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Abatract

This rescarch deals with unsupervised leaning of categorics and how such learning is affected by
the sequencing of training instances. Two gencral modcls of unsupervised leaming are described, one
based on lecaming cxplicit associations between corrclated features (associative model), and the other
based on crecating distinct schemas to represent cach category without explicit leaming of feature
correlations (schema-triggering modcl). An “autribute listing” paradigm was vsed as an index of
unsupervised lcaming in three experiments, cach of which manipulated the order in which instances from
two different categorics were presented and evaluated the cffects of this manipulation in terms of the two
competing modcls of unsuperviscd lcaming. Strong cvidence was found for the use of a discrete
schema-triggering process to lcam the catcgorics in these experiments. Moreover, these experiments
demonstrate that the attribute listing paradigm can be used to trace learning functions for unsupervised
learning over a scrics of instances, cnabling the futurc investigation of many independent variables using
this task.
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1. Research Objectives and Summary of Progress

This project’s primary goal is to investigate the lcaming of categories in unsupervised tasks, i.e.,
when no external tutor is present to provide pre-defined catcgorics and success-related feedback for the
learner. A sccond emphasis is on how catcgory knowledge, once acquircd, alters the subsequent
interpretation, encoding, and retrieval of individual instances of categories.

During this first year of funding, we have focused our research on two types of task situations.
The first task, called attribute listing, involved presenting adult human subjects with a series of instances
(in our experiments to date, pictures of fictitious insccts) and asking them to write down the
distinguishing properties of each instance. The insects vaded in type of body, legs, eyes, antennae,
wings, etc. As subjects leamed which featurcs were common to all category members (defaults), they
gradually stopped listing these features and shifted to listing mainly features that varied among members
within the category. This listing-pattem occurred because the defaults provided no information relevant
to distinguishing among different instanccs, whercas variable features did provide such discriminative
information. The tendency to list variable attributes while omitting defaults provides a measure of
category learning which can be traced over trials, i.c., that yicld leaming functions for the experimental
categories.

The sccond type of task we've investigated consists of presenting subjects with a series of verbal
stimuli (e.g., lists of features supposedly possessed by different species of trees) and asking them to study
and try to memorize all the features in each list. For example, a particular species of tree might be
described as posscssing mossy green bark, tall columnar form, deep spreading roots, smooth leaf margins,
and so on. Following the study of cach list, a serics of multiple-choice recognition tests was presented to
evaluate subjects’ memory for the preceding list. Subjects were allowed to examine only one feature at a
time during the study period. A computer recorded how long they spent looking at each feature. As
subjects leam which features are defaults (havc predictable values) for each category, they spend less
time studying these defaults and spend more time studying variable features. This pattern of study times
arises because the defaults are predictable to subjects who have leamed the experimental categories; these
defaults ca be "remembered” (or guessed) easily on the recognition tests without explicit memorization in
each individual instance. The decline in study times for dcfault features and corresponding increase for
variable features provides an index of unsuperviscd lcaming over instances that closely corresponds to
that-provided by the attribute listing procedure described above.

We have conducted a number of auribute listing cxperiments over the last year, three of which
are described in the detailed report attached. Thesce studics were designed to distinguish between two
general theorics of unsupcrvised leaming, which we refer 10 as the associative vs. schema-triggering
models. The associative model assumes (hat pcople Icam catcgories by explicitly recording associations
between co-occurring fcatures, gradually building up a tablc of corrclations that captures the categorical
structure of a given stimulus domain. The schema-triggering model assumes that learners create separate
schemas to represent different catcgories of instances, and thereby capture co-occurrences among features
without needing to lcam explicit correlational rulcs or associations. These two models differ in several
ways, particulatly in their predictions of how the particular scquence in which instances are presented
affects the difficully of leamning to distinguish the catcgorics. The detailed report describes several
sequencing manipulations designed to discriminatc between the two theories of unsupervised leaming.
Overall, these experiments provided strong support for the existence of a schema-triggering process in
unsuperviscd leaming.




With regard to the study time task, our main objective in this first year was to develop and refine
the task itself, asking whether it could provide a convergent measure with the attribute listing task for
testing theories of unsupervised learning. To this cnd, we have tried out (in pilot studies) several
variations of this task in an attempt to discover which particular cxperimental arrangements produced the
best measurement of unsupervised leaming. One of these experiments was analogous 10 the first attribute
listing experiment described in the report below. The results of this study-time experiment replicated
those of the earlier autribute listing experiment in csscntial details. This cutcome provided a
demonstration of the basic utility of the study time task; it also provided additional evidence for the
existence and generality of the schema-triggering process.

In addition to the swudy time data, the rccognition-memory data from this task provide another
converging measure of unsupervised leaming. Our rcsults show that memory for both the default and
variable features of instances improved with catcgory leaming, as predicted by the leaming model
described in our original grant proposal. In fact, memory performance can be traced over trials in this
task to reveal category leaming curves similar tc those from the study times and the agtribute listing task.
What is particularly interesting about this task is that it makes it possible to observe the simultaneous
effects of category leaming on instance encoding and retrieval processes. We plan to use this
experimental set-up to run several of the planned memory experiments described in the grant proposal
during our second year of funding.

1. Planned Publications
1. Clapper, JP. & Bower, G.H. (1991) Leaming and applying category knowledge in
unsupervised domains. In G.H. Bower (Ed.), The psychology of learning and motivation, vol.
27, Academic Press: New York.

2. Clapper, J.P. & Bower, G.H. "Schema-triggering in unsupervised leaming.” — This paper
reports the results of several attribute listing experiments. To be submitted.

3. Clapper, J.P. & Bower, G.H. "The impact of unsupervised category leaming on encoding and
remembering instances.” -- This paper will describe several study time experiments. To be
submitted. -

1. Participating Personnel
1. Gordon H. Bower, PI

2. John P. Clapper, Research Associate
3. Terry Nellis, undergraduate Research Assistant

1V. Detailed Report of Attribute Listing Studies

A detailed description of three atiribute listing experiments follows.




Schema-Triggering in Unsupervised Learning

The study of concepts and category learning has long been a focus of research in cognitive
psychology. Most of this research has studied supervised catcgory leaming, in which a tutor provides the
subjects with category labels and fcedback relevant to the success criterion of the leaming task (e.g.,
Bruner, Goodnow, and Austin, 1956; sce Millward, 1971, for a rcview). By contrast, unsupervised
learning has received much less attention by cxperimental psychologists. In unsupervised learing,
subjects must invent and use catcgorics without predelined category labels or feedback from an external
tutor. Many categories that people lcam in real life arc acquired in observational, untutored conditions,
and thus are examples of unsuperviscd lcarning. Much of our knowledge about the properties and
behavior of common physical objects, social intcractions, linguistic classes and rul~s, and everyday tasks
and procedures may be leamned in this manncr (Billman & Hcit, 1988). Any leamning of pioneers about a
novel environment is unsupervised, since thcy must invent their cwn catcgories for describing that
environment, and generate their own criteria for classifying stimuli into these categories.

