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ABSTRACT

In this paper, a method is presented for controlling

autonomous agent behavior by filtering the agent's input.

Without such filtering, the agent is allowed to have exact

knowledge of the state of its domain, resulting in a pattern

of performance that is unrealistic and consistently

successful. However, filtering that knowledge into beliefs

is a way of making it possible for the agent to be

unsuccessful some of the time. That is, if the agent is

working from beliefs, and the beliefs happen to be wrong,

then the agent may not reach its goal at that particular

instant. An application for this method--control of an

autonomous combat force in a simulation system--is developed

and demonstrated in this paper. The algorithm for

generating beliefs about battlefield events models the

information-gathering system of a combat force. However,

this model attempts to simulate the results of the

information-gathering system, and not the cognitive or

perceptive processes contained in such a system.
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I. INTRODUCTION

A. THE AUTONOMOUS AGENT PROBLEM

The word "autonomy" refers to a condition of being

independent or self-governing[Ref. 1]. In a

computer simulation system, an autonomous agent is an object

or some other entity that appears to possess sufficient

"intelligence" to govern its own behavior. It can execute

and monitor its decisions during the course of a simulation.

The agent's intelligence comes from a computer program that

contains information about some domain or universe of

discourse, and a set of rules for using that information.

This thesis is about an autonomous force (AF)

application that controls a group of combat vehicles in a

simulation system. The vehicles represent a small force of

tanks employing battlefield information and background

knowledge to make tactical decisions directed toward the

accomplishment of an assigned mission.

The remainder of this chapter covers the overall

development environment and presents key issues related to

the development of autonomous agent applications.

B. NPSNET

The autonomous force program discussed in this paper

was developed for the Naval Postgraduate School Networked
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Simulator (NPSNET), developed at the Computer Science

Department of the Naval Postgraduate School[Ref. 2].

The system is a combat simulation environment in which users

can interact with each other, as well as with the system.

Users of NPSNET may operate any one of several hundred

aircraft or ground vehicles. Many of the vehicles are

armed, so that users of the simulator can engage each other

in mock battles. The battlefield is a 3D representation of

a real environment, such as Fort Hunter Liggett, California.

It contains mountains, hills, valleys, roads, trees, open

spaces and other features. The terrain color can be green

to represent vegetation, or brown for generic dirt. The

choice of atmospheric conditions ranges from clear to foggy.

The role of the AF program in this simulation is to

provide users of NPSNET with an automated opponent. If the

simulator were employed as a combat training tool, the

availability of an AF program provides many training

opportunities, such as being able to fight mock battles on

the simulator without the assistance of another user, or

forming teams to oppose AF vehicles as a small unit instead

of individually.

The employment of autonomous forces has many precedents

in the past development of simulation systems. One of the

most successful examples is the Semi-automated Forces

(SAFOR) used by the U.S. Army's Simulation Network
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(SIMNET) [Ref. 3]. An important characteristic of

the SAFOR approach is the "man-in-the-loop" concept. That

is, the automated forces are ultimately controlled by a

human decision maker, thus the name 'semi-automated.' In

the conduct of a simulation, this setup allows commanders

and staffs to control large forces without necessarily using

manned simulators. This feature also populates the

battlefield with more objects, thus creating a more

realistic combat environment.

C. ASSUMPTIONS AND ISSUES

From the beginning, certain assumptions influenced the

design and implementation of this AF program. In this

section, the key assumption that impacts on the entire

organization of the program is discussed.

Each active station in NPSNET can display the current

state of the simulation. For example, if a user makes a

right turn in a vehicle, the other users will see that

vehicle turning right on their screens. Each station relies

on state messages from the other stations to keep its

display current. A state message is generated by a station

whenever its state changes, which can occur, for example,

when a user fires a weapon or changes direction.

The first assumption made about the AF program was that

it would operate as a station on the network. This meant
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that the program would routinely process state messages on

all other vehicles in the system. Since the AF's job would

be to attack and destroy other vehicles in the simulation,

it sec-med that giving the AF state messages on all other

vehicles in the system would give the AF an unfair

advantage. It was assumed that the AF, if given perfect

information on a vehicle that was designated as a target,

would then be able to destroy that target every time.

This latter assumption resulted in an architecture that

supported a clear division of responsibilities within the AF

program. The AF program would model two basic combat

functions: it would model the process of gathering

information about events on the battlefield, and it would

model the decision-making process that interprets, and acts

upon, that information. These two functions formed the

basis for two separate research issues associated with the

development of this program. This thesis is concerned with

the first of those two issues: that of modeling observation

or perception on a battlefield. A companion thesis

discusses the decision-making funcion of the

program[P.ef. 4].

Regarding the research goal of this thesis--modeling

battlefield observation--an important distinction must be

made. The goal cf this research is not to model human

perceptive processes, such as vision and hearing. Rather,
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it is to model the results of those processes. For example,

instead of modeling how the eye works, the goal is to model

what a person might be able to see under certain conditions.

As far as the AF is concerned, this means modeling what the

AF would be likely to know about its opponents at any given

point in time, based on several key factors. This

distinction will become clearer in Chapters II and III when

the model is Fresented.

D. ORGANIZATION OF THIS PAPER

In Chapter II the basic strategy for this project is

presented, along with an overview of the artificial

intelligence issues that impact on the work. Chapter III

contains a description of the proposed model for

accomplishing the goels stated in the previou3 section. fhe

model is further explained in Chapter IV with actual output

from a series of simulations using the model. In Chapter V,

the implementation of the program with its decision-making

counterpart is explained. Finally, Chapter VI concludes

with a summary of the work and a discussion of the original

assumptions and objectives.
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II. KNOWLEDGE AND BELIEF

A. INTRODUCTION

The overall approach to this project is based on a real

world analogy. It is explained in this chapter, followed by

a discussion of the concepts of knowledge and belief that

are key features of the adopted strategy. Lastly, the

chapter covers reasoning with uncertainty, another issue

that is central to the successful implementation of this AF

program.

B. THE OBSERVER ANALOGY

As explained in Chapter I, the AF program is divided

along two basic functions: battlefield observation and

decision-making. Furthermore, the motivation for modeling

battlefield observation is to give the AF decision maker

information that approximates the information it would be

likely to have if it were gathering information on a real

battlefield.

On a real battlefield, information is gathered in many

ways. For instance, long range patrols roam the forward

areas and report by radio. Observation posts hidden on high

terrain features scan their assigned sectors and send in

reports by radio or field telephone. The commander may also

receive information from higher headquarters, neighboring
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units, and allies. This information may be in the form of

photos, descriptions, map overlays, and so on. Finally, the

forward elements of the command's fighting force are also

information gatherers. Since they are likely to see the

enemy first, they can immediately report back on its size,

equipment, activities and location.

All of this information is assimilated by the decision-

maker and used to form a course of action, or to make

changes to a previously chosen course of action. The

system, therefore, consists of two subsystems: one that

gathers information, and another that uses it. The AF

program was structured in the same manner, with roughly the

same division of functions. This thesis, in particular,

attempts to model the information gathering subsystem by

simulating the reports that are sent to the decision maker

by observers. Again, a distinction alluded to in Chapter I

is relevant here: the goal is to model the results of the

observation process, not the process itself.

C. KNOWLEDGE AND BELIEF

Recall from Chapter I that, without this observation

function, the AF would be free to use NPSNET world state

messages to form courses of action. It was assumed that the

AF would then have an unrealistic advantage over its

opponents. This is analogous to a real world commander who
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has perfect information about the enemy's size, location,

equipment, amount of ammunition, level of fuel in fuel

tanks, and so on. Obviously, this is never the case. Even

very good information is not perfect. However, if the goal

here is to model the results of the observation process, how

far from perfect should the information be?

The strategy used here is to distinguish between

knowledge, that which is known to be true about something,

and beliefs, that which is believed to be true. These

concepts have been investigated by many artificial

intelligence researchers[Ref. 5], [Ref. 6],

[Ref. 7]. Davis, for example, describes three

degrees of belief possessed by an agent, such as an

autonomous agent:

1. Explicit belief -- The program believes anything that
is explicitly in the knowledge base.

2. Derivable belief -- The program believes anything that
the inference engine can derive in a retrieval.

3. Implicit belief -- the program believes anything that
could be inferred in principle via valid inference from
the knowledge base.

Implied in the concept of belief is the notion that a

belief can be wrong. Therefore, the agent should be allowed

to hold beliefs which, although supportable by the knowledge

base, are contrary to the true facts about the world.

8



In the AF program, the agent's knowledge comes from two

sources: the static knowledge base that describes certain

facts and relationships about the environment, and a dynamic

knowledge base that changes with each decision cycle of a

simulation. Certain true facts about the world are allowed

to be asserted as knowledge, such as the current system time

or a vehicle identification number assigned to each vehicle

in the simulator by NPSNET. However, most of the remaining

facts about the world, such as information describing the

targets, are not asserted as knowledge. Instead, they are

processed and asserted as beliefs. The observer program

then uses knowledge and rules to determine additional

beliefs, if they exist. Finally, the beliefs are passed to

the decision maker for action.

