AD—A248 370 . @
NAVAL POSTGRADUATE SCHOOL
Monterey, California

MODELLING, VISIBILITY TESTING AND PROJECTION
OF AN ORTHOGONAL THREE DIMENSIONAL WORLD
IN SUPPORT OF A SINGLE CAMERA VISION SYSTEM
by
James Earl Stein

March 1992

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

92 4 06 1595

S

- NCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. UNCLASSIFIED | P RESTRICTIVE MARRINGS

a 3. DISTRIBUTION/AVATCABILITY OF REPORT
Approved for public release;

5. BULE
distribution is unlimited
q. @) 6] 5. MONITORING ORGANIZATION REPORT NUMBER(S)
2 [65. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (# applicable) Naval Postgraduate School
Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

0. PROCUREMENT INSTRUMENT IDENTIFICATION NOMBER |

a. .
ORGANIZATION (if applicable)
8c. ADDRESS (City, State, and ZIP Code) mm
[PROJECT | TASK JWORKUNT |
ELEOI?EN'I‘ NO. |NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
ODELLING, VISIBILITY TESTING AND PROJECTION OF AN ORTHOGONAL THREE DIMENSIONAL
RLD IN SUPPORT OF A SINGLE CAMERA VISI Y TEI\)'I ()

tein, James 1

[73b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) | 15. PAGE GOUNT
e views expressed in tElS thesis are those of the author and do not retlect the ofticial
pohcy or position of the Department of Defense or the United States Government.
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse # necessary and identify by biock number)
I FIELD GROUP SUB.GROUP Three Dimensional Modelling, Visibility Testing, Perspective Projection

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Proper interpretation of the environment is essential for mission planning and navigation of an autonomous mobile

robot. An on board vision system may provide the most useful raw data. This work develops part of a vision system
for the Naval Postgraduate School’s mobile robot, Yamabico-11. Accurately modeling the robot’s environment is im-
perative to support position verification and path planning. The decision to use an extended two dimensional model,
an orthogonal wire-frame representation, is discussed. Additionally, to support pattem matching, a package of graph-
ic routines, utilizing traditional algorithms and an innovative sweep algorithm (to determine line segment visibility),
has been developed. This work demonstrates that an asymmetric model is appropriate to represent a three dimensional
environment in support of vision interpretation for mobile robots.

AT , ATION
[R UNCLASSIFIEDUNLIMITED [] SAME ASRPT. [] OTIC USERS | UNCLASSIFIED

I SYMBOL
utaka anzg'ama 2(?0%%28?”5 Include Area Code) zzc(%-)i%;
P

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obs?lete UNCLASSIFIED
1

Approved for public release; distribution is unlimited

MODELLING, VISIBILITY TESTING AND PROJECTION OF
AN ORTHOGONAL THREE DIMENSIONAL WORLD
IN SUPPORT OF A SINGLE CAMERA VISION SYSTEM

by
James Earl Stein
Lieutenant, USN
B.S. of Computer Science, Pennsylvania State University, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: /% AV {M/ JQ

James Earl Stein

Approved By: (/]/LWEL/ U /&“A«;47 Qz()
Yutaka Kanayama , Thesis Ad)n's?f
Robert B. Mcghee, Second Reader

Lt el

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Proper interpretation of the environment is essential for mission planning and
navigation of an autonomous mobile robot. An on board vision system may provide the
most useful raw data. This work develops part of a vision system for the Naval
Postgraduate School’s mobile robot, Yamabico-11. Accurately modeling the robot’s
environment is imperative to support position verification and path planning. The
decision to use an extended two dimensional model, an orthogonal wire-frame
representation, is discussed. Additionally, to support pattern matching, a package of
graphic routines, utilizing traditional algorithms and an innovative sweep algorithm (to
determine line segment visibility), has been developed. This work demonstrates that an
asymmetric model is appropriate to represent a three dimensional environment in support

of vision interpretation for mobile robots.

Accesion For

NTIS CRA&I \v,
OTiIC T7TAB 8]
Unaniiourced 0
Justification

By .
Di.t ibution [

e ot s

Avaitabiity Codes

T - —
. Avail and/or
Dist Special

|

-

iii

I. INTRODUCTION 1
A. BACKGROUND 1

B. CURRENT STATE OF YAMABICO 1

C. DESIRED VISION SYSTEM 2

D. PROBLEM STATEMENT 2

E. FOCUS OF WORK 4

F. RESEARCH METHODOLOGY 4

G. THESIS ORGANIZATION 5

II. LITERATURE REVIEW 7
A. RESEARCH APPROACH 7

B. GENERAL REVIEW 7

C. CONCLUSIONS 9

IIl. THE MODEL 12
A. REQUIRED USES 12

B. SURFACE MODEL 12

C. TAILORING TO THE APPLICATION 13

D. THE 2D+D MODEL 14

1. The Interface 19

2. Two Dimensional Path Planning_ 20

E. SUPPORT FUNCTIONS 20

1. Overview 20

2. Model Construction 21

IV. VISIBILITY CHECKING ALGORITHM 24
A. PURPOSE 24

B. 2D SWEEP ALGORITHM 24

C. 3D SWEEP ALGORITHM 29

D. PROBLEMS WITH THE 3D SWEEP ALGORITHM 34

Y. STANDARD GRAFPHIC SUPPORT 39
A. OVERVIEW OF OUR APPLICATION NEEDS 39

B. GENERAL PERSPECTIVE PROJECTION 40

1. Define the View Volume 40

2. Select a 2D Window 42

3. Determine the Normalizing Transformation 42

4. Apply the Normalizing Transformation to All Lines 45

5. Clip Normalized Lines Against Canonical View Volume___ 45

6. “ Perform Perspective Projection 46

7. Scale Window Coordinates to Device Coordinates 47

C. PERSPCTIVE PROJECTIVE FOR OUR APPLICATION 47

1. Define the View Volume 47

2. Select a 2D Window _ 47

3. Determine the Normalizing Transformation 48

4. Apply the Normalizing Transformation to All Lines 49

5. Clip Normalized Lines Against Canonical View Volume 49

6. Perform Perspective Projection 49

iv

7. Scale Window Coordinates to Device Coordinates 51

VI. IMPLEMENTATION AND CONCLUSIONS 52
A. MODEL 52

1. Appropriateness of 2D+ D Model 52

2. Constraints 52

B. GRAPHICS 53

C. VISIBILITY ALGORITHM 53

1. Time Comparisons of Different Versions 53

a. Simple 2D Sweep 54

b. Partial 3D Sweep 57

c. Full 3D Sweep 57

2. Problems 59

D. IDEAS FOR FUTURE WORK 59

1. Data Separation 59

2. Interactive Interface 61

3. Extend 5th Floor Model 61

4. Complete Visibility Checking 62

5. Update Graphics Support 62

6. Expand Simulator 62

7. C++ Implementation 62

8. Hardware Implementation 63

VII. USER’S MANUAL 64
A. INTRODUCTION 64

B. BUILDING A MODEL 64

1. Construction File 64

2. Declaration 65

3. Building the Model 67

C. CHECKING VISIBILITY 72

D. GRAPHIC PROJECTION FROM MODEL 73

E. SIMULATOR 74

F. FINDING A POLYHEDRON 76

G. DEALLOCATING MEMORY 77

H. TROUBLESHOOTING 77
VIII. REFERENCES AND BIBLIOGRAPHY 79
A. REFERENCES 79

B. BIBLIOGRAPHY 80
APPENDIX A (SOURCE CODE) 81 (A-1)
INITIAL DISTRIBUTION LIST 173

1. INTRODUCTION
A. BACKGROUND

Research to develop accurate sensors for robots continues world wide. Much of this
research is focused on developing robot vision systems. As a sensor, vision is intuitively
desirable since it parallels our own sight and a large amount of passive data resides in
a single image.

Yamabico-11 is an autonomous, mobile robot which is under continuous development
by students and faculty at the Naval Postgraduate School (NPS), Monterey Ca. The
robot’s operating environment is the fifth floor of an academic building, Spanagel Hall.
We are interested in expanding Yamabico’s sensor syster: to include visual image

interpretation.

B. CURRENT STATE OF YAMABICO

Yamabico is currently fitted with a set of ultrasonic sonar transducers, which act as
its primary sensors. The sonar array has a limited range of about four meters (imposed
by the hardware) and returns from surfaces which are not perpendicular to the
transmitting transducer can be very poor.

Position within the operating environment is provided at the start of a mission and a
dead-reckoning (DR) system estimates current position by tracking rotation of the two
drive wheels. This estimate remains accurate so long as no wheel slippage occurs.

It is desirable to develop an additional sensor system with a greater range and the

ability to verify the estimated DR position.

C. DESIRED VISION SYSTEM

Yamabico is being developed to operate in a purely manmade, indoor environment.
For ease of implementation, this operating environment is assumed to be orthogonal. In
light of the many limitations that arise from having an active sonar array as the sole
sensor, we wish to add an on board vision system to Yamabico. The assumption of an
orthogonal environment greatly reduces the complexity of designing this system, since
only straight lines need be considered.

The vision system will receive input from a single RGB video camera. The system
will primarily be used to verify the DR estimate of Yamabico’s position in the
environment. To meet this need a model of the environment must be maintained on
board. The DR position and course will be used to determine if the image provided by
the camera coincides with what is expected from the model. Discrepancies between the
model and camera views will be used to calculate and correct for any errors which occur
in the DR tracking system. Figure 1.1 illustrates the interrelation of major vision system

components.

D. PROBLEM STATEMENT

Three major components are necessary to implement a vision system, specifically a
model of the environment with supporting functions, image processing facilities and
pattern matching facilities. The thrust of this work will be directed at developing an
appropriate model and it’s required support functions. These functions will be needed to

ensure proper storage and retrieval of model data. Another student, Kevin Peterson will

DR
POSITIONING

SYSTEM

POSITION
ESTIMATE

raw image

' IMAGE
|PROCESSING

‘extracted
Lo Ylines g

PATTERN |
MATCHING
&

. POSITION |
 VERIFICATION

VISIBILITY
TESTING

visible

MODEL VIEW}
EXTRACTION:

set of lines
expected to be
seen by camera

——
position
correctiorg VISION SYSTEM

Figure 1.1

Block diagram of vision system
components and data flow.

system components
esi an,

= ¢ d and .
lml;k emented by this

WO

develop the processing facilities needed to extract straight line features from a camera

image and the pattern matching facilities to match the model view to the camera image.

E. FOCUS OF WORK

The decision of what type of model to use must be considered carefully. The model
should support the current as well as the future functionality of Yamabico. The
representation used should eliminate redundant data storage wherever possible, and still
provide simple real-time recovery of information. Likewise, support routines for model
construction and determining the set of lines comprising a view in the model must be
developed.

With the above items in mind, we are primarily concerned with supporting the vision
system’s pattern matching facilities. These will be used to compare a view from the
camera with a view from the model. The DR position estimate and orientation in the
horizontal plane will be used to extract the view, that Yamabico should see, from the
model. Pattern matching between the two views will determine if Yamabico’s DR

estimate is correct, and if it is not, should provide the angle and magnitude of error.

F. RESEARCH METHODOLOGY
Prior to developing any algorithms and deciding on a model, review of available
literature pertaining to machine vision was conducted. A vast amount of theoretical and

experimental research is being conducted to develop useful machine vision systems. Some

theoretical works are attempting to find a generalized solution, but virtually all projects
are designed to solve a very specific vision problem. Our literature review attempted to
find research wit! <imilar goals and to analyze their degree of success while gaining
exposure to sor - *mon approaches and theories.

The next stej o develop a simple surface model of Yamabico’s environment.
This hands on expei.. ¢ helped identify needs and problems which had to be addressed
in the final model decision. With these factors in mind and a good idea of what
information was required to support pattern matching and Yamabico's other functions,
a model was chosen. Routines for model construction were completed and data, ..om
blue prints and physical measurements, was entered concurrent with the coding of
routines for data retrieval.

While work on the model took place, Kevin Peterson designed the image processing
routines needed to extract a set of lines from a camera image. The final position
verification system will use lines extracted from the model and the camera image as input

to determine the error in Yamabico’s DR position estimate.

G. THESIS ORGANIZATION
Subsequent chapters will describe the following:
1. findings of the literature review
2. the model decision and design
3. visibility checking of model lines

4. graphic support functions for the model

5. implementation, conclusions and ideas for future work
Chapter VII is a user’s manual to help the reader and those working on Yamabico
understand the code developed during this research. A complete listing of the final code

can be found in appendix A.

II. LITERATURE REVIEW
A. RESEARCH APPROACH

Two major o* " ctives were pursued while conducting the literature survey. The first
was to gain insi, to the history of computer vision. Text books which described the
general goals, 1. :tical foundations and traditional approaches to computer vision
were reviewed. . seneral idea was to gain a sound understanding of vision
fundamentals and exposure to commercial systems currently in use.

The second objective involved reviewing more recent material to gain insight into the
current state of research in the field of computer vision and model representation. We
were specifically looking for projects with similar goals to our own. Identification of
such projects is necessary to avoid duplicating the work of others and can also yield

performance evaluations of methods which may be useful in our own project.

B. GENERAL REVIEW

As stated by [Ref. 1], there are three major phases of computer vision: choosing a
digital image representation, processing the image data and analyzing the processed
results to guide an application. The thrust of our work tends towards the last of these
phases. Modeling the world and extracting views are essential to support interpretation
of the processed camera image.

Since our work will interface with the image processing portions of the Yamabico
vision system, it was valuable to review the feature extraction techniques presented in

[Ref. 2]. Shirai presented traditional feature extraction methods using Hough's transform

and region merging. In contrast, [Ref. 3] describes straight line finding which combines
gradient image analysis and Sobel operators to recognize edges which exhibit a sudden
intensity change. [Ref. 4] detailed out the mathematical basis for image understanding,
concentrating on methods of applying statistics, i.e. using error probabilities to determine
the threshold values for decision rules.

Most of the projects reviewed were either targeting a different type of environment
for their vision system or were employing some type of sensor other than the single
camera which we are implementing on Yamabico. In the case of the Carnegie Mellon
Navlab, [Ref. 5], the environment is an outdoor scene with a pronounced road to follow,
while the on board vision system relies heavily on active range sensors. We find many
vision systems which utilize range data from either sonar or laser range finders. The
interpretation of stereo images, as in [Ref. 6] and [Ref 2], appears to be a major research
avenue also.

The representation used for storing information about a system’s environment is
greatly influenced by the nature of that environment and is generally tailored to some
degree to support the target applications or sensors. [Ref. 7] uses midpoint representation
for lines which are tracked between successive images with a Kalman filter. A similar
parametric representation is presented in [Ref 8] for the same type of tracking. In [Ref
9] a more complex method of geometric hashing calculates affine transformations of
individual objects for storage and pattern matching.

Once a set of lines has been extracted from the camera image and a model of the

environment has been created, we are interested in extracting a view from that model and

using pattern matching to compare the two. [Ref 10] provides all the basic graphic
techniques which are needed to extract a view from a model. It covers the application of
rotation, transl?*ion and scaling matrix operations on three dimensional objects.
Projection of th :iimensional objects onto a two dimensional plane along with the

associated clippii., zorithms are explained.

C. CONCLUSIONS

Although the scope of this work is only to develop part of Yamabico’s vision system,
it is desirable to gain a firm understanding of the entire target system. This is true, to
some extent, when developing any software system. A preconceived notion of the
functional units required by the final system may allow for smoother interface
construction and lends validity to design decisions. Both these factors can minimize
changes late in the software life cycle. Review of the reference material has provided
us with useful background data on the entire vision process, from image digitization to
pattern matching.

Our vision system will incorporate a single camera and matching will need to be done
between the processed image and a view from an orthogonal world. The first stage of
development involves selecting an appropriate model representation for this world. Some
methods for representation of lines are mentioned above. These representations have been
developed to directly support pattern matching. One of these may prove useful for
depicting a view from the model, but they not entirely appropriate for storing the entire

world model. Several papers, i.e. [Ref. 11], [Ref. 12] and [Ref. 13], present innovative

vision analysis methods, but neglect to describe the model representation schemes used
to support them. Many papers, not appearing in the bibliography, were also reviewed in
an attempt to inspect different representation methods, but again a significant lack of
reference to underlying models was encountered.

The search for representation methods was not totally futile. Most references which
were books vice papers did present some methods. In [Ref. 2] the uses of generalized
cylinders, B-splines, extended gaussian images (EGI), and geometric models are
introduced. We also find a description of surface models in [Ref. 1], and terrain maps
in [Ref. 5]. Since we are attempting to model a straight line world generalized cylinders,
terrain maps and B-splines are not appropriate. EGI and surface model representations
seem to lend themselves more directly to storage of our world and will be considered in
the model decision.

There is a substantial amount of information available concerning computer vision.
Many basic ideas have been successfully implemented in industrial applications,
apparently proving the value of vision research. Over the last decade or so, researchers
have continued to modify these basic methods in an attempt to improve efficiency and
expand the problem domain. Additionally, many interesting, original techniques have
been developed to solve a variety of specific problem. This vast research effort has
swamped the field with a wide variety of claims and theories regarding these techniques
and their performance potential. Unfortunately, very few authors provide the reader with
proof, either empirical or mathematical, of their claims. Although many forums are

available to disseminate information on new techniques, there is a distressing lack of

10

expert review and analysis of them. This results in a huge body of unsubstantiated work,
each author claiming that a particular method is reasonable but that theirs is better. As
a new researcher, it was particularly daunting to sift through this ever increasing body
of information with no expert guidance from any organization within the field.

Due to the previous comments and differences between our goals and those of the authors
reviewed, it is unlikely that this work will take up where another has left off. Hopefully
the future will see the formation of a review committee of experts, within the field of

computer vision, which can investigate and report on the variety of claims being made.

11

HI. THE MODEL

A. REQUIRED USES

The ultimate goal in Yamabico’s development is to maintain a single, on board model
of the fifth floor which can be used to support all functions which may need environment
information. This model should also be flexible enough to accommodate the data storage
and retrieval needs of future Yamabico systems. The following requirements were taken
into consideration as items which must be supported by the model:

1. Accurate modelling of the three dimensional (3D) orthogonal world, fifth floor
Spanagel Hall.

2. Obstacle identification for the two dimensional (2D) path planning routines used
to control Yamabico’s movements.

3. Position verification and displacement calculations through pattern matching of key
features viewed from an assumed position.

4. Relatively easy to use interface for entry and modification of 3D world structures.

B. SURFACE MODEL

To gain a more thorough understanding of the problems and complexity which could
be encountered in modeling the 5th floor of Spanagel Hall, we first developed a simple
surface model of the world. Although not trivial, the interface program is fairly straight
forward. The user is allowed to enter polyhedral shapes into the world. Each of these
shapes receives tags which specify if the shape is fixed in the model and if it is an

enclosure or an obstacle. Each polyhedron is defined by a list of surface polygons (walls,

12

floor and ceiling). These polygons are listed in arbitrary order and are tagged with a
boolean value labeling them as convex or concave.

During data entry, it became apparent that the interface required expansion to allow
for shape modifications and deletions. It also became evident that the user was wasting
effort when adding similar objects (such as doors) at different locations in the model. The
interface was modified to allow for the necessary deletions and modifications. In the final
version a user is able to store a shape he has created to a disk file and then add copies
of that object into his world model at any point while specifying the degree of rotation
desired about the z axis. Likewise, when the user is done working with the model, they
can store it to a binary file (from which it may later be retrieved).

A high degree of inefficiency is present in the above simple surface model. Many
edges are common to more than one surface polygon. For each of these, the vertices
which define the edge are redundantly stored in each polygon’s vertex list. When we
consider that virtually all edges in a three dimensional model are shared between at least
two surfaces and each vertex between three edges, it becomes very evident that a
different representation is needed to help minimize storage requirements (especially for

large, complex models). |

C. TAILORING TO THE APPLICATION
In addition to the question of redundancy, we ask ourselves how a representation
might be tailored to our target application. In this case, we are concerned with supporting

the movement of Yamabico-11. Since this robot is of constant size and for all practical

13

purposes only moves in two dimensions (along a horizontal plane), we can indeed tailor
our thinking somewhat. Yamabico currently solves path planning problems through use
of a two dimensional mode} and associated algorithms. Although work to perfect path
planning under differing conditions continues, it seems reasonable to assume the basic
approach (which does very well) will change little. Furthermore, the addition of a third
dimension to the problem does not significantly alter it. The only added burden in a 3D
environment is to ensure the projection of all obstacles occurring along the height of
Yamabico into the 2D plane that is being used for path planning. When approached in
this fashion we find a certain asymmetric quality among the three dimensions.
Specifically, since Yamabico travels through the x-y plane we recognize that the
importance of explicit representations in x and y information is greater than that of z
information. This perspective has lead us to discard the symmetric surface model and

move on to an asymmetric 'two dimensional plus’ (2D+D) model.

D. THE 2D+D MODEL

Bearing all of the afore mentioned in mind, it is important to remember that the prime
importance of developing a model is to ensure accurate representation of the world.
Information in the representation may be explicit within the chosen data structures, or
it may be implicit. In either case all information must be readily available or
reconstructible.

The 2D+D model will be represented in computer memory by a group of data

structures joined by pointers into linked lists. Basically, the model consists only of

14

horizontal surfaces and vertical edges. With this representation we can support two
dimensional path planning and all edges of an orthogonal world can be reconstructed for
pattern matching and graphic display. Each horizontal surface is represented by a
polygon which is d~"~:ed by a list of vertices. We maintain the convention used in 2D
path planning, wh . polygons which are obstacle components have vertices listed
counter clockwise while those of enclosures are in clockwise order. The vertical edges
of objects in the model will be represented by pointers between vertices. Linked lists will
be used extensively, and doubly linked list will be implemented where necessary to
enhance performance. The following types of structures are used to describe a three
dimensional world: WORLD, POLYHEDRON, POLYGON, VERTEX and INSTANCE.

The full definitions of these structures can be found in Appendix A (pg A-3) while
Figure 3.1 illustrates the organization of them within memory. One parent WORLD is
used to reference a 2D+ D world model. For Yamabico, this will generally be the current
model of the 5th floor of Spanagel Hall. This WORLD will point to a list of objects.
Each object is designated as an obstacle or an enclosure and is represented by a
POLYHEDRON structure. This structure in turn will point to a list of defining horizontal
POLYGONSs and a list of INSTANCEs. The list of POLYGONs will be in a local
coordinate system and each INSTANCE will indicate a location in the world where a
copy of that POLYHEDRON resides.

Each horizontal surface will be classified as a floor or a ceiling. Groups of surfaces
which make up a polyhedron will be linked together and sorted by their z values. Floors

will have a list of pointers to associated ceilings which, in the case of an obstacle, bound

15

WORLD

D/,. PGl |— PG2

Rest of PO)'

Figure 3.1
Dlustration of data structure relationships in the
2d+ model (2nd polyhedron empty)
PH = polyhedron
PG = polygon in horizontal plane
I = instance of polyhedron

a solid column above that floor, and in the case of an enclosure bound a column of free
space above the floor. Figure 3.2a illustrates a simple object with one floor and ceiling
while 3.2b shows an obstacle with multiple ceilings.

Vertex x and y information for each POLYGON is found in a doubly linked list of
VERTEX structures. Each vertical edge is represented as a pointer from the VERTEX
of one POLYGON to a VERTEX in a different POLYGON. Since we are representing
an orthogonal world, each vertex of a polygon will be allowed only one vertical outgoing
edge. These vertical edges may be from floor to ceiling, floor to floor, or ceiling to
ceiling. Note that these pointers should only be in the direction of increasing z value to
avoid redundantly storing edge information (in both directions).

As previously mentioned, each POLYHEDRON will also point to a list of
INSTANCEs. An instance will have a label and define where in the world coordinate
system (x,y,z) a copy of that POLYHEDRON resides, what vertex in the object is to act
as the pivot point for rotation about the z axis and the number of degrees the
POLYHEDRON is rotated about the z axis (ROT). Storage of INSTANCES in this
fashion reduces the storage requirements of the model and also readily supports

movement of objects, i.e. opening doors.

17

Figure 3.2a

2d+ model
square obstacle representation

\Z N _A V3

A g | va

CEILING_LIST

Vi1 V2

Figure 3.2b

2d+ model
complex obstacle representation

18

1. The Interface

This 2D+D model will require significant pointer and storage manipulation, but
each vertex in a world need only be stored at most once (and the z value stored only
once per polygon). We discovered during construction of the original surface model that
an interactive interface must address many areas. In particular the interface must provide
facilities for easy model creation and addition as well as component structure
modifications and deletions. Storage to and reconstitution from disk files was also
necessary to save model information which had been entered.

With the added complexity of the 2D+D model’s numerous pointers, it became
apparent that construction of a useful, interactive interface would be very time consuming
and the final product cumbersome to use. For this reason, a simplified interface was
decided upon which still affords users the necessary functionality.

A core of functions for construction of a 2D+D world has been provided in the
tool file, 2d+d.h (see A-3). To create a model, a generation file of declarations and
function calls is made which uses these tools to make the various structures and assigns
them the correct information for the desired world. This generation file (or function) can
then be compiled and run with the resulting world structure sent to whatever routines are
desired (graphic display, path planner, pattern matching, etc.). This method has the dual
advantage of utilizing a text editor for world modifications and negating the need to store
and recover information to binary disk file after use. Functions are provided as tools for

constructing a model, textual display of the world and memory allocation/deallocation.

19

2. Two Dimensional Path Planning

Polygons and instances linked into their parent polyhedron structures will be sorted
by their z value. This will allow easy determination of surfaces that will obstruct
YAMABICO's movements by simply considering all polygons appearing along the height
of the robot (typically O to 42 inches) as input to the path planning algorithms (after
proper filtering merges overlapping polygons). Processing to determine the 2D projection
of the model will take little time and therefore should readily support future calculations
of path corrections in transit.

Routines for Yamabico’s 2D path planning are currently lisp based and assume an
input worid of polygons from a text file. Future versions of these routines will be
implemented in C, and work directly on the two dimensional structures residing in the
2D+D model. Until these modifications are implemented, a process may need to be

written which generates the appropriate text file for input to the current path planner.

E. SUPPORT FUNCTIONS
1. Overview
As mentioned above, there are several functions which must be provided to
adequately implement the model we have decided upon. In general these fall into three
groups: model construction, visibility checking and standard graphic support.
In this chapter we will briefly revie~ the set of functions which directly supports

construction of the 2D +D model. These functions reside in the file 2d+d.h and provide

20

the facilities for memory allocation/deallocation, pointer manipulation and data insertion
which are used to build the dynamic memory representation of our model.

Chapter IV will discuss a visibility checking algorithm and the functions in file
visibility.h used to implement it. This algorithm is used to determine which edges in the
model can be seen from a given position (x,y,z). Visibility is computed without regard
to camera orientation and view angle, the standard graphic functions will be relied upon
to filter out edges affected by these factors.

Chapter V describes the graphic functions from the file graphics.c. These are
required to extract a set of lines from the 2D+D model for use in pattern matching. The
generalized forms of these functions can be found in any standard graphics support

library, but we have tailored them to work directly on our model.

2. Model Construction

This section provides a brief, general description of the functions which provide
direct support to the 2D +D model. Our intention is not to provide full directions for the
usage of these function as that will be addressed in the users manual, chapter 6. These
functions fall into five general categories: memory allocation, memory deallocation,
model construction, data display and data location. We will briefly discuss each of these
categories and why they are needed.

Memory allocation routines (A-4) have been written to allow for easy creation of
the objects(C structures) used in the model. These functions each return a pointer to a

structure which has been created using the 'malloc’ command from the C language. All

21

components of the structure created are initialized to appropriate values (generally NULL
for pointers, blank spaces for characters and zero for other types).

The functions have been named to reflect the structures they create (i.e. creare_world
returns a pointer to a new WORLD structure). These creation routines are used
throughout the files 2d+d.h and Sth.h for the creation of polyhedron, polygon, vertex,
instance, and world structures used in construction of the 2D+D model.

It is, of course, necessary to provide memory deallocation routines to release
memory, which is no longer needed, back to the control of the resident operating system.
The basic C command ’free’ is appropriate for releasing the memory held by individual
structures. Three routines have been written to deallocate the memory used in linked
lists, these are: free_pg, free_ph and free_world (A-6). The first two functions are used
to deallocate lists of polygons and polyhedra respectively. The free_world function makes
calls to the other functions and is used to free all of the memory used to store a world.

Six model construction functions (A-9) provide facilities for building the 2D+D
representation of a world. The first four of these functions allow creation and addition
of vertex, polygon, polyhedron and instance structures to a world. Again, these routines
are labeled to match their functionality (i.e. add_vertex, add pg, add ph and
add_instance). Each of these four functions accepts information needed to create the
object being added and the label of the parent structure to which that object will be
added. The parent structure of a vertex is a polygon, of a polygon or an instance is a
polyhedron and of a polyhedron is a world structure. When the above functions are used

to add vertices to a particular polygon, the vertices are linked in the order they are

22

added. Likewise, polyhedrons are added to the world in the order they are created.
However, when polygons and instances are added to a polyhedron they are ordered by
ascending z values. Return values from these functions are pointers to the newly created
(and added) structures.

In the previously discussed functions, facilities for building polygons were
presented. Since all polygons in a 2D+D model are horizontal, it is necessary to provide
methods for assigning the pointers which represent vertical edges. We also need a way
to identify which ceilings polygons top the floors of each object. The remaining two
functions, add_edge and add_ceiling, allow this information to be added to a world via
simple pointer manipulation. Input parameters to add_edge identify two vertices. The
vertical edge pointer from the first of these is set to the address of the second,
representing a vertical edge in the world. Add_ceiling accepts pointers to two polygons
as input, and the first polygon is added to the second polygon’s list of ceiling.

The data display functions display pg and display_ph print the information
associated with polygons and polyhedra to the standard input output (stdio) device. The
display_world function uses both of these to display a textual listing of an entire world
to the stdio.

The data location category currently contains only one function, find_ph. The input
parameters are a string (array of characters) and a 2D+D world structure pointer. The
string is used to search through the world for a polyhedron with a matching label. Once
it is found the display_ph function is called to list the various components of that

polyhedron.

23

IV. VISIBILITY CHECKING ALGORITHM

A. PURPOSE

When a view is being extracted from our model, it is desirable for that view to
accurately reflect what a person (or camera) would see if they were to stand at the same
point in the physical world. To satisfy this requirement, we cannot allow objects to be
transparent. Accomplishing this in the 2D+D model is rather tricky, since polygons
representing the walls of objects are not explicitly represented. We first developed a 2D
sweep algorithm which quickly determines the set of visible lines (or edges) in a two
dimensional world. This algorithm was then expanded to determine the visible lines in
a three dimensional space. We will detail out the 2D algorithm and then show the
modifications implemented to produce the 3D version. Although the 2D version is quite
fast and accurate, we will discuss some inherent problems with the 3D version which
limit the output to a close approximation of the set of visible lines. In both cases, the set

of visible lines represents an unrestricted 360 degree field of vision.

B. 2D SWEEP ALGORITHM

We will assume standard polygon representation is being used to store vertices in the
x-y plane. In this representation vertices of a normal (obstacle) polygon will be chained
together in counter clockwise (ccw) order while those of an inverse (enclosure) polygon
will be in clockwise (cw) order. In either case the function prev(V) represents the vertex
which preceded the vertex V in a polygon. Additionally, let the reference point (rp) be

the location of the camera in the plane and the function intersection(E,A) represent the

24

point of intersection of the edge E with a ray drawn from the rp along angle A. Two lists
must also be maintained: the sweep list (a list of endpoints ordered by theta) and the
considered list (a list of lines ordered by distance to the rp).

The 2D sweep algorithm follows:

1 for each veriex in a set of polygons loop

2 -calculate the angle, theta, from the rp to verrex

3 normalized to fall in 0-360 degrees

4 -insert in sweep list ordered by ascending values

5 for each vertex, V, on the sweep list loop

6 if circuit(rp,V,prev(V)) is ccw and V.theta> prev(V).theta then 7 -place
edge (V,prev(V)) on the considered list since it

8 straddles zero degrees

9 -ser first point of edge to intersection (edge,0)
10 for each item, V, on the sweep list loop
//remove all edges ending at V prior to adding the edge starting ar V

11 SJor each edge, E, on the considered list

12 if V is the second point of E then

13 if E is the first item on the considered list then
14 -accept it as visible

15 -change the first peoint of the next item, EI
16 to the intersection(E1,V'’s theta)

17 -remove E from the considered list

18 -recalculate the distance from rp to E along V’s theta

19 if the circuit from rp to V to prev(V) is ccw then

20 if distance to V is less than distance to Ist edge of
21 considered list, E1 then

22 -accept E1 up intersection with V’s theta

23 -change 1st point of El to

24 intersection(E1,V’s theta)

25 -insert edge (V,prev(V)) in the considered list

Figure 4.1 demonstrates this execution of the algorithm for a simple 2D world. For
the purposes of this algorithm, an angle of zero degrees is defined as a line from the rp
which runs out in the positive X direction and parallel to the X axis. After all the vertices

have been sorted by their theta values and added to the sweep list, processing of edges

25

S10 S3
S6 S2
S5
S
S8 7 S1
S9
0 degs
@ TS N
camera sweep direction 360 degs
St S12
Figure 4.1

Sweep method of
Visibility testing

26

begins. The direction of an edge is from V to prev(V). If this direction is ccw with
relation to the rp, there is a possibility the edge is visible so it is added to the considered
list. If the direction of the edge is cw it is occluded from view by some other edge of the
polygon it is part of (see Figure 4.2). To ensure the effects of those edges straddling
zero degrees are not lost, they are added to the considered list (lines 5-8) prior to
processing the entire sweep list. Reassignment of each straddler’s first point (line 9)
keeps us from blindly accepting the portion lying before zero degrees.

In the main loop (lines 10-25) each vertex of the sweep list is processed. If an edge
is under consideration which ends with the current vertex, it is removed from
consideration. In a 2D world there can only be one edge visible at any given point
around the sweep. Therefore if the edge being removed happened to be first on the
considered list, then it was closest to the rp and is accepted as visible (line 14). When
this is the case the next edge on the list becomes visible, and the first point must be
adjusted (line 15) so the portion occluded by the edge being removed will not later be
accepted as visible.

Once all lines ending at the current vertex are removed, the edge from the current
vertex to its predecessor is inspected. If the edge is ccw then it is added to the considered
list. If this new edge is the closest to rp, the former head of the considered list is
accepted as visible up to the current vertex’s theta and its first point adjusted accordingly
(lines 20-24). Notice that the main loop will remove straddling edges with the artificial

first vertex at zero degrees, and then adds them again in the normal sequence. This

27

v3 prev(vl)=v8

prev(v4)

v4

L'g)
i
o
»
~
B
B
\\\\\\ e
~
§
—
>
o
>
ook IR
m mwe..fa..«é_..?«! fl..s.x.fc(n..u m Na .
e)em.esf AN
N .;({/ Y
W ...)\.....ss..‘.
: i.\!\&\.\...} -
. \‘\1 00. .
et .
e :
. e :
% N
el B
il
o~
o
>
S
o
bt
O

(b) concave case

(a) convex case

Figure 4.2

=1
[<]
1]
L
oy
=
F
2
-2
B2
S &

28

allows non-straddling edges to still occlude the first portion of straddling edges when they
are added to the considered list a second time during the main processing loop (line 19).

The algorithm is complete when the last straddling edge has been removed from the
list and each vertex on the sweep list has been processed at least once. Notice that only
one edge is visible at any given time and the endpoint reassignments (lines 15 and 24)

ensure that only the visible portions of an edge are accepted.

C. 3D SWEEP ALGORITHM

When sweeping for visibility in a 3D world distance to edges is no longer sufficient
criteria to determine visibility. Since occlusion of more distant edges may be total, partial
or not occur along the Z axis, there can be any number of edges visible at a given point
around the 3D sweep. We also have the added need to accept vertical lines which may
reside at an edge’s endpoints. The basis of the 3D algorithm is the same as that for the
2D sweep, but we need to add some information which denotes an edge’s presents along
the z axis. This information effectively defines each edge as a vertical wall of some
height greater than or equal to zero.

Specifically, each sweep list item must indicate if a vertical line begins at that vertex
or not. Since we will be interested in determining which edges are occluded from the
view of a single point, rp, in 3D, simply comparing z information of edges and these
vertical lines is insufficient. For this reason, when a sweep link is formed the angle of
elevation from the rp to the vertex is calculated and stored in the variable MIN Z.

Likewise, if a vertical line is present at the vertex, the variable MAX_Z stores the angle

29

of elevation to the upper vertex of that line. A vertex which has MIN_Z equal to
MAX_Z will by definition have no vertical line associated with it.

As with each sweep list item, each item of the considered list will also contain a
C_MIN_Z and C_MAX_Z angle. In the sweep list we are concerned with z information
mainly to represent vertical lines. In the considered list we need z information which
accurately reflects the extent of occlusion an edge can inflict (from floor to ceiling) on
edges behind it. Figure 4.3 demonstrates a case where z information for the considered
list edge must be different than that of either endpoint. The function find_ceiling_z(E)
will be used to provide the height of the ceiling which tops a particular edge E.

As mentioned earlier, many edges may be visible in 3D at one time. For this reason
we have added two flags to each considered item: visible and bottom_visible. The first
flag indicates that some part of the edge’s plane of influence can still be seen from rp.
The second flag indicates that the bottom of the edge is still visible indicating that an
output line must be generated if the edge is modified or the sweep passes it with this flag
set.

The algorithm we present has been trimmed somewhat to help increase clarity. Several
special cases occur within a model which require individual handling. Two such cases
arise since the ccw check fails to recognize all edges of a ceiling which occurs below the
1p and a floor which occurs above it. In these two cases the sweep list must be artificially
manipulated to generate all edges of these polygons as ccw with respect to the rp (so they

may be placed on the considered list).

30

e6

B AT & o T PP AR

el

ed4

e2

e5

e3

area not covered
by verticals

camera

Figure 4.3

31

A case where the z coverage of the vertical
lines originating at an edge’s endpointd does
not match the coverage of the edge itself.

The 3D sweep algorithm follows:

1 for each vertex in the model
-calculate the angle, theta, from the rp to vertex
normalized to fall in 0-360 degrees
-calculate MIN Z from rp to V
-if V has outgoing vertical edge then
~calculate MAX_Z to top of vertical
else
MAX Z=MIN Z
-insert in sweep list ordered by ascending values
10 for each vertex, V, on the sweep list loop
11 if circuit(rp,V,prev(V)) is ccw and V.theta > prev(V).thera then 12
place edge (V,prev(V)) on the considered list since it

VNN R wN

13 straddles zero degrees
14 -let C MIN Z = V.MIN Z
15 -calculate C_MAX_Z based on find_ceiling_z(edge(V,prev(V})))

16 so angle falls between -90.0 and 90.0
17 for each item, V, on the sweep list loop
18 Jor each edge (E) on the considered list

19 if V is the second point of E then
20 if E’s 2nd point has vertical edge then
21 -calculare visibility of vertical edge and
22 accept part of vertical line seen
23 if E’s visible=1 then
24 -accept it as visible
25 -remove E from the considered list
26 Jor each edge on considered list loop
27 -recalculate C_Z_MIN and C Z_MAX
28 -calculate_visibility(considered list,V.theta)
29 -recalculate the distance from rp to E along V’s theta
30 if the circuit from rp to V to prev(V) is ccw then
31 if V has vertical edge then
32 ~calculate visibiliry of vertical edge and
33 accept part of vertical line seen
34 -insert edge (V,prev(V)) in the considered list
35 -for each edge on considered list
36 -recalculate C_ Z_MIN and C_Z_MAX based on V’s
37 theta (since perspective changes angles)
38 ~calculate_visibility (considered list,V.theta)

32

Execution of the 3D version closely parallels that of the 2D version, with some
notable enhancements. Since vertical edges can be associated with sweep list vertices, we
calculate the visibility of the first endpoint’s vert edge when a new considered list item
is added (lines 20-22) and the second endpoint’s vert edge when that considered item is
removed (lines 31-33). This calculation simply consists of looping through all the edges
appearing in front of the current edge on the considered list. For each of these edges the
MIN_Z and MAX_Z values of the vertical edge under consideration are adjusted to
reflect any occlusions. When the loop is complete, if MIN_Z is less than MAX Z the
visible portion of the vertical edge is accepted.