Several conventional assumptions about stimulus and category representation are presupposed
throughout this article. Stimuli will be described in terms of features, which are specific values of
attributes, e.g., size, color, or shape. For example, blue and brown would be possible values of the
attribute of eye color in humans. Here, we are concemned with how people leamn to distinguish categories
based on correlated (consistently co-occurring) atribute values. To illustrate, 2 collection of fruit flies
bred in a geneticist’s laboratory could be described in terms of several attributes such as size, eye color,
wing shape, and so on. If it was then observed that individuals with long wings were also large in size,
with red eyes and hairy legs, whercas those with short wings were small with white eyes and hairless legs,
these patiemns of feature co-occurrences would form an inductive basis for recognizing two distinct
categories of fruit flies within that population. Such a characterization of categories in terms of correlated
features is consistent with the trcatment of Rosch (1975, 1977) and does not imply that the interfeature
correlations must be perfect (i.e., that categorics be defined by necessary and sufficient features). Since a
category would have positive utility so long as some of its fcatures could be predicted with greater-than-
chance reliability, the present characterization admits "fuzzy" categories with probabilistic features.

Theories of Unsupervised Learning

Within the framework of these assumptions, the main theoretical objective is to describe how
people learn such correlational pattems in real stimulus domains. One theory, which we refer to as the
one-process or associative theory of unsupecrviscd lcaming, simply assumes that people record
associations between all (or some) of the presented features on each leaming trial. In this theory, memory
can be imagined as a mat:ix of inter-fcaturc corrclations, cach of which may be strengthened by
expericnce and weakened by dccay ané/or interference processes. If some features are consistently
correlated in their appearance over many icaming trials (instances), the associztions among these features
will increase in strength relative (o those among uncorrclated values. After sufficient training, these
correlations would be strongly encoded in memory. and the person could be said to have acquired the
category they imply. For example, at this point the person could predict the values of centain attributes
given the values of some other attributces, i.c, they could fill in the category’s default values.

There arc two broad types of feature-association theories. The first class of theories assumes that
associations bctween all presented features are strengthened simultancously on each trial (e.g., J.A.
Anderson, 1977; Rumelhart & Zipser, 1986). We can refer to these models as "matriz autoassociators”,
since memory is viewed as a matrix of intcr-featurc associations that are continually updated by new
experiences. The second class of theorics here are the rule-sampling or hypothesis-testing theories, in




which correlational hypotheses are tested scquentially (usually one per trial) against the observed features
in each instance (¢.g., Billman & Heit, 1983). Thesc rules arc strengthencd by confirmation and may also
be weakened by disconfimmation on a given trial. The main difference between these theories and the
matrix models is in whether pairwise associations are strengthened simultancously or sequentially. For
the most part, these differences are not relevant to the rescarch described below, and so they will not be
discussed further.

A second framework, which we will refer to as the swo-process or schema-triggering hypothesis,
does not require that inter-feature associations be explicitly recorded in memory. Rather, memory needs
only record an index of the strength or frequency of each individual attribute value. Adjusting strengths
of individual features rather than of pairs of fcaturcs greatly reduces the amount of information that the
learner must keep track of in memory. Dissimilar instances arc assimilated to different sets of norms
(schemas) in long-term memory (see, e.g., Schank & Abclson, 1977; Rumelhart & Ortony, 1977;
Graesser, Woll, Kowalski, & Smith, 1980; Schank, 1982). Thus, inter-feature associations are captured
indirectly, by assimilating instances with different sets of correlated values to different schemas in
memory, rather than by strengthening associations between feature pairs. By contrast, in the associative
models inter-fean re associations are explicitly represented in memory whereas categories are present
only implicity.

The information-processing steps in one model of this type (see alsc Clapper & Bower, 1991) are
described below. The leamers in this model are assumed to be engaged in unguiced exploraticn of a
domain of objects, i.2., i2aming is unsupervised and leamners are simply attending to the features of
individual objects without explicitly searching for categories among them. The model provides an
example of how schema-triggering plus the strengthing of presented features can describe category
learning in unsupervised leaming tasks.

1. Categorize the presented stimulus This model assumes that a presented stimulus is
automatically classified into the best-fitting catcgory currently available from long-term memory. The
category (schema) provides a set of attributes for generating an intemat description of the stimulus, plus
nomnative expectations about likely values for cach attribute.

2. Evaluate the stimulus features. The fcatures of any stimulus will vary in how well they match
the noms of the reference category. The degree of match between an observed attribute value and the
category norms for that attribiite detemmine the expectedness or noimality of that value (Kahneman &
Miller, 1986; Clapper & Bower, 1991). In terms of describing the current instance with respect to its
reference category, i.e., distinguishing it from other instances of the same category, the infonmativeness
of a feature is inversely proportional to its cxpectedness. Since highly expected features are present in
many instances of a category, they provide little basis for discriminating among particular instances. By
contrast, highly unusual or surprising fcaturcs arc present in relatively few instances of the category, and
thus have high utility for distinguishing an instancc possessing them from other category members. As
successive instances of a novel category arc presenied, people should leam to discriminate among
features on the basis of their discriminative informativencss, ignoring consistently repeated (defaulr)
values and focusing on surprising or unpredictable information about the stimulus.

3. Encode the instance. The rclative informativeness of the different features of an instance
determine their attentional allocation or priority of processing. Those features that are most surprising or
unusual will receive ihe lion's share of the subject’s attention, while defaulis are routinely ignored. The
episodic memory represcntation that results can be thought of as a sct or vector of attribute values, each
with a specific strength of association to the instance. A feature’s strength in this representaticn would be
a direct function of how much attention it rcccived during encoding, which depends in tum on its
informativeness with respect to category norms.




4. Modify category norms Leamers arc assumcd to update their category norms after each
presented instance. Where these modification arc made deperds on the degree of fit between the instance
and the reference category used to encode it.

4a. Assimilation to an existing category. If the instance does not violate category defaults and
cause the subject to invent a new catcgory to accommodatc it, then it is assimilated into the previously-
activated reference category. The schema for this category is modified by increasing the strength of each
presented value in proportion to how much attention it received during encoding, i.e., as a function of its
informativeness. Since familiar defaults reccive little attention at encoding, their strength in the
underlying norms changes little from trial to trial. The strength of more unusual or informative values, by
contrast, may be increased greatly due to a single presentation.

