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1. INTRODUCTION .

The objectives of this study were i) to implement the WHOI finite difference code
on the CONVEX computer at NORDA and ii) to run a suite of models on the effects of
lateral heterogeneity on the primary response from the seafloor.

Finite difference sclutions to the elastic wave equation accurately predict the
response of impulsive and continuous wave sources in media with arbitrary vertical and
horizontal variation, with fluid-solid interfaces and with shear propagation in the solid. All
possible wave types are included (reflections, refractions, diffractions, Stoneley and
pseudo-Rayleigh waves, evanescent waves and head waves). The primary disadvantage of
the method is that it is very computation intensive and it is generally limited to problems
with dimensions ot only a few tens of wavelengths. This can be partially alleviated by
using powerful computers such as the CONVEX at NORDA.

This proposal addressed the following categories in NORDA-BAA-88-2:

1) Acoustic ASW oceanography

b) ultra low and very low frequency propagation
i) acoustic transients
J) low frequency arctic acoustics
0) acoustic field interactions (scattering)
2) Non-acoustic oceanographic measurements
i) bathymetry
j) geophysics '
5) Computer Modelling
€) geoacoustic extensions to environmental acoustic prediction system-s.

The latter item, 5)e), is the particular focus of the proposal.



2. THE FINITE DIFFERENCE METHOD

The finite difference technique (Stephen, 1988) is a powerful method for studying
the complete sea bottom interaction of the acoustic ficld in the ocean. Because the
computational effort is quite large the method is generally restricted to low frequencies
(5-25 Hz) but in many cases it is at these frequencies where bottom imcractién becomes
important. Because the method is based in the time domain it is particularly well suited to
pulse or transient problems. The technique also has considerabie promise for studying
scattering from ice in arctic acoustics. The code lends itself well to extending acoustic
forward modelling schemes to include geoacoustic bottom propertes.

Stephen (1988) has reviewed the finite difference method as applied to bottom
interaction problems. A number of applications including focusing of deterministic
stiucture (Stephen, 1984; Dougherty and Stephen, 1987, Stephen, 1988) and scattering
from random seafloor (Doughenty and Stephen, 1988) have been presented. Also the code
has been calibrated by comparison with other mcthods such as the reflectivity methed
(Stephen, 1983) and by participating in the benchinark sessions at the Acoustical Society of
America meetings (Stephen, submitied). We have sufficient experience with the code that
we are confident that it will be useful in studying bottom interaction problems in range
dependent environments including shear wave effects in the bottom. NORDA should be

interested in the results.,

3. IMPLLEMENTATION OF THE FINITE DIFFERENCE CODE AT NORDA

The objective here was 10 install the WHOI finite difference code on the CONVEX
and to run test models at 10Hz out to 10 kin for a full ocean depth of 5.5 km. Deep models
like this had not been run before so we made a number of modifications before we could
run this model successfully. The medels are described in section 4. Here we review the

modifications that were made and describe where the files are on the CONVEX,




A finite difference model is run in three s'tcps: 1) a preprocessor which sets up the
necessary arrays for a given calculation; ii) a program to compute the elastic parameters and
density in a transition zone near the seafloor; and iii) the actual finiie difference calculations.
Software for each stage including makefiles for compilation is located in /mnt/stephen/prep,
/mnt/stephen/bny, /mny/stephen/diff respectively on the CONVEX, A macro (or command
file) for each model run is located in that model's subdirectory. For example, the macro for
model BBNY1 is located in /obs3b/stephen/bbny 1/bbny1.bch. Once the parameter file is
defined a model can be run by submitting the .beh file to the batch queue. More details on
the structure and implementation of the code can be found in Hunt et al (1983).

In /mnt/stephen/diff are all the versions of the finite difference code used in this
study. SFINDIF.FOR is the main driving code for all cases. The changes occur in the
subroutines SDUMTS* and SBIBTS*, which actually carry out the template calculations,
and 1in the subroutines SFINSUB* and SBIBSUB* which carry out the absorbing
boundary calculations,

We used two templates. Initially we used the Bhasavanija template (Stephen et al,
1685; Stephen, 1988) however this resulted in instabilities at the fluid/solid interface at
large imes. The second template is bused on a formulation presented by Viricux (1986).
This produces stable and accurate results for a wide range of models.

