sin(-ORIENT):
YY = YTEMPcos(-ORIENT) +XTEMP~sin(-ORIENT):
translate-window(WI.-XX.-YY.-ZZ):

/* change from world to view coords ~
shift coord -window(W I):
NEXiT_PH =W- >POLYHIEDRONLIST;
while (NEXT-PH)

NEXT 1= NEXT PH-> INSTANCELIST:
while (NEXTI ()

NEXT_-PG =NEXT -PH- > POLYGON-LIST:
while(NEXTPG) (

NEXT_-V=NEXT_-PG- >VERTEX-LIST.
ZI =NEXTPG.>Z VALUE.
while(NEXT V)j

if (NEXT -V- > VERT EDGE)
Z2=findz(NEXTPHNEXT-V->VERTEDGE);

NEXT-L= make line(NEX-_1, NEXT_V, NEXT_-V- > VERT EDGE,Z I Z2):
if (project_li'-e(PRPX.PRPY,PRPZORIENT. NEXT_-L.WIN.W I.FL) 1)

add lines(LH.NEXT_L):

)/*end if*/

A-51

if (NEXT_-V-> NEXT)
NEXT L=make_line(NE.XT_I.NEXTV.NEXTV- >NEXT.ZI.Z):

if (project line(PRPX.PRPY.PRPZ,ORIENT. NEXT -L.WINW1, FL) = = I)j
add Iincs(LH .NEXT-L);

NEXT_-V=NEXT V->NEXT;
}/* end if*/I

else(
NEXT L=make -line(NEXT_INE-XT_V,NEXTPG->VERTEX-LIST.ZIZI);

if (project line(PRPX, PRPY.PRPZORIENT. NEXT -L.WIN.W L.FL)=1)(
add_lines(LH.NEXT-L);

NEXT V=NULL
/* end else */

I*/ end while */
NEXTPG=NE-XTPG- >NEXT,

)/0 end while */
NEXT -l=NEXT-->NEXT:

/* end while */
NEXT PH=NEXTPH- >NEXT:
/* end while */

fret(WIN)-. /*dcalloeatc inemory*/
free(Wl):
return LH.

}/* end get full view ~

A-52

FILE NAME: 2d+sim.h
AUTHOR: LT James Stein
PROJECT: Thesis, wire frame simulator for YAMIBICO
Date: Mar 1992

Calls to file(s): graphics.h
-Ii (general iris graphics library)

This program is uaed to display a world which has been created through
uses of the 2d + model construction functions in file '2d +.c'. Objects in
the world are drawn to the screen as wire frames as seen from the current
robot configuration in the world.

The simulator currently gives you control of robot (eye)
movement through use of the mouse. The middle button provides a menu of
options for inc reasing/dec rea sing speed. pausing the simulation. starting
the simulation. and quitting. The robots direction is limited to the X/Z
plane and is controlled by the left/right mouse buttons.

The simulator must be passed a pointer to a WORLD structure when called.
A query is then sent to the user to supply the initial configuaration
of the robot within this world.

typedef struct config

double X.Y.Z;
double THETA;
CONFIG:

#define ASPECT 1.25 /*aspect ratio for display window*/
#define FOCAL-LEN 1.24 /*camnera's focal length*/
#define VIEWFIELD 300.0 /in tenths of degrees*/

/* Get the initial position and heading (configuaration) of the robot fromt user*/

CONFIG *get initial configo

CONFIG *STARTCONFIG:.
double DEC35:

START_-CONFIG =(CONFIG *)malloc (sizeof(CON FIG)):
pnintf("\nEnter initial configuration of robot :\n'):,
printf("X: ");
scanf("\n%ir&START_CONFIG- >X);
printfC"\nY: *)-.
scanf("\n%lf',&STARTCONFIG- > Y);
printf("\nZ (height of' eye): ');
scanf(*\n%ir,&STARTCON FIG- > Z):.
printf("\nEnter angle of orientation in X1Z plane (in degrees):)

scanf("\n%lr,&START -CONFIG- >THETA)-,
return STARTCONFIG;

1/ end get initial config/

A-53

v'oid print .introO

printf('\n\nlntroduction to the YAMIBICO simulator:\n");
prnt f("WnnThiis simulator will display a robot's eye view of a world")
printf("\nwhich has been constructed in the 2d + formiat."):
printf("\nnThe world is displayed as a wire frame model and you can*):
printf("\ncontrol the walkthru's speed and motion.\n"):
/*end print intro */

void printwistructiosO

printf("WnnINSTRUCTIONS :\n");
printf("\nYou will need to enter the starting position of the robot)

printf("\nin your world. The robots heading can be controlled by)

printf(*\nhitting the left/right mouse buttons. The middle mouse T
printf(*\nbutton will present you with a menu of other options for:)

printf("\n -controlling speed ");
printf("\n -pausing simulation)

printf("\n -starting simulation")
printf("\n -quitting simulation")-.
printf("\n\n For now enter the starting position of your robot and)

prinit("Wnhe theta angle in the X/Z plane:")

/* end print-instructions */

/* initialize the window parameters ~
void initializefi

winopen("WORLD VIEW"):
wintitle("5th floor").
doublebufferO:
RGBmodeo;
qdevice(REDRAW),
qdevice(WINQUIT).
qdevice(WINSHUT):
qdevice(LEFTMOUSE).
qdevice(MIDDLEMOUSE):
qdevice(RIGHTMOUSE);
}/* end of initialize */

/* define menus which can be presented to the user
int deie-wenusO

mnt MAINMENU,POLYMENU.SELECTMENU:.

MAIN -MENU =defpup("OPIONS: %t ISTARTIRESTART: PAUSE: SLOWER1 FASTER: STOP:I QUrTix99"):.
return (MAIN_MENU);
/* end define-menus

A-54

FUNCTION: set colorO
used to set the ROB color of displaN

void set-color(index)
nt index; /* color index from building array 9

switch(index)
case 0: RGBcolor(0, 0, 0):.

break. /* black
case 1: RGBcolor(255, 255. 255):.

break: /* white */

case 3: RGBcolor(0. 150. 0)t
break: /* green 9

case 4: RGBcolor(0. 0. 245);
break; /* blue

default:
printf("error in color coding");

/* copy a new configuration into an old one 9

tramslate -conrig(%WORLD_CONFIG.NEW_ -CONFIG)
CONFIG *WORLDCONFIG. *NEWCONFIG.

NEWCONFIG->X=WORLDCONFIG- >X;
NEWCONFIG- >Y =WORLDCONFIG- >Y;
NEW CONFIG- >Z =WORLDCONFIG- > Z:
NEW_-CONFIG- > THETA = WORLDCONFIG- > THETA:

/* set up viewing situation in 3d environment*/

void projview -matrx(WORLDCONFIG)
CONFIG *WORLDCONFIG.

double REFXREFZ;
CONFIG *NEWCONFIG;

perspective(VIEW-FIELD,ASPECT,NEARCLIP.FARCLIP):.
NEW CONFIG =(CONFIG *)malloe(sizeof(CONFIG)):
translate -config(WORLD_CONFIG.NEWCONFIG):
REFX =(NEW CONFIG- >X +cos(NEWCONFIG- > THETA)):
REFZ= NEW CONFIG- >Z+sin(NEWCONFIG- >THETA)-.
lookat(NEW CONFIG- >X,NEW CONFIG-> Y,NEWCONFIG- >Z,

REFX.NEW-CONFIG- > Y,REFZ,0):. /9 tll system the position of eye*/
free(NEW -CONFIG);

/9 end proj view matrix 9

1* project movement of robot along current theta in proportion to
current velocity 9

A-55

cak-collg(OLD-CONIGVELOCITY.NEW 'CONFIG)
CONFIG *OLD CONFIG. *NEWCONFIG;,
double VELOCITY,

NEW CONFIG- >THETA= OLDCONFIG- > THETA-.
NEW -CONFIG->Z=OLDCONFIG->Z;,
NEW CONFIG- >X =OLD CONFIG- > X-VELOCITY*sin(OLDCONFIG- >THETA*PI/ 180.0):
NEWCONFIG- >Y=OLDCONFIG- >Y +VELOCITYcos(OLDCONFIG- >THETA*PI/ 180.0):

/*I end caic-config /

I' print current configuration onto the screen/

void display conrag(ORIENTATION)
CONFIG *ORIENTATION;

char *MSG;
CONFIG *DISPLAY.
double MOCKV = 5.0:

DISPLAY = (CONFIG *)malloc(sizeof(CON FIG));
calcconfig(ORIENTATION .MOCK-V. DISPLAY):
MSG=(char *)calloc(80,sizeof(char)):
sprintf(MSG,"X: %.21f Y: %~.21f Z: %~.21f".

ORIENTATION- > X.QRIENTATION- > Y .ORIENTATION- > Z),
cmov2(500.0, 100.0); /*line for coordinates*1
charstr(MSG); /*line for orientation*/
cmov2(500.0.50.0);
sprinif(MSG,"THETA(degs): %~.2lf".ORIENTATION- >THETA)-.
charstr(MSG);
free(DISPLAY);

I* end display_ config/

I* Draw the set of lines extracted from the model to the screen*/

void draw screea(LIST)
LINEHEAD *LIST;

LINE *NEXTL LLIST-> LINE-LIST:

linewidth(I);
RG&color(0.0,0);
ortho2(0.0,XMAXSCREEN,0.0.YMAXSCREEN);
while (NEXTL) (/*draw non-vertical lines*/

move2(NEXTL- >XI.NEXTL- > YI);
draw2(NEXT -L- >X2,NEXTL- >Y2);
NEXT_-L= NEXT -L- >NEXT;

NEXT-L= LIST-> VLINE LIST;
while (NEXT -L) (/*draw vertical lines*/

mnove2(NEXTL->XI.NEXT_L->YI).
draw2(NEXT -L- >X2.NEXT_L- >Y2);
NEXTL-NEXTL- >NEXT.

/*end draw sereen

A-56

/* Process the option selected from pull down menu
NOTE: some space is reserved for future functionallity*

void processmenuhit(CIIOICE.RUNPROGRAM.VELOCITY)
int CHOICE:
int *RUN PROGRAM:
double *VELOCITY;

switch(CHOICE) {
case -I: /0 no selection 4/

break;
case 1: /0 start simulation */

*RUN PROGRAM= I.
break,

case 2: 1* stop simulation 4/

*RUN PROGRAM = 0;
break:

case 3:
*VELOCITY-= 10:
break: /*slower*/

case 4:
*VELOCITY+ = 20:
break: /*faster*/

case 5:
*VELOCITY =0;
break: /*stop robot*/

/*future use*/

case 6: /* pick closest polygon /
break;

case 7: /* pick next polygon */
break:

case 8: /* delete polygon 4/

break;
case 9: /* modify polygon */

break:
case 99: /0 terminate program /

break:
default:

break:
/* end switch on CHOICE 4/

/* end processmenuhit */

A-57

f***~*************~*5pjflprocedure *******e*
Calls either the get -view or getjfull_view function from file
graphi% Ist will return a list of visible lines from
THE WORL0 while the latter returns a set of all lines.

void snnilate(THE WORLD)
WORLD 'THEWORLD:.

CONFIG 'OLDCONFIG. 'NEWCONFIG;
int VALUE;
just MENU_-CHOICE= I.MAIN MENU.RUNPROGRAM =0.COLLISION=0.
int *RPz
double VELOCrTY=O:.
double 'V;
LINEHEAD OLLIST;

print_introO;
print instructionsO;
OLD_-CONFIG=get initial configo. /*Set start position and heading*/
LLIST = get full-view(OLD_-CONFIG- > XOLD_-CONFIG- >Y.OLDCONFIG- >Z.

initiaizeo, OLD CONFIG- >THETA.THEWORLD.FOCAL LEN):. /*get visible lines','

RP= &RUN-PROGRAM-.
V = &VELOCITY-. /'assign address of velocity to pointer V'I
MAIN_-MENU=define -menusO.
NEW_-CONFIG =(CONFIG ')malloc(sizeof(CONFIG)): I'allcoate memory"/
proj_view_matrix(OLD-CONFIG):
zbuffer(TRUE):.
RGILcolor(255.255,255)-: /'set to white*/
clearO;
swapbuffersO: /'clear display screen'/
clearo.
draw -screen(LLIST); /*draw the view*/
RGBColor(O.0.0);
display config(OLD -CONFIG). /*display the starting configuration*/
zbuffer(FALSE);
swapbufferso: /*double buffering to smooth out simulation'/

while (MENU -CHOICE!= 99)(
if (qtesto) (I' action is queued '

switch (qread(&VALUE))I
case MIDDLEMOUSE: /'bring up mienu of options'/

MENU CHOICE=dopup(MAIN MENU):.
processrmnuhit(MENUCHOICE.RP,V):, /*go do what user selected*/
break.

case LEIFTMOUSE: /'turn left*/
OLD CONFIG- > THETA =OLDCONFIG- > THETA + 5.0;

if (OLD _CONFIG- >THETA >360.0)
OLDCONFIG- >THETA- 360.0;

break;

A-58

catRIGHT16OUSE: /turn right*
OLD CONFIG- >THETA-= 5.0.
if (OLDCONFIG- >THETA <0.0)

OLD CONFIG->THE*TA+ =360A0
break.

case REDRAW:
reshapeviewpontO;
break;
caeWINQUIT:

gexitO;
break:

default:
break-,

if (RUNPROGRAM 1)
calcconfig(OLDCONFIG.VELOCITY.NEW_CONFIG) /*move IAW velocity*/I
proj view matrix(NEW_CONFIG);
free ines(LLIST); /*deallocate memory used last time*/

/*thien get the next vie%%,/
LLIST = get full view(NEW CONFIG- > X .NEW CONFIG- > Y.NEW CONFIG- >Z.

NEW CONFIG- >THETA.THE_WORLD.FOCAL_LEN);
zbuffer(TRUE);
RG&-olor(255,255,255); /*draw white on black*/
clearo;
draw -screen(LLIST): /*draw the vie%%*/
zbuffer(FALSE);
swapbuffersoQ;
RGBcolor(O,0,O);
display config(NEWCONFIG); /*display the current configuration*/
RGBcolor(255.255.255);
OLDCONFIG- >X=NEWCONFIG- >X: /*update to next configuration*/
OLDCONFlG->Y=NEW CONFIG- >Y;
OLDCONFIG- >Z =NEW CONFIG- >Z:
OLD CONFIG- >TH ETA = NEW CON FIG- >TH ETA:

/ * end run program =I/
/0 end while */

free(OLD -CONFIG): !*deallocate last metmory used*/
free(NEW CONFIG);
free lines(LLIST);. /*notice the world is left intact*/
)/*end maino *1

A-59

/0 FILE: 5th.h
AUTHOR: LT James Stein
THESIS ADVISOR: Dr. Kanayama
CALLS TO FILES: 2d +d.h
COMMENTS: This is the construction file for the 2d + model of the

5th floor Spanagel Hall (I st half only - up to glass double doors). All
coordinates are in inches while all angles are in degrees.

The main function "makeworld" is called to
build the model uaing function calls to file 2d + .h. Type definitions for
WORLD, POLYHEDRON. POLYGON, and VERTEX can he found at the top of this file
also.

Notice that the floor of H I is one huge, concave polygon which
nukes up the floor to the hallway as well as all of the office floors. To this
floor numerous ceilings are added for offices, door jams. and main corridors.
Doors, lights, and molding strips are then added to the model as separate
polyhedra.

WORLD nsake-world()

WORLD *W.
POLYHEDRON *H 1. *'H2. *H3, *114. *115. *116. *H7, *H8. *119. *H 10. *H11, *H 12.

*H13. *H14, *HIS,. *H116. -H117. *1118, *H19, *1120. *H21. *1122. *1123. *1124.
*1125. *1126. *1127. *H28, *1129. *1130. *13 1. *1132. *1133. *1134. *H35. *1136.
*1137, *H38, *H39, H40, *H41. *H42. *H43:

POLYGON *HIP), *H]1P2 -HIP3.
*111P4, *HIPS .*HIP6. *111P7. *11P8. *111P9. *HIPIO. *HIPII1 *HIPI2.

*HIPI3, *HIP14. *111P15. *HIPI6. *HIPI7. *HIP18. *H]PI9. *HIP20. *H1P21I.
*111P22, *HlP23 *HIP24. *HIfP25. *H1P26. *H1P27. *HlP'28. *H1P 2 9, *111P30,
*11I1P3 1, *H1IP32, *11I1P33. *11I1P34. *11I1P35. *H I1P36. *H IP37. *H IP38, OH IP39,
-H I P40, *H IP4 1, -H I P42. *1111P43, *H I P44. *1111P45. *11I1P46. *H I P47. *H111P48.
*111149, *H1550. *H11S1. *H11152. *11153. *H11154. *HIp55. *11P56. *11157.
*111158. *H11159, *Hl1560. *H11561, *Hl1562. OH1P63. *Hlp64. *HlP65.

*H2PI1 *H2P2. *H3P1. *H3P--,*14 *H4P *11 *5151. *H5p2-)
*H651, *H7P]. *117P-2, *H851, *H8P12. -H9P1. *119P2, *11i0Pl, OH112.
*1111151 *111112, *111215. *1112151) *113151. *111312. *1114P, OH14152. *HI5151,
*1115152, *1116151. *11161512. *H117P51. *H117152, *H118PI. *111852, *119PI, *11191512.
*H2OPI, *H20P2.
*1121151 *H2lfl. *1122P51 *1122151 *H23P1, 1123P2. *1124PI. *H24P1) *1125151
*H25P2, *H26P1. *H26P2', *1127P51 *H27P2 *1128PI. *1128P25 *112915. *1129152)

*1130151.*113052,
*H31P51 *H3lP2, #H32PL *H32P2. *H33P1. *113352. *H34P1. *1134P5' *1135P51
*1135P2 *136151. *1136152. *H37151. *H37P2. *1138151. *1138152. *1139151. *1139152.
*1140151 *114015) *1141P51 *1411512 *1142P5 *H42P 2 . *H43P1. *114352.

last-p;

VERTEX *HIPIVI, *HIPIV2, *H1115V3, *H1115V4. *111151VS. O11115V6. *H1151V7,
OHIPIVS,*HIPIV9,*HI5IVIO,*HI5IVI 1. *H1115V12. *HlPlVl3. *H1151V14.
*HIPIV15,*HIPIV16,*H151V17.*HIPIV18. *HIPIVI9, -11115V20. -HIPIV21.
*H1P1V22,*HIPIV2,*H1115V24,*H151V25. *11115V26. *H1151V27, 111151V28.
*H115V29*HIPIV3O,*HIPIV31*H151V32. *11115V33, *111P1V34. *HIPIV3S,
*H1151V36,*H115V37.*H115V38-H1P1V39, *H115V40, -HIPIV41, *HIPIV42.
*H1151V43,*H1151V44,*H1151V45.*H151V46, *111P1V47, *111P1V48, OHIPV49.
*HIPIVO,*HIPIV5,-11115V52,*HIPIV53 *H1P1V54, OHIPIVSS. OHIPIV56.
*HIPIV57.*H151V58.*HI15IVS9.*HI PIV6O. *H1151V61. *H11P1V62. OHIPIV63.
*H1P1V64,*HIPIV6.*HPV66.H151V67, -HIPI5V68, *111P1V69. -HIPIV7O.