4b. Invent a new category. If an instance mismatches the best-fitting reference category in excess
of some intemnai criterion, a ncw category is "triggered” (i.e.. a separate schema is created to represent
that category) and the instance is assimilated to this new category. Subsequent instarices of this type will
then be assimilated to the new category without affccting the norms of the previous category. While the
triggering criterion cannot be precisely specified at present, we adopt a hueristic assumption that an
instance which violates multiple dcfault valucs of its reference category will be likely to result in the
invention of a new category to handle these discrepancies. Thus, the degree of mismatch or the "surprise
value” of a stimulus with respect to prior norms is used as a heuristic strategy for deciding when to invent
new categories. This strategy for creating ncw categories is similar to the "failure-based generalization”
of Schank (1982), and the "surprise heuristic" of Holyoak, Nisbet & Thagard (1986).

The schema for the new category is gencrated by modifying that of the source category to which
the instance was first assigned. The model assumes that leamers transfer all norms of the source category
not specifically violated by the triggering instance to the new category created around that instance. New
auribute norms are created only for those attributecs whose unusual values triggered the new caiegory.
This transfer heuristic ensures that leamers nced to make the fewest possible changes to their existing
norms to handle deviant observations.

Both the schema theory and the explicit lcaming of inter-feature correlations provide leaming
methods by which leamers might capture the corrclational structure of their environment. However, the
models diff>r greatly in their sensitivity to the particular sequence in which training instances are
presented. In particular, schema-triggering should be vulncrable 10 aggregation ervors early in training,
where "aggregation” refers to grouping stimuli that exemplify different correlational pattems into a
single category. Such crrors could arise because (a) new categorics are triggered by violations of strong
default expectations, and (b) expericnce is required for such strong expectations to be formed, so that
there may be no strong defaults associated with a catcgory carly in training (except those it has inherited
from its source category, see above). To illustrate, imagine two categories, A and B, that have contrasting
default values along several attributes. If instances of the two categories were presented in a mixed or
randomly interspersed sequence from the beginning of training, the triggering hypothesis implies that
subjects might often aggregate the two types of instances into a single overgeneralized category. Such
aggregation would be an error in the scnse that a single catcgory would lose information about feature
correlations that would be capturced by two scparaie catcgorics.

By contrast, if scveral instances of onc catcgory were presenicd before to the first instance of the
ather, subjects would have time to Icam strong defaults for the first category prior to encountering the
second. When an instance of the sccond catcgory was presented, it would then violate defauit
expectations of the first and causc a new schema 1o be created. Thus, category discrimination should be
improved by separating the categories in the training scquence. We show that the strong predicted effect




of training sequence on initial discrimination betwecn categorics is incompatible with a simple
associative model, which expects discrimination to be much less affected by sequencing.

An Index of Unsupervised Learning

We now describec a procedure that can provide information about the course of category
acquisition in unsupervised leaming tasks. This goal of this mcthod is to trace leaming over trials for the
default values of each category in a given stimulus sct.  Specific independent variables can then be
evaluated in terms of their effects on these leaming functions.

The stimuli in these tasks consist of scveral attributes, each of which can take on two or more
altenative values. Categories in the stimulus scts are defined in terms of correlated attributes values. For
example, representing attributes as serial locations in a numerical string, categories could be denoted as
Category A = 11111xxx and Category B = 22222xxx, where the numbers (1 or 2) represent default values
of particular attributes and the x’s indicate that a panicular attribute varies independently of the others.
The basic task consists of showing subjects a scries of such stimuli and asking them to list those features
of each stimulus that distinguish it from the other stimuli in the set, while omitting non-distinguishing
features from their lists.

Note that if all attributes of the stimuli are uncorrelated, subjects should list the current value of
each attribute to distinguish an instance from the other stimuli in the set. By contrast, if the stimulus set
is partitioned into categories as above, then for cach instance subjects need only list one of its correlated
attributes values (or otherwise denote its category membership, to distinguish it from stimuli in the other
category), plus the values of the variable (uncorrclated) attributes. There would be no need to list more
than one cormrelated value, since doing so would provide no extra discriminative information either within
or between categories. This bias in favor of listing uncorrelated (variable) features while omitting
correlated features (category defaults) should evolve gradually over several training trials as successive
instances are encountered and subjects leamn their consistent properties. Thus, this bias can be used as an
index of category leaming, i.e., leaming should be a monotonic function of the percentage of variables
listed minus the percentage of defaults listed.

Importantly, the choice of this leaming index is ncutral with respect to the associative vs.
schema-triggering models. Within the associative modcl, the difference between default and variable
listing results from forming stronger associations in memory between correlated default values than
between uncorrelated variables. Within the schema-triggering framework, the difference between
defaults and variables lies in their relative strength within the category norms, with default values
regarded as less informative than variables due to their greater expectedness.

Experiment 1

The aim of this experiment was to cvaluate the attribute listing task as an index of unsupervised
leamning, as well as its sensitivity to sequence effects. Listing performance over trials was compared in
three conditions. In the Blocked condition, the stimuli were partitioned into two categories based on
pattems of comrelated attribute values. Thc training scquence was blocked by categories, i.e., a series of
instances from one category was presented, followed by a scries of instances from the other category. In
the Mixed condition, the same stimuli were uscd as in the Blocked condition, but instances of both
categories were randomly interspersed in the training scquence rather than being grouped into separate
blocks. In the Control condition, all the attributcs of the stimuli varied independently, so that none of the
attributes were correlated and the stimulus sct was not partitioned into distinct categories.




The first two conditions provided a test of the two models of unsupervised leaming described
above. A schema-triggering process implics that carly aggregation is likely to occur when contrasting
categories are presented in a mixed sequence, and so much poorer lcaming was predicted to occur in the
Mixed condition than in the Blocked condition. An associative model could accommodate interference
between categories in the Mixed condition by assuming that associaiive interference results from leaming
correlations among different values of the same sct of attributes. According to this hypothesis, the
category presented first in the Blocked scquence should be leamed without interference, and thus should
be acquired faster than those in the Mixed condition. However, this hypothesis predicts that the second
category in the Blocked condition should bc lcamed more slocwly than the first, due to proactive
interference or negative transfer from the first catcgory on leaming and remembering associations
between the default values of the second. By contrast, a schema-triggering process predicts that the
second category in a Blocked sequence should be lcamed as rapidly as the first, and no negative transfer
from the first category should be observed.

The third condition was included in this experiment as a control group by which to evaluate
leaming in the other two conditions. This condition was identical to the others except that the stimuli
lacked comrelzied attributes. Thus, any differcnces in performance between this condition and the
correlated-attribute conditions must have becn due to the presence of these correlations rather than to
other, extraneous, factors.

Methods

Subjects

The subjects were 30 Stanford University undergraduates participating in partial fulfillment of an
Introductory Psychology course requirement.

Procedure

Subjects were tested in groups of cight 10 ten for a single session of 40 to 50 minutes. The
training instances were realistic line drawings of fictitious insccts, presented in a 42-page, 8 by 11.5 inch
booklet. The first two pages of this booklet containcd full instructions and an agreement that subjec's
signed to indicate their informed conscnt to panicipatc. A single training instance (insect picture)
appeared on each subscquent page, together with bric{ instructions {or the experimental task.