Another essential, and expensive, addition to the 3D algorithm is the recalculation of
the elevation angles on each considered list item (lines 27,36). Since the occlusion of the
z axis by an edge is represented by limiting angles (C_MIN_Z,C_MAX_Z), perspective
must be considered. We cannot simply calculate the z coverage of an edge when it is
added and assume it to be constant. The perspective changes with the distance to an
edge, so as the sweep progresses, the coverage of edges pointing towards rp increase
while those pointing away decrease. These calculations are performed after the addition
or removal of a considered edge and are followed by a new calculation of all edges
visibility.

The calculate_visibility function (lines 28,38) is the 'work horse’ of the 3D sweep
which assigns visibility and adjusts Z coverage in response to occlusion. This function
1s executed each time a change is made to the considered list. It scans through the list

and for each edge compares the Z coverage information to the edges behind it. The

33

visibility flags, C_MIN_Z and C_MAX_Z are adjusted based on if and how each edge
is occluded. An additional variable associated with each edge on the considered list,
MIN_SWEERP is introduced in this function. MIN_SWEEP keeps track of the starting
sweep angle for which the visibility information is valid. When part of an edge is
accepted as visible or its status changes, the MIN_SWEEP must be updated. A basic
description of the function follows:

assumptions. all visibiliry flags set
C_MIN Z and C_MAX_Z set 1o toral coverage
(initially no occlusion)

input: THETA = current sweep angle
considered list

Jor each edge, E on the considered list
Sor each edge EI farther down the considered list than E
-determine how E occludes E1
-case type of occlusion:
entirely occluded:
visible=bottom_visible=0
bottom occluded:
bottom_visible =0
El.C_ MIN Z=F.C MAX Z
top_o-cluded:
El.C MAX Z=E.C MIN Z
Sor each edge, E on the considered list
if above .0op changed E and E.bottom_visible=1 prior to
the loop then
-accept E from intersection(E,MIN_SWEEP) to
intersection(E,THETA) as visible line
-E.MIN SWEEP=THETA

D. PROBLEMS WITH THE 3D SWEEP ALGORITHM
Two major concerns arise when reviewing the usefulness of our 3D sweep algorithm:

can it support real time image processing and is the set of output lines correct.

34

Although the final goal of this work is to support a real time vision system, a hard and
fast definition of 'real time" is difficult to express. This is especially true in the case of
providing support to pattern matching facilities, which themselves may take more than
30 seconds to execute. In general, we would consider programs with a total run time
under two seconds to be classified as real time applications. Unfortunately, as the number
of polygons comprising our model increase to the number required to represent the target
environment (fifth floor hallway), we find run time increasing to approximately eight
seconds. In a hard real time system such a lag time would almost assuredly be
unacceptable, but if we take into consideration the amount of processing time likely to
be required by the entire vision system such performance may be tolerable. For this
reason we will classify the visibility algorithm as having 'near’ real time performance.

The reason for this poor behavior can be attributed to the need to account for
perspective. Recalculating the z axis coverage and the visibility for the entire considered
list whenever an edge enters or leaves the list and at each increment of the sweep angle
becomes quite expensive. Even so, we still see that some inaccuracies in output can occur
since z coverage should ideally be updated continuously.

When reviewing the correctness of the set of visible lines generated we find several
small discrepancies. One of these is the above stated problem of not being able to
continuously update z coverage. Associated with this is the fact that, to save time, our
algorithm does not consider the possibility that the relative positions of edges on the
considered list may change. Figure 4.4 illustrates how the distance to edges may call for

a resorting of the considereZ list as the sweep progresses. The benefits of resorting the

35

list at each sweep increment is overshadowed by the significant increase in processing
time which results.

The above section discussed the ’artificial manipulation’ used to ensure floors
occurring above the rp and ceilings occurring below have all edges ccw. Those ceiling
edges which are forced to be ccw in general have no outgoing vertical edges and
therefore no associated z coverage and are therefore rendered transparent (see Figure
4.5).

The last two items problems have been knowingly designed into the a’zorithm and are
not apparent from the previous description. When vertices from enclosure ceilings are
being entered on the sweep list, they are automatically given a MAX_Z of 90 degrees.
This is the only simple way to prevent such ceilings from being totally transparent
(although edges directly over the ceiling can still be seen).

Lastly, to ease the complexity of our data structures, edges are not considered to be
occluded across the middle along their entire length (Figure 4.6). When this case does
occur, we allow the occluding object to cast a footprint by assuming the occlusion is
across the bottom along the entire length. To model the true situation, we require a
representation which can track more than one non-contiguous area of coverage along the
z axis. This would require a list of (MIN_Z,MAX_Z) pairs with splitting and merging
functions to replace the single variables our algorithm uses.

Chapter VI compares usage of the full 3D sweep algorithm with some quicker, but
less accurate, implementations of the sweep method. Timing results and correctness of

output are both discussed.

36

no endpoint at intersection

o \ intersection evaluat
- t!ﬂ

d .
or angle at eac engpomt
(a) initiaf%iewing situation

\ —_— e2

el
(b) correct set of visible lines

— e2
el
(c) actual output of 2d sweep algorithm

Figure 4.4 . .
Problem due to perspective with sweep algorithm

=>
=>
Figure 4.5

Artificial manipulation to make
all edges ccw.

37

< @

b)
(a)

(c)

Figure 4.6

a. original case b. desired occlusion c. approximated result from visibility sweep algorithm

38

V. STANDARD GRAPHIC SUPPORT
A. OVERVIEW OF OUR APPLICATION NEEDS

Although the personal iris system on which this work currently resides does provide
an extensive graphic support library, our vision system is being designed to reside on
board Yamabico. Since Yamabico's memory (both primary and secondary) is somewhat
limited and source code for the iris library is not available, it was necessary to write our
own graphic support functions.

After the visibility checking algorithm has been run on a 2D+D world, we are left
with the set of all lines which are visible from a specific point in the model. The reader
should recall that output from visibility checking does not take the orientation of the
observer (camera) into consideration but rather, provides a complete set of theoretically
visible lines based upon omnidirectional sensors. The graphics support routines will

determine which of these lines fall within the camera’s field of vision and transform them

into a final format which can be used in pattern matching and graphic display. Since our

vision system will exploit a single camera as it’s sole sensor, the processed image it
provides will be composed of 2D lines. Likewise, a standard display terminal can only
support drawing lines specified in it’s 2D screen coordinate system. For these reasons,
the appropriate final format for our view from the model is a set of 2D lines. As with
the 3D lines provided by the visibility algorithm, we choose to use an endpoint
representation to specify these 2D lines.

[Ref. 13] thoroughly describes the mathematics and principles of computer graphics.

It was the primary reference used to design the support functions found in the file

39

graphics.h. When a view from the model world is needed, the ger_view function is
called. This function requires a pointer to the 2D+ D world and the camera’s 3D position
(PRP), orientation (DOP) and field of view in degrees (view_angle) as input. The world
and PRP are sent to the visibility checking algorithm and the returned list of lines is
worked with from then on.

Since we are simulating what is seen by a single camera, we need to extract a view
from our model which is based on a single point perspective projection. In a perspective
projection, line size is scaled to the inverse of the distance from the camera. This allows
distant objects to appear smaller than closer ones of the same physical dimensions. A
parallel projection does not perform this scaling and is therefore not suitable to our

application.

B. GENERAL PERSPECTIVE PROJECTION

There is a pipeline of several steps which is used to produce a perspective projection
from a model. The steps are:

1. Define the View Volume

Each candidate line, in a model, must be inspected to determine if it falls within

the observer’s field of vision. This field of vision is defined by a semi-infinite pyramid
originating at the PRP and extending along the DOP (Figure 5.1). All lines within this
volume will be seen by the observer. The infinite length of this pyramid is difficult to
work with, so we define a near clipping plane and far clipping plane. These are defined

relative to the observer and form the truncated pyramid of Figure 5.2. The height and

40

Figure 5.1
Semi-infinite pyramid defining
view volume for perspective projection

Back

Figure 5.2
PRP Truncated view volume.

4]

width of the pyramid at the near and far clipping planes is determined by the width of
the observers view_:. ', or the defined size and location of the window (see section b).
2. Select a 2D Window.

Somewhere along the length (along the DOP) of the pyramid a projection window
must be placed. This window is parallel to the base of the pyramid and is the surface
onto which all accepted lines will be projected. Lines falling within the pyramid on the
far side of the window from the observer, will be scaled down in size when mapped to
the window, while those on the near side will be scaled.

If the view_angle is not used to define the slope of the view volume's sides, a
window can fully define the volume by giving its height, width, and distance down the
DOP from the observer.

3. Determine the Normalizing Transformation

Although it is simple to determine if a line falls between the far and near clipping
planes, it is difficult to calculate what portion of a line (if any) falls within the other four
sloped planes which make up the sides of the pyramid. To ease these calculations, the
pyramid is manipulated to form a unit pyramid which defines a canonical view volume.

The new pyramid’s surfaces or clipping planes are represented by the following

equations:
right: x = -z 5.1
left: X =1z 5.2)
bottom: y = z (5.3)
top: y =-2 5.9

42

front: z =12z, (5.5)

back: z = -1 (5.6)

il

The general form of this transformation, N, is:

N,. =S, *SH,,, * T-PRP) * R * T-VRP) (5.7)

where:

T(-VRP) Translate the view reference point (VRP) to the origin. For each 3D
point, P, which is being normalized, add the negative of the corresponding VRP
coordinate to each coordinate value of P. The VRP is the origin of the view coordinate
system. Since window limits are referenced from this point, it is a good idea to choose
a VRP position which readily supports window reference (i.e., center of the window or
a window corner).

R Rotate the view reference coordinate (VRC) system so it is aligned with the
(x,y,z) system. The VRC system has three components (u,v,n). Initially (Figure 5.3a)
v is vertically aligned with the window, u runs parallel to the lower edge of the window
and n is normal to the window surface. Proper alignment is achieved by rotation about
the x, y and z axis. Rotation takes advantage of the trigonometric sine and cosine
functions of the rotation angle (RA). These functions are applied to the original

coordinates of a point, (x,y,z) to produce the new point, (x1,yl,z1). As an example,

equations to determine rotation about the z axis are shown:

x1 = x * cos(RA) - y * sin(RA) (5.8)

yl = x *sin(RA) + y * cos(RA) 5.9

2l =z (5.10)
43

T(-PRP) Translate the PRP to the origin. The PRP is also known as the center of
projection and refers to the position of the observer or camera.

SH,.. Shear the view volume along the z axis so the DOP is paralle] to the z axis.
Muitiplication by a shearing matrix will augment the x and y terms to accomplish this.
We will not go into detail on how to derive this matrix, since shearing is not needed in
our application. The interested reader is referred to Reference 13 page 264.

S Scale the view volume into the canonical perspective-projection view

per
volume. We must determine a scaling factor for each coordinate system axis, which is
multiplied by the corresponding (x,y or z) component of the point to be scaled. Here the
goal is to map the back clipping plane so its new location is at z=-1. The apex of the
view volume will map to z=0, leaving the front plane (located on z,,) at its relative
position between the two. Equations 5.1-5.6 must hold true after this scaling. To
guarantee this, all z components are scaled by -1/(vrp,’+B). The denominator of this
term is simply the position of the back clipping plane after it has been processed through
the previous normalization steps. Remember that we are targeting clipping plane
equations with unit slopes, x=z and y=z. The z scaling factor must also be applied to
x and y to ensure uniformity, but we first must scale to produce these unit slopes. This
is accomplished by scaling the window half-height and half-width to vrp,’ (since this is
the transformed z position at which the window now resides). Therefore the appropriate

scaling factors for x and y are:

*vrp,’)/((vip,’+ B) *(window width)) (5.11)

44

(2*vrp,’)/((vrp.’+ B)*(window height)) (5.12)

respectively.

4. Apply the Normalizing Transformation to All Lines

Each of the lines from the model are transformed and those that fall within the
normalized canonical view volume will be seen.

The interested reader will note that [Ref. 13} expresses all of these manipulations
through use of matrix operations. To save the expense of writing a math package for
matrices our application uses series of linear equations to emulate matrix use. Although
these equations are basically equivalent, they may appear somewhat different since the
problem we are solving is a subset of the general case.

5. Clip Normalized Lines Against Canonical View Volume

Each endpoint of a line will be assigned a six bit clipping code. The coordinates

of the endpoint are compared to the equations of the canonical view volume’s planes. The

meaning of each set bit follows [Ref. 13]:

bit 1 - point above view volume y > -z
bit 2 - point below view volume y<z
bit 3 - point to right of view volume X > -z
bit 4 - point to left of view volume x <z
bit 5 - point behind view volume z<-1
bit 6 - point in front of view volume >z,

45

When both endpoints of a line have clipping codes of all zeros, each endpoint falls
within the view volume and the line is trivially accepted. Likewise, when a bitwise
logical and of the endpoint codes does not produce all zeros the line is rejected since it
lays totally outside the volume. When neither of these cases is met, only a portion of the
line is within the view volume. In this case, the next step is to calculate the
intersection(s) with the volume’s six clipping planes. This is where the advantage of
selecting unit slopes for those planes is realized. An extended 3D version of the Liang-
Barsky 2D clipping algorithm is employed to find the intersections [Ref. 13 pg. 274].

This algorithm uses the parametric representation of a line:

X = Xp + X, - Xg) (5.13)
y = Yo+ Uy, - Yo (5.14)
zZ =12+ t(z; - 2p) (5.15)

where t is in the interval (0,1)
and subscripts specify which endpoint a
coordinate refers to.

These equations are set equal in accordance with equations 5.1-5.6 and t is solved
for. The two t values which fall in (0,1) define the new endpoints of the partial line to
accept. Notice that one t may be 0 or 1 if one endpoint is in the view volume and the
other is not.

6. Perform Perspective Projection
Once the 3D lines within the view volume are identified, we need to map them

onto the 2D window. This is simply accomplished by dividing each coordinate of the

46

endpoints by z/d. Where z is the z coordinate of the point and d is the transformed
position of the projection plane on the z axis. Notice that this will map the z coordinate
of each endpoint to d.
7. Scale Window Coordinates to Device Coordinates

In order for our final set of output lines to be useful, we must map them from the
window coordinates to some device coordinates. The lower left corner of our window
1S (ZpinsZmin) DY €quations 5.11 and 5.12. The width and height of the window are both
2*z,...- If the new device coordinate limits are denoted by XMIN, XMAX, YMIN and
YMAX mapping is accomplished by:

X = ((x window coordinate-z,,,,)/2*Z,,,,) *(XMAX-XMIN) + XMIN (5.16)

Y = ((y window coordinate-z,,,.)/2*z,..)*(YMAX-YMIN)+ YMIN (5.17)

C. PERSPECTIVE PROJECTION FOR OUR APPLICATION
1. Define the View Volume
The near and far clipping planes are located relative to the camera position at 1.4
inches and 5000 inches respectively. The near clipping plane is chosen to match the focal
length of our camera, and the far plane’s distance is greater than the total length of our
model world (thus ensuring all lines which should be seen can be).
2. Select a 2D Window.
According to specifications, our video camera has a ccd element which is two
thirds of an inch square. This element is the camera’s physical counterpart to the window

on which we need to project the model lines. Using this information along with empirical

47

testing, we have determined that the focal length of the camera is 1.4 inches. Again, this
value corresponds to how far from the camera (along the DOP) the window should be
placed.
3. Determine the Normalizing Transformation

Figure 5.3 shows each step of the normalization process. Some of the physical
restrictions we place upon our target system simplify the normalization transformation
from its general form:

Ny = S, * SH,, * T(-PRP) * R * T(-VRP)
to:

N, = S, * T-PRP) * R, * T(-VRP) (5.18)
where:

T(-VRP) Translate the view reference point (VRP) to the origin (Figure 5.3b). We
select the lower left corner of our window as this point.

R Rotate the view reference coordinate (VRC) system about

y
the y axis so it is aligned with the (x,y,z) system (Figure 5.3c). Rotational computations
have been simplified from a general three coordinate rotation to a single rotation about

the y axis. This is due to the fact that Yamabico will only rotate its camera freely in the

model’s x-y plane'.

! It is important to note that most graphics discussions assume

a 3d coordinate system where the -z axis goes into the page rather
than our model’s coordinate system where the z axis denotes height.
Therefore all coordinates must be shifted from model to graphic

representation prior to performing normalization, and the
rotation is actually about the model’s z axis, as it should be.

48

T(-PRP) Translate the PRP to the origin (Figure 5.3d). This will be the position
of Yamabico's camera which has gone through the previous two operations.

S Scale the view volume into the canonical perspective-projection view volume

per
(Figure 5.3e). This is performed as specified for the general case.

The most noticeable simplification is the omission of SH,,,. Since Yamabico’s
camera will be mounted perpendicular to the floor there is no need to shear the view
volume. The DOP is always parallel to the z axis.

4. Apply the Normalizing Transformation to All Lines

Each line from the list of visible lines returned from ger view is transformed and

if it falls within the normalized canonical view volume will be seen in the final output.
5. Clip Normalized Lines Against Canonical View Volume

This step is carried out exactly as for the general case. We have reserved space for
the clipping codes within each LINE structure. The function ger_clipping_codes (A-46)
assigns the six bit code to each endpoint, and the functions clip_line and clipt (A-46)
make up our Liang-Barsky 3D clipping algorithm implementation.

6. Perform Perspective Projection
Since we are using the focal length of the camera to position our window, the value

of d will be z,,. This indicates that our window overlays the near clipping plane.

49

(a) ©®)

(d)

Figure 5.3

(a) Initial viewing situation. (b) VRP translated to origin (T(-VRP)).

(c) Rotated about y axis to align (x,y,x) with (u,v,n) coordinates (Ry).

(d) PRP translated to origin (T(-PRP)). (e¢) View volume scaled into canonical
form (Sper).

50

7. Scale Window Coordinates to Device Coordinates
The final device for our projected lines will either be a window for pattern
matching or a portion of the graphics display screen. In either case, the variables
MIN_X, MAX_ X, MIN_Y and MAX_Y are defined at the top of the file graphics.h.
Changing these variable will allow the map_to_screen function to properly scale the final

set of lines.

51

VI. IMPLEMENTATION AND CONCLUSIONS
A. MODEL
1. Appropriateness of 2D+D Model

Our chosen representation has proven quite effective for modelling environments
that are orthogonal with respect to the z axis. Although we cannot model curved objects
such as door knobs, those objects which contain the major features needed for pattern
matching are readily represented.

Path planning has not yet been implemented using the 2D+D model, but the
asymmetric quality of the model seems to strongly support such an application. We
simply need to treat all horizontal polygons, which have a z value along the robot’s
height, as objects for the path planner. To constrain the problem complexity, overlapping
2D polygons will need to be merged together.

2. Constraints

The 2D +D model is not useful for outdoors environments nor for ones with many
curved surfaces. Additionally, path planning cannot currently work directly from the
model. The main problem is that instances of polyhedra classes share storage of vertices
in the local coordinate system. As the model stands, a separate representation must be
used to store the polygons required for path planning. Note that even if dedicated storage
for each instance is allocated, the same problem may occur. This is because overlapping

polygons still must be merged, but the underlying model must not be altered.

52

Another constraint is placed on model construction. When a polyhedron is added
we only allow rotation about the z axis. To truly represent all possible straight edged

objects we need to allow for rotation about all axes.

B. GRAPHICS

The graphics projection of a model view into 2D coordinates works well. The entire
process takes approximately 0.5 seconds of processing time (not including the visibility
checking algorithm). As with the model, the graphics projection routines are not
generalized to account for camera rotation about all axes. Instead the camera is assumed
to only rotate about the z axis. For this reason, we cannot handle cases where the camera

is not perpendicular to the z axis (i.e., when Yamabico climbs or descends a ramp).

C. VISIBILITY ALGORITHM
1. Time Comparisons of Different Versions
In order to assess the level of visibility checking which must be applied to a model
we have tested three different versions of the sweep algorithm described in Chapter IV.
We wish to minimize processing time and receive output which is useful for pattern
matching against our camera image. Conclusions are based upon comparisons of

processing time? and output quality from various configurations within the model of

? Processing times are measured by stopwatch in seconds. Times
will reflect the total time required to extract lines from the
model, conduct visibility checking and project the lines into the
final 2d device coordinates.

53

Spanagel Hall’s fifth floor. Figures 6.1a and 6.1b show two of these views as they
appear with no visibility checking.
a. Simple 2D Sweep

This algorithm does not take any z information into consideration. All edges of
the model are assumed to lay within a single horizontal plane. Figures 6.2a and 6.2b
show the sets of visible lines accepted from configurations matching those used in
Figures 6.1a and 6.2b respectively.

Total processing time for each view processed under this algorithm averaged 3.0
seconds. As expected, the algorithm is very quick, but it is doubtful that the output is
useful for pattern matching. When only two dimensions are considered there can only be
one edge visible at any point around the sweep. This obviously hold true for our output.
This is a major problem since the closest objects, no matter how small, will occlude all
objects which are more distant. Notice that the top of the molding along the left side wall
occludes everything behind it (even though the molding is only four inches tall).

Another unexpected problem occurs since lights on the ceiling often fall closest
to the camera (in the x-y plane). The camera position in Figure 6.2a had to be adjusted
to the left since the position (44,44,44) fell directly underneath a light. At the original
position the displayed image is blank, since the edges of the light are accepted by the 2D
visibility check but the camera view angle (30 degrees) is not wide enough to allow them
to be projected onto the 2D view plane. Even at the adjusted coordinates the entire right
side of the display appears blank due to this same light. The same phenomenon is

observed in Figure 6.2b.

54

A

* N

Il

X: 44,00 VY
THETA(degs): 0.00

Figure 6.1a

44.00 Z2: 44.00-

X: 50.00 V¥

THETA(degs)

Figure 6.1b

55

350.00 2: 4

260.00

T

X: 20.00 V¥: 44.00 2: 44.00
THETA(degs): 0.00

Figure 6.2a

.

X: 50.00 V¥: 350.00
THETA(degs): 260.00

Figure 6.2b

56

b. Partial 3D Sweep

This algorithm takes z information into consideration but does not account for
perspective. The degree of coverage for each edge is calculated when the ccw sweep
reaches its first endpoint. To save processing time, this coverage is assumed to remain
constant as the sweep progresses along the edge’s length. In reality, coverage along the
z axis will increase as the distance to the edge decreases (and visa versa). Figures 6.3a
and 5.3b show the output from this algorithm.

Total processing time for each view averaged 5.6 seconds. Although somewhat
slower than the 2D algorithm, we see a dramatic increase in the output quality. Here the
displays are close to what we would expect the camera to see. Unfortunately, numerous
short lines are present which should not be and several lines which should be seen are
not. Concentrations of these errors increase as we move along the visible edges (away
from the first endpoint). This happens because the error between the initial z coverage
and actual coverage increases as the sweep progresses along each edge.

The appropriateness of this algorithm depends on how well pattern matching
handles extra and missing line segments. If the matching algorithm is capable of
disregarding or filtering out lines and allows partial matchings between lines, the partial
3D sweep may be suitable.

¢. Full 3D Sweep

This is the complete algorithm described in Chapter IV. Here we recalculate

each edge’s z coverage and visibility for each angle around the sweep. As mentioned

earlier, continuous correction for perspective around the sweep is not feasible. Hopefully,

57

-
e
~J

X: 44.00 ¥: 44.00 Z2: 44.0
THETA(degs): 0.00

Figure 6.3a

[1 =

X: 50.00 V¥: 350.00 2: 44,
THETA(degs): 260.00

Figure 6.3b

58

this discrete method of correction provides a reasonable approximation. Figures 6.4a and
6.4b show the output for this algorithm.

Here we find a very disturbing increase in processing time. The average time
for the full 3D sweep algorithm is 16.0 seconds. The majority of unwanted lines
appearing in Figure 6.3 are no longer present, but several short spikes still occur along
some edges. Noticeable ’tails’ are present at intersections of leading door edges and door
jams. These ’tails’ and spikes result from using discreet intervals to re-evaluate z
coverage. If a continuous method is developed to account for perspective, these effects
should be eliminated.

2. Problems
Our greatest concern with these results lie with the excessive processing time.
Sixteen seconds would not seem to readily support real-time processing, but does provide
on line support for development of Yamabico’s prototype vision system.
The problems due to discreet perspective may interfere with pattern matching. The
particular algorithm Kevin Peterson has implemented for our initial position verification

system does not seem to be adversely affected.

D. IDEAS FOR FUTURE WORK
1. Data Separation
Building a model through the function calls of a construction file, such as our
Sth.h, is somewhat wasteful. Since the construction file must be compiled and resides

in main memory, we gain a large chunk of executable code that is only executed once.

59

S

X: 44.00 V¥: 44.00 2: 44.0
THETA(degs): 0.00

Figure 6.4a
,{_j::"
=
1 L“"~--..
las SN
X: 50.00 V: 350.00 2Z: 4

THETA(degs): 260.00

Figure 6.4b

60

A logical solution to this problem is to separate the model data from the executable file.
A text data file could be made to hold the same information that is used in Sth.h. Unique
field separators or a tailored storage hierarchy will need to be employed to mark data.
This will allow an iterative function to read the data file and pass the appropriate
information to the add functions found in 2d+d.h.
2. Interactive Interface
If significant modifications and additions to the model are anticipated or if multiple
models need to be constructed, development of an interactive interface may be warranted.
Such a program could allow entry and modification of model data through a combination
of menu driven selections and keyboard entry of coordinates. An interface of this design
would also readily support separation of data into a text or binary file.
3. Extend S5th Floor Model
The model constructed by Sth.h contains most of the major features required for
pattern matching, but there are still modifications and additions which need to be made.
The most notable modification required is the need to properly model the interior of the
office spaces. The current data points within offices are estimates. Due to time
constraints, only room 512 is accurately modeled (most other office dimensions are based
on this room’s measurements). Additions which may prove useful include double doors
at both ends of the hall, bulletin boards and chalkboards. The second half of the fifth

floor and the offices lying along it also need to be added to our model.

61

- R TN T T Ty, e weeas e

4. Complete Visibility Checking
The previous section identified some problems with our visibility checking
algorithm. Investigation into increasing efficiency and correcting for perspective is
needed to reduce processing time and increase output accuracy. More accurate output can
also be achieved if the method of tracking z coverage for edges is expanded to allow for
non-contiguous coverage. This will allow the occlusions of the type shown in Figure 4.7
to be properly represented.
5. Update Graphics Support
Current graphic projection only allows for a camera with three degrees of freedom
(mounted perpendicular to the floor and rotating about the z axis). Expanding the
functions in graphics.c to allow for six degrees of freedom will provide a generalized
solution to accommodate rotation of the camera about the x and y axes.
6. Expand Simulator
The simulator can easily be expanded to read configurations from path or mission
planning routine output. Restrictions could also be imposed upon speed and turning
radius to mirror those of Yamabico. These steps would allow the simulator to be used
for mission simulation and analysis, rather than just for inspecting the model.
7. C + + Implementation
The class inheritance, virtual functions and other features available in C+ + may
prove ideally suited to implementing the 2D+D model structure. Investigation into this

possibility is encouraged.

62

8. Hardware Implementation
All of the work presented in this thesis has been implemented on a personal-iris
workstation. The video camera used for collecting data needs to be incorporated into
Yamabico’s hardware design. It may also be possible to install an additional processor
which is dedicated to supporting the vision system. Once hardware is in place, software

installation will follow.

63

VII. USER’S MANUAL
A. INTRODUCTION

This manual discusses the use of the files residing on the turing personal-iris machine
under the /yamabico/model directory. Turing is located in room 506 of Spanagel Hall
at the Naval Postgraduate School, Monterey, California. These files, 2d+d.h, 5th.h,
visibility.h, graphics.h, 2d+ dsim.h and interface.c, contain functions written in C. The
files are part of the vision system being developed for use on-board Yamabico-11 (an
autonomous, wheeled robot).

The vision system for Yamabico utilizes a single video camera for input. Information
about the robot’s operating environment is stored as an asymmetric 2D+D model. The
2d+d.h file contains the functions, called by Sth.h for construction and textual display
of this model. Visibility.h and graphics.h provide functions for extracting a view from
the model, which may be used in the vision system’s pattern matching applications or for
graphic display. 2d+dsim.h contains a basic simulator which allows the user to perform
graphic walk-throughs of a modelled world, while the final file, interface.c, ’includes’
all of the previous files and provides a simple interface through which the user can access

and test the various functions.

B. BUILDING A MODEL
1. Construction File
A 2D+D model (Chapter III) is used to represent an orthogonal operating

environment. A model is created by successive calls to the various construction functions

64

in 2d+d.h. We have created the construction file, 5th.h, to model the fifth floor of
Spanagel Hall. This file consists of one primary construction function, make_world,
which conducts these calls in the proper order and returns a pointer to the newly built
world. All coordinates of our model are entered in inches. The hallway floor is
considered to be at a z height of zero inches. The origin of the x-y plane is located at the
north east corner of the hall. When looking at the double doors to room 506 this is the
lower corner on the right hand side. Orientation with respect to the model is zero (or
360) degrees looking down the x axis (across the hallway) and increases in the ccw
direction (Figure 7.1).

Construction files must use the C #include 2d+d.h command to ensure access to
the model support, functions. In turn, the construction file can be included to allow its
compilation and use by an application program. Each add function from 2d+d.h returns
a pointer to the specific structure which is added. The primary construction function
takes advantage of this property to keep track of structures within the model and uses the
returned pointers as input parameters to future calls. This approach to building a model
requires it to be put together in a top down fashion. To accomplish this, a higher level
structure such as a polyhedron must be added to the model prior to adding any of its
component vertex or instance structures.

2. Declarations

The structure types which are used to build a model are declared at the start of the

2d+d.h file (A-3). Of these, one world and several polyhedra, polygons and vertices

must be declared for use in the construction file. You will notice a significant number

65

+Y

(o]
90
$
3
T
o
@)
o]
-l
.
E
elevators
o] o]
| 180_ | : 0 +X
-]
360
276
Y
Figure 7.1

Orientation of 5th floor model.

66

of such declarations in our construction file, Sth.h. We have adopted a convention in

naming pointers to help keep track of relationships between structures. Examples are:

label representing
H3 Third polyhedron declared and added.

H3P1 First polygon of polyhedron H3.
H3P1V1 First vertex of polygon H3P1.
3. Building The Model
Once declarations have been made, the first step is to call the add world function
in the following format.

WORLD *W;

W = add_world("name of werld",13);

PARAMETER TYPE
Ist character array (30 maximum length)
2nd integer

The input parameters are simply the label we wish assigned to the world and the number
of characters in that label. The function will allocate memory, create an empty world,
assign the indicated label to that world and initialize the other fields to indicate the world
is currently empty.

Once a world has been created, we can begin to add the various objects which
make up the world. Each object is treated as a class of polyhedra. Instances from a class

can be instantiated into the model at different positions and with different orientations.

67

This allows the polyhedron class to be described in a local coordinate system (usually
originating at (0,0,0) in the (x,y,z) coordinate system). Recall that a 2D+D model
representation contains only horizontal polygons and vertical edges. Groups of these two
types will make up each polyhedron. To add an object to the world we use the
add_polyhedron function.

POLYHEDRON *H1;

H1 = add_polyhedron("class name",9,W,obstacle,fixed);

PARAMETER TYPE

Ist character array (30 element maximum length)
2nd integer

3rd world structure pointer

4th boolean (0 or 1)

5th boolean (0 or 1)

Again, the first two parameters represent a class label and its length. The third field must
be a pointer to an existing world structure to which this polyhedron should be added. Of
the last two boolean parameters, the first indicates if the polyhedron is an obstacle or not.
Objects with a 0 in this field are viewed as enclosures and component polygons are
expected to have their vertices in cw order. Obstacles will have a 1 here, and component
polygons will have ccw lists of vertices. The final boolean tells if the object is fixed in
the model or not. Polyhedra like doors should have a 0 in this position to indicate that

they can move, while hallways would contain a 1.

68

When an empty polyhedron has been added to a model, it is important to complete
its definition by adding at least one component polygon to it. This is accomplished by a
call to add_polygon.

POLYGON *H1P1;

H1P1 = add_polygon(H1,z_value,floor,convex);

PARAMETER TYPE

Ist polyhedron pointer
2nd float

3rd boolean (0 or 1)
4th boolean (0 or 1)

The first parameter must point to a polyhedron which has already been added to the
model. The 2nd parameter indicates the height along the z axis at which the vertices of
this polygon will be found. Floor indicates if the polygon is a floor or ceiling of H1. The
final field indicates if the polygon is convex or not.

A minimum of three vertices must be added to a polygon to properly define it.
Polygons are assumed to be a closed list of vertices so the first vertex should not be
repeated as the last vertex. It is important to ensure these lists are in cw order for
enclosure polyhedra and ccw order for obstacle polyhedra. The add_vertex function links

vertices into a parent polygon in the order they are added.

69

VERTEX *HIP1Vl;

H1P1V1 = add_vertex(H1P1,x,y);

PARAMETER TYPE

Ist polygon structure pointer
2nd float
3rd float

Each vertex must be added to an existing polygon pointer. The last two parameters
denote the x and y coordinates at which the vertex is located.

Once all of the polygons making up a polyhedron have been added, we need to
indicate the location of vertical edges. The add_edge function accepts two vertices as
input and creates a pointer from the first to the second which represents a vertical edge.

add_edge(P1V1,P2V2);

PARAMETER TYPE

Ist vertex structure pointer

2nd vertex structure pointer
Vertical edges should only be placed once between each pair of vertices. Each vertex
must be from different polygons residing in the same polyhedron structure. Notice that
there is no value returned.

To properly identify which ceilings enclose a floor we must use the add_ceiling
function. Here the two parameters are polygons. The first is a floor and the second a

ceiling. Ceiling associations are maintained as a list which allows more than one ceiling

70

to cover a floor. Although it is not required, vertical edges will usually be present
between floors and their ceilings.
add_ceiling(H1P1,H1P2);
PARAMETERS TYPE
Ist polygon structure pointer
2nd polygon structure pointer
After all the polygons, vertices, vertical edges and ceiling associations have been
added to a polyhedron class, we can instantiate the object into our world model using
add_insrance. This conserves storage space within the model and allows for easy addition
of the identical objects often found indoors (i.e., doors and lights).
add_instance("label",5,H1,X,Y,Z,PIVOT_X,PIVOT_Y,ROT);

PARAMETER TYPE

Ist character array (30 maximum)
2nd integer length of label array
3rd polyhedron structure pointer

4th-6th float, (x,y,z) position in model coordinates

7th-8th float, (x,y) position of polyhedron’s pivot
point in local coordinate system

Oth float, number of degrees to rotate object about

pivot point

71

-

When an instance nzeds to be used, all vertices are translated so the pivot point becomes
the local origin. Then the object is rotated about the z axis ROT degrees and placed at
the (X,Y,Z) coordinates of the world.
It is not mandatory for instances of a polyhedron class to be added to the model. When
no instances are added, views from the model will not include the polyhedron.

The construction file, Sth.h, is solely responsible for building our world model.
To modify the model, we can simply edit the function calls made in this file. The use of
instances makes adding new objects very straight forward and allows the orientation of

existing, movable objects (i.e., doors) to be altered.

C. CHECKING VISIBILITY

The file visibility.h (A-14) contains the functions which conduct visibility checking
on a 2D+D model. When a view from the model is being extracted for use in pattern
matching or graphic display, lines that are not visible should be filtered out. The
conduct_visibility_sweep function is called to provide the list of lines which can be seen
from a specific point in the model®. These lines do not take the type of camera or its
orientation into consideration. This means that even lines behind the camera will be
returned as visible. The next section tells how to get rid of these unwanted lines. Format

of function call:

3 The get view function from the graphics.h file calls this
function automatically. If you are retrieving a view from the model
through this function a separate call to conduct_visibility sweep
need not be made.

72

LINE_HEAD *LH;

LH = conduct_visibility sweep(W,X,Y,Z);
The LINE_HEAD type allows output from the visibility sweep to be separated into two
lists. One list is of vertical lines and the other contains non-vertical lines. Input consists

of a pointer to the world being checked and the camera position in (x,y,z) coordinates.

D. GRAPHIC PROJECTION FROM MODEL
The graphics.h file contains the function ger_view. This function calls the
conduct_visibiliry_sweep function, and removes those lines (and partial lines) which
cannot be seen by the camera. The resulting set of visible 3D lines is then projected onto
a 2D window and mapped to a set of final device coordinates. Output is a LINE_HEAD
pointer which consist of two lists: a list of 2D vertical lines and a list of 2D non-vertical
lines. Vertical lines are sperate to help in the pattern matching process. The format for
calling ger_view is:
LINE HEAD *LH;
LH = get_view(W,X,Y,Z,ORIENTATION,FOCAL_LENGTH);
PARAMETER TYPE
Ist world structure pointer
2nd-4th floating point (x,y,z) coordinates

Sth float, camera orientation in degrees

73

6th float, focal length of camera

A group of definitions can be found at the top of graphics.h (A-37). These values are
integral to proper projection. The CCD is set to two thirds of an inch, which is the
physical dimension of our camera's sensing element. This value is used as the 2D
projection window dimension (CCD by CCD square), and when used with the input
FOCAL_LENGTH determines the viewing angle of the camera. The variables MAX_X
and MAX_Y denote the limits of the desired output coordinates to which the 2D lines
should be mapped. If the camera, camera zoom setting or output device is changed the
user should inspect these variables to determine if their definitions are in need of

revision.

E. SIMULATOR

A basic simulator resides in the file 2d+dsim.h. The primary function, simularor, is
passed a world structure pointer. The user is queried for the starting configuration within
this world ((x,y,z) coordinates and orientation). This simulator is mouse driven. The left
and right buttons are used to turn to the left and right respectively. The center button
brings up a menu of options (Figure 7.2). To move past the initial view the ’start/restart’
option must be selected. The speed of the walk-through starts at zero and can be
increased or decreased by choosing the appropriate menu option. Speed can be reset to
zero through the ’stop’ option, while 'pause’ suspends execution until ’start/restart’ is

selected.

74

/s

: // #///(
' f'/ i_f/,
Y —
~] d -
STARTIRESIART | hea

=| PAUSE :
SLOWER
FASTER
STOP =

QUIT =

X 44.00 V¥: 44.00 Z2: 44.00
THETA(degs): 0.00

Figure 7.2

75

The simulator currently uses the ger view function to retrieve the set of lines seen
from each configuration as we move through the model. If the simulation speed is too
slow the ger_full view function can be substituted for both the calls (A-51). This will
draw all lines from the model to the screen. It may be useful to make this change when
inspecting entry of new objects to the model. Configurations are displayed across the
bottom of the display window. Coordinates are shown in inches while the orientation is

in degrees.

F. FINDING A POLYHEDRON

The function find_ph (A-13) is provided to display a text listing of a polyhedron and
all of its instances.

find_ph(LABEL,W);

PARAMETER TYPE

Ist array of characters (maximum length of 30)

2nd world structure pointer
Polyhedra structures in the world, W, are searched to find the class named LABEL. If
the need arises, the user can easily modify this function to return a pointer to the

polyhedron that is found.

76

G. DEALLOCATING MEMORY

It is important to release memory which is no longer needed back to the operating
system. We provide two functions, free_world and free_lines to release memory held in
a world and list of lines respectively.

free_world(W);

free_lines(LH);
Both functions use the C free function to release each substructure held in all lists that

make up the world or line list.

H. TROUBLESHOOTING

The following suggestions are made to help track down the cause of problems which
may arise when using this software. If the user wishes to gain a more thorough
understanding of why the 2D+D model was selected or how the underlying structures
interrelate, they are referred to the first five chapters of this thesis and to the code and

documentation found in Appendix A.

PROBLEM POSSIBLE CAUSE(S)
1. missing vertical lines -add_edge calls not made properly in

construction file
2. objects missing -add _instance not called in construction file
3. objects facing wrong direction -rotation angle in add_instance incorrect
4. view stretched or shrunk -camera or camera zoom setting changed causing

incorrect definition of CCD or focal length

77

5. views do not match actual

6. all model lines seen

7. cannot turn simulator

8. turns too much/little

9. for each mouse click

10. labels for model structures

[1. core dumps during execution

-incorrect CCD or focal length camera image
-device coordinates (MAX_X,MAX Y) incorrect
-call to ger_full _view vice ger_view

being made from simulator

-start menu option not yet selected

-adjustment needed on increment of left and right
cases found in simulate function

-adjustment needed on increment of speed changes
too slow/fast speed options (3&4) in processmenuhit
function. (File 2d+dsim.h)

-global variable MAX LEN in 2d+d.h truncated
too short needs to be increased

-a polygon used in the model has no

vertices added to it

-a structure in construction file is

used prior to being added to the model

78

VIII. REFERENCES AND BIBLIOGRAPHY

A. REFERENCES

1. Galbiati, Louis J., Machine Vision and Digital
Image Processing Fundamentals, Prentice Hall,
1990.

2. Shirai, Yushiaki, Three-Dimensional Computer Vision
Springer-Verlag 1987.

3. Fairhurst, Michael C., Computer Vision for Robotic
Systems. an Introduction, Prentice Hall, 1988.

4. Therrien, Charles W., Decision, Estimation, and
Classification: an Introduction to Patrern
Recognition and Related Topics, Wiley, 1989.