OHIPIV2&, OHIPIV2b, $HIPIV2c, *HI15IV2d. HIPIV2e. OHI15IV2f.
*Hl15V4a, OHIPIV4b. *HIPIV4c, *HIPIV4d. *HI15IV4e. *H1l15V4f,
OHIPIV6a. *HIPIV6b, *HIPIV6c. *Hl15IV6d. *HlPlV6e. *HIPIV6f.
*111151V~a. *HIPIV8b, *HIPIV~c, *HIPIV8d. *HIPlV8e. *HIPIV8f.

A-60

*HI PIVIOa, *HI PIV IOb. *H IP IVI10k. *HI PIV IOd. HI P IV IOc. *HI PIVI Of.
-HIPIV12a, -HIPIVI2h. *HlPIVI26. *HIPIV12d. *HIPIV12. *HIPIV12f.
*HIPIV14a. *HIPIVI4b. *HIPIV14c, *HIPLVI4d. *HLPLVL4e. *HIPLV14f.
OHIPIV16a, OHIPIV16b. *HIPIV16c. *HIPIVI6d. *HIPIVI6c. *HIPIV16f.
*HIPIV18a. *HIPIVI8b. 1IIPIVI&c. *HIPIVI8d. *HIPIV18e. *HIPIV18f.
OHIPIV2Oa. OHIPIV2Ob, *HIPIV2Oc. *HIPlV2d. *H~IPlV2Oe. *HIPIV2Of.
*HIPIV22a, *HIPIV22b.
OH1P1V24a. *HlPIV24b. *ILP1V24c. *HIP1V24d. *H1P1V24c. *HIPIV24f.
*HIPIV26a, *HIPIV26b, *HIPIV?6c. *HIPIV26d, *HIPIV26e, *HIPIV26f.
OHIPIV28a, *HIPIV28b. flHIPIV28c. *HIPIV?8d. 1IIPIV28c. *HIPIV28f.
111P1V30a. HIPIV3Ob,*OHIPIV3c. *HIPI V3Od. *HIPIV3Oc. *HIPIV3OC.

*HIPIV32a.*HIPIV32h,*HIPIV3 2 c. HIPIV32d, HIPIV32e. *IPIV32.
*HIPIV34a. HIPIV34b. *HIPIV34-. *HIPIV34d. *HIPIV34c. *H1P1V34f.
*HIPIV36a, *HIPIV36b, *HIPIV36c, HIP1V36d. *HIPIV36. *H1P1V36f.
*HIPIV38a, OHIPIV38b. *HIPIV38c, OHIPIV38d. *HIPlV38c. *HIPIV38f.
*HIPIV4Oa, *HIPIV4Ob. *HIPIV4Oc. *HIPIV4Od. *HIPIV4Oc. *HlPlV4f,

*HIPIV42, OHIPIV42b. OHIPIV42c. *HIPIV42d. *141P1V42c. 1-IPIV42.
*HlPIV44a, *H1PIV44b. *HIPIV44c, *HIPIV44d. *HlPlV44c. *HIPIV44f.
*HIIiV46a. *HIPIV46b, *HIPIV46c, *H1PIV46d. *HIPIV46e. *HIPIV46.
*HIPIV48a. *HIPIV48b. *HIPIV48c, *HIPIV48d. *HIPIV48e. *HIPIV48f.

*HIPIV5Oa, *HIPIV0b. *HIPIVSOc. *HIPIVSOd. *HlPIV5c. *H1PV50.
*HIPIVS2a. *HIPIVS2b. *HIPIVS2c. HIPIV52d. *HIPIV52c. *HIPIV52f.
*HIP1V55a. *H)PIVS5b. *HIPIV55c. *HIPIV55d. *HIPIVSSe. *HIPI\?5f.
*H1PIV58a. *HIPIV58b. *HIPIV58c. *HlPlV58d. *HPIV58e. *HIPIV58C.
*HIPIV6Oa. *HlPV6Ob HIPV6Oc. HIPV60d. *H1PIV6Oc. HIPIV6Of.
*HlPlV63a*HIPIV63b.*HlPIV63c.*HPIV63d.*HPV63. *HIPIV63f.
*H IPIV63g,
*H1PIV65a, *HIP1V65b. *HIPIV65c. *HIPIV65d. *HIPIV65c. *HIPIV65f.

IPIV65g.
*H1P1V68a. *HIPIV68b, *HIPIV68c. HIPIV68d. *HIPIV68c. *HIPIV68f.

*HIP-f)l*HIP2V2. 1IIP2V3. *HIP2V4.
*H IP3VI1. *H IP3V2. *H IP3V3. *11I1P3V4.

*HIp4V1 *HlP4V2. *HIP4V3 *HIP4V4.

H1IPiVl. *H1PSV2. *HIP5V3. *H1P5V4.
*HIP6VI. H1P6V2. *HIP6V3 *HIP6V4.
*HIP7VI.*H1P7V2.*HIP7V3 *H1P7V4.
*HjIP8VI.*H1P8V2. *HIp8V3 HIP8V4.

*HIP9VI. 'H1P9V2. *HIP9V3.*HlP9V4.
*HIPIOVI, *HIPIOV2. *HIPIOV3. *HIPIOV4.
*HIP]IlVI. *HIP] IV2. *HIPI 1V3. *HIPI 1V4,
*HIP12VI, *HIPI2V2, *HIPI2V3. *H1P12V4,
*HIP13VI, *HIPI3V2, *HIPI3V3, *HIPI3V4,
-HIPI4VI, 111PI4V2. *H1P14V3, -HIP14V4.
*IIIPI5VI. *11lPI5V2. *HIPISV3. OHIP15V4.
*HIPI6VI. *H1P16V2. -H16V3, *HIP16V4,
*HIP17VI, *HIP17V2. *HIP17V3. *HlP17V4,
*HIPISVI, *HIP18V2, OH18V3, *HIPI8V4,
#HIPI9VI, *HIP19V2. *HIP19V3. *H19V4.
OHI P20VI1. OH IP20V2, *H I P20V3, H 1120V4.

OHIP21VI, 1IIP21V2. 'HIP2IV3, *HIp'-)V4.
*H IP22V 1, #H IP22V2, *H 122V3, *HlIP22V4.
*HI P23V 1, *H IP23V2, *H IP23V3. OH IPF23V4.
OH IP-4V 1, OH I P4V2. *H IP24V3, *H 124V4.
OHIP25VI, 14IP25V2. *H1P25V3, *H1P25V4.

*HIP26VI, OH1P26V2. 0HIP26V3. *H1P26V4.
OHIP27VI. HP27V2. *HP27V3. *HIp27V4.
OHIP28VI. *H1P28V2. *H1P28V3, *HI18V4.
OHIP29VI, OH1P29V2, OHIP29V3, *HIP29V4.
*H I30V~ 1 O I 30V2. *HlIp30V3. OH I P3V4.
$HIP3IVI. *HIP3IV2. *11lP3IV3. *H1P31V4. *HIP3IV5.
OH IP32VI 1 IP32V2. *H IP32V3. OI1P32V4. *H IP32V5.

A-61

OHIP33VI, *H'IP33V2, *H1P33V3, OHIP33V4.
*H IP34V 1. *H IP34V2, OH IP34V3, *H IP34V4.
OH IP35V 1, *HI P33V2, *HI P3V3, OH IP35V4.
*H IP36VI. OH IP36V2. *H IP36V3. *H IP36V4.
6IIP37V 1. *H IP37V2. *H IP37V3. *H IP37V4.
.IIP38V1. OH IP38V2. -'I1P38V3. OH IP38V4.
*HI P39V 1,*H IP39V2. *H IP39V3, *H IP39V4.
HI P40V 1. OH IP4OV2. OH IP4OV3. *H I NOW.
OH IP4 IV 1, *H IP41V2, *H IP4 IV3, *H IP4 IV4.
*HI P42VI. *H1 P42V2, -H IP42V3, -H IP42V4.
OH1P43VI, -IP43V2. 'HIP43V3. *HIP43V4.
*H IP44V 1, OH IP44V2. *IIP44V3, OH IP44V4.
OH1P45V1, OH1P45V2. *H1P45V3, OHIP45V4.
*H IP46VI1, *H IP46V2, *H IPOWV3 *H IPOWV.
OH I P47V 1, *H I P47V2, *H IP47V3, -H IP47V4.

'IIIP48VI. OH1P48V2. *H1P48V3, *H1P48V4,
OH1IP49V 1, 'H IP49V2. *H IP49V3,O I 1P49V4.
OH IP50,OIH I POV2.*H IP50V3.*H IPSOV4.
*HIP5IVI. *HIP5IV2. 1-1P51V3. *HIPSIV4.
*H IP52VI1 OH I P2V2.*H I1P5 2 V3. OH I P5V4,
OH IP53V 1. H I P3V2.*H IP53V3,*H I P53V4.
OH IP54V1, OH IP54V2. *I IP54V3. *H IP54V4.
*H IP55V 1. *H IP55V 2 .*I IP5SV3. *H I P5V4.
*H I P6VI1. *H IP56V2, *H IPS6V3, *H IP56V4.
*HIP57VI. HIP57V2. *HIPS7V3, *HP57V4.
*HI P58V 1 *H I P8V2, *H1IP58V3. *H IP58V4.
*H1P59VI. *H1P59V2. *H1P59V3. *HIP59V4.
HI P60V 1. *HI P6OV2. *H IP6OV3. *H IP60V4.

-HIP6IVI, OHIP6IV2. -HIP6IV3, *HIP6IV4.
*H IP62V 1 *H IP62V2. *H1IP62V3, *I P62V4.
OH IP63VI1. *H IP63V2. *H IPOWV. *H IP63V4.
*111P64V1, OH1P64V2. *HiP64V3. *HIM64V4.
*HIP65VI. *HIP65V2. *HIP65V3. *HIP65V4.

*H2P1 VI. *H2PIV2. H2PIV3. *H2PIV4. *H2P2VI. *H2P2V2? *H2P 2 V3. H2P2V4.
*H3PIVI, *H3PIV2. *II3PIV3. *H3P1V4, *H3P2VI. *H3P2V2. *H3P2V3. H3P2V4.

*H4PI VI. -H4P1 V2. *H4P1V3, *H4PIV4. H4P2V. -H4P2V2. *4P2V3. *H4P2V4.
*HSPIVI. *HSP1V2, *HSPIV3, *II5PIV4, *H5P2-Vl. *H5P2V 2 . *HSP2V3. *HSPV4.
*H6PI VI, *H6PIV2. *H6PIV3. *H6P1V4.
OH7PIVI. *H7P1V2. *H7PIV3. *H7PIV4, H7P2V1. *H7P'2? 'H7P2-V3. *H7P2V4.
OH8P1 VI, *H8PIV2. *H8P1V3. *H8P1V4. *H8P2)VI. *H8SP2V2. *HS8P2V3. *H8P2V4.
*H9PIVI, *H9PIV2. *H9PIV3, -H9PIV4. *H9P2VI. '119P2V2. *119P2V3. *H9P2V4.
*HIOPI VI, *HIOPIV2. *HIOPIV3. *HIOPIV4. *HIOP2VI. *1110P2V2. *HIOP2-V3. *HIOp2-V4.
*HlI~PIVI, *Hh IPIV2, *H I~PIV3. *HlI~PIV4, *HIp'VI.*HI lp2.OHI IP-2V3. H I~P-V4.
*H12PI VI.*H)2P1V2, *Hi2PIV3.*H12P1V4. IIJ2P2VI. 1II?2-V2. H22P2V3. H12PV4.
*HI3PIVI, *HI3PIV2, *HI3PIV3, III3PIV4. *II3P2-VI. *H13P'-V2. *1113P2V3. *Hl3p'-V4.
*HI4PiVI, HI4PIV2. 1114PIV3. *H14P1V4. H14P2V1.*H14P2-V2.*HI4p2-V3, *H14P2V4.
*HISP]VI, *HI5P1V2. IIISPIV3. *HI5PIV4, *HISP-VI. *HISP-)V2 *Hl5P2V3, *Hi5P2V4.
H]6P1 VI, *HI6PIV2, *H16PIV3, OH16PIV4. *HI6P2VI, -Hl61-V2. -HI6P2V3. *HI6P2V4.

OHI7PIVI, OH17PIV2, OHI7PIV3, *HI7PIV4, *H17P2V1. *HI7P2VV, *HI7P2V3, *Hl7P2V4.
*HI8PIVI. OH18PIV2, 1118PIV3.*HISPIV4, HISP2-VI. H18P2-V2. *Hi8PfV3. OHI8P2V4.
*H19PIVI, *HI9PIV2, OHI9PIV3. *HI9PIV4, *Hl9P2-VI. *HI9P'-V2 *Hl9P2-V3. *Hl9p2.V4.
*H20P1 VI, *H2OPIV2, *H20P1 V3. *H20P1V4, *H20P2-V , -H20P2)V2. *H20P2V3, *H20Pl2V4.
-H2IPIVI, *I421PIV2. -H21PIV3, -H2IPIV4, *H2IP2VI. *H21P2-V2, *H21P2V3, OH2IP2V4.
*H22PI VI, *H22PIV2. *H22PIV3. -H22P1V4, OH22P2VI, *H22P2V2, -H22P2V3 *H221P2V4,
OH23PIVI, OH23PIV2, OH23PIV3, OH23PIV4. OH23P2'VI. *H23P2V2, *H23P2V3, OH23P2-V4.
OH24P1 VI, OH24PIV2, *H24P1V3, *H24PIV4, *H24P2VI. -H24P2-V2, *H24P2V3, -H24P2V4,

OH25P1 VI, OH25PIV2, *H25P1V3. *H25PIV4. *H25P-Vl. *H25P'2V2, *H25P2)V3. *H25P2V4.
OH26PIVI. OH26PIV2, OH26P1V3. *H26P1V4, OH26P2VI. *H26P2-V2. *H26P2V3, OH26P2V4.
*H27PIVI. *H27PIV2. OH27P1V3. *I127PIV4, *H27P2-VI. *H27P2V2. *H27P2'V3. *H27P2V4.
*H28PIV1, *H28PIV2, *H2SPIV3. *H28PIV4. OH28P2-VI. 'I128P2V2. *H28SP2V3. *H28P2V4.
OH29PI VI. *H29PIV2. *H29P1V3. 1129P1V4. flI29PVI. *H29P2V2. H29P2V3. *H29P2V4.

A-62

*H30PIV! *H30P1V2.*H30P1V3. 4 H30P1V4. 4 H30P2VI.*H30P2-V2. 4 H30P2V3. H30P2V4.
*H31PIVI.*H31PIV2,*H31PIV3.* 4 H31PIV4, 4 H3lP 2 VI,*H3l1P'V 2 .OH3lP2V3.*~H31P2V4.
OH32P1 VI, H32PIV2.-H32P1 V3. H32Pl V4. H32P2V I.-H32P2-V2. 4H32P2V3.-H32P2V4.

*H33P1 VI, H33P1V2, 4H33P1 V3. 4H33PI V4. H33P2V 1. H33P2V2.*H33P2V3. 4 H33P2V4,
*H34PIVI. H34PIV2. *H34PIV3.*H34PIV4.-H34P2V1. *H34P2V2 *H34P2-V3. 4 H34P2V4.
*H35PIVI, H3SPIV2.*H35PIV3. H35PIV4. 4H35P2VI. -H35P2V?2. H35P2V3. 4H35P2V4.
*H36P1VI. 4H36PIV2, *H36PIV3. 4H36PIV4. H36P2VI. *H36P2V2.*H36P2V3. 4 H36P2V4.
*H37P1V1. 4 H37P1V2.*H37PIV3. *H37PIV4. *H37P2VI. 4 H37P2V2. 4 H37p,-V3.*H37P2V4.
*H38PIVI, H38PIV2.*H38P1V3.-H38P1V4. -H38P2VI, H38P2V2. 4 H38P--V3. 4 H38P2V4.
*H39PIVI, 4H39P1V2,*H3991V3. *H39PIV4. -H39P2VI.*H39P2-V2.-H39P2-V3.*H39P2-V4.
OH4OPIVI. *H40P1V2 4 H40P1V3 4 H40PIV4 *H40P2V1.*H40P2-V2. -H40P2-V3. H40P2V4.
*H41P1 VI, *H41P1V2. *H4IPIV3. H41P1V4. *H4lP2V1. *H4lP2V2. *H41P2)V3, -H41IP2V4.
*H42P1V1. *H42P1V2 *H42PIV3.*H42P1V4. -H42P2VI.*H42P2-V2. *H42P2-V3. *H4 2 P2V4.
*H43PIVI 1 *43P1V2. *H43P1V3. *H43P1V4. *H43P2V1, *H43P2V2. *H43P2V3, *H43P2-V4.
last-v;

W =add -world("5thjfloor".9):
HI =addjph("front-hall"j,IOW,I.0);
HIPI =addpg(HI.O.0,1.0):.
HIPIVI = add-vertex(HIPI.0.0.0.0):
H IPI V2 = add-vertex(H IPI.0.0239 .5). /4 rrn 506*/
HIP! V2a =add-vertex(HIPI,-5.3.239.5).
HIP! V~b = add vertex(HIPI.-5.3,203.3):
HIPIV2c = add-vertex(HIPI.-244.I.?03.3).
HIPIV2d =add vcrtex(HIP1.-244.I.309.4):
HIP! V2e =add vertex(HIPI.-5.3.309.4):
HIP! V2f = add vertex(HIPI .-5.3.275.2):

H-IPIV3 = add-vertex(HIPI.0.0.275.2):
HIPIV4 = add-veutex(HIPI,0.0.713.7): /*nu 510*!
HIP! V4a = add-vertex(HIPI.-5.3.713.7):
HIP! V4b = add vertcx(H IPI.-S.3,677.5):
!IIPIV4c =add-vertex(HIPI,-244.I.677.5):
HIPIV4d = add-vertex(HIPI.-244.I.783.6):
HIP! V4e = add vertex(HIPI.-5.3.783.6);
HIP! V4f =add-vcrlex(HIPI .-5.3.749.4):.

