A248 349 Image: Second Secon	•	MENTATION P	AGE	Form Approved OMB No. 0704-0188
Autometer of a beter serves indicate meter and stated interest and stated i	248 349	I estimated to average 1 nour de le and reviewing the collection of this burden, to washington He	r resource, including the time for re f information - Send comments regains pageuarters Services, Directorate for	Intering instructions, searching establing data sources reand this Burden establishes or any other aspect of this information Operations and Aspects, 1211, offends
INTERNATION 24 Feb 1992 Innual Dec 90 - 30 fecu Visual Psychophysics of Egomotion 5. Fundback students Authonsis Grant Noi Johns Hopkins University School of Medicine Willing All O Baltimore, MD 21205 Schoologund, Montro AEOSR NL Building 410 Bolling AFB DC 20332-6448 Dr Tungarey Turgarey 1. Gostracutory stored Aporaved for public release; distribution unlighted. Aporaved for public release; Toopsychoph		to the Office of Management and	4 Budget, Fagerwork Aeduction Prov 3. REPORT TYPE AN	ect (0704-0188), Washington, DC 20503.
Visual Psychophysics of Egomotion 1. Fundback and the subset of the standard of	A CARACTERISTIC AND A CONTRACTOR CONTRA	24 Feb 1992	Annual 10	ec 90-30 May 91
Visual Psychophysics of Egomotion AutHOR(5) Kathleen Turano AutHOR(5) Kathleen Turano AutHOR(5) Kathleen Turano Author Vision Research Center 720 Ruland Avenue Baltimore, MD 21205 Soonsound: Monitonic Agency NAME(5) AND ADDRESS(E5) AFOSR/NL Building 410 Bolling AFB DC 20332-6448 DT Turg.rcy T. SUPPLIMENTARY NOTES AFOR 0 8 1992 Data between 2000 Words) Two psychophysical studies investigated an observer's ability to perceive see In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along as or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path ind with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di a curved path. The results showed an increasing linear relationship betwee main size and retinal locations of the stimulus in determining the di a curved path. The results showed an increasing linear relationship betwee main size and retinal locations of the stimulus in determining the di a curved path. The results showed an increasing linear relationship between a size and retinal locations of the stimulus in determining the di a curved path. The results showed an increasing linear relationship between a size and retinal locations of the stimulus in determining the di a curved path. The results showed an increasing linear relationship between a size and retinal locations of the model have been run on a task to path of motion. Computer simulations of the model have been run on a task to a subactor traves a subactor traves a subactor exception, curvilinear motion, self motion perception, curvilinear motion, self motion perception, curvilinear				5. FUNDING NUMBERS
AUTHON(S) GitCaF Kathleen Turano GitCaF Identified Turano GitCaF Vision Research Center S2-0595110 720 Rutland Avenue S2-0595110 Baltimore, ND 21205 AFOSR/NL Boiling ATD Donsioned Monitoning Agency AFOSR/NL Boiling ATD Boiling ATD Costrasumon Advence Softward Street S2-0595110 AFOSR/NL Torngney Boiling ATD AFOSR/NL Boiling ATD Sandarde Dr Torngney AFOSR 100 Monitoning Agency Arsnewed for wikits release; GitCaF dist: botion unlivited. The proved for wikits release; Two psychophysical studies investigated an observer's ability to perceive se In bott studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv The deviation required to detect a departure from a straight path ing mothed constant across forwar	al Psychophysics of E	gomotion		AFOSR-01-0154 9/
Kathleen Turano 3.3 L3 C.S C.S Mikooname on Gamization name(s) and accessives C.S Johns Hopkins University School of Medicine Imerot Nummera Wilmer Vision Research Center 52-0595110 720 Rutland Avenue AEOSR/NL Baltimore, MD 21205 AFOSR/NL Building 410 AFOSR/NL Building ATE DC 20332-6448 DT Turgrey Dr Turgrey AFOSR/NL Astract (Meanum 200 words) AFOSR/SC (Meanum 200 words) Asstract (Meanum 200 words) The psychophysical studies investigated an observer's ability to perceive see In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inva moving relative to a volume of randomly-positioned dots. The first study invatigated the effect moving relative to a volume of randomly-positioned dots. The first study invastigated the effect moving relative to a volume of randomly-positioned dots. The first study invastigated the effect moving relative to a volume of randomly-positioned dots. The first study invastigated the effect moving relative to a volume of randomly-positioned dots. The first study invastigated the effect moving relative to accos forward speeds. A second study investigated t	R(S)			GIIOAF