A critical step, of course, is the part about

processing true facts about the world into beliefs. That is

the bulk of the work of this thesis. The task is

accomplished with several belief generation algorithms that

are described in Chapter III and demonstrated in Chapter IV.

Placed in the context of the observer analogy, the output of

the belief generation algorithms approximates reports that

an observer would send under a given set of conditions.

Performing the belief generation task again raises a

question introduced in the first paragraph of this section:

how far from perfect should the information be? If true
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facts about something are to be processed into beliefs, how

much error should be introduced? More to the point, what is

a valid indicator that the belief algorithms successfully

model a real battlefield observation?

These questions were resolved in the following manner.

Rather than make the assertion "Here is how the average

battlefield observer behaves," the assumption is made that

battlefield observers in the real world may be highly

skilled and very effective, or poorly trained and

ineffective, and most of them fall somewhere in between.

The model was then designed to accommodate this range of

abilities among observers. By adjusting certain parameters

and making changes to the knowledge base, the observer can

be always right or always wrong, or it can be right or wrong

some percentage of the time. With this feature in place,

the user can control the performance of the autonomous

force. With a poor observer, the AF will be easy to beat

because the AF will be working with beliefs that are

substantially different from the true facts about the world.

But with a good observer, the AF's beliefs may be very close

to the truth, and the AF will be harder to beat.

To summarize this section, true facts about the world

are converted into beliefs by a set of belief generation

algorithms. These algorithms have parameters that can be

set to control the amount of error that is introduced. A
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knowledge base and rule base are used by the program to

derive additional beliefs from existing beliefs. The

output from the observer subsystem is sent to the decision

maker for action.

D. REASONING WITH UNCERTAINTY

The final section of this chapter covers a few

reasoning issues that are central to the successful

implementation of this model.

The observer program discussed in the previous section

can be thought of as an expert system that predicts what a

human observer's report would be under a given set of

circumstances. At any given instant in time, the system

must choose a belief about something from among several

possible beliefs, all of which may be equally valid. For

example, if the true state of a vehicle is that it is

traveling at 32 kilometers per hour, then when is a belief

of 30 kph more appropriate than a belief of 28 kph? An

additional problem with modeling a real world observer is

that no one, not even the observer, can predict with

certainty what his or her next report will be.

This is a standard problem that has been characterized

by many researchers as reasoning with uncertainty

[Ref. 8], [Ref. 9], [Ref. 10]. In general, reasoning with

uncertainty means having to form a conclusion about
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something based on incomplete or incorrect information. In

some applications, such as medical diagnosis, the system

must undertake a complex reasoning process to arrive at a

conclusion that may only have a certain probability of being

right[Ref. 11].

The AF application is not as complex as medical

diagnosis, but it still requires the use of uncertain

reasoning techniques to resolve ambiguities. For example,

what would an observer really report? And what would

constitute a realistic approximation of that report?

The strategy adopted in this application uses several

standard techniques for dealing with these issues. However,

they are best explained in the context of the model.

Therefore, further explanation is reserved for the next

chapter.

E. SUMMARY

This chapter developed the analogy of the combat

observer sending reports to a decision maker as the basis

for the division of functions within the overall AF program.

It further portrayed the observation function as a model of

the combat observation subsystem in the real world.

However, the distinction was made that this program attempts

to model the results of the observation process, not the

process itself.

12



This led to a discussion of the basic strategy used by

this program to accomplish its goal: the conversion of true

facts about the world state into beliefs using a set of

belief generation algorithms, a knowledge base, and a set of

rules. This process is the heart of this entire program.

Next, the chapter covered several related issues concerning

the concepts of knowledge and belief, and the use of

uncertain reasoning techniques.

In the next chapter, the model and its parameters are

laid out in detail. Chapter IV contains a demonstration of

its implementation on NPSNET.

13



III. SIMULATING A BATTLEFIELD OBSERVER

A. INTRODUCTION

In this chapter the mechanism for converting true facts

about the world into beliefs is explained in detail. It

begins with a discussion of conditions on a battlefield that

affect a human observer's performance, as well as individual

aspects of the observer that affect how well he or she would

perform under any circumstances. The chapter then covers

the manner in which the battlefield conditions are combined

into a formula that captures the overall effect of the

conditions upon the belief generation process. With this

formula in place, the functions that compute the actual

beliefs can be shown.

Also covered in this chapter are the basic

characteristics of objects in NPSNET. These characteristics

constitute the true facts about the world that this program

converts into beliefs. Finally, the inference procedures

that derive new beliefs based on the results of the

algorithms are covered in detail. There is also a feature

for determining new beliefs based on beliefs from a previous

decision cycle.

14



B. MODELING BATTLEFIELD CONDITIONS

A total of five battlefield conditions are simulated in

this program. They are distance, visibility, judgement,

knowledge, and equipment. Each of them is explained in this

section. Basically, distance and visibility are meant to

represent the physical characteristics of the combat

environment, while knowledge and judgement apply to the

individual observer. Equipment is related to the observer's

capabilities since it denotes any items of equipment used to

aid the observation process.

In theory, almost anything can be regarded as an

important battlefield factor: the amount of time since the

observer's last meal, the amount of sleep in the prior 24

hours, the actions of the objects that are being observed,

knowledge about the combat environment in which they are

operating, and so on. Since the automated force program

must operate in real time, it is not desirable to try to

model every condition under which people make judgements on

a battlefield.

Distance. Denoted by d, it is a number between 0 and 1

that is based on the actual distance between the observer

and the target. A value of 1 means the object is so close

that it can be positively identified with the naked eye, a

value of 0 means that there is no chance that the attribute

can be identified. Choosing to model this battlefield

15



condition rests on an assumption that distant objects are

much harder to identify than relatively close objects. In

Section E, a formula will be presented that shows how d is

computed, given the actual distance to the target.

Visibility. Denoted by v, it is a value between 0 and

1 that describes atmospheric conditions, such as darkness,

fog, smoke, dust. It is important to note that this factor

covers anything that impacts on visibility, to include time

of day. A value of 0 for v denotes the poorest conditions,

such as a moonless night or impenetrable fog, when

visibility may be less than 30 feet. v = 1 means perfect

viewing conditions, when visibility may be 5,000 meters or

more with the naked eye. Values between 0 and 1 denote

various visibility ranges. By default, a simulation begins

with a visibility of 1, assuming a daylight battle in a

clear desert environment. However, the presence of smoke,

dust, and haze can change that value during a simulation.

Also, a user of NPSNET can change the visibility via menu

selection during a simulation.

Judgement. Denoted by j, a value between 0 and 1 is

used to represent the skill and experience of the observer.

This can include the observer's eyesight, alertness,

intelligence, enthusiasm about the mission, and so on. The

number is subjectively set, with 1 representing a highly-

skilled observer, and 0 meaning the opposite. Although

16



judgement is an important individual characteristic, it does

not influence AF performance as much as some other

characteristics, such as knowledge or equipment. The

default value is j = 1.0.

Knowledge. Denoted by k, this value also falls between

0 and 1. It is a measure of what the observer knows,

through prior knowledge or external sources, about the

objects being observed. If knowledge is 1, then the true

facts are always known to the observer, and are asserted as

beliefs with a value of 1, which has the same effect as

asserting them as knowledge. A value of 0 means that the

observer has no relevant knowledge about the objects it

sees. The default value is 0.5.

Equipment. Denoted by q, this is a measure of the

utility of various pieces of equipment available to the

observer for viewing the battlefield, such as binoculars,

night vision devices, and so on. The naked eye is denoted

by a value of 0, and 1 means that the equipment used

provides maximum utility. By default, the observer has

binoculars and night vision equipment. The value of q

changes during the simulation as the observer uses different

equipment in different situations. If desired, the user can

take away the equipment at startup, forcing the observer to

use only the naked eye.
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The factors described above are designed to represent

only the most fundamental battlefield conditions. Notice

that noise is not accounted for, even though battlefield

sounds provide significant clues to identifying things.

However, noise and other factors will be discussed in the

final chapter as issues for future program development.

C. THE OBSERVER MODEL

This section explains how the five battlefield

conditions, Table I, are combined into a single parameter

that represents the overall effect of those conditions upon

the belief generator's output.

Table I: BATTLEFIELD FACTORS

Range

Factor Best Worst

d 1 0

V 1 0

j 1 0

k 1 0

q 1 0

A function, denoted as m, represents the total effect

of d, v, j, k, and q. m(d,v,j,k,q) is interpreted as a

probabilistic measure of the ability of the observer to make

18



a correct observation ;nder the specified conditions. m

itself must fall between 0 and 1, since it is a measure of

probability. If m is low, then there is relatiiely little

chance that the observer will observe and correctly identify

selected attributes of an object. If m is high, then there

is a relatively greater chance that the observer's report

will be accurate. Output generated by the observer module

becomes input to the decision maker. This means that when m

is low, the decision maker will probably be working with

poor information. However, it will be shown that m rises as

the AF gets closer to its target, so the decision maker gets

better and better information with each decision cycle.