HI P1VS = add-vertcx(HI1P1.0.0.749.4):
HIPIV6 = add vertex(H!PI.O.0.825.9): /4 rrn 512*/
HIP! V6a =add -vertex(HIN,.5.3.825.9);
HIPIV6h = add verlex(H IPI.-5.3,789.7),
HIPIV6c add -vermex(HIPI-244.1,789.7):
HI!V6d =add_vertex(HIPI.-244.I.895.8):
HIP! V6c add-verlex(HIPI.-S.3.895.8):
HIP! V6f = add veriex(H IPI.-5.3,861.6).

HI PIV7 = add veflcx(H IPI .0.0,861.6):
HIP! V8 = add-vcrtcx(HIPIO.0,937.5); /* rm 514*/
HIPIV~a =add vertex(HIPI,-5.3,937.5):
HIPIV8b = add-ventex(HIP!.-5.3.901.3);
HIPIV~c = add-vercex(H!P!,-244.I.901.3)-.
HIP! V~d = add-vcrtcx(HIPI.-244.I.1007.4);,
HIPIV~e = add vertcx(HIPI.-5.3.1007.4);
HIPIV8f = add-vertex(H IP! .-5.3.973.2);

HIPIV9 = add-venex(HIP...973.2):.
HIPIVIO add vertex(H!PI,O.O,I049.7); /* rT 516/
HIPIVIOa =add-vcrtcx(HIPI,-5.3,1049.7)

HIPIVIOb - add veriex(HIPI.-5.3,IOI3.5):.
HIPIVIOc = add -veflex(H!IP.-244.!.10I3.S);
HIPIVIOd = add-vencex(HIPI.-244.I,!II9.6);
HIPIVIOc = add-vertcx(HIPL -5.3.1119.6):

A-63

HIPIVIOC = add vertex(HIPI.-S.3.1085.4);

HIPIVI I = add-vertex(HIPI...1085.4);
HIPIV12= add vertex(H IP1.0.0, 1161.7): /* rm SI1X
HIPIV12a = add vertex(H IPI.-5.3,1161.7):
HIPIVI2b = add vertex(1-IPI.-5.3.112 5.5j:
HIPIV12c = add vertex(HIPI.-?44.1.1125.5):
HIPIV12d = add venecx(H IPI.-244.1,1231.6):
HIPIVI2e = add vertex(HI-11,.3.1231.6);
HIPIV12f =add venex(HIPI.-5.3.1197.4):

HIPIV13 = add vertex(HIPI,O.O.1197.4);
HIPIV14 = add vertex(HIPI1?.O.O,1273.4); I* rm 520*
HIPIV14a = add vertcx(H IPI.-5.3,1273.4):
HIPIVI4b = add vertex(H I PJ-5.3,1237.2):
HIPIV14c = add vertex(H IPI.-244.I.1237.2):
HIPIV14d = add vertex(IPl.-244..1343.3);.
HIPIV14e = add vertex(H IPI.-S.3.1343.3):
HIPIVI4f = add-vertex(HI P,-5.3.1309. I)-.

HIPIVIS = add vcflex(IIPI0.0. 1309.I1):
HIPIV16 = add veflex(H I P.0.0.1429.6): /* rn 522R ~
HIPIVI6a =add veriex(HI P.-5.3.1429.6):
HIPIVI6h add veflex(H I P.-5.3.1393.4):
HIPIV16c =add verlcx(H IPI.-244.L.1393.4).
HIPIV16d =add vertex(HIP.-244.1.1499.5):
HIPIV16e =add vertex(H IPI.-S.3.1499.5).
HIPIVI6C= add-vertex(HIPI.-5.3.1461.3):

HIPIV17 = add vertex(HIPI,0.0.1461.3):
HIPIV18 = add vertex(H IP1.0.0, 1488.0). 1* FD # I
HIPIV18a =add veriex(H IPI.-5.5.148.0):
HIPIV18b =add_veitex(H I P-5.5.1486.0)-:
HIPIV18c =add vertex(I PI.-50.0.1486.0):,
HIPIVI8d =add vertex(HIPI.-50.0,1562.0);
HIPI VISe =add vertex(H IPI.-5.5.1562.0):
HIPIV18f add-verlex(H IPI.-5.5.1560.0):

HIPIV19 = add vertex(HIPI .0.0.1560.0):
HIPIV20 = add vertex(H IPI... 153.3); /* rm 524/
HIPIV20a = add vericx(HIPI.-5.3.1583.3):
HIPIV2Ob = add_verlex(HIPI.-S.3.I547.I):.
HIPIV2Oc = add veflex(H IPI.-244.1.1547.I)
HIPIV2Od = add -vertex(HIPI.-244.I.1653.2):.
HIPIV2Oe = add-Veilex(H I P,-5.3.I653.2):
HIPIV2OC = add vetex(H I PI-5.3,1619.0).

HIPIV21 = add-vertex(HIPI1?.0.0.1619.0):
HI1PIV22 = add -vertex (H IP1,0.0, 1650.4) - /* water cooler
HlPIV22a = add vertex(HZPI.-30.O.1650.4):
HIPIV22b = add vertex(HIPI.-30.0.1684.5):
HIPIV23 = add vertex(HIPI.0.0.1684.5):
HIPIV24 = add vctnex(HIPI.0.0.1754.5):. /* rrn 526R ~
HIPIV24a = add-vertex(H I PI-5.3.1754.5):
HIPIV24b - add veflex(H IPI.-5.3,1718.3):.
HIPIV24c = add vertex(H IPI,-244.1,1718.3):
HIPIV24d = add vertex(HJPI,-244.1.1790.0);
HIPIV24e = add-vcrlcx(HIPI,-5.3,1790.0);
HIPIV24f = add-vertex(H I PI.-.3.1786.2):.

HI PIV25 = add vertex(H 1P1...1786.2)
HIPIV26 = add-vewex(HIPI.0.O.1836.4); /0 rm 528A

A-64

HIPIV26a = add -vertex(HIPI,-5.3,1836.4):
HIPIV26b = add-vertex(H I P,-5.3.1800.2):
HIPIV26c = add vertex(HIPI.-244.I,18G0.2);
HIPIV26d = add -vertex(H I P.-244.1,1875.0):
HIPIV26c = add vertex(H I P.-5.3.1875.0):
1-1P1V26f = add vertex(HIPI.-S.3,1872.I):

HIPIV27 = add-vertex(HIPI .0.0.1872.1):
HIPIV28 = add vertex(HIPI.O.O,1919.1): I* rrn 528B/
HIPIV28a = add-vcrtex(H I Pl-5.3,1919. I)-.
HIPIV28b = add- vertex(HIPI,-5.3,1882.9);
HIPIV28c = add vertex(H I P,-244.1,1882.9);
HIPIV28d = add_veriex(H IPI.-244.1,1989.O).
IPIV28e = add_verte,.(H I P,-S.31989.O);

HIPIV28f = add vertex(HIPI,5.3,1954.8);

HIPIV29 = add-vetiex(HIPI,0.0,1954.8);
H IPIV30 = add ve-iex(HIPI.0.0.2030.4): /* rin 530A ~
HI PIV3Oa = add -vertex(HIP1 -S.3,2030.4):
HIPIV30b = add -vertex (H IPI1.-5.3.1994.2):
HIPIV3Oc = add_vertex(H I P,-244.1,1994.2):
HIPIV30d = add-verlex(HIPI,-244.1.2100.3):
HIP1V30c = add-veflex(H I P.-5.3.2100.3):
HIP1V30f = add-venex(H1P1.-5.3.2066.1):

HIPIV31 = add-vertex(HIPI.0.0.2066.1):
HIPIV32 = add-vertex(H1PI,0.0,2195.1): /* nin 530B ~
IPIV32a = add-vertex(HIPI,-S.3,2195.1);

HIPIV32b = add vertex(H I P,-5.3,2158.8);
H-IPIV32c = add vertex(HIPI,-244.I,2i58.8):
HIPIV32d = add vertex(H I P,-244.I,2250.0):
IP1 V32e = add veilex(H I P1.-S .3.2250.0):.

HIPIV32f = add-vertex(1-I Pl.-5.3.2230.8):

Hi P1V33 = add-vcrtex(H IP1.0.0.2230.8):
H1PIV34 = add-vertex(HIPI.0.0.2253.8): 1* rm 530C ~
HIPIV34a = add-vertex(H IPI.-S.3.2253.8);
H1PIV34b = add-vertex(HIPI.-5.3,2251.0):
H IPIV34c = add-vertex(HIPI,-244.I.2251.0):
H IPIV34d = add vertex(H I PI-244.I.2350.0):
HIPIV34e = add vertex(HIPI.-S.3.2350.0);.
HIP1V34f = add_vertex(HIPI,-5.3,2289.S);

H IP1IV35 = add-veflex(H I PI.0..2289.5):
HIPIV36 = add-vertex(HIPI,0.0.235I.2):
II V37 = add-vertex(HI1P1.98.0.235 1.2);

HIPIV38 = add-vertex(HIPI,98.0,2171.9); /* rm 421
HIPIV38a = add vertex(H IPI, 103.3,2171.9),
HIPIV38b = add vertex(HIPI.103.3.2206.6):
H IPIV38c = add vertex(H I P1.342.1.2206.6):
HIPIV39d = add_vertex(HIPI,342.I.2099.5),
fIIPIV38e = add-vertex(HIPI.103.3.2099.5):.
IIIPIV38f = add-vertex(H IP, 103.3.2136.2).

HIPIV39 = add-veriex(HIPI.98.0.2136.2);
H I PI V40O add_vertex(HI Pi.98.0,1937.7): 1* rrn 531/
IIIPIV40a = add -veflex(H IPI,.103.3,1937.7):
HIPIV4Ob =add_venex(HIPI.103.3,1972.7):
I4IPIV4Oc = add-vertex(HIPI.342.I.1972.7):
HIP1V4Od = add-vertex(IIP1.342.1.1865.6);
HIPIV4Oe = add-ventex(H IP1,103.3.1865.6);
HIPIV4OC = add_venex(H IP1. 103.3.1877.7);

A-65

HIPIV41 = add vertex(HIPI.98.0.1877.7);
H!PIV42 = add vcrtex(HIPI.98.0.1744.5); * tm 529 '
HIP! V42a = add ventex(HIPI.103.3,1744.5):
HIPIV42b = add vertex(HIPI.103.3,I779.5);
H!PIV42c = add vertex(HIPI.342.I.1779.5);.
HIPIV42d =add -verlex(I PI.342.I.1672.4);
HIP! V42e =add vertex(HIPI,103.3,1672.4).
HIP! V42f = add-vertex(HIPI.03.31684.5);,

HIP!IV43 = add-vcrtex(HIPI,98.0,I6S4.5);
HIPI V44 = add-vertex(HIPI,98.0.1522.4): I* run 527 ~
HIP! V44a =add venex(HIPI.103.3,I522.4);
HIPIV44b -add~vcrtex(HIPI.I03.3.1557.4):.
HIP! V44c =add-vcflex(HIP.342.I.1557.4):
HIP! V44d = add_veflex(HIPI.342.1.1450.3);
HIPIV44e add -verex(IIPI.103.31450.3):
HIP! V44f = add-verlex(HIPI,103.3.I462.4):

HIP! V45 = add-vertex(HIPI,98.0.1462.4):
HIPIV46 = add-vertex(HIPI.98.0.1342.7); 1* nn 525 *1
HIP! V46a = add vertex(H IPI, 103.3,1342.7):
HIPIV46b =add vertex(HIPI,103.3,1377.7);
HIPIV46c = add-vertex(HIP1,342.I.1377.7):
HIPIV46d =add vcrtex(HIPI,342.I.1270.6);
HIPIV46c add-venex(HIPI103.31270.6)-:
HIP! V46f = add_vertex(HIPI.103.3.1307.0):

HIP! V47 = add-vertex(H IP1.98.0.1307.0):.
HIP] V48 = add-veflex(HIPI,98.0IIJB.8): I* rtm '23 ~
HIPIV48a -add-vertex(HIPI,103.3,III8.8):
HIP! V48b =add vertex(H IPI,103.3.1153.8);
HIPIV48c - add -vertex(H IPI.342.1.I1153.8):
HIPIV48d -add_vertex(HlIPi.342.I.1046.7):
HIPIV48c add vcrtex(HIPI.103.3.1046.7):
HIP! V48f = add-vertex(HIPI.103.3.1083.I):.

HIP!IV49 = add vertex(HIPI.98.0,I083.I):.
HIPIV50 = add vertex(HIPI.98.0.796.I): /* rm 521 *

HIP! V50a = add-vetnex(HIPI.103.3.796.I):
HIPIV50b =add-vertex(HIPI.103.3.83I.I):
HIPIV50c = add-vertex(HIPI.342.I.831.I):
HIPIV50d = add verlex(HI PI.342.I.724.0):
HIPIV5Oe - add venlex(HIPI,103.3.724.0):
H IP) V5Ot' = add_vcflex(H IP1, 103.3.760.4).

HIPIV51 = add veutex(HIPI.98.0.760.4);
H IP! V52 = add-vertex(H IPI,9F.0,564.5); 1* ri 519/
HIP! V52a = add-vertcx(HIPI,I03.3.564.5).
HIP! V52b -add veznex(HIPI.103.3.599.5);
HI PIV52c =add-vertex(H IPI,342.1.599.5);
HIP! VS2d = add-verlex(H I P1.342.! .492.4):.
HIP! V52e =add-vertex(HIPI,103.3.492.4);
HIP! V52f = add vertex(HIPI.103.3.528.8);

HIP! V53 = add vertcx(HIPI,98.0.528.8).
HIP!IV54 = add vertex(HIPI.98.0.413.9); 1* comners
HIPIV55 = add vertex(HIPI,237.9,413.9). * Tm ?
HI PIV55a -add veflex(H I P1257.9.419.2);
HIPIV55b - add -vertex(H I P1.221.7.419.2);
HIPIV55c = add vertex(HIPI,221.7.500.0):
HIP! V55d -add vertex(HIPI.300.0,300.0):
HIP! V55e = add_vcnex(H IPI.300.0.419.2).

A-66

HIPIV55f = add-vcrtex(HI1P1.293.9.419.2):

HIPIV56 = add-vertex(HIPI,293.9.413.9);
HIPIV57 =add vertex(HIPI,337.5.413.9):
HIPIV58 = add-vertex(HIP1,337.5,402.6): I* office '
H IPIV58a = add vertex(HI1P1.342.8.402.6):
HIPIV58b = add~vertex(HIP1,342.8.6O0.0):
HI PIV58c =add -vertex(H I P1.449.9.600.0):
HIPIV58d = add-vertex(H I P1449.9,330.0);
HI PIV58e = add-vertex(HI P1.342.8.330.0):
HI P1 VS8f = add-vertex(HIPI .342.8,342.6);

HI PIV59 =add_veatex(H IP1.337.3.342.6):
HIPIV60 = add-vertex(HIPI,337.5.310.2): /* tin 5I11~
HI PIV6Oa = add vcnex(H I P1,342.8.310 2);
HIPIV60b = add-vertex(H IPI,342.8.315.0):
H1PIV6Oc = add -vertex(H I P1.449.9,315.0);
HIPIV6Od = add-vertex(H1PI,449.9,0.0);
HIPIV6Oe =add-vcrtex(HIPI,342.8,0.0);
HIPIV60f = add-vertex(H 1P1.342.8,274.5):.

HIPIV61 = add_veflex(HIPI.337.5.274.5):
HI PIV62 = add vertcx(HlIPl.337.S.267.4):.
HIPIV63 =add-veriex(HIPI.306.9.267.4): /* cv I (left)/
HI PIV63a =add vcrtex(H I P1.306.9,267.7):
HI PIV63b = add-veriex(H I P1.303.9.267.7):.
HIPI V63c = add-vertex(H I P1.303.9.255.7):
H I P1 V63d = add_vertex(H 1 P1.277.9.255.7):.
HI P1V63e =add-vcntex(H I P1.251.9,255.7);
HI P1V63f = add vertex(H 1PI.251.9.267.7);
HI PIV63g = add vertex(H IP1.248.9.267.7):
HIPIV64 =add-vertex(HIPI.248.9.267.4):
HI PIV65 =add-veflex(H IPI .192.2.267.4):

/* cv 2 *

HI P1V63a = add-vertex(H1 P1,192.2.267.7):
HI PIV65b = add-vortex(H I P1. 189.2.267.7):
HIPIV65c = add -vertex(HIPI.189.2.255.7):
HIPIV6Sd = add vertex(HIPI.163.2,255.7)-
HI PIV65e = add-veflex(HI P1.137.2.255.7):
Hi PIV65f =add veflex(H I Pl. 137.2.267.7).
HIPIV6Sg =add veclex(HIPI.134.2,267.7);
HI PIV66 = add vertex(H IPI.134.2.267.4):

HIPIV67 =add-vcrtex(HIPI,98.0.267.4);
HIPIV68 =add-vertcx(HIPI.98.0.100.0): /* stairwell *

HIPIV68a = add-vertex(HIP1,103.3.100.0):.
HIPIV68b =add-vertex(HIP1.103.3.125.0):
HIPIV68c = add venex(HIPI.ISO.0.125.0);
HIPIV68cd = add~vertcx(HIPI.I5O.0.40.O):
HIPIV68e add_venex(HIPI.103.3.40.0):
HIPIV68f =add vertex(H I P1,103.3.64.3);
HIPIV69 = add ve, ex(HIPI.98.0,64.3);
HIPIV70 = add-vettex(HIPI.98.0.0.0):.