FERGERAMIG GRCANIZATION NAME(S) AND ADDRESS(ES) C.S Johns Hopkins University School of Medicine FERGERAMIG ORCANIZATION NAME(S) AND ADDRESS(ES) Johns Hopkins University School of Medicine FERGERAMIG ORCANIZATION NAME(S) AND ADDRESS(ES) 720 Rutland Avenue AFOSR/NL Building 410 Bolling AFE DC 20332-6448 Dr Turngney Turngney 11. SUPPLEMENTARY NOTES Saperovel for publics release; 12. DISTRUCTION / AVALABLITY STATEMENT Taberovel for publics release; Approvel for publics release; Interface of transmitted. 12. ASTRACT (Meanum 200 word) Two psychophysical studies investigated an observer's ability to perceive see In obst studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positione dots. The first study inva moving relative to a volume of randomly-positione dots. The first study inva observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a capative from as a task to criminate between a curved and straight path of motion. The simulation result match psychophysical data. 14. SUBLICT TIMES	athleen Turano			2313
PIERORAMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Image: Comparison of the standard of the standa				C.S
Johns Hopkins University School of Medicine Wilmer Vision Research Center 720 Rutland Avenue Baltimore, MD 21205 AFORSORMG, MONITORING AGENCY NAME(S) AND ADORESS(ES) AFOSR/NL Building 410 Bolling AFB DC 20332-6448 DT Tangney N. SUPPLIMENTARY NOTES DT Tangney N. SUPPLIMENTARY NOTES DECENSION Arproved for Dublic reloase; distribution unlimited. 12. OSTRUGUTON/AVARABLITY STATEMENT 13. DASTREGUTON/AVARABLITY STATEMENT 14. ASTRACT (Meanum 200 words) Two psychophysical studies investigated an observer's ability to perceive see In both studies, the stimuli were computer-generated images simulating an ob- moving relative to a volume of randomly-positioned dots. The first study inva an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship betwee mal size and retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a c path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation resul match psychophysical data. 14. Subact Times egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	IMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		E. PERFORMING ORGANIZATION
Wilmer Vision Research Center 52-0595110 720 Rutland Avenue AEOSR/R Baltimore, MD 21205 AEOSR/NL AFOSR/NL Building 410 Boiling AFB DC 20332-6448 DT Tangney Dr Tangney AFOSR / MONITORIME AGENCY NAME(S) AND ADOMESS(LS) AFOSR/NL Building 410 Boiling AFB DC 20332-6448 DT Tangney Dr Tangney AFOSR / S CFDA ALL ONSTRUCTION / AVAILABRAITY STATEMENT SAPRO 8 1992 Astract (Mamum 200 wordd) Two psychophysical studies investigated an observer's ability to perceive see In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eve mained constant across forward speeds. A second study investigated the effect of a curved path. The results showed an increasing linear relationship betwee maint constant across forward speeds. A second study investigated the effect of a curved path. The results showed an increasing linear relationship betwee maint constant across forward speeds. A second study investigated the effect of a curved pa	s Hopkins University	School of Medic:	ine	
Baltimore, MD 21205 I. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NL Building 410 Bolling AFB DC 20332-6448 Dr Tangney Superiod of the public	er Vision Research Ce	nter	Δεαςα	52-0595110
AFONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 18. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/NL Building 410 Building 410 Bolling AFB DC 20332-6448 AFOSR'S CFDA DT Tangney AFOSR'NL AFOSR'S CFDA Superimentation of the public of public of the the public of the publi	imore, MD 21205		ALUSK	
AFOSR/NL Building 410 Bolling AFB DC 20332-6448 Dr Tangney Th SUPPLEMENTARY NOTES APRO 8 1992 Ta. OISTREUTION / AVAILABELITY STATEMENT Approved for public release; distribution unlimited. Two psychophysical studies investigated an observer's ability to perceive se distribution unlimited. Two psychophysical studies investigated an observer's ability to perceive se in both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviatin mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship betwee mal size and retinal locations yielde equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a c path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation resul match psychophysical data. 14 SUBLECT TIMMS	ORING / MONITORING AGENCY N	AME(S) AND ADDRESS	ES)	10. SPONSORING / MONITORING
Building 410 Boilting AFB DC 20332-6448 Or Tangney AFOSR'S CFDA #12,800 #12,800 AFOSR'S CFDA #12,800 AFOSR'S AFOSR'S CFDA #12,800 AFOSR'S AFOSR'S CFDA #12,800 AFOSR'S AFOSR'S CFDA	R/NI.	-,-,		AGENCY REPORT NUMBER
Bolling AFB DC 20332-6448 DT Tangney ISUPPLIMENTARY NOTES APPRO 8 1992 Approved for public release; distribution ualimited. ISUPPLIMENTARY NOTES Approved for public release; distribution ualimited. ISUPPLIMENTARY NOTES Approved for public release; distribution ualimited. ISUPPLIMENTARY NOTES Approved for public release; distribution ualimited. ISUPPLIMENTARY NOTES IN psychophysical studies investigated an observer's ability to perceive se In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along as or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship betwee mal size and retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a co path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation result match psychophysical data. IS NUMERT OF egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	ding 410		•••••••	AFOSR's CFDA