Subjects were instructed to list the "distinctive™ propentics of cach individual insect, where
distinctive properties werc those that would be usclul for distinguishing the current instance from others
of the same general type. Subjects were told to imagine that they were writing their lists for a later
multiple-choice recognition test in which they would have 1o match up each list with the correct insect
from among a large number of distractor itcms (i.c., other bugs from the same test booklet). Subjects
were instructed to list only those propertics that would be uscful for identifying an insect on such a test,
and to omit non-distinguishing propertics cven if thcy were highly prominent or noticeable. They were
funther told to look only at the page of the booklct that they were currently working on, and not to look
backward or forward at other pages.
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Subjects were allowed to complete the cxperimental task at their own pace. Once they nad
finished, they were given a debricfing page that explained the procedures and goals of the experiment, and
were allowed to leave.

Materials
The stimuli were line drawings of fictitious insccts, all of which shared a common "base”™

structure (e.g., head, thorax, abdomen) plus cight dimensions of variation (attributes), such as wing shape,
abdominal markings, eye color, etc. (see Figurc 1).

Insert Figurs 1 about here

Each attribute had either two or four discrete values (e.g., wings of different shapes, differently colored
eyes, and so on), depending on the experimental condition 10 which it was assigned.

The stimuli shown to a given subject were constructed according to one of two different plans,
depending the condition 10 which that subject was assigned (see Table 1).

Inscrt Table 1 about here

In two of the three experimental groups, the stimulus set was paritioned into two distinct categories.
defined by contrasting sets of correlated attribute values. In these groups five of the cight attributes were
binary (two-valued) and their values were perfectly correlated across the instances, such that each
instance contained one of two possible sets of comrelated values. An instance’s category membership was
defined by which of these two clusters of correlated values it contained. These values will be referred to
as the default values of each category.

The remaining three attributes in the Category conditions were four-valued and variable within
€ach category. Two of the four values occurred with cqual probability in instances of Category-A, while
the other two occurred with equal probability in instances of Category-B. These attributes were
uncorrelated within each category, i.e., they varicd indcpendently across instances of that category.
Within these constraints, eight instances were gencrated from each category. for a total of sixteen overall.

The stimuli in the remaining condition were cquivalens 1o those in the two correlated conditions
in the number of values assigned 0 cach atiribuic (two or four), but differed in lacking correlated
atributes. This will be referred 1o simply as the Contrel ¢. - dition. Two attributes were correlated in all
groups; these were the "wing shape™ and "body shape’ attnibutes, which we judged to be the most salient
autributes of the insects. These dcfaults, which were censtant across all three groups, will be referred to as
"base defaults™. The four-valucd variables were coordinated with the base defaults in the same way in the
uncorrelated group as in the correlated groups (sce Tab: 1). The stimuli in the uncorrelated group can be
divided into twe "categorics” on the basis of the basc defaults and ihe pattem of dependent variation of
the four-valued variables. However, scveral valucs that sre correiated defauits in the other conditions are
uncorrelated vaniables in this condition.




‘The Control condition was designed to show that any greater listing of variables over defaults in
the correlated conditions could not simply be explained as an anifact due to variables possessing more
possible values than defaults (four versus two). If this artifactual cxplanation were correct, then the same
degree of bias in reporting variables over dcfaults should be observed in the Control group as in the
correlated conditions. But if the prefercnce for listing variables over defaults is greater in the correlated
groups than among the controls, this diffcrence must be due 10 subjects’ explicit or implicit comrelational
leaming.

Design

There were three between-subjects conditions in this cxperiment, itwo of which had comrelated
values and one of which did not, as explained above. The two correlated conditions employed the same
stimuli and differed only in the order in which training insiances from the two categories were presented.

In the Blocked condition, instances of the A-category were presented in random order for the first
sixteen trials, followed by sixteen B-instances (cach instance of the two categories was presented twice).
After this "training phase™, a final test block of cight trials was presented in which four instances from
cach category were presented together in a mixed scquence. The order of instances in this test block was
random, with the restriction that no more than two instances from the same category could occur in a row.

In the Mixed condition, the same instances were presented as in the Blocked condition, but in a
different order. During the training phase, the 32 A- and B-instances were presented in an intermixed
sequence rather than blocked as in the previous condition. Instances from the two categories were
presented in random order, with the restriction that no more than three instances from the same category
could occur in a row. A final mixed test block of eight instances from the two categories was then
presensed, the same as that used in the Blocked condition, (.., the same specific insect pictures were
presenaed in the same order in both conditions).

In the Control condition, instances werc presented in random order for the first 32 trials, except
that no more than three instances with the same base default values were allowed to occur in a row during
this phase. The final eight test trials were identical 1o those of the Category conditions, i.e., five antributes
were correlated during this block.

Counterbalancing

To construct stimuli from the specifications shown in Table 1, particular stimulus attributes were
first assigned 10 abstract roles in the design. This assigsnment was held constant across all groups. With
the exception of base Gefaults, each attribuic had four values in half the groups and two values in the
other half. Two differcnt stimulus scis were constructed for cach of the three between-subjects conditions
(Blocked, Mixed, and Control), i.c., six booklcts were construcied and presented 1o different subjects.
Auributes that were four-valued variables in onc group were two-valued defaults in the other group from
the same condition. This cnsurcd that materials cffects (c.g.. differences in the baseline salience or
prominence of diffcrent attributes) would be balanced over the experiment as a whole.




12

Results and Discussion

We begin by discussing the results from the Control condition, since this was intended as a
reference group for evaluating category leaming obscrved in the other two conditions. Data from this
condition is displayed in Figure 2.

Inscrt Figure 2 about here

For simplicity, listings over trials for the two psucdo-categories (defined by the base defaults) are
separated in this figure, although they occumed together in training.

There are two main results of interest in the Control condition. First, subjects consistently
preferred to list four-valued attributes over iwo-valued atiribuies; overall, four-valued attributes were
listed 19.6% more ofien than two-valued attributes (1(9) = 3.93, p < .01). This indicaes that an attribute’s
discriminative informativeness was perceived as grealer when its variability was increased.

Second, there was a significant sendency for subjects t0 increase their listing of both two- and
four-valved attributes over the first few trials, afier which listing of both types of attributes remained
fairly stable. Within-subjects Lincar conirasts revealed significantly increasing trends over the first eight
instances of both categosies for both two- and four-valucd attributes (for two-valued attribuses, #(9) =
447, p < .01 for Caegory A and 1(9) = 4.34, p < .01 for Categocy B; for four-valued attributes, €(9) =
293, p < 02 for Caiegory A and 1(9) = 2.09, p < .10 for Caegory B). The tendency for listing 10 increase
during the early trials did not interact the number of values an attribute had, ie, listing increased about
the same amount for both two- and four-valucd attributes.