H I P2 =add yg(II 1. 102.0,0. 1); /*main ceiling*/
HIPMV = add vertex(HIP2.O.O,O.0):
HIPMV - add venex(HIP2.0.0.2351.2);
HIP2V3 = add vcncex(HIP2,98.0.2351.2);
HI P2V4 = add ventex(HlIP2,98.0,0.0):.

HI P3=add~pg(HI~ .13.3.0.1). /*elev ceiling*/

A-67

HIPMV - add veutex(H IP3,98.0,267.4);
H1I1P3V2 = add vertex(H IP3,99.0.413.9);
HIP3V3 - add vertex(H I P3,337.5.413.9):
HI P3V4 = add veriex(HI P3,337.5.267.4);.

HIP4 = add~pg(HI,84.0.0.1); /*rm 506 door jam ceiling/l
H IP4V I = add vertex(H IP4,0.0,239.5)-,
HIP4V2= add vertex(H1P4,-5.3.239.5);
HlP4V3= add ventex(HIP4,-5.3.275.2);
H IP4V4= add vertex(HI 1P4,0.0,275.2);
HIP5 = add..pg(HI.84.0,0,I); /*rm 510 door jam ceiling*/
H IP5 VI =add vertex(H IP5,0.0.713.7);
HIPSV2= add venex(HIP5,-5.3.713.7);
HlP5V3= add vertex(HIPS5.3,749.4):
HI P5V4= add vertex(H 1P5.0.0.749.4).
"HIP6 = add~pg(H 1,84.0.0,.1)); /*rm 512 door jam c.eilin,*/
H IP6V1I= add-vertex(H IP6.0.0.825.9)-.
"HIP6V2 = add vertex(H IP6.-5.3.825.9):
HIP6V3= add vetx(H1P6,-5.3,861.6).
H1P6V4= add-veriex(H1P6.0.0.861.6);.

P7 = add S(HI1,84.0,0, 1). /*rm 514 door jam ceiling*/
H IP7V I= add-veriex(H IP7,0.0.937.5);
HI P7V2= add ventex(H IP7.-S .3,937.5):
H I P7V3 = add-vertex(H I P7.-S5.3,973.2):
H I P7V4 =add vertex(H I P7,0.0,973.2).
H IP8 = add..pg(HI1,84.0.0. 1); /*rm 516 door jam ceiling*/
H IP8V I= add-vertex(HI P8.0.0,1049.7):
H I P8V2 = add vertex(H IP8.-5 .3,1049.7).
H IP8V3= add vertcx(H IP8,-5.3,1085.4);
HIP8V4= add-vcrtex(HIPS.0.0.I08S.4);.
HIP9 = add..pg(H 1,84.0.0,.1); /rm 518 door jam ceiling*/
H IP9V I = add-vertex(H IP9.0.0.I1161.7);-
H1P9V2= add_vertex(HIP9.-S.3.1161.7);
"HIP9V3 = add-vcrtex(H IP9,-5.3,l1197.4);
" IP9V4 =add-vertex(H IP9,0.0.1197.4),
HIPI = addpg(HI,84.0.0,I): /*rm 520 door janm ceifiing*/
HIPIOVI= add-vertex(HIPIO.0.0,1273.4):
HIPIOV2= add-vertex(HIPIO,-3.3.1273.4);
HIPIOV3= add-vertex(HIPIO.-S.3.1309.I):
HIPIOV4= add-vertex(HIPIO.0.0,1309.I).
H IPI I = add~pg(H 1,84.0,0, 1); /Orm 522R door jam ceiling*/
H IPI IV I= add-vertex(H IPII1,0.0, 1429.6);
H IPI IV2 =add veflex(H IP) I.-S.3.1429.6)-;
HIPI IV3= add vertex(HIPI I.-S.3.1461.3);.
HIPI IV4= add vertex(HIPI 1,0.0.1461.3);
HIP12 = add-jg(HI.84.0,0,1); /*rm FD I door jam ceiling*/
HIPI2Vl = add vcrtex(HIPI2,0.0.1488.0);.
HIPI2V2= add veflex(HIPI2.-5.3,1488.0);
HIP12V3= add-veriex(HIPI2,-S.S,1560.0);.
Hl P12V4- add vetex(HI1P12.0.0,1560.0);
HIP13 0, addpg(HI.84.0.0.I); /Orm 524 door jam ceiling*/
HIP13VI = add vertex(HIP13,0.0.1583.3);.
HIPI3V2= add-vcrtex(H1P13,-S.3,1583.3);
HIP13V3= add vertex(HIPI3,-5.3,1619.0);
HIP13V4- add vettcx(NIP13,0.0.1619.0);
H1P14 - add~jpg(HI,84.0.0,l)-, 1* 26R ceiling/
HI P14VI - add vertex(H IP14,0.0.1754.5);
HIPI4V2= add verlex(HIPI4,5S3,1754.5);
HIP14V3= add-vertex(HIPI4,-S.3,1786.2);
HI P14V4= add vertex(HIPI4.0.0. 1786.2);
H IPIS5 = addpg(H 1,94.0,0, 1); farm 528A door jam ceiling*/
H I PI5V I - add venex(H I P 15.0.0,1836.4);

A-68

HlPI5V2= add-veflex(HIPIS.-5.3.l836.4);
HIPl5V3= add vertex(HIPI5,-5.3,1872.1):.
HIPISV4= add-vertex(HIP1.0.0.l872.l):
HI16 =addpg(HI.84.0,0.1); I*rrm 528B door jam ceiling*/
HIP16VI = add-veriex(HIPI6.0.0.1919.I):
HIP16V2= add vertex(HIP16,-S.3,1919.1);
H IP I6V3 = add vertex(H IP 16,-5.3,1954.8);
HIP16V4= add vertex(H 1P16,0.0.1954.8):
H IPI 7 = add,,pg(HI1,84.0,0,I1). /*nn 530A door jam ceiling*/
H IPI 7V I = add-vcntex(H IPI 7,0.0,2030.4);
HI P17V2= add-vertex(H IP17.-S .3.2030.4);
HIP17V3= add_vetex(HIPI7.-S.3.2066.l):
H IP I7V4 = add vertex(H IP 17.0.0.2066.l1),
H IPI18 = addjpg(H 1,84.0.0. 1); /*rmn 530B door jam c eiling/
H IPI8V I =add-vertex(H IPI 8,0.0,2195.1)-.
H1P18V2= add vertex(HIP18,53.2195.1);
HIPI8V3= add-vcrtex(HIPI8,-5.3,2230.8):
H IPIS8V4 = add vcrtex(H1IPI18,0.0,2230.8);
HIPI9 =add,,pg(HI,84.0.0,l); /*rm 530C door jam ceiling*/
HI19VI = add vertex(HI P19.0.0.2253.8):
H1P19V2= add veflex(HIP19,-5.3.2253.8):
HIP19V3= add-vertex(H1P19.-5.3,2289.5):
HI P19V4= add-vcrtex(H IP19,0.0.2289.5):.
H IPIN = add~~pg(HI,84.0,0.I1): /*rm 421 door jam ceiling*,'
H IP20V I = add vertex(HI P20.98.0.2171 .9);
HIP2IOV2= add-vcrtex(HIP2O).I03.3,2I71.9)-
HI P2OV3 = add-vcrtex(H I P120, 103.3.2136.2)-.
HIP20OV4= add-vcrtex(HIP2O.98.0.2136.2);

P21 = add ~p(H,84.0,0,1); /*rm 531 door jam ceiling*/
H IP2 IV I= add vertex(H I PI.98.0,1937.7).
HIP2IV2= add-vernex(H1P21),103.3.1937.7):
H I P'-IV3 = add-vertex(H IP-2J. 103.3.1877.7);
HIP2IV4= add-vertex(H1P2-1,98.0.1877.7);.
HIP22 = addpg(I.84.0.0.1); /*rm 529 door jamn ceiling*/
H IP22V I =add-veriex(H IP-12.98.0.1744.5);
H1P22V2= add verlex(H1P2-2,103.3.1744.5):
H IP22V3 = add vertex(H IP22.103.3.1684.5);
HIP22V4= add vertcx(H1P2-2.98.0.1684.5);
H IP23 =addpg(HI1,84.0.0. 1); /*rm 527 door jam ceiling-*/
H I P23V I = add-vcrtex(H I P123,98.0.1522.4):
H1P23V2= add-vcrtcx(H1P2-3.103.3.1522.4):
H1P23V3= add _veflex(HIP23.I03.3.1462.4).
HI P23V4= add_vertex(H IP23.98.0.1462.4):
H1P24=addpg(H,4.0.0.I). /*nn 525 door jam cseilin,*/
H I P24V I = add-vernex(HI 1P"4,98.0.1342.7).
H1P24V2= add-vertex(Hl1P24,103.3.1342.7):.
H IP24V3 = add ventex(H I P24.103.0.1307.0):
HIP24V4= add vctx(H1P24,98.0,1307.0);
H IP25 = add~pg(H 1,84.0,0, 1); /*rm 523 door jam ceiling*/
H IP25V I = add-veriex(H IP25.98.0,1 118.8):
H1IP25V2 = add-vertex(H IP25,103.3,1118.8);
H IP25V3 = add-ventex(H I PI25,103.3.1083. 1);
H 1P25V4= add-vertex(HIP25.98.0, 1083.1):
H IP26 = add..Pg(H 1,84.0,0.I1); /*rmn 521 door jam ceiling*/
H I P26V I =add vertex(H I P26,98.0,796. 1);
H IP26V2 -add-vcrtcx(11I1P26,103.3,796.I1).
H1P26V3- add vtilex(H1P26,103.3.760.4).:
H I P26V4 - add-vertex(H I P26.98.0.760.4).
H IP27 = addjpg(H 1,84.0,0. 1); /*rm 5 19 door jam ceiling*/
H I P27V1I = add-vcntex(H I P27,98.0.564.5):
HI P27V2= add vefiex(HI P27.103.3,364.5);
H I P27V3 = add_ventex(H I P27.103.3.528.8).

A-69

HI P27V4-' add vertex(HI P27,98.0,528.8);
HIP28 - addjpg(HI,84.0,0,I);, /*rm ? door jam ceiling*/
HI P28V I -add -vertex(HIP28.257.9.4I 3.9);,
HIP28V2= add venex(H1P2O8.257.9.4l9.2):
H IP2-8V3= add -vcntex(H I P28,293.9,419.2);
HIM PV4- add-vertex(HI 1P28.293.9.41 3.9);
HIP29 = addpS(HI,84.0,0.I);, I* office door jam ceiling*/
H I P29V I= add -vericx(Hl1 P9.337.5,402.6);
HI P29V2- add vertex(HI1 P29,342.8.402.6);
H I P29V3 -add vertex(H I FP29,342.8.342.6);
HI P29V4= add vertex(H IP29,337.5,342.6);
HIP30 = add-pg(HI.84.0.0.I); I* rm 511 door jam ceiling*/
H IP30V I -add-vertex(H I P30,337.3,310.2).
HIP3OV2= add -vertex(H IP30,342.8.310.2);
HI P30V3- add-vertex(H IP30.342.8.274.5);.
HI P30V4 add vetex(H 1P30,337.5 .274.5);

"HIP31 = addjpg(HI1,83.8,0, 1); /0 dcv I door jam cciling4 /
"HIP3 I VI -add-vertcx(H IP31,303.9.267.7);
" IP3 IV2 - add_venex(HJIP31,303.9.255.7);
HI P31 V3- add_vertex(HIP3 1.277.9,255.7);,
HlP3IV4= add-vericx(HIP3I.251.9.255.7);
H IP31 V5 = add_venlex(H IP31.251 .9,267.7):
H IP32 = add-pg(HI1.83.8.0.I1); /* elev 2 door jam ceiling'i
H I P32V I =add-vertex(H I P32. 189.2.267.7):
H1P32V2= add vertex(HIP32.l89.2.255.7);.
H I P32V3= add -vertex(H I P32,163.2.255.7):
H 1P32V4- add-vencx(HI P32.137.2.255.7);.
HIP32VS'= add venex(H1P32.I37.2.267.7);

HIP63 = add~pg(HI.86.8,0.1); I* elv I ceiling*'
H I P63VI add -vertex(H I P63.306.9,267.4)-.
H1P63V2'= add -vertex(H I P63.306-9.267.7).
H I P63V3 -add-vertex(H I P63,248.9.267.7):
H1P63V4= add vertex(H1P63.248.9.267.4):

HIP64 =addjpg(HI.86.8.0,I); /* elev 2 ceiling*/
H IP64V I add-vcrtex(H1IP64.192.2.267.4):
H I P64V2= add -vertex(H I P64.192.2.267.7);
H I P64V3 -add_ventex(H I P64,134.2,267.7);.
H1IP64V4 = add-vertex(H IP64.134.2,267.4),

HIP33 = add~.pg(HI,84.0,0,I); /* stairwell door jam ceiling*/
H IP33V I= add Vcflex(H IP33,98.0. 100.0)-.
H IP33V2 =add-vertex(H IP33,103.3,I100.0);
HIP33V3= add veitex(HIP33.103.3.64.3);.
H I P33V4 =add Vewiex(H I P33,98.0.64.3);

HIP34-=addjpg(HII44.0.0,I); /*rn 506 ceiling*/
H IP34V I = add vcflex(H IP34.-5.3.203.3).
H I P34V2= add vertex(H I P34.-244. 1.203.3);
H I P34V3 -add vertex(H I P34.-244. 1,309.4);
HI P34V4- add vertex(H IP34,-5.3,309.4);.
H IP35 - add~jpg(H1. 144.0,0, 1); /Orm 5 10 ceiling*/
H IP3SVI - add venex(H IP35.-5.3.677.3);
HIP35V2- add-vencex(HIP35.-244.I.677.5);
HI P35V3 = add vertex(HI P35,4244.1,783.6);.
H IP35V4 - add vertex(H IP35.-5.3,783.6);
H1P36-=addypg(HI,I44.0.0.1). /Orm SIceiling'!
H IP36V I - add vetex(H IP36,-5.3.789.7).
HI P36V2- add-vertcx(H IP36.-244. 1.789.7);

A-70

HlIP36V3 add-ventex(H IP36.-244.1.895.8):
HIP36V4= add-vcncex(HIP36.-5.3.89S.8);
H IP37 = addjpg(HI1,144.0.0,.l)i /*rm 514 ceihlg*,'
H IP37V I= add-vertex(H 137.-5.3.9013):
HIP37V2= add vertex(HIP37.-244.1.901.3);
HIP37V3= add-verncx(HIP37.-244. 1.1007.4);
H1P37V4= add-veftex(H1P37,-5.3.I007.4);
HIP38 -addypg(H1,144.0.0,1); /*rm 516 ceilinlg*/
HIP38VI = add -vertex(H IP38,-5.3,1013.3)..
HIP38V2= add vecncx(H1P38.-244.1,1013.5).
HIP38V3= add vertex(HI P38.-244.1.1119.6):
HIP38V4= add_ventex(HIP3S.-S.3.1 119.6);,
H IP39 = addjg(H 1. 144.0,0, 1); /rm 5 18 ciling*/
H IP39V I= add_venex(H1IP39.-5.3.1125.5).
H1P39V2= add_vertex(HIP39-244.I1I125.5);.
H IP39V3 = add_venecx(H IP39.-244.1,1231 .6)-,
H1P39V4= add vertex(H1P39.-S.3.1231.6);
H IP40 = addpg(Hl1, 144.0.0. 1); /*rrn 520 ceiling*/
H IP40V I= add-vertexfl1I1P40,-5.3,1237.2).
HIP40V2= add venecx(HIP40.-244.i, 1237.2)-;
H I NOWV - add-vertex(H I P40.-244. 1.1343.3):
HIP4OV4= add vertex(HIP40.-S.3,1343.3):
"HIP41 = addjg(H 1. 144.0.0. 1); /*rm 522R ceiing*1
"HIP41 V I= add-verlex(H1IP41.-5.3.1393.4);
"HIP41 V2 =add vertex(H IP41.-244.1.1393.4):
H1P41V3= add-vernex(HIP4.-244.1.1499.5);
HIP4IV4= add-vertex(H1P41-531499.5):
HIP42 = addjg(HI,44.0.0I). /* FDI ceiling*/
H IP42V I= add vtex(H1IP42.-5.5.1486.0):
HI P42V2 = add vetnex(Hl1P42.-50.0. 1486.0);
H I P42V3 = add vcrtex(H I P42.-50.0. 1562.0);
HIP42V4= add_venlex(H1P42.-5.5.1562.0):
HI1P43 = addjpg(HI.144.0.0.I)-. I*rm 524 cci1ln*

H IP43V I =add-vertex(H1IP43.-5.3,1547.I1);
H1IP43V2 = add_vertex(H1IP43.-244.1.1547.I1):
H1IP43V3 =add-vertex(H IP43,-244.1,1653.):
H1P43V4= add vertex(HIP43.-5.3.1653.2):
HlP44 =add..pg(HI.84.O.O.1). /*water fountain ceiling*/
H1IP44V I = add-vertex(H IP44,0.0.1650.4):
H1IP44V2 = add vertex(H IP44.-30.0.1650.4).
H I P44V3 = add-vertex(H I P44,-30.0. 1684.5):
H IP44V4 = add_vertex(H1IP44.0.0.1684.5);
H IP45 = addpg(H1, 144.0,0.I1); /*rn 326R ceiling*/
H IP45V I = add_vewlex(H IP45.-5.3.1718.3).
H IP45V2 = add_vtflex(H IP45.-244.I.1718.3);
H IP4SV3 - add vcrtex(H I P45.-244.1.1790.0);
HIP4SV4= add-vcrtex(N1P45,-5.3.1790.0):
H1IP46 = addjpg(H1,I144.0.0.1)-. /nnm 528A ceiling*/
H I P46V I add vertex(H I P46.-5 .3. 1800.2);
HI P46V2- add veftex(I P46.-244. 1.1800.2):.
H IP46V3 - add-vcutcx(I P46,-244.1,1875.0);
H I POWV- add veniex(H I P46,-5.3. 1875.0);
H IP47 = addjpg(H1.I144.0,0, 1)- /*nn 528B ceiling*/
H IP47V I - add vettex(H IP47,-5.3,1882.9).
H1I P47V2 = add vertex(H I P47,-244. 1.1882.9);
H IP47V3 - add vertex(H IP47.-244.1.1989.0);
H I P47V4 - add vertex(H I P47.-S.3, 1989.0);
H1IP48 - addypg(H1. 144.0,0.I1); IOrm 530A ceiling*/
IIP48V I - add vertex(M I P48.-S.3,1994.2):