Dr Tangney T. SUPPLEMENTANY NOTES SAPRO 8 1992 22. OSTRUMUTON/AVALABLITY STATEMENT Approved for public release; distribution unlimited. 12. ASSTRACT (Meanum 200 words) Two psychophysical studies investigated an observer's ability to perceive se In both studies, the stimuli were computer-generated images simulating an ob- moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship betwee mal size and retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a c path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation resul match psychophysical data. 14. SUBJECT TIMES egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	ing AFB DC 20332-6448		TIC	#12,800
1. SUPPLEMENTARY NOTES SAPRO 8 1992 12a. OKSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION / AVAILABBLITY STATEMENT Approved for public release; distribution unlimited. 12b. OKSTREBUTION / AVAILABBLITY STATEMENT 13. ASSTRACT (Meanum 200 words) 12b. OKSTREBUTION / AVAILABBLITY STATEMENT 14. ASSTRACT (Meanum 200 words) 12b. OKSTREBUTION (AVAILABBLITY STATEMENT) 15. MOSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION (OOG 15. ASSTRACT (Meanum 200 words) 12b. OKSTREBUTION (AVAILABBLITY STATEMENT) 15. MOSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION (OOG 15. MOSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION (OOG 15. ANSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION (OOG 15. ANSTREBUTION / AVAILABBLITY STATEMENT 12b. OKSTREBUTION (OOG 15. MOKENTALY 12b. OKSTREBUTION (OOG 15. MOKENTALY 12b. OKSTREBUTION (OOG 15. MOKENTALY 12b. OKSTREBUTION (OOG 16. TWO SYSCHOPHYSICAL ALL (MOKENTALY) 12b. OKSTREBUTION (OOG 17. MOKENTALY 12b. OKSTREBUTION (OOG 18. MOKENTALY 12c. OKSTREBUTION (OOG 19. OKANTALY 12b. OKSTREBUTION (OOG 19. OKANTALY 12b. OKSTREBUTION (OOG <	Tangney	2	LIL	l
Approved for public release; distribution unlighted. 13. ABSTRACT (Maximum 200 words) Two psychophysical studies investigated an observer's ability to perceive se In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship between mal size and retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a c path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation result match psychophysical data. 14. SUBJECT TERMS egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	EMENTARY NOTES		ECTE	
13. ABSTRACT (Memmum 200 words) Two psychophysical studies investigated an observer's ability to perceive se In both studies, the stimuli were computer-generated images simulating an ob moving relative to a volume of randomly-positioned dots. The first study inv an observer's ability to determine whether s/he was moving forward along a s or curved path as forward speed was varied. The results showed that with eye ments, the deviation required to detect a departure from a straight path inc with forward speed. When eye movements were restricted, the required deviati mained constant across forward speeds. A second study investigated the effect of various sizes and retinal locations of the stimulus in determining the di of a curved path. The results showed an increasing linear relationship betwee mal size and retinal eccentricity. Given optimally-scaled stimuli, the centr peripheral retinal locations yielded equivalent performance. Finally, a comp model has been developed to emulate a human observer's ability to detect a c path of motion. Computer simulations of the model have been run on a task to criminate between a curved and straight path of motion. The simulation resul match psychophysical data. 14. SUBJECT TIAMS egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	moved for public releas to abution unlimited.	e;		
criminate between a curved and straight path of motion. The simulation result match psychophysical data. 14. SUBJECT TERMS egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	sychophysical studies	investigated an	n observer's abil	ity to perceive self moti
14. SUBJECT TERMS 13. NOMERY O egomotion, motion perception, curvilinear motion, 12 self motion perception, eccentricity, eye movements 16. PRICE COOR	th studies, the stimu g relative to a volum server's ability to d rved path as forward , the deviation requi forward speed. When e d constant across for rious sizes and retin curved path. The resu ize and retinal eccen heral retinal locatio has been developed t of motion. Computer s	e of randomly-pe etermine whether speed was varied red to detect a ye movements we ward speeds. A al locations of lts showed an is tricity. Given ns yielded equino o emulate a hum imulations of t	r-generated image ositioned dots. T r s/he was moving d. The results sh departure from a re restricted, th second study inve the stimulus in ncreasing linear optimally-scaled valent performanc an observer's abi he model have bee	s simulating an observer he first study investiga forward along a straigh owed that with eye move- straight path increased e required deviation re- stigated the effectivene determining the directio relationship between opt stimuli, the central and e. Finally, a computatio lity to detect a curved n run on a task to dis-