Since the probability function m is somewhat unwieldy

in its entirety, some of the factors are combined into

intermediate functions denoted by the letters c and g. The

functions are shown here and then explained in turn.

c(d,v,j)=d2e-,%1 - v X = 0.5 (1)

g(c, q) =c+q(l-c) 2 - (2)

m(g, k) =gl-k (3)

Equation (1) depicts a multiplicative relationship

between d, v, and j. In order to have c = 1, all three must
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equal 1. The desire here was for these three parameters to

have a strong combined effect on m, but that one of them

alone could not force m to equal 1. This is based on an

intuitive interpretation of these parameters. For instance,

judgement alone should not result in perfect knowledge,

clear visibility alone should not lead to a perfect

observation, and close proximity should not automatically

result in a perfect observation because the observer can

make a mistake even at close range. However, the combined

effect of thes:e three parameters, which is c, will always

force m to 1.

The next two functions will be discussed together. In

function g(c,q), Equation (2), the relationship between c

and q is such that if either of these is 1, then g = 1.

Then, in m(g,k), the same relationship holds for g and k.

The overall effect is that either knowledge, or equipment,

or the combined effects of distance, visibility, and

judgement can produce the result m = I. This supports the

goal that m should be 1 when knowledge is 1, and it also

supports the intuitive notion that the use of equipment has

a dramatic effect on the abilities of the observer. For

example, using binoculars enables observation of distant

objects with much more clarity than is possible with the

naked eye.
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D. TARGET CHARACTERISTICS

In this section, the key characteristics of NPSNET

vehicles are discussed. The values of these characteristics

come to the AF program via world state messages and are

ultimately converted to beliefs by the battlefield

observation program.

Table II, next page, shows the contents of a state

message. These messages are generated on startup and when

there are changes to predetermined aspects of a vehicle's

state, such as its speed and direction. Between state

messages, the AF program must apply its own dead reckoning

algorithm to keep track of the locations of vehicles in the

simulation.

As stated above some items of information from the

state message are asserted as facts without belief

processing; namely, the system time and the vehicle ID. In

addition, certain other items are ignored, such as the

elevation of the target's gun and chassis. For one thing,

it is not likely that these would ever be known by an

observer. Also, a combat force does not have a need for

such detailed information about its opponents.
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Table II: CONTENT OF STATE MESSAGE

Field Name Description Values

int hours time of message

int minutes"

int seconds

int mills

int vehno unique ID for each
object in the
simulation

int vehtype index to an array
containing a
description of the
vehicle

int gunfire 0 = has not fired
1 = has fired

int alive 0 = dead
1 = alive

float pos[3] location of vehicle x = east-west axis
in 3D world y = vertical axis,
coordinates, using or elevation
the right-handed z = north-south
coordinate system axis

float direction the direction the 0 - 359 compass
vehicle is heading degrees

float viewdirection the direction in 0 - 359 compass
which the vehicle degrees, relative
is looking, or the to direction
turret state

float elev elevation of
chassis

float gunelev elevation of main
gun, relative to
chassis

float speed speed in kilometers 0 to max speed
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The remaining elements of the state message are divided

into two groups: those that are continuously-valued in

nature, and those that are discretely-valued. A

continuously-valued element, or target attribute, is one

that has a range of allowable values. These are location,

speed, direction, and view direction. A discretely-valued

attribute is one that has only a few allowable values. This

list includes vehicle type, gunfire, and alive. The need

for this division of target characteristics will become

apparent later in this chapter.

Finally two other discretely-valued attributes about a

target are considered: armament and armor-protection. These

are not contained in the state message but are implied by

the vehicle type of the target. For example, if the target

is a tank, then it will have a main-gun and it will be an

armored vehicle. These additional target attributes are

used in the inference process that determines beliefs about

discretely-valued attributes.

E. DETERMINING THE DISTANCE FACTOR

This section is devoted to an explanation of the

formula used to compute the distance parameter, which is one

of the five battlefield factors. The computation of d is

unique in that it is not the same for all target

characteristics.
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First of all, an assumption is made that some target

attributes are harder to identify than others. For example,

at a range of 4,000 meters, determining which way the turret

of a tank is facing is harder than judging the general

direction in which the tank is heading. Or, if a vehicle is

stationary, it might be hard to tell if it is alive or dead.

Therefore, it was desirable that m should be given the

chance to assume different values when generating beliefs

about different target attributes. To accomplish this goal,

the formula for computing d is given inputs that may vary

according to the target attribute that is being evaluated.

As noted earlier, d is a number between 0 and 1, and

is based on the distance from the observer to the target.

When d = 1, it means that an attribute of a target is so

close that it can be positively identified. For each

attribute, a value, dl, represents the range, in meters, at

which that attribute can be positively identified. do

represents the range at which the attribute can just begin

to be seen, but is not likely to be identified accurately.

Table III lists these distance values for the various target

attributes.
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Table III: DISTANCE VALUES, IN
METERS.

Attribute d d

vehtype 600 5000
arms 500 3000
armor 550 5000
control 500 4000
gunfire 800 6000
alive 500 5000
location 700 8000
speed 1000 8000
direction 1000 8000
viewdirection 400 4000

To obtain d for an attribute of interest, the values

for d. and d, for that attribute are entered into (4) below.

d = 1 - da - d,(attribute) (4)
d o (attribute) - d 1 (attribute)

where d, is the actual distance from the observer to the

target. To illustrate, if an object is 2,000 meters away,

and the observer is trying to determine if it is an armored

vehicle, as opposed to a truck, then d would have a value

of,

da - d1 (armor) 2000 - 550 = 0.33
d o (armor) - d1 (armor) 5000 - 550

but if the observer were trying to judge the direction in

which the vehicle was heading, then d would be,
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da - d(direction) 2000 - 1000 014
d. (direction) - d, (direction) 8000 - 1000

If the other factors are held constant, then the

difference in d for the two examples above will result in a

slightly higher m in the second case. (Remember, higher

values of d are more favorable.) This means that the

observer has a slightly better chance of judging a vehicle's

direction of travel than of determining whether or not the

vehicle is armored.

F. THE BELIEF GENERATION ALGORITHMS

This section covers the procedures that convert true

facts about the world state into beliefs. Beliefs for most

of the target attributes are computed by a single function

that receives as inputs a true state value for an attribute

and the m value for that attribute. Some of the target

attributes are more complex, requiring a series of functions

and rules. For each target attribute there is also a

procedure for determining a belief based on a previous

belief. This supports the idea that old beliefs influence

new beliefs.

In the first part of this section, the belief

generation algorithms for location, speed, direction and

view direction will be presented. Following that are the
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procedures for determining beliefs about vehicle type,

armament, armor-protection, gunfire, and alive.

1. Selecting Beliefs for Continuously-valued
Attributes

Beliefs in this category are computed with

probabilistic algorithms that introduce error directly into

the true value to obtain a belief. Since the value, ma, is

interpreted as the probability of an observer correctly

identifying attribute a, then 1 - ma is the chance of error

in the observation. For instance, if m = 0.85, then there

could be as much as a 15 percent error in the observation.

The question is, 15 percent of what? For each attribute the

error is introduced in a slightly different way, but in each

case the result is a random selection based on m. The

following subsections will cover the procedure for each of

the attributes in the continuously valued category.

a. Speed

The arguments to the speed error function are

msPed and the actual speed of the target. First, 1 - m is

used to determine an interval around the actual speed value.

For example, if 1 - m = 0.2, and the true speed is 25

kilometers per hour, then the resulting interval will be as

follows

lb = 25 - 0.2(25) = 20 kph

ub = 25 + 0.2(25) = 30 kph
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A value is then selected at random from this

interval. This scheme has the desired characteristic that

the true speed always has a chance of being selected, and it

has a greater chance as m increases. Also, when the target

is moving faster, a given percentage of error will be

greater since the percentage is applied to a higher value.

The method just described is used to

calculate the initial belief in speed. However, there is a

chance that an observer's initial belief about an

observation will influence later beliefs. To accommodate

this possibility, subsequent speed belief calculations use a

function that receives as arguments the actual speed and the

previous speed belief. The interval from which the random

selection is made is the interval formed by taking the

absolute value of the current true speed subtracted from the

last belief. This means that when a target's speed is

constant, the successive beliefs stand a good chance of

being closer and closer to the actual speed. This

characteristic of the algorithm agrees with the notion that,

if the observer views an object moving at a constant speed

for a long time (perhaps several seconds), then the observer

will be more likely to figure out, or guess, the correct

speed.
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b. Direction and View Direction

Since these two attribute beliefs are

computed in an identical manner, they will be presented

together. The arguments to the compass error function are m

and the true direction in which the target is traveling. A

compass error in percentage terms is interpreted as a

percentage of the entire compass, i.e. 360 degrees.

Therefore the error, 1 - m, is converted to an error in

degrees as follows:

error = 360(1 - m)

The error is then added to, and subtracted

from, the true error to form an interval from which a value

is selected. This value becomes the initial belief about

direction. Subsequent beliefs are selected at random from

the interval formed by taking the difference between the

current true value and the most recent belief. For example,

if the true value is 255 degrees at time t,, and the belief

at time t. was 315 degrees, then the interval from which the

new belief is selected would be 315 - 255 = 60. Note that

there can be two interpretations of the difference between

two directions on a compass. For example, the difference

between 315 degrees and 255 degrees could also be 300. In

this application, the smaller difference is always chosen.