The most likely explanation for this increase assumcs that subjects made an incomplete sample of
the instances’ attributes on the first trial. The initial sample can be thought 10 correspond to the sobjects’
hypothesis about which attributes might tum out 10 be informative (ie., to differ across instances) over
future trials. This hypothesis was then modified over subscquent instances, with attribases added or
deleted from subjects’ lists based on their observed variability. Subjects in this experiment listed an
average of slightly over half of the eight aitributes on the first trial. Since these were insufficient w
distinguish between later instances, funther attributes were added to the list as they were observed to vy
acToss instances.

In the comelated conditions, the four-valucd variable attributes displayed a similar pattemn of
increase over trials as did the comresponding four-valucd auributes in the Control condition (compare
Figures 2c, 3¢, and 4c). The trend was significant over the first cight instances for both categories in the
Blocked condition (1(9) = 4.73. p < .01 for Catcgory-A and (9) = 2.97. p < .02 for Category-B).

Insent Figurc 3 about here

The same was true in the Mixcd condition: contrast analyscs showed significant linear trends over the first
cight instances of both catcgorics (1(9) = 4.79. p < 001 for Category-A. (9 = 301, p < 02 for
Category-B).

Insent Figure 4 about here
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In addition, there were no significant differcnces in overall listings of variable attributes araong the three
conditions (t(18) = 0.76, p > .25 for Blocked vs. Control conditions, t(18) = 1.48, p > .10 for Blocked vs.
Mixed, and t(18) = .70 for Mixed vs. the Controls).

The defaults showed a very differem pattern of resulls from the variables for the correlated
groups. In the Blocked condition, defaults were listed much less often than were the corresponding two-
valued attributes in the Control condition (compare Figurces 2b and 3b). Averaged over trials, defaults in
the Blocked condition were listed with a probability of 17 percent, compared to 66 percent for two-valued
attributes in the Control condition (1(18) = 4.70, p < .001). Default listing in the Blocked condition also
showed a strong leaming effect over trials. The proportion of defaults listed declined strongly over the
first five A-instances, from 60 percent on the first instanse to 7 percent on the fifth; default listing for the
B-category decreased from 80 percent on the first B-trial to 17 percent on the sixth. These trends were
highly significant by a linear contrast analysis computed over the first six instances of each category (¢(9)
= 12.78, p < .001 for the A-category, and t(9) = 4.14, p < .01 for the B-category).

Variable attributes were reported 73% more often than defaults in the Blocked condition (t(9) =
10.54, p < .001). The percent listed of variables minus that of defaults on a given trial can be used as a
summary index of leaming on that trial. These difference scores averaged much higher in the Blocked
condition than in the the Control condition (t(18) = 6.44 p < .001). The difference scores also showed a
clear increasing trend over the first eight instances of each category block; the linear contrasts were
significant for both the A-category (t(9) = 9.01, p <.001) and the B-category (1(9) = 4.58, p < .01). These
results demonstrate that subjects leamed to discriminate among attributes based on their predictability
during the training blocks. The larger difference between two- and four-valued attributes in this condition
compared to the Control group was due to the presence of correlational pattems in the stimuli of the
present condition. The pattern of decreasing default (and increasing variable) listings make it possible to
trace this leamning as it increases over instances.

The pattern of responses during the test block was similar to that of the immediately preceding
trials, Compared to comresponding trials in the Control condition, listing of defaults during the test block
was significantly lower in the Blocked condiuon (1(18) = 3.66, p < .01), that of variables about the same
(t(18) = 0.95, p > .25), and the differences between them (leaming scores) greater (1(18) = 4.23, p < .01).
The fact that higher listing of variables than defaults continued during this block, which presented
instances of both categories in random order, indicates that the carlier biases in subjects’ listings were not
a mere artifact of presenting instances of the same category together in the training sequence. That is, the
increase in subjects’ leaming scores reflects the acquisition of stable categories rather than local
habituation to a series of repeated values.

Subjects’ attribute listings also provide strong evidence for leamning in the Mixed condition (see
Figure 4). Default values were listed 36 percent less often in this condition than the corresponding two-
valued attributes in the Control condition (1(18) = 3.54, p < .001). Since variable listing was about the
same in the two conditions, difference scores were also higher in this condition than for the controls (52
vs. 20 percent, t(18) = 3.54, p < .002). Thesc resulls indicate that subjects in the Mixed condition
discriminated more between defaults and variables in their listings than could be explained by a mere
preference in favor of listing four-valued rather than two-valued attributes. Rather, the additional bias
indicates that subjects’ listings were affected by the feature corrclations in the Mixed condition.

A comparison of Figure 3b and Figurc 4b suggests that leaming occurred much more rapidly in
the Blocked condition than in the Mixed condition. In fact, no default leaming appears to have occurred
in the Mixed condition until after the first five or six instances of each category. Prior to this, listings
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remained at a fairly constant level, and neither default listings nor difference scores differed significantly
from the same trials in the Control condition. A lincar contrast analysis showed no decrease in default
listing over the first six trials of either category (1(9) = 0.99, p > .25 for Category A and t(9) = 1.05, p >
.15 for Category B). Listing of defaults began to decrease in the trials following this, although the linear
trend for default listing did not reach conventional levels of statistical reliability over trials seven to
sixteen for either category (t(9) = 1.57 for Category A and t(9) = 1.58 for Category B; p > .10 for both
tests). The difference scores were apparently a more sensitive indicator of leamning in this condition, and
showed significant increases over the first ten trials for both categories (t(9) = 6.52, p < .001 for Category
A and t(9) = 2.52, p < 05 for Category B).

Direct statistical comparisons between the Blocked and Mixed conditions support the conclusion
that learning occurred more rapidly in the Blocked condition. The mean proportion of default values
listed was greater in the Blocked condition by the third instance of Category-A 2nd by the second
instance of Category-B. In addition, leaming in the Blocked condition appeared to be complete in less
than five instances for both categories, whereas default listings in the Mixed condition required much
longer to reach their minimum level. Overall, default listings during the training phase were significanty
lower in the Blocked condition for Category-A (1(18) = 2.26, p < .05), although not for Category-B (t(18)
=0.70, p > .25).

The difference scores appear to have been a more sensitive indicator of sequence effects in this
experiment, probably because variables were listed slightly more often in the Blocked than the Mixed
condition (a non-significant difference, t(18) = 1.48, p > .10). Difference scores were higher in the
Blocked condition for the first eight instances of both Category-A (1(18) = 3.74, p < .002) and Category-B
(t(18) = 2.35, p < .05), and marginally greater for the second eight instances of Category-A (1(18) = 1.96,
p <.10). Pooled over the 32 training trials, difference scores were significantly greater in the Blocked
than the Unblocked condition (1(18) = 2.47, p < .05). For the final test block, there was no significant
difference between Blocked and Unblocked conditions for either difference scores (1(18) = 0.72, p > .25)
or default listings alone (t(18) = 0.03). This suggests that although leaming occurred more rapidly in the
Blocked condition, subjects in the Mixed condition caught up by the end of the experiment.