5. Thorpe, Charles W. (ed.), Vision and Navigation:
The Carnegie Mellon Naviab, Kluwer Academic
Publisher, 1990.

6. Robert, L., Vaillant, and Schmitt, "3-D-Vision-Based
Robot Navigation: First Steps," European Conference
on Computer Vision Proceedings, 23-27 April 1990.

7. Deriche, R., and Faugeras, O., "Tracking Line
Segments," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

8. Crowley, J. L., and Stelmaszyk, P., "Measurement and
Integration of 3-D Structures by Tracking Edge
Lines," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

9. Holder, D., and Buxton, H., "SIMD Geometric
Hashing," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

11. Andersen, J. D., "Combinatorial Characterization of
Perspective Projections From Polyhedral Object
Scenes," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

79

12. Leavers, V. F., "The Dynamic Generalized Hough
Transform," European Conference on Computer Vision
Proceedings, 23-27 April 1990.

13. Foley, James D., and others, Computer Graphics:
Principles and Practice, Addison-Wesley Publishing
Company, 1990.

. BIBLIOGRAPHY

1. Barr, A., Cohen, P. R., and Feigenbaum, E. A.,
The Handbook of Artificial Intelligence, vol. 1V,
Addison-Wesley Publishing Company, Inc., 1989.

2. Gardner, J., From C 1o C: An Inrroduction to ANSI
Standard C, Harcourt Brace Jovanovich, Publishers
and its Subsidiary, Academic Press, 1989.

3. Kelley, A., and Pohl, 1., A Book on C: Programming
in C, 2nd ed., The Benjamin/Cummings Publishing
Company, Inc., 1990.

4. Lowe, D. G., "Stabilized Solution for 3-D Model
Parameters,” European Conference on Computer Vision
Proceedings, 23-27 April 1990.

5. Provan, G. M., "An Analysis of Knowledge
Representation Schemes for Higher Level Vision,"”

European Conference on Computer Vision Proceedings,
23-27 April 1990.

6. Vieville, T., "Estimation of 3-D Motion and
Structure From Tracking 2-D Lines in a Sequence of
Images," European Conference on Computer Vision
Proceedings, 23-27 April 19.

80

APPENDIX A

#include <math.h>
#include <stdio.h>
#include <device.h>
#include <glh>
#include "2d+.c”
#include "Sth.c”

#include "my_graphics.c”
#include "visibility.c”
/*#include "vis2d.c"*/ /*2d and partial 3d visibility checks*/
/*#include "vis3d.c"*/
#include "2d +sim.c"

FILENAME: interface.c

AUTHOR: LT James Stein

DATE: Mar 1992

Project: Thesis, supporting Yamabico's vision system

COMMENTS: This file has been written as an interface to help test the various functions needed to support the 2d + model. The construction
file Sth.h is used to build the 2d+ model of Spanagel Hall's 5th floor into memory. Once this is done the user can choose 1o dump a test listing
of the model to the screen. search for a polyhedron class by name, get a view from the model. or conduct a graphics walkthru of the model.
\

/* conslants */
#define Pl 3.141592653589793
#define MAX_LEN 30

void main()
{
WORLD *W=NULL;
char PH_LABEL[MAX_LEN]. ¢:
int OPTION =1.
int i, PH_NUM;
float X.Y,Z,ORIENT ,FOCAL_LENGTH=1.24; /*FOCAL_LENGTH must be adjusted for*/
LINE_HEAD *LIST=NULL: /*different cameras or zoom settings*/

W = make_world(: /*from file Sth.c*/
while (OPTION >0) {
printf("\n\n\n!.Find a polyhedral "):
printf("\n2.Display world (text listing)"):
printf("\n3.Conduct graphics walkthru (iris terminal required)”);
printf("\n4.Get view for pattern matching®);
printf("\n\nChoose one (0 to quit): *);
scanf("\n%d",&OPTION);
switch (OPTION) {
case 1: /* find a ph */
for (i=0;i <MAX_LEN:+ +i) { /*clear old label*/
PH_LABEL[i]="":
}

printf("\nPlease enter the label of the polyhedron you wish to see”):
printf("\n(20 char max): °);
scanf("\n%s".PH_LABEL).
printf("\nindexing on label: (%s)\n",PH_LABEL):
find_ph(PH_LABEL,W); /*file 2d +.h*/
break;
case 2: /*dump text listing of world to screen®/
display_world(W); /*file 2d+ .h*/
break:

A-1

case 3: /*conduct graphics simulation of walkthru*/
simulate(W); /*file 2d +sim.h*/
break:

case 4: /*get a set of lines making up a view in the model*/
printf("\n\nEnter coordinates for position of camera:\nX: ");
scanf("\n% ", &X):
printf("\nY: ");
scanf("\n% . &Y);
printf("\nZ: "),
scanf("\n% ™. &Z):
printf("\nOrientation (0.0 is down y-axis): ")
scanf("\n% " . &ORIENT):
LIST=get_full_view(X,Y,Z,ORIENT,W,FOCAL_LENGTH);/*file graphics.h*/
if (LIST)

free_lines(LIST); /*deallocate the memory used*/

break:

case O:
printf("Exiting program\n\n");
break;

default:
printf("Invalid choice!!!"):

} /* end case statement */

} /* end while loop */
free_world(W): /* deallocate world memory */
} 1* end main procedure: make_world */

A-2

FILENAME: 2d+d.h

AUTHOR: LT James Stein

CONTENTS: 2d + model suppont tools (for building, displaying. searching,

and deallocating a model)

DATE: Mar 1992

COMMENTS: A ’world’ consists of a list of polyhedrons (PH) Each PH is in
turn a list of polygons (PG). Each PG is a list of VERTICIES which contain
the X,Y, and Z coordinates of that point in the world.

File 5th.h is an example construction file which uses these functions to
build a model of the 1st half of Spanagel Hall's Sth floor.

/* conslants */
#define Pl 3.141592653589793
#define MAX_LEN 30

/* typedefs: Define structures to be used for representing a 3-d world */

typedef struct vertex {
float X,Y:
struct vertex
*NEXT. *PREV,
*VERT_EDGE:
} VERTEX:

/* WHERE: VERT_EDGE = pointer to upper vertex of veriical edge

*/

typedef struct poly_link {
struct polygon *REF_POLY:
struct poly_link *NEXT. *PREV;
} POLY_LINK:

* */

typedef struct polygon {
int DEGREE, C_DEGREE. FLOOR. CONVEX:
float Z_VALUE;
VERTEX *VERTEX_LIST:
POLY_LINK *CEILING_LIST:
struct polygon
*NEXT. *PREV;
} POLYGON;

/* WHERE: DEGREE = ¥ of vertices
FLOOR. CONVEX = boolecans
Z_VALUE = local Z position poly located at
CEILING_LIST, FLOOR_LIST = list of associated poly’s
»/

typedef struct instance {
char NAME(MAX_LENI:
float X. Y, Z. ROTATION,
PIVOT_X, PIVOT_Y;
struct instance *NEXT. *PREV.
} INSTANCE;

A-3

.

/* WHERE: NAME = something like "rm501"
X, Y. Z = position 1o instantiate PH into world
ROTATION = degrees to rot about Z axis

*/

typedef struct polyhedron {
char CLASS[MAX_LEN]:
int DEGREE, 1_DEGREE, OBSTACLE, FIXED;
POLYGON *POLYGON_LIST; /*ordered by Z value*/
INSTANCE *INSTANCE_LIST; /*ordered by Z value*/
struct polyhedron *NEXT, *PREV;

} POLYHEDRON;

/* WHERE: CLASS = general name like *door”
DEGREE = # of polygons
OBSTACLE and FIXED = boolcans
CEILING_LIST. FLOOR_LIST = list comprise all polygons
INSTANCE _LIST = all tranformations of object into world

*/

typedef struct world {

char NAME{MAX_LEN};

int DEGREE:

POLYHEDRON *POLYHEDRON_LIST:
} WORLD:

/* WHERE: NAME = label for worid
DEGREE = number of object representations
POLYHEDRON_LIST points to them

*/

The following routines are called to allocate memory for a structure
(WORLD, POLYHEDRON., POLYGON. or VERTEX). Pointers are initialized to NULL
and the DEGREE field is set to 0:

* /
WORLD *create_world()

WORLD *W;
int i

/* allocate memory for a world */
if((W = (WORLD *)malloc(sizeof(WORLD))) == NULL) {

printf("\ncannot create a world\n”):

}

/* initialize fields */

W->DEGREE = 0;

W->POLYHEDRON_LIST = NULL:

for (i=0; i<MAX_LEN; + +i) {
W->NAME[i]="";

}

return(W);

}

I */

A-4

E

POLYGON *create_polygon()

{
POLYGON *P;

/* allocate memory for a polygon */
if((P = (POLYGON *)malloc(sizeoffPOLYGON))) == NULL) {
printf(“\cannot create a polygon™):

}

/* initialize fields */
P->DEGREE = 0;

P->Z VALUE= 0.0:
P->VERTEX_LIST = NULL;
P->CEILING_LIST= NULL:
P->NEXT = NULL:
P->PREV = NULL:

return(P):

}

INSTANCE *create_instance()

INSTANCE *I.
int i

= (INSTANCE *)malloc(sizeof(INSTANCE));
for (i=0: i<MAX_LEN: + +i) {
I->NAME[i}="";
)
I->NEXT = NULL:
I->PREV = NULL:
return I

/* Y

POLY_LINK *create_poly _link() {

POLY_LINK *P;

P=(POLY_LINK *)malloc(sizeof(POLY_LINK));
P->REF_POLY = NULL:

P->NEXT = NULL:

P->PREV = NULL;

retumn P:

[Ad */

POLYHEDRON *create_polyhedron()

{
POLYHEDRON *P;
int i;

P=(POLYHEDRON *)malloc(sizeof (POLYHEDRON)):
for (i=0; i<MAX_LEN; + +1i) {

P->CLASS[i)="";
)

A-5

P->DEGREE=0:
P->POLYGON_LIST=NULL:
P->NEXT=NULL;
P->PREV=NULL:
P->INSTANCE_LIST=NULL:
return P;

} /* end create_polyhedron */

I* ./

VERTEX *create_vertex()

{
VERTEX *V;

V=(VERTEX *)malloc(sizeof(VERTEX)).
V->NEXT=NULL;

V->PREV = NULL,;

V-> VERT_EDGE =NULL.

return V;

The following routines are used for memory deallocation. Each type of
list is stepped through to free it's component structures. Higher level
structures call the free routine for the next lower level to deallocate
side lists (i.e. free_world calls free_polyhedron).

void free_pg(PG)
POLYGON *PG:
{

VERTEX *NEXT_V, *TRASH;
POLY_LINK *NEXT_LINK, *TRASH2:

NEXT_V=PG->VERTEX_LIST: /*frce vertex list*/

while (NEXT_V) {
TRASH=NEXT_V;
NEXT_V=NEXT_V->NEXT:
free(TRASH);

}

NEXT_LINK=PG->CEILING_LIST:

while (NEXT_LINK) { /*free links used to reference ceilings*/
TRASH2=NEXT_LINK;
NEXT_LINK=NEXT_LINK- >NEXT;
free(TRASH2);

}

free(PG); /*free parent polygon structure */

} /* end free_pg */

" ./

void free_ph(PH)
POLYHEDRON *PH;
{

POLYGON *NEXT_PG, *TRASH;
INSTANCE *NEXT_I, *TRASH2;

NEXT_PG=PH->POLYGON_LIST;

while (NEXT_PG) { /*free the list of polygons*/
TRASH=NEXT_PG;
NEXT_PG=NEXT_PG- >NEXT:
free_pg(TRASH),

}

NEXT_I = PH->INSTANCE_LIST;

while(NEXT_D) { /*free the list of instances*/
TRASH2= NEXT_I;
NEXT_I= NEXT_I->NEXT;
free(TRASH2);

}

free(PH): /* release parent structure */

} /* end free_ph %/

void free_world(W)
WORLD *W;
{

POLYHEDRON *NEXT_PH, *TRASH;

if (W) {
NEXT_PH=W->POLYHEDRON_LIST;
while (NEXT_PH) { /*{ree the list of polyhedra*/
TRASH=NEXT_PH;
NEXT_PH=NEXT_PH->NEXT:
free_ph(TRASH);
}
}
free(W);

} /* end free_world */

The next group of functions is used to display the world. A single
polygon, a single polyhedron. or the entire world can be displayed.
Display is in text format to the standard output device.

LL L2 /

void display_pg(PG)
POLYGON *PG;

POLYGON *NEXT_PG;
POLY_LINK *NEXT_C;
VERTEX *NEXT_V;

int V_NUM=1, PRINTED=0;

printf("\nDEGREE: %d FLOOR: %d Convex: %d ",PG- > DEGREE,PG- > FLOOR.
PG->CONVEX);
printf("\nZ = % .2f:\n",PG->Z_VALUE);
NEXT_V=PG-> VERTEX_LIST;
while (NEXT_V) {
if PRINTED>3) { /* three vertices per line®/
printf("\nV# %d(% .2f, % .2f) ",V_NUM,NEXT_V- >X,NEXT_V->Y);
PRINTED=1;
}
else {
printf("V#%d(% .2f, % .2f) ",V_NUM,NEXT_V->X.,NEXT_V->Y).

A-7

PRINTED+ +;
}
NEXT_V=NEXT_V->NEXT;
V_NUM+ +;
} /*end while */
if (PG->FLOOR==1)
prinif("\nAssociated ceilings (%d): *,PG->C_DEGREE):
NEXT_C= PG->CEILING_LIST;
} /* end display_pg */

" */

void display_ph(PIl)
POLYHEDRON *PH;
{
POLYGON *NEXT_PG;
int PG_NUM,F_CNT=1,C_CNT=1,]_ CNT=1;
char dummy;
INSTANCE *NEXT I,

printf("\nPOLYHEDRON (%s):\n Obstacle: %d Fixed: %d \n".
PH->CLASS,PH- > OBSTACLE PH- > FIXED):
printf("\nComponent polygons (% d):\n ".PH- > DEGREE);
NEXT_PG=PH->POLYGON_LIST;
printf("\n\nList of floors:");
while (NEXT_PG) {
if NEXT_PG->FLOOR==1) {
printf("\n\nFLCOR# %d ",F_CNT).
display_pg(NEXT_PG); /*display floor polygons*/
F_ CNT++;
} /* end if */
NEXT_PG=NEXT_PG- >NEXT:
} /* end while */
NEXT_PG=PH->POLYGON_LIST:
printf("\n\nList of ceilings:"):
while (NEXT_PG) {
if (NEXT_PG->FLOOR==0) {
printf("\m\nCEILING # %d ",C_CNT):
display_pg(NEXT_PG); /*display ceilings™/
C_CNT++;
} /% end if */
NEXT_PG=NEXT_PG- > NEXT:
} /* end while */
primtf("\n\nThe following instantiations of this polyhedron exist:");
fflush(stdout);
if PH==NULL) {
printf("\n\ndereferencing null pointer in display_ph\n\n"):
fllush(stdout);
}
NEXT_I=PH->INSTANCE_LIST;
while(NEXT_D {
printf("\n\nlnstance #%d (%s): “,]_CNT,NEXT_I- >NAME);
fflush(stdout);
printf("\nLocation: (%.2f, % .2f, %.2)" ,NEXT_I- >X,NEXT_I- > Y,NEXT_|->Z);
fllush(stdout);
printf("Rotated: % .2f degrees about point: (% .2f,%.2f)\n",
NEXT_}I- >ROTATION,NEXT _}I- >PIVOT_X,NEXT_I- > PIVOT_Y):
fflush(stdout);
I.CNT+ +;
NEXT_I=NEXT _}- >NEXT,
} /* end while */
} /% end display_ph */

void display_world(W)
WORLD *W:
{

POLYHEDRON *PH:
POLYGON *PG:
int NUM_PH=1;

it (W) {
primf("\nWorld Name: %s",W->NAME);,
printf("\n\nWorld has:\n %d POLYHEDRONS\n ",W->DEGREE):
PH=W->POLYHEDRON_LIST;
while (PH) {
printf("\n\nPH #%d \n" ,NUM_PH):
NUM_PH+ +:
display_ph(PH):
PH=PH->NEXT;
}
} /*endif*
} /* end display world */

/ o T T

The following functions are used by the construction file

to add structures (i.e.- POLYHEDRON. POLYGON, VERTEX. and INSTANCE)
and associations (i.e.- vertical edges and floor- > ceiling associations)

to a world.

Wk]

vuid add_edge(V1.,V2)
VERTEX *V1, *V2; /*lower and upper vertices of edge*/
{

if (V1->VERT_EDGE)
printf("\nWarning reassignment of vertical edge attempted!!!"):
else
Vi->VERT_EDGE = V2
} /* end add_edge */

/ /

void add_ceiling(PG.C)
POLYGON *PG, *C; /*floor and its new ceiling*/
{

POLY_LINK *NEW_C.*NEXT_C;
int FOUND=0;

if (PG->CEILING_LIST) {
NEXT_C= PG->CEILING_LIST:
if (NEXT_C- >REF_POLY ==C)
FOUND=1;
else
while (NEXT_C- >NEXT) {
if (NEXT_C->NEXT- >REF_POLY = =C)
FOUND=1;
NEXT_C=NEXT_C->NEXT;
} /* end while */
if (FOUND==0) {
NEW_C=create_poly_link(); /*link onto end of list*/
NEW_C->REF_POLY=C;
NEW_C->PREV=NEXT_C:
NEXT_C->NEXT=NEW_C.

PG->C_DEGREE+ +:
} /* endif */
else
printf("\nWarning - attempted 10 add ceiling which exists*):
} /* end if */
else {
NEW_C=create_poly_link(): /*adding lst ceiling to list*/
NEW_C->REF_POLY=C:
PG->CEILING_LIST=NEW_C:
PG->C_DEGREE+ +;
} /* end else */
} /* end add_ceiling */

Py

/

X,Y.Z is the position in the parent world at which the pivot point

is to be placed.

PIVOT_X and PIVOT_Y specify th local coordinates (in POLYHEDRON) of
the objects pivot point.

ROT is the number of degrees the object should be rotated about this

pivot point.

* ‘*#‘***‘*#‘ﬁ#.*‘**“‘*l
void *add_instance(NAME,LEN,PILX.Y.Z.PIVOT_X.PIVOT_Y.ROT)
POLYHEDRON *PH:
float X,Y.Z.PIVOT_X.PIVOT_Y.ROT:
char NAME(}; /*label for instance and number of characters in label*/
int LEN:

INSTANCE *1.*TEMP_L*NEXT_I:
nt .,
I=create_instance(); /*allocate and initialize memory*/
for (i=0;i < =LEN;+ +1) {
I- > NAME(i}=NAME(i]:
}
I->X=X:
->Y=Y:
1->2=2Z,
I->PIVOT_X=PIVOT_X;
I->PIVOT_Y=PIVOT_Y:
I->ROTATION=ROT:
/*order by z*/
if (PH->INSTANCE_LIST==NULL)({
PH->INSTANCE_LIST=I;
}
else {
NEXT_I=PH->INSTANCE_LIST;
if (Z<=NEXT_I->Z){
I->NEXT=NEXT_IL
NEXT_I->PREV=];, /* add to head of list*/
PH->INSTANCE_LIST=1I:
} /% endif ¢/
else {
while (NEXT_I-> NEXT&&NEXT _I->NEXT->Z<Z){
NEXT_[=NEXT_I->NEXT: /*scan (o insertion point*/

)
if (NEXT_I- > NEXT) {
I->NEXT=NEXT_I- > NEXT; /*add to middle of list*/
I->PREV=NEXT I.
NEXT_I->NEXT=I:
I->NEXT->PREV=I,
} /* end if %/
else {
I->PREV=NEXT_I: /*add as last instance*/

A-10

NEXT_I->NEXT=1:
} /* end else */
} (* end else */
} /* end else */
PH->1_DEGREE+ +: f*keep track of the number of instances*/
} /* end add_instance */

/ o2 o o o ol o oo e ol e e ol o oo o ol o e oo o e e oo o o o o o oo o bk

The remaining add functions create and add structures to the world.
Pointers to ¢ach newly added structure are returned to the caller for
future use.

FRrarararay Ty PRy LTIy

VERTEX *add_vertex(PG.X.Y)
POLYGON *PG; /* parent polygon to add vertex to*/
float X.Y; /*local coordinates of vertex*/

VERTEX *V, *NEXT_V:

V=create_vertex();

V->X=X:

V->Y=Y:

if (PG->VERTEX_LIST==NULL)
PG->VERTEX_LIST=V:

else {
NEXT_V=PG->VERTEX_LIST:
while (NEXT_V->NEXT) {

NEXT_V=NEXT_V->NEXT: /* scanto end of list */

NEXT_V->NEXT=V: /* add to end of list 10 retain order added*/
V->PREV=NEXT_V:
} /* end else */
PG->DEGREE+ +:
return V;
} /* end add_ventex */

/™ */

POLYGON *add_pg(PH.Z,FLOOR,CONVEX)

POLYHEDRON *PH: /*parent structure™/
floar Z; /*height in local coordinates*/
int FLOOR,CONVEX: /*boolean values*/

POLYGON *PG,*NEXT_PG;

PG =create_polygon():
PG->Z_VALUE=Z;
PG- >FLOOR =FLOOR:
PG->CONVEX =CONVEX:
if (PH->POLYGON_LIST==NULL) /*sorted by Z height*/
PH->POLYGON_LIST=PG;
else {
NEXT_PG=PH->POLYGON_LIST:
if (Z<NEXT_PG->Z_VALUE){ /*put at head of list*/
NEXT_PG- >PREV=FG:;
PG->NEXT=NEXT_PG:
PH->POLYGON_LIST =PG:
} /*endif */
else {

A-11

while (NEXT_PG->NEXT)&&(NEXT_PG->NEXT- >Z_VALUE >Z)){
NEXT_PG=NEXT_PG->NEXT;
}

if (NEXT_PG->NEXT) {
PG- >NEXT=NEXT_PG->NEXT; /* put in middle of list */
PG->PREV=NEXT_PG;
NEXT_PG->NEXT=PG;
PG->NEXT->PREV=PG:
} /* end if %/
else {
NEXT_PG->NEXT=PG: /* putat end of list */
PG->PREV=NEXT_PG;
} /* end else */
} /* end else */
} /* end else */
PH->DEGREE+ +;
return PG:
} /* end add_pg */

/" */

POLYHEDRON *add_ph(CLASS,LEN,W ,FIXED,OBSTACLE)
char CLASS[]: /*class name*/
WORLD *W; /*world 1o add polyhedron to*/
int FIXED,OBSTACLE.LEN: /* 2 booleans and the length of CLASS*/

POLYHEDRON *PH *NEXT_PH:
int i

PH=create_polyhedron(:
for (i=0;i < =LEN:+ +1i) {
PH->CLASS[i}=CLASS[i}:

}

PH->FIXED=FIXED:

PH- > OBSTACLE=0OBSTACLE,;

if (W~>POLYHEDRON_LIST==NULL)
W->POLYHEDRON_LIST=PH:

else {
NEXT_PH=W->POLYHEDRON_LIST:
while (NEXT_PH- > NEXT) {

NEXT_PH=NEXT_PH->NEXT: /*scanto end of list*/

}
NEXT_PH->NEXT=PH:
PH->PREV=NEXT_PH:

} /* end clse */

W->DEGREE+ +;

ceturn PH;

} /* end add_ph */

/* */
WORLD *add_world(NAME,LEN)

char NAME(]; /*label and its length*/

int LEN;

WORLD *W;
int i;
W=create_world();
for (i=0;i <LEN; + +i) { /*assign label*/
W->NAME](i) = NAME[i];
}
return W,
} /* end add_world */

/ Y PP A——

find_ph will find and display a polyhedron based on its class
name. Component polygons and instances will be listed to the screen.
If the pointer to a polyhedron is needed: change this function

return PH.
LY LY 2 LE LT] t##t##‘#**‘#“###‘#‘*""lﬁ“‘“‘.#“tt““*‘/

void find_ph(LABEL.W)
char LABELIMAX_LEN]: /*¢lass label to look for*/
WORLD *w; /*world to search*/
{
POLYHEDRON *NEXT_PH. *PH;,
int FOUND=0, i, MATCH;

if W) {
printf("\nsearching for label: (");
for (i=0:i <MAX_LEN: + +i) {
printf(" %c¢” . LABEL{i}):
}
printf{")\n"):
NEXT_PH=W->POLYHEDRON_LIST:
while (NEXT_PH) {
MATCH=1;
for (i=0:i <MAX_LEN:+ +i) {
if (NEXT_PH- > CLASS[i])'=LABEL[i]){

MATCH=0: /*at Jeast one character is different*/
}
}
if MATCH==1) {
FOUND+ +:
PH=NEXT_PH:
}

NEXT_PH=NEXT_PH- > NEXT:
} 7* end while */
if FOUND==0)
printf("\nNo polyhedron found under this label'\n"):
else {
display_ph(PH). /*show the polygon found*/
if FOUND> 1)
printf("\nWarning non-unique label (last occurance listed).\n"):
} /* end else */
} /* end if */
else
printf("\n\nCannot find polyhedron since world is empty !!!\n"):
} /* end find_ph */

A-13

Fid

FILE NAME: visibility.h

AUTHOR: James Stein

PROJECT: Thesis, supporting Yamabico vision system
DATE: March 1992

ADVISOR: Dr. Kanayama

COMMENTS: This file implements a algorithm which determines the set of
visible line seen from a given position in a wire frame model. The observer is
assumed to have omni-directional vision. To impose the physical limits of

a camera’s field of view, the function get_view in file graphics.h can be

sent a model (as it in turn uses this file).

Primary Function(s):
- conduct_vsiibility_sweep

INPUT: W a pointer to a 2d+ world model
EYE_X.,EYE_Y.EYE_Z position of observer in model W

OUTPUT: LINE_LIST structure pointing to 2 lists of
visible vertical and non-ventical lines
*/
¥ e Structure definitions: */

typedef struct sweep_link {
double THETA. X. Y. Z.
MIN_Z. MAX_Z. UPPER_Z. DIST:
VERTEX *V:
INSTANCE *I:
POLY_LINK *CEILINGS:
struct sweep_link *PREV. *NEXT;
} SWEEP_LINK:

/* ¥/

typedef struct considered_link {
double MIN_SWEEP.
MIN_Z, MAX_Z. DIST.
NEW_MIN_Z NEW_MAX_Z,UPPER_Z;

int VISIBILITY,B_VISIBILITY,NEW_VISIBILITY NEW_B_VISIBILITY:

POLY_LINK *CEILINGS:

SWEEP_LINK *SL1, *SL2:

struct considered_link *NEXT,;
} CONSIDERED_LINK:

A-14

/* .

typedef struct considered_head {
CONSIDERED_LINK *LINKS:
} CONSIDERED_HEAD;

I* */

/* global variables: */

static double X,Y,Z; /*Position of observer within the model*/
static THETA: /*Current angle of visibility sweep*/
int IN_MAIN; /*if O we are still preprocessing siraddlers*/

void line_ray_intersection(CONSIDERED_LINK *CL.double ANGLE,
double *INT_X.double *INT_Y double *DIST);

/* Doubles can be truncated to 4 decimal places to compensate for inexactness
of floating point operations*/

double trunc(X)
double X:
{
int DUMMY;
double XX =X;

DUMMY =XX*10000;
XX =DUMMY;

XX =XX/10000.0;
return XX:

}

/...‘“.*"“.“"'.““'.‘*“*CONVERS'OWUNCTIONS"'

double degs(RADS)
double RADS:

{
return trunc(RADS*180.0/PI):

}

double rads(DEGS)
double DEGS;
{

return trunc(DEGS*P1/180.0):
}

A-15

T ry

/ /
/* Determines if the edges from 2 considered links arc colincar*’

int colinear(F.B)
CONSIDERED_LINK *F.*B:

{
double M1 M2; /*we will compare slopes and distance*/
M1 =trunc((F->SL1->Y-F->SL2- > Y)/(F->SL1->X-F->8L2->X)):
M2=trunc((B- >SL1-> Y-B->SL2->Y)/(B->SL1- >X-B- >SL2->X));
if (M1 ==M2)&&(F->DIST==B->DIST))
return 1
else
return O:
}
/‘ti.‘——- ‘***#COUNTEKLOCKW!SE CHECKS“#“.‘.#“#““###‘.t,’

int cow(SL.PREV_SL)
SWEEP_LINK *SL. *PREV_SL:
{

double AREA:

AREA= 0.5*((SL->X-X)*(PREV_SL->Y-Y)-
(PREV_SL->X-X)*(SL->Y-Y)):
if (AREA >0.0)
return 1;
else
return 0;
} /* end cew */

int ccw2(SL1.SL2.SL3)
SWEEP_LINK *SL1,*SL2.*SL3:
{

double AREA:

AREA= 0.5*((SL2->X-SLI1->X)*(SL3->Y-SL1->Y)-
(SL3->X-SL1->X)*(SL2->Y-SL1->Y)):
if (AREA>0.0)
return 1;
else
return 0;
} /*end cow */

/ s -------———/

A-16

/* Finds the angle from X1.Y1 10 V for use in determining if X1.Y1 lies
within the bounds of a polygon.*/

double find_theta(X1,Y1.V,D)
double X1.Y1:
VERTEX *V;
INSTANCE *I;

double X2,Y2,T:
double LOCAL_X.LOCAL_Y.ROT_X,ROT_Y.RADS:

LOCAL X = V->X - - >PIVOT_X;
LOCAL_Y = V->Y - - >PIVOT_Y:

/* rotate about the z axis */
RADS = I->ROTATION * P1/ 180.0; /* convert degs to rads */
ROT_X = (cos(RADS)*LOCAL_X)+(sin(RADS)*LOCAL_Y):
ROT_Y = (cos(RADS)*LOCAL_Y)-(sin(RADS)*LOCAL_X):

/* translate 1o proper position in world model */
X2 =1>X + ROT_X:

Y2=I>Y + ROT_Y;
if (X1==X2)] (Y] = =Y2)&&X1==X2))

T=0.0;
else

T=atan2(Y2-Y1.X2-X1): /* both won't b¢ 0 */
if (T<0.0)

T+ =rads(360.0); /* normalize to 0-360 */
return T;

} /* end find_theta */

/* This function determines if the point X1.Y! lies within the polygon. PG.
The angle formed between lines drawn to each edge of PG is calculated.
CW angles are added and CCW ones are subtracted from the sum.

If the sum is not equal to 0.0 the point is within PG and 1 is returned.*/

int in_polygon(X1,Y1,PG.I)
double X1.Y1:
POLYGON *PG:
INSTANCE *IL

VERTEX *FIRST_V. *V=PG- > VERTEX_LIST:
double THETA1.THETA2.FIRST_THETA.SUM=0.0.SUMI=0.0:
double XX,YY;

THETA2=find_theta(X1,YL,V,I);
FIRST_V=V;
FIRST_THETA=THETA2;
while (V->NEXT) {
if (X1==V-5>X)&&(Y1==V->Y))
SUMI=1.0; /*if directly under a point accept®/
THETA1=THETA2:
THETA2=find_theta(X1.Y1,V- >NEXT.I):
I*cow®/
if ((0.5%((V->X-X1)*(V->NEXT->Y-Y})-
(V->NEXT->X-X1)*(V->Y-Y1))) >0.0) {
if THETA2<THETAI)
SUM+ =(THETA2 +rads(360.0))-THETAL:

A-17

else

SUM+ =THETA2-THETAL:
!

I*cwe/ else {
if (THETA2>THETAL)
SUM+ =THETA2-(THETAI +rads(360.0)):
else
SUM + =THETA2-THETAI:
}
V=V->NEXT:

} /* end while */
/*Lastly: check the closing edge 1o see if we add or subtract its angle®’
THETA1=THETA2:
THETA2=FIRST_THETA;
if ((0.5*((V->X-X1)*(FIRST_V->Y-Y1)-(FIRST_V->X-X1)*(V->Y-Y1))) >
0.0) { /*ccw*/
if (THETA2 <THETAI)
SUM + =(THETA2 +rads(360.0))-THETA1:
else
SUM+ =THETA2-THETAI:
}
else {
if (THETA2>THETAL)
SUM+ =THETA2-(THETAI +rads(360.0)):
else
SUM+ =THETA2-THETAL:
}
if (((trunc(SUM) = =0.0))&&(SUM[==0.0))
return 0:
else
return 1:

/* Function checks to see which ceiling of CL’s ceiling list the 1st endpoint
falls under. This height is returned and is used to determine how much
coverage the CL has along the z-axis (that is what angle bound the portion
of the z-axis which CL occludes*/

double find_ceiling_z(CL)
CONSIDERED_LINK *CL:
{

double IX,1Y.DIST.CEILING_Z_VALUE=(-9999999.9);
POLY_LINK *NEXT_C=CL->CEILINGS:
int FOUND=0;

X=CL->SLI-~X:

IY=CL->SL1->Y;

while (NEXT_C) {

/*keep track of highest ceiling over CL*/
if ((in_polygon(IX.IY ,NEXT_C->REF_POLY,CL->SL1->D==1)&&
(NEXT_C->REF_POLY->Z_VALUE+CL->SLI1->1->Z>CEILING_Z_VALUE)){

CEILING_Z VALUE=NEXT_C->REF_POLY->Z VALUE+CL->SLI->1->Z;
FOUND=1;

}

NEXT_C=NEXT_C->NEXT;

)
if FOUND==0) {
CEILING_Z_VALUE=CL->SLI->UPPER_Z: /*if nonc ht same as endpoint*/
}
return trunc(CEILING_Z_VALUE): /*return bhighest ceiling hi*/
} /* end find_ceiling_z */

A-18

/* Calculate the minimum and maximum angles which SL covers on the z-axis.
Any object which is farther away and behind SL that falls within these
limits will not be able to be seen. */

void calc_z_coverage(SL)
SWEEP_LINK *SL:
{

double dz.LEN;

dz=SL->2-Z;
LEN=SL->DIST: /*dist to line in X-Y planc*/
if LEN==0)
LEN=0.00001:

SL->MIN_Z =trunc(atan(dz/LEN));
dz=SL->UPPER_Z-Z:
SL->MAX_Z=trunc(atan(dz/LEN)):

} /* end calc_z_coverage */

/* Absolute value of a double */

double my_abs(A)

double A;
{
if (A>=0.0)
return A:
else
return -A:
H

/* Calculates the limiting angles along the z-axis for each item on the
considered list. These limits are based upon the height of each
endpoint (value of CL- >MIN_Z) and the height of the ceiling (if any)
lying above CL (CL->UPPER_Z). */

void calc_current_z_coverage(CLIST)
CONSIDERED_HEAD *CLIST:
{

CONSIDERED_LINK *CL=CLIST- > LINKS:

double MIN ,MAX,DIST:

double dx,dy.dz.IX,IY.LENI.LEN2,
CEILING_Z:

while (CL) {
CL->NEW_MAX_Z=trunc(atan((CL- > UPPER_Z-Z)/CL- > DIST)):
CL->NEW_MIN_Z=trunc(atan((CL->SL1->Z-Z)/CL->DIST)):
CL->NEW_VISIBILITY=1; /*reset visibilities*/
CL->NEW_B_VISIBILITY=1;
CL=CL->NEXT:

}

} 7* end calc_current_z_coverage %/

! MEMORYALLOCATION FUNCTIONS

LINE_HEAD *make_line_bead()
{
LINE_HEAD *LH = (LINE_HEAD *)malloc(sizeof(LINE_HEAD)):

LH->LINES=0;
LH->VERT_LINES=0;
LH->LINE_LIST=NULL.
LH->TAIL=NULL:
LH->VLINE_LIST=NULL:
LH->VTAIL=NULL:
return LH;

} /* end make_line_head */

CONSIDERED_HEAD *make_considered_head()

{
CONSIDERED_HEAD *CH;

CH= (CONSIDERED_HEAD *)malloc(sizeof (CONSIDERED_HEAD)):

CH->LINKS=NULL:
return CH:
} /* end make_considered_head */

A-20

Y

SWEEP_LINK *make_sweep_link(PH.PG.V.I.PG_Z)
POLYHEDRON *PH:
POLYGON *PG:
VERTEX *V:
INSTANCE *I:
double PG_Z;

SWEEP_LINK *SL.
double LOCAL_X,LOCAL_Y.ROT_X.ROT_Y.RADS:

SL= (SWEEP_LINK *)malloc(sizeof(SWEEP_LINK)):
SL->PREV= NULL:

SL->NEXT= NULL:

SL->V=V;

SL->1=1I:

SL->CEILINGS =PG- > CEILING_LIST:

LOCAL X = V->X - I->PIVOT_X:

LOCAL_Y = V->Y - - >PIVOT_Y;

/* rotate about the z axis */
RADS = I->ROTATION * PI / 180.0 : /* convent degs to rads */
ROT_X = (cos(RADS)*LOCAL_X)+(sin(RADS)*LOCAL_Y):
ROT_Y = (cos(RADS)*LOCAL_Y)-(sin(RADS)*LOCAL_X):

/* translate to proper position in world model */

SL->X = trunc(l->X + ROT_X): /*must be truncated*/
SL->Y = trunc(I->Y + ROT_Y):
SL->Z = trunc(I->Z + PG_2Z):

SL->THETA=(atan2(SL- >Y-Y.SL->X-X)). /* both won't be 0 */

if (SL->THETA<0.0)
SL->THETA=(2.0*P1+SL->THETA): /* normalize to 0-360 */

SL->DIST= trunc(sgri(pow((SL- > Y-Y).2.0) +pow((SL- > X-X).2.0))):

if (V->VERT_EDGE)
SL->UPPER_Z=find_z(PH.V->VERT_EDGE)+I->Z:

else
SL->UPPER_Z=SL->Z:

if (PH->OBSTACLE= =0)&&(PG->FLOOR = =0))
SL->UPPER_Z=99999999999.9:/*max float 1o cover 90 degs*/

calc_z_coverage(SL):

return SL:

} /* end make_sweep_link */

A-21

CONSIDERED_LINK *make_considered_link(SL)
SWEEP_LINK *SL:

{
CONSIDERED_LINK *CL=(CONSIDERED_LINK *)malloc(sizeof{ CONSIDERED_LINK)):

CL->SL1=SL:

CL->DIST=SL->DIST:

CL->SL2=SL->PREV:

CL->CEILINGS =SL- > CEILINGS;

CL->VISIBILITY=1;

CL->B_VISIBILITY=1;

CL->NEW_VISIBILITY =1:

CL->NEW_B _VISIBILITY=1:

CL->NEXT=NULL:

CL->MIN_SWEEP=SL->THETA:/*set min to reflect sweep so far*/

CL->MIN_Z=SL->MIN_Z;

CL->MAX_Z=SL->MAX_Z:

if (CL->SL1->UPPER_Z >9999999.9) /*npeed to trunc??77%/
CL- > UPPER_Z =99999999999 4.

else
CL->UPPER_Z=find_ceiling_z(CL):

return CL:

} /* make_considered_link */

190 oo e e e o o o o o oo oo oo o o o R ol 0 oo o o ol o ke o ool o o o o oo oo oo o oK Rk R

Jrendeombmmn kb nn bk ek kSN ENAORYDEALLQC AT N ekt o ot sesb o o b e s e o o o e oo o o o ok e

void free_sweep_list(SLIST)
SWEEP_LINK *SLIST:

{
SWEEP_LINK *TRASH=SLIST:

while (TRASH) {
SLIST=SLIST->NEXT:
free(TRASH):
TRASH=SLIST:

} /* end free_sweep_list #/

void free_clist(CLIST)
CONSIDERED_HEAD *CLIST:

{
CONSIDERED_LINK *NEXT_CL =CLIST- > LINKS.*TRASH:

while (NEXT_CL) {
TRASH=NEXT _CL:
NEXT_CL=NEXT_CL->NEXT:
free(TRASH):
)
free(CLIST);
} /* end free_clist */

/ L L L L L 4 LI L L2 L2 -v-v-vq-q-vvv"#‘.“‘#‘.......“"0‘#../

A-22

/#li“‘i.*‘.#t‘##.‘#“‘*‘#**DISPLAY'FUNCT]ONS*****tttt‘#“““‘######‘.“#t*

NOTE: These functions were used in debugging. but they have been left

in case inspection of intermediate results is needed in the future.®/

void print_KL)

{

LINE *L;

prntf("\n\nline: X1=% 21 YI=% 2 Z]1 =% .2If ".L->X]1,L-> Y1, L->Z1):
primf("\n X2=%.2(Y2=% .2 Z2=% 21f\n".L->X2.L->Y2.L->2Z2):
fflush(stdout);

void print_Nist(LIST)

{

}

LINE_HEAD *LIST;
LINE *NEXT_L=LIST->VLINE_LIST;

printf("\n\n\nVertical lines (%d) are:\n\n",LIST- > VERT_LINES);
while (NEXT_L) {
print_I(NEXT_L):
NEXT_L=NEXT_L->NEXT:
}
printf("\n\n\nnon-ventical lines (% d) are:\n\n".LIST- > LINES):
fflush(stdout):
NEXT_L=LIST->LINE_LIST:
while (NEXT_L) {
print_I(NEXT_L):
NEXT_L=NEXT_L->NEXT:

void print_sl(SL)

{

SWEEP_LINK *SL:

primtf("\nSL: X=%.2fY=% 2ifZ=% .21f",SL->X.SL->Y.SL->2Z);
printf("\n THETA=% 20If DIST=% .2If". - gs(SL->THETA).SL->DIST):
printf("\n MIN_Z=%.2ItMAX_Z=% .21{".
degs(SL->MIN_Z).degs(SL->MAX_Z)):

if (SL->PREV==NULL)

printf("\nWarning no previous link"):
if (SL->NEXT==NULL)

printf("Warning should be last link"):
fllush(stdout):

} /* end print_sl*/

void print_slist(SL)

{

SWEEP_LINK *SL:
SWEEP_LINK *NEXT_SL=SL.

printf("\n\nSWEEP LIST:\n\n");

while (NEXT_SL) {
print_s(NEXT_SL);
NEXT_SL=NEXT_SL->NEXT:

T

R o AR e ki A e

void print_cl{CL)

{

CONSIDERED_LINK *CL;

printff("\n\n MIN_Z =% 2IfMAX_Z=% .2If",
degs(CL- >MIN_Z),degs(CL- >MAX_Z));
printf("\n\n NEW_MIN_Z =% 2IfNEW_MAX_Z=% .2If",
degs(CL->NEW_MIN_Z).degs(CL- >NEW_MAX_Z)):
printf("\n MIN_SWEEP= % .2If DIST= % .2If",
degs(CL->MIN_SWEEP),CL- > DIST):
printf("\nUPPER_Z: % .2If",CL- > UPPER_Z):
printf("\nOLD: VISIBLE= %d B_VISIBLE= %d",CL- > VISIBILITY,CL->B_VISIBILITY):
printf("\nNEW: VISIBLE=%d B_VISIBLE= %d",
CL->NEW_VISIBILITY.CL- >NEW_B_VISIBILITY):
print_sl(CL- >SL1):
print_si(CL->SL2);

} /* end print_cl */

void print_clist(CLIST)

{

CONSIDERED_HEAD *CLIST:
CONSIDERED_LINK *CL=CLIST- >LINKS:

printf("\n\nConsidered list (THETA= % .2If):\n\n".degs(THETA)):
while (CL) {

print_cl(CL):

CL=CL->NEXT;

} /* end print_clist */

/

LA A AL LYt v*“‘*““.“..#.t#/

/* Sweep links are added to the list in order of their THETA values*/

SWEEP_LINK *add_sweep_lnk(LIST,LINK)

{

SWEEP_LINK *LIST, *LINK:
SWEEP_LINK *TEMP:

if (LIST) {
TEMP=LIST:
if (TEMP->THETA > LINK->THETA) {
LINK->NEXT=LIST:
LIST=LINK: /* inserted as lst element */
}
else {
while (TEMP- > NEXT)&&(TEMP->NEXT->THETA < =LINK- >THETA)) {
TEMP=TEMP- > NEXT:
H

LINK->NEXT=TEMP- >NEXT:
TEMP- > NEXT =LINK;
} /* end else */
} /% end if ¢/
else
LIST=LINK; /* is first element 10 2add 1o list %/
return LIST:

} /* end add_sweep_link */

A-24

/* This function scans through the entire world model (W). A sweep link is
made for cach vertex of the model. The angle from the observer (global
variable) to the vertex is calculated and used to sort the links.