egomotion, motion perception, curvilinear motion, self motion perception, eccentricity, eye movements	th studies, the stimu g relative to a volum server's ability to d rved path as forward , the deviation requi forward speed. When e d constant across for rious sizes and retin curved path. The resu ize and retinal eccen heral retinal locatio has been developed t of motion. Computer s nate between a curved psychophysical data.	e of randomly-p etermine whethe speed was varied red to detect a ye movements we ward speeds. A al locations of lts showed an is tricity. Given o emulate a hum imulations of the and straight p	r-generated image ositioned dots. T r s/he was moving d. The results sh departure from a re restricted, th second study inve the stimulus in ncreasing linear optimally-scaled valent performanc an observer's abi he model have bee ath of motion. Th	s simulating an observer he first study investiga forward along a straigh owed that with eye move- straight path increased e required deviation re- stigated the effectivene determining the directio relationship between opt stimuli, the central and e. Finally, a computatio lity to detect a curved in run on a task to dis- e simulation results clos
	th studies, the stimu g relative to a volum server's ability to d rved path as forward , the deviation requi forward speed. When e d constant across for rious sizes and retin curved path. The resu ize and retinal eccen heral retinal locatio has been developed t of motion. Computer s nate between a curved psychophysical data.	e of randomly-p etermine whethe speed was varied red to detect a ye movements we ward speeds. A al locations of lts showed an is tricity. Given o emulate a hum imulations of t and straight p	r-generated image ositioned dots. T r s/he was moving d. The results sh departure from a re restricted, th second study inve the stimulus in ncreasing linear optimally-scaled valent performanc an observer's abi he model have bee ath of motion. Th	s simulating an observer he first study investigat forward along a straigh owed that with eye move- straight path increased e required deviation re- stigated the effectivene determining the direction relationship between opt stimuli, the central and e. Finally, a computation lity to detect a curved in run on a task to dis- se simulation results close 15. NUMBER OF PAGES 12
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF REPORT OF THIS PAGE	th studies, the stimu g relative to a volum server's ability to d rved path as forward , the deviation requi forward speed. When e d constant across for rious sizes and retin curved path. The resu ize and retinal eccen heral retinal locatio has been developed t of motion. Computer s nate between a curved psychophysical data. ICT TERMS	in were compute e of randomly-p etermine whethe speed was varied red to detect a ye movements we ward speeds. A al locations of lts showed an is tricity. Given ns yielded equin o emulate a hum imulations of the and straight p ion, curvilinea eccentricity. ev	r-generated image ositioned dots. T r s/he was moving d. The results sh departure from a re restricted, th second study inve the stimulus in ncreasing linear optimally-scaled valent performance an observer's abi he model have bee ath of motion. The ath of motion.	s simulating an observer he first study investigat forward along a straight owed that with eye move- straight path increased e required deviation re- stigated the effectivene determining the direction relationship between opt stimuli, the central and e. Finally, a computation lity to detect a curved in run on a task to dis- simulation results close 15. NUMBER OF PAGES 12 16. PRICE COOL
Unclassified Unclassified Unclassified Unlimited	th studies, the stimu g relative to a volum server's ability to d rved path as forward , the deviation requi forward speed. When e d constant across for rious sizes and retin curved path. The resu ize and retinal eccen heral retinal locatio has been developed t of motion. Computer s nate between a curved psychophysical data. ICT TERMS Notion, motion percept f motion perception,	e of randomly-petermine whether speed was varied red to detect a ye movements we ward speeds. A al locations of lts showed an is tricity. Given o emulate a hum imulations of the and straight per cion, curvilinea eccentricity, ey	r-generated image ositioned dots. T r s/he was moving d. The results sh departure from a re restricted, th second study inve the stimulus in ncreasing linear optimally-scaled valent performance an observer's abi he model have bee ath of motion. The second study inve the stimulus in ncreasing linear optimally-scaled valent performance an observer's abi he model have bee ath of motion. The second study inve ath of motion. The second study inve ability class of ABSTRACT	s simulating an observer he first study investigat forward along a straigh owed that with eye move- straight path increased e required deviation re- stigated the effectivene determining the direction relationship between opt stimuli, the central and e. Finally, a computation lity to detect a curved in run on a task to dis- se simulation results closs 15. NUMBER OF PAGES 12 16. PRICE CODE