We used two absorbing boundary schemes. The first was based on ¢ parabolic
equation approximation right at the boundary and the seccond was based on the telegraph
cquation applied in a region near the boundary. The telegraph equation has terms which
introduce attenuation into the grid.

The original WHOI finite difference code used SDUMTS5 and SFINSUB4. This
used a Bhasavanija tenuplate with parabolic equation boundaries on the right and boitom
sides. (The top side is a free surface and the left side is an axis of symmetry.) Although

adequate for small, short runs this was unstable on the bottom edge for the large models.




The next try (SBIBTSS and SBIBSUB4) used the telegraph equation on the bottom
edge only. This was unstable on the right boundary.

The third case (SBIBTS6 and SBIBSUB4) used the telegraph equation on the
bottom edge and the right hand edge. The grid boundaries were stable, but an instability
occurred at the seafloor at large times. After all of the principle phases had passed through
the scafloor, a phase appeared at the interface which looked like a Stoneley wave.
However its ainplitude grew unrealistically with time. We call this the '‘Bibee' instability.
We do not recommend using SDUMTSS, SBIBTSS, SBIBTS6, SFINSUB4 and
SBIBSUE4 for large models. They are on the CONVEX, however, for completeness.

In order to avoid the 'Bibee' instability we went to a Virieux formulation with the
telegraph equation on the bottom edge and parabolic equation on the right edge (SBIBTS7
and SBIBSUB7). This fixed the 'Bibee' instability but there were false reflections from
the nght side.

Finally we used the telegraph equation on the right and bottom sides (SBIBTS9 and
SBIBSUB7). This works fine and the test madels in the next section use this formulation.

We also modified the WHO! code to output run time information and maximum
amplitude values to the log file (*.LG4) during execution. This facilitates testing and
provides a record of the run time for each job.

While tesiing we used the snapshot display on the SUN developed at NORDA.
However, time serics are more physically significant. To aid in the reading and plotting of
the time scries files (*.TST) we wrote a program, askii.f, which reads the binary file
(*. TST) and writes an askii file (*. ASK). It is possible in askii.f to subsample the receiver
locations. Askii.f can be used as the basis for any code that needs to read a *.TST file,

such as plotting code or a seismic processing code.




4. SUITE OF TEST MODELS
In order to confirm that the finite difference code on the CONVEX actually solved
6 problems of interest to NORDA, we ran a suite of six test models:
1) armange independent layered model representative of the seafloor (BBNY1);
i) a model like 1) but with bottom roughness (BBNY2);
iii) a model like i) but with basement roughness (BBNY3);
iv) a model like i) but wiih both bottom and basemcent roughness (BBNY4),
v) a model like i) but with a discontinuous high velocity stringer in the sediment
(BBNYS);
vi) a model like 1) but with a different shear veiocity profile in the sediments and
basement (BBNY6).
Each mode! on the CONVEX has its own subdirectory (fobs3b/stephen/bbny*).
The model is run by submitting bbny*.bch to the bawch queue. This file must be modified
to include the correct *.PAR file (change all occurences of BBNY* to the same correct
. name). The makefile in /mnt/stephen/bny must be modified to use the correct bibbny* f file
in /mnt/stephen/bny. These files are used to generate the elastic parameters and densities in
the transition zone and are usually written for each model. The files created by bbny* .beh
are:

BRNY*LGi-lo

L log output of pr

BBNY*.LG2 - log output of bibbny*.f

BBNY*.L.G4 - log output of the finite difference calculation including run time
parameters

BENY* TST - binary file of time scries at receiver locations

BBNY*.SNS - binary files of the snapshot values (the last four values before the

period give the timestep value divided by 10)

All models use a pressure source function which 1s the third denivative of a

Gaussian pulse with a peak frequency of 10 Hz. A discussion of this pulse is given in




Appendix E of Stephen et al (1985). BBNY 1 was run for 15,000 time steps (15 sec.) and
all other models were run for 7,500 timesteps (7.5 sec).