H IP48V2=- add-vecnex(H IP48,-244.1 .1994.2).
H IP48V3 - add veflex(H IP48.-244.1,2100.3);
H1P48V4= add vertex(HIP48.-5.3.2100.3):

A-71

HIP49-=add~pS(HI,144.0.0.1); /*rm 530B ceiling*/
H IP49V I - add venex(H IP49,-5.3.215 8.8);
HIP49V2- add-vcrlcx(HIP49.-244.I.2158.8):
H I P49V3 = add vertex(H I P49.-244. 1.2250.0)-.
H IP49V4= add vertex(H IP49.-5.3.2250.0);
HIPSO =:addypg(HI,I44.0.0.I); /rn 530C ceifing*/
HIP50VI Or add veetex(H IP50,-5.3.225 1.0);
HIP5OV2=: add_vertex(HIPSO.-244. 1,2251.0):.
H I PSOV3 = add-venex(H I P50,-244. 1.2350.0);
HI P5OV4- add-vertex(H IP50.-,3.,2350.0):

1* following ceilings are incorrect bawed on 35" to eithei side of door*/

H IPS I = addpg(H1.144.0,0. 1); /Orin 421 ceiling*'
"HIP5I V I= add vertex(H IP51, 103.3,2206.6):
H I PS IV2 = add vertex(H IP5 1,342.1,2206.6):
" IP I V3 = add vertex(H IPP51342.1,2099,5);
"HI PSIV4 = add-vertex(H IP51.103.3.2099.5);
HIP52 =addjpg(HI,144.0,0.1); /*rm 531 ceiing*!
H IP52V I= add-vertex(H IP52,103.3.1972.7).
HI P52V2= add-vertex(H I P2,342.1.1972.7)i
HI P52V3= add ventex(H IP52.342.1.1865.6):
HIP52V4= add vertex(HIP52.I03.3.I865.6):
HIP53 = addjpg(HI,I44.0.0.I)- /*rm 529 ceiling*,
HIPS3VI= add vertex(HI P53.103.3.1779.5):
HIPS3V2= add vertex(H IP53.342.1,1779.5):
HIPS3V3= add vertex(HIPS53.342.I.1672.4):
HIP53V4= add-vcrtex(HIP53.103.3.167?.4);
HIPS4 = add~.pg(H1.44.0.0.I):. I/r 527 ceiling*!
"HI P4V I = add-vcflex(H1IP54.103.3.1357.4):
H I P54V2 = add verlex(H I P54.342.1.1357.4):.
H I P54V3 = add vertex(H I P54,342.1.1450.3)-.
HIPS4V4= add Verlex(HIP54,103.3,1450.3)-.
H IP55 = addjpg(HI1,I44.0.0.I1). /*mi 525 ceiling*/
HI P55V I = add-vertex(H IP55,103.3.1377.7):-
H I PSV2 = add-vcrtcx(H IP55.342.1,1377.7):
H I P55V3 = add -veflex(H I P55,342.1.1270.6)-.
HIP5V4= add vertex(HIP55.103.3.1270.6):
HIP56 = addjpg(HI.144.0.0.I). /*rmn 523 ceiling*/
HI P56V I= add vertex(H IP56.103.3.1153.8) -
HI P56V2- add vertex(H IP56.342.1.1 153.8):
H I P6V3=- add-vertcx(H IP56.342.1.1046.7);
HIP56V4= add vertex(HIPS6,103.3.1046.7):.
H IP57 - addjpg(HI1,I44.0,0, 1); /*rn 521 ceiling*/
HIP57VI=- add vertex(HI P57.103-3,83 1.1);
H I P7V2 = add vetiex(H IP57.342.1.831. .1).
H I P57V3 - add vertex(H I P57,342.1,724.0);
H I PS7V4 = add vertex(H 1 M57,103.3,724.0);
HIPS8 = addpg(HI.144.0..I); /Orm 519 ceilin.-*
"HIP58V I - add venlex(H IP59.103.3.599.5);
"HI P5V2- add -vetix(HI P58,342.1 .599.5).
H I PSSBV3 = add vertex(H I P58,342.1,492.4) :
HI P38V4- add vertex(HIPSS. 103.3.492.4);
HIP59 - addjpg(HI.I44.0.0.I); /nnm ? ceiling*/
H IP59V I -add vertex(H IP59,221 .7,419.2):.
HI P59V2- add ventex(H 1P59.221.7.500.0);.
H I PS9V3 = add vertcx(H I P59.300.0,300.0);
HI P59V4- add vetex(H I P9.300.0.4 19.2);
HIP60 = add~pg(HII44.0.,I); /0 office ceiling*/
H IP60V I - add vertex(H IP60,342.8.600.0);
H IP6OV2 - add vertex(H I P60,449.9.600.0);
H I P60V3 -add vertex(H I P60,449.9.330.0):

A-72

HIP6OV4= add-vertex(HIP60,342.8.330.0);.
"HIP61 =addpg(H1, 144.0.0. 1): /*nn 5 11 ceiling*/

I1P61V I = add vertex(H1IP61,342.8.315.0):
HIP6IV2= add vertex(H IP61.449.9.3 15.0);
H1I P61IV3 = add_vertexfl1 I P61I,449.9.0.0).
HI P61V4= add_vertex(H IP61.342.8.0.0):
HIP62 = addpg(HI,144.0.0.1); /*rm stairwell ceiling*/
H IP62V1I add-vertex(H1IP62,103.3,125.0)-.
H1P62V2= add-vetecx(H IP62,150.0,125.0);.
"HIP62V3 = add vertex(H1IP62,150.0.40.0);
"HIP62V4 = add-vertex(H1IP62,103.3.40.0),

I* Don't forget to add the ceiling associations or else we can't tell
how high each section of the hallway is*/

add -ceiling(H I P,H IP2);
add ceiling(H IPI ,H I P3);
add ceiling(H1IP1,H IP4);
add_ceiling(H1IP I,H1IP5)-.
add_ceiling(H IPl. HI P6).
add ceiling(H I P1 I 1P7).
add ceiling(H I P1 ,H I P8):
add ceiling(H IPI.H IP9)-.
add -ceiling(H IPI, HI PI0)-.
add_ceiling(H1IPI.1I1PI11);
add -ceiling(HIP1 .H1P12).
add ceiling(H IPI,H IPI 3).
add~ceiling(IP,H IPI 14).
add -ceiling(HIPI ,H1P1S):
add ceiling(H I PLI HPI6):
add ceiling(H I P1 H I PI17)-.
add ceiling(H 1 P1M IHP1 8).
add -ceiling(H IPI .HlP19)-
add ceiling(H I P1 H I P'20)

add -ceiling(HIPI .HIP2I).

add ceiling(H 1 P1 .H I P23).
add ceiling(H I P1H .HP24)
add ceiling(H I P1 .H1 P25)-.
add -ceiling(H I P1.11 1P26)-;
add ceiling(H1IPI ,H1IP27):
add -ceiling(H1PI .HIP28).
add ceiling(H I P1 .H I1P29).
add ceiling(H IPI, .1 P30);.
add -ceiiing(HI P1,H1 P31);

add ceiling(H I PL IH1P32)-.
add -cciling(H I P1.11I P34):,
add-ceiling(H IP1.H IP34)-.
add ceiling(H I P1 .H I P36);
add -ceiling(H1PI .H1P36);
add ceiiing(H I P1 ,H I P37).
add -ceiling(111P1 .11P39);
add ceiling(H I P1 .H I P39);
add -ceiling(HIPI.,14P41);
add ceiling(H 1 P1,H I P42);,
add ceiling(H IF P.H I P43);
add -ceiling(HI P1.HI P44);

add ceiling(H I P1 ,H I P45).
add ceiling(H 1 P1 ,H I P46);.
add ceiling(HI1P1 .H IP47);
add-Ceiling(H I PL H I P48);

A-73

add ccaling(14 I P1,11 I P49)-.
add_ceiling(14 I PI,H IP30)-.
add CoilingQ1 I P1 .H I P5 1).
add -ceiling(H IP1.111P52):
add ctiling(I P1, HI P53)-.
add -ceiling(1 IIPI .H IP54)-.
add cciling(H I P1 ,H I P55)-.
add -ceiling(HIP1 ,HIP56);
add_ ceilingH IlPl,I1P57)-.
add -ceiling(H IPI ,HIP58);
add_ ceiling(M I P1 11 P59):.
add_ceiling(1l 1 P1,11I P60):.
add ceiling(H I P1, HI P6 1).
add -ceiling(HIPI.H1P62);
add_ceiling(1 I P1 .H I1P63);
add ceiling(H 1 P1 ,H I P64);

/* Vertical edges must slway be expliciti) added/

add edge(H I PI Vi ,H I P2V 1):
add -edge(HIP1V2,H1P4VI): M*ink up \ert edges of roomi 506*/
add edge(HIPIV2a.H1P4V2):
add edge(H IP1 V2b,H IP34V 1):
add -edge(HI PtV2c,HI P34V2):
add edge(H IP1 V2dHlIP34V3).
add -edge(H IP1 V2e,H IP34V4):.
add edge(H 1PIV2f.H1 P4V3):.
add edge(HI P1V3,H IP4V4):
add edge(HIP1V4,HIPSVI);, /ink up verl edges of roorn 5I0*/
add edge(HlIPt V4&,H 1P5V2):
add -edge(H1PIV4b,H1P35VI).
add edge(H1 l V4cH1 P35V2):
add -edge(HIPI V4d,HlP35V3);
add edge(HIPIV4e.HI P35V4);
add edge(H11Pt V4f.H 1PSV3):
add edge(1I IP)V5.H1 P5V4):
add edge(HIPIV6.HIP6VI):. Iink up vei edges of room 512 ~
add -edge(H IPt V6a,HI P6V2):
add edge(H1 PtV6b.H1P36V I):.
add edge(H IP1 V6c.HIlP36V2).
add -edge(HIP1 V6d,H IP36V3)-.
add_ pdge(H1 PIV6e.H1P36V4);
add edge(HI P1V6f.HI P6V3):.
add -edge(H 1PIV7.H 1P6V4);
add edge(HIP1V8,IlP7V1):. Iink up veil edges of room 514*1
add edgeflI P1 V~a,H IP7v2):.
add -edge(H IPIV~b,HIP37V1);
add edge(H IPt V~c,HlIP37V2):
add -edge(H 1P1 VgdH 1P37V3).
add edgje(Hl1P1 VS.H 1P37V4);
add edge(HIPI VSH1 PMV);
add edge(HIP1 V9,HI P7V4);
add_ edge(HI1P10,H41PSVI): /link up veil edges of room 5I61/
add -edge(N1 PIVIO@.H1 PSV2):.
add edge(HJ PiVIOb.HIP38VI);
add -edge(HI P1VlOc,I4IP38V2):,
add edge(HIP1VIOd,HIP38V3):.
add edge(H1PIVIOe,H1P38V4);
add .dge(I P V IOf,11 1P8V3);
addI edge(H1P1V1 1.H1P8V4);
add adge(IIIPIVl2,IIP9VI)-: /ink up vert edges of room511
add edgc(H IPIVIUMH1P9V);

A-74

add -edge(H IPIV 12b,H IP39V I)-.
add cdge(II I PIlV 12c,H I1P39V2).
add edge(II I PIlVI2d.I 1P39V3):
add edge(H I PI V 2e,H I P39V4);
add edge(H I PI V2fI41 P9V3);
add -edge(H I PI V I3,H IP9V4) :
add edge(HIPIVI4,HIPIOVI); M*ink up vert edges of room 520*/
add -edge(HIPIVI4a,HIPIOV2).
add _edge(H I PlV4b,HIP40VI);
add -cdge(H IPR V 4cH IP40V2):
add_ edge(H IPIVI4d,H INP4V3):
add c dge(HI PIVI4c,H 1P4V4):
add edge(H IPIV14f,HIPIOV3);
add -edge(1IPIVIS.HIPIOV4):
add edge(HIPIVI6,HIPI IVI): M~ink up yert edges of room 522R*/
add edge(HIPI VI6a,HIPI 1V2)-.
add cdge(H IPI VI6b,HIP41IVI):
add -edge(H IPIVI6c,HIP4IV2):
add edge(H IPIVIUd.IP4IV3).,
add -edge(H IPIVI6e,HlP4IV4)-.
add_ cdge(H IPI V 6f.H IPI I V3).
add edge(H IPIV 17, H IPI IV4) :
add edge(H IPIV18.1-11PI 2V1); M*ink up vert edges of room FD I*/
add edge(H I P I V I 8a.H I P1I2V2):
add edge(H IPI V I8b,HIP42V V1).
add edge(H IPI V I8c.HI P42V2);
add edge(H IPI V I8d.H I1P42V3):,
add -edge(H I PI V I8e.H I P42V4):
add edge(H I PI V I8fH I PI 2V3).
add -edge(H I PIVI19,H I P1 2V4);
add edge(IIPI V2O,H IPI 3V 1): M*ink up vert edges of room 524*/
add edge(H I P) V2Oa,H I PI13V2):
add edge(H I Pt V20b.H I P43V I)-.
add edge(H I P1 V20c.H I P43V2);
add edge(H IPI V20d.H I P43V3):
add -edge(H I PI V2Oe.H I P43V4):
add edge(Il I P I V20f.H I P1 3V3);
add edge(H IP IV2 IH .I PI 3V4)
add -edge(11IPIV22,HIP44V]): Minfk tip yert edges of water fountain*/
add edge(H IPt V22)a.H P44V2):
add -edge(HI PRV22b.HI P44V3):
add_ edge(HIPI V23,HI P44V4):
add edge(HIPIV24.HIPI4VI): M*ink up vent edges of room 526R*i
add edge(H IPR V24a,HI PI4V2):
add -edge(HI PRV24b.H IP4SVI);
add edge(HI PIV24c.H IP45V2):
add edge(H IPI V24d,H1 P45V3)-.
add -edge(H IPIV24c,H1P45V4).
add_edge(HIPIV24f.HIPI4V3):
add_edge(HIPIV2S.HIPI4V4);
add -edge(HIPIV26,HIPI5VI), /*ink up vert edges of room 528A*/
add_edge(HIPIV26a,HIPISV2);,
add -edge(H1PIV26b,1IIP46VI);
add edge(HI P1V26c.H IP46V2);
add edgefilPI V26d,H IP46V3);
add c dge(H I PI V26e,H I P46V4):
add-edge(H IPI V26f I IPI V3);
add edge(H I P1 V27,H I PI 5V4):
add cdge(HIPIV28,HIPI6VI); MIink up yer edges of room 528B*/
add edge(HI PIV28a.H1 PI6V2):
add edge(HIPIV28b,HIP47VI).
add edge(H I P1 V28c,II I P47V2);

A-75

add edge(H IP I V28d,H I P47V3);
add edge(H IPI V28e,H IP47V4):
add - dge(H1I P IV28fHI PI 6V3):
add-edge(H IPI V29.H IPI6V4)-.
add edge(HI PlIV3O.H IPl 7VI)-. Min1k up veil edges of room 530A*I
add_edge(H IPI V3Oa HI P I7V2);
add cdge(H I PI V3Ob,H IP48V 1);
add_edge(H IPI V3Oc,H1IP48V2),
add-edge(H IP) V3Od,H IP48V3);
add -edge(H IPI V3Oe.HI P4V4);
add edge(H I PIV3OfHIPI 7V3)-.
add -edge(H IPI V3 1,H IPI 7V4);
add edge(H IPI V32,H IPI 8V 1); Minok up veil edges of room 530B*/
add -edge(H I PI V32aH I P1 SV2);
add_edge(H I PIV32b,H1IP49V I)-.
add edge(H I PI V32c,1fI1P49V2) -
add edge(H I PI V32d,H I P49V3);
add-edge(H I PI V32e,H I P49V4)-,
add edgefil I P1 V32f.H I PI 8V3);
add_edge(H IPI V33.H1IPI 8V4) -
add_edge(HIPIV34,H1P19VI). /*link up vert edges of room 530C*/
add_edge(H1PlV34a,H1P19V2).
add -edge(HIPIV34b,HIP5OVI);
add_cedge(H I PI V34c,H I P50V2);
add -edge(H1IP IV34d.H IP5OV3);
add edge(H I PI V34eH I P5OV4).
add_edge(H1I PI V34f.H IPI9V3):
add -edge(H I PI1V35,H IPI 9V4) -
add-edge(H IP1V36,HIP2V2): /*corner*/
add -edge(H 1P1 V37.H 1P2V3)-. /*corner*/
add_.edge(H1P1V38.111P'20V1): Mink up veil edges of room 421*1

add -edge(H 1P1 V3&a.H IP20V2):
add_.edge(HlPlV38b,HIP5 1V1)-.
add -edge(H1PIV38c,H1P5IV2);
add edge(HlIV38d,HI P51V3):
add_edge(HJPIV3Se.HIP51V4).
add_edge(H 1P1 V38f,Hl1 POV3);
add -edge(HI1P1 V39,H IP20V4)-;
add_edge(H1P1V4O,H1P21VI)-. Min1k up verl edges of room 53 11
add -cdge(HIPIV4Oa.H1P21V2),
add edge(HlIP1 V40bH 1P52V I);
add -edgc(HIP1 V4Oc,HI P52V2);
add edge(H 1P1 V4Od,H IP52V3);
add -edgefil PRV4()NH IP52V4);
add edge(Hl IPRV4Of.H1 P21 V3);
add-edgefHIPlV4l,HlP2IlV4).
add -edge(HIP1V42,HIP22VI). /*11k up vert edges of room 529*1
add edgeCH 1PIV42a.H1P22V2):
add-cdge(H1P1V42b,H1P53V1);
add edge(111P1V42c,HI P53V2);
add -edge(H IP1 V42d,H IP53V3);.
add edge(H I P1 V42e,H I P33V4);
add -edgefH I PI V42f,KH1IP22V3);
add edge(H I PI V43,H I P22V4):.
add - dge(H IPI V4,H IP23V 1); Min1k up veil edges of room 527*1
add edge(H] PIV44a,HIP23V2);
add-edge(H] PIV44b,H I P54V I);
add cdze(H IPIV44c,H IP54V2);
add -edgeffli PIV44d,HI P54V3);
add edge(H1 PIV44e,H1P54V4)-.
add edge(H1 PIV44fHl P2V3):.
add ed e(HIPI V45,HI P23V4)-.