(A) Objectives of the research effort:

The main goal of the research program is to understand the mechanism(s) underlying the human observer's visual perception of self motion. With this as a common goal, two lines of research are currently being conducted. One line of research is a psychophysical investigation of the basic aspects of self motion perception, e.g. detecting the direction in which an observer is moving, detecting a change in the direction or speed of motion. A second line of research is the development and testing of a computational model that emulates the human observer's ability to detect self motion information. The goal is to develop a biologically-feasible model that is built upon a foundation of psychophysical findings.

(B) Status of the research effort:

The report on the status of the research effort is divided into three parts. Section 1 consists of the findings of two completed psychophysical studies, section 2 discusses the status of the development of a computational model, and section 3 reports the status of the current study.

(1) Completed Psychophysical Studies:

Study #1 - Visual discrimination of a curved or straight path of self motion: Effects of forward speed and eye movements

In this study, we addressed the question of whether the retinal motion produced from an observer moving through an environment is sufficient to determine whether s/he is moving forward along a straight or curved path. The stimuli used in this study were computer-generated images simulating an observer moving relative to a volume of randomly-positioned dots. Predictions were generated from a computer simulation of a current model for the computation of self motion information

(Rieger, 1983).¹ Psychophysical results were obtained and compared to the model predictions to determine whether or not the visual system behaves in a manner similar to the model.

For both the psychophysical tests and the computer simulations, two sequences of simulated observer motion were presented to the subject (or computer): one sequence was a simulation of observer motion along a straight path and the other sequence was a simulation of observer motion along a curved path (the direction of the circular path was either right or left, randomly determined). The task was to determine which sequence was the curved path of motion. The angle of the deviation from a straight path occurring within a second of time (angular speed) served as the independent variable. Each subject was given 200 trials, 40 trials for each of 5 preselected angular speeds. A psychometric function was obtained by plotting the proportion of correct responses against angular speed (x). A Weibull function (Equ.1) was fit to the proportion-corr distribution. The parameter α specifies the threshold (angular speed where performance was at 82% correct), and the parameter β specifies the slope of the psychometric function.

$$f(x) = 1 - 0.5 \cdot \exp[-(x/\alpha)^{\beta}] \qquad (Equation 1)$$

Angular-speed thresholds were measured at forward speeds ranging from 2.0 (walking speed) to 26.4 m/s (driving speed at 60 m/hr). The means of four subjects' angular-speed thresholds and standard errors for each forward speed are shown in Figure 1 together with angular-speed thresholds calculated from the simulation results. As shown, subjects can detect a departure from a straight path of motion when the deviation is as small as 2.0 - 4.0 arcmin/s at a forward

3

)1

Availand/or Avail and/or st______Special

M

¹Reiger, JH (1983) Information in optical flows induced by curved paths of observation. J. Opt. Soc Am A, 73, 339-344.