When a link is made, we also inspect its - >VERT_EDGE pointer to see
if a vertical line leaves it. Calculate_z_coverage uses the height of
this vertical line to determine coverage of the vertex along the z-axis.

Each sweep link has its PREV pointer assigned to indicate the link
which preceeded it in the polygon list. In latter processing only sweep
links with a ccw relationship to this PREV link will be considered as
visible.

Since we will latter require all floors residing above the observer and
all ceiling below them to be visible, we inspect each polygon for these
properties. When a polygon satifies one of these. it's vertices are
processed a second time in reverse order. This ensurcs that every edge
of the polygon will swho up as a ccw CONSIDERED_LINK.

*/

SWEEP_LINK *make_sweep_list(W)
WORLD *Ww;
{
SWEEP_LINK *SWEEP_LIST=NULL.*NEXT_L.*LAST_L,*FIRST_L:
POLYHEDRON *NEXT_PH:
POLYGON *NEXT_PG;
VERTEX *NEXT_V. *LAST_V;
INSTANCE *NEXT_I. *LAST_I;

NEXT_PH=W->POLYHEDRON_LIST:
while (NEXT_PH) {
NEXT_I=NEXT_PH->INSTANCE_LIST:
while (NEXT_I) {
NEXT_PG=NEXT_PH->POLYGON_LIST:
while (NEXT_PG) {
NEXT_V=NEXT_PG->VERTEX_LIST:
NEXT_L =make_sweep_link(NEXT_PH.NEXT_PG.NEXT_V.NEXT_I,
NEXT_PG->Z_VALUE).

SWEEP_LIST=add_sweep_link(SWEEP_LIST.NEXT_L):/*make and add links*/

FIRST_L=NEXT_L;

LAST_L=NEXT_L;

NEXT_V=NEXT_V->NEXT:

while (NEXT_V) {
NEXT_L=make_sweep_link(NEXT_PH.NEXT_PG.NEXT_V.NEXT_I.

NEXT_PG->Z_VALUE):
NEXT_L->PREV=LAST_L:
SWEEP_LIST=add_swecp_link(SWEEP_LIST.NEXT_L):
LAST_L=NEXT_L:
NEXT_V=NEXT_V->NEXT:
} /* end while */
FIRST_L->PREV=LAST_L:. /* add line which closes polygon */
/* Make entire polygon ccw so it may be visible */

if (((NEXT_PG->Z_VALUE+NEXT I->Z <Z)&&(NEXT_PG->FLOOR= =0)! |

((NEXT_PG->Z_VALUE+NEXT_I->Z > Z)&&(NEXT_PG->FLOOR = = 1))} |
((NEXT_PH->OBSTACLE = =0)&&(NEXT_PG- > FLOOR = =0))){

A-25

* To cut down on processing time the above if statement can be commented
out and the below one used. This has the effect of assuming a model

is composed of only large objects (observer doesn’t look down or up 10 them).
We still must make enclosure ceiling visible since items such as door jam
ceilings will not always be above the obhserve®/

- if (NEXT_PH- >OBSTACLE = =0)&&(NEXT_PG->FLOOR==0)){*/
NEXT_V=NEXT_PG->VERTEX_LIST:
NEXT_L=make_sweep_link(NEXT_PH.NEXT_PG.NEXT_V.NEXT_l

NEXT_PG->Z_VALUE):
if (((NEXT_PH- > OBSTACLE==0)&&(NEXT_PG->FLOOR= =0 {
NEXT_L->MAX_Z=NEXT_L->MIN_Z;/*ake away height if any*/
NEXT_L->CEILINGS = =NULL;
NEXT_L->UPPER_Z=NEXT_L->2.
)
FIRST_L=NEXT_L:
NEXT_V=NEXT_V->NEXT:
while (NEXT_V) {
LAST_L=make_sweep_link(NEXT_PH.NEXT_PG,NEXT_V.NEXT_}.
NEXT_PG->Z_VALUE);
if ({((NEXT_PH- > OBSTACLE = =0)&&(NEXT_PG- >FLOOR= =0){
LAST_L->MAX_Z=LAST_L->MIN_2Z:/*take away height if any*/
LAST_L- >CEILINGS==NULL:
LAST L->UPPER_Z=LAST L->Z:

NEXT_L->PREV=LAST_L:
SWEEP_LIST=add_sweep_link(SWEEP_LIST.NEXT_L):
NEXT L=LAST_L:

NEXT_V=NEXT_V->NEXT:

}
NEXT_L->PREV=FIRST_L:
SWEEP_LIST=add_sweep_link(SWEEP_LIST.NEXT_L):
}
NEXT_PG=NEXT_PG->NEXT:
} /* end while NEXT_PG*/
NEXT_I=NEXT_i->NEXT:
} /* end while NEXT _I */
NEXT_PH=NEXT_PH->NEXT:
} /* end while NEXT_PH */
return SWEEP_LIST:
} /* end make_sweep_list */

A-26

/* Searches considered list (CL). if sweep link (SLINK) is the 2nd endpoint
of an edge. that edge is returned 10 complete its processing. If no
match is found a null pointer is returned®/

CONSIDERED_LINK *under_consideration(SLINK.CL)
SWEEP_LINK *SLINK:
CONSIDERED_HEAD *CL:

CONSIDERED_LINK *NEXT_CL=CL->LINKS:

while (NEXT_CL) {
if (NEXT_CL->SL1==NULL)
printf("\nWarning CL with no SL1"):
if (NEXT_CL->SL2==NULL)
printf("\nWarning CL with no SL27):
if (NEXT_CL->SL2==SLINK){
return NEXT_CL: /* retrun ptr if in list*/
H
else
NEXT_CL=NEXT_CL->NEXT:
H
return NEXT_CL: /* returns NULL if not in list */
} /* end under_consideration */

/* Determine the point of intersection along CL's edge which occurs with
the ray originating irom the observer's position (X.Y.Z) along ANGLE.
The distance te this intersection ios also calculated.

NOTE: Intersection and distance are returned by reference in variable
addresses INT_X.INT_Y and DIST.
It is assumed an intersection does take place (dictated by usage
in algorithm).*/

void line_ray_intersection(CL,ANGLE.INT_X,INT_Y.DIST)
CONSIDERED_LINK *CL;
double ANGLE.*INT_X.*INT_Y .*DIST;
{
double XX.YY: /*values at intersection */
double dx.dy: /*dela values*/
double M_LINE,M_RAY: /*slope of line and ray*/
double B_LINE ,B_RAY: /*y-intercepts*/

dy=CL->8L2->Y-CL->SL}->Y:
dx=CL->SL2->X-CL->SLI->X;
if (ANGLE==CL->SL]->THETA)&&(ANGLE==CL->SL2->THETA)){
if (CL->SL1->DIST < =CL->SL2->DIST) {
XX=CL->SL}1->X;
YY=CL->SL1->Y;
*DIST=CL->SL1- >DIST:

}
else { /*colinear cases®/
XX=CL->S8L2->X:
YY=CL->SL2->Y;
*DIST=CL->SL2->DIST:
)
}
else {
if ((ANGLE==90.0)} | (ANGLE= =180.0)){ /*ray has no slope*/

XX=X:
M_LINE =dy/dx:

A-27

YY=M_LINE*XX +(CL->SL1->Y-(M_LINE*CL->SL1->X));

else {
M_RAY =tan(ANGLE):
B_RAY=Y-M_RAY*X:
if (CL->SL1->X==CL->S8L2->X) { /*lin¢ has not slope */
XX=CL->SL1->X;
YY=M_RAY*XX+B RAY;
}
else { /* both line and ray have a slope */
M_LINE=dy/dx;
B_LINE=CL->SLI1->Y-M_LINE*CL->SLI->X:
XX=(B_LINE-B_RAY)/(M_RAY-M_LINE):
YY=M_RAY*XX+B_RAY:
} /* end else */
} /* end else */
*DIST =trunc(sqri(pow(XX-X,2.0) + pow(YY-Y.2.0))): /*assign distance®/
} /* end else */
“INT_X=trunc(XX): /*assign x-y coordinates of intersection®/
*INT_Y =trunc(YY):
} /* end line_ray_intersection */

/* Searches currently accepted lines. If L duplicates one of these, a | is
returned. Duplications will naturally occure since cach vertical line is
common to 2 edges. */

int duplicate_vert_line(L.LIST)
LINE *L:
LINE_HEAD *LIST;

int DUP=0:
LINE *NEXT_L=LIST->VLINE_LIST:

while (NEXT_L) {
if (L->X1==NEXT_L->X1)&&(L->Yl==NEXT_L->YD)&&
(L->Z1==NEXT_L->Z1)&&(L->Z2==NEXT_L->Z2))
DUP=1;
NEXT_L=NEXT_L->NEXT:
}
return DUP:
} /* end duplicate_vert_line */

void add_vert_line(CL,SL,LIST)
CONSIDERED_LINK *CL:
SWEEP_LINK *SL:
LINE_HEAD *LIST;

LINE *NEW_LINE=(LINE *)malloc(sizeof(LINE)):
double len;

len=SL->DIST;
NEW_LINE- >X1=8L->X;
NEW_LINE->Y]=SL->Y;
NEW_LINE->MODEL _X=SL->X:
NEW_LINE->MODEL_Y=SL->Y:
if (CL->MIN_Z> =SL->MIN_2)
NEW_LINE->Z1 =tan(CL- >MIN_Z)*len+Z; /*clipped shon*/

A-28

else
NEW_LINE->Z]=tan(SL->MIN_Z)*len+Z:
NEW_LINE->X2=SL->X:
NEW_LINE->Y2=SL->Y:
if (CL->MAX_Z <=SL->MAX_Z)
NEW_LINE->Z2=uan(CL- >MAX_Z)*len+Z. /*clipped shon*/
else
NEW_LINE->Z2=tan(SL- >MAX_Z)*len+Z;
NEW_LINE->NEXT=NULL:
if (duplicate_ven_line(NEW_LINE,LIST)==0) {
LIST->VERT_LINES+ +;
if (LIST->VTAIL) {
LIST-> VTAIL- > NEXT=NEW_LINE: /*add as last vert. line*/
LIST->VTAIL=NEW_LINE:
}

else {
LIST->VTAIL=NEW_LINE: /* lst vertical line added */
LIST->VLINE_LIST=NEW_LINE:
)
} /*endif ¥/

else
free(NEW_LINE):
} /* end add_vert_line */

/* Adds only bottom edge of a considered link (CL). Lines are only accepted
from their MIN_SWEEP angle to the current sweep angle (THETA).*/

void add_line(CL,LIST)
CONSIDERED_LINK *CL:
LINE_HEAD *LIST;

LINE *NEW_LINE.
double IX.1Y ,DIST:
/*DIST req for call to intersection but value not used*/
/*bottom line is visible and not just a single poimt*/
if (CL->B_VISIBILITY = = |)&&(my_abs(CL- >MIN_SWEEP-THETA) >0.0001)){
NEW_LINE = (LINE *)malloc(sizeof(LINE)):
NEW_LINE- >NEXT=NULL:
LIST->LINES+ +:
if (LIST->TAIL) {
LIST->TAIL->NEXT=NEW_LINE: /* add non-vertical line*/
LIST->TAIL=NEW_LINE:

}

LIST->TAIL=NEW_LINE; /* st non-vertical line added */
LIST->LINE_LIST=NEW_LINE:

else {

/* find first endpoint to accept™/
line_ray_intersection(CL.CL->MIN_SWEEP.&IX.&1Y.&DIST):
NEW_LINE->X1=IX:

NEW_LINE->Yl=1Y;
NEW_LINE->Z1=CL->SL1->Z:

/*find second endpoint*/
line_ray_intersection(CL,THETA ,&IX,&1Y.&DIST);
NEW_LINE->X2=IX;

NEW_LINE->Y2=1Y;
NEW_LINE->22=CL->SL2->Z:
} /*endif %/
CL->MIN_SWEEP=THETA:
} /* end add_line */

A-29

/* This function calculates distances from the observer along the current
THETA to each edge on the considered list. Distances do not account for
z infromation (height), but reflect straight line distance to the
intersection lying in the x-y plane. */

void calculate_distances(CLIST)
CONSIDERED_HEAD *CLIST:
{

CONSIDERED_LINK *NEXT _CL=CLIST->LINKS.
double IX.IY: /*pointers and values at intersection */
double DIST; /*distance to intersection values*/

while (NEXT_CL) {
line_ray_intersection(NEXT_CL,.THETA.&IX,&1Y . &DIST);
NEXT_CL->DIST=DIST,
NEXT_CL=NEXT_CL->NEXT:
} /* end while */
} /* end calculate_distances */

/* When a link is put on the considered list. we must determine how much of
it is blocked from view (along the z axis) and what affect it has on
more distant edges.

Notice that case 2 is not accounted for since we are dealing with a
wire frame representation.*/

void calculate_visibility_add(CLINK.CLIST,LLIST)
CONSIDERED_LINK *CLINK:
CONSIDERED_HEAD *CLIST:
LINE_HEAD *LLIST:

{
CONSIDERED_LINK *CL=CLINK->NEXT:
int TYPE_OCCLUSION:
if (CLINK->NEW _VISIBILITY = =1) { /*if visible it may occlude others*/
while (CL) {
if (CL->NEW_VISIBILITY = =1) { /*can only block visible lines*/
TYPE_OCCLUSION =occlusion(CLINK.CL):
switch (TYPE_OCCLUSION) {
case 4: /*10tally occluded*/
CL->NEW_VISIBILITY =0:
CL->NEW_B_VISIBILITY =0:
break:
case 3: /*bottom occluded™®/
CL->NEW_B_VISIBILITY =0:
CL->NEW_MIN_Z=CLINK->NEW_MAX_Z.
break:
A case 2:
CL->NEW_MIN_Z=CLINK->NEW_MAX _Z.
break:
*/ case |: I*top occluded®/

CL->NEW_MAX_Z =CLINK->NEW_MIN_Z;

break;
} /*end switch*/
} /*endif*/
CL=CL- >NEXT:
} /* end while */
} /*endif */
} /* end calculate_visibility_add */

A-30

/* Calculate the visibility of the ventical edge (if any) residing on the
2nd endpoint of a link which is being passed by the sweep (thus removed
from the considered list)*/

void calc_vis_remove(CL.CLIST)
CONSIDERED _LINK *CL:
CONSIDERED_HEAD *CLIST;

CONSIDERED_LINK *NEXT_CL=CLIST- >LINKS:
int TYPE_OCCLUSION;

/*now calc visibility bounds of SL2’s vertical line if there is one*/
if (CL->SL2->V->VERT_EDGE) {
while ((CL!=NEXT_CL)&&(CL->NEW_VISIBILITY = = 1)){
if (CL->SL2->THETA==NEXT_CL->SL}->THETA)
TYPE_OCCLUSION=0:.
else
TYPE_OCCLUSION =occlusion(NEXT_CL.CL):
switch (TYPE_OCCLUSION) {
case 4:
CL->NEW_VISIBILITY =0:
break:
case 3: case 2:
CL->NEW_MIN_Z=NEXT_CL->NEW_MAX_Z:

break:

case 1: /*top of B accluded*/
CL->NEW_MAX_Z=NEXT_CL->NEW_MIN_Z;
break:

} /*end switch*/
NEXT_CL=NEXT_CL->NEXT:
} /* end while */

CL->VISIBILITY =CL- > NEW _VISIBILITY:
CL->MIN_Z=CL->NEW_MIN_2Z:
CL->MAX_Z=CL->NEW_MAX_Z:

} /*endif */
else
CL->VISIBILITY =0:
} /* end calc_vis_remove */

/* If visibility has been altered from last time. we must accept lines which
were already visible and reset the value of MIN_SWEEP to reflect where along
the edge these new values start.*/

int visibility_changes(CL)
CONSIDERED _LINK *CL:
{

int CHANGES=0.
double EXP_MIN_Z, EXP_MAX_Z: /*expected coverage based on perspective®/

EXP_MIN_Z =trunc(atan((CL- >SL1->Z-Z)/CL- >DIST)):
EXP_MAX_Z=trunc(atan((CL->UPPER_Z-Z)/CL- > DIST)):

if (CL-> VISIBILITY!=CL- > NEW_VISIBILITY)
CHANGES + +:

if (CL->B_VISIBILITY!=CL->NEW_B_VISIBILITY)
CHANGES+ +;

if (EXP_MIN_Z!=CL->NEW_MIN_Z)
CHANGES + +:

if EXP_MAX_Z'=CL->NEW_MAX_Z)
CHANGES+ +;

return CHANGES:

A-3]

void update_visibility(CLIST,LLIST)
CONSIDERED_HEAD *CLIST:
LINE_HEAD *LLIST:

CONSIDERED_LINK *CL=CLIST- > LINKS:

while (CL) {

if (visibility_changes(CL)!=0) {

if ((CL->B_VISIBILITY = =)&&(IN_MAIN))
add_line(CL.LLIST):

CL-> VISIBILITY =CL- >NEW_VISIBILITY:
CL->B_VISIBILITY=CL->NEW_B_VISIBILITY:
CL->MIN_Z=CL->NEW_MIN_Z:
CL->MAX_Z=CL->NEW_MAX Z:.
CL->MIN_SWEEP=THETA: /*values only affect here on*/

}
CL=CL->NEXT:

/* Visibility must be periodically recomputed to account for the effects of
perspective as the sweep progresses around 360 degrees.*!

void recompute_visibility (CLIST.LLIST)
CONSIDERED_HEAD *CLIST:
LINE_HEAD *LLIST:

CONSIDERED_LINK *CL =CLIST->LINKS:

cale_current_z_coverage(CLIST): /*will change due to perspective®/
while (CL) { /*add each link again*/
calculate_visibility_add(CL.CLIST.LLIST):
CL=CL->NEXT:
)
update_visibility(CLIST,LLIST); /*see if changes occured*/
} /* end recompute_visibility */

/* Add a new link to the considered list (sorted by distance from observer
in the x-y plane). If a vertical edge resides on the links first endpoint
accept it based on the edges computed visibility*/

void add_considered_link(CL,CLIST,LLIST)
CONSIDERED_LINK *CL.
CONSIDERED_HEAD *CLIST;
LINE_HEAD *LLIST:

CONSIDERED_LINK *NEXT_CL=CLIST- > LINKS:

if (CLIST- >LINKS) { /*recalc distances for insen®/
calculate_distances(CLIST);
if (CL->DIST <NEXT_CL->DIST) {
CL->NEXT=CLIST- > LINKS:

CLIST->LINKS=CL,; /*add as st element®/
} /* endif ¥/
else {
while (NEXT_CL- >NEXT)&&(NEXT_CL- > NEXT->DIST <CL->DIST)){
NEXT_CL=NEXT_CL->NEXT:
)

/*keep ones leaning in towards camera 1st on list*/
while ((NEXT_CL->NEXT)&&(NEXT_CL- > NEXT->DIST==CL- > DIST))&&
(ccw2(CL->SL1.CL->SL2.NEXT_CL- >NEXT- >SL2)) {

A-32

NEXT_CL=NEXT_CL->NEXT:
}
CL->NEXT=NEXT_CL->NEXT:
NEXT_CL->NEXT=CL:
} /* endelse */
recompute_visibility(CLIST.LLIST):
} /*endif */
else {
CLIST->LINKS=CL: /* st element added to null list*/
CL->VISIBILITY=1; /*so must be visible*/
CL->B_VISIBILITY=1. /*so must be visible®/

}
if (IN_MAIN)&&(((CL- > VISIBILITY = =)&&(CL- >MIN_Z <CL- >MAX_2Z))
&&(CL->SL1->V->VERT_EDGE)))
add_vent_line(CL.CL->SL).LLIST):
} /* end add_considered_link %/

/* Remove a CL from the list*/

void remove_cl(CL,CLIST)
CONSIDERED_LINK *CL:
CONSIDERED_HEAD *CLIST:

CONSIDERED_LINK *NEXT_CL=CLIST- > LINKS:

if (CL==NEXT_CL){ /* removing Ist link */
CLIST- > LINKS=NEXT_CL->NEXT:
free(CL): /*deallocate memory*/
}
else {
while (NEXT_CL->NEXT)&&(NEXT_CL- >NEXT!=CL)){
NEXT_CL=NEXT_CL->NEXT.
}
if NEXT_CL- > NEXT) {
NEXT_CL->NEXT=CL->NEXT:
free(CL): /*deallocate memory™*/

} /* end else */
} /* end remove_cl */

/* The sweep has progresses o the end of link CL. We need to inspect the
visibility and accept both the bottom edge and ventical line (a1 2nd
endpoint) if required.

Once this is done, visibility of the entire considered list (CLIST)
must be recomputed to account for perspective and the deleted edge*/

void complete_line(CL,CLIST,LLIST)
CONSIDERED_LINK *CL;
CONSIDERED_HEAD *CLIST:
LINE_HEAD *LLIST;

LINE *L;

if ((CL-> VISIBILITY = = |)&&(CL- >B_VISIBILITY = =1))
add_line(CL,LLIST): /*also checks for and adds right vert line®/

calculate_distances(CLIST):

calc_current_z_coverage(CLIST):

calc_vis_remove(CL,CLIST):

if (CL->SL2->V->VERT_EDGE)&&(CL- > VISIBILITY = =1))
add_vert_line(CL.CL->SL2 LLIST):

remove_cl(CL,CLIST); /*if not visible no changes needed before removal*/

recompute_visibility(CLIST,LLIST):

} 7* end complete_line */

A-33

/* These occlusion codes apply if both links begin at the same vertex*/
int overlay_occlusion(F,B)
CONSIDERED_LINK *F, *B;

{
int TYPE=0; /*default is no occlusion occurs*/
if (F->NEW_MIN_Z < =B->NEW_MIN_Z){
if (F->NEW_MAX_Z>=B->NEW_MAX_2)
TYPE=4: /* otally occluded*/

else {
if (F->NEW_MAX_Z>=B->NEW_MIN_2)
TYPE=3. /*bottom of B occluded*/
}
} /% end if %/

else {
if (F->NEW_MAX_Z <B->NEW_MAX_2)
TYPE=2; /*middle prtion of B occluded*/
else {
if (F->NEW_MIN_Z < =B->NEW_MAX_2)
TYPE=1: /*top of B occluded®/

} /* end else */
/* otherwise there is no occlusion */
return TYPE;

} /* end overlay_occlusion */

/* The type of occlusion imposed upon the back edge (B) by the front edge (F)
is determined: return value is 0.1.2,3. or 4 */
int occlusion(F,B)
CONSIDERED_LINK *F. *B:
{

int TYPE=0; /*default is no occlusion occurs*/

/*No occlusion if edges fall on the same plane or are end-to-end*/

if ((F->SL1->THETA==B->SL2->THETA)! |(F->SL2->THETA==B->SLI- >THETA))} !
((F->MIN_Z==F->MAX_Z)|}(colinear(F.B))))
TYPE=0:
else {

if ((F->SL1->DIST==B->SL}->DIST)&&(F->SL1->THETA==B->SL]1->THETA))
&&(B- >UPPER_Z <9999.0))
TYPE=overlay_occlusion(F.B):
else {
if (F->NEW_MIN_Z <B->NEW_MIN_Z){
if (F->NEW_MAX_Z >B->NEW_MAX_Z)
TYPE=4; /* totally occluded®/

else {
if (F->NEW_MAX_Z >B->NEW_MIN_Z)
TYPE=3: /*bottom of B occluded*/
}
} /* end if */

else {
if (F->NEW_MAX_Z <B->NEW_MAX_Z)
TYPE=2, /*middle prtion of B occluded*/

else {
if (F->NEW_MIN_Z <B->NEW_MAX_2)
TYPE=1, /*top of B occluded*/
H
} /* end else */
} /* end else */
} /* end else ¥/
/* otherwise there is no occlusion */
return TYPE;

} 7* end occlusion */

A-34

/* This is the primary function which will be called from outside this file.
A list of sweep links is constructed based on the model (W) and the observer’s
position (EYE_X.EYE_Y,EYE_Z).

Next edges straddling O degrees are placed on the considered list (if they
are ccw). Then main processing begins and each sweep link and its predicessor
pair is inspected. If the circuit from observer to SL 10 prev(SL) is cocw, the
SL’s are put into a considered link (CL) and added 10 the considered list
(CLIST).

As the sweep progresses throught the sweep links: visibility is updated,
lines are accepted, and edges are removed from CLIST (as they are passed).
OUTPUT: LINE_LIST structure pointing to 2 list of lines
(vertical and non-vertical accepted lines)

*/
LINE_HEAD *conduct_visibility_sweep(\W.EYE_X.EYE_Y.EYE_Z)
WORLD *W;
double EYE_X.EYE_Y.EYE_Z:
{

SWEEP_LINK *NEXT _SL. *SWEEP_LIST=NULL:
CONSIDERED_LINK *CL. *PAST_CL:
CONSIDERED_HEAD *CLIST =make_considered_head():
LINE HEAD *LINE_LIST=make_linc_head():

int STRADDLERS =0:

IN_MAIN=0. /*siill processing straddlers*/
X=EYE_X:
Y=EYE_Y;
Z=EYE_Z:
SWEEP_LIST =make_sweep_list(W):
NEXT_SL=SWEEP_LIST:
/* Add all visible straddlers*/
while (NEXT_SL) {
THETA=NEXT_SL->THETA:
if ((cew(NEXT_SL.NEXT_SL->PREV)==1)&&
(NEXT_SL->THETA >NEXT_SL->PREV->THETA)) {
CL=make_considered_link(NEXT_SL):
add_considered_link(CL.CLIST.LINE_LIST);
CL->MIN_SWEEP=0.0;
STRADDLERS =1:
}
NEXT_SL=NEXT_SL->NEXT:
} /* end while */
NEXT_SL=SWEEP_LIST:
THETA=0.0;
IN_MAIN=1.
/* Process all of sweep list*/
while (NEXT_SL) {
THETA=NEXT_SL->THETA:
while (PAST_CL =under_consideration(NEXT_SL.CLIST)){
complete_line(PAST_CL.CLIST.LINE_LIST):

if (ccw(NEXT_SL,NEXT_SL->PREV)==1){
CL=make_considered_link(NEXT_SL):
add_considered_link(CL.CLIST.LINE_LIST):

}
NEXT_SL=NEXT_SL- >NEXT:
} /* end while ¢/

A-35

if (STRADDLERS) { /* have lines crossing ZERO degrees */
THETA=0.0:
calculate_distances(CLIST):
CL=CLIST- >LINKS:
while (CL) {
if ((CL->VISIBILITY = = 1)&&(CL->B_VISIBILITY = = 1))
add_line(CL.LINE_LIST):
CL=CL- >NEXT;

} 7* endif ¥/
free_clisCLIST):
free_sweep_listSWEEP_LIST);
return LINE_LIST:

} /* end conduct_visibility_sweep */

/#

FILE NAME:graphics.h

AUTHOR: Lt James Stein

PROJECT: Thesis, supporting Yamabico-11 vision system
Date: March 1992

ADVISOR: Dr. Kanayama

COMMENTS:

This file contains the routines neccessary to suppont the projection of our
2d+ model world into a 2 dimensional window. This view will then be used for
pattern matching against the processed images extracted from the raw camera
data.

Two primary functions are provide: get_view and get_full_view

- get_view calls the function conduct_visibility_sweepin file "visibility .h"
the set of output lines represents a2d projection of all lines which should be
visible from a given position and orientation within the model world. W.

- get_full_view does not call the visibility checking function. Its output
represents all model lines which are seen if everything in the model were
transparent

- The memory deallocation function free_lines is provided also. The user can
send an uneeded LINE_HEAD pointer to this function for deallocation.

INPUT: Position in the model (PRPX.PRPY.PRPZ)
orientation (ORIENT) with O degs being down the y-axis
a world (W)
focal length (FL)

The view angle of the camera is calculated based upon the camera’s sensir-

element size (constant CCD) and the supplied focal length (FL).
*/

/*CCD and clipping plancs are in inches*/

#define CCD (2.0/3.0)

#define NEARCLIP 1.0

#define FARCLIP 5000.0

#define MAX_X XMAXSCREEN /*destination device (iris screen) limits*/
#define MAX_Y YMAXSCREEN

/*coordinates used by pattern matching*/
/*#define MAX_X 686.0
#define MAX_Y 486.0
*/

double VIEW_ANGLE: /*width of camera’s ficld of view in radians*/

[./

typedef struct line {
double X1,X2.Y1,Y2.Z1.22: /*will hold final 2d device coordinates*/
double MODEL_X.MODEL_Y: /*original coordinates:line in the model*/
int CLIP1[6],CLIP2[6]. /*clipping codes*/
struct line *NEXT:

} LINE;

A ./

typedef struct line_head { /*vertical lines kept separate from others*/
int LINES,VERT_LINES;
LINE *LINE_LIST,*VLINE_LIST.*TAIL.*VTAIL:

} LINE_HEAD:
/* */
typedef struct window { /* surface on which to project visible lines*/
double XMIN, XMAX, YMIN. YMAX.
ZMIN, ZMAX:
} WINDOW;
i w/

/*ORIENTATION within a world:

Y

-X 90 -90 X

180
Y

NOTE: sin and cos functions use radians as input
*/

/* this function resides in file: visibility.h*/
LINE_HEAD *coanduct_visibility_sweep(WORLD* double.double.double);

A-38

Jo oo st e e e o oo R e e o s ol Rk kR Rk R

The following display functions were used in debugging. They have been
left here to aid in future inspection of variables*/

void display_window(W)

WINDOW *W;
{
int DUMMY;
printf("\n\nWindow limits calculated: ");
printf("\nX: % 21 % .2i\nY: % .2If-% .210\nZ: % .2){-% 2lf\n\n",
W->XMIN. W->XMAX . W->YMIN.W-> YMAX ,W->ZMIN.W- > ZMAX):

fflush(stdout);
printf("\n\nEnter a number 1o continue”):

}

void lprint_)(L)
LINE *L;

{
printf("\n\nline: X1=% 21 Y1=%.2{ Z1=% 2i{".L->X1.L->YI.L->ZI):
primtf("\n X2=%210Y2=% 20 Z22=% .21{ \n".L- > X2.L- > Y2,L- > 22):
fflush(stdout):

H

void lprint_List(LIST)
LINE_HEAD *LIST:

{
LINE *NEXT_L=LIST->VLINE_LIST:

printf("\n\n\nVertical lines (%d) are:\n\n".LIST- > VERT_LINES):
while (NEXT_L) {
lprint_{(NEXT_L):
NEXT_L=NEXT_L->NEXT:
}
prnt{("\n\n\nnon-vertical lines (%d) are:\n\n",LIST- > LINES):
fflush(stdout);
NEXT_L=LIST->LINE_LIST:
while (NEXT_L) {
lprint_I(NEXT_L):
NEXT_L=NEXT_L->NEXT:

}

void print_line(L)
LINE *L:
{
printf("\nX1:% 4 Y1: % 4 Z1: % 40 X2: % A Y2:% 4If Z2:% .41 ",
L->X1.L->YL.L->Z1.L->X2.L->Y2,L->Z2):
} /* end print_line %/
void print_line_list(LH)
LINE_HEAD *LH:
{

LINE *NEXT_L:

NEXT_L=LH->LINE_LIST:
printf("\n\nThere are %d lines: \n\n".LH- > LINES);
while (NEXT_L) {
print_line(NEXT _L):
NEXT_L=NEXT_L->NEXT;

A-39

/* Determines absolute values for doubles. */

double myabs(X)
double X;
{

if (X<0.0)
X=0.0-X;
return X;

H

/* Find what z coordinate of the vertex, V, from the model */

float find_z(PH,V)
POLYHEDRON *PH. /*parent polyhedron*/
VERTEX *V;

POLYGON *NEXT_PG:
VERTEX *NEXT_V;

float Z_VALUE=66.6:

int FOUND=0,PG_CNT=0;

NEXT_PG=PH->POLYGON_LIST:
while ((NEXT_PG)&&(FOUND==0)){ /*loop until parent polygon is found*/
PG_CNT++;
NEXT_V=NEXT_PG->VERTEX_LIST:
while (NEXT_V)&&(FOUND==0)){ /*loop until we find the ventex*/
if (NEXT_V==V){
Z_VALUE=NEXT_PG->Z_VALUE:
FOUND=1:
}
NEXT_V=NEXT_V->NEXT:
} /* end while */
NEXT_PG=NEXT_PG->NEXT;
} /* end while */
return (Z_VALUE): /*return the z height of V*/
} /* end find_z */

/* calculate where the viewing window lies in model coordinates®/
WINDOW *calc_window(X,Y,Z,ORIENT,FOCAL_LEN)

double X,Y.Z.ORIENT.FOCAL_LEN:

WINDOW *WIN;
double HYP;

WIN = (WINDOW *)malloc(sizeof (WINDOW)):

HYP = FOCAL_LEN/cos(VIEW_ANGLE/2.0):

WIN->YMIN = Y +¢0s(90.0*P1/180.0-ORIENT-VIEW_ANGLE/2.0)* HYP:

WIN->YMAX = Y +sin(ORIENT-VIEW_ANGLE/2.0) * HYP:

WIN->XMIN = X +5in(90.0*P1/180.0-ORIENT-VIEW_ANGLE/2.0)* HYP;

WIN->XMAX = X +cos(ORIENT-VIEW_ANGLE/2.0)* HYP:
WIN- >ZMIN = Z-CCD/2.0;
WIN->ZMAX = Z+CCD/2.0;
return WIN;
} /* end calc_window */

A-40

/* Deallocate the memory uses in a line list*/

void free_lines(L11)
LINE_HEAD *LH:

{
LINE *NEXT_L, *TRASH: /*TRASH is temporary variable for freeing®/

NEXT_L=LH->LINE_LIST;

while (NEXT_L) {
TRASH=NEXT _L:
NEXT_L=NEXT_L->NEXT;
free(TRASH);

}

NEXT_L=LH->VLINE_LIST;

while (NEXT_L) {
TRASH=NEXT _L:
NEXT_L=NEXT_L->NEXT:
free(TRASH):

}

free(LH): /* free parent structure */

}/* end free_lines */

LINE_HEAD *create_line_head()

{
LINE_HEAD *LH:

if (LH=(LINE_HEAD *)malloc(sizecof (LINE_HEAD)))==NULL)
printf("\n\ncannot create line head\n™).
LH->LINES = 0:
LH->LINE_LIST = NULL:
LH->TAIL = NULL:
return LH:
} /* end create_line_head */
/* Called by get_full_view to puli lines from the 2d+ model*/

LINE *make_line(1.V1,V2,21.22)
INSTANCE *I.
VERTEX *V1, *V2.
double Z1.Z2:

LINE *NEW_LINE:
double LOCAL_X.LOCAL_Y.ROT_X.ROT_Y. RADS:

NEW_LINE = (LINE *)malloc(sizeof (LINE)):
NEW_LINE->NEXT = NULL;

/* adjust all local coordinates to pivot point*/
LOCAL_X = VI->X - I->PIVOT_X:
LOCAL_ Y = VI->Y - I->PIVOT_Y:

/* rotate about the z axis */

RADS = I->ROTATION * P1 / 180.0; /* convert degs to rads */
ROT_X = (cos(RADS)*LOCAL_X)+ (sin(RADS)*LOCAL_Y);
ROT_Y = (cos(RADS)*LOCAL_Y)-(sin(RADS)*LOCAL_X):

/* translate to proper position in world model */
NEW_LINE->X1 = I->X + ROT_X;

NEW_LINE->Y! = I->Y + ROT_Y;
NEW_LINE->ZI = I->Z + ZI:

A-4]

/* calc second vertex */
LOCAL X = V2->X - I->PIVOT_X;
LOCAL Y = V2->Y - I->PIVOT_Y:

/* rotate about the z axis */

RADS = I->ROTATION * PI/ 180.0 ;. /* convert degs to rads */
ROT_X = (cos(RADS)*LOCAL_X)+ (sin(RADS)*LOCAL_Y);
ROT_Y = (cos(RADS)*LOCAL_Y)-(sin(RADS)*LOC AL _X).