A-76

add edge(H I1P IV46,11I1P24V I). Mink up yeni edges of room 525*'
add edge(H IPIV46a,H1IP2-4V2):
add edge(H I PI V46b.H I1P55V 1);
add edge(H I PI V46c,H I1P55V2):
add-edgc(H IPI V46dH IP5SV3):
add edge(H I P IV46e,H I P5SV4);
add cdge(H I PI V46fH I P2-4V3);.
add - dge(H IPI V47,H I P24V4);
add-cdge(HIPIV48,HIP25VI); /*lnk up verl edges of room 523*/
add edge(H IPIV48a.H1P25V2):
add_edge(HIP1V48b,HIP56V1);
add_edge(HlIP1V48c,HlIPS6V2);
add_edge(HIPIV48d,H IP56V3);
add-edge(HI PIV48e,H IP56V4).
add -edgeCHJl V48fH1P25V3);
add_edge(HIPIV49.HIP2SV4):.
add_edge(HIPIV5O.HIP26V1); /*link up vent edges of room 521*,
add -edge(H IPIVS0a,HlP26V2);
add cdge(H IPIV5Ob,HlPS7Vl);
add -edge(HIPIV5Oc,HIP57V2)-.
add-edge(H1PIV5Od,H1PS7V3).
add_edge(H1PIVS0e,H1P57V4).
add_edge(HlIPlV5Of.H IP26V3);
add -edge(H IPlV5l,HIP26V4):
add_edge(HIPIV52,HIP277VI). M*ink up vert edges of room 5 19*1
add-edge(HIPIV52a,HIP27V2).
add edge(II IP1V52b,HlP58V I):
add -edge(HIPIV52c,H1P58V2).
add cdge(HIPI V52d,H IP58V3):
add_edge(HIPIV52e,HIP5SV4);
add_edge(HI1P1 V52f.H IP27V3)-.
add -edge(HIPIV53,H1P27V4);
add_ edge(HlP1V54HIM32); /*corner*/
add edge(HIPlV5S.HIP2SVI)-. M*ink up vent edges of room ?*/
add -edge(1IIPIV55a.HlIP28V2);
add_edge(HIPIV55b,HIP59VI)-.
add edge(H IPIVS~c.H1P59V2):
add -edge(HIPIV55d,HIP59V3):
add edge(H IPIV55e,H IP59V4);
add_edge(HIPIV55f,HI28V3):
add_edge(HIPIVS6.H 1P28V4).
add -cdge(HIPIV57,HIP3V3). /*comrne*/
add edge(HIPIV58,HIP2-9VI); M*ink up yert edges of office 515 *1
add edge(HI PIV58a,HI F29V2);.
add -edge(HI PIV58b,HIP6OVI);
add edge(HI PIVS8cH IP60V2):.
add-edge(HIPV58d,HIP6OV3)-,
add -edge(HIPIV5Se,HIP6OV4):
add -edge(HIPIV5Sf.HI P29V3);
add-edge(HIPIV59.H1P29V4);
add edge(H1PIV6O,H1P3OVI); Mlink up yern edges of room 511 *

add_edge(H 1P1 V6Oa,H IP3OV2);,
add -edge(HIPIV6Ob,HIP6IVI):
add edge(H IPIV6Oc.H 1P61 V2):
add - dge(NIPIV6OdHIP6IV3):,
add edge(H 1P1 V6OeH IP61V4).
add -edge(I P1 V6OH I P3O3);
add cdge(H1PlV6I .HIP3OV4)-.
add edge(NI PIV62,HIP3V4); /*comer*/

add edge(HIPIV63,HIP63VI):. I*ink up vent edges of room cv *

A-77

add cdge(H I PIV63a,H IP63V2);.
add-edge(H I PIV63b.H IP3 IV]);
add_edge(H IPIV63c.H IP3 IV2);
add -edge(H I PIV63d.H I P3 IV3).
add-edge(H I P1 V63eI I P3 I V4);
add cdge(H I P IV63f.H I P3 IVS) ;
add edge(H I PI V63g,.H I POWV);
add -edge(H IPI V64.H IPOWV):
add_edge(H1IPI V65,H IP64V 1); M*ink up verl edges (if room elev 2*/
add_edge(HIPIV65a.HIP64V2):
add_cdge(HIPIV65b,HIP32VI):
add edge(HIPI V65c,H 1P32V2).
add -edge(HIPIV65d,H1P32V3);
add-edge(H1PIV65e,H11P32V4):
add -edge(H IPR V65fIIP32V5);
add_edge(HI1PIV65g,H1P64V3);
add_edge(HIPIV66,H1P64V4);

add edge(HIPIV67,HIP3VI); /*corner*/
add edge(HIPIV68.HIP33VI);. Mink up vert edges of stairwell*/
add_edge(H IPI V68a,H I1P33V2):
add edge(H IPI V68b,H IP62VI1);
add_edge(H IPI V68c.H IP62V2):
add_edge(H IPI V68d.H I P?62V3);
add -edge(H IIPI V68e.H1IP62V4).
add edge(H I PI V68fH I P33V3):
ad~deHIP 6. 3V)
add-edge(HIPIV7O.HIP2V4): /*corner*/

/* Now define the different classes of doors and put instances inside the
door jams */

add-instance("hallway".7.HI .0.0.0.0.0.0.0.0.0.0.0.0):

H2 =addjph('offtce_door". I .W.0. l)
H2PI =add~yg(H2,0.0.1.1);
H2PIVI = add-vertex(H2PI.0.0.0.0).
H2PI V2 = add-vettex(H2PI .1.75.0.0);
H2PI V3 = add vertex(H2PI .1.75.35.5);
H2PIV4 = add_vertex(H2PI.0.0,35.5).
H2P2- = add~yg(H2,83 .5.0. 1).
H2P2V I =add-vertex(H-2PO2,0.0.0.0);
H2P2V2 = add_veriex(H2P2.I.75.0.0);
H2P2V3 = add-vertex(112P2,1.75.35.5);
H2P2-V4 = add-vertex(H-2P2...35.5):
add -edge(H2PIV1,H2P2VI):. /ink up vert edges of door*/
add edge(H2PI V2,H2P2V2);
add -cdge(H2P1V3,H2P2V3):
add edge(H2PI V4,H2P2V4).

add_ceiling(H2P1 ,H2P2);

add instance("door5O6",7.112,-5 .3,239.6.0.2.0.0.0.0,0.0):
add instance("door5 10",7.H2.-5 .3.713.8.0.2.0.0.0.0.0.0)-.
add inatance("door5 12".7,H2.-5.3.86I .5.0.2.0.0.35.S.0.0);
add instance("door5 14" ,7,H2,-5 .3.937 .6,0.2.0.0,O.0,0.0);
add instance('door5I6".7,H2.-5.3. 1085.3.0.2.0.0,35.5,0.0);.
add inatance("door518",7,H2.-S.3, 116] .8.0.2,0.0.0.0.0.0);
add -instancc('door52O",7.H2.-5.3. I309.0.0.2.0.0.35 .5.0.0);
add anstance("door524",7,H2.-5.3. 1618.9.0.2.0).0.35.5.0.0);

A-78

add insta nc c("doorS28A", 8, H 2-5.3, 183 6.5.0.2.0. 0.0. 0.0. 0):
add instanc e("doorS 2 8B" 8. H 2-5.3,1919.2.0.2. 0.0.0.0.0.0)
add_instanc(door130A".8.H2.-5 .3,2030.5.0.2.0.0.0.0.0.0):
add -instance(door530B".8-H2,-5 .3.2230.7,0.2.0.0,35.5.0.0):
add-instance("door5 3OC",8.112,-53,225 3.9.0.2.0. 0,0.0.0.0)

add_instance("doorS2SI'.7.H2. 103 .3,21346.0.2,1.75,3.5.0.0);
add_instance('door523",7.H2.103.3.1 118.7,0.2.1.75,35.5.0.0):

add instancc("door52 1 ,7. H2.103 .3.796.0.0.2.1.75.35. 5.0.0);-
add isane"cor19". 7.H2.,103.3.564.4.0.2.1.75,35. 5.0. 0):
add_instance('door?",5,H2,293 .8.415 .65.0.2,0.0,35.5.90.0):
add instance(*door5 I",7,H2,342.8.3 10.1.0.2,1.75,35.5.0.0):
add~isac(dosar" 1.112.103.3.64.4.0.2.1.75.0.0.0.0):

H3=addph("fire-door.9.W.0, 1);
113P1 =addjpg(H3,0.0. IJ.l
H-3PIVI = add-vertex(H3PI.0.0.0.0):
H3PIV2 = add_vertex(H3P1.1.75.0.0).
H3PIV3 =add-vertex(113P1,1.75.35.6):
113P1V4 =add-vertex(H3PI.0.0.35.6):
H3P2=add~yg(H3.82.9,0. 1):
H3P2Vl = add-vertex(H3FT0.0.0.0);
H3P2V2 =add-vertex(H3P21 .75.0.0):,
113P2V3 = add-vertex(1H3P2.1 .75.35.6):
H3P2-V4 = add vertex(H13P?20.0.35.6):
add_edge(1I3PIVI.H3P2-V1): M*ink up vert edges of door*/
add-edge(H3PI V2,H3P2V2).
add -ed-e(113P1V3.113P2V3);
add-edge(113P1 V4.H3P2V4):

add-ceiling(H-3PIMM3P):

add_instance(" Ist -fire -doorl ". 13,11-3,5.5. 1488.3,0.2.0 .0.0.0.0.0):
add instance("I st_fire door2., 13.113.-5 .5.1559.7.0.2.0.0.35.6.0.0):

H4 =addjh(restroom-door". 13.W,..1);
114P1 = add~pg(H4,0.0.I 1,1);
H-4PIVI = add-vertex(H4PI.0.0.0.0);
H4PIV2 = add-vertex(14P1 .1.75.0.0):
114P1V3 = add verIex(H4PI.1.75.3l.5):
114P1V4 =add-veflex(114P1 .0.0.31.5):.
H4P2=addypg(H4.83 .25.0.l):
114Pr2V1 = add~vertex(H4P2.0.0.0.0)-:
H4P2V2 = add~vcrnex(H4P2.I .75.0.0):
H4P2V3 = ad~etxHP2,.53.)
H4P2V4 = add-vertex(114P2.0.0.3 1.5):
add -cdge(114P11H4P2I):
ad-deHPl2HPV)
add -edge(H4PI V3.H4P2V3);
add edge(H4PI V4,H4P2V4);

add~cjiin(H4PI ,H4r2):

add instance("door522R".8.H4.-5.3.1461.0.0.2.0.0.31.5.0.0):
add-instancc(*door526R',8.H4.-5 .3.1785.9.0.2.0.0.31 .5,0.0):

H5=add~ph("double -door".1 I.W.0.1);
115P1 =addjg(H5,0.0 .1I):
HSPIVI = add-vertex(HSPI.0.0,0.0):
H5PIV2 = add veflex(H5PI~l.75.0.0);
HSPIV3 - add-verlex(H5PI.1.75.29.6):

A-79

H5PI V4 =add vertexfl15P1.0.0,29.6);
FISP2=addjpg(H5,82.9,0. I):
H5P2V I = add vertex(H3P2,0.0,0.0):,
115P2V2 =add vertex(H5P2.l.75,0.0):
li.'2V3 - dd vertex(H5P2.1 .75.29.6);
115P2V4 add-vertex(HSP2,0.0.29.6):.
add_.:dge(H5PlVl,H5P2Vl); M*ink up veil edges of door*/
add_edge(H5PIV2,H52V2):
add - dge(FH5PlV3 ,HSP2V3);,
add edge(H5P1 V4,H5P'2V4):

add ceiling(H5PI ,H5P2):

add instance(*Idoor53 1 .8.H5.103.3.1937.4,0.2.1.75.29.6.0.0);
add instance("2doorS3I .8.H5. 103.3.1878.0.0.2.1.75.0.0.0.0):
add_instanee(ldoorS29".8.H5.103 .3.1744.2.0.2.1.75.29.6,0.0):
add jnstance("2doorS29".8.H5. 103.3.1684.8.0.2.1.75.0.0.0.0):
add instance("ldoor-S27*,8,HS, 103.3.1522.1.0.2,1.75.29.6.0.0):
add instancec(2doorS27".S.H5. 103.3.1462.7.0.2.1.75,0.0.0.0):.
add instaflce("Idoor-office*.12.H5,339.25.402.3,0.2, 1.75,29.6.0.0):.
add-instance("2door office".1 2,H5,339.25,342.9,0.2, 1.75,0.0.0.0):

/* Notice that lights have no height *

H6 =add..ph(ilight".5.W.1. 1):
146PI =addpg(H6.0.0,11.
H6PIVI = add vertex(116P1.0.0.0.0):
H6PIV2 = add vertex(H6PI,45.5.0.0):
H6PIV3 =add vertex(116Pl.45.5.21.25):
116P1 V4 = add-vertex(H6PI .0.0.21.25):

add instance ("Iight 1 ,6, H6,26,.25.98.5. 102.0.0 .0.0.0.0.0)
add instance(lIight2".6,H6.26 .25,362.75.102.0.0.0.0.0.0.0):
add instance("light3 '.6.H6,26 .25.651.0.102.0.0.0.0.0.0.0):
add instance("Iight4",6.H6.26.25,915.25. 102.0,0.0.0.0.0.0):
add instance("light5.,6.H6.26.25. 1251.5.102.0.0.0.0.0.0.0):
add instance(ilight6',6.H6.26.25. 1539.75.102.0.0.0.0.0.0.0):
add instance("light7.,6.H6,26.25. 1828.0.102.0.0.0.0.0.0.0):.
add-instance("light8",6,H6.26.25.2 140.25.102.0.0.0.0.0.0.0):

1* Since all molding sizes are different, we need to add a separate
polyhedron for each one. But we still need to add one instance
of each so it will appear in the model*/

1* 37 different molding pieces */

147=add~ph("molding1 ",8,W.1,1).
HM7P =addjg(T{7.0.0,l,I);,
147P1V1 = add vertex(H-7PI.0.0.0.0):
17Pl V2 = add vertex(H7PI .0.2.0.0);
H7PJV3 = add_vertcx(H7PI.0.2.237.5):
1I7PlV4 = add-vertex(H7PI.0.0.237.5):.
H7P2=add..pg(H7,3.875.0.1:-
H7P2VI = add vertex(H7P.0.0.0.0):
147P2V2 = add-Vertex(H7P2.0.2,0.0):
147P2V3 = add vertex(H7P2.0.2,237.5).
147P2V4 = add vertex(H7P2,0.0.237.5);,
add edge(147P1V1 ,H7P2V 1);
add cdge(H7PI V2.117PI2V2):
add -edge(117P1V3 .H7P2V3);
add edge(H7P1 V4,l17P2V4):

A-80

add-ceiling(117P1 I,H7P2): -

add_inslance(.moldingl1 ".8. H7,0.0,0.0.0.0,0.0.0.0.0.0):

H8 =addjph("moldjng2".8.W, 11):
H8P I=addpg(H8.0.0.1,I1):
H8PIVI =add-vertex(H8PI.0.0.0.0);
HgPIV2 =add-vertex(H-8PI.0.2.0.0):
H8PlV3 =add-vcrtex(HSPI.0.2.434.5):.
H8PIV4 =add-vertex(H8PI.0.0,434.5):
H~lP2=add~pg(H8,3.875.0, I):
H8P2VI =add_vertcx(H8P2,0.0,0.0):
H8P2-V2 =add-vertex(H8P2,0.2,0.0):.
H8P2)V3 =add_vertex(H8P'2.0.2,434.5):
H8P2-V4 = d etx(20044)
add_edge(H8PIVI.H8P2-V I);
add edge(H8PIV2,H8P2V2):.
add edge(H8PI V3,H8P2V3);
add_edge(H8PIV4.H8P2-V4):
add ceiling(H8PI .H8P2-):

add_insanc e("mold ing2.8.H8.0. 0,2 77.20.0. 0.0,0. 00.0).