The model is based on the fact that when an observer moves along a curved path, the orientation of the translational component of the velocity field changes over time. If an observer moves along a straight path, the orientation of the translational component does not change. Thus a large difference in the velocity vectors of the translational component sampled at different time intervals indicates a curved path of motion.

speed of 2.0 m/s. At faster forward speeds, subjects require a larger deviation to detect a departure from a straight path. At a forward speed of 26.4 m/s, subjects require a deviation an order of magnitude greater than required for the 2.0-forward

Figure 1

speed to attain the same level of performance.

The simulation results show an opposite trend. Thresholds are infinite at forward speeds of 2.0 and 5.0 m/s and decrease with increasing forward speed.

What could explain the difference in performance between the model and the human observer at slow forward speeds? One difference between the model and the human visual system is the type of available information. In the model, the only information available to the decision maker is the stimulus motion. In the visual system, however, the information on the retina derives not only from stimulus motion but also from eye movements. It could be that the addition of eye movements plays a role in a subject's ability to discriminate between a straight and curved path of motion. Since the model did not take into consideration information generated from eye movements, the difference between the model and human performance may be due to this variable.

To test the hypothesis that information generated from eye movements is a critical variable, we ran a control experiment in which we measured thresholds under conditions in which the image

was stabilized on the retina. In this way, we were able to restrict the motion on the retina to only stimulus motion. The image was stabilized on the retina by means of an SRI Dual-Purkinje-Eyetracker and stimulus deflector system. An unstabilized fixation point was centered on the display and was visible at all times during the experiment in order to minimize slow eye drifts.

In Figure 2, angular-speed thresholds for the stabilized-viewing condition are shown together with the angular-speed thresholds for unstabilized viewing through the same eye-tracking system. As shown, when retinal motion generated from eye movements is eliminated, a subject can discriminate between a straight and curved path only when the deviation between the two reaches a certain value, approximately 45 arcmin/s,

Figure 2

regardless of the forward speed. Whereas when eye movements are permitted, forward speed affects performance; thresholds are lower at slow forward speeds.

The proportion of angular speed to forward speed is an estimate of curvature (curvature=1/radius). In order to determine whether subjects require a minimum amount curvature to discriminate between a straight and curved path we replotted the data obtained under the free-viewing condition (from Fig. 1) as a function of curvature in Figure 3. Proportion correct is plotted against curvature, and the different symbols represent data at different forward speeds. The functions across the different forward speeds coincide reasonably well (with the exception of subject KT at a forward speed of 2.0 m/s). Thus, it appears that under free-viewing conditions, with eye movements permitted, subjects discriminate between a straight and curved path at a

constant curvature. But, without eye movements permitted, subjects discriminate between the two at a constant angular speed.

Study #2 - Size and eccentricity effects on direction discrimination of a curved path of self motion

This study investigated the effectiveness of various sizes and retinal locations of the stimulus motion relative to an observer's retina in determining the direction of a curved path of motion. We addressed two questions:

(1) What is the minimum window size of stimulus motion required for a subject to accurately discriminate a rightward from a leftward curved path?

(2) Are some retinal locations more sensitive to the stimulus motion than others for the discrimination of a rightward and leftward curved path? Several studies that have investigated the effectiveness of retinal locations for other aspects of self motion perception (e.g. vection and postural control) suggest that the periphery plays a dominant role. Therefore, a likely outcome in the present experiment is that the peripheral retina would prove to be more sensitive than the central

retina for the discrimination of a rightward and leftward curved path.

Computer-generated images simulating an observer moving along a curved path relative to a volume of randomly-positioned dots served as stimuli. A sequence of the images was presented to the subject, and the subject's task was to indicate the direction (left vs. right) of the curved path. The angle of the deviation from a straight path occurring within a second of time (angular speed) served as the independent variable. Each subject was given 200 trials, 40 trials for each of 5 preselected angular speeds. A psychometric function was obtained by plotting the proportion of correct responses against angular speed, and a Weibull function (Equ.1) was fit to the proportion-correct distribution.

In order to answer the first question, what is the minimum window size required to accurately discriminate a rightward from a leftward curved path, we measured angular-speed thresholds across a range of window widths and retinal locations. Figure 4 shows the thresholds of two subjects across a range of window widths and 1 retinal location.