/* translate 1o proper position in world model */
NEW_LINE->X2 = I->X + ROT_X;
NEW_LINE->Y2 = I->Y + ROT_Y:

NEW _LINE->2Z2 = }->Z + Z2:

return NEW_LINE;
} /* end make_line */

void add_lines(LIST,L)

LINE_HEAD *LIST:
LINE *L:

LINE *NEXT_LINE:

if (LIST->LINE_LIST==NULL){ /*add 1l lin¢ 10 empty list*/
LIST->LINE_LIST=L:
LIST->TAIL=L:
LIST->LINES=1;

}

else { /*add 10 end of existing list*/
LIST->TAIL->NEXT=L:
LIST->LINES+ +:
LIST->TAIL=L:

}

} /* end add_lines */

void scale_line(L,SX.SY.SZ)

LINE *L;
double $X,SY,SZ;

L->X1 = L->X1 *8X :

L->X2 = L->X2*8X:

L->Y] = L->Y1 *SY .

L->Y2 = L->Y2*SY:

L->Z1 = L->Z1 * SZ

L->22 = L->22*S8Z.
} /* end scale_line ¢/

A-42

void scale_window(W,SX.SY.SZ)

WINDOW *W;
double SX.SY.SZ:

W->XMIN = W->XMIN * §X :

W->XMAX = W->XMAX * §X :

W->YMIN = W->YMIN * SY :

W->YMAX = W->YMAX * SY :

W->ZMIN = W->ZMIN * §Z :

W->ZMAX = W->ZMAX * 5Z .
} /* end scale_line */

/* shifi from world coordinates to machine coordinates */

void shift_coord_line(L)

LINE *L:
{
double TEMP]. TEMP2:
TEMPI = L->Z1:
TEMP2 = L->Z2:
L->Z1 = L->X1:
L->22 = L->X2:
L->X1 =L->YI:

L->X2 = L->Y2:
L->Y1 = TEMPI;
L->Y2 = TEMP2:

} /* end shifi_coord_line */

/* shift from world coordinates 1o machine coordinates */

void shift_coord_window(W)
WINDOW *W:
{

double TEMP1. TEMP2:

*Z=X Y=Z X=YW%
TEMPI = W->ZMIN,
TEMP2 = W->ZMAX:
W->ZMIN = W->XMIN:
W->ZMAX = W->XMAX:
W->XMIN = W->YMIN:
W->XMAX = W->YMAX:
W->YMIN = TEMPI:
W->YMAX = TEMP2;

} /* end shift_coord_window */

A-43

/* translates a line 10 reflect a new origin (X,Y,Z) */

void translate_line(L,X.Y,Z)

LINE *L;
double X,Y,Z:

L->X1 +=X;
L->X2 +=X;
L->Y1 +=Y;
L->Y2 +=Y;
L->Zl +=2Z;
L->Z2 +=Z;

} /* END TRANSLATE_LINE */

/* translates a window to reflect a new origin (X.Y.Z) */
void translate_window(W . X.Y.Z)

WINDOW *W:
double X.Y.Z;

W->XMIN += X:
W->XMAX += X:
W->YMIN +=Y:
W->YMAX += Y
W->ZMIN += Z:
W->ZMAX += Z:

} /* END TRANSLATE_WINDOW */

/* rotate about the vertical axis */
void rot_z(L,ORIENT)

LINE *L;
double ORIENT:

double X1=L->Xli,
X2=L->X2.
Yl=L->YI.
Y2=L->Y2;

L->X! = X1*cos(ORIENT)-Y1*sin(ORIENT);
L->X2 = X2%cos(ORIENT)-Y2*sin(ORIENT):
L->Y! = Y1*cos(ORIENT) + X1 *sin(ORIENT);
L->Y2 = Y2*cos(ORIENT) +X2*s5in(ORIENT);

} /*endrot_z %

A-44

/* rotate the window about the vertical axis */
void rot_window(W,ORIENT)

WINDOW *W;
double ORIENT;

double XMIN=W-.>XMIN,
XMAX =W->XMAX,
YMIN=W->YMIN,
YMAX=W->YMAX:

W->XMIN = XMIN*cos(ORIENT)-YMIN*sin(ORIENT):
W->XMAX = XMAX*cos(ORIENT)-YMAX*sin(ORIENT):
W->YMIN = YMIN*cos(ORIENT) + XMIN*sin(ORIENT):
W->YMAX = YMAX*cos(ORIENT) + XMAX*sin(ORIENT):

} /*endrot_z*

/* adjust size of line to reflect change in size due to
distance from the viewing window's plane*/

void perspective_transform (L., ZMIN)
LINE *L:
double ZMIN:

{
double WI=L->Z1/ZMIN .W2=L->Z2/ZMIN:
if (W1'=0.0) {
L->X1=L->X1/W1:
L->Y1=L->Y1/W):
L->Z1=L->ZI/Wi:
)
else
printf("\nERROR --- tried to divide by W1 =0\n"):
if (W2!=0.0) {
L->X2=L->X2/W2;
L->Y2=L->Y2/W2:
L->Z2=L->2Z2/W2;
}
else

printf("\nERROR --- tried 10 divide by W2=0\n").
} /* end perspective_transform */

A-45

/* Calculate the clipping codes for line L. */

void get_clipping_codes(L,ZMIN)
LINE *L;
double ZMIN:

int i;

for (i=0;i<=5:++1) {
L->CLIPI[i)=0;
L->CLIP2[i]=0;

}

if (L->Y1>-L->Z1)
L->CLIPI[O])=1:

if (L->YI<L->ZD)
L->CLIPI{1]=1;

if (L->X1>-L->Z1)
L->CLIPI[2)=1:

if (L->X1<L->21)
L->CLIPI{3)=1;

if (L->Z1<-1.0)
L->CLIP1{4)=1:

if (L->Z1>ZMIN)
L->CLIPI{S]=1.

if (L->Y2>-L->22)
L->CLIP2[0}=1;

if (L->Y2<L->Z2)
L->CLIP2{lj=1:

if (L->X2>-L->22)
L->CLIP2[2]=1.

if (L->X2<L->22)
L->CLIP2(3)=1:

if (L->22<-1.0)
L->CLIP2{4}=1:

i (L->Z2>ZMIN)
L->CLIP2(S)=1:

} /* end get_clipping_codes */

/* Clipt will determine new increments (TE and TL) along line
being clipped */

void clipt(NUM.DENOM.TE.TL)
double NUM. DENOM:
double *TE. *TL.

{

double t;

if (DENOM <0.0) {
t=NUM/DENOM;
if 1>*TL)
1=t
else
if @>*TE)
*TE=t;

}
if (DENOM >0.0) {
t=NUM/DENOM;
if t<*TE)
t=t;
else
if 1<*TL)

A-46

=

*TL=t:

}
} /* end clipt */

/* Parametric equations of line are used to clip it against the
canonical view volume®*/

void clip_line(L.ZMIN)
LINE *L:
double ZMIN:
{
double dx, dy, dz.
double TMIN=0.0, TMAX=1.0;

dx=L->X2-L->XI;
dy=L->Y2-L->YI:
dz=L->Z2-L->Z1;

clipi((-L- >X1-L- > Z1),(dx +dz).&TMIN,&TMAX);
clipt((L->Xi-L- > Z1),(-dx +dz) & TMIN.&TMAX):
clipt((L- > Y1-L- > Z1),(-dy + d2).&TMIN.&TMAX):
clipy(-L->Y1-L- > Z1).(dy +dz). & TMIN,&TMAX):
clipt((-L- > Z1+ ZMIN),(dz). & TMIN &TMAX):
clipt((-L->Z1-1).(-dz) &TMIN.&TMAX);
if (TMAX <) { /* endpoint adjusted */

L->X2 = L->X1 + (TMAX*dx):

L->Y2 = L->Y1 + (TMAX*dy).

L->Z2 = L->Z1 + (TMAX*dz):
} /* endpoint ad’ 1sied */
if (TMIN>0) {

L->X1 = L->X1 + (TMIN*d

L->Yl = L->Y1 + (T4 .yp

L->Z1 = L->Z1 + (TMIN*dz):
}

} /* end clip_line *,

/* COMPARES POSITION OF LINE TO VIEW VOLUME:
returned codes: O outside of view volume
1 partially inside volume

2 entirely in view volume
*/

int clip_line_3d(L)
LINE *L;
{

int IN_VOLUME=1,i, C1=0,C2=0;

for (i=0ii<=5;++i) {
Cl+=L->CLIPili):
C2+=L->CLIP2[i].
if ((L->CLIP1(i]= =)&&(L- > CLIP2[i}]==1))
IN_VOLUME=0. /* outside view volume */

}
if (IN_VOLUME= =)&&((C] = =0)&&(C2 = =0)))
IN_VOLUME=2; /* entirely in view volume */
return IN_VOLUME:
} /% end clip_line_3d */

A-47

/* Maps the final line coordinates (from the canonical volume) to
the desired destination device coordinates.
MAX_X and MAX_Y are declared at the top of this file and can be
modified as needed*/

void map_to_screen{L,XMIN,YMIN)
LINE *L:
double XMIN,YMIN:

L->X]

myabs((L- >X1-XMIN)/(2*XMIN)*MAX_X);
L->X2 = myabs((L- > X2-XMIN)/2*XMIN)*MAX_X):
L->Y1 = myabs((L->Y1-YMIN)/(2*YMIN)*MAX_Y);
L->Y2 = myabs((L-> Y2-YMIN)/(2*YMIN)*MAX_Y):

/* standard limits on iris are: 1279.0 . 1023.0 */
} /* end map_to_screen*/

/* A raw line goes thru the normalizing transformation and clipping.
A | is returned if line was not totally clipped out of view */

int project_line(X.Y,Z, ORIENT.L.W.WILFL)

double X,Y,Z.ORIENT:

LINE *L;

WINDOW *W *W]|:
double FL:

double ZMIN . SCALEX.SCALEY . SCALEZ.VRP_Z:
im USED_LINE=1.CLIPT:

double fi=1.24:

double X1.Y1.Z1. XTEMP.YTEMP;

translate_line(L.-W->XMIN.-W-> YMIN.-W->ZMIN): /*Make VRP origin*/
rot_z(L.-ORIENT):
X1=X-W->XMIN: /*TRANSLATE and rotate the camera position®/
Y1=Y-W->YMIN:
Z1=2Z-W->ZMIN;
XTEMP=X1.
YTEMP=YI:.
X1 = XTEMP*cos(-ORIENT)-YTEMP*sin(-ORIENT).
Y1 = YTEMP*cos(-ORIENT) + XTEMP*sin(-ORIENT):
translate_line(L.-X1.-Y1.-Z1):
/* change from world to view coords */

/* shear so view volume centered on z-axis is not needed*/

/* now scale view vol to unity using s_per */

/* NOTE: FAR_CLIP is global value */
VRP_Z = -Y1; /*since still in world coords*/
SCALEX = 2.0*VRP_Z/((W1->XMAX-WI1->XMIN)*(VRP_Z+FARCLIP)):
SCALEY = 2.0*VRP_Z/(WI->YMAX-WI- > YMIN)*(VRP_Z + FARCLIP)):
SCALEZ = -1.0/(VRP_Z+FARCLIP);
shifi_coord_line(L);
scale_line(L,SCALEX,SCALEY . SCALEZ):
ZMIN=SCALEZ*(VRP_Z+NEARCLIP);
get_clipping_codes(L.ZMIN):

CLIPT =¢lip_line_3d(L): /*see if any of line is showing*/
if (CLIPT!=0) { /*if so clip off unwanted parts*/
if CLIPT==1)

clip_line (L.ZMIN).

A-48

perspective_transform(L.ZMIN): /*project onto window™/
map_to_screen(L.ZMIN,ZMIN): /*map to device coords*/
}
else
USED_LINE=0:
return USED_LINE: /*let caller know if line accepted or not*/
} /* end project_line */

/* Remove unwanted lines from final list. Notice that this is only used by
get_view to filter out the set of line returned from conduct_visibility_sweep*/
void remove_line(L,LII)

LINE *L;

LINE_HEAD *LH.

LINE *NEXT_L=LH->LINE_LIST. *TRASH:

if (L==LH->LINE_LIST) {
LH->LINE_LIST=LH->LINE_LIST- >NEXT:

free(L):
H
else {
while (NEXT_L->NEXT)&&(NEXT_L->NEXT!=L)){
NEXT_L=NEXT_L->NEXT:
}
NEXT_L->NEXT=NEXT_L->NEXT->NEXT:
free(L):
}
LH- > LINES--;

} /* end remove_line */

void remove_vert_line(L L)
LINE *L;
LINE_HEAD *LH:

LINE *NEXT_L=LH->VLINE_LIST. *TRASH:

if (L==LH->VLINE_LIST) {
LH->VLINE_LIST=LH->VLINE_LIST->NEXT:
free(L):

1

else {
while (NEXT_L->NEXT)&&(NEXT_L->NEXT!=L)){

NEXT_L=NEXT_L->NEXT:

}

NEXT_L->NEXT=NEXT_L->NEXT->NEXT:
free(L):

LH->VERT_LINES--;
} /* end remove_vert_line */

A-49

/* Called from outside the file. This function calls conduct_visibility _sweep

(file visibility.h) to generate a list of lines which may be visible froin

the camera position (PRPX,PRPY ,PRPZ). The returned lines are then inspected to
determine if they fall within the cameras ficld of vision (view volume), Those

that don’t are removed from the list. Those that are seen are projected into

2d coodinates and mapped to an output device (i.e.- an irts screen). The camera
field of vision is determined by focal length (FL) parameter and the CCD size
declared at the top of this file.

INPUT: camera position PRPX,PRPY,PRPZ
camera orientatiuon ORIENT (0.0 is down y-axis of model)
target world pointer W
camera focal length FL
*/

LINE_HEAD *get_view(PRPX,PRPY ,PRPZ.ORIENT.W FL)

double PRPX.PRPY.PRPZ.ORIENT,FL:

WORLD *W;
{
LINE *NEXT_L.*TRASH:
LINE_HEAD *LH: /*ist of visible lines*/

WINDOW *WIN, *WI:
double Z1.22. XX.YY, ZZ. XTEMP. YTEMP:
int count =0:

VIEW_ANGLE=2.0*atan(CCD/(2.0*FL)).

ORIENT=O0ORIENT*PI/180.0: /*convert to rads*/

WIN =calc_window(PRPX.PRPY.PRPZ.ORIENT .FL). /*2nd window for reference*/

W1 =calc_window(PRPX.PRPY.PRPZ.ORIENT.FL):

translate_window(W1,-(WIN- > XMIN).-(WIN- > YMIN).
-(WIN->ZMIN)):

rot_window(W1.-ORIENT):

XX =PRPX-WIN->XMIN: /*calculate PRP ™/

YY =PRPY-WIN-> YMIN:

ZZ=PRPZ-WIN->ZMIN:

XTEMP=XX:

YTEMP=YY:

XX = XTEMP*cos(-ORIENT)-YTEMP*sin(-ORIENT):

YY = YTEMP*cos(-ORIENT) + XTEMP*sin(-ORIENT);

translate_window(W1.-XX.-YY.-ZZ):

/*shift from model to graphics coordinates*/
shifi_coord_window(W1):

/*Get the set of all lines which may be visible*/
LH=conduct_visibility_sweep(W,PkrX.PRPY.PRPZ):
NEXT_L=LH->VLINE_LIST:
while (NEXT_L) {

if (project_line(PRPX.PRPY,PRPZ.ORIENT.NEXT_L.WIN.W1.FL)'=1){
TRASH=NEXT_L:
NEXT_L=NEXT_L->NEXT:
remove_vert_line(TRASH.LH): /*delete unscen lines®/

}

else {
NEXT_L=NEXT_L->NEXT:

)

} /* end while */
NEXT_L=LH->LINE_LIST:
while (NEXT_L) {
if (project_line(PRPX . PRPY .PRPZ.ORIENT.NEXT_L.WIN.W1,FL)!=1){
TRASH=NEXT_L;
NEXT_L=NEXT_L->NEXT:
remove_line(TRASH.LH); /*delete unseen lines*/

else {

A-50

NEXT_L=NEXT_L->NEXT:

} /* end while */

free(WIN), /*deallocate memory*/
free(W1):
return LH: /*return list of lines seen (in final device coords™/

} /* end get_view */

/* This function operates exactly like get_view except that no call is made
to conduct_visiblity_sweep. Instead the model is stepped through and
make_line is called to construct each line from the model. The resulting
output is a list of all mode! lines (as if everything was transparent).*/

LINE_HEAD *get_full_view(PRPX,PRPY,PRPZ,ORIENT,W,FL)

double PRPX . PRPY,PRPZ,ORIENT FL;
WORLD *W;

POLYHEDRON *NEXT_PH:
POLYGON *NEXT_PG:
VERTEX *NEXT_V:
INSTANCE *NEXT_L
LINE *NEXT_L:
LINE_HEAD *LH=create_line_head():
WINDOW *WIN. *W1I:
double Z1.Z2. XX. YY. ZZ. XTEMP, YTEMP:
int count=0:

ORIENT=(ORIENT-0.0)*PI/180.0:. /*convert lo rads*/
VIEW_ANGLE=2.0*atan(CCD/(2.0*FL)):
WIN =calc_window(PRPX ,PRPY ,PRPZ ,ORIENT.FL):
Wl =calc_window(PRPX,PRPY.PRPZ ORIENT.FL):
translate_window (W1 .-(WIN- >XMIN).-(WIN- > YMIN).
-(WIN->ZMIN)):
rot_window(W],-ORIENT):
XX =PRPX-WIN->XMIN:
YY=PRPY-WIN->YMIN:
ZZ=PRPZ-WIN->ZMIN:
XTEMP=XX:
YTEMP=YY:
XX = XTEMP*cos(-ORIENT)-YTEMP*sin(-ORIENT):
YY = YTEMP*cos(-ORIENT) + XTEMP*sin(-ORIENT):
translate_window(W1,-XX.-YY.-ZZ).
/* change from world to view coords */
shift_coord_window(W1):
NEXT_PH=W->POLYHEDRON_LIST:
while (NEXT_PH) {
NEXT_I=NEXT_PH- > INSTANCE_LIST:
while (NEXT_) {
NEXT_PG=NEXT_PH->POLYGON_LIST:
while(NEXT_PG) {
NEXT_V=NEXT_PG->VERTEX_LIST.
Z{=NEXT_PG->Z_VALUE;
while(NEXT_V) {
if (NEXT_V->VERT_EDGE) {
Z2=find_z(NEXT_PH,NEXT_V->VERT_EDGE):
NEXT_L =make_line(NEXT_ILNEXT_V NEXT_V->VERT_EDGE,Z1.Z2);
if (project_tine(PRPX,PRPY ,PRPZ.ORIENT.NEXT_L.WIN . W1 FL)==1){
add_lines(LH.NEXT_L):
}

} /% endif %

A-51

}

if (NEXT_V->NEXT) {
NEXT_L=make_line(NEXT_I.NEXT_V.NEXT_V->NEXT.ZI.ZI):
if (project_line(PRPX .PRPY PRPZ,ORIENT.NEXT_L.WIN.WI,FL)==1){
add_hnes(LH.NEXT_L);
}
NEXT_V=NEXT_V->NEXT:
} /*endif*/
else {
NEXT_L=make_line(NEXT_ILNEXT_V ,NEXT_PG->VERTEX_LIST.Z1,Z1);
if (project_line(PRPX,PRPY .PRPZ.ORIENT.NEXT_L.WIN.-WL FL)==1){
add_lines(LH.NEXT_L):
}

NEXT_V=NULL:
} /* end else */
} /* end while */
NEXT_PG=NEXT_PG->NEXT;
} /* end while */
NEXT _I=NEXT_l- > NEXT:
} /* end while */
NEXT_PH=NEXT_PH->NEXT:
} /* end while */
free(WIN): /*deallocate memory*/
free(W1):
return LH:
/* end get_full_view */

A-52

/ LL 2l LA AL T TR LA LS Rl Y]yl

FILE NAME: 2d+sim.h

AUTHOR: LT James Stein

PROJECT: Thesis. wire frame simulator for YAMIBICO
Date: Mar 1992

Calls to file(s): graphics.h
-lgl (general iris graphics library)

This program is used to display a world which has been created through
uses of the 2d+ model construction functions in file “2d + .¢". Objects in
the world are drawn to the screen as wire frames as seen from the current
robot configuration in the world.

The simulator currently gives you contro! of robot (eye)
movement through use of the mouse. The middle button provides a menu of
options for increasing/decreasing speed. pausing the simulation. starting
the simulation. and quitting. The robots direction is limited to the X/Z
plane and is controlled by the left/right mouse butions.

The simulator must be passed a pointer to 8 WORLD structure when called.
A query is then sent to the user 1o supply the initial configuaration
of the robot within this world.
e - » EL Py

typedef struct config
{
double X.Y.Z;
double THETA:
} CONFIG:

#define ASPECT 1.25 /*aspect ratio for display window*/
#define FOCAL_LEN 1.24 /*camera’s focal length*/
#define VIEW_FIELD 300.0 /*in tenths of degrees*/

/* Get the initial position and heading (configuaration) of the robot from user*/

CONFIG *get_initial_config()

CONFIG *START_CONFIG:
double DEGS:

START_CONFIG =(CONFIG *)malloc(sizeof(CONFIG)):
printf("\nEnter initial configuration of robot:\n");
printf("X:);
scanf("\n%If" . &START_CONFIG- > X):
printf("\nY: ");
scanf("\n%If" &START_CONFIG->Y);
prinf(*\nZ (height of eye): °);
scanf("\n%If" ,&START_CONFIG->2);
printf("\nEnter angle of orientation in X/Z plane (in degrees): 7):
scanf("\n % 1", &START_CONFIG- > THETA);
return START_CONFIG;
} /* end get_initial_config %/

A-53

void print_intro()

printf("\n\nintroduction to the YAMIBICO simulator:\n"):
printf("\n\nThis simulator will display a robot's ¢ye view of a world"):
printf("\nwhich has been constructed in the 2d+ format.”):
printf("\n\nThe world is displayed as a wire frame model and you can”):
printf("\ncontrol the walkthru's speed and motion.\n").

} /* end print_intro */

void print_instructions()

{
prnt{("\n\nINSTRUCTIONS :\n");
printf("\nYou will need to enter the stanting position of the robot "),
printf("\nin your world. The robots heading can be controlled by "):
primtf("\nhitting the left/right mouse buttons. The middle mouse);
printf("\nbutton will present you with a menu of other options for: *):
printf("\n -controlling speed);
printf("\n -pausing simulation "):
printf("\n -starting simulation "):
printf("\n -quitting simulation”):
printf("\n\n For now enter the starting position of your robot and ")
printf("\nthe theta angle in the X/Z plane: *):

} /* end print_instructions */

/* initialize the window parameters */

void initialize(}

{
winopen("WORLD VIEW");
wintitle("5th floor"):
doublebuffer():
RGBmode();
qdevice(REDRAW);
gdevice(WINQUIT);
qdevice(WINSHUT):
qdevice(LEFTMOUSE):
qdeviceMIDDLEMOUSE).
qdevice(RIGHTMOUSE);

} /* end of initialize */

/* define menus which can be presented to the user */
int define_wenus()

int MAIN_MENU,POLY_MENU.SELECT_MENU:
MAIN_MENU =defpup("OPTIONS: %1} START/RESTART | PAUSE | SLOWER | FASTER | STOP| QUIT% x99");

return (MAIN_MENU),
} /* end define_menus */

A-54

/“...““'..."‘.“““‘*““‘.““‘—- L 1] »

. FUNCTION: set_color()

* used to set the RGB color of display
LT PP IEL L LI YT LTI YT AL RIS TR RSP P e VTSR LA L L L L L

void set_color(index)
int index; /* color index from building array */
{

switch(index) {

case 0: RGBcolor(0, 0, 0):
break; /* black */

case 1: RGBcolor(255, 258§, 255):
break: /* white */

case 3: RGBcolor(0, 150. 0):
break: /* green ¥/

case 4: RGBcolor(0, 0, 245);

break; /* blue */
default:
print{("error in color coding™);

}

/* copy a new configuration into an old one */

translate_config(\WORLD_CONFIG.NEW_CONFIG)
CONFIG *WORLD_CONFIG. *NEW_CONFIG:

NEW_CONFIG->X=WORLD_CONFIG->X:
NEW_CONFIG->Y=WORLD_CONFIG->Y:
NEW_CONFIG->Z=WORLD_CONFIG->Z:
NEW_CONFIG->THETA=WORLD_CONFIG->THETA:

}

/* set up viewing situation in 3d environment*/

void proj_view_matrix(WORLD_CONFIG)
CONFIG *WORLD_CONFIG:
{
double REFX.REFZ;
CONFIG *NEW_CONFIG:

perspective(VIEW_FIELD,ASPECT NEARCLIP,FARCLIP):
NEW_CONFIG = (CONFIG *)malloc(sizeof(CONFIG)):
translate_config(WORLD_CONFIG.NEW_CONFIG):

REFX =(NEW_CONFIG- > X +cos(NEW_CONFIG- >THETA)):
REFZ=NEW_CONFIG- > Z+sin(NEW_CONFIG- >THETA):
lookat(NEW_CONFIG- >X.NEW_CONFIG->Y ,NEW_CONFIG->Z,

REFX,NEW_CONFIG->Y,REFZ,0); /*tell system the position of eye*/

free(NEW_CONFIG),
} /* end proj_view_matrix */

/* project movement of robot along current theta in proportion to
current velocity */

A-55

cale_coafig(OLD_CONFIG,VELOCITY NEW_CONFIG)
CONFIG *OLD_CONFIG, *NEW_CONFIG:
double VELOCITY:

NEW_CONFIG- >THETA=0LD_CONFIG- > THETA:

NEW_CONFIG- >Z=0LD_CONFIG->Z;

NEW_CONFIG- >X=0LD_CONFIG->X-VELOCITY*sin(OLD_CONFIG->THETA*PI/180.0):

NEW_CONFIG- > Y =0LD_CONFIG->Y + VELOCITY*cos(OLD_CONFIG- >THETA*P1/180.0):
} /% end calc_config */

/* print current configuration onto the screen */

void display_config(ORIENTATION)
CONFIG *ORIENTATION;
{
char *MSG;
CONFIG *DISPLAY:
double MOCK_V =5.0:

DISPLAY =(CONFIG *)malloc(sizeof(CONFIG)):
calc_config(ORIENTATION MOCK_V.DISPLAY):
MSG =(char *)calloc(80,sizeof(char)):
sprintfMSG,"X: %.21f Y: %.21f Z: % .2(,

ORIENTATION-> X ORIENTATION- > Y.ORIENTATION->Z).
¢mov2(500.0,100.0); /*hine for coordinates*/

charstrMMSG); /*line for orientation*/
cmov2(500.0,50.0);

sprimf(MSG,"THET A(degs): % .2If" .ORIENTATION->THETA).
charstr(MSG);

{ree(DISPLAY);

} /* end display_config */

/* Draw the set of lines extracted from the model to the screen*/

void draw_screen(LIST)
LINE_HEAD *LIST;

{
LINE *NEXT_L=LIST->LINE_LIST:

linewidth(1);

RGBcolor(0,0,0);
orth02(0.0,XMAXSCREEN,0.0,YMAXSCREEN);

while (NEXT_L) { {*draw non-vertical lines*/

move2(NEXT_L->X1.NEXT_L->YI);
draw2(NEXT_L->X2,NEXT_L->Y2);
NEXT_L=NEXT_L->NEXT;

}

NEXT_L=LIST->VLINE_LIST;

while (NEXT_L) { /*draw vertical lines*/
move2(NEXT_L->X1.NEXT_L->Y1).
draw2(NEXT_L->X2 NEXT_L->Y2);
NEXT_L=NEXT_L->NEXT:

} 7/* end draw_screen ¢/

A-56

/* Process the option selected from pull down menu
NOTE: some space is reserved for future functionallity*/

void processmenuhit(CHOICE RUN_PROGRAM.VELOCITY)
imt CHOICE:
int *RUN_PROGRAM:
double *VELOCITY:

{

switch(CHOICE) {

case -1: /* no selection */
break:

case 1: /* start simulation */
*RUN_PROGRAM=1;
break:

cas¢c 2: /* stop simulation */
*RUN_PROGRAM=0;
break:

case 3:

*VELOCITY-=10;

break: /*slower*/
case 4:

*VELOCITY + =20,

break: /*faster*/
case §:

*VELOCITY =0;

break: /*stop robot*/

/*future use®*/

case 6: /* pick closest polygon */
break:

case 7: /* pick next polygon */
break:

case 8: /* delete polygon */
break;

case 9: /* modify polygon */
break: i

case 99: /* terminate program ¢/
break:

default:
break:

} /* end switch on CHOICE */

} 7/* end processmenuhit */

A-57

/ v#min prmedure BRSPS E L ER S SR O b

Calls either the get_view or get_full_view function from file
graphi. ™ 2 1st will return a list of visible lines from
THE_WORLD while the latter returns a set of all lines.

[] “"“‘.“t‘.."“.“‘.'#.#.“./

void simulate(THE_WORLD)
WORLD *THE_WORLD:

CONFIG *OLD_CONFIG. *NEW_CONFIG:

int VALUE;

int MENU_CHOICE=1,MAIN_MENU . RUN_PROGRAM =0.COLLISION =0;
int *RP;

double VELOCITY =0;

double *V;

LINE_HEAD *LLIST:

print_intro();

print_instructions();

OLD_CONFIG=get_initial_config(): /*get stant position and heading*/

LLIST = get_full_view(OLD_CONFIG- > X .OLD_CONFIG- >Y.OLD_CONFIG->Z.
OLD_CONFIG- >THETA, THE_WORLD.FOCAL _LEN)./*get visible lines*/

initialize),

RP= &RUN_PROGRAM:

V= &VELOCITY: /*assign address of velocity to pointer V*/

MAIN_MENU =define_menus():

NEW_CONFIG =(CONFIG *)malloc(sizeof(CONFIG)): /*allcoate memory*/

proj_view_matrix(OLD_CONFIG):

zbuffer(TRUE):

RGBcolor(255.255,255): /*set to white*/

clear():

swapbuffers(): /*clear display screen®/

clear(:

draw_screen(LLIST); /*draw the view*/

RGBcolor(0.0.0);

display_config(OLD_CONFIG); /*display the starting configuration*/
zbuffer(FALSE);

swapbuffers(): /*double buffering to smooth out simulation*/

while (MENU_CHOICE!=99) {

if (qtestQ) { /* action is queued */
switch (qread(&VALUE)) {
case MIDDLEMOUSE.: /*bring up inenu of options*/

MENU_CHOICE = dopup(MAIN_MENU):
processmenuhitMENU_CHOICE.RP,V); /*go do what user selected*/
break:

case LEFTMOUSE: /*wurn left*/
OLD_CONFIG->THETA=0OLD_CONFIG- >THETA+5.0:

if (OLD_CONFIG->THETA >360.0)
OLD_CONFIG->THETA-=1360.0;

break;

A-58

case RIGHTMOUSE: /*turn nght*.
OLD_CONFIG->THETA-=5.0:
if (OLD_CONFIG->THETA <0.0)
OLD_CONFIG->THETA + =360.0:
break;
case REDRAW:
reshapeviewpor():
break:
case WINQUIT:
gexitQ:
break:
default:
break:
}
)
if RUN_PROGRAM==1) {
calc_config(OLD_CONFIG.VELOCITY .NEW_CONFIG)./*move IAW velocity*/
proj_view_matrix(NEW_CONFIG):
free_lines(LLIST); /*deallocate memory used last time*/
/*then get the next view*/
LLIST = get_full_view(NEW_CONFIG- >X.NEW_CONFIG- > Y.NEW_CONFIG->Z.
NEW_CONFIG- >THETA.THE_WORLD.FOCAL_LEN):
zbuffer(TRUE);
RGBcolor(255.255.,255): /*draw white on black*/
clear();
draw_screen(LLIST): /*draw the view*/
zbuffer(FALSE):
swapbuffersQ:
RGBcolor(0,0,0);
display_config(NEW_CONFIG); /*display the current configuration®/
RGBcolor(255.255.255).
OLD_CONFIG- >X=NEW_CONFIG->X: I*update to next configuration*/
OLD_CONFIG->Y=NEW_CONFIG->Y:
OLD_CONFIG->Z=NEW_CONFIG->Z:
OLD_CONFIG- >THETA=NEW_CONFIG- >THETA:
} /* end run program==1*%/
} /* end while */

free(OLD_CONFIG): /*deallocate last memory used*/
free(NEW_CONFIG);
free_lines(LLIST): /*notice the world is left intact*/

} /* end mainQ) */

A-59

/* FILE: 5th.h

AUTHOR: LT James Stein

THESIS ADVISOR: Dr. Kanayama

CALLS TO FILES: 2d+d.h

COMMENTS: This is the construction file for the 2d+ mode! of the
5th floor Spanagel Hall (Ist half only - up 10 glass double doors). All
coordinates are in inches while all angles are in degrees.

The main function "make_world" is calied to

build the mode! using function calls to file 2d +.h. Type definitions for
WORLD, POLYHEDRON, POLYGON, and VERTEX can be found at the top of this file
also.

Notice that the floor of H1 is one huge, concave polygon which
makes up the floor to the hallway as well as all of the office floors. To this
floor numerous ceilings are added for offices, door jams. and main corridors.
Doors, lights, and molding strips arc then added to the model as separate
polyhedra.
*/

WORLD *make_world()
{

WORLD *W;

POLYHEDRON *H1, *H2, *H3, *H4, *HS5. *H6. *H7, *H8. *H9. *H10. *H!1. *HI12.
*H13. *H14, *H15, *H16. *H17. *H18, *H19, *H20, *H21. *H22, *H23, *H24,
*H25, *H26, *H27. *H28, *H29, *H30. *H31, *H32. *H33. *H34. *H3S5. *H36.
*H37, *H38, *H39, *H40, *H41. *H42, *H43:

POLYGON *HI1P1, *HIP2. *H1P3.

*HIP4, *H1PS .*HI1P6. *"H1P7. *HI1P8. *HIP9. *HIPI0. *HIP} 1. *HIPI2.
*HI1P13, *HIPI4, *HIPIS5, *HIPI6. *HIP17. *HIPI8. *HIP19. *HIP20. *HIP21.
*H1P22, *HIP23, *HI1P24, *HIP2S5, *HI1P26. *HIP27. *HIP28. *H1P29, *HIP30.
*HI1P31, *HI1P32, *HI1P33. *HI1P34, *HIP35. *HIP36. *HI1P37. *HIP38. *H1P39,
*H1P40, *HI1P41, *HIP42, *HI1P43, *HIP44, *HIP45, *HIP46, *HIP47. *HI1P48.
*H1P49, *HIPSO, *HIPS1, *HIPS2. *HIPS3, *HIP54. *HIPSS. *HIPS6. *HIPST.
*HIP58, *HI1P59, *HIP60. *HIP61, *HIP62. *HIP63. *H1P64. *HI PGS,

*H2P1, *H2P2. *H3P1. *H3P2, *H4P1. *H4P2, *HS5PI, *HSP2.

*H6P!, *H7P1, *H7P2, *H8PI], *H8P2. *HIP], *HIP2, *H!0P], *H10P2,
*H1IP1, *H11P2, *H12P1, *HI12P2, *H13P1. *H13P2, *H14P1. *H14P2, *HI5P1,
*H15P2, *H16P1, *H16P2, *H17P1, *H17P2, *HI8P1. *H18P2, *HI9P1. *H19P2,
*H20P1, *H20P2.

*H21P1, *H21P2.
*H25P2, *H26P1.
*H30P1, *H30P2,
*H3IP1, *H31P2,
*H35P2. *H36P1,
*H40P1, *H40P2,

last_p:

*H22P1. *H22P2,
*H26P2, *H27P],

*H32P1. *H32P2.
*H36P2, *H37PI,
*H41P1. *H41P2,

*H23P1, *H23P2.
*H27P2. *H28PI1.

*H33P1. *H33P2,
*H37P2. *H38PI.
*H42Pl1. *H42P2.

*H24P1.
*H28P2.

*H34Pl1.
*H38P2.
*H43P).

*H24P2. *H25P1.
*H29P1. *H29P2.

*H34P2. *H3SPI.
*H39P1. *H39P2.
*H43P2,

VERTEX *HIP1V1, *HIP1V2, *HIP1V3, *HIP1V4. *HIPI VS, *HIPIV6, *HIPIV7,
*H1PIV8,*HIP1V9,*HIPI1VI10,*HIPIVI1, *HIP1VI2. *HIPIV13. *HIPI V14,

*H1PIV15,*HIP1V16,*HIP1VI17.*HIPIV1S,
*HIPIV22,*HIP1V23,*HIPIV24,*HIP1V2S,
*H1P1V29,*HIP1V30,*HIP1V3| *HIPIV32,
*H1P1V36,*H1PIV37 *H1PIV38,*HIP1V39,
*H1P1V43,*HIP1V44, *HIP1V45,*HIPIV46,
*H1P1VS0,*HIP1VS1,*HIP1VS2,*HIPIVS53,
*HIP1VS7,*HIPIVS8.*HIP1V59,*HIPIV60,
*HIP1V64,*HIP1V65,*HIPIV66.*HIPIV67,

*HIP1V2a, *HIP1V2b, *HIP1V2c, *HIPIV2d,
*H1P1V4a, *HIPIV4b, *HIPIV4c, *HIPIV4d,
*H1P1V6a, *HIP1V6b, *HIP1V6ec, *HIPIVGd,
*H1P1V8a, *HIPIV8b, *HIPIV8c, *HIPIVS8d,

*HIP1VI19,
*HIP1V26,
*HIP1V33,
*HIP1V40,
*H1P1V47,

*HIP1V2e.
*HIPIV4e,
*HIPIV6e.
*HiP1V8e.

*H1PIV20. *HIPIV21,
*HIP1V27. *HIPIV28,
*HIP1V34, *HIPIV3S,
*HIPIV4l, *HIPIV42,
*HIPIV48, *HIPIV49,
*HIP1V54, *HIP1VSS, *HIPIVS6,
*HIP1V6], *HIP1V62. *HIPIV63.
*HIP1V68, *HIPIV69. *HIPIVT0.

*HIPIV2f,
*“HIPIV4S,
*HIPIV6S,
*HIPIVSf.

A-60

*H1IP1V10a, *HIPIVI10b.
*HIPIVi2a, *HIPIVI2b,
*HIP1VI1da, *HIP1V14b,
*HI1P1Vi6a, *HIPIVI6b,
*HIP1V18b,
*HIPIV20b,
*HIP1V22b,
*HIP1V24b,
*HIPIV26b,
*HIP1V28b.
*HIP1V30b.
*HIP1V32b,
*HIP1V34db,
*HIP1V36b.
*HIP1V38b.
*HIPIV40b,
*HIP1V42lb,
*H1PIV4db,
*HIP1V46b,
*HIP1V48b,
*HIP1VS0b.
*HIPIVS2b.
*HIPIVSSb,
*HIP1VS58b.
*HIP1V60b,
*HIP1V63b.

*HIP1V]8a,
*HIP1V20a,
*HIPIV22a,
*HIPIV24a.
*HI1P1V26a,
*HIP1V28a,
*H1P1V30a,
*HIP1V32a,
*HIPIV3da,
*H1P1V36a,
*HIP1V38a,
*HI1P1V40a,
*HIP1V42a,
*H1iP1Vdda,
*H1P1V46a,
*H1P1V48a,
*HIP1V50a,
*HIPIVS2a.
*HIPIVSSa,
*HIPiV58a,
*HIP1V60a,
*HIPIV63a,

*H1PIV63g.

*HIP1V6Sa

*HIP1V6Sg,

*HIP1V68a, *HIP1V68h, *HIP1V68c. *HIPIV6Rd.

. *HIP1V6Sh.

*HIPIV1O0c.
*HIPIVI2:.
*HIPIVidc,
*HIPIV!éc,
*HIPIVI8c.
*HIP1V20c.