This algorithm again has the characteristic

that, if direction remains constant for a period of time,
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the beliefs will gravitate toward the true value. The same

arguments discussed above apply here.

c. Location

The location error algorithm is the most

complex, and the most important, of the continuously valued

belief generation algorithms. Of all target

characteristics, the location of the target is the most

critical as far as the AF is concerned. The true location

of a target must eventually be known if the AF is ever to

successfully attack that target. This is different from a

real world combat system, where a tank gunner, for instance,

can hit a target by aiming at it. The gunner does not need

to know the grid coordinates of the enemy tank. The AF, of

course, does not have a human aiming mechanism. Its "cross-

hairs," so to speak, are the grid coordinates of the target.

For these reasons, the generation of location

beliefs is really an attempt to model the effectiveness of a

tank gunner. If a gunner is 90 percent effective, then it

means that he hits his target 90 percent of the time. In

the AF program, this could be simulated by giving the AF the

correct grid coordinates 90 percent of the time. Of course,

the AF has other internal criteria that must be met before

it can hit a target, such as range and line-of-sight.

However, if these criteria are satisfied, and the AF is
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given the correct location of a target (and all of this

information is current)', it will always hit the target.

The location belief algorithm is designed to

model gunner effectiveness by giving the AF the correct

location a certain percentage of the time. Its arguments

are miocation, the true X coordinate and the true Z coordinate.

(Note: The Y coordinate denotes elevation in the NPSNET

world coordinate system.) The function returns a set of

believed X and Z coordinates.

The basis for the error is 1 - m. Error in

location is interpreted as a percentage of the distance

between the AF and the target. If the target is 1000 meters

from the AF, and 1 - m = 0.05, then

error = 0.05(1000) = 50 meters

A random number selected from the interval

[0, 50] would become the actual error contained in the

belief. However, there is an additional step. In order to

compute X and Z coordinates for the believed location, a

direction from the target is chosen at random and then used,

along with the distance, to determine the believed

coordinates.

The information may not be current if the network becomes

overloaded. This is an implementation problem that will be
discussed in Chapter V.
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The direction to the target is only chosen at

random during the initial belief calculation. So that a

series of beliefs are consistent with each other, subsequent

beliefs are chosen, randomly, from an area that is in the

same general direction as the initial belief. The distance

factor for subsequent beliefs is chosen from an interval

formed by taking the difference between the current location

and the previous belief. As with the other belief

algorithms, subsequent beliefs gravitate toward the true

belief as long as the location is unchanged.

This section covered the procedures for

determining beliefs about the four continuously-valued

attributes. In each case, a percentage of error was applied

in some manner to the true value of the attribute. The

actual result was a random choice.

2. Selecting Beliefs for Discretely-valued Attributes

This section is concerned with the vehicle type,

gunfire, and alive target attributes that are elements of

the NPSNET world state message. The alive attribute is

important to the AF because if a target is dead, it should

be withdrawn from the target list. The gunfire attribute is

useful, but not critical at this stage of AF development

because the AF does not attempt to "dodge" incoming rounds

or take cover. Finally, the vehicle type attribute is

another item for future development of the program. At
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present, the AF will attack any vehicle that is asserted as

a target. However, some targets, such as a tank, should be

given greater priority than others, such as a truck. Also,

if the AF is to follow international protocols, then it

should not attack ambulances or other medical aid vehicles.

Since these features are all possibilities for

future development of the AF, they have been included in the

belief generation program and will be discussed in this

section. Although these procedures have been implemented in

the program, they can be effectively turned off to save

computation time.

The procedure for generating discretely-valued

attribute beliefs is a multi-step process that uses several

functions, rules, and facts from the knowledge base. The

basic strategy is to compute intermediate beliefs for one or

two selected attributes and then treat the intermediate

beliefs as evidence to support other beliefs. To support

this strategy, it was necessary to designate additional

target characteristics that could be used for generating

intermediate beliefs. The attributes, armament and armor

protection, were chosen for this purpose. Although they are

not included in the NPSNET world state message, they are

useful for making inferences about the vehicle type and

gunfire attributes.
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These special target attributes have values that

are associated with one or more categories or families of

vehicles. For example, all of the varieties of tanks

modeled in NPSNET belong to the family of tanks. Armored

vehicles that carry troops to combat belong to the armored

personnel carrier family, and so on. This data, provided in

Table Table IV represents the armament and armor protection

attributes.

Table IV: INTERMEDIATE ATTRIBUTE VALUES

Attribute: Armament
Value Vehicle Type Category

main-gun tank
small-arms apc (armored personnel carrier)
anti-armor itv (improved TOW vehicle)
arms-none truck

Attribute: Armor Protection
Value Vehicle Type Category

has-armor tank, apc, itv
no-armor truck

When an NPSNET world state message is received by

the observer program, the value of the vehicle type

attribute is checked against lists of vehicle types stored

in the observer's knowledge base. If the vehicle is a tank,

then the facts about the tank's armament and armor
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protection will be asserted. Namely, that the vehicle has a

main-gun and it is an armored vehicle. These'new facts are

then treated as true world state facts and are subject to

belief computations.

Because of the nature of discretely-valued

attributes, a selection method like the one described in

Subsection 1 is not appropriate. For one thing, if an

attribute has only two or three allowable values, selecting

a belief by computing a percentage error based on the true

value is inappropriate. Also, the method described in the

previous subsection does not exploit the fact that some

attributes lend themselves to inference. Instead of using

the methods described previously, an evidential reasoning

technique based on Dempster-Shafer theory is used to take

advantage of the fact that discrete attributes can be both

observed and inferred[Ref. 12],[Ref. 13].

Dempster-Shafer theory is a mathematical, non-Bayesian

theory for combining multiple pieces of evidence to develop

beliefs in various hypotheses. It features a tableau

mechanism that is especially suited to combining the types

of evidence considered by this belief generation procedure.

To illustrate the use of this technique, and the overall

procedure, the next several paragraphs will be devoted to

generating a belief about vehicle type.
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The first step is to calculate m for all

discretely valued attributes, to include the intermediate

attributes. Each m is then evaluated as evidence supporting

the actual value of the attribute, and 1 - m is assigned to

the complement of the true value. For example, if armor

protection is being considered, and marmor 0.75, then the

following evidence would be generated and labeled m,:

m.({armor:has-armor}) = 0.75
m 1({armor:no-armor}) = 0.25

Likewise, if the vehicle type is tank, and

mvehtype =0.85, then:

m1 ({vehtype:tank}) = 0.85
m1 ({vehtype:apc,itv,truck}) = 0.15

For each attribute, mi is the label assigned to

evidence based on direct observation of the attribute, since

it is derived from m, and m itself is the probability that

an attribute was observed and identified correctly.

After mi has been determined for each attribute,

certain rules are activated that try to apply facts in the

knowledge base to existing evidence. For example, two of

the facts are:

(has-armor (tank apc itv) 1.0)
(no-armor (truck) 1.0),

36



where the numerical value, called p, is the probability that

the first term in the fact implies the second term. These

particular facts say that the presence of armor plating on a

target implies that the target is either a tank, or an apc,

or an itv, with p = 1, and the absence of armor implies that

the target is a truck, also with p = 1. This may seem

redundant, since the associations between these attributes

was just given. Remember, however, that the original data

was asserted as true facts, and now the program is computing

beliefs.

When facts in the knowledge base are matched with

existing evidence, new evidence is asserted that contains a

numerical value found by multiplying m, with p. Using the

armor protection implications given above, the new facts

would be:

(belief (has-armor) implies (tank apc itv) 0.75)
(belief (no-armor) implies (truck) 0.25)

These new implication facts trigger another set of

rules that gather all updated facts about the target

attributes and labels that as evidence M2. m 2 evidence is

any evidence in support of a particular belief that is

inferred by the presence of another belief. Using the

examples thus far, M 2 evidence would include evidence that

says something about vehicle type because of the beliefs in
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armor protection shown above. This is an illustration of

how an intermediate belief is used in the belief generation

process. Recall that the purpose of this example is to

generate a belief in vehicle type. Thus far, the list of

evidence about vehicle type consists of:

m1 ({vehtype:tank}) = 0.85
m1 ({vehtype:apc,itv,truck}) = 0.15
m2 ({vehtype:tank,apc,itv}) = 0.75
m2 ({vehtype:truck)) = 0.25

The next step is to combine this evidence to form

a belief about vehicle type. An intersection tableau is a

convenient tool for this. Figure 1 is a simple graph where

the evidence to be combined is placed in the margins. For

this example, the left margin contains the m, evidence and

the top margin contains m 2.

{tank,apc,itv} {truck}
0.75 0.25

{tank} {tank} fl
0.85 0.6375 0.2125

{apc,itv,truck} (apc,itv} {truck}
0.15 0.1125 0.0375

Figure 1: Use of intersection tableau to combine evidence
values.
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The data inside the tableau consist of the

intersections of the sets and the product of the values

associated with each set. for example, {tank) 0.6375 was

obtained by taking the intersection of {tank} and

{tank,apc,itv}, and the product 0.75 x 0.85.