The schema-triggering hypothesis provides a plausible explanation for the slower learning that
occurred in the Mixed condition. This hypothesis implies that subjects would be likely to aggregate both
types of instances into a single category when-they are presented together early in training, thus failing to
capture the correlational structure of the stimulus set. This should occur because subjects in the Mixed
condition would have less time to learn strong defaults for onc category before seeing instances of the
other. Due to the lack of strong default expectations, the novel stimulus would be less likely to trigger the
formation of a separate schema and would be more likely to be aggregated together with previous
instances into a single overall category. It might be difficult for subjects to "unleam” this aggregated
category and acquire the correct category-level discriminations. Assuming that some subjects
discriminated the categories correctly from the start of training (triggering a new category upon seeing the
first discrepant stimulus), some aggregated the catcgorics together at first but later overcame this initial
error, and that some never unleamcd their initial overaggregation, the averaged data might match the
pattemn of gradually increasing leaming observed in this condition. (A process by which the schema-
triggering model could correct for initial errors of overaggregation will be described in more detail in the
General Discussion.

An associative model could explain negative transfer in the Mixed condition as due to associative
interference in leaming correlations among differcnt pairs of values from the same set of attributes. A
strong interference process could cxplain why Catcgory A lcaming was reduced by interspersing B
instances in the training sequence in the Mixed condition. However, such an interference process would
imply that prior leaming of Category A in the Blocked condition should have interfered with subsequent
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learning of Category B, as well. The data show no such ncgative transfer; if anything, the second
category was leamed slightly faster than the first in this group. The associative model provides no
obvious explanation for why A instances would intcrfere with B leaming when interspersed with B
instances in the Mixed condition, but not when presenied first as in the Blocked condition.

In sum, the results of this experiment suggest that the attribute listing task can be productively
used as an index of unsuperviscd leaming for both Blocked and Mixed training sequences. Moreover, the
pattems of transfer revealed in comparing these two groups provide evidence that are difficult to
accommodate within the associative model but are rcadily explained by schema-triggering.

Interestingly, the base defaults behaved somewhat differently in this experiment than did the
other defaults, and the schema-triygering idea can also accommodate these differences. Recall that the
base defaults were judged to be the most salient attribuies of the insect stimuli, and it was considered
likely that subjects would tend to list these particular attributes when they wished to indicate an instance’s
category membership. To illustrate, people should prefer to describe the categories as "broad-winged"
versus “narrow-winged” than as, say, "black-eycd" versus "white-eyed", because wings were more
physically prominent than eyes in these stimuli. Consistent with this, base defaults were listed more often
whenever subjects would be expected to want to indicate an instance’s category membership. For
example, when a long series of instances from the same category is presented in sequence, the category
membership of each could be readily inferred on the basis of this local context. But when instances are
presented in mixed sequence and category membership cannot be inferred from local context, subjects
could indicate it by listing the most physically prominent default (i.e., wings or body snape) as a proxy
for the category.

Consistent with this account, higher listings were observed for base defaults in the mixed test
block of the Blocked condition than in the last eight trials of preceding same-category training blocks
(t(9) = 2.48, p < .05). No such increase occurred for either variables (1(9) = 1.00, p >.25) or regular
defaults (1(9) = 1.54, p >.10). In other respects the base defaults behaved like the regular defaults in the
Blocked condition, decreasing strongly over the first six instances of each category (1(9) = 2.83, p < .05
for Category A and t(9) = 6.85, p < .001 for Category B). Base defaults stayed fairly constant throughout
the task in the Mixed condition, showing no significant decreasing trends. Any subjects that learned the
categories in the Mixed condition would necd to explicitly indicate the category membership of each
instance, since this could not be inferred from context.

Experiment 2

The aim of this experiment was to provide further cvidence to discriminate between the
associative and schema-triggering theories. One differcnce between them is that the associative theory
expects learning of a category to incrcasc monotonically with the number of instances presented, i.e., that
adding to the number of A instances present in a training scquence should always increase, or at least not
decrease, final A leaming. By contrast, the schema-triggering theory predicts that in certain situations
learning could actually be decreased by incrcasing the number of instances presented from a given
category. This could occur if the added instance interfered with initially forming distinct schemas for the
two categories, and caused them to be aggregated together into a single category instead. The present
experiment aims to provide an cmpirical demonstration of this prediction of the schema-triggering
process.

A second difference is that the associative theory expects transfer or interference effects between
contrast categories to be consistent regardless of how the categories are sequenced or the number of
instances presented from each. For cxample, if lcarning of two categories is reduced when they are
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presented together in a mixed training scquence, as in Experiment 1, then there should also be negative
transfer from Category A on leaming Catcgory B in a blocked sequence. Similarly, if .r=senting four A
instances prior to seeing any Bs interfercs with B lcaming, then increasing that number to eight A
instances should, if anything, increase the degree of proactive interference on B. By contrast, schema-
triggering implies that the direction of transfer (positive or negative) could in some cases be reversed by
manipulations of instance sequencing. Thus, a sccond aim of this experiment was to test some transfer
predictions of the schema-triggering hypothesis that cannot rcadily be accommodated within a simple
associative model.

In the following experiment, A and B instances were presented in two different conditions. In
one, a "pretraining” block of eight A-instances was followed by a "test" block of twelve A-instances and
twelve B-instances presented in mixed sequence. In the other, a mixed pretraining block of four A-
instances and four B-instances was followed by the same test block as in the first condition. In the first
condition, called the Contrast condition, the schema model predicts that subjects would leam strong A-
defaults prior to encountering their first B-instance. Thus, they should easily notice the contrast between
the two categories when they encounter this instance, invent a new category to accommodate it, and
rapidly learn new default values for this category. Moreover, encountering the B-instances should not
cause subjects to unlearn or discard the prior A-defaults, i.e., listing of A-defaults should not increase
appreciably during the mixed test block. The schema model predicts that the triggering instance should
be assimilated to the new category it causes the lcamer to invent, not to the "source" category to which it
was initially assigned. In the second condition, called the Practice condition, leamning should be reduced
because subjects will tend to aggregate the two types of instances into a single category, which ignores
the correlational structure of the stimulus set.

Although the schema-triggering theory predicts better leaming of B-defaults in the Contrast
condition, a larger number of B-instances actually occur in the Practice condition. A total of four B-
instances are presented during the pretraining block in the Practice condition, whereas no B-instances
occur prior to the test block in the Contrast condition. The associative theory clearly expects better
learning of Category B in the Practice condition, since the inter-feature associations among the B-defaults
receive more practice (repetitions in different instances) in that condition. Moreover, while the triggering
theory predicts that increasing the number of B instances in the pretraining block from zero to four should
interfere with later leaming of Category A, increasing the number of A instances from four to eight is
expected to have the opposite effect on later B-leamning. The associative model cannot handle this
complex dependence of transfer effects on the sequencing and number of instances presented from each
category. If the predicted results were obtained, they would provide strong evidence for the existence of a
schema-triggering process in unsupervised leaming.