*HIPIV24c,
*HIPIV26c¢,
*HIP1V28c,
*HIP1V30c.
*HIP1V3l.
*HIPIV34c,
*H1P1V36c,
*HIP1V38c,
*HIP1V40c,
*HIPIV42c.
*HIPIVddc,
*HIP1V46¢,
*HiP1V48c,
*H1P1V50c,
*HIPIVS2c.
*H1P1VSSc.
*HIP1VS8c.
*HIP1V60c.,
*HIPIV63c,

*HIP1V65c,

*H1P2VI, *HIP2V2, *HIP2V3. *HIP2V4.
*HIP3VI. *HIP3V2 *HI1P3V3. *HIP3V4,

*HIP4V1,
*HIPSVI.
*HIP6VI.
*HIP7VI,
*HIP8V1.
*HIPIVI.
*HIPIOV], *HIP10V2,
*HIPIHIV]. *HIPI1V2,
*HIP12V1, *HIPI2V2,
*HIP13VI, *HIPI13V2,
*H1P14V1, *HIP14V2,
*HIPISVI. *HIP15V2,
*HIPI6VI, *HIP16V2.
*HIP17V1, *HIPITV2,
*H1PI8V], *HIPI8V2,
*HIPI9VIE, *HIPI9V2,
*H1P20V1, *HIP20V2,
*HIP21VI, *HIP21V2,
*H1P22V], *HIP22V2,
*H1P23V1, *HIP23V2,
*HiP24V1, *HIP24V2,
*H1P25V1, *HI1P25V2,
*HIP26V1, *HI1P26V2,
*HIP27VIL, *HIP27V2.
*H1P28V1, *H1P28V2,
*HIP29V1, *HIP29V2,

*HIP4V2.
*HIPSV2.
*HIP6V2,
*HIP7V2.
*HIP8V2.
*HIP9V2,

*H1P4V3.
*HIPSV3.
*HIP6V3,
*H1P7V3.
*HI1P8V3.
*HIPIV3,
*H1PIOV3, *HIPIOV4,
*HIPI1V3, *HIP11V4,
*HIP12V3. *HIPi2V4,
*HIP13V3, *HIPI3V4,
*HI1P14V3, *HIPI4V4,
*HIPISV3. *HIPISV4.
*HIPI6V3, *HIPI6V4,
*HIP17V3, *HIP17V4,
*H1P18V3, *HIPI8V4,
*HIPI9V3, *HIPI9V4,
*HIP20V3, *H1P20V4,
*HIP21V3, *HIP21V4,
*H1P22V3, *HIP22V4,
*HIP23V3, *HIP23V4,
*HIP24V3, *H1P24V4,
*HIP25V3, *HIP25V4.
*HI1P26V3, *HI1P26V4,
*H1P27V3, *HIP27V4,
*H1P28V3, *HIP28V4,
*H1P29V3, *HIP29V4,

*HIP4V4,
*HIPSV4.
*HIP6V4.,
*HIP7V4.
*HIP&V4.
*HIPYV4,

*HIP30VI, *HIP30V2, *HIP30V3, *HIP30V4.
*HIP31VI1. *HIP31V2, *HIP31V3. *HIP31V4, *HIP31VS,
*HIP32V1, *HIP32V1. *HIPI2V3, *H1P32V4, *HIP32VS,

*HIPIVI0d.
*HIPIVI2d.
*HIPIVI4d.
*HIPIVI16d.
*HIPIVI]&d.
*H1P1V20d.

*HIP1V24d,
*HIP1V26d,
*HIP1V28d.
*HIP1V30d.
*H1PIV32d,
*HIP1V34d,
*HIPIV36d,
*HIP1V38d,
*HIP1V40d.
*HIP1V42d.
*HIPiVdad,
*HIP1V46d.
*HIP1V48d.
*H1P1V50d.
*HIPIVS2d.
*HIP1V55d.
*HIPIVS58d.
*HIP1V60d.
*HIP1V63d.

*HIPIV65d.

*HIPIV]0e.
*HIPIVI2e.
*HIPIVide,
*HIPIV16e.
*HIP1VI8e.
*HIP1V20e.

*HIPIV24e.
*HIP1V26e.
*HIP1V28e.
*HIPIV30ec.
*HIP1V32e,
*HiP1V34e,
*HIPIV36e.
*HIP1V38e.
*HI1P1V40e,
*HIP1VA2e.

*HiPIV44e

*HIP1V65e.

*HIPIV68e.

A-61

*HIPIVI0f.
*HIPIVI2f.
*HIPIVLAL,
*HIP1V16f.
*HIP1VI&f.
*HIP1V20f,

*HIPIV24(,
*HIP1V26fL.
*HIPIV28(.
*HI1P1V30f,
*HIP1V32f,
*HIPIV34S,
*H1P1V36f.
*HIP1V38f.
*HI1P1V40f,
*HIPIVA2f,

*HIPIVAAL,
*H1P1V46e.
*HIP1V48e.
*HIP1VSO0e.
*HIPIVS2e.
*HIP1V5S5e.
*HIPIVS8e.
*HIP1V60e.
*HIP1V63e.

*HIP1V46f,
*HIP1VA4Sf.
*HIPIVSOL.
*HIPIV52f.
*HIP1VS5H.
*HIPIVSSf.
*HI1PIV60f.
*HIPIV63f.

*HIPIV6SS.

*HIP1V68f.

*H1P33V1, *HIP33V2, *HI1P33V3, *HIP33V4,
*H1P34V1, *H1P34V2, *H1P34V3, *HIP34V4,
*HIP35VI, *HIP35V2, *H1P35V3, *HIP35V4.

*HIP36VI, *HIP36V2.
*HIP37VI, *HIP37V2,
*HIP38VI, *HIP38V2,
*HIP39V1, *HIP39V2,
*H1P40V1. *"HIP40V2.
*“HIP41V1, *HIP41V2,
*HiP42VI, *H1P42V2,
*H1P43V], *HI1P43V2,
*HI1P44V1, *HIP44V2,
*HIP45V1, *H1P45V2,
*H1P46V1, *HIP46V2,
*HIP47V1, *HIP47V2,
*HI1P48V], *"HI1P48V2.
*H1P49V1, *HIP49V2,
*HI1PSOVI, *HIP50V2,
*HIP51V1, *HIP51V2,
*HIP52VL. *HIPS2V2,
*HIPS3VIL, *HIP53V2,
*HIP54VI], *HIP54V2,
*HIPSSVI. *HIPSSV2,
*HIP56VI. *HIP56V2,
*HIP57V1. *HIP57V2,
*HIP58VI1. *HIP58V2,
*HIP5S9V1. *HIP59V2,
*HIP60V1., *HIP60V2,
*HIP61VI, *HIP61V2,
*HIP62VI1, *HIP62V2.
*HIP63VI1, *HIP63V2,
*HIP64VI, *HIP64V2.
*HIP6SVI, *HIP6SV2,

*H2P1V1, *H2P1V2,
*H3PIVI, *H3PIV2,
*H4P1V1, *H4PIV2,
*HSPIVI1. *H5P1V2,
*H6P1V1, *H6P1V2,
*H7PIVI1, *H7P1IV2,
*H8PIV!, *H8P1V2,
*HIP1VI1, *HIPIV2,

*HI0PIV], *HI0P1V2, *HI0P1V3,
*HI1IPIV], *HIIPIV2, *H11PIV3,
*HI2P1V1, *HI2P1V2, *HI2PIV3,
*HI13P1VI, *H13P1V2, *H13PIV3,
*H14P1VI1, *H14P1V2, *H14P1V3,
*HISPIVI, *HISP1V2, *HISPIV3,
*H16P1V1, *HI6P1V2, *HI6P1V3,
*H17PtV1, *H17P1V2, *HITPIV],
*H18P1VI, *HI18P1V2, *H18P1V3,
*HI9P1VI, *HI9PIV2, *HI9PIV3.
*H20P1 V], *H20P1V2, *H20P1V3,
*H21P1V], *H21P1V2, *H2IP1V3],
*H22P1V1, *H22P1V2, *H22P1V3,
*H23PiV1, *H23P1V2, *H23P1V3,
*H24P1V1, *H24P1V2, *H24P1V3,
*H25P1V1, *H25P1V2, *H25P1V3,
*H26P1V1, *H26P1V2, *H26P1V3,
*H27P1VI1, *H27P1V2, *H27P1V3,
*H28P1V1, *H28P1V2, *H28PIV3,
*H29P1V1, *H29P1V2, *H29PIV3,

*H2P1V3.
*H3P1V3,
*H4P1V3,
*HSPIV3,
*H6P1V3,
*H7PIV3.
*H8PIV3,

*H9P1V3

*HIP36V3. *HIP36V4.
*H1P37V3. *HIP37V4,
*HIP38V3. *HIP38V4,
*HIP39V3, *HIP39V4.

*HI1P40V3, *Hi1P40V4,

*HIP41V3, *HIP41V4,
*HIP42V3, *HIP42V4,
*HIP43V3, *H1P43V4,
*H1P44V3, *HI1P44V4,
*HIP45V3, *HIP45V4,
*H1P46V3, *H1P46V4.
*HIP47V3, *HIP47V4,
*H1P48V3, *H1P48V4,
*HIP49V3, *H1P49V4,
*HIP50V3. *HIPS50V4,
*HIPS1V3, *HIPS1V4,
*HIPS2V3. *HIPS2V4,
*H1PS3V3. *HIP53V4,
*HIP54V3, *HIPS4V4,
*HIPSSV3, *HIPS5V4,
*HIPS6V3, *HIPS6V4.
*HIPSTV3, *HIPS7V4,
*HIPS8V3. *“HIP58V4,
*HIPS9V3, *HIP59V4,
*HIP60V3. *HIP60V4,
*HIP61V3, *HIP61V4,
*HIP62V3, *HIP62V4.
*HIP63V3. *HIP63V4,
*HI1P64V3. *HIP64V4.

*HIP65V3, *HIP65V4,

*H2PIV4. *H2P2VI,
*H3P1V4, *H3P2V1}.
*H4P1V4, *H4P2V].
*HSP1V4, *HSP2VI.
*H6P1V4.

*H7P1V4, *HTP2V1,
*H8P1V4, *H8P2V].
. *"HIPIV4, *HIP2V],

*H2P2V2.
*H3P2V2,
*H4P2V2,
*HSP2V2,

*H7P2V2.
*“H8P2V2,
*H9P2V2,
*HIOPIV4. *HI10P2VI,
*HIIP1V4, *H11P2VI.
*HI2P1V4, *HI2P2V],
*HI13P1V4, *HI3P2V],
*H14P1V4, *H14P2V],
*HISPIV4, *HISP2VI,
*HI6P1V4, *HI6P2VI,
*H17P1V4, *HI7P2V],
*H18PIV4, *HI8P2V],
*H19P1V4, *HI9P2V],
*H20P1V4, *H20P2VI,
*H21P1V4, *H21P2VI,
*H22P1V4, *H22P2V1,
*H23PIV4, *H23P2V1,
*H24P1V4, *H24P2V1,
*H25P1V4, *H25P2VI,
*H26P1V4, *H26P2V1,
*H27P1V4, *H27P2V], *H27P2V2,
*H28P1V4, *H28P2VI1, *H28P2V2,
*H29P1V4. *H29P2V1, *H29P2V2,

*H2P2V3.
*H3P2V3.
*H4P2V3,
*HSP2V3.

*H7P2V3.
*H8P2V3,
*H9P2V3,
*HI0P2V2,
*H11P2V2.,
*HI2P2V2,
*HI3P2V2,
*HI14P2V2,
*HISP2V2,
*HI6P2V2,
*H17P2V2,
*HI8P2V2,
*HI9P2V2.
*H20P2V2,
*H21P2V2,
*H22P2V2,
*H23P2V2,
*H24P2V2,
*H25P2V2,
*H26P2V2,

A-62

*H2P2V4.
*H3P2V4,
*H4P2V4,
*HS5P2V4.

*H7P2V4.
*H8P2V4,
*HIP2V4,

*H10P2V3, *H10P2V4,
*H11P2V3, *H11P2V4,
*HI2P2V3, *HI12P2V4,
*HI3P2V3, *H13P2V4,
*H14P2V3, *H14P2V4,
*HISP2V3, *HISP2V4,
*H16P2V3, *H16P2V4,
*H17P2V3, *H17P2V4,
*H18P2V3, *H18P2V4,
*HI9P2V3, *HI9P2V4,
*H20P2V3], *H20P2V4,
*H21P2V3, *H21P2V4,
*H22P2V3, *H22P2V4,
*H23P2V3, *H23P2V4,
*H24P2V3, *H24P2V4,
*H25P2V3, *H25P2V4,
*H26P2V3, *H26P2V4,
*“H27P2V3, *H27P2V4,
*H28P2V3. *H28P2V4,
*H29P2V3. *H29P2V4,

*H30PI VL. *H30PIV2, *H30P1V3, *H30P1V4, *H30P2VI, *H3I0P2V2.
*H31PIV], *H31PIV2, *H31PIV3. *H3IPIV4, *H31P2VI], *H31P2V2,
*H32P1V1, *H32P1V2, *H32PIV3, *H32P1V4, *H32P2V], *H32pP2V2,
*H33P1VI, *H33P1V2, *H33PIV3, *H33P1V4, *H33P2V], *H33P2V2,
*H34P1V1, *H34P1V2, *H34P1 V3. *H34P1V4, *H34P2V], *H34P2V2,
*H35P1VI, *H3SP1V2, *H3S5P1V3, *H35P1 V4, *H35P2V1]. *H35P2V2,
*H36P1VI1, *H36P1V2, *H36P1V3, *H36P1V4, *H36P2V], *H36P2V2,
*H37P1V1, *H37P1V2, *H37P1V3. *H37P1V4, *H37P2V], *H37P2V2,
*H38P1VI1, *H38P1V2, *H38P1V3, *H38P1V4, *H38P2VI1, *H38P2V2,
*H39P1V1, *H39P1V2, *H39r1V3, *H39P1V4, *H39P2V], *H39P2V2,
*H40P1V1, *H40P1V2, *H40P1V3, *H40P1 V4, *H40P2V 1. *H40P2V2,
*H41P1V1, *H41P1V2, *H41P1V3. *H41P1V4, *H41P2VI, *"H41P2V2,
*H42P1V1, *H42P1V2, *H42P1 V3. *H42P1V4, *H42P2V1. *H42P2V2.
*H43P1V1, *H43P1V2, *H43P1V3, *H43P1V4, *H43P2V1, *H43P2V2,
last_v:

W=add_world("5th_floor",9):
H1=add_ph("front_hall",10.W,1.0);
HIPl=add_pg(H1,0.0,1.0):

HIPIV] = add_vertex(H1P1.0.0.0.0):
HIPIV2 = add_vertex(H1P1.0.0,239.5). /*rm 506*/
HIP!V2a = add_venex(H1P1,-5.3.239.5);
HIPIV2b = add_vertex(H1P1.-5.3,203.3):
HIPIV2c = add_verntex(H1P1.-244.1,203.3);
HIPIV2d = add_vertex(H1P1.-244.1,309.4);
HIP1V2e = add_vertex(H1P1,-5.3.309 4);
HIPIV2{ = add_ventex(H1P1.-5.3,275.2):

HIP1V3 = add_vertex(H1P1,0.0,275.2);

HIPIV4 = add_vertex(Hi1P1,0.0.713.7); /*rm 510*/
HIPI1V4a = add_vertex(H1P1.-5.3.713.7):
HIP1V4b = add_vertex(H1P1.-5.3,677.5):
HIP1V4c = add_vertex(H1P1,-244.1.677.5).
HIPIV4d = add_vertex(H1P].-244.1.783.6):
HIPIV4e = add_vertex(H1P1.-5.3.783.6):
HIPIV4f = add_venex(H1P1.-5.3.749.4).

HIPIVS = add_vertex(H1P1.0.0,749 4):

HIPIV6 = add_vertex(H1P1.0.0.825.9). /* rm 512*/
HIP1V6a = add_vertex(H1P:.-5.3,825.9);

HIP1V6b = add_vertex(H1P1.-5.3,789.7);

HIP1V6c = add_vertex(H1P1,-244.1,789.7).
HIPIV6d = add_vertex(H1P].-244.1.895.8):
HIP1V6e = add_vertex(H1P1.-5.3.895.8):
HIPIV6f = add_vertex(H1P}.-5.3,861.6):

HIPIV7 = add_vertex(H1P1,0.0,861.6):

HIPIV8 = add_vertex(H1P1,0.0,937.5); /* rm 514%/
HIP1V8a = add_vertex(H1P1,-5.3,937.5);

HI1P1V8b = add_vertex(HiP1.-5.3,901.3);

HIP1V8c = add_vertex(H1P1,-244.1,901.3);
HIP1V8d = add_vertex(H1P1.-244.1,1007 .4);
HIP1V8e = add_vertex(H1P1.-5.3.1007.4);
HIPIVSf = add_vertex(HI1P1.-5.3.973.2);

HIPIV9 = add_vertex(H1P1,0.0.973.2);

HIPIVIO = add_vertex(H1P1,0.0,1049.7); /* rm 516 */
HIP1V10a = add_vertex(H1P!,-5.3,1049.7);

HIPIVIOb = add_vertex(H1P1.-5.3,1013.5);

HIP1V10c = add_vertex(H1P1,-244.1.1013.5);
HIP1V10d = add_vertex(H1P1,-244.1,1119.6);
HIPIV10e = add_verntex(H1P1.-5.3.1119.6):

A-63

*H30P2V3.
*H31P2V3.
*H32P2V3.
*H33P2V3.
*H34P2V3,
*H35P2V3,
*H36P2V3.
*H37P2V3,
*H38P2V3,
*H39P2V3.
*H40P2V3,
*H41P2V3,
*H42P2V3.
*H43P2V3,

*H30P2V4,
*H31P2V4.
*H32P2V4.
*H33P2V4,
*H34P2V4.
*H35P2Va.
*H36P2V4.
*H37P2V4.
*H38P2V4.
*H39P2V4,
*H40P2V4,
*H41P2V4.
*H42P2V4.
*H43P2V4.

HIPIVI10f = add_venex(H1P1,-5.3.1085.4);

HIPIVII = add_vertex(H1P1,0.0.108S 4):

HIP1V12= add_vertex(HIP1.0.0,1161.7): /* rmy S18 */
HIP1V12a = add_vertex(H1P1.-5.3,1161.7).
HIPIVI2b = add_vertex(HIP1.-5.3,1125.5):
HIPIVI2¢ = add_vertex(H1P1.-244.1,1125.5);
HIPIV]2d = add_vertex(H1P].-244.1.1231.6):
HIPIVI2e = add_vertex(H1P1,-5.3.1231.6).
HIPIVI2f = add_venex(HIP1.-5.3,1197.4):

HIP1V13 = add_vertex(H1P},0.0.1197.4);

HIP1VI14 = add_vertex(H1P1.0.0,1273.4): /* rm 520 */
HI1PI1Vida = add_vertex(H!P1.-5.3,1273.4).
HIP1V14b = add_vertex(H1P1,-5.3,1237.2):

HIPIV14c = add_vertex(H1P1.-244.1,1237.2);
HIPIVI4d = add_vertex(H1P1.-244.1.1343.3):
HIP1VI14e = add_ventex(H1P1.-5.3,1343.3):
HIPIVI14f = add_ventex(HI1P1,-5.3,1309.1).

HIPIVIS = add_vertex(H!P1.0.0.1309.1):

HIPIV16 = add_venex(H1P1.0.0.1429.6): /* rm 522R */
HIPIVI16a = add_vertex(H1P1,-5.3.1429.6):

HIP1V16b == add_ventex(HIP],-5.3.1393.4):

HIPIVI]6¢c = add_ventex(HIP1.-244.1.1393.4):
HIPIV16d = add_vertex(H1P1.-244.1.1499.5):
HIPIVi6e = add_vertex(H1P1.-5.3.1499.5):
HIPIVI16f = add_vertex(H1P1.-5.3.1461.3):

HIPIVIT7 = add_vertex(H1P1,0.0.1461.3):

HIP1VIi8 = add_venex(H1P1.0.0.1488.0): /* FD #1 */
HIP1VI18a = add_vertex(H1P1.-5.5,1488.0):
HIP1VI18b = add_vertex(HIP1,-5.5.1486.0).
HIP1Vi8c = add_venex(H1P1.-50.0.1486.0)
HIP1VI18d = add_vertex(H1P1.-50.0.1562.0).
HIP1V18c = add_vertex(HIP1.-5.5,1562.0):
HIP1VI8f = add_ventex(H1P1.-5.5.1560.0):

HIPIV19 = add_vertex(H1P1.0.0.1560.0):

HIP1V20 = add_vertex(H1P1.0.0.1583.3); /* rm 524 %/
HIP1V20a = add_vertex(H1P1.-5.3.1583.3):
HIP1V20b = add_vertex(H1P1.-5.3.1547.1):
HIPIV20c = add_vertex(HIP1.-244.1,1547.1):
HIPIV20d = add_vertex(H1P1.-244.1,1653.2).
HIP1V20e = add_vertex(HIP1,-5.3,1653.2):
HIPIV20f = add_vertex(H1P!.-5.3,1619.0):

HIPIV2l = add_venex(H1P1,0.0.1619.0):

HIP1V22 = add_ventex(H1P1,0.0,1650.4); /* water cooler */
HIP1V22a = add_verntex(H1P1.-30.0.1650.4):

HIP1V22b = add_vertex(H1P1,-30.0.1684.5):

HIP1V23 = add_vertex(H1P1.0.0.1684.5):

HIPIV24 = add_vertex(H1P1.0.0.1754.5): /* rm S26R */
H1P1V24a = add_vertex(H1P1,-5.3,1754.5):

HIP1V24b = add_vertex(H1P1.-5.3,1718.3):

HIP1V24c = add_ventex(H1P1,-244.1,1718.3);
HIPIV24d = add_vertex(H1P1,-244.1,1790.0);
HIP1V24e = add_vertex(H1P1,-5.3,1790.0);

HIPIV24f = add_vertex(H1P1,-5.3,1786.2).

HIP1V2S = add_venex(H1P1,0.0.1786.2).
HIPIV26 = add_vertex(H1P1.0.0.1836.4): /* rm 528A */

A-64

HIP1V26a = add_vertex(H1P1,-5.3,1836.4):
HIPIV26b = add_vertex(H1P],-5.3.1800.2):
HIP1V26c = add_ventex(H1P1.-244.1,1800.2):
HIPIV26d = add_vertex(HIP1.-244.1,1875.0):
HIPIV26¢ = add_vertex(H1P1.-5.3,1875.0):
HIP1V26f = add_vertex(H1P1.-5.3,1872.1);

HIPIV27 = add_vertex(H1P1.0.0.1872.1):

HIP1V28 = add_vertex(H1P1.0.0,1919.1): /* rm 528B */
HIP1V28a = add_vertex(HIP1.-5.3,1919.1):

HIP1V28b = add_vertex(H1P1,-5.3,1882.9);

H1P1V28¢c = add_vertex(H1P1,-244.1,1882.9);
HIP1V28d = add_vertex(H1P1,-244.1,1989.0):
HIP1V28e = add_vertex(H1P1,-5.3,1989.0);

HIP1V28f = add_vertex(H1P1,-5.3,1954.8);

HIP1V29 = add_vertex(H1P1,0.0,1954.8):

HIPIV30 = add_ventex(H1P1.0.0,2030.4): /* rm 530A */
HIPIV30a = add_vertex(H1P1.-5.3,2030.4):

HIP1V30b = add_vertex(HIP1.-5.3.1994.2):

HIP1V30c = add_venex(H1P1,-244.1,1994.2):
HIP1V30d = add_vertex(HIP1,-244.1.2100.3):
HIP1V30: = add_vertex(H1P1.-5.3.2100.3);

HIPIV30f = add_vertex(H1P1,-5.3.2066.1):

HIP1V3] = add_vertex(H1P1,0.0.2066.1):

HIP1V32 = add_vertex(H1P1,0.0,2195.1): /* rm 530B */
HIP1V32a = add_vertex(H1PI1,-5.3,2195.1);

HIPIV32b = add_vertex(H1P1,-5.3,2158.8):

HIP1V32c = add_vertex(H1P1,-244.1,2158.8):
HIP1V32d = add_ventex(H1P1,-244.1,2250.0):
HIP1V32e = add_venex(HIP1.-5.3.2250.0):

HIPIV32f = add_vertex(H1P1.-5.3.2230.8):

H1P1V33 = add_venex(H1P1.0.0.2230.8):

HIP1V34 = add_vertex(H1P}.0.0,2253.8): /* rm 530C */
HIP1V34a = add_vertex(H1P1.-5.3,2253.8);

HI1PIV34b = add_vertex(H1P1,-5.3,2251.0):

HIP1V34c = add_vertex(H1P1,-244.1.2251.0):
HIPiV34d = add_vertex(HIP1,-244.1,2350.0):
HIP1V34e = add_vertex(H1P1,-5.3.2350.0):

HIPIV34f = add_vertex(H1P1,-5.3,2289.5);

HIPIV35 = add_vertex(HIP1,0.0.2289.5):

HIPIV36 = add_vertex(H1P1,0.0.2351.2):

HIPIV37 = add_ventex(H1P1.98.0.2351.2).

HIP1V38 = add_vertex(H1P1,98.0,2171.9); /* rm 421 */
HI1P1V38a = add_vertex(H1P1,103.3,2171.9);
HIP1V38b = add_vertex(H1P1,103.3,2206.6):
HIP1V38c = add_vertex(H1P1,342.1,2206.6):
HIP1V38d = add_vertex(H1P1,342.1.2099.5);
HIP1V38e = add_vertex(H1P1,103.3,2099.5):
HIPIV38f = add_vertex(H1P1,103.3,2136.2).

HIP1V39 = add_vertex(H1P1,98.0,2136.2):

HIP1V40 = add_vertex(H1P1.98.0,1937.7): /* rm 531 */
HI1P1V40a = add_vertex(H!1P1,103.3,1937.7):
HIP1V40b = add_vertex(H1P1,103.3,1972.7):
HIPIV40c = add_vertex(H1P1,342.1.1972.7):
HIPIV40d = add_vertex(H1P1.342.1.1865.6):
HIPIV40e = add_vertex(H1P1,103.3.1865.6);
HIPIV40f = add_vertex(H1P1.,103.3,1877.7);

A-65

HIP1V4] = add_vertex(H1P1,98.0.1877.7);

H!PI1V42 = add_vertex(H1P1.98.0.1744.5); /* rm §29 %/
H1P1V42a = add_vertex(H1P1.103.3,1744.5):
HIP1V42b = add_vertex(H1P1.103.3,1779.5):
HIPIV42c = add_vertex(H1P1.342.1.1779.5).
HIPIV42d = add_ventex(H1P1.342.1,1672.4);
HIP1V42e = add_vertex(H1P1,103.3,1672.4):
HIPIV42f = add_vertex(H1P1,103.3,1684.5);

H1P1V43 = add_vertex(H1P1,98.0,1684.5);

HIP1V44 = add_vertex(H1P1,98.0,1522.4). /* rm 527 */
HIP1V44a = add_vertex(H1P1,103.3,1522.4);
H1IPIV44b = add_vertex(H1P1,103.3,1557.4):
HIP1V44c = add_ventex(H1P1,342.1,1557.4):
HIPIV44d = add_vertex(H1P1,342.1,1450.3):
HIPIV44e = add_vertex(H1P1,103.3,1450.3):
HI1PIV44f = add_vertex(H1P1,103.3,1462.4):

HI1P1V4S = add_vertex(H1P1,98.0.1462.4);

HIPIV46 = add_vertex(H1P1.98.0.1342.7): /* rm 525 */
H1PIV46a = add_vertex(H1P1,103.3.1342.7):
HIP1V46b = add_vertex(H1P1,103.3,1377.7):
HIP1V46¢c = add_vertex(H1P1,342.1.1377.7):
HI1P1V46d = add_vertex(H1P1,342.1,1270.6):
HI1P1V46e = add_vertex(H1P1,103.3,1270.6):
H1PIV46f = add_vertex(H1P1.103.3.1307.0):

HI1P1V47 = add_vertex(H1P1.98.0.1307.0):

HIP1V48 = add_ventex(H1P}1,98.0,1118.8): /* rm 523 */
H1P1V48a = add_vertex(H1P1,103.3,1118.8):
H1P1V48b = add_vertex(H1P1,103.3,1153.8);
HI1P1V48c = add_vertex(H1P1,342.1.1153.8):
HIP1V48d = add_vertex(H1P1.342.1.1046.7):
H1P1V48e = add_vertex(H1P1,103.3.1046.7):
HIPIV48f = add_vertex(H1P1.103.3,1083.1):

HIP1V49 = add_veniex(H1P1.98.0,1083.1):

HIPIVS50 = add_vertex(H1P1,98.0.796.1): /* rm 521 */
HIP1V50a = add_vertex(H1P1.103.3.796.1):
HIPIVS0b = add_vertex(H1P1.103.3.831.1):
HIPIV50c = add_vertex(H1P1,342.1.831.1):
HIPIV50d = add_vertex(H1P1.342.1.724.0):
HIP1V50e = add_vertex(H1P1,103.3.724.0):
HIP1VS50f = add_vertex(H1P1,103.3,760.4):

HIPIVS] = add_vertex(H1P1.98.0.760.4);

HIP1V52 = add_vertex(HiP1,92.0,564.5); /* rm S19 */
HIP1V52a = add_vertex(H1PI,103.3,564.5);
HIP1V52b = add_vertex(H1P1.103.3,599.5);
HIP1V52¢c = add_vertex(H1P1,342.1,599.5)
HIP1VS52d = add_vertex(H1P1,342.1,492.4);

HIP1V52e = add_vertex(H1P1,103.3,492.4);
HIP1VS2f = add_vertex(H1P1,103.3.528.8);

HIP1V53 = add_vertex(H1P1,98.0,528.8):

HIP1VS54 = add_vertex(H1P1,98.0.413.9); /* corners */
HIPIV5SS = add_vertex(H1P1,257.9,413.9); /* rm ? */
HIPIVS5a = add_vertex(H1P1,257.9.419.2);

HIPIV55b = add_vertex(H1P1.221.7.419.2);

HIPIV55¢c = add_vertex(H1P1,221.7.500.0);

HIP1V55d = add_vertex(H1P1,300.0,500.0):

HIP1VS5e = add_vertex(H1P1.300.0,419.2):

A-66

HIPIVSSf = add_ventex(H1P1.293.9.419.2):

HIPIVS56 = add_vertex(H1P},293.9.413.9);

HIPIV57 = add_vertex(H1P1,337.5,413.9):

HIPIVSS = add_vertex(H1P1,337.5,402.6); /* office */
HIPIVS8a = add_vertex(H1P1.342.8,402.6):
HIP1V58b = add_vertex(H1P1,342.8,600.0);
HIP1V58c = add_vertex(H1P1,449.9.600.0);
HIP1V58d = add_vertex(H1P1,449.9,330.0);
HIP1VS8¢ = add_ventex(H1P1,342.8.330.0);
HIP1VS8f = add_vertex(H1P1,342.8,342.6);

HIPIVS59 = add_vertex(H1P1.337.5.342.6);

HIP1V60 = add_vertex(H1P1,337.5,310.2): /* rm 51} %/
HIP1V60a = add_vertex(HI1P1,342.8,310.2):

HIPIV60b = add_verntex(H1P1,342.8.315.0):

HIP1V60c = add_vertex(H1P1,449.9,315.0);

HIP1V60d = add_vertex(H1P1,449.9,0.0);

HIP1V60e = add_venex(H1P1,342.8,0.0);

HIPIV60f = add_venex(H1P1,342.8,274.5);

HIPIV6] = add_vertex(H1P1.337.5.274.5):
HIPIV62 = add_vertex(H1P1.337.5.267 4).
HIPIV63 = add_ventex(H1P1.306.9.267.4). /* ¢lev 1 (left)*/
HIPIV63a = add_venex(H1P1.306.9,267.7):
HIPIV63b = add_vertex(H1P1.303.9,267.7):
HIPIV63c = add_vertex(H1P1.303.9.255.7).
HIPIV63d = add_vertex(H1P1,277.9,255.7);
HIP1V63e = add_vertex(H1P1,251.9,255.7);
HIPIV63f = add_vertex(H1P1.251.9.267.7);
HIP1V63g = add_vertex(H1P1.248.9.267.7):
H1PIV64 = add_vertex(H1P1.248.9.267.4):

I* elev 2 %/

HIPIV6Sa = add_vertex(H1P1,192.2,267.7):
HIPIV65b = add_vertex(H1P1,189.2,267.7):
HIPIV65c = add_venex(H1P1.189.2,255.7);
HIP1V6Sd = add_vertex(H1P1,163.2,255.7):
HIP1V65¢e = add_vertex(H1P1,137.2,255.7):
HIPIV6Sf = add_vertex(H1P1.137.2.267.7).
HIPIV6Sg = add_vertex(H1P1,134.2,267.7):
HIPIV66 = add_vertex(H1P1.134.2,267.4);

HIP1V67 = add_vertex(H1P1,98.0.267.4);

HIPIV6S = add_vertex(H1P1,98.0,100.0); /* stairwell */
HIP1V68a = add_vertex(H1P1,103.3.100.0):

HIP1V68b = add_vertex(H1P1,103.3,125.0);

H1P1V68c = add_vertex(H1P1,150.0,125.0);

HIP1V68d = add_vertex(H1P1,150.0,40.0).

HIPI1V68e = add_vertex(H1P1,103.3,40.0);

HIP1V68f = add_vertex(H1P1,103.3.64.3);

HIPIV69 = add_vertex(H1P1.98.0,64.3);

HIPIV70 = add_vertex(H1P!,98.0.0.0);

HIP2=add_pg(H1,102.0,0,1); /*main ceiling*/
HIP2V] = add_vertex(H1P2,0.0,0.0):
HIP2V2 = add_verex(H1P2,0.0,2351.2),
HIP2V3 = add_ventex(H1P2,98.0.2351.2);
HIP2V4 = add_vertex(H1P2,98.0,0.0):

H1P3=add_pg(H1,113.3.0,1); /*elev ceiling*/

A-67

HIP3V] = add_vertex(H1P3,98.0,267.4);
HIP3V2 = add_vertex(H1P3.98.0.413.9);
HIP3V3 = add_vertex(H1P3,337.5.413.9):
HIP3V4 = add_ventex(H1P3.337.5.267.4).

HI1P4 = add_pg(H1,84.0.0.1); /*rm 506 door jam cciling*/
H1P4V1= add_vertex(H1P4,0.0,239.5):

HIP4V2= add_vertex(H1P4,-5.3.239.5),

H1P4V3= add_vertex(H1P4,-5.3.275.2);

HIP4V4= add_vertex(H1P4,0.0,275.2);

HIP5 = add_pg(H1,84.0,0,1); /*rm 510 door jam ceiling*/
HIP5V1= add_vertex(H1P5,0.0.713.7);

HIP5V2= add_vertex(H1P5.-5.3.713.7);

HIPSV3= add_vertex(H1P5.-5.3,749.4):

HIP5V4= add_vertex(H1P5.0.0,749.4);

H1P6 = add_pg(H1,84.0,0.1); /*rm 512 door jam ceiling*/
HIP6V1 = add_vertex(H1P6,0.0.825.9);

HIP6V2= add_vertex(H1P6.-5.3.825.9):

H1P6V3= add_vertex(H1P6,-5.3,861.6):

H1P6V4= add_vertex(H1P6,0.0,861.6).

HIP7 = add_pg(H1,84.0,0,1): /*rm 514 door jam ceiling*/
HIP7V1= add_vertex(H1P7,0.0.937.5);

HIP7V2= add_vertex(H1P7.-5.3,937.5):

HIP7V3= add_vertex(H1P7.-5.3,973.2):

HIP7V4= add_vertex(H1P7.0.0,973.2).

H1P8 = add_pg(H1.84.0.0.1); /*rm 516 door jam ceiling*/
HIP8V1= add_vertex(H1P8.0.0,1049.7).

HIP8V2= add_vertex(H1P8.-5.3,1049.7).

H1P8V3= add_vertex(H1P8.-5.3,1085.4):

HIP8V4= add_vertex(H1P8.0.0.1085.4).

HiP9 = add_pg(H1,84.0.0.1): /*rm 518 door jam cciling*/
HIP9V1 = add_vertex(H1P9.0.0.1161.7).

HIPI9V2= add_vertex(H1P9.-5.3.1161.7);

HIPOV3= add_vertex(H1P9,-5.3,1197.4):

HIP9V4= add_venex(H1P9,0.0.1197.4);

HIPIO = add_pg(H1,84.0,0,1); /*rm 520 door jam ceiling*/
HIPIOV] = add_vertex(H1P10.,0.0,1273 4):

HIP10V2= add_vertex(H1P10,-5.3.1273.4):

HIPIOV3= add_ventex(H1P10.-5.3.1309.1):

HiP10V4= add_vertex(H1P10,0.0,1309.1):

HIP11 = add_pg(H1.84.0,0,1); /*rm 522R door jam ceiling*/
HIP11V]= add_vertex(H1P11,0.0,1429.6);

HIP11V2= add_vertex(H1P11.-5.3.1429.6):

HIPHIV3= add_vertex(H1P11.-5.3.1461.3)

HIP11V4= add_vertex(H1P11,0.0.1461.3);

HIPI12 = add_pg(H1,84.0,0,1); /*rm FD | door jam ceiling*/
HIP12V1 = add_vertex(H1P12,0.0,1488.0):

HIP12V2= add_vertex(H1P12,-5.5,1488.0);

HIPI2V3 = add_venex(H1P12,-5.5,1560.0);

HIPI2V4= add_vertex(H1P12.0.0,1560.0);

HIPI13 = add_pg(H1.84.0.0,1): /*rm 524 door jam ceiling®/
HIPI3V]1 = add_vertex(H1P13,0.0,1583.3);

HIP13V2= add_vertex(H1P13,-5.3,1583.3);

HI1P13V3= add_vertex(H1P13,-5.3,1619.0);

HIP13V4= add_vertex(H1P13,0.0.1619.0);

HIP14 = odd_pg(H1,84.0,0,1); /* 526R ceiling*/
HIPI4Vi= add_verex(H1P14,0.0.1754.5);

HIP14V2 = add_ventex(H1P14,-5.3,1754.5).

HIP14V3= add_vertex(H1P14,-5.3,1786.2);

H1IP14V4= add_vertex(H1P14.0.0.1786.2);

HIP15 = add_pg(H1,84.0,0,1); /*rm 528A door jam ceiling*/
HIPI5V] = add_ventex(H1P15.0.0,1836.4).

A-68

HIPI15SV2= add_vertex(HI1P15.-5.3,1836.4);

HIPI5V3= add_vertex(HIP15,-5.3,1872.1);

HIP15V4= add_vertex(H1P15,0.0.1872.1):

HIP16 = add_pg(H1.84.0,0.1); /*rm S28B door jam ceiling*/
H1P16V]= add_vertex(H1P16.0.0,1919.1).

HIP16V2= add_vertex(H!P16,-5.3,1919.1);

HIP16V3= add_vertex(H1P16,-5.3,1954.8);

H1P16V4= add_vertex(H1P16,0.0.1954.8):

HIP17 = add_pg(H1,84.0,0,1); /*rm 530A door jam ceiling*/
HIP17V] = add_vertex(H1P17,0.0.2030.4);

HIP17V2= add_vertex(H1P17.-5.3,2030.4);

HIP17V3= add_vertex(H1P17.-5.3.2066.1):

HIP17V4= add_vertex(H1P17,0.0.2066.1);

HIPI8 = add_pg(H1,84.0,0.1); /*rm $30B door jam ceiling*/
HIPI18VI= add_vertex(H1P18,0.0,2195.1):

HIP18V2= add_vertex(H1P18,-5.3.2195.1):

HIP18V3= add_vertex(H1P18,-5.3,2230.8);

HIP18V4= add_vertex(H1P18,0.0,2230.8);

HIP19 = add_pg(H1,84.0.0,1); /*rm 530C door jam ceiling*/
HIP19VI = add_vertex(H1P19.0.0.2253.8);

HIP19V2= add_vertex(HIP19,-5.3,2253.8):

HIP19V3= add_vertex(H1P19,-5.3,2289.5):

HIPI19V4= add_vertex(H1P19,0.0,2289.5).

HIP20 = add_pg(H1.84.0.0.1): /*rm 421 door jam ceiling*/
HIP20Vi= add_vertex(H1P20.98.0.2171.9).

HIP20V2= add_vertex(H1P20.103.3.2171.9).