The layout ot the first model is given in Figure 1 and the velocity-depth functions
and density depth functions are given in Figure 2 and Table 1. The pressure iime series for
a line of receivers at 4.98 km depth in BBNY 1 (Figure 3) show stable results out 1o 15 sec
for the primary bottom interaction and the first water multiple. At large offsets (greater than
3 km) there are shear wave peg leg multiples in the sediments. A weak reflection from the
absorbing boundary can be identified after 13 seconds on the short range traces.

Figure 4 shows just the primary bottom interaction for BBNY1. The large first
arrival is the direct wave from the source. The waveform varies because of the Lloyd's
mirror effect with the sea surface. A weak first arrival is observed at ranges beyond 7.0
ki which is the head wave. About 1.0 second behind the direct wave at short range is the
seafloor reflection and about 0.5 second behind this is the basement reflection. This is all
that 15 observed at short range except for some weak intra-bed multiples. Atlarger ranges
there is later energy corresponding to shear wave multiples in the sediment. These data
could be processea rurther using conventional analysis techniques to bring out more details
but this 1s beyond the scope of this study.

The secon¢ model (BBNY2) is the same as the first except the seafloor varies
sinusoidally with an amplitude of 100 m and a waveiength of 2.0 km. The fiust hill is
directly below the shot. The parameters at the seafloor remain constant (as for BBNY 1)
and they vary linearly down to their values just above basement. The time series in
Figure 5 only vary slightly from BBNY 1 because they are dominated by the direct wave.
The effects of bottom roughness can be seen in the amplitude vanations of the seafloor
reflection and head wave. The shear wave multiples have lost their coherence.

The third model (BBNY 3) has a flat seafloor but a sinusoidaliy varying basement

with an amplitude of 50 m and a wavelength of 3.0 km. The first valley is directly unde:

the shot. Again valucs on the interfaces are constant with lincar gradients running vertically
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between the interfaces. Small changes in the amplilhdc and arrival time of the basement
reflection occur (Figure 6).

The fourth model (BBNY4) combines the sinusoidal seafloor and basement of
BBNY2 and BBNY3. The seafloor reflection is the same as for BBNY2 but the basement
reflection varies from both RBBNY3 and BBNY4 as expected (Figure 7). The snapshots for
this relatively complex model should be particularly exciting.

The fifth model (BBNYS) is a flat model, as BBNY1, but it has a high velocity
stringer Vp =50k/s, Vg = 2.88 k/s, and rho = 2.0 gm/cc) between 5.74 and 5.78 km
depth and out to a range of 0.5 km (see Fig. 2). When this was originally run with a sharp
contrast between the sediments and the stringer, the calculations were unstable. 1 do not
understand this but it was fixed by averaging the parameters on the boundary values around
the stringer. The time series on Figure 8 show a large reflection from this stringer masking

basement at short range. At a range of 0.8 km the siringer is not influencing the trace. No

3

Wy

~ o
v P WY AW

hear wave multiples at larger offsets are
unaffected by the stnnger.

The sixth model (BBNY6) demonstrates the effect of varying just the shear profile
in a flat model such as BBNY1. Compressional velocity and density are unchanged but
shear velocity is increased making both the sediments and basement more rigid (Figure 2).
In BBNY1 Poisson's ratio in sediment and basement was 0.46 and about 0.25,
respectively. In BBNY6 the corresponding Poisson's ratios are (.30 and about 0.05
(Table 1). At short ranges the changes are insignificant but the coda have larger amplitude

at large offsets due to wide angle shear wave reflections and multiples (Figure 9). A nice

shear head wave is also evident just before the direct wave at ranges greater than 8.4 km.
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CONCLUSIONS
The results of the test models show that the finite difference code at NORDA is

stable and producing reasonable results for large scale models including the whole water

column. Funher work should involve applications of the code to specific problems.
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