Method

Subjects

The subjects were 40 undergraduate students of San Jose State University participating in partial
fulfillment of an Introductory Psychology coursc requirement.




Proycedure

Subjects were tested in groups for a single scssion of 30 to 45 minutes. The procedure was the
same in most respects as in Experiment 1. The training instances were realistic line drawings of fictitious
insects, presented in booklets similar to those used in Experiment 1. The same instructions were used as
in Experiment 1, i.e., subjects were instructed to list the distinctive properties of each individual insect,
where distinctive properties were those that would be useful for distinguishing the current instance from
others of the same general type, for example, on a later multiple-choice recognition test. Subjects were
instructed to list only those properties that would be uscful for identifying an insect on such a test, and to
omit non-distinguishing properties cven if they were highly prominent or noticeable.

Materials

The same type of pictorial insect stimuli were used as in Experiment 1. These stimuli all shared a
common "base" structure (e.g., head, thorax, abdomen) plus eight dimensions of variation (attributes),
such as wing shape, abdominal markings, eye color, etc. Each attribute had either two or four discrete
values (e.g., wings of different shapes, different colored eyes, and so on), depending on the experimental
condition to which it was assigned. Five of the eight attributes had two values, and these values were
correlated across instances, such that the set was partitioned into two distinct categories defined by
contrasting sets of default attribute values (see Table 2).

Insert Table 2 about here

The remaining three attributes had four values, two of which occurred with equal probability in
Category-A and the other two of which occurred with cqual probability in instances of Category-B.
These variable attributes were uncorrelated within each category, i.e., they varied independently across
instances of that category. A total of cight instances could be generated from each category within these
constraints. All sixteen possible instances were presented to subjects in this experiment.

Design
There were two between-subjects conditions in this cxperiment.

In the Contrast condition, instances of the A-catcgory only were presented for the first eight
trials, followed by a mixed block of twelve A-instances and twelve B-instances. The first block of eight
trials will be referred to as the pretraining block, while the sccond block of 24 instances will be referred
10 as the test block. The first instance of the test block was always a member of Category B. Instances of
the two categories were presented in a randomly ordered, intcrmixed sequence, with the constraint that no
more than three instances from the same catcgory were allowed to appear in a row.

In the Practice condition, the cight instances [rom the pretraining block consisted of four As and
four Bs, rather than eight As as in the previous condition. The four instances from each category were
selected so that both values of each variable attribute occurred twice, and none of the variable attributes
was correlated with any of the others. They were prescented in a random order, with the restrictions that
the first instance was a member of Category-A and that no more than two instances from the same
category could occur in sequence. The same 24-instance test block was used as in the Contrast condition.
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Note that the only difference between the two conditions is that in the Practice condition four B-
instances were substituted for four A-instances presented in the Contrast condition.

Counterbalancing

The counterbalancing scheme for this experiment is illustrated in Table 2. As shown Table 2, all
the attributes had four values in one condition and two (correlated) values in the other, except for the first
two atiributes. The first two attributes were basc dcfaults, which consisted of the "wing shape" and "body
shape" attributes as in Experiment 1. These were two-valued and correlated in both conditions. The.
balancing scheme shown in Table 2 ensurcd that materials effects (e.g., differences in baseline
prominence of different attributes) would be balanced over the six attributes that were not base defaults.

Results and Discussion

The Practice condition in this experiment was essentially a replication of the Mixed condition of
Experiment 1. The results are displayed in Figure 5.

Insert Figure 5 about here

! Compared to the Mixed condition from Experiment 1, somewhat less learning seems to have occurred in
the present condition. Default listings appear to decrease slightly over the course of the experiment, but
the decreasing trends are not statistically significant by linear contrasts conducted over various intervals
of trials. Nor were default listings averaged over the eight trials of the pretraining block lower than those
averaged over the twelve subsequent A-trials (1(17) = 0.07, p > .50) or B-trials (t(17) = 1.51, p > .10). For
the base defaults, a significant difference between early and late trials was obtained in Category A (t(17)
=2.32, p < .05), but not in Category B (t(17) = 1.16, p > .10).

Tuming to the difference scores (listing of defaults subtracted from that of variables) a significant
increase occurred over the first four instances of Category A (1(17) = 3.71, p <.01) and the corresponding
instances of Category B (1(17) = 4.26, p < .001). Some of this increase was due to increased listing of the
variable attributes of both categories during the same trials. This increase was significant by a contrast
analysis for linear trends over the first four instances of Category A (1(17) = 3.35, p < .01) and the first
four instances of Category B (1(17) = 5.31, p < .001). Following the first two pretraining trials, all
difference scores were positive (i.c , variables were listed more often than defaults throughout most of the
experiment).

The apparent leaming cifects in this condition appeared smaller than those from the
corresponding condition of Experiment 1. However, fewer trials were used in the present experiment (32
instead of 40), and a different subject population was sampled (students of San Jose State University
instead of Stanford University). In addition, it is useful to compare the present results to those of the
Control condition from Experiment 1, in which corrclated default values were lacking. In that condition,
subjects significantly increased their listing of two-valued attributes over the first eight to ten trials, as
they became aware that these attribute varicd independently over instances and thus were informative for
the listing task. Seen in this light, the slight decreasc in default listing observed in the present experiment
probably indicates some real learning of these defaults.
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Without an uncorrelated control condition, it cannot be conclusively demonstrated that default
learning occurred in the Practice condition of the present experiment. However, in this experiment we
were mainly concemed with differences in leaming between the Practice and Contrast conditions. As
expected, the pattemn of results from the Contrast condition diffcred sharply from those of the Practice
condition (see Figure 6).

Insert Figure 6 about here

Here, all the instances presented during the pretraining block were from Category A. The listing of both
A-defaults and base defaults decreased rapidly during this block, from a high of about 41 percent (for
defaults) on the first trial to about 6 percent on the cighth trial. The linear trend over this interval was
significant at the .001 level for both defaults (t(16) = 4.60) and base defaults (t(16) = 5.14). During the
same trials subjects increased their listing of variable attributes from 35 to 73 percent (t(16) = 3.91, p <
.01). A significant linear trend was also observed for the difference scores over this interval (1(16) = 5.23,
p < .001). In sum, the same rapid leaming of A-norms that occurred in the Blocked condition of
Experiment 1 was observed in the Contrast condition of the present experiment.