H1P20V3= add_vertex(H1P20,103.3.2136.2):

HIP20V4= add_vertex(H1P20,98.0.2136.2);

HI1P21 = add_pg(H1,84.0,0,1); /*rm 531 door jam ceiling*/
HIP21V1 = add_vertex(H1P21,98.0,1937.7):

HIP21V2= add_ventex(H1P21,103.3.1937.7):

HIP21V3= add_vertex(H1P21.103.3.1877.7):

H1P21V4= add_vertex(H1P21,98.0.1877.7);

HI1P22 = add_pg(H1,84.0.0.1); /*rm 529 door jam ceiling*/
HIP22V1= add_vertex(H1P22,98.0.1744.5):

HIP22V2= add_vertex(H1P22,103.3,1744.5):

HI1P22V3 = add_vertex(H1P22,103.3,1684.5);

HIP22V4 = add_verex(H1P22,98.0.1684.5);

HI1P2) = add_pg(H1.84.0.0.1); /*rm 527 door jam ceiling*/
HIP23V]= add_vertex(H1P23,98.0.1522.4):

HIP23V2= add_venex(H1P23.103.3.1522.4):

HIP23V3= add venex(H1P23,103.3.1462.4):

HI1P23V4= add_vertex(H1P23.98.0.1462 4):

H1P24 = add_pg(H1,84.0.0.1): /*rm 525 door jam ceiling*/
H1P24V1i = add_vertex(H1P24,98.0.1342.7):

H1IP24V2= add_vertex(H1P24,103.3,1342.7):

H1P24V3= add_vertex(H1P24.103.0.1307.0):

H1P24V4= add_vertex(H1P24,98.0,1307.0);

HIP25 = add_pg(H1,84.0,0,1); /*rm 523 door jam ceiling®/
HIP25V1i= add_vertex(H1P25,98.0,1118.8):

HIP25V2= add_vertex(H1P25,103.3,1118.8);

HI1P25V3= add_vertex(H1P25,103.3.1083.1);

HIP25V4= add_venex(H1P25,98.0,1083.1):

HIP26 = add_pg(H1,84.0,0.1); /*rm 521 door jam ceiling*/
H1P26VI = add_vertex(H1P26,98.0,796.1);

HIP26V2= add_vertex(H1P26,103.3,796.1):

HI1P26V3= add_vertex(H1P26,103.3,760.4):

HIP26V4= add_vertex(H1P26.98.0,760.4):

HIP27 = add_pg(H1,84.0,0.1); /*rm 519 door jam ceiling®/
HIP27V] = add_vertex(H1P27,98.0.564.5):

HIP2TV2= add_vertex(H1P27,103.3,564.5);

HIP27V3= add_vertex(H1P27,103.3,528.8);

A-69

HIP27V4= add_vertex(H1P27,98.0,528.8):

H1P28 = add_pg(H1,84.0,0,1); /*rm ? door jam ceiling*/
HIP28V! = add_vertex(H1P28,257.9.413.9):

HIP28V2= add_verntex(H1P28,257.9.419.2).

HIP28V3= add_vertex(H1P28,293.9,419.2),

HIP28V4= add_vertex(H1P28,293.9.413.9).

H1P29 = add_pg(H1,84.0,0,1); /* office door jam ceiling*/
H1P29V1= add_vertex(H1P29.337.5,402.6).

HI1P29V2= add_vertex(H1P29,342.8,402.6);

HIP29V3 = add_vertex(H1P29,342.8,342.6);

H1P29V4= add_vertex(H1P29,337.5,342.6):

HIP30 = add_pg(H1,84.0.0.1); /* rm S11 door jam ceiling®/
HIP30VI] = add_vertex(H1P30,337.5,310.2).

H1P30V2= add_vertex(H1P30,342.8.310.2):

H1P30V3= add_vertex(H1P30,342.8.274.5).

HIP30V4= add_vertex(H1P30,337.5.274.5):

HIP31 = add_pg(H1,83.8,0,1); /* clev 1 door jam ceiling*/
HIP31V] = add_vertex(H1P31,303.9.267.7);
HIP31V2= add_vertex(H!1P31,303.9.255.7);
HIP31V3= add_venex(H1P31,277.9,255.7);
HIP31V4= add_vertex(H1P31.251.9.2558.7):
HIP31V5= add_vertex(H1P31.251.9,267.7):
HI1P32 = add_pg(H1,83.8.0.1); /* ¢lev 2 door jam ceiling*/
HIP32V] = add_vertex(H1P32.189.2.267.7):
HIP32V2= add_vertex(H1P32.189.2.255.7):
HIP32V3= add_vertex(H1P32,163.2,.255.7):
H1P32V4= add_vertex(H1P32,137.2,255.7).
H1P32VS= add_vertex(H1P32,137.2.267.7):

HIP63 = add_pg(H1.86.8,0.1): /* elev | ceiling*/
HIP63V1 = add_vertex(H1P63.306.9,267.4):
HIP63V2= add_vertex(H1P63,306.9.267.7);
HIP63V3= add_vertex(H1P63,248.9.267.7).
HIP63V4= add_vertex(H1P63,248.9.267 .4).

H1P64 = add_pg(H1,86.8.0,1): /* ¢lev 2 ceiling*/

HIP64V3= add_vertex(H1P64,134.2,267.7).
HIP64V4= add_vertex(H1P64,134.2,267.4);

HI1P33 = add_pg(H1,84.0,0,1); /* stairwell door jam ceiling®/
H1P33V1= add_vertex(H1P33,98.0,100.0):

HIP33V2:= add_vertex(H1P33,103.3,100.0):

HIP33V3= add_vertex(H1P33.103.3.64.3).

HIP33V4= add_vertex(H1P33,98.0.64.3);

H1IP34 = add_pg(H1,144.0.0,1): /*rm 506 ceiling*/
HIP34V] = add_vertex(H1P34,-5.3,203.3);
H1P34V2= add_vertex(H1P34.-244.1,203.3);
HIP34V3= add_vertex(H1P34.-244.1,309.4);
H1P34V4= add_vertex(H1P34,-5.3,309.4).

HIP35 = add_pg(H1,144.0,0,1); /*rm 510 ceiling*/
HIP35V| = add_vertex(H1P35.-5.3.677.5);
HIP35V2= add_vertex(H1P35,-244.1,677.5);
HIP35V3= add_venex(H1P35,-244.1,783.6);
HIP35V4= add_vertex(H1P35.-5.3,783.6);

HIP36 = add_pg(H1,144.0,0.1); /*rm 512 ceiling*/
H1P36V!= add_vertex(H1P36.-5.3.789.7):
HIP36V2= add_vertex(H1P36,.-244.1,789.7).

A-70

HI1P36V3= add_vertex(H1P36.-244.]1.895.8).
HIP36V4= add_vertex(H1P36.-5.3.895 .8);

HIP37 = add_pg(H1,144.0,0.1). /*rm 514 ceiling*/
HIP37V] = add_venex(H1P37..5.3,90] .3):
HIP37V2= add_vertex(H1P37.-244.1.901.3).
HIP37V3= add_vertex(H1P37.-244.1.1007.4);
HIP37V4= add_venex(H1P37,-5.3.1007.4),

HIP38 = add_pg(H1,144.0,0,1); /*rm 5§16 ceiling*/
H1P38V1= add_vertex(H1P38,-5.3,1013.5):
HIP38V2= add_vertex(H1P38.-244.1,1013.5):
HI1P38V3= add_vertex(H1P38.-244.1.1119.6).
H1P38V4= add_venex(H1P38.-5.3,1119.6);

HIP39 = add_pg(H1,144.0,0,1); /*rm 5§18 ceiling*/
HIP39VI = add_ventex(H1P39.-5.3.1125.5);
HIP39V2= add_verex(H1P39,-244.1,1125.5):
H1P39V3= add_vertex(H1P39,-244.1,1231.6).
H1P39V4= add_vertex(H1P39.-5.3.1231 .6):

H1P40 = add_pg(H1,144.0.0,1); /*rm 520 ceiling®/
H1P40V1 = add_vertex(H1P40,-5.3,1237.2};
HIP4OV2 = add_vertex(H1P40.-244.1,1237.2).
H1P40V3= add_vertex(H1P40.-244.1.1343.3):
HIP40V4= add_vertex(H1P40.-5.3.1343.3):

H1P4] = add_pg(H1.144.0.0.1); /*rm 522R ceiling*/
HI1P41VI1= add_vertex(H1P41.-5.3.1393.4):
HIP41V2= add_vertex(H1P41.-244.1.1393 .4):
HIP41V3= add_vertex(H1P41.-244.]1.1499.5):
H1P41V4= add_vertex(H1P41.-5.3,1499.5):

HI1P42 = add_pg(H1,144.0.0.1): /* FDI ceiling*/
H1P42V1 = add_vertex(H1P42.-5.5.1486.0):
HIP42V2= add_vertex(H1P42.-50.0.1486.0):
HIP42V3 = add_vertex(H1P42.-50.0.1562.0).
H1P42V4= add_vertex(H1P42.-5.5.1562.0)

HIP43 = add_pg(H1.144.0.0.1): /*rm 524 cciling®’
HIP43V1 = add_vertex(H1P43.-5.3,1547.1):
HIP43V2= add_vertex(H1P43.-244.1.1547.1):
H1P43V3= add_verntex(H1P43,-244.1,1653.2):
H1P43V4= add_vertex(H1P43.-5.3.1653.2):

HI1P44 = add_pg(H1.84.0,0.1): /* water fountain ceiling®/
H1P44V1 = add_ventex(H1P44,0.0.1650.4):
HI1P44V2= add_venex(H1P44.-30.0.1650.4).
H1P44V3 = add_vertex(H1P44.-30.0.1684.5):
HIP44V4= add_vertex(H1P44.0.0.1684.5);

H1P4S = add_pg(H1,144.0,0.1): /*rm S26R ceiling*/
HIP45V1 = add_vertex(H1P45.-5.3.1718.3):
HIP45V2= add_ventex(H1P45.-244.1,1718.3):
HI1P4SV3= add_vertex(H1P45.-244.1,1790.0);
HIP45V4= add_vertex(H1P45,-5.3,1790.0):

HI1P46 = add_pg(H1,144.0.0.1): /*rm 528A ceiling*/
H1P46V1 = add_vertex(H1P46,-5.3.1800.2);
HIP46V2= add_vertex(H1P46.-244.1,1800.2):
HIP46V3 = add_vertex(H1P46,-244.1,1875.0);
H1iP46V4 = add_venex(H1P46,-5.3,1875.0);

HIP47 = add_pg(H1,144.0,0,1): /*rm 528B ceiling*/
HIP4TV] = add_vertex(H1P47,-5.3,1882.9):
HIP4TV2 = add_ventex(H1P47,-244.1,1882.9);
HIP47V3 = add_vertex(H1P47,-244.1,1989.0);
HIP4TV4= add_vertex(H1P47.-5.3,1989.0).

HIP48 = add_pg(H1,144.0.0.1); /*rm 530A ceiling*/
HIP48V1 = add_ventex(H1P48.-5.3,1994.2).
HIP48V2= add_vertex(H1P48,-244.1.1994.2);
HIP48V3 = add_vertex(H1P48.-244.1,2100.3);
H1P48V4 = add_vertex(H1P48.-5.3,2100.3):

A-71

HIP49 = add_pg(H1,144.0,0,1); /*rm S30B ceiling®/
HIP49V] = add_vertex(H1P49,-5.3.2158.8);
HI1P49V2 = add_vertex(H1P49.-244.1,2158.8):
HI1P49V3 = add_venex(H1P49.-244.1.2250.0):
HIP49V4 = add_venex(H1P49.-5.3,2250.0);

HIPS0 = add_pg(H1,144.0.0,1); /*rm 530C ceiling*/
HIP50V1 = add_venex(H1P50.-5.3,2251.0):
HIP50V2 = add_vertex(H1P50,-244.1,225]1.0):
HIPS0V3 = add_vertex(H1P50,-244.1,2350.0);
HIP50V4= add_vertex(H1P50,-5.3,2350.0):

/* following ceilings are incorrect based on 357 10 ¢ithes side of door*/

HIPS1 = add_pg(H1.144.0,0.1): /*rm 421 ceiling*/
HIP51V1 = add_vertex(H1P51,103.3,2206.6):
HIPS1V2= add_ventex(H1P51,342.1,2206.6):
HIPS1V3= add_vertex(H1P51,342.1,2099.5);
HIP51V4= add_vertex(HiP51,103.3,2099.5):
HIPS2 = add_pg(H1,144.0,0,1); /*rm 531 ceiling®/
HIP52Vi = add_vertex(H1P52,103.3.1972.7):
HI1PS2V2= add_venex(H1P52,342.1,1972.7).
H1P52V3 = add_ventex(H1P52,342.1.1865.6):
HIP52V4= add_vertex(H1P52.103.3.1865.6):
H1IP53 = add_pg(H1,144.0.0.1): /*rm 529 ceiling*/
HIP53V1 = add_vertex(H1P53.103.3.1779.5).
HIP53V2= add_vertex(H1P53.342.1,1779.5):
HIP53V3= add_vertex(H1P53,342.1.1672.4):
HIP53V4= add_vertex(H1P53.103.3,1672.4).
H1P54 = add_pg(H1,144.0.0.1): /*rm 527 ceiling*/
HIPS54V1= add_vertex(H1P54,103.3,1557.4):
HIP54V2= add_vertex(H1P54.342.1.1557.4):
HIP54V3= add_vertex(H1P54,342.1.1450.3):
HIP54V4= add_vertex(H1P54,103.3,1450.3):
HIPSS = add_pg(H1,144.0.0,1): /*rm 528 ceiling*/
HIP55V] = add_vertex(H1P55,103.3.1377.7):
H1IP55V2= add_vertex(H1P55.342.1,1377.7):
HIP55V3 = add_vertex(H!P55,342.1,1270.6):
HIP55V4= add_vertex(H1P55.103.3.1270.6):
HIP56 = add_pg(H1.144.0.0.1): /*rm 523 ceiling*/
HIP56V1 = add_vertex(H1P56.103.3.1153.8):
HIP56V2= add_vertex(H1P56.342.1.1153.8):
HIP56V3= add_vertex(H1P56.342.1.1046.7);
H1P56V4= add_vertex(H1P56,103.3.1046.7).
HIP57 = add_pg(H1,144.0,0,1); /*rm 521 ceciling*/
HIPS7V1= add_vertex(H1P57,103.3,831.1);
H1P57V2= add_vertex(H1P57.342.1.831.1):
HIPSTV3= add_ventex(H1P57,342.1,724.0):
HIPSTV4= add_vertex(H1P57,103.3,724.0);

HIP58 = add_pg(H1,144.0,0,1); /*rm 519 ceiling*/
HIP58V! = add_vertex(H1P58,103.3,599.5):
HIP58V2= add_vertex(H!P58,342.1.599.5);
HIP58V3 = add_vertex(H!P58,342.1,492 4).
HIP58V4= add_vertex(H1P58,103.3.492 4);

H1IPS9 = add_pg(H1,144.0,0,1); /*rm ? ceiling®/
HIPS9V] = add_vertex(H1P59,221.7,419.2):
HIP59V2= add_vertex(H1P59,221.7,500.0);
HIP59V3 = add_vertex(H1P$9,300.0,500.0);
H1P59V4= add_vertex(H1P59.300.0.419.2);

HIP60 = add_pg(H1,144.0,0,1); /* office ceiling®/
HIP60V| = add_vertex(H1P60,342.8,600.0);
HIP60V2 = add_vertex(H1P60,449.9,600.0);
HIP60V3 = add_vertex(H1P60.449.9.330.0).

A-72

H1P60V4 = add_vertex(H1P60,342.8,330.0):

HIP6I = add_pg(H1,144.0.0.1): /*rm §11 ceiling*/
HIP61V1= add_vertex(H1P61,342.8.315.0):
HIP61V2= add_vertex(H1P61.449.9.315.0),
HIP61V3= add_vertex(H1P61,449.9.0.0):
HIP61V4= add_vertex(H1P61.342.8.0.0):

HIP62 = add_pg(H1,144.0.0.1); /*rm stairwell ceiling*/
H1P62V1= add_vertex(H1P62,103.3,125.0):
HIP62V2= add_vertex(H1P62,150.0,125.0):
H1P62V3 = add_vertex(H1P62,150.0.40.0);
HIP62V4= add_vertex(H1P62,103.3.40.0);

/* Don’t forget 10 add the ceiling associations or else we can't el
how high each section of the hallway is*/

add_ceiling(H1P1,H1P2):

add_ceiling(H1P1,H1P3);

add_ceiling(H1P1,H1P4);

add_ceiling(H1P1 ,HIPS):

add_ceiling(H1P1,H1P6):

add_ceiling(H1P1,HIPT):

add_ceiling(H1P1, H1P8):

add_ceiling(HIP1.H1P9).

add_ceiling(HI1P1,HIP10):
add_ceiling(H1P1 . HIP11):
add_ceiling(H1P1,HI1P12):
add_ceiling(H1P1,H1P13).
add_ceiling(H1P1,HIP14):
add_ceiling(H1P1,HIP15):
add_ceiling(HIP1.H1P16):
add_ceiling(HIP1.HIP17):
add_ceiling(H1P1.H1P18):
add_ceiling(H1P1H1P19):
add_ceiling(H1P1.H1P20):
add_ceiling(H1P1, H1P21):
add_ceiling(H1P1,H1P22):
add_ceiling(H1P1,H1P23):
add_ceiling(H1P1.H1P24):
add_ceiling(H1P1,HI1P2S5):
add_ceiling(H1P1,H1P26).
add_ceiling(HIP} ,H1P27):
add_ceiling(H1P1,H1P28).
add_ceiling(H1P1,H1P29):
add_ceiling(H!P1,H1P30):
add_ceiling(H1P1, H1P31):
add_ceiling(H1P1.H1P32):
add_ceiling(H1P1.HIP33):
add_ceiling(H1P1 HI1P34):
add_ceiling(H1P1,HIP3S5);
add_ceiling(H1P1,H1P36).
add_ceiling(H1P1,H1P37):
add_ceiling(H1P1,H1P38).
add_ceiling(H1P1,H1P39);
add_ceiling(HI1P1,H1P40);
add_ceiling(H1P1,H1P41):
add_ceiling(H1P1,H1P42);
add_ceiling(H1P1,H1P43);
add_ceiling(HiP1,HIP44):
add_ceiling(H1P1,HIP4S5):
add_ceiling(H1P1,H1P46).
add_ceiling(H1P1 HIP4T).
add_ceiling(H1P1.H1P48);

A-73

add_ceiling(H1P1,H1P49):
add_ceiling(H1P1,H1P50):
add_ceiling(H1P1.HIPS1):
add_ceiling(H!1P1,HIPS52):
add_ceiling(H1P1 H1PS3):
add_ceiling(H1P1,HIPS4):
add_ceiling(H1P1,HIPS5).
add_ceiling(H1P1, H1P56);
add_ceiling(H1P1,HIP57):
add_ceiling(H1P1,H1P58);
add_ceiling(H1P1, H1P59);
add_ceiling(H1P1,H1P60);
add_ceiling(H1P1, H1P61):
add_ceiling(HIP1 H1P62):
add_ceiling(H1P1,H1P63);
add_ceiling(H1P1,H1P64);

/* Vertical edges must alway be explicitly added */

add_edge(HIPIVI HIP2VI):

add_edge(HIPIV2,HIP4VI1): /*link up vent edges of room 506*/
add_edge(HIP1V2a HIP4V2):

add_edge(H1PIV2b H1P34V1):

add_edge(HIP1V2c,H1P34V2):

add_edge(H1P1V2d . HIP34V3):

add_edge(H1P1V2e HIP34V4):

add_edge(HIPIV2f,HIP4V3):

add_edge(HIPIV3 HIP4V4):

add_edge(HIPIV4,HIPSVI); /*link up vert edges of room S10%/
add_edge(H1PIV4a HIP5V2):

add_edge(H1PIV4b,HIP35V1):

add_edge(H1P1V4c HIP35V2):

add_edge(H1P1V4d, HIP35V3),

add_edge(H1P1V4e HIP35V4),

add_edge(H1PI1V4f. HIPSV3):

add_edge(H1PIVS. HIPSV4):

add_edge(HIPIV6,HIP6V]): /*link up vert edges of room 512 */
add_edge(HIPI1V6a,HIP6V2):

add_edge(H1P1V6b.HIP36VI):

add_edge(H1P1V6c . HIP36V2):

add_edge(H1PIV6d,H1P36V3).

add_edge(H1P1V6e HIP36V4);

add_edge(HIP1V6f. HIPSV3):

add_edge(H1P1V7 HIP6VY),

add_edge(H1P1V8, HIP7VI1): /*link up vert edges of room 514%/
add_edge(H1P1V8a,HIPTV2):

add_edge(HIP1V8b,HIP3TVI);

add_edge(H1P1V8c,HIP37V2):

add_edge(H1P1V8d HIP37V3):

add_edge(HIP1V8e HIP37V4),

add_edge(HIPIVEf, HIPTV3),

add_edge(H1P1V9 HIPTV4);

add_edge(HIPIVIOHIP8VI): /*link up vert edges of room S16*/
add_edge(H1P1V10a,HIP§V2):

add_edge(HIPIVIOb HIP38V1);
add_edge(HIP1VI10c,HIP38V2),

add_edge(HI1P1V10d, HIP38V3);

add_edge(H1P1VI0e, HIP38V4),

add_edge(H1PIVIOf,HIP8V3),

add_edge(H1P1V]} HIP8V4):

add_edge(HIPIVI2,HIPIVI): /*link up vert edges of room S18*/
add_edge(HI1P1V12a HIP9V2):

A-74

add_edge(H1P1V12b,HIP3OV).

add_edge(HIPIV12¢,HIP39V2):

add_edge(H1P1V12d . HIP39V3):

add_edge(H1P1V12e, HIP39V4),

add_edge(HIPIVI2f, HIPOV3);

add_edge(HIPIVI3 HIP9VY),

add_edge(HIP1V14,HIP10V1); /*link up vent edges of room 520%/
add_edge(HIP1Vid4a,HIPIOV2):

add_edge(H1P1V14b,H1P40V1),

add_edge(H1P1Vidc, HIP40V2);

add_edge(H1P1V14d,H1P40V3):

add_edge(HIP1Vi1de, HIP40V4):

add_edge(H1P1VI14f,HIP10V3);

add_edge(H1PIVI1S, HIP10V4):

add_edge(HIPIVI6,HIPIIV1); /*link up vert edges of room S22R*/
add_edge(HIP1Vi6a,HIP11V2):

add_edge(HIPIV16b,HIP41VI1):

add_edge(H1P1V16¢,HIP41V2):

add_edge(H1P1V16d HIP41V3);

add_edge(H1P1V16e, HIP41V4),

add_edge(HIPIVI6f. HIP11V3).

add_edge(HIPIVI7,HIP11V4):

add_edge(HIP1VI8, HIPI2VI): /*link up vert edges of room FDI1*/
add_edge(HIP1V18a, HIP12V2):

add_edge(HIP1V18b,HIP42V]):

add_edge(H1P1VI18c, HIP42V2):

add_edge(H1P1V18d HIP42V3);

add_edge(HIP1V18e HIP42V4):

add_edge(H1PIVISf,HIP12V3):

add_edge(HIPIVI9,HIPI2V4);

add_edge(HIPIV20,HIP13V1): /*link up vert edges of room 524+/
add_edge(H1P1V203,HIP13V2):

add_edge(HIPIV20b, HIP43V1)).

add_edge(H1P1V20c,H1P43V2):

add_edge(H1P1V20d.H1P43V3):

add_edge(HIP1V20e HIP43V4):

add_edge(HIP1V20f,HIP13V3);

add_edge(H1P1V21,HIP13V4):

add_edge(HIPIV22 HIP44VI): /*link up ven edges of water fountain®/
add_edge(H1P1V22a, HIP44V2):

add_edge(H1P1V22b,H1P44V3):

add_edge(HIP1V23,HIP44V4);

add_edge(HIP1V24 HIP14V1): /*link up vert edges of room 5S26R*/
add_edge(H1P1V24a,HIP14V2).

add_edge(H1P1V24b.HIP45V1):

add_edge(HIP1V24c,HIP45V2):

add_edge(H1P1V24d,H1P45V3):

add_edge(H1P1V24¢, HIP45V4):

add_edge(HIP1V24f,H1P14V3):

add_edge(H1P1V2S HIP14V4);

add_edge(H1P1V26,HIPI5VI); /*link up vert edges of room S28A*/
add_edge(H1P1V26a, HIP15V2),

add_edge(H1P1V26b,HIP46V):

add_edge(H1P1V26¢c,HIP46V2);

add_edge(H1P1V26d,HIP46V3);

add_edge(H1P1V26e,HIP46V4):

add_edge(HIPIV26f,HIPI5V3);

add_edge(H1P1V27,HIPISV4Y);

add_edge(H1PIV28, HIP16V1); /*link up vert edges of room 528B*/
add_edge(H1P1V28a,HIP16V2).

add_edge(HIPIV28b HIP4TVI):

add_edge(H1P1V28c, HIP4TVY);

add_edge(H1PIV28d,HIP4TV3);

add_edge(H1P1V28e, HIP4TV4):

add_edge(H1P1V28f,H1P16V3):

add_edge(H1P1V29.HIPI6V4),

add_edge(HIPIV3O,HIPITVI): /*link up vert edges of room S30A*/
add_edge(HIPIV30a,HIP17V2);

add_edge(H1P1V30b,HIP48V1),

add_edge(H1P1V30c,H1P48V2),

add_edge(H1P1V30d,H1P48V3);

add_edge(H1P1V30¢e HIP48V4);

add_edge(H1P1V30f HIP17V3):

add_edge(H1P1V31,HIP17V4);

add_edge(H1P1V32,HIPI8VI); /*link up vert edges of room $30B*/
add_edge(H1P1V32a,HIP18V2);

add_edge(HIP1V32b,HIP49V1):

add_edge(HIP{V32¢c HIP49V2):

add_cdge(H1P1V32d,HIP49V3);

add_edge(H1P1V32¢,H1P49V4);

add_edge(HIP1V32{, HIPI8V3).

add_edge(HI1P1V33 HIP18V4):

add_edge(HIPIV34,HIPISV1): /*link up vert edges of room 530C*/
add_edge(HIP1V34a,HIPI9V2).

add_edge(H1P1V34b,HIP50V1);

add_edge(H1P1V34c, HIPSOV2).

add_edge(H1PIV34d . HIP50V3),

add_edge(HIP1V34e HIP50V4Y):

add_edge(HIPIV34f HIP19V3):

add_edge(H1P1V35,HIP19V4):

add_edge(H1P1V36,HIP2V2): /*corper*/
add_edge(HIPIV37,HIP2V3). /*corner*/
add_edge(HIP1V38,HIP20V1). /*link up vert edges of room 421*/
add_edge(HIP1V38a,HIP20V2):

add_edge(HIP1V38b,HIPSIVI):

add_edge(HIP1V38c, HIP51V2);

add_edge(H1P1V38d,HIP51V3):

add_edge(HI1P1V38e HIP51V4),

add_edge(H1P1V38{,H1P20V3).

add_edge(HIP1V39,H1P20V4):

add_edge(HIP1V40,H1P21V1); /*link up vert edges of room 531*/
add_edge(H1P1V40a, H1P21V2);

add_edge(H1P1V40b HIP52V1);

add_edge(HIP1V40c, HIP52V2);

add_edge(HIP1V40d, HIP52V3),

add_cdge(H1P1V40e,HIP52V4),

add_edge(HIP1V40f. HIP21V3),

add_edge(H1P1V41,HIP21V3);

add_edge(HIP1V42,HIP22VI]): /*link up vert edges of room 529/
add_edge(H1P1V42a,HIP22V2):

add_edge(H1P1V42b HIPS3V1),

add_edge(H1P1V42¢,HIP53V2),

add_edge(H1P1V42d,HI1P53V3),

add_edge(H1P1 V42e,H1PS3V4):

add_edge(H1P1V42(,HIP22V3),

add_edge(H1P1V43,H1P22V4).

add_edge(H1P1V44, H1P23V1); /*link up vert edges of room 527%/
add_edge(H1P1V44a, HIP23V2);

add_edge(H1P1V44b, HIP54V1);

add_cdge(H1P1V44c HIP54V2),

add_edge(HIP1V44d, HIP54V3),

add_edge(H1P1Vdde HIP54V4).

add_edge(H1PI1V44{, H1P23V3):

add_edge(H1P1V45 HIP23V4):

A-76

add_edge(HIPIV46, HIP24V 1), /*link up vert edges of room 525%/
add_cdge(H1P1V46a,H1P24V2):

add_edge(H1P1V46b . HIPS5V);

add_edge(HIP1V46¢c HIPS5V2):

add_edge(H1P1V46d.HIP55V3):

add_edge(H1P1V46e, HIPS5V4);

add_edge(HIP1V46f, H1P24V3);

add_edge(H1P1V47 H1P24V4);

add_edge(HIPI1V48 HIP25V1); /*link up vert edges of room 523*/
add_edge(HI1P1V48a HIP25V2):

add_edge(H1P1V48b,HIP56VI):

add_edge(HI1P1V48c,HIP56V2);

add_edge(H1P1V48d,H1P56V3),

add_edge(H1P1V48e HIP56V4):

add_edge(HIP1V48f, HIP25V3);

add_edge(HIP1V49 H1P25V4);

add_edge(HIP1VS0,HIP26V1): /*link up vert edges of room 521*/
add_edge(H1P1V50a,HIP26V2);

add_edge(HIP1V50b,HIP57V1);

add_edge(H1P1V50¢,HIPS7V2):

add_edge(H1P1V50d,HIPS7V3).

add_edge(H1P1V50e HIP57V4):

add_edge(HIP1VS0f.HI1P26V3);

add_edge(HIPIVSI HIP26V4):

add_edge(HIPIVS52,HIP27V1): /*link up vert edges of room S19*/
add_edge(H1P1V52a,HIP27V2),

add_edge(HIP1V52b,HIPS8V1):

add_edge(HIP1V52¢c HIP58V2):

add_edge(HIPIVS52d,H1P58V3):

add_cdge(H1P1VS52e HIP58V4):

add_edge(HIP1V52f HIP27V3).

add_edge(HIP1VS53,H1P27V4);

add_edge(HIPIVS4 HIP3V2), /*corner*/
add_edge(HIP1V55 . HIP28VI): /*link up vert edges of room ?*/
add_edge(H1P1V55a HIP28V2):

add_edge(HIP1V5Sb,HIP59V1):

add_edge(HIP1VS5¢c HIP59V2):

add_edge(H1P1V55d,H1P59V3):

add_edge(HIP1VS5S5e, HIP59V4);

add_edge(HIPIVS5f,HIP28V3):

add_edge(H1P1V536.HIP28V4):

add_edge(HIPIV5S7.HIP3V3). /*corner*/

add_edge(HIP1VS8, H1P29V1): /*link up vert edges of office 515 */
add_edge(HI1P1V58a,HIP29V2);

add_edge(HIP1VS58b, HIP60V),

add_edge(H1P1V58c HIP60V2):

add_cdge(HIP1VS58d,HIP60V3):

add_edge(HI1P1V58¢, HIP60V4):

add_edge(H1P1VS8f, HIP29V3);

add_edge(HIP1V59,H1P29V4);

add_edge(HIP1V60,HIP30V1); /*link up vert edges of room 511 */
add_edge(H1P1V60a,HIP30V2);

add_edge(H1P1V60b,HIP61V]):

add_edge(HIPIV60c . HIP61V2):

add_edge(H1P1V60d,HIP61V3):

add_edge(H1P1V60e HIP61V4).

add_edge(H1P1V60f,HIP30V3):

add_edge(HIP1V61 H1P30V4);

add_edge(HIPIV62,H1P3V4): /*comner*/

add_edge(HIPIV63,HIP63V1): /*link up vert edges of room ¢lev 1*/

A-T7

add_cdge(H1P1V63a,HIP63V2):
add_edge(HIP1V63b,HIP31V1);
add_edge(H1PIV63c, HIP31V2):
add_edge(H1P1V63d HIP31V3);
add_edge(HIP1V63e,HIP31V4),
add_edge(HIPIV6If,HIP31VS):
add_edge(HIP1V63g,HIP63V3);
add_edge(HIP1V64 HIP63V4):
add_edge(HI1PIV6S, HIP64VI). /*link up vert edges of room elev 2#/
add_edge(HIP1V6Sa, HIP64V2):
add_edge(HIP1V65b,HIP32VI):
add_edge(HIP1V6S5c,HIP32V2):
add_edge(HIPIV65d,HIP32V3):
add_edge(HIP1V65e,HIP32V4);
add_edge(HIPIV6Sf,HI1P32VS5);
add_edge(H1P1V65g, HI1P64V3);
add_edge(HIP1V66,H1P64V4);

add_edge(HIP1V67,HIP3V1); /*corner*/

add_edge(HIP1V68 HIP33VI): /*link up vent edges of stairwell*/
add_edge(HIP1V68a, HIP33V2):

add_edge(H1P1V68b HIP62V1):

add_edge(HIP1V68c HIP62V2):
add_edge(HIP1V68d.H1P62V3):

add_edge(HIP1V68e, HIP62V4):

add_edge(HIP1V68f.HI1P33V3);

add_edge(H1P1V69. HIP33V4):

add_edge(HIPIVTO.H1P2V4): /*corner*/

/* Now define the different classes of doors and put instances inside the
door jams */

add_instance("hallway”".7.H1.0.0.0.0.0.0.0.0.0.0.0.0):

H2=add_ph("office_door".11.W.0.1):
H2P)1 =add_pg(H2,0.0.1,1):

H2PIVI = add_vertex(H2P1.0.0.0.0):
H2P1V2 = add_ventex(H2P1,1.75.0.0):
H2P1V3 = add_vertex(H2P1.1.75.35.5):
H2PIV4 = add_vertex(H2P1.0.0,35.5):
H2P2=add_pg(H2,83.5.0.1):

H2P2VI1 = add_vertex(H2P2,0.0.0.0):
H2P2V2 = add_vertex(H2P2.1.75.0.0),
H2P2V3 = add_venex(H2P2,1.75,35.5);
H2P2V4 = add_vertex(H2P2.0.0.35.5):
add_edge(H2P1V1,H2P2V1): /*link up vert edges of door*/
add_edge(H2P1V2,H2P2V2);
add_edge(H2P1V3,H2P2V3):
add_edge(H2P1V4,H2P2V4):

add_ceiling(H2P1,H2P2);

add_instance("door506°,7.H2,-5.3,239.6,0.2.0.0.0.0,0.0):
add_instance("door510~,7,H2.-5.3,713.8,0.2,0.0.0.0.0.0):
add_instance("door512°,7,H2,-5.3,861.5,0.2.0.0,35.5,0.0);
add_instance("door514",7,H2,-5.3,937.6,0.2,0.0,0.0,0.0):
add_instance("door516",7,H2,-5.3,1085.3,0.2,0.0,35.5,0.0):
add_instance("door518°,7,H2.-5.3,1161.8,0.2,0.0.0.0,0.0);
add_instance("door520",7,H2.-§.3.1309.0,0.2.0.0.35.5.0.0):
add_instance("door524",7,H2.-5.3,1618.9.0.2,0.0,35.5.0.0).

A-78

add_instance("door§28A",8,H2,-5.3,1836.5.0.2,0.0.0.0.0.0):
add_instance("door528B",8,H2.-5.3.1919.2.0.2.0.0.0.0.0.0);
add_instance("door$30A".8.H2,-5.3,2030.5,0.2.0.0.0.0.0.0):
add_instance("door530B".8 H2.-5.3,2230.7,0.2.0.0,35.5.0.0):
add_instance("door530C" 8.H2.-5.3,2253.9,0.2.0.0,0.0.0.0):
add_instance("door4217.7,H2,103.3,2136.3.0.2,1.75,0.0,0.0):
add_instance("door525",7.H2,103.3,1342.6.0.2,1.75,35.5.0.0);
add_instance("door523",7.H2.103.3.1118.7,0.2.1.75.35.5.0.0):
add_instance("door521",7.H2.103.3,796.0,0.2.1.75.35.5.0.0);
add_instance("door519",7.H2,103.3.564.4.0.2,1.75,35.5.0.0);
add_instance("door?",5,H2,293.8.415.65.0.2,0.0,35.5.90.0);
add_instance("door511",7,H2,342.8,310.1.0.2,1,75,35.5,0.0):
add_instance("doorstairs",10,H2.103.3.64.4,0.2,1.75.0.0.0.0):

H3 =add_ph(“fire_door".9.W.0.1);
H3P1=add_pg(H3,0.0,1.1):

H3PIVI] = add_vertex(H3P1.0.0.0.0):
H3PIV2 = add_vertex(H3P1.1.75.0.0).
H3P1V3 = add_venex(H3P1,1.75.35.6):
H3P1V4 = add_vertex(H3P1.0.0.35.6):
H3P2=add_pg(H3,82.9,0.1):

H3P2V] = add_vertex(H3P2.0.0.0.0):
H3P2V2 = add_vertex(H3P2.1.75.0.0):
H3P2V3 = add_vertex(H3P2.1.75.35.6):
H3P2V4 = add_vertex(H3P2.0.0,35.6):
add_edge(H3PIVI . H3P2VI): /*link up ven edges of door*/
add_edge(H3P1V2 H3P2V2):
add_edge(H3PIV3 H3P2V3):
add_edge(H3PI1 V4, H3P2V4):

il

]

add_ceiling(H3P1.H3P2):

add_instance("1st_fire_doorl".13,H3.-5.5.1488.3,0.2.0.0,0.0.0.0):
add_instance("1st_fire_door2",13.H3.-5.5.1559.7.0.2.0.0.35.6.0.0):

H4=add_ph("restroom_door".13,W,0.1):
H4Pl=add_pg(H4,0.0.1,1):

H4P1VI = add_vertex(H4P1,0.0.0.0):
H4P1V2 = add_vertex(H4P1.1.75.0.0):
H4P1V3 = add_venex(H4P1.1.75.31.5):
H4P1V4 = add_vertex(H4P1.0.0.31.5).
H4P2=add_pg(H4.83.25.0.1):

H4P2V1 = add_vertex(H4P2.0.0.0.0):
H4P2V2 = add_vertex(H4P2.1.75.0.0):
H4P2V3 = add_vertex(H4P2,1.75,31.5);
H4P2V4 = add_vertex(H4P2,0.0.31.5);
add_edge(H4P1V]1 H4P2VI):
add_edge(H4P1V2,H4P2V2);
add_edge(H4P1V3,H4P2V3),
add_edge(H4P1V4,H4P2V4),

add_ceiling(H4P1,H4P2),

add_instance("door522R",8,H4.-5.3,1461.0.0.2,0.0,31.5,0.0);
add_instance("door526R" .8 H4.-5.3,1785.9.0.2.0.0.31.5,0.0):

HS=add_ph(“double_door".11,W,0.1);
H5P1=add_pg(H5.0.0.1.1):

H5PIVI = add_ventex(H5P1.0.0,0.0);
HS5PIV2 = add_ventex(H5P1,1.75.0.0);
HSPIV3 = add_vertex(H5PI1,1.75.29.6);

A-79

HSP1V4 = add_vertex(H5P1.0.0,29.6).
H5P2=add_pg(H5,82.9,0,1):

H5P2V1 = add_vertex(H5P2,0.0,0.0);

HSP2V2 = add_vertex(H5P2.1.75,0.0):

HIP2V3 = add_vertex(H5P2,1.75,29.6);

H5P2V4 == add_vertex(H5P2,0.0.29.6);
add_cdge(HSPIVI,HSP2VI1); /*link up vert edges of door*/
add_edge(HSP1V2,H5P2V2):

add_cdge(H5P1V3,H5P2V3);

add_edge(H5P1V4,H5P2V4):

add_ceiling(HSP1,HSP2):

add_instance("ldoor531",8,H5.103.3.1937.4,0.2,1.75,29.6.0.0);
add_instance("2door531",8,H5,103.3.1878.0,0.2.1.75.0.0.0.0):
add_instance("1door529",8.H5,103.3.1744.2.0.2,1.75.29.6,0.0):
add_instance("2door529",8,H5,103.3.1684.8.0.2,1.75.0.0.0.0):
add_instance("1door527,8,HS,103.3.1522.1.0.2,1.75.29.6,0.0).
add_instance("2door527°,8,H5,103.3.1462.7.0.2,1.75,0.0,0.0):
add_instance("1door_office”,12,H5,339.25.402.3,0.2,1.75,29.6.0.0):
add_instance("2door_office".12,H5,339.25,342.9,0.2,1.75,0.0,0.0):

/* Notice that lights have no height */

H6 =add_ph(“light".5.W.1.1):

H6P1 =add_pg(H6.0.0,1.1):

H6P1VI = add_vertex(H6P1.0.0.0.0):
H6P1V2 = add_vertex(H6P1,45.5.0.0):
H6PIV3 = add_vertex(H6P1.45.5,21.25).
H6P1V4 = add_ventex(H6P1.0.0.21.25):

add_instance("light1",6,H6.26.25.98.5.102.0.0.0.0.0.0.0):
add_instance("light2",6,H6,26.25,362.75.102.0.0.0.0.0.0.0).
add_instance("light3",6,H6,26.25.651.0.102.0,0.0,0.0,0.0):
add_instance("light4",6,H6.26.25,915.25,102.0,0.0,0.0.0.0):
add_instance("light5",6.H6.26.25.1251.5.102.0.0.0.0.0.0.0):
add_instance("light6",6.H6,26.25.1539.75.102.0.0.0.0.0.0.0):
add_instance("light7",6.H6,26.25.1828.0.102.0.0.0.0.0.0.0):
add_instance("light8",6,H6.26.25.2140.25,102.0,0.0.0.0,0.0):

/* Since all molding sizes are different. we need to add a separate
polyhedron for each onc. But we still need to add one instance
of each so it will appear in the model*/

/* 37 different molding pieces */

H7=add_ph("molding]",8,W.1,1):
H7P1=add_pg(H7.0.0,1,1);

H7P1V1 = add_ventex(H7P1.0.0.0.0):
H7P1V2 = add_vertex(H7P1,0.2.0.0);
H7P1V3 = add_vertex(H7P1.0.2.237.5):
H7P1V4 = add_vertex(H7P1.0.0.237.5);
H7P2=add_pg(H7,3.875.0.1).