H9=add~ph("molding3.8,WI.1):
H9Pj =add~pg(H9,0.0.I.I);
H9PlVI =add-vertex(H9PI.0.0.0.0):.
H9PIV2 =add-veflex(H-9PI.0.2.0.0):
H9PI V3 =add_veriex(H9P 1.0.2.72.5),
H9PIV4 =add ve1 ex(H9PI,0.0.72.5):.
H9P2-=addjg(H9,3.875.0, I):
H9P2-VI add vertex(H9P2-.0.0.0.O).
H9P2-V2 =add vertex(I-19P2.0.2.0.0j:
I19P2V3 =add -veflex(119P2.0.2.72.5).
H9P2-V4 =add_veflex(H9P2.0.0.72.5):
add edge(H9PI VI .H9P'-V I):
add_edge(H9PI V2,H9P2V2):
add_edgc(H9PlV3.H9P2V3)-:
add_edge(H9PIV4.H9P2V4):
add ceiling(H9PI ,H9P2-);

add_instance("molding3".8.H9.0.0.75 1.4.0.0.0.0.0.0.0.0);

H 10=addjph("molding4.,8.W. 1.1):
H IOPI =addjpg(HIO,0.0, 1.1);
H IOPIVI = add_veriex(IOPI .0.0.0.0):
H lOPI V2 = acd vertex(H IOPI .0.2.0.0):
H IOPIV3 = add-vertex(H IOPI .0.2.71.9)-,
HIOPI V4 = add-veriex(H IOPI .0.0.71.9)z
HlOP2=addjg(1.II0,3.875.0. I);
HlOP2VI = add-venex(1110P2-,0.0.0.0);
H 10P2V2 = add_vcrtex(H I P2-,0.2.0.0);
HIOP2V3 = add-vertex(HI0P2.0.2.7I.9);
HlOP2V4 = add-vertex(HIOP2.)0.0,71.9);
add_ dge(HIOPIVI,HIOP2-VI);
add -edge(H IOPI V2,H 10P2V2);
add edge(HlIOPt V3.H I P2V3):.
add -cdge(HIOPIV4.H10P2V4);
add_celling(HIOPI,HIOP2):

add~insance("molding4".8.H 10.0.0,863.6.0.0.0.0.0.0.0.0):

H I I addph("moldflg5",8W, 1,):

A-81

H I IPI =addypg(H 11,0.0, 1. 1):
H I I PI V I =add venex(H I I P1.0.0.0.0):
HI IPIV2 -add vertcx(HI 1P1.0.2.0.0);
HlIIV3 =add-vertex(HIIPI.0.2.72.S).
H I I PI V4 =add vertex(H I IPI1.0.0,72.5),
HIIP2 =add.pg(H 11.3 .875.0, I):
HIIP2VI - ad1cc(IP2.0.0.0.0):
HI 1P2V2 =add vex(Hi 11P2.0.2,0.0):.
HI 1P2V3 =add vertex(H I1 P,0.2.72.5);
HI I P2V4 =add vcrtex(H1 I P-1.0.0.72.5).
add -edge(H I IPIV I,H I I P2V I)-.
add edge(H I I PI V2,H I I P2V2):
add edge(H II PI V3,H IIP2V3);
add edge(H I I PI V4,HI I P2'V4);
add ceiling(H I PI.HI I1f2)-,

add instance("molding5",8.H 11.0.0,975.2.0.0.0.0,0.0.0.0):

H 12 =add..ph("molding6".8.W, 1. I);
H 12P1I = addpg(H 12,0.0.I1,I);
H12PIVI =add vertex(H12P1.0.0,0.0);
H12PIV2 = add vertex(H12PI,0.2.0.0)-.
H12PIV3 =add ventex(HI2PI,0.2.72.3):
H 12P1V4 = add-vcriex(H 12P1 .0.0,72.3):
H1I2P'-)=addjpg(H12,3.875.0, 1):
HI12P-V I = add vertex (H 12P'2.0. 0.0. 0):
H12r2V2 = add vertex(H 12P2.0.2.0-0):
Hl2P2V3 =add vertex(H I2P2.0.2.72.3);
H12P2V4 = add-vertex(H12P2.0.0.72.3);
add_edge(H I2PIVI1,H I2P2V I)-.
add -edge(H I2PIV2.H12P2V2):
add_ edge(H 12PI V3,H I 2F2-V3)-:
add - dge(H 12PI V4.H 12P2V4):.
add-ceiling(HI12PI.H 12P2));

add instance("molding6".8,H 12..0.0,1087.4,0.0,0.0.0.0.0.0).

H 13 =add~ph("molding7",8.W.1, 1);
H13PI =add..pg(H13.0.0,1.1).
H13PIVI = add vecnex(HI3PI,0.0.0.0):
HI3PIV2 = add vertex(H I3PI.0.2.0.0);
H13PIV3 = add vertex(HI13PI.0.2.72.0):
HI3PIV4 = add-vcrtex(HI3PI.0.0. 7 2.0):
H13P2=dd.pg(HI3.3.875.0.l)-.
HI3PVI = add_vencx(H13P2.0.0.0.0):
Hl3P2V2 = add -vertex(H413?2.0.2.0.0):
Hl3P2V3 = add venecx(Hl3P2.)0.2.72.0):.
H13P2V4 = add vettex(H 13P2,0.0,72.0);
add_edge(H I3PI VI.HI13P)VJ1):
add_edgc(H I3PIV2.H1I3P2V2);
add_cdge(H 13PIV3,H1I3P2V3)-,
add edge(H 13PIV4,H I3Pr2V4);
add_ceiling(H 13P1,H 13P2');

add instancc('molding7",8,H13,0.0,1 199.4,0.0.0.0,0.0.0.0)-.

H 14 -addjph(*mold ingSX,8.W,1, .1).
H I4PI -=addjpg(HI14,0.0, 1, 1);
H14PIVI - add-vertex(HI4PI,0.0.0.0);
H14PIV2 = add venex(H14P1 .0.2.00);
HI4PIV3 - add -vertex(I4PI0.0.2.I16.5):
H 14P) V4 = add vertex(H I4P],...116.5):

A-82

HI14P2=addjpg(H 14,3.87M.. 1);
H14P2VI = add-verlex(H14P2.0.0.0.0):
H14P2-V2 = add vertcx(H14P2.0.2.0.Oj:
H14P2-V3 = add-vcrtex(H14P2.0.2. 116.5):
H 14P2-V4 = add-vcrtex(H 14P2-.0.0. 116.5);
add_ed~e(HI4P1VI.Hl4P2VI):
add edgc(Hl4PI V2,H l4P2V2):
add~edge(HI4PIV3.H14P2-V3):
add_edgc(H14PlV4.H14P2-V4);
add ceiing(H14PI.HI4fl):

add-instance("molding8".8,H 14.0.0.1311. 1.0.0.0.0,0.0.0.0):

H IS =addph('molding9".8,W, 1, I):
HI15P I = add..pg(H 15.0.0.1. 1);
H15PIVI = add-vertex(HOI5P.0.0.0.0):
H15PIV2 = add vertex(H15PI.O.2.0.0):
H15P1V3 = add vencex(Hl5P1,0.2.22.7);
H 15P1V4 = add-vertex(HISPI .0.0.22.7):
H151'2=add.pg(H15,3.875.0.1)-.
HI 5P2VI = add-verlex(H 15P2.0.0,0.0):
H15P2-V2 = add-vertex(HOIP2.0.2.0.0):
HI 5P2)V3 = add vertex(H P'2.0.2.22.7):
H15P2V4 = add-vertex(H15P2.0.0.22.7):
add_edge(HI5PIVI,HISP2VI):.
add -cdge(HI5PIV2,H15P2'V2):
add_edge(HI5PIV3.H15P2-V3):
add cdge(H 15P1 V4,H 15P2-V4).

add-insrance("molding9".8.H 15.0.0. 1463.3,0.0.0.0.0.0.0.0):

H 16 =add jih(molding I0".9,W, 1. 1)-,
HI16PI = addpg(1i 16.0.0. 1,I1)-
H16PIVI = add-vertcx(HI6PI.0.0.0.0):
H 16P1 V2 = add vertcx(H 16P1 .0.2.0.0):
H16PIV3 = add-vertex(HI6PI.0.2.19.3):
HI6PIV4 = add vertex(HI6PI.0.0.19.3):
H 16P2=addjpg(H16.3.875.0. I),
HI 6P2V I = add-vtftcx(HlI6P2.0.0.0.0):
H16P2V2 = add vertex(Hl6P2.0.2.0.0):
H 16P'2V3 = add-vertex(H12.0.2. 19.3):
H 16P2V4 = add-vcrtex(HI6P2.0.0. 19.3):
add - dge(HI6PIVI,HI6P2-VI):.
add_edgc(HI6PIV2.H16P2-V2):
add_edge(HI6PIV3,H16P2V3);
add_edge(HI6PIV4H16P2V4);
add ceiling(HI6PI .Hl6P2);

add~instance("modingI0*.9.H 16.0.0.1562.0.0.0.0.0.0.0.0.0):

HI7=add.ph("moldingil .9.W.I.I):
H17P1 =sddjpg(HI7,0.0.I.I);
H17PIVI = add-vertex(H17P.0.0.0.0):
HI7PIV2 = add-vertex(HI7P1,0.2.0.0):.
H17PIV3 = add-venex(HI7P.0.2.31.4);
H17P1V4 = add vezrcx(HI7PI.0.0.31.4);
H17P2=&dd~pg(HI7,3.875,0. 1):
H17P2VI - add-veflcx(HI7P2,0.0,0.0):.
H17P2V2 = add-venex(H17P2.0.2.0.0):,
H17P2V3 - add vertex(H17P2.0.2.31.4);
H17P2V4 = add vetlex(H1712,0.0.31.4);

A-83

add edge(H 17PI V I,H 17P2V 1);
add cdge(H 17PI V2.H I 7P2IV2).
add -edge(H 17PI V3,H 17P2V3);
add edge(H 17PI V4.H I7P2'V4):
add ceiling(1I I 7P1. .11 7P-));

add-insiance("moldrngl I I.*9.H 17.0.0,16 19.0,0.0.0.0,0.0.0 .0)-.

H 18= add~ph("molding I2",9,WI 1,I);
HI BPI =add..pg(H 18,0.0,1,1);
H18PIVI = add-vcriex(HIlSPI .0.0.0.0):
H18PIV2 = add vcrtex(Hl8PJ.O.2,0.0):
HISPIV3 = add-veftex(HI8PI,0.2.68.0):.
HISPIV4 = add-ventex(HISPI.0.0.68.0);
H I 8P2 =addjpg(H 18,3.875.0, 1);
H I P2VI = add-vericx(H I 8P2,0.0,0.0);
HI 8P2V2 = add vertex(H I 8l2.0.2,0.0):.
HI8P2V3 = add venex(H18P2,0.2.68.0);
HI 8P2V4 = add-vertex(H 18P2-,0.0.68.0).
add edge(Hl8PIVI .H]8P2-VI):
add edge(H SPI V2.H I8P2V2):
add -edgeCH iSPI V3,H 18P2V3):.
add edge(HI8PI V4.H I8Pl2V4).
add ceiling(HI PI .HI8P2-);

add_instance("molding 12.,9HI8.0.0. 1684.5,0.0.0.0,0.0,0.0):

H19=addjph("moldingl3".9.W, 1,1);
HI19PI = addypg(HI19,0.0. 1. 1);
H1I9PIVI = add-verlex(HI 9P1 .0.0.0.0)
H19PIV2 =add vertex(HI9PI,0.2.0.0);
HI9PIV3 =add-vcflex(HI9PI.?..46.2):
H 19P1V4 = add-vcenex(HI9PI .0.0.46.2):.
HI9P2=add~pg(HI9.3.875.0. I):
HI9P2VI = add-veiex(H19P2-.0.0.0.0):
HI9P2V2 = add-vertcx(H19P'2.0.2.0.0).
H19P 2V3 = add vertex(HI9P2.0.2.46.2):
HI9P2IV4 = add-vertex(H19P2-.0.0.46.2);
add edge(HI9PIVI .HI9P2-VI);
add edge(HI9PI V2.H I9P2-V2);
add cdge(H I9PI V3.H I9P2IV3);,
add edge(HlI9P1 V4.H 19P2V4):.
add ceiling(HI9PI .Hl9P2-):

add-insance("moldingl3'.9.H 19,0.0.1788.2.0.0.0.0.0.0.0.0):

H20=add..ph(*moldingl 4" ,9.W, 1,1):
H20PI = addjpg(H20,0.0 .. 1);
H20PIVI = add-vertex(H2OPI.0.0,0.0);
H2OPIV2 = add-veilex(H2OPI.0.2,0.0):
H2OPIV3 = add vertex(H2OPI .0.2.43.0):
H2OPIV4 = add vencex(H2OPI.0.0.43.0);,
H20P2=addjpg(H20,3.875,0, I);
H2OP2VI = add vcrtcx(H20P2,0.0.0.0);
H20P2V2 = add vertex(H20P2,0.2,0.0);
H2Of2V3 - add-vertex(H20P2,0.2.43 .0):
H20P2V4 - add-veftex(H20P2.0.0.43.0);
add -cdge(H2OPIVI ,H2OP2V I);
add_ edge(H2OPI V2.H20PMV).
add edge(H2OPI V3.H20P2V3):
add - dgc(H2OPI V4,H20P2V4):
add ceiling(H2OPI .H20P2).

A-84

add instmnce('molding 14".9.H20.0.0. 1874. 1.0.0,0.0.0.0.0.0):

H21 addh(molding I 5".9.W. 1. 1):
H21PI -addjPg(H21 .0.0. 1. 1):

a H21PIVI = add vertex(112IP?1.0.0.0.0):
H21PIV2 = add vertex(H2lPI,0.2.0.0):
H2I PIV3 = add-vertex(H21 PI.0.2.71.6).
H21PIV4 = add-venex(H21P1 .0.0.71.6):
I12lP2=add-PS(H2l,3.S75.0. I);
H2lP2VI = add-venex(1121P2.0.0.0.0);
H2lP2V2 = add veflcx(H21P2,0.2.0.0).
H2lP2V3 = add veftcx(12lP2.0.2.7l.6)-.
H2]P'2V4 = add_vertex(H2IP'2.0.0.7l.6).
add_edge(H2lPIVI.H2lIP2VI);
add_edge(H2IPIV2H2lP2V2):
add -edge(H21P1V3.H2P23);
add cdge(1121 Pt V4.2 P2V):
add_ceilang(H2 I P1 .H21 P-7).

add-instance(*moldinglIV5.9.H21 .0.0.1956.8,0.0.0.0.0.0.0.0):

H22 =addjph CmoldingI6"9.W. 1. 1)-.
1122P) = addj'g(H22.0.0.1. 1).
H22P1 VI = add_ventex(H22P1 .0.0.0.0):
H22P1 V2 = add vegtex(H22P1 .0.2.0.0):
H22P1V3 = add-vertex(H22PI.0.2.125.0);
H22P1V4 = add_vencex(I122PI.0.0.I?5.0):
H22P2 =audpg(H22.3 .875,0. 1):
H22P2V1 = add-vencx(1122P2,.0.0.00):.
H22P2V2 = add-veflex(1122P2.0.2.0.0):
H22r2V3 = add-vertex(H22P2.0.2. 125.0):
H22P2V4 = add_vencex(H22P2.0.0.l2S.0):
add_edgeI.H22PI V1,H22P2V 1).
add_edgc H22PIV2.H22P2V2):.
add edgr'H22PI V3.H22"V3).
add_edgc H22PI V4.H22P2V4j:
add_ceil; ig(H22P1 .H22P2)-:

add_insar.,('molding16*.9.H22.0.0.2068.1 .0.0.0.0.0.0.0.0):

H23 =ad. -Ph("molding9*.8.W. 1. 1):
H23PI = ..ddjpg(H23,0.0.I 1.1);
H23PIVI = add-vertex(H23P].0.0.0.0):
H23PIV2- = add_venex(1123P1.0.?.0.0):
H23P1 V = add veinex(1123P1 .0.2.19.0):
H23P1V4 = add-vertex(H23PI.0.0.19.0):
H23P2=addpg(H23,3.875,0. I);
H23P2\ add_venex(H23P2,0.0.0.0);
H23P2h. add vertex(H23P2-.0.2,0.0);
H23P2V2' = add vertex(1123P2.0.2. 19.0);
H23P2V4 = add vertex(1123P2.0.0. 19.0);
add -edge, H23P1V1 .H23P2-V 1):
add edge (123PI V2,H23P2V2).
add~edge H23 P1IV3, H23P2"V3):
add edge(H23PI V4.H23P2V4).
add ceilinS(H23P1 ,H23P2);

add instance(anoldingl6.,9,H23,0.0.2232.8,0.0,0.0,0.00.0);

H24 -addph (mold ing 17, 9. W, I.)I
H424PI -addjg(H24.0.0,1 .1);
H24PIVI - add-veriex(N24P1.0.0.0.0);

A-85

H24P1V2 = add vcztex(H24PI.O.2,.O.);
H24PIV3 = add vertex(H24PI.0.2,61.7);.
H24P1 V4 = add veiextH24P1 .0.0.61.7);
H24P2 =add~pg(H24,3.875.0. 1);
H24P2-V1 add veflex(H24P2.0.0.0.0).
H24P2V2 = add vertex(1124P170.2.0.0);
H24P2V3 = add vertex(H24P2.0.2.61 .7);
H24P2)V4 = add veniex(H24P2-.0.0.6 1.7)-;
add -edge(H24PI1I,H24P2v I);
add edge(H24P1 V2,H24l2V2);
add edge(1124P1 V3,H24P2V3):
add -edge(H24P1 V4,H24P2V4);
add ceiling(H24P1 ,H24P2).

add instance("moldingl 7',.H24.0.0.2289.5 .0.O.0.0.0.0.0.0):

H25 =addphC'moldingl8*.9.W. I.);
H425PI =addjpg(H25,0.0.1 ,1);
H25PIVI = add-vertex(H25PI,....0)
H25P1V2 = add-vcrtex(H25PI.0.0,177.3);.
H25PI V3 = add-vetiex(H2SPI .-0.2. 177.3);
I125PIV4 = add-veuiex(H2SPI,-0.?.0.0);
H25P2=addjpg(H25.3 .875.0.1);
H25P2V I = add vertex(I125P'2.0.0.0.0);
H25P2V2 = add vertax(H25P2.0.0. 177.3):
H25P2V3 = add-vencex(H23P2).-0.2. 177.3):
H25P2-V4 = add vetex(I123P2.-0.2.0.0);
add - dge(H25PIVI .H25P2V 1);
add cdge(H25P1 V2.H25P2V2);
add edgc(H25P1 V3,1125P2V3);
add edge(1125P1 V4,H25P2-V4);
add ceiling(H25P1 .I25P'-);

add-instancc("mnoldingl8.9.H25,98.0.2173.9.0.0.0.0.0.0.0.0;:

1126=addyph(moldingi9'.9.W,J.1).
H26PI =addjg(H26.0. 1. 1)-.
H26PI VI = add veriex(H26P1.0.0.0.O);
1126PIV2 = add veflex(H26P1 .0.0.194.5);
H26PIV3 = add -vertcx(1126P1 .-0.2.194.5):
H26P1V4 = add verlex(H26PI.-0.2,0.0):
H26P2 =addjg(H26,3.875.O. 1);

pH26P2V1 add veriex(H26P27.0.0.0.0);
H26P2V2 = add veinex(H26P2-.0.0. 194.5);
H26P2)V3 = add vertexfl126P2.-0.2.1I94.5);
H26P2V4 = add veflex(H26P2.-0.2.0.0);
add edge(H26P1 VI,H26P2V I),
add -edge(1426P1 V2,H26P2V2);.
add cdge(H26PIV3,H26P2-V3)-.
add cdge(H26P1 V4,H26P2V4);
add cciling(H26P1 ,H26P21);

add instnce(mnolding I9',9,H26.98.0.1I939.7,0.0,0.0.0.0,0.0);

H27..add~ph("molding2O".9,W 1 .1);
H27P1 I= add~pg(H27.0.O, 1. 1);
H27PI VI - add velex(B27PI.0.0.0.0);
H27P1 V2 - add veftex(H27PI ,O.O. 129.2).
H27P1V3 - add veflex(HV2P1.-0.2,129.2);
H27PIV4 a dd vettex(H27PI.-0.2.0.0);
1427P2-add..pg(H27.3.875.0.1);