The values are then normalized by first totaling

the empty sets and subtracting that amount from 1. In the

notation provided by the Dempster-Shafer model, this would

be:

m1 x m2({}) = 0.2125

1C = 1 - Mi x m2({} = 0.7875

The second step in normalization is to divide the

values of the non-empty sets in the tableau by K :

m, ( m2 ({tankl) = 0.6375/0.7875 = 0.8095

m! @ m2 ({apc,itv}) = 0.Il2/0.7875 = 0.1428

m! 0 M2 ({truck}) = 0.0375/0.7875 = 0.0476

The final step in the belief generation procedure

is to treat the results of the intersection tableau as

weights in a random selection process. In this case, a
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number chosen at random from 1 to 100 would be compared to

each of the tableau results. If the numb- 81 or less,

then tank would be chosen as the belief fo vehicle type.

If the number is between 82 and 96, then either apr or itv

would be chosen (at random); and if the original random

number was between 97 and 100, truck would be chosen as the

belief. One of the advantages of this belief generation

procedure is that it uses a method of logical inference to

determine weights, but then provides for human error by

allowing random selection. In the example above, the

observer could mistakenly call the tank a truck.

The remaining discretely valued attributes--

gunfire and alive--are also computed using a comktination of

functions, rules and random selection. All of the

discretely valued attributes have many inter-relationships.

For example, if the value of gunfire is "firing," then that

implies something about armament, armor protection, vehicle

type, and alive. Although only one example was shown here,

the program goes through this process for all of the

attributes in this category.

A controlled degree of random selection is

important when determining these beliefs because it allows

the unpredictable to occur. In a combat environment, for

example, people often misidentify things that are spotted on

the battlefield. One of the goals in this project was to
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simulate logical errors, such as mistaking an apc for a

tank, as well as judgmental errors that occur in the

battlefield observation process.

G. SUMMARY

This chapter covered the functions and procedures that

model the battlefield observation process. It described the

battlefield conditions that are combined into a value called

m that is a probabilistic measure of the accuracy of an

observation. It then covered the ways that m is used to

calculate continuously valued and discretely valued target

attribute beliefs.

In the next chapter, an analysis of actual data

generated by the continuously-valued belief algorithms is

presented and discussed.
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IV. AN ILLUSTRATION OF THE MODEL

A. INTRODUCTION

In this chapter, several detailed examples are used to

show how the belief algorithms work in an actual simulation.

Since continuously valued attributes have the greatest

impact on autonomous force (AF) behavior, they will be the

focus of this chapter.

The first three examples are devoted to explaining the

location belief algorithm, which is the most critical belief

that is generated by the program. That is because, to the

AF, the location of a target is the most important piece of

information needed to conduct a successful attack. The last

two examples in the chapter are devoted to belief algorithms

for speed, heading and view direction.

The examples are presented as a series of engagements

pitting an AF of four tanks against various targets in the

simulator. Output from the simulations was captured in a

file and is used here to show the workings of the model.

Before describing the engagements, a word about the targets

is necessary.

Vehicles and other moving objects in NPSNET are

controlled in one of four ways: scripted, driven,

uncontrolled, and autonomous. When the simulator is

started, the "world" is initially populated with an
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assortment of scripted and uncontrolled vehicles. The user

can "drive" a vehicle by selecting a two-dimensional vehicle

icon with a mouse pointer. The vehicle selected then

becomes a driven vehicle. At any time, the user may start

the AF program. As far as the AF is concerned, any driven

vehicle is a target. Scripted, uncontrolled, and other

autonomous vehicles are ignored, with one key exception. If

a user leaves a driven vehicle to drive a new vehicle, the

previous vehicle becomes uncontrolled, that is, the settings

chosen by the driver, such as speed and direction, remain in

effect. However, the AF platoon will continue to treat that

uncontrolled vehicle as a target. Once a vehicle becomes a

target, it remains a target until it is either destroyed or

it moves out of range.

B. EXAMPLE ONE

Most of the "battles" in this series of examples occur

on flat terrain characterized by good line-of-sight for

distances of several thousand meters. Under these

conditions, the AF's requirements for attacking a target--

range of 5,000 meters or less and no obstacles--will be

easily met.

As explained in Chapter III, the five parameters used

by the belief algorithm are combined into a value labeled m

that represents the probability that an observation is
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correct, given the conditions under which the observation is

made. Also, 1 - m is the amount of error that could be

present. In other words, if there is a 98 percent chance

that an observation is correct, then there may be as much as

a two percent error in the observation. When m is 1.0, then

the observation is perfect, which means the belief matches

the actual data. Three things can cause m to equal 1.0:

1. If knowledge (k) = 1.0, then m = 1.0
2. If equipment (q) = 1.0, then m = 1.0
3. If judgement (j) and visibility (v) and distance (d)

all equal 1.0, then m = 1.0

In Figure 2, the parameters have been set so that

belief generation is effectively turned off. That is, m is

always 1.0, thus illustrating how the AF performs when it is

passed perfect information.

KNOWLEDGE TO BELIEF CONVERSION

No distortion of facts.

k, v, j, q = 1.0

Line Actual Data Beliefs

Number Veh 0 TL.e Type Range Xcoord Zcoord Xcoord Zccord

3: 1' 36.58 52 1841.65 35843.35 25290.90 35843.35 2529.90 :.Co
2. 31 177C''.59 52 1799.80 35850.96 25298.42 35850.96 25298.42 1.00
3. 31 P77016.27 52 i752.89 35862.90 25310.87 35862.90 25310.87 :.00
4. 31 177020.87 152 1713.22 35867.81 25317.81 35867.8: 25317.81 1.00

Figure 2: Data from Example 1 of simulation.

The following column descriptions are provided:
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1. Line Number -- The line number of the output.

2. Veh ID -- This is a unique number assigned by NPSNET to
each vehicle that is present in a given simulation.
When a vehicle is destroyed, its number remains unused
for the rest of the simulation.

3. Time -- The system time, useful for measuring elapsed

time from the start of an engagement.

4. Type -- The type of vehicle, such as tank, truck, etc.

5. Range -- Range in meters from the attacking platoon to
the target.

6. Actual Data -- True location of the target in the
NPSNET world coordinate system, in which X represents
width, Z represents depth, and Y represents height.
Only X and Z are shown here.

7. Beliefs -- The believed location of the target.

8. m -- The probability that a belief matches the truth.
1 - m is the amount of error that may be introduced.

The first engagement begins with the AF attacking

Vehicle Number 31 from a range of 1841.65 meters. Notice

that m = 1.0. As expected, X and Z coordinates in the

Beliefs column are identical to those in the Actual Data

column. The type of target is denoted by the number 52,

which, in NPSNET, is an armored vehicle called a BMP.

However, the fourth line of output lists the vehicle type as

152. This is simply NPSNET's symbol for a destroyed BMP.

By convention, the graphical picture of a destroyed vehicle

is denoted with a number that is easily related to the type

designation of its live counterpart, such as 52 and 152.

The point here is that the presence of type 152 in the
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fourth line means that Vehicle Number 31 is destroyed as of

that point in the program.

The elapsed time was about 14 seconds from the start of

the engagement until the target was destroyed. It was

destroyed at a range of 1713.22 meters. Not shown in the

output is the speed of the target, which was under five

kilometers per hour. The target was also shooting at, and

missing, the AF platoon.

Under these circumstances, it is very difficult for a

human opponent to survive an engagement with a AF platoon

before being destroyed. The next example shows how a small

degree of knowledge-to-belief conversion can give an

opponent more time to respond to the AF attack.

C. EXAMPLE TWO

The parameter settings and data for Example 2 are shown

in Figure 3. In this and the following example the format

of the output has been changed to emphasize the important

information. The column labeled Error is the difference, in

meters, between the target's true location and its believed

location. The next column, %Error, is the amount of actual

error in percentage terms. This is obtained by dividing

Error by Range. This simulation begins at a range of

4307.49 meters, Line Number 1, Lt which point m = 0.76, thus

introducing as much as a 24 percent error. Actual error was
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KNOWLEDGE TO BELIEF CONVERSION

Introducing location error into the SAF input.

k = 0.8 v = 1.0 j = 1.0 q = 0.0

Line
Number Veh ID Time T Range Error %Error m

1. 31 697819.81 52 4307.49 646.12 ".15 0.76
2. 31 697826.37 52 4276.28 983.54 0.23 0.76
3. 31 697832.94 52 4241.68 424.17 0.10 0.77
4. 31 697840.56 52 4196.54 713.41 0.17 0.77
5. 31 697847.25 52 4152.86 705.99 0.17 0.77
6. 31 697855.69 52 4094.70 286.63 0.07 0.78
7. 31 697862.75 52 4043.01 80.86 0.02 0.78
8. 31 697869.75 52 3959.66 277.18 0.07 0.79
9. 31 697876.75 52 3876.25 697.73 0.18 0.80