Figure 4

Thresholds were obtained at 0, 5, 10 and 20 deg, where eccentricity is defined as the distance between the fixation point and the center of the window.

The results showed that subjects required a larger deviation from a straight path in order to determine the direction (left vs right) of the deviation with small window sizes than with larger window sizes. At some point, increasing the size of the window size had no effect on the thresholds.

The data (log angular threshold as a function of log window width) were fit with two linear functions, one with a negative slope and the other a 0 slope. The breakpoints of the 2 functions indicate the minimum window width. The minimum window width is plotted in Figure 5

Figure 5

as a function of eccentricity for two observers. The data are represented by solid circles and the dashed line indicates the best linear fit to the data. The r² values for the fits are .99 and .95 for KT and JG, respectively. The slopes for the two functions are 1.01 and 0.71. These slopes are remarkably similar to those found by McKee and Nakayama over the same eccentricities for 2D differential motion thresholds. If optimal performance was not dependent upon the size of the window per se but rather by the nearest edge of the window to the fixation point then the functions

relating window size to eccentricity should have a slope of 2.0. Instead, the data indicate that this hypothesis cannot account for the data.

In Figure 6, the lowest angular thresholds are plotted as a function of eccentricity. Dashed lines represent a best linear fit to a constant. The fits do not permit a rejection of a 0 slope at the 0.00 level demonstrating that the central and peripheral locations are equally sensitive for discriminating between a rightward and leftward curved path of motion.

In summary, the results of the study indicate that there is a linear relationship between window size and eccentricity for determining the direction of a curved path of motion, and the central and peripheral retinal locations are equally sensitive to the stimulus motion for the discrimination of a F

rightward and leftward curved path, provided the stimuli are optimally scaled.

(2) MODEL: A neural network model for human visual perception of 3D curvilinear motion

We have developed a neural network model to emulate the ability of the human visual system to detect a curved path of motion. The network consists of three layers. The input to the network is a two-dimensional velocity field, and the output is a signal proportional to the magnitude of curved motion. The first layer of the network computes local difference vectors of the velocity field. This minimizes the rotational component of the velocity field introduced by eye

movements. The second layer of the network extracts the instantaneous heading direction from the translational component of the velocity field. The last layer of the network computes the acceleration component of the velocity field, i.e. changes in heading direction over time, and outputs a signal proportional to the part of the acceleration component whose direction is perpendicular to the translational component. The magnitude of curved motion is directly proportional to the magnitude of the perpendicular-acceleration component.

We have run computer simulations of the model performing a task to discriminate between a curved and straight path of motion. The simulation results closely match psychophysical data. We are currently testing the model with other stimuli and tasks.

(3) Current Study: The effects of dynamic noise on the discrimination of straight and curved paths of self motion

There are many potential sources in the human visual system that are capable of creating noise that is uncorrelated with a visual signal. For example, there can be noise in the image formation process due to inappropriate sampling levels, less-than-optimal viewing conditions and noise within the system at early processing stages, such as the local-motion detection stage. Uncorrelated noise may interfere with the system's ability to accurately or efficiently process information. Our current study investigates how perturbations in the stimulus motion affects the ability of the human visual system to perceive self motion information. We are introducing noise to the stimulus in the form of randomly moving dots. The direction of the dots are randomly determined from a Gaussian distribution of different means and standard deviations. Other parameters that we manipulate include the speed and density of the dots. To date, the computer software for the study has been completed and we are ready to begin collecting data.

(D) Publications:

Turano, K. and Wang, X. Visual discrimination of a curved or straight path of self motion: Effects

of forward speed and eye movements, to be submitted March, 1992 to Vision Research

Turano, K. Size and eccentricity effects on direction discrimination of a curved path of self motion, planned for submission to Vision Research

Wang, X. and Turano, K. A neural network model for human visual perception of 3D curvilinear motion, Proceedings of SPIE's technical program on Intelligent Information Systems (April 20-24, 1992)

(D) Professional personnel associated with the research effort:

Kathleen Turano (P.I.)

(E) Papers presented at meetings:

Turano, K. (1991) Field of view required for optimal optic-flow discrimination, presented at the Annual meeting of the Optical Society of America.