H7P2V] = add_vertex(H7P2.0.0.0.0):
H7P2V2 = add_vertex(H7P2,0.2,0.0);
H7P2V3 = add_vertex(H7P2,0.2,237.5);
H7P2V4 = add_ventex(H7P2,0.0,237.5);
add_edge(H7P1VI HTP2VI]);
add_edge(H7TPIV2 HTP2V2):
add_edge(H7P1V3 H7P2V3),
add_edge(H7P1V4 HTP2V4):

A-80

add_ceiling(H7P1 H7P2):
add_instance("molding1",8.H7,0.0.0.0.0.0,0.0.0.0.0.0):

HR=add_ph("molding2".8.W.1.1):
H8Pl =add_pg(H8.0.0.1,1):

H8P1V1 = add_vertex(H8P1.0.0.0.0);
H8P1V2 = add_ventex(H8P1.0.2.0.0):
H8P1V3 = add_vertex(H8P1,0.2.434.5).
H8P1V4 = add_vertex(H8P1,0.0,434.5):
HBP2=add_pg(H8,3.875.0,1):

H8P2V1 = add_vertex(H8P2,0.0,0.0):
H8P2V2 = add_vertex(H8P2,0.2,0.0):
H8P2V3 = add_vertex(H8P2.0.2,434.5):
H8P2V4 = add_vertex(H8P2,0.0.434.5);
add_cdge(H8PIVI1, H8P2VI),;
add_cdge(H8P1V2 HEP2V2):
add_edge(H8P1V3 ,H8P2V3),
add_edge(H8P1V4 HP2V4):
add_ceiling(H8P1, H8P2):

add_instance("molding2".8,H8.0.0,277.2,0.0.0.0,0.0.0.0):

H9=add_ph("molding3".8.W.1,1):
HIP1 =add_pg(H9,0.0,1.1);

HIPIV] = add_vertex(H9P1.0.0.0.0):
HOPIV2 = add_vertex(H9P!1.0.2.0.0):
HY9PIV3 = add_vertex(HSF!1.0.2,72.5),
HIPIV4 = add_vertex(H9P1,0.0,72.5):
H9P2=add_pg(H9,3.875.0.1);
H9P2V] = add_venex(H9P2,0.0.0.0):
HOP2V2 = add_vertex(H9P2.0.2.0.0):
HIP2V3 = add_venex(H9P2.0.2.72.5):
HY9P2V4 = add_vertex(H9P2.0.0.72.5):
add_edge(HIPIV] . H9P2VI):
add_edge(H9PIV2, HIP2V2):
add_edge(HIP1V3 HOP2V3):
add_edge(H9P1V4, HIP2V4):
add_ceiling(H9P1,H9P2):

add_instance("molding3".8.H9.0.0.751 .4.0.0,0.0.0.0.0.0):

H10=add_ph("molding4".8.W.1.1):
H10P]1=add_pg(H10,0.0.1.1);

HIOP1V1 = add_vertex(H10P1.0.0.0.0):
HI0P1V2 = add_vertex(H10P1.0.2.0.0);
H10P1V3 = add_vertex(H10P1,0.2,71.9);
HI0PIV4 = add_vertex(H10P1.0.0,71.9);
H10P2=add_pg(H10,3.875.0.1);
HI0P2V1 = add_vertex(H10P2,0.0.0.0):
HIOP2V2 = add_vertex(H10P2,0.2.0.0);
HI0P2V3 = add_vertex(H10P2.0.2.71.9);
H10P2V4 = add_vertex(H10P2,0.0,71.9);
add_-4ge(H10PIVI,HIOP2V1);
add_edge(H10P1V2,HI0P2V2);
add_edge(H10P1V3 HI0P2V3):
add_edge(H10P1V4, HIOP2V4):
add_ceiling(H10P1,H10P2):

add_instance("moiding4".8.H 10.0.0.863.6.0.0.0.0.0.0.0.0):

HI1=add_ph("molding5".8.W.1.1):

A-81

H11Pl=add_pg(H11,0.0,1.1):

HIIP1V] = add_venex(H11P1.0.0.0.0):
H1IPIV2 = add_vertex(H11P],0.2.0.0):
H11PIV3 = add_ventex(H11P1,0.2,72.5);
H11P1V4 = add_vertex(H11P1.0.0.72.5).
HI11P2=add_pg(H11,3.875,0.1).
HIIP2VI = add_venex(H11P2,0.0.0.0);
H11P2V2 = add_venex(H11P2,0.2.0.0).
H11P2V3 = add_venex(H11P2,0.2,72.5);
H11P2V4 = add_vertex(H11P2.0.0.72.5):
add_edpe(H1IPIVLHIIP2V],
add_edge(H11P1V2,HIIP2V2);
add_edge(H11P1V3 H11P2V3);
add_edge(H11P1V4, HI1P2V4);
add_ceiling(H11P1,H11P2).

add_instance("molding5",8.H11,0.0,975.2.0.0.0.0,0.0.0.0):

H12=add_ph("molding6".8.W,1.1):
HI2Pl=add_pg(HI12,0.0.1,1);

HI2P1VI] = add_vertex(H12P1,0.0,0.0);
HI2P1V2 = add_venex(H12P1,0.2.0.0):
HI2P1V3 = add_vertex(H12P],0.2,72.3):
H12P1V4 = add_vertex(H12P1,0.0,72.3):
HI12P2=add_pg(H12.3.875.0.1):
H12P2V1 = add_vertex(H12P2,0.0,0.0):
HI12P2V2 = add_vertex(H12P2.0.2.0.0):
H12P2V3 = add_vernex(H12P2.0.2.72.3):
HI2P2V4 = add_vertex(H12P2,0.0,72.3);
add_edge(H12P1VI,HI2P2V):
add_edge(H12P1V2 HI2P2V2):
add_edge(H12P1V3, HI2P2V3);
add_edge(H12P1V4 H12P2V4):
add_ceiling(H12P1.H12P2):

add_instance("molding6”.8,H12,0.0,1087.4.0.0,0.0,0.0.0.0):

H13=add_ph("molding7".8.W.1,1);
H13Pl =add_pg(H13,0.0,1.1):

H13P1V1 = add_vertex(H13P1,0.0.0.0):
HI13P1V2 = add_vertex(H13P1.0.2.0.0);
HI3P1V3 = add_vertex(H13P1,0.2.72.0):
HI3P1V4 = add_vertex(H13P1,0.0.72.0):
H13P2=add_pg(H13.3.875.0.1):
HI3P2V1 = add_vertex(H13P2.0.0.0.0):
HI3P2V2 = add_vertex(H13P2.0.2.0.0):
HI13P2V3 = add_vertex(H13P2,0.2.72.0);
H13P2V4 = add_vertex(H13P2,0.0,72.0);
add_edge(H13P1V]I HI13P2V]):
add_edge(H13P1V2 H13P2V2),
add_edge(H13P1V3 HI13P2V3):
add_edge(H13P1V4 HI3P2V4);
add_ceiling(H13P1,H13P2);

add_jnstance("molding7",8,H13,0.0,1199.4,0.0.0.0,0.0.0.0).

H14=add_ph("molding8",8.W,1,1):
H14P1 =add_pg(H14,0.0,1,1);

H14PIV] = add_vertex(H14P1,0.0,0.0):
H14P1V2 = add_vertex(H14P1,0.2,0.0);
H14P1V3 = add_vertex(H14P1.0.2.116.5):
H14P1V4 = add_vertex(H14P],0.0.116.5):

A-82

H14P2=add_pg(H14,3.875.0.1):
H14P2V] = add_vertex(H14P2,0.0.0.0):
H14P2V2 = add_vertex(H14P2.0.2.0.0):
H14P2V3 = add_vertex(H14P2.0.2,116.5):
H14P2V4 = add_vertex(H14P2.0.0.116.5);
add_edge(H14P1VI HI14P2VI):
add_edge(H14P1V2 Hi4P2V2):
add_edge(H14P1V3.H14P2V3):
add_edge(H14PIV4 H14P2V4):
add_ceiling(H14P1 H14P2).

add_instance("molding8~,8,H14.0.0,1311.1,0.0.0.0,0.0.0.0):

H15=add_ph("molding9~,8,W,1,1):
H15P1 =add_pg(H15,0.0.1.1);

HISPIVI] = add_vertex(H15P1.0.0.0.0):
HI5P1V2 = add_vertex(H15P1.0.2.0.0):
HI1SP1V3 = add_vertex(H15P1,0.2,.22.7);
HI15PIV4 = add_vertex(H15P1.0.0.22.7):
H15P2=add_pg(H15.3.875.0.1);
HI15P2VI] = add_venex(H15P2.0.0,0.0):
HI5P2V2 = add_vertex(H15P2.0.2.0.0):
H15P2V3 = add_vertex(H15P2.0.2.22.7);
H1SP2V4 = add_vertex(H15P2.0.0,22.7):
add_edge(HISPIVI, HISP2VI):
add_edge(HISPIV2 HISP2V2):
add_edge(H15P1V3 HISP2V3):
add_edge(HI5PIV4,H15P2V4):
add_ceiling(H15P1 , HI5P2):

add_instance("molding9”.8.H15.0.0.1463.3.0.0.0.0.0.0.0.0):

Hi6=add_ph(*molding10~.9.W 1.1).
H16P1 =add_pg(H16,0.0.1,1):

HI16P1VI] = add_vertex(H16P1.0.0.0.0):
H16P1V2 = add_venex(H16P1.0.2.0.0):
HI6P1V3 = add_vertex(H16P1.0.2.19.3):
HI6P1V4 = add_vertex(H16P1.0.0.19.3):
H16P2=add_pg(H16.3.875,0.1):
HI6P2V] = add_venex(H16P2,0.0.0.0):
H16P2V2 = add_vertex(H16P2.0.2.0.0):
H16P2V3 = add_vertex(H16P2.0.2,19.3):
HI16P2V4 = add_vertex(H16P2.0.0.19.3):
add_edge(H16PIVI,HI6P2VI):
add_edge(H16P1V2 HI6P2V2):
add_edge(HI6P1V3, H16P2V3);
add_edge(H16P1V4,H16P2V4);
add_ceiling(H16P1,H16P2);

add_instance("molding10~,9.H16,0.0,1562.0.0.0.0.0.0.0,0.0):

H17=add_ph("moldingi1”.9.W.1.1):
H17P1 =add_pg(H17,0.0.1.1):

HI7P1V] = add_vertex(H17P1.0.0.0.0);
H17P1V2 = add_vertex(H17P1,0.2,0.0);
H17PIV3 = add_vertex(H17P1.0.2,31 .4);
H17P1V4 = add_vertex(H17P1.0.0.31.4);
H17P2=add_pp(H17.3.875,0,1):
H17P2V1 = add_venex(H17P2,0.0,0.0);
H17P2V2 = add_vertex(H17P2,0.2.0.0):
H17P2V3 = add_vertex(H17P2,0.2.31.4);
H17P2V4 = add_vertex(H17P2.0.0.31.4);

A-83

add_edge(H17P1VI H17P2V]);
add_edge(H17P1V2,H17P2V2).
add_edge(H17P1V3, H17P2V3);
add_edge(H17P1V4. H17P2V4):
add_ceiling(H17P1 H17P2):

add_instance("molding11%,9.H17.0.0,1619.0,0.0.0.0,0.0,0.0):

Hi8=add_ph("molding12".9,W,1,1);
H18P1=add_pg(H18,0.0,1,1);

HI18PIV] = add_vertex(H18P1,0.0.0.0):
HI8P1V2 = add_vertex(H18P1.0.2,0.0):
HI8P1V3 = add_vertex(H18P1,0.2,68.0):
H18P1V4 = add_vertex(H18P1,0.0,68.0);
H18P2=add_pg(H18,3.875.0,1);
HI18P2V1 = add_vertex(H18P2,0.0,0.0);
HI8P2V2 = add_vertex(H18P2.0.2,0.0):
H18P2V3 = add_vertex(H18P2,0.2.68.0):
H18P2V4 = add_vertex(H18P2,0.0.68.0):
add_edge(H18P1V]I HI8P2VI):
add_edge(H18P1V2 H18P2V2):
add_edge(H18PIV3,HI18P2V3):
add_edge(H18P1V4, HI8P2V4):
add_ceiling(H18P1 H18P2):

add_instance("molding12°,9.H18.0.0.1684.5,0.0,0.0,0.0,0.0):

H19=add_ph("molding13~.9,W,1,1);
HI19P1 =add_pg(H19,0.0.1.1);

HI9PIV] = add_vertex(H19P1.0.0.0.0):
HI9P1V2 = add_vertex(H19P1,0.2.0.0):
HI9P1V3 = add_vertex(H19P1,0.2.46.2):
HI9PIV4 = add_vertex(HI9P1,0.0.46.2):
HI19P2=add_pg(H19.3.875.0.1):
HI19P2V1 = add_venex(H19P2.0.0.0.0):
HI19P2V2 = add_vertex(H19P2.0.2.0.0):
HI9P2V3 = add_vertex(H19P2.0.2,46.2):
H19P2V4 = add_vertex(H19P2.0.0.46.2):
add_edge(HISPIVI,HI9P2VI);
add_edge(HI9P1V2 HI9P2V2):
add_edge(H19P1V3. HI9P2V3);
add_edge(H19P1V4 HI9P2V4).
add_ceiling(H19P1 . H19P2):

add_instance("molding13°,9.H19,0.0.1788.2.0.0.0.0.0.0.0.0):

H20=add_ph("moldingl4~,9.W,1,1):
H20P1 =add_pg(H20,0.0.1.1);

H20P1V1 = add_vertex(H20P1,0.0,0.0):
H20PIV2 = add_vertex(H20P1,0.2,0.0).
H20P1V3 = add_vertex(H20P].0.2,43.0):
H20P1V4 = add_vertex(H20P1.0.0.43.0);
H20P2=add_pg(H20,3.875,0,1):
H20P2V1 = add_ventex(H20P2,0.0.0.0);
H20P2V2 = add_vertex(H20P2,0.2,0.0);
H20P2V3 = add_vertex(H20P2,0.2,43.0):
H20P2V4 = add_vertex(H20P2.0.0.43.0);
add_edge(H20PIV1,H20P2V1):
add_edge(H20P1 V2. H20P2V2):
add_edge(H20P1 V3, H20P2V3).
add_edge(H20P1V4,H20P2V4):
add_ceiling(H20P1,H20P2):

A-84

add_instance("molding14°.9.H20,0.0.1874.1.0.0,0.0,0.0.0.0):

H21=add_ph(*molding15~.9.W.1,1);
H21Pl=add_pg(H21.0.0.1.1):

H2IPIVI = add_vertex(H21P1.0.0,0.0);
H21PIV2 = add_venex(H21P1,0.2.0.0):
H21PIV3 = add_venex(H21P1,0.2,71.6):
H21PiV4 = add_venex(H21P1.0.0.71.6);
H21P2=add_pg(H21,3.875.0.1);
H2IP2V] = add_vertex(H21P2,0.0.0.0);
H21P2V2 = add_ventex(H21P2,0.2.0.0);
H21P2V3 = add_vertex(H21P2.0.2.71.6):
H21P2V4 = add_vertex(H21P2.0.0,71.6);
add_edge(H21PIV] H21P2VI);
add_edge(H21P1V2 H21P2V2):
add_edge(H21P1V3 H21P2V3):
add_edge(H21P1V4 H21P2V4):
add_ceiling(H21P1 H21P2);

add_instance("molding15°.9.H21.0.0.1956.8,0.0.0.0.0.0.0.0):

H22=add_ph("molding16~.9.W.1.1);
H22Pl =add_pg(H22,0.0.1.1):

H22P1IV! = add_verntex(H22P1.0.0.0.0):
H22P1V2 = add_vertex(H22P1,0.2.0.0);
H22P1V3 = add_vertex(H22P1,0.2,125.0);
H22P1V4 = add_venex(H22P1.0.0.125.0):
H22P2=aud_pg(H22.3.875,0.1):
H22P2V1 = add_vertex(H22P2,0.0.0.0):
H22P2V2 = add_vertex(H22P2.0.2.0.0):
H22P2V3 = add_venex(H22P2,0.2.125.0):
H22P2V4 = add_venex(H22P2.0.0.125.0);
add_edge(H22P1V1,H22P2VI):

add_edge H22P1V2 H22P2V2):
add_edge’H22P1V3. H22P2V3):

add_edgc' H22P1V4 H22P2V4);

add_ceil’ 1g(H22P1 H22P2);

add_instar.¢("molding16”.9.H22.0.0.2068.1.0.0.0.0.0.0.0.0):

H23=ad!_ph("molding9".8 W.1.1):
H23P1=.dd_pg(H23,0.0.1.1);

H23P1V1 = add_venex(H23P1.0.0.0.0):
H23PIVZ = add_vertex(H23P1,0.2,0.0);
H23PIV = add_vertex(H23P1,0.2.19.0);
H23P1V4 = add_vertex(H23P1.0.0.19.0):
H23P2=add_pg(H23,3.875,0,1);

H23P2\ . = add_vertex(H23P2,0.0.0.0);
H23P2V. = add_vertex(H23P2.0.2,0.0);
H23P2V’ = add_ventex(H23P2,0.2,19.0);
H23P2V4 = add_vertex(H23P2,0.0,19.0);
add_edge H23P1V1,H23P2V1):

add edgc(H23P1V2,H23P2V2);
add_edge H23P1V3,H23P2V3):
add_edge(H23P1V4 H23P2V4):
add_ceiling(H23P1,H23P2);

add_instance("molding16~,9,H23,0.0,2232.8,0.0,0.0,0.0,0.0);
H24=add_ph("molding1 7",9.W,1.1):

H24P]1 =add_pg(H24.0.0,1,1);
H24P1V1 = add_vertex(H24P1.0.0.0.0);

A-85

H24P1V2 = add_vertex(H24P1.0.2.0.0);
H24P1V3 = add_vertex(H24P1.0.2,61.7);
H24P1V4 = add_vertexH24P1,0.0.61.7).
H24P2=add_pg(H24,3.875.0.1)
H24P2V1 = add_vertex(H24P2.0.0,0.0);
H24P2V2 = add_venex(H24P2.0.2,0.0);
H24P2V3 = ldd_venex(H24P2.0.2.6l D
H24P2V4 = add_vertex(H24P2.0.0.61.7):
add_edge(H24P1V1,H24P2V]);
add_edge(H24P1V2,H24P2V2);
add_edge(H24P1V3 H24P2V3):
add_edge(H24P1V4,H24P2V4);
add_ceiling(H24P1,H24P2):

add_instance("molding17".9,H24.0.0,2289.5.0.0.0.0.0.0.0.0):

H25=add_ph("molding18~.9.W.1.1);
H25P1 =add_pg(H25,0.0,1,1);

H25P1V1 = add_vertex(H25P1,0.0.0.0):
H25P1V2 = add_vertex(H25P1.0.0,177.3).
H25P1V3 = add_vertex(H25P1,-0.2.177.3):
H25P1V4 = add_vertex(H25P1,-0.2.0.0):
H25P2=add_pg(H25.3.875.0.1):

H25P2V] = add_vertex(H25P2.0.0.0.0):
H25P2V2 = add_venex(H25P2.0.0,177.3):
H25P2V3 = add_ventex(H25P2.-0.2.177.3):

H25P2V4 = add_vertex(H25P2.-0.2.0.0).
add_edge(H2SP1V1 H25P2V1):
add_edge(H25P1 V2 H25P2V2),
add_edge(H25P1V3 H25P2V3):
add_edge(H25P1V4, H25P2V4),
add_ceiling(H25P1 H25P2):

add_instance("molding18".9.H25,98.0.2173.9.0.0.0.0.0.0.0.0):

H26=add_ph("molding}9°.9.W,1.1):
H26P1 =add_pg(H26,0.0.1.1):

H26P1V1 = add_ventex(H26P}.0.0.0.0).
H26P1V2 = add_vertex(H26P1,0.0.194.5).
H26P1V3 = add_vertex(H26P1.-0.2,194.5):
H26P1V4 = add_vertex(H26P1.-0.2,0.0):
H26P2=add_pg(H26,3.875,0,1);

H26P2V| = add_vertex(H26P2.0.0.0.0):
H26P2V2 = add_vertex(H26P2.0.0,194.5).
H26P2V3 = add_ventex(H26P2,-0.2.194.5);
H26P2V4 = add_vertex(H26P2,-0.2.0.0):
add_edge(H26P1 V1, H26P2V1);
add_edge(H26P1V2 H26P2V2):
add_edge(H26P1V3, H26P2V3):
add_edge(H26P1 V4, H26P2V4):
add_ceiling(H26P1,H26P2);

add_instance("molding19°,9,H26,98.0,1939.7,0.0,0.0,0.0,0.0):

H27=2dd_ph(*molding20~.9.W,1,1):
H27P1 =add_pg(H27,0.0,1.1);

H27P1V] = add_vertex(H27P1,0.0,0.0);
H27P1V2 = add_vertex(H27P1,0.0,129.2):
H27P1V3 = add_vertex(H27P1.-0.2,129.2):
H2TPIV4 = add_vertex(H27P1.-0.2.0.0).
H27P) =add_pg(H27.3.875.0.1);

A-86

H27P2Vi = add_vertex(H27P2,0.0.0.0):
H27P2V2 = add_venex(H27P2.0.0.129.2).
H2TP2V3 = add_ventex(H27P2.-0.2.129.2):
H27P2V4 = add_venex(H27P2.-0.2.0.0):
add_edge(H2TPIVI H27P2VI):
add_edge(H27PI1V2 H27P2V2).
add_edge(H27P1 V3, H27P2V3).
add_edge(H2TPIVA, H2TP2VA):
add_ceiling(H27P1,H27P2),

add_instance("molding20°,9,H27.98.0.1746.5,0.0,0.0.0.0.0.0);

H28=add_ph("molding21".9.W.1,1);
H28P1 =add_pg(H28.0.0.1.1);

H28PIV1 = add_ventex(H28P1,0.0,0.0);
H28P1V2 = add_vertex(H28P1.0.0.158.1);
H28PIV3 = add_vertex(H28P1,-0.2.158.1):
H28P1V4 = add_venex(H28P1.-0.2.0.0):
H28P2=add_pg(H28,3.875.0.1);

H28P2V1 = add_vertex(H28P2.0.0.0.0):
H28P2V2 = add_vertex(H28P2.0.0.158.1):
H28P2V3 = add_vertex(H28P2.-0.2.158.1):
H28P2V4 = add_venex(H28P2.-0.2.0.0):
add_edge(H28P1V1 H28P2V1):
add_edge(H28P1V2 H28P2V2):
add_edge(H28P1V3 H28P2V3):
add_edge(H28P1V4 H28P2V4):
add_ceiling(H28P1.H28P2);

add_instance("molding21°.9.H28.98.0,1524.4.0.0,0.0.0.0.0.0):

H29=add_ph("molding22".9.W.1.1).
H2I9P1 =add_pp(H29.0.0.1.1):

H29P1V] = add_vertex(H29P1.0.0.0.0):
H29P1V2 = add_vertex(H29P1.0.0.115.7).
H29P1V3 = add_vertex(H29P1.-0.2,115.7);
HI9P1V4 = add_vertex(H29P!.-0.2.0.0):
H29P2=add_pg(H29.3.875.0.1);

H29P2V] = add_vertex(H29P2.0.0.0.0):
H29P2V2 = add_vertex(H29P2.0.0.115.7):
H29P2V3 = add_ventex(H29P2.-0.2.115.7):
H29P2V4 = add_vertex(H29P2.-0.2.0.0):
add_edge(H29P1V1,H29P2V1):
add_edge(H29P1V2, H29P2V2);
add_edge(H29P1V3 H29P2V3):
add_edge(H29P1V4,H29P2V4);
add_ceiling(H29P1,H29P2):

add_instance("molding22-~,9,H29.98.0,1344.7,0.0,0.0.0.0.0.0);

H30=add_ph(*molding23".9.W, 1,1):
H30P1 =add_pg(H30,0.0,1,1);

H30P1V] = add_vertex(H30P1,0.0.0.0):
H30P1V2 = add_vertex(H30P1,0.0,184.2);
H30P1V3 = add_vertex(H30P}.-0.2,184.2):
H30P1V4 = add_vertex(H30P1,-0.2,0.0):
H30P2=add_pg(H30,3.875.0.1);

H30P2V1 = add_vertex(H30P2.0.0.0.0):
H30P2V2 = add_venex(H30P2,0.0.184.2);
H30P2V3 = add_vertex(H30P2.-0.2.184.2):
H30P2V4 = add_venex(H30P2.-0.2.0.0):
add_edge(H30PIV].HIOP2V1);

A-87

add_edge(H30P1V2.H30P2V2);
add_edge(H30P1 V3, H30P2V3):
add_edge(H30P1V4,H30P2V4);
add_ceiling(H30P1,H30P2);

add_instance(*molding24°.9,H30.98.0.1 120.8.0.0,0.0.0.0.0.0);

H31=add_ph("molding25".9.W,1.1):
H31P1=add_pg(H31.0.0,1.1);

H31P1VI = add_ventex(H31P1,0.0,0.0):
H31P1V2 = add_venex(H31P1.0.0,283.0):
H31PIV3 = add_vertex(H31P1,-0.2.283.0):
H31P1V4 = add_ventex(H31P1.-0.2.0.0%.
H31P2=add_pg(H31,3.875.0.1):

H31P2VE = ndd_vcnex(HSlPZ.0.0.0.0);
H3IP2V2 = add_vcnex(HJlP‘.!.0.0.ZSJ.O):
H31P2V3 = ndd_vcnex(HB1P2.-0.2.283.0);
H31P2V4 = add_vertex(H31P2,-0.2,0.0);
add_edge(H31P1 V1, H31P2V1):
add_edge(H31PIVZ,H3IP2V2):
add_edge(H31P1V3.H31P2V3):
add_edge(H31P1V4.H31P2V4):
add_ceiling(H31P1.H31P2):

add_instance("molding25".9.H31 ,98.0.798.1.0.0.0.0.0.0.0.0):

H32=add_ph("molding26~.9.W.1.1):
H32Pl =add_pg(H32.0.0.1.1):

H32P1V1 = add_venex(H32P1.0.0.0.0):
H32P1V2 = ldd_vcnex(H32Pl,0.0.l9l,9);
H32P1V3 = add_vcnex(H32Pl.-0.2.l9] 9
H32P1V4 = add_venex(H32P1.-0.2.0.0):
H32P2=add_pg(H32.3.875.0.1):

H32P2VI = add_vcnex(H32P2.0.0.0.0);
H32P2V2 = add_venex(H32P2.0.0.191.9):
H32P2V3 = add_vertex(H32P2,-0.2.191.9);
H32P2V4 = add_vertex(H32P2.-0.2.0.0);
add_edge(H32PIVI.H32P2V1):
add_edge(H32P1V2.H32P2V2):
add_edge(H32P1V3.H32P2V3):
add_edge(H32P1V4,H32P2V4):
add_ceiling(H32P1,H32P2):

add_instance("molding26".9.H32.98.0.566 .5.0.0,0.0.0.0.0.0);

H33 =add_ph("molding27".9,W.1,1);
H33P1=add_pg(H33,0.0.1,1);

H33P1VI] = add_vertex(H33P1,0.0,0.0):
H33PLV2 = add_vertex(H33P1,0.0.1 12.9);
H33PIV3 = ldd_veﬂex(H33Pl.—0.2.l 12.9);
H33P1V4 = add_vertex(H33P1.-0.2.0.0):
H33P2=add_pg(H33.3.875.0,1):

H33P2V1 = add_ventex(H33P2,0.0.0.0%:
H33P2V2 = add_vertex(H33P2,0.0,112.9):
H33P2V3 = add_vertex(H33P2,-0.2,112.9);
H33IP2V4 = add_vertex(H33P2,-0.2,0.0);
add_edge(H33P1V1,H33P2V1);
add_edge(H33P1V2.H33P2V2);
add_edge(H33P1V3,H33P2V3);
add_edge(H33P1V4,H33P2V4);
add_ceiling(H33P1.H33P2);

A-88

add_instance("molding27".9,H33.98.0,413.9.0.0,0.0.0.0,0.0):

H34=add_ph("molding28~.9.W.1.1):
H34P1=add_pg(H34.0.0.1.1):

H34P1V] = add_venex(H34P1,0.0,0.0):
H34P1V2 = add_venex(H34P1.0.0.-0.2):
H34P1V3 = add_vertex(H34P1.157.9.-0.2):
H34P1V4 = add_vertex(H34P1.157.9.0.0):
H34P2=add_pg(H34,3.875.0.1);

H34P2V1 = add_ventex(H34P2,0.0.0.0):
H34P2V2 = add_vertex(H34P2,0.0,-0.2);
H34P2V3 = add_vertex(H34P2,157.9,-0.2):
H34P2V4 = add_ventex(H34P2.157.9.0.0):
add_edge(H34P1VI H34P2V1):
add_edge(H34P1V2,H34P2V2);
add_edge(H34P1V3,H34P2V3);
add_cdge(H34P1V4,H34P2V4);
add_ceiling(H34P1,H34P2);

add_instance("molding287.9.H34.98.0.413.9.0.0.0.0.0.0.0.0):

H3S5=add_ph("molding29~.9.W.1.1);
H35P1=add_pg(H35.0.0.1.1):

H35P1V}I = add_vertex(H35P1.0.0.0.0):
H35P1V2 = add_vertex(H35P1.0.0,-0.2):
H35P1V3 = add_vertex(H35P1.41.6,-0.2):
H35P1V4 = add_vertex(H35P1.41.6.0.0):
H35P2=add_pg(H35.3.875.0.1):
H35P2V1 = add_vertex(H35P2,0.0.0.0).
H35P2V2 = add_vertex(H35P2.0.0.-0.2):
H35P2V3 = add_verntex(H35P2.41.6.-0.2):
H35P2V4 = add_vertex(H35P2.41.6.0.0):
add_edge(H3SPIVI H3SP2Vi),
add_edge(H35PIV2 H35P2V2):
add_edge(H3SP1V3 H35P2V3):
add_edge(H35P1V4, H35P2V4);
add_ceiling(H35P1,H35P2);

add_instance("molding29”.9.H35.295.9.413.9.0.0.0.0.0.0.0.0):

H36=add_ph("molding30".9.W.1,1).
H36P1 =add_pg(H36.,0.0,1.1).

H36PIVI = add_vertex(H36P1.0.0.0.0):
H36P1V2 = add_vertex(H36P1.-0.2.0.0);
H36P1V3 = add_vertex(H36P1.-0.2.9.3):
H36PiV4 = add_vertex(H36P1.0.0.9.3):
H36P2=add_pg(H36.3.875.0.1);
H36P2V] = add_vertex(H36P2,0.0.0.0);
H36P2V2 = add_vertex(H36P2.-0.2,0.0);
H36P2V3 = add_vertex(H36P2,-0.2.9.3);
H36P2V4 = add_vertex(H36P2,0.0,9.3);
add_edge(H36P1VI,H36P2V1),
add_edge(H36P1V2,H36P2V2);
add_edge(H36P1V3,H36P2V3).
add_edge(H36P1V4,H36P2V4).
add_ceiling(H36P1,H36P2):

add_instance("molding30”,9,H36,337.5.404.6,0.0,0.0.0.0,0.0):
H37=add_ph(*molding31~.9.W.1.1):

H37P1 =add_pg(H37,0.0.1.1)x
H37PIVI = add_vertex(H37P1.0.0,0.0):

A-89

H3ITP1V2 = add_vertex(H37P1,-0.2.0.0);
H37PIV3 = add_vertex(H37P1.-0.2.28.4):
H37P1V4 = add_vertex(H37P1.0.0,28.4);
H37P2=add_pg(H37,3.875.0.1).
H37P2V1 = add_vertex(H37P2.0.0.0.0):
H37P2V2 = add_vertex(H37P2,-0.2,0.0):
H37P2V3 = add_vertex(H37P2,-0.2,28.4);
H37P2V4 = add_vertex(H37P2,0.0,28.4).
add_edge(H37P1V1,H37P2V1);
add_edge(H37P1V2,H37P2V2);
add_edge(H37P1V3 H37P2V3),
add_edge(H37P1V4,H37P2V4);
add_ceiling(H37P1,H37P2);

add_instance("molding31“,9,H37.337.5.312.2,0.0.0.0.0.0,0.0):

H38=add_ph("molding32",9,W,1,1):
H38P1=add_pg(H38,0.0,1.1);

H38P1V1 = add_vertex(H38P1.0.0,0.0);
H38P1V2 = add_vertex(H38P1,-0.2.0.0):
H38PIV3 = add_venex(H38P1,-0.2.5.1):
H38P1V4 = add_venex(H38P1,0.0.5.1);
H38P2=add_pg(H38,3.875.0,1);
H38P2V1 = add_vertex(H38P2,0.0,0.0):
H38P2V2 = add_venex(H38P2,-0.2.0.0):
H38P2V3 = add_vertex(H38P2.-0.2,5.1):
H38P2V4 = add_vertex(H38P2,0.0,5.1):
add_edge(H38P1V1,H38P2VI):
add_edge(H38P1V2,H38P2V2),
add_edge(H38P1V3 H38P2V3):
add_edge(H38P1V4,H38P2V4):
add_ceiling(H38P1,H38P2):

add_instance("molding32".9,H38,337.5,267.4.0.0,0.0.0.0.0.0):

H39=add_ph("molding33~,9,W,1,1):
H39P1=add_pg(H39,0.0,1.1):

H39P1V1 = add_vertex(H39P1,0.0.0.0);
H39P1V2 = add_vertex(H39P1,30.6.0.0);
H39P1V3 = add_vertex(H39P1,30.6,0.2).
H39P1V4 = add_vertex(H39P1,0.0,0.2):
H39P2=add_pg(H39,3.875,0.1);
H39P2V1 = add_vertex(H39P2.0.0.0.0):
H39P2V2 = add_vertex(H39P2,30.6.0.0);
H39P2V3 = add_vertex(H39P2,30.6.0.2);
H39P2V4 = add_vertex(H39P2.0.0.0.2):
add_edge(H39P1V1,H39P2V1);
add_edge(H39P1V2,H39P2V2);
add_edge(H39P1V3,H39P2V3);
add_edge(H39P1V4,H39P2V4);
add_ceiling(H39P1,H39P2);

add_instance("molding33",9,H39,306.9,267.4,0.0,0.0,0.0,0.0):

H40=add_ph("molding34”,9,W,1,1);
H40P1 =add_pg(H40,0.0.1.1);

H40P1V1 = add_vertex(H40P1,0.0.0.0);
H40P1V2 = add_vertex(H40P1.56.7.0.0);
H40P1V3 = add_vertex(H40P1.56.7.0.2):
H40P1V4 = add_vertex(H40P1,0.0.0.2):
H40P2=add_pg(H40,3.875.0.1);
H40P2V1 = add_vertex(H40P2,0.0,0.0);

A-90

H40P2V2 = add_vertex(H40P2,56.7.0.0):
H40P2V3 = add_vertex(H40P2.56.7.0.2):
H40P2V4 = add_vertex(H40P2.0.0.0.2):
add_edge(H40P1 V1 H40P2VI):
add_edge(H40P1V2 H40P2V2);
add_edge(H40P1 V3, H40P2V3).
add_edge(H40P1V4,H40P2V4).
add_ceiling(H40P1,H40P2):

H4l =add_ph("molding35".9,W,1.1):
H41P1=add_pg(H41,0.0.1.1):

H41P1V1 = add_vertex(H41P1,0.0.0.0):
H41PIV2 = add_vertex(H41P1.36.2,0.0);
H41P1V3 = add_vertex(H41P1,36.2.0.2):
H41P1V4 = add_vertex(H41P1.0.0.0.2):
H41P2=add_pg(H41,3.875.0,1):
H41P2VI = add_vertex(H41P2.0.0.0.0):
H41P2V2 = add_veriex(H41P2.36.2.0.0):
H41P2V3 = add_vertex(H41P2,36.2.0.2);
H41P2V4 = add_venex(H41P2.0.0.0.2):
add_edge(H41P1V1. H41P2VI):
add_edge(H41PIV2 H41P2V2):
add_edge(H41P1V3 H41P2V3):
add_edge(H41P1V4,H41P2V4);
add_ceiling(H41P1,H41P2):

add_instance("molding35°.9.H41,98.0.267.4.0.0,0.0.0.0.0.0):

H42=add_ph("molding36".9.W.1.1):
H42Pl=add_pg(H42,0.0,1.1):

H42P1V1 = add_vertex(H42P1.0.0.0.0):
H42PIV2 = add_vertex(H42P1.0.0,-0.2):
H42P1V3 = add_vertex(H42P1.165.4,-0.2);
H42P1V4 = add_vertex(H42P1.165.4.0.0):
H42P2=add_pg(H42,3.875,0.1);

H42P2V| = add_vertex(H42P2.0.0.0.0):
H42P2V2 = add_vertex(H42P2.0.0.-0.2):
H42P2V3 = add_vertex(H42P2.165.4,-0.2):
H42P2V4 = add_vertex(H42P2,165.4.0.0):
add_edge(H42P1V1, H42P2VI):
add_edge(H42P1V2 H42P2V2):
add_edge(H42P1V3 H42P2V3),
add_edge(H42P1V4,H42P2V4):
add_ceiling(H42P1,H42P2).

add_instance("molding36”,9,H42,98.0,102.0,0.0.0.0.0.0.0.0):

H43 =add_ph("molding37-,9,.W,1,1):
H43P1 =add_pg(H43,0.0.1.1);

H43PiVI = add_vertex(H43P1.0.0,0.0);
H43P1V2 = add_vertex(H43P1.-0.2,0.0):
H43P1V3 = add_vertex(H43P1.-0.2,62.3):
H43P1V4 = add_vertex(H43P1,0.0,62.3);
H43P2=add_pg(H43,3.875.0,1):
H43P2V1 = add_vertex(H43P2,0.0,0.0),
H43P2V2 = add_vertex(H43P2.-0.2.0.0);
H43P2V3 = add_vertex(H43P2.-0.2.62.3);
H43P2V4 = add_vertex(H43P2,0.0,62.3);
add_edge(H43P1V1, H43P2V1);
add_edge(H43P1V2,H43P2V2);

A-91

add_edge(H43P1V3, H43P2V3);
add_edge(H43P1V4 H43P2V4):
add_ceiling(H43P1 H43P2),

add_instance("molding37°.9,H43.98.0.0.0.0.0.0.0,0.0.0.0):

return W, /*return pointer to this entire world structure*/

}

A-92

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943

Director of Research Administration
Code 012

Naval Postgraduate School
Monterey, CA 93943

Chainman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey. CA 93943

Dr. Yutaka Kanayam, Code CS/Ka
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Lt. James Stein
118 Brookside Rd.
Newtown Square, PA 19073