10. 31 697883.69 52 3781.48 37.81 0.01 0.80
11. 31 697890.87 52 3695.81 110.87 0.03 0.81
12. 31 697898.25 52 3607.91 216.47 0.06 0.82
13. 31 697905.25 52 3512.23 210.73 0.0t 0.82
14. 31 697912.37 52 3405.96 204.36 0.06 0.83
15. 31 697920.06 52 3291.32 526.61 0.16 0.84
16. 31 697927.81 52 3199.02 319.90 0.10 0.85
17. 31 697935.69 52 3091.49 0.00 0.00 0.85
18. 31 697945.06 52 2979.85 89,40 0.03 0.86
19. 31 697954.25 52 2870.44 373.16 0.13 0.87
20. 31 697963.19 52 2758.47 165.51 0.06 0.88
21. 31 697972.06 52 2639.45 158.37 0.06 0.88
22. 31 697982.94 52 2501.11 275.12 0.11 0.89
23. 31 697995.44 52 2370.35 71.11 0.03 0.90
24. 31 698009.12 52 2180.75 152.65 0.07 0.91
25. 31 698020.06 52 2029.27 20.29 0.01 0.92
26. 31 698034.00 52 1836.28 73.45 0.04 0.93
27. 31 698042.37 52 1683.18 100.99 0.06 0.94
28. 31 698052.00 52 1549.43 0.00 0.00 0.95
29. 31 698060.62 52 1455.46 43.66 0.03 0.96
30. 31 698069.12 52 1347.98 40.44 0.03 0.96
31. 31 698078.50 52 1213.91 36.42 0.03 0.97
32. 31 698088.25 52 1087.70 21.75 0.02 0.98
33. 31 698097.62 152 966.37 9.66 0.01 0.99

Figure 3: Output from second example.

15 percent, and the error in meters was 646.12. Computing

the initial location belief is a four step process. These

steps are outline below.
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1. Calculate a value for distance (d) based on:
dactual = 4307.49
do = 700 -- pos-d0 , in Table Table III
d, = 8000 -- pos-d

di 1 dactuai d

Thus, d = 0.5058 for Line Number 1 of Example 2.

2. Calculate m based on:
d = 0.5058
k = 0.8
V = 1.0
j = 1.0
q = 0.0

As explained in Chapter III, the parameters to m are
combined in three intermediate functions (1), (2), (3).

Using the data above, the result is m = 0.76 for Line
Number 1, Example 2.

3. Calculate the straight line distance from the AF to the
target. The eventual error will be a percentage of
this distance. Then calculate an interval from which a
random value may be selected. From Chapter III,
Subsection F.l.c, this would be the interval [0, 1 -
m(distance to target)]. This randomization is a
critical step in giving the AF a chance, even if a
remote one, of hitting its target at almost any range.
For Line 1 of this example, 1 - m = 0.24, and the
distance is 4307.49 meters. The maximum error, then,
is 0.24 x 4307.49 = 1033.79 meters. However, the
actual error chosen at random from the interval [0,
1033.79] was 646.12, representing a percentage error of
15 percent.

4. Determine the believed X and Z coordinates by chosing a
direction at random from the interval [0, 359] and then
using polar arithmetic to obtain the coordinates of the
point that is r = 646.12 meters from the target. (Note
that the direction in compass degrees must be converted
to direction on a standard x,y plane.) This output is
not shown in the example.
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The preceding four steps illustrate the general

procedure for computing an initial belief about the location

of the target. Thereafter, previous beliefs are taken into

consideration. Instead of selecting a direction each time

from the interval [0, 3591, the the algorithm considers the

direction from the target to the previous belief when

computing a new belief. The new direction is chosen from a

narrower interval, 45 degrees, maintaining consistency from

one belief to the next. The distance factor, however, is

still determined by applying 1 - m to the actual distance

from the AF to the target.

In Example 2 the target was moving at the same speed as

in Example 1; however, the AF had a much harder time

destroying its target. In Example 1, the AF was able to

destroy its target from a range of 1713.22 meters. But from

a comparable range in Example 2, 1683.18 meters on Line 27,

the AF had to contend with a six percent error. Since the

AF tanks had line-of-sight, they were firing at the target,

but they were firing at the wrong location. The AF's

missiles could be observed landing near the belief instead

of the true target. Obviously, this favors the AF's

opponent, who now has much more time to destroy the AF

platoon before being destroyed.

Notice in the Error column that some of the entries

equal 0. such as Lines 17 and 28. This means that, due to
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the randomization of m, the AF had perfect knowledge at

those points in time. Theoretically, the target could have

been destroyed at those times. However, even though the AF

was firing throughout most of this engagement, it may not

have fired at that particular moment due to some obstacle in

the terrain, such as a small hill. Or it may have fired,

and missed, due to the age of its information, or due to

evasive action by the target. Because of network backlogs,

the AF sometimes makes decisions based on information that

may be too old to be of value. So, even though the belief

matches the actual value that came into the program, the

actual value itself may be outdated. This implementation

problem is discussed in Chapter V.

Line 33 of the output shows the destroyed vehicle type.

Even though actual error was one percent, that was

sufficiently small to allow a hit.

D. EXAMPLE THREE

Example 3 is very similar to the previous example. The

key difference is that knowledge (k) = 0.3, which means that

the AF will have less of a chance of scoring a hit in the

early stages of the battle. This is evident from Line 2 of

the output, shown in Figure 4.

At a range of 4273.60 meters, m = 0.39, and the actual

percentage error was 34 percent for a distance error of more
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KNOWLEDGE TO BELIEF CONVERSION

Introducing greater location error into the SAF input.

k = 0.3 v = 1.0 j =1.0 q=0.0

Line
Number Veh ID Time Tvpe Range Error %Error m

1. 29 698729.37 53 4343.81 2041.59 0.47 0.38
2. 29 698737.94 53 4273.60 1453.02 0.34 0.39
3. 29 698748.94 53 4185.36 1883.41 0.45 0.40
4. 29 698757.62 53 4114.15 863.97 0.21 0.41
5. 29 698766.94 53 4037.62 1493.92 0.37 0.43
6. 29 698774.25 53 3978.40 1233.30 0.31 0.43
7. 29 698783.94 53 3883.89 660.26 0.17 0.45
8. 29 698792.56 53 3805.56 1674.45 0.44 0.46
9. 29 698800.81 53 3723.01 1079.67 0.29 0.47

10. 29 698812.25 53 3609.88 974.67 0.27 0.49
11. 29 698821.12 53 3507.24 1052.17 0.30 0.51
12. 29 698830.75 53 3412.57 1057.90 0.31 0.52
13. 29 698839.12 53 3316.35 232.14 0.07 0.54
14. 29 698847.69 53 3230.81 1421.56 0.44 0.55
15. 29 698856.31 53 3143.71 408.68 0.13 0.57
16. 29 698865.12 53 3040.42 1003.34 0.33 0.58
17. 29 698873.94 53 2952.94 413.41 0.14 0.60
18. 29 698883.37 53 2858.69 829.02 0.29 0.61
19. 29 698894.50 53 2748.46 659.63 0.24 0.63
20. 29 698905.62 53 2619.07 209.53 0.08 0.65
21. 29 698915.62 53 2522.75 807.28 0.32 0.67
22. 29 698925.81 53 2424.21 169.69 0.07 0.69
23. 29 698937.12 53 2314.55 624.93 0.27 0.70
24. 29 698947.81 53 2211.88 575.09 0.26 0.72
25. 29 698958.81 53 2106.84 0.00 0.00 0.74
26. 29 698968.81 53 2010.02 482.41 0.24 0.76
27. 29 698978.31 53 1901.58 133.11 0.07 0.78
28. 29 698988.75 153 1823.82 0.00 0.00 0.79

Figure 4: Output from third AF example.

than 1450 meters. Compare this to Line 2 of Example 2. At a

comparable range of 4276.28 meters, m = 0.76, and the

resulting distance error was 983.54 meters. Of course,

comparing random values for two cases is not very

informative. However, the 37 percent difference in m values

creates the opportunity for greater error.

51



The impact of the difference in m values can be shown

through simple analysis of the data in Examples 2 and 3. In

Lines 1 through 26 of Example 2, the average distance error

is 300.82 meters; but in Example 3 the average error for

the first 26 lines is 896.35, almost three times as much.

This is an indicator of the impact over time of setting

knowledge to 0.3 instead of 0.8. In this comparison,

lowering knowledge by more than 50 percent resulted in

almost three times as much average error. In spite of these

odds, the AF destroyed its target from a greater distance in

Example 3 than it did in Example 2. In Line 28 of Example

3, the AF exploited an error of 0 by firing at the target

when it had perfect location information. This is an

example of how randomizing m can give the AF a chance of

success even when odds do not favor it.

A further comparison of the two examples is provided in

Figure 5. For each example, the actual error is plotted as

a function of the range to the target. The graph of k = 0.3

rises much more steeply than the graph of k = 0.8.

E. SPEED AND HEADING ERROR

The next two continuously-valued attributes that merit

discussion are speed and heading, both of which are passed

to the decision-making portion of the AF program and used in

aiming at a moving target. Errors in these attributes are
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especially significant when the target is moving fast and

changing direction frequently. To successfully aim at

moving targets, the AF relies heavily on precise, and

current, information. Unfortunately, the network delays

alluded to earlier become even worse when users of the

simulator are making frequent course and speed changes.