A-86

H27P2Vj a dd vertcx(H27P1-,0.0.0.0).
H27Pv2V2 = add_veflcx(I127P2.O.0.129.2):
H27P2V3 = add -vertex(H27P2.-O.2,129.2):
H27P-)V4 = add Veflcx(H27r2.-0.2.0.0)
add cdgc(H27PIVI .H27P'2V 1):
add edge(H27P1 V2.H27P'2).
add_edge(H27PI V3.H27r2V3):
add-edge(H27P1V4.H27P2V4):
add_cciling(H27Pl ,I27P2);

add instance("molding2O .9.H127.98.0.1746.....0..0.0,0.0);

H28 =addph("molding2 1'.9.W. 1,1).
H28P I = addypg(H28.O.0. 1.I1);
H128PIVI = add_venecx(1128P1.0.0,0.0);
H28P1V2 = add vertex(1128PI.0.0.158.I);
H28P1 V3 a dd_vertcx(H28P1 .-0.?. 158.1):
H29PIV4 = add-veflcx(H28PI.-0.2.0.0):
H28P2=addpg(128,3.S75.0. 1);,
H28P'2vi = add -vertex(1128P2.0,0,0.0):
H28P?-v2 = add veflcx(H28P2.0.0.158.l):
H28P2-V3 = add -vertex(H28P2.-0.2.158. 1):
I128P2V4 =add-vcflex(H-28P2.-0.2.0.0):
add_edge(H2SPIVI .H28P2V1):
add-edge(1128PI V2.1128P2V2):
add_edge(H2SPIV31128P2V3):
add edge(1128P1 V4.H28P2V4)-.
add_ceiling(1128P1 .H28P2_);

add~instance("molding21 ".9.H28.98.0. 1524.4.0.0.0.0.0.O.0.0):

H29 =addjph("molding22".9.W. 1. I):
19P I = add-ps(H29.0.0.~ 1.1);

1129P1VI = add-vcr1cx(H29P1.0.0.0.0):
H29PI V2 = add vcenex(H29PI.0.O. 1 .7y:
H29PIV3 = add -vertex(1129P].-.2.11S.7);
1129P1V4 = add_vcrtex(H29Pl.-0.2.0.0)-.
1129P2=addjpg(H29.3.S75.0. I);
H29P2VI = add -vertex(H29P2.0.0.0.0);
H29P2-V2 = add Vertex(H29P2.0.0.I 15.7):
H29P2)V3 = add vertex(H29P2.-0.2.1 15.7).
H29P2V4 = add-veflex(H29P2-.-0.2.0.0):
add_edge(H29P1V1 .H29P2VI1:1
add cdge(H29P] V2,H29P2V2);
add edge(H29PI V3,H29P"-V3).
add_edge(H29PI V4,H29P2-V4);
add ceijing(H29P1 .H29P2);

add instanc(molding22".9,H29.98.0,1I344.7,0.0.0.0.0.0.0.0):.

H30=&ddjph("molding23".9.W, 1, 1).
H30PI =addjpg(H30.O.0. 1, 1)-,
M30PIVI - add-vertex(H30Pl .0.0.0.0);
H3OPI V2 - add vcatx(H3OPI .0.0.1 S4.2);
H30PlV3 - add vettex(1130P1.-0.2,I84.2):
H3OPIV4 - add venex(H3OPI .-0.2.O.0);
H30P2-maddjg(H30,3.975.0. 1),
MOM0P2 - add venecx(H30P2.O.O.0.O);

H30P2V2 - add~vctex(H3OP2.0.0.IS4.2);
H130P2V3 - add-venecx(H30P2.-O.2,184.2);
H30P2V4 - add_vencx(N30P2.-0.2.0.0):
add-edge(H3OPIVJ .130P2VI);

A-87

add_*dge(1430P1 V2.H30r2V2);
addl edge(H30PI VIMH3P23);
add edgc(H30P1 V4,H30P2V4);
add-ceiling(4OP1 ,H30P2);

add instance(mnolding24 . 914 3 0.98 .. I120.8.0.0.0.0.0.0.0.0):

H31 = add..ph(moldiflg25",9.W. 1,1),

H31PIV add veiH3ex(H11.000.)

H3 IPIV2 = add vortex(H3 1 PI.0..283.0):
I131P1V3 = add-vortex(H3IPI.-O.2.283.0):
1431 PIV4 = add-vertex(13 1 P1 .-0.2.0.0)-:

H431 P2 add~pg(H3 1,3.875.0.I)-.
H31P2-V1 = add vertex(H3 IP27.0.0.0.0):
1431P2V2 = add vertex(H3 I P2,00.283 .0)-.
H31I P2V3 = add vertex(H3 1 P2.-0.2,283 .0);
H31P2V4 = add-vcttex(H31IP2,-O.2,0.0);
add edge(H3 IPIV1 LH3 IP2V I)*.
add -edge(H3 I PI V2.H3 I r2V2):
add_edge(H3 IPIV3.H31P2I"V3):
add_edg.e(H31IPIV4.H3 I P2V4):
add-ceiling(H31IP1H 143Pl2):

add-instance("molding25 -.
9 .H3] .98.0.798.) IA.0-O0.0.O.0.0):

H432 =add..ph"moding26".9.W.I 1.1):
H432PI - add.~pg(H32.O.0. 1.1)-.
H432PIVI = add vetncx(H32P1.0.0.0.0).
H32PIV2 = add vcrtex(1432P1,.01

9 I. 9).

H32P1V3 = add vcrtcxfl432Pl.-O.?.191.
9)-.

1432PIV4 = add-veilex(H32P1.-0.?.0.0):
H32P2=add~pg(H32.3.87S.O.U;-
H32P2-V1 = add veutex(H32P2.0.0.0.0);
1432P2-V2 = add vertcx(H32P2-.0.0. 191.9);
H32P2V3 = add vertex(1432P2.-0.2.191.

9);

1432P2V4 = add vertex(H32P2.-0.2.0.0);
add-edge(H32PI VI.H32P2-V 1):
add edgc(H32P1V2.H32P2V2):
add_edg(32P1 V3.1432P2V3):
add edgc(H32P1 V4.1432P2-V4)-:
add-ceiling(H32P1 ,H32P2);

add instance("molding
2 6".9 .H3 2 .9 8 .0.566.5.0.0.0.0.0.0.0.0):

H433 =&dd..ph("moldiflg27".9,W. 1,1)
H33P1 =addjpg(H33,.001,1);
1433PIVI - add vertex(1433P]1.0,O.O);
1133P1V2 = add vertoex(H33Pl .0.0.1 12.9);

1433PIV3 = add vettex(1433P1.-O.
2 .11 2 .9);

H33PIV4 = add veflcx(1433P1.-0.2.0.O):.
1433P2=addjpg(H33.3.S75.0. I):

H33P2V) = add veflex(H33P2,0.0.0.0):
H33P2V2 = add vertex(H33P2,0.0,112.9):
H33P2V3 = add vcwicx(H33P2.-0.2,112.

9);

H33P2V4 = add veftex(1433P2.-O.2,0.0);
add cdge(H33PIVI ,133P2Vl);
add edge(H33P1 V2.H33P2V2);
add edge(H33P1 V3.1433P2V3);
add edge(H33P1 V4,1433P2V4);
add ceilinS(H33PL H33F2);

A-88

add insance("molding27".9.H33.98,0.413 .9.0.0.0.0.0.0,0.Oj:

H34=add-ph("molding28".9.W.l 1.1):
H34P I =addpg(H34.0.0.1. 1)-.
H34PIVI - add-vertex(H34P1.0.0.0.0):
H34P1V2 =add vemex(H34P1.0.0.-..):
H34P1V3 =add-vtex(H34PL.157.9.-0.2):
H34P1 V4 =add vertex(H34P1 .157.9.0.0):
H34P2 =addjgO434.3 .875.0.1);

VH34P2-V1 add_vertex(H34P2,0.0.0.0).
1434P2V2 = ad~etxH4')OO-.)

H34P2V3 = add-vcrtex(H34P2-.157.9.-0.2):
H34P2-V4 =add_vencex(1134P2. 157.9.0.0):
add -cdge(H34PIVI .134P2V 1):
add-edge(1134P1 V2,H34P2-V2);
add edge(H34PI V3,1134P*2V3):.
add_edgefl434Pl V4,H34P2-V4);
add ceiling(H34P1 ,H34P2-);

add instance("modn28.9.H34.98.0.413.9.0.0.0.0.0.0.0.0):

H35 =addph("molding29".9,W. 1. 1):
H35P I = addypg(H35.0.0.I 1.1):
H35PIVI = add-vertex(H35PI.0.0.0.0):
H35PIV2 =add vertex(1l3SPI.0.0.-0.2);
H35P1V3 = add-veflex(i-35P1.41.6,-0.2);
H35PIV4 -add-vertcx(H35P1 .41.6.0.0):
H35P2=add.pg(H35.3.875.0. I).
H35r2Vl = add-vertex(1135P2,0.0.0.0):.
H35P2-V2 = add_vertcx(1135P2.0.0.-0.2):
H35P2-V3 = add-veztex(I135P2.41.6.-0.2):
H35P2)V4 = add_vcntex(1135P2.41 .6.0.0):
add_- dgc(H3SPIV1.H35P2VI).,
add_edgc(H35PIV2.H35P2V2):
add_edge(H35P1V3.H35P2V3):
ad deH5l4H5"V)
add_ceiling(H3SPI.H35P2-):

add anstance("molding29".9.H35.295 .9.413.9.0.0.0.0.0.0.0.0):

H36=add-'h("molding30".9.W.I ,I):
1136P1 =addjg(H36.O.0,1.1):.
H136PIVI = add-veflex(H36P1.0.0.0.0).
H36PIV2 = add verlex(H36P1.-0.2.0.0);,
H36PIV3 = add vertex(H36P1.-0.2.9.3):
H36P1V4 =add-vertex(H36P1.0.0.9.3):
H36P2=addp9(H36.3.875.0. I);
H36P2-V1 = add-venex(1136P2-.O.0.0.0);
H36P2V2 = add-verlcx(H36P2-.-0.2.0.0):
H36P2V3 = add vertex(H36P2.-0.2.9.3):.
H36P2V4 = add vertex(H36P2-.0.0,9.3);
add edge(H36PIVI ,H36r2V 1);
add-edge(N36P1V2.H36P2V2);
add edge(H36P1V3,H36P2V3).
add-edge(H36PIV4,H36P2V4);
add ceiling(H36P1 ,H36P2):

add instancec*fmolding3O,9H36,337.5.404.6,O.0,0.0.0.0,0.0):

1137=addph("molding3lI".9.W. 1.1):
H37PI =add~pg(H37.O.. 1. 1);
H37P1 VI = add venex(H37P1 .0.0.0.0):

A-89

H37PIV2 = add veitex(H37P1,-0.2.0.0);
H37P1V3 = add-veiicx(H37PI.-0.2.28.4);
H37PIV4 = add vertexfl137P1.0.0,28.4);
H37P2=addjg(137,3 .875.0. I);
H37P2-VI = add venecx(H37P2.0.0.0.0);
H37P2V'2 = add vcrtex(H37l2.-0.2.0.0);
H37P2-V3 =add-vcflex(H37P'2,-0.?.28.4);
H37P2V4 = add vetlex(H37P2,0.0.28.4).
add_cdge(H37PIV1,H37P2V I);
add_cdgc(H137P1 V2,H37P2V2);
add -edge(1137P1V3.1137P2V3);.
add-edge(H37P1V4,H37P2V4);
add_ceiling(H37P1 ,H37P2);

add~instance("molding31 .9,H37.337.5,3 12.2,0.0.0.0.0.0,0.0):

H38=addjh("molding32".9.W,I, 1);
H38PI =addjg(H38,0.0, 1. 1);
H38PIVI = add-venex(H38P1.0.0,0.0);
H38PIV2 =add vertex(H38P1,-0.2.0.O);.
H38P1V3 = add-vertex(H38PI.-0.2.5.I):
H38P1V4 = add-ventex(H38PI.0.0.5.1);
H38P2addjig(H38,3 .875.0. I);
H38P2-V1 add-venex(H38P2.0.0,0.0);
H38P2V2 = add-vertex(1138P2,-0.2.0.0);.
H38P2-V3 =add-vertcx(H38P2.-0.2,5.J):
H38P2V4 = add-vertex(H38P2-,0.0,5.I):
add -edge(H3SPIV1,H3SP2VI);.
add-edge(1138PIV2,H38P2V2);
add_edge(H3SPIV3.H38P2-V3):
add_edgic(H38PIV4.II38P2-V4):
add_ceiling(H38P1.H38P2)):

add instance('molding32".9.H38,337.5,267.4.0.0,0.0.0.0.0.0):

H39 =addjh(molding33",9,W, 1,1);
H39PI =add~pg(H39,0.0, .I);
H39PIV I =add-vcrtex(H39P1 .0.0.0.0);
H39P1 V2 =add vecnex(J139P1 .30.6.0.0);
H39P1V3 =add-venex(H39P1.30.6.0.2).
H39P1 V4 =add vertex(H39P1 ,0.0,0.2):
I139P2=addjig(H39,3.875,0. 1);
I139r2V1 add-verlex(H39P2.0.0.0.0);.
H39P2V2 = add vertex(H39PI2,30.6.0.0);
JH39P2V3 -add-vertex(H39P2.)30.6.0.2);
1139P2V4 =add vertex(H39P2.0.0.0.2):
add -edge(H39PIVI ,H39P2V I);
add-edge(H39P1 V2,H39P2-V2);
add -edge(I139P1 V3.H39P2V3);
add-edge(N39P1V4,H39P2V4);
add_ceiling(H39P1 .139P2);

add_inatance("molding33 ,9.H39,306.9,267.4,0.0,0.0,0.00.0)

H40-addjph('molding34,9,W,I ,I);
H40PI = addjg(H40,0.0.I 1,1);
H40PIVI -add vertex(H4OPI .0.0.0.0);,
lI40PIV2 -add-vertex(H40P1 .56.7.0.0);
1440P1 V3 -add_vcrtexflI4OPI .56.7.0.2):
H4OPIV4 -add-vcrtcx(140P1 .0.0.0.2):
H40P2 =addjg(H40,3.S75.0. I),
H4OP2VI -add vertex(I140P2,0.0,0.0);

A-90

1140P2-V2 = add vertex (H 40F"-,56.7. 0. 0):
H40P2-V3 = add veniex(H40P2.56 .7.0.2);
H40P2V4 = add vertex(H140P2.0.0.0.2):
add -cdge(H4OPIVI.1140P2V1):
add-edge(1140Pl V2.H40P2V2);
add_edge(H4OPIV3,1140P2-V3);
add edge(H40P1 V4,1140P2-V4);
add ceiling(1140PI ,H40P2-)'

add instance(*molding34*.9.H40.192.2.267.4.0.0.0.0.0.0.0.0).

H41 =addph("molding35."9,W, 1, 1);

H41PIVI = add-vertex(H4IPI,0.0.0.0);
H41PIV2 = add-vertcx(1141P1.36.2,0.0);
H4IPIV3 = add-vetnex(H4IPI.36.2.0.?):
H41PIV4 = add-vertex(H4IPI.0.0.0.2):
H41P2=addjg(H41 .3.875.0,1):
114lP2VI = add vertex(H41P2.0.0.0.0):
H41P'-)V? = add vermex(H41P2.36.2.0.0):.
H4lP2V3 = add-vertex(H41P2-,36.2.0.2),
H41P2-V4 = add vertex(H41P2.0.0.0.2)-.
add_edge(H4IPIVI.1141P2-Vl):
ad~deH1IV.4P2V)
ad~deH1IV.~PV)
add_edge(H41P1V4,H4lPO2V4);
add ceiling(H41PIMl41P2);

add instance("molding35'.9.H41 .98.0.267.4.0.0.0.0.0.0.0.0):

H42=addph("molding36".9.W..1):
H42P1 =add~yg(H42,0.0,1 .1):
H42PIVI = add-vertex(1142P1.0.0.0.0):
H42P1V2 = add vertex(H42PI,0.0.-0.2)-.
H42P1V3 = add-vertex(1-42P.165.4,-0.2);
H42P1 V4 = add-vertex(H42P1 .165.4,0.0);
1142P2 = addypg(H42.3 .875,0. 1):
H42P2-VI = add_vcrtex(H42P2.0.0.0.0):
H42PI2V2 = add vertex(H42P2.0.0.-0.2):
H42P2V3 = add-vcrtex(1142P2.165.4,-0.2):
H42P2-V4 = add-veitex(H42P2.)165.4.0.O):
add edge(H42PlV1 ,H42P2V I):
add_edge(1142P1V2.H42P2)V2):
add~cdge(H42P1 V3.H42P2)V3);
add edge(H42P1 V4,H42P2V4):
ad-eiig 4P,H42P2);

add-intance(molding36*.9,H42,98 .0.102.0.0.0.0.0.0.0.0.0):

H143 =add-ph("fmolding37",9.W, 1. 1).
H43PI =addjpg(H43,0.0.1. 1)-.
H43PJVI = add-vertex(H43P1.0.0.0.0);
H43P1V2 = add vertex(1143PI.-O.2.0.0);
1143P1V3 = add-vetex(H43P1.-0.2.62.3).
H43PIV4 = add-vcrtex(H43P1.0.0,62.3);
H43P2=addpg(H43.3.875.0, 1);
H43P2VI = add-vetlex(H43r,0.0.0.0).
H43P2V2 =add veriex(1143r2.-0.2.0.0);
H43P2V3 = add-vcrtex(1I43P2.-0.2.62.3)';
H43P2V4 = add_venecx(H43P2,0.0,62.3),
add - dge(1143P1V1,H43P2V1);
add cdge(H43P1 V2,1443P2V2);

A-91

add edge(H43 PI V3,H43P-2V3);
add -edge(H43P1 V4.H43 P2V4):
add ceiling(H43P1.H43P>2);

add instanc e("mold ing3 7". 9, H43.9 8.......0 ...)

return W; /return pointer to this entire world structure*/

A-92

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey. CA 93943

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey. CA 93943

Dr. Yutaka Kanayam, Code CS/Ka
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Lt. James Stein
118 Brookside Rd.
Newtown Square, PA 19073

17

173