Thus, the AF has the poorest information during those

momentf when the information is most critical. To further

distort speed and heading information by converting them to

beliefs merely compounds the existing error. However,

solutions to the network traffic problem are treated as a

separate issue. Consequently, the generation of beliefs for

speed and heading are discussed here as though the AF would

otherwise have perfect information.

1. Speed Error

The first thing to note about Example 4, shown in

Figure 6, is the target's overall behavior with regard to

speed.

The column labeled Actual shows the target's speed

as steady at 16.25 kilometers per hour for several cycles,

Lines 1 through 7. This is followed by a sudden drop to

2.49 kph and a sudden increase to 37.23 kph. However, the

target is not really accelerating from 2.49 kph to 37.23 kph

in a single cycle. That aberration is more than likely due

to lost state messages from the simulator. Each change in a
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KNOWLEDGE TO BELIEF CONVERSION

Introducing speed error into the AF input.

k = 0.7 v = 1.0 j = 1.0 q = 0.0

Line Error
Number Veh ID Time Type Range Actual Belief (kph) %Error m

I. 42 691569.44 6 4020.18 16.25 13.58 2.67 0.16 0.71
2. 42 691578.56 6 3793.25 16.25 16.08 0.17 0.01 0.74
3. 42 691588.00 6 3575.03 16.25 13.19 3.06 0.19 0.76
4. 42 691597.12 6 3363.86 16.25 15.30 0.95 0.06 0.78
5. 42 691605.81 6 3162.12 16.25 15.72 0.53 0.03 0.8C
6. 42 691615.75 6 2931.20 16.25 14.25 2.00 0.12 0.82
7. 42 691625.19 6 2712.16 16.25 14.35 1.90 0.12 0.85
8. 42 691636.00 6 2495.51 2.49 2.26 0.23 0.09 0.87
9. 42 691644.87 6 2411.69 37.23 36.31 0.92 0.02 0.89

10. 42 691655.06 6 2230.37 37.23 36.88 0.35 0.01 0.94
11. 42 691667.44 6 1682.45 1.06 1.05 0.01 0.01 0.99
12. 42 691680.50 6 1141.65 18.80 18.80 0.00 0.00 1.00
13. 42 691692.37 6 1C38.32 18.80 18.80 0.0c 0.00 1.00
14. 42 691703.37 6 754.62 18.80 18.80 0.00 0.00 1.00
15. 42 691713.44 6 495.19 18.80 18.80 0.00 0.00 1.00
16. 42 691725.94 6 151.93 18.80 18.80 C.00 0.00 1.00
17. 42 691738.62 106 216.13 18.80 18.80 0.00 0.00 1.00

Figure 6: Output from speed error example.

vehicle's speed triggers a message to all stations on the

network. Therefore, accelerating rapidly results in

overfilled message buffers. From Line 10 to Line 12, the

speed drops, then rises, and finally settles at 18.8 kph.

Although some speed information has clearly been lost, the

emerging pattern throughout the engagement is identifiable--

frequent stops and starts and sudden changes in

acceleration.

The Beliefs column shows the speed belief

calculated for each cycle. As in the previous belief

generation processes, the program first calculates a value

for d using the standard formula, but with different inputs.

From Table III these inputs are:
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speed-d0 = 1000
speed-d, = 8000

Using Line 1 as an example, dactuai = 4020.18, and

the resulting value for d is 0.57. The remaining parameters

are shown in the example. Since m = 0.71 for Line 1, the

next step is to introduce up to 1 - m, or a 29 percent,

error in the speed belief. Continuing with Line 1 as an

example, the speed-error function accomplishes this by

computing an interval around the true speed value and then

selecting a number from this interval, as explained in

Chapter III. The interval is based on 1 - m. If 1 - m =

0.29, and the actual speed is 16.25, the interval would be

lb = 16.25 - 0.29(16.25) = 11.54
ub = 16.25 - 0.29(16.25) = 21.0,

thus allowing an opportunity for maximum error above or

below the true speed, or no error at all if the true speed

happens to be selected. In Line 1 of the example, the speed

selected was 13.58 kph, which is a 16 percent error.

Since speed error is a percentage of the true

speed, and since military combat vehicles do not move at

extremely high rates of speed, the belief speeds are

generally close to the actual speeds. A quick scan of the

column showing error in kph shows that the maximum error in

this example was 3.06 kph, on Line 3. Most of the errors
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were under 1 kilometer per hour. The effect that these

errors have on aiming at a moving target depend on the range

to the target, the speed of the AF tanks, and the speed of

the target in relative terms. That is, a fast-moving target

will always be harder to hit than a slow-moving one. Using

percentages to model speed-error mirrors this fact because a

given percentage of a higher speed is greater than the same

percentage of a slower speed.

2. Heading and View Direction Error

The final example in this chapter is used to

present a few key points about the direction belief

algorithm used by the program. This algorithm is used

twice, once to determine a belief about the direction in

which the target is traveling, and again to determine a

belief about which way the target is facing, or the view

direction. The view direction is important because that is

the direction in which the target fires its weapon. As with

speed information, heading information is used by the AF to

aim at a moving target.

Figure 7 depicts the output for Example 5; as

usual, the input parameters are displayed with the output.

The vehicle type and range columns have been omitted, but

that information may be found in the output for Exanple 2.

Both sets of data are from the same simulation.
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The heading belief algorithm relies on m to

determine belief. Initially, the program randomly selects a

belief that contains as much as 1 - m of error. However,

subsequent calculations use previous beliefs and the current

true value to determine the error. Each subsequent belief

is chosen from the interval formed by taking the difference

between the last belief and the current true heading.

Therefore, if the true heading remains constant, the beliefs

will gravitate, randomly, toward the true value. Also,

beliefs that are close to the truth will force subsequent

beliefs to be even closer.

The most significant feature of this algorithm is

its behavior over time. The entries in the Actual column

show the target moving for several cycles in a constant

direction, 304.73 degrees. After that it moves in a new

general direction, with slight changes between 226 and 229

degrees, for the next 21 cycles. Finally, it heads in a

general direction of 234 degrees for the last seven cycles.

When the target does not change course, the

beliefs tend toward the actual value within a relatively

short time. When the target changes course, the beliefs are

distorted at first, but then again tend toward the actual

value. If a belief happens to match the actual value due to

randomization, then the AF will keep that belief until the

target changes course again.
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KNOWLEDGE TO BELIEF CONVERSION

Introducing heading error into the AF input.

k = 0.8 v = 1.0 j = 1.0 q= 0.0

Line Error
umber Veh ID Time Actual Belief (degrees) m

1. 31 697819.81 304.73 299.73 5.00 0.77
2. 31 697826.37 304.73 306.56 1.83 0.78
3. 31 697832.94 304.73 304.08 0.65 0.78
4. 31 697840.56 304.73 304.65 0.08 0.78
5. 31 697847.25 304.73 304.76 0.02 0.79
6. 31 697855.69 226.72 255.27 8.54 0.79
7. 31 697862.75 227.56 227.56 0.00 0.80
8. 31 697869.75 227.56 227.56 0.00 0.80
9. 31 697876.75 227.56 227.56 0.00 0.81

10. 31 697883.69 227.56 227.56 0.00 0.82
11. 31 697890.87 227.56 227.56 0.00 0.82
12. 31 697898.25 227.56 227.56 0.00 0.83
13. 31 697905.25 227.56 227.56 0.00 0.84
14. 31 697912.37 227.56 227.56 0.00 0.84
15. 31 697920.06 227.56 227.56 0.00 0.85
16. 31 697927.81 227.56 227.56 0.00 0.86
17. 31 697935.69 227.56 227.56 0.00 0.87
18. 31 697945.06 227.56 227.56 0.00 0.88
19. 31 697954.25 227.55 227.54 0.00 0.88
20. 31 697963.19 227.40 227.38 0.02 0.89
21. 31 697972.06 228.76 228.71 0.04 0.90
22. 31 697982.94 228.81 228.81 0.00 0.91
23. 31 697995.44 228.95 228.89 0.05 0.92
24. 31 698009.12 228.95 228.93 0.02 0.93
25. 31 698020.06 228.95 228.95 0.00 0.94
26. 31 698034.00 228.95 228.94 0.00 0.95
27. 31 698042.37 234.60 232.64 1.96 0.96
28. 31 698052.00 234.60 235.11 0.50 0.97
29. 31 698060.62 234.60 234.43 0.18 0.97
30. 31 698069.12 234.60 234.60 0.00 0.98
31. 31 698078.50 234.51 234.51 0.00 0.99
32. 31 698088.25 234.51 234.51 0.00 0.99
33. 31 698097.62 234.51 234.51 0.00 1.00

Figure 7: Output from heading error example.

Example 5 provides an illustration of how this

works. Line 1 shows an initial belief of 299.73 degrees for

heading, which was 5 degrees off the actual heading. At the

time, m = 0.77. In Lines 2 through 5, the amount of error,

in degrees, becomes smaller as the belief heading values
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approach the actual heading, which remains constant. Then

there is a sudden change in heading in Line 6 and a

corresponding increase in error. This agrees with the

notion that an observer will probably be unsure of the

direction of a vehicle immediately after it changes course.

However, in Line 7, the belief randomly matched the truth.

In this algorithm, when a previous belief equals the current

heading value, the belief is retained. Therefore, the next

11 beliefs contain no error. When the target changes course

slightly in Line 19, some error is introduced. When the

target makes a greater course change in Line 27, even more

error is introduced, and then the pattern from Lines 1

through 5 repeats itself.

View direction beliefs are generated the same way

as heading beliefs. In the course of most simulations,

however, the target maintains a constant view direction,

that which is toward the AF platoon. Since the output on

view direction is very static a separatc example is not

presented.

F. SUMMARY

In this chapter, five examples were used to illustrat-

the generation of location, speed, heading, and, indirectly,

view direction beliefs. The calculation of location beliefs

was discussed in detail, with examples of how d and m are

60



computed. Actual output from a simulation was used to show

the workings of the algorithms. In the next chapter, the

implementation of this program will be discussed.
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V. IMPLEMENTATION

The AF application described in this thesis was

implemented as a single program with two distinct phases:

the observation and belief generation phase, and the

decision-making and execution phase. Program operation is

sequential, with each phase executing in turn. The phases

were implemented as separate rule-based programs using the C

Language Integrated Production System (CLIPS). The two

CLIPS programs were embedded in a main program written in C.

In this chapter, the organization of the overall program is

described in more detail.

A. ORGANIZATION AND SEQUENCE OF EVENTS

NPSNET can be operated on one or more graphics

workstations that are connected to a network. The AF

program, when it is used, must be on the same network, but

loaded on a workstation that is not running NPSNET.

Before starting the AF, a network interface program

must be started. This program provides the low-level

functions needed by the AF to operate as an independent

station on the network.

Upon starting the AF, there is a brief network

initialization period and then the user is given the c'-ance

to turn belief generation on or off. If it is turned off,
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then the decision-making phase of the program will be passed

incoming messages exactly as they are received from NPSNET.

If belief generation is turned on, each message will be

processed into beliefs.

The next step in the program sequence is to start the

CLIPS environment. This permits CLIPS function calls, such

as "load" and "run," directly from a main

program[Ref. 14]. Following that is a second

initialization period during which the user is prompted for

the type of mission the AF is to perform and the starting

location of the AF.

There are presently three basic missions the AF can

perform: reconnaissance, attack, or a user-defined mission.

The reconnaissance mission is applicable to most simulations

because it sets the AF platoons on a predetermined course

which can be intercepted by the user to stage an engagement.

The starting location consists of X and Z coordinates. They

can be anywhere in the NPSNET world space.

If desired, the user can also change the settings of

the parameters in the belief generation program. Chapter IV

contains a discussion of how the settings impact on program

operation. These settings are defined as defglobals in the

file afbelief.clp, which contains the CLIPS belief

generation program.
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After all initialization, the main decision loop of the

program begins. The sequence of events within the loop is

as follows:

1. Update the positions of all AF vehicles and target
vehicles, based on their last reported location and
speed.

2. If a new message is present, get the message off the
network; store the data in a temporary data structure.

3. Load the belief generation program into the CLIPS
environment, followed by the most current target data
and AF data. The most current target data will
normally be the contents of the latest state message.
But, if no message has arrived, the most current
information is that contained in the updated target
data structures.

4. Start the CLIPS program. It will run until no rules
remain on its agenda. While running, the CLIPS belief
generation program will load external data structures
with the beliefs that have been calculated. Since
these structures are defined outside of CLIPS, the data
is retained after the CLIPS program has run its course.

5. Start the decision-making phase. This is the second
CLIPS program, loaded in the same manner as the first.
Input is transferred from the data structures that were
loaded by the belief generation program. The output
from this phase is sent to NPSNET as an update message.

6. Continue looping until control-c is pressed.

An important characteristic of this organization is

that the CLIPS files are reloaded and run during each

decision loop. Although this impacts on the speed of

execution, it permits modification of either of the CLIPS

programs during execution. For example, if the value for

knowledge in the belief generation program is changed, and
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the file is saved, the new value of that parameter will be

loaded during the next decision loop. Although this feature

is useful for program test and evaluation, it is not optimal

to have the main program read files from a disk during each

decision loop. CLIPS provides a means of compiling the

constructs into the main program so that it is entirely

self-contained.

The present version of the AF program includes a

special feature for tracking the behavior of the belief

generation program. When the program loads the proper data

structure with belief information, a copy of the data is

sent to NPSNET so that the belief can be displayed on the

screen. To avoid confusion, the belief is represented by a

unique object. This provides a visual picture of, for

example, where the AF believes a target is located.

B. SUMARY

Although the implementation of the AF is somewhat

simplistic, it lays the foundation for future autonomous

agent programming at the Naval Postgraduate School.

Successive versions will become more sophisticated as

researchers attempt to model more complex AF behavior (see

Chapter VI) . To handle this greater complexity, other

implementation approaches might be tried, such as coding the
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entire program in a procedural or object-oriented language

instead of a rule-based language.

From a hardware point of view, future refinements may

involve parallel processing of the AF phases, a better

approach to linking the AF with NPSNET (i.e., networking

issues), and experimenting with other platforms.
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VI. CONCLUSIONS

While conclusions about implementation details were

discussed in Chapter V, this chapter focuses on the merits

of the model itself. First there is a review of the

original goals and assumptions and then an assessment of

this approach to modeling combat observation systems.

A. A REVIEW OF THE INITIAL ASSUMPTIONS AND STRATEGY

In Chapter I it was pointed out that this project began

with several key assumptions. The most important of these

was the assumption that the AF, when given perfect

information, would always hit its target. Therefore, the

goal was to allow the AF to operate with beliefs instead of

the true world state.

The basic strategy was to divide the AF program into

two broad functions that model real world combat subsystems:

battlefield observation and tactical decision making. The

observation function is concerned with how the AF gets its

information, and the decision making function chooses

courses of action based on that information. Since the

input to the AF program was to be NPSNET world state

messages, the observation function would have the task of

converting those state messages into information that is
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comparable to what the AF would have realistically been able

to obtain.

When modeling the combat observation subsystem, the

goal was to simulate the results of the process, not the

process itself. This approach was evident in the design of

the belief generation algorithms. In general, they sought

to simulate the results or consequences of human error

without attempting to simulate human thinking or perception.

B. OVERALL STRENGTHS AND WEAKNESSES

Data provided in Chapter IV shows how rapidly the AF

can destroy a target when it has perfect information.

Testing of the AF program thus far shows that this is true

consistently. Therefore, assumptions about the AF's

performance with perfect information appear to have been

valid, at least when evaluating the AF's performance on

NPSNET. This assumption may not apply to all autonomous

force applications.

Regarding the choice of strategy, it will be necessary

to test the AF program extensively before the strategy can

be fully evaluated. At this point in the development,

however, the concept of dividing the AF into an observation

function and a decision making function appears to produce

the desired results. When beliefs are generated, the

effectiveness of the AF is measurably degraded. Since this
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was the original goal, and it was met, then it is tempting

to argue that this strategy works.

However, a possible weakness of this model, at least in

its current form, is that it may not be suited for modeling

a more sophisticated observation system. In a real

battlefield environment, there may be a great deal of

dialogue between decision makers and observers. When the

decision maker has a question, the observer can be queried.

Also, the observer's reports can be extremely detailed and

subjective, and may contain interpretations of what is seen

on the battlefield, not just descriptions. The current

approach, with its emphasis on restists instead of processes,

would have to be redesigned to model more of the human

thought processes that go into the acts of observing things

and reporting observations to others.

On the other hand, a model with as many features as

just described might no longer be appropriate for a real

time application. Furthermore, even in the real world,

small combat units such as tank platoons do not rely on

extremely sophisticated information gathering methods.

Given these arguments, it is probably fair to say that

this strategy is right for a relatively simple, small-unit

autonomous force application, but may not be a good general

approach to modeling the battlefield observation system as

it exists in the real world.
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C. RECOMMENDATIONS FOR FURTHER DEVELOPMENT

The AF program will continue to be a valuable research

vehicle for others wishing to investigate autonomous agent

issues. Among the many enhancements that warrant additional

research are:

1. Adding line-of-sight computations to the observer
program so it can prevent the AF platoons from knowing
about objects that are not visible.

2. Adding a vehicle identification feature to the decision
making program so the AF can be selective about its
target choices.

3. Modeling more battlefield conditions, such as time of
day, weather, noise, and the duration of a battle.

4. Refining the vehicle type belief algorithms so that
they consider such things as what the vehicle is doing
when it is first spotted, the type of terrain the
vehicle is driving on (because trucks usually stay on
roads), and the view of the vehicle from the
perspective of the observer.

5. Experimenting with different reasoning techniques in
the discretely valued belief generation procedures.

D. SUMMARY

In this chapter we presented the following conclusion:

the initial assumptions are valid and the approach is

probably appropriate for a system such as NPSNET. However,

this method may be oversimplified as a general purpose

strategy for autonomous agent programming.
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