Following the pretraining block, a large increase in default listing occurred when the first B-
instance was presented, from 6 percent on the previous A-trial t0 53 percent on the first B-trial (1(16) =
5.37, p < .001). The same effect was apparent in the listing of base defaults (1(16) = 8.17, p < .001).
Following this initial reaction, listing of B-defaults decreased rapidly on subsequent trials. Most of this
decrease occurred between the first and second B-instance (t(16) = 5.10, p < .001), with much less change
in the leamning function occurring thereafter. The same was true of the base defaults (t(16) = 3.06, p <
.01), although listing of these attributes remained higher than those of the defaults; his difference
probably reflects subjects’ continuing use of these highly prominent features to indicate the category
membership of each instance during the mixed test block. Overall, default leaming during this block
appeared at least as rapid as the leaming of A-defaults that had occurred during the pretraining block, and
showed no evidence of interference from the preceding block of A-instances.

Following the {irst B-instance in the test block, listing of A-defaults also increased by a small
amount (about 12 percent); this increase was statistically significant at the .05 level (t(16) = 2.40). This
elevated reponding continued on the sccond B-instance of the test block. and then tapered off over the
new few trials (see Figure 6). Despite their temporary elevation, listing of A-defaults on this trial was
still substantially less than that of the B-defaults on the first B-trial (by about 32 percent, t(16) = 3.13, p <
01). This pattem of results scems to indicate that presenting the first B-instance did have some effect on
the default norms of Category-A, contrary to our original predictions. However, subsequent B-instances
apparently did not affect A-norms (i.e., they did not incrcase listing of A-defaults) suggesting that they
were assimilated only to the newly-invented schema for Category B, as predicted by the schema theory.

An important prediction of the schema-triggering theory was that B-defaults should be learned
more rapidly following a block of pure A-instances than following a mixed block composed of both A
and B-instances. This result was predicted duc 1o the greater initial leaming of A-defaults that would
occur in the first condition, which favors the triggering of a ncw schema at the first B-instance. The result
was expected despite the larger number of B-instances prescnted to subjects in the Practice condition, i.e.,
in spite of the fact that the intcr-feature associations of Catcgory B received more repetition in that
condition. Consistent with this prediction, B-dcfaults were leamed much more rapidly and completely in
the Contrast condition than in the Practice condition. On the first B-trial in the test block of the Contrast
condition, default listing was significantly higher than on the comresponding trial of the Practice condition
{t(33) = 2.05, p < .05). This reflects the greater surprisingness of those attributes in that condition; the B-
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values would have been considered default violations by subjects in the Contrast condition, while many
subjects in the Practice condition would have merely regarded them as routine values of familiar variable
attributes. Following the first B-trial, default listing for the ncxt cleven B-instances was lower in the
Contrast condition than in the Practice condition (by an average of 18 percent, t(33) = 2.76, p < .01).

The pattern for base defaults was similar to that for defaults, except that listing of these attributes
did not show as much decrease over trials as did other dcfaults. Base default listing was significantly
higher in the Contrast condition for the first B-instance of the test block (1(33) = 2.16, p < .05). Following
this, however, there was no significant diffcrence between the two groups in their listing of these
attributes (1(33) = 0.54). This probably reflects subjects’ tendency to continue listing base defaults to
indicate the instances’ category membership in the mixed test block of the Contrast condition.

The listing of variable attributes was approximately the same in the two groups (1(33) = 1.04, p>
.10). Thus, the pattem of results for the difference scores simply mirrored those for the defaults, and will
not be discussed separately.

Although subjects in the Practice condition saw a larger number of B-instances than did subjects
in the Contrast condition, leamning of B-defaults in that condition suffered from negative transfer due to
the four preceding A instances (compared to the leaming that would have occurred had only B-instances
been presented during the pretraining block). Importantly, this interference cannot have occurred at the
level of inter-feature associations (or explicit comelational rules), because in that case the amount of
interference from the A-category should have increased directly with the number of A-instances in the
pretraining block, and thus have been greater in the Contrast condition than in the Practice condition. By
contrast, increasing the number of A instances from four to eight eliminated their interference on
subsequent B-leaming. The interference in the Practice condition is explained by the schema-triggering
theory as due to inadequate learning of A-defaults prior to encountering the first B-instance, causing
subjects to aggregate both types of instances into a single category. Contrary to an associative
interference hypothesis, increasing the number of A-instances can either facilitate or interfere with later
learning of B-defaults, depending on how the manipulation affects the schema-triggering process (i.e., the
probability that triggering will occur at any given point in the sequence).

While our results show that the learning of B-norms was apparently unimpaired by prior A-
learning in the Contrast condition, there did appear to be a temporary effect on A-norms due to presenting
the first B-instance, i.e., listing of A-defaults increased for several instances following the presentation of
the first B-instance. By contrast, we expected that the B-instance would trigger the invention of a new
category (which apparently occurred), and that the instance would be assimilated only to the new category
and would not affect listings for later instances of the source category (A). One explanation for the
increase is that while the first B-instance triggered a new catcgory as expected, the instance could have
been assimilated borh to this new category and to Catcgory-A. The new category would then provide a
better match to subsequent B-instances than would Category A, so for these later instances only the new
B category would be evoked. Mcanwhile, the A norms would gradually return to previous levels as
subsequent A-instances were assimilated. The only difference between this account and the schema-
triggering model presented above is that it assumes that instances are always assimilated to the category
to which they were first assigned. If an instance is also sufficiently novel to trigger a new category, then
it will be assimilated to that new category as well.




Experiment 3

This experiment was a modification of Experiment 2 designed to further investigate schema-
triggering in unsupervised learning. The patterns of transfer (i.e., how the two categories interfere with or
facilitate each other’s leaming) in this experiment were expected to provide further evidence requiring the
existence of a schema-triggering process. In particular, the present experiment investigated the effect of
initially over-aggregating two contrast categorics into a single class on subjects’ ability to eventually
acquire the correct category-level discriminations.

All the conditions in this experiment rescmbled the Contrast condition of Experiment 2, except
that the series of same-category instances in the pretraining block was preceded by a single instance from
the contrasting category. In the Contrast condition of Expcriment 2, eight instances of Category A were
presented in a row prior to a mixcd block consisting of both A- and B-instances. These eight instances
were sufficient for most subjects to leam strong A-defaults prior to encountering the first B-instance,
causing a new schema to be triggered upon seeing the B-instance. In the present experiment, rather than
presenting all A-instances during the pretraining block, a single A-instance was presented during the first
trial followed by a series of B-instances (by convention, we always refer to the first-presented category in
the training sequence as Category A). The main independent variable in this experiment was the number
of B-instances that followed the first A-instance in the pretraining block; one group of subjects had four
B-instances in this series, a second group had eight, and a third group had twelve B-instances. Following
this pretraining block, a mixed block of both A- and B-instances, similar to that of Experiment 2, was
presented for the next thirteen trials.

The objective of presenting instances from two different categories on the first two trials was to
cause as many subjects as possible to aggregate the two categories together at the start of training. Since
Category A was presented first, the aggregate norms should have initially been dominated by the values
of that A-instance. As subsequent B-instances were presented, however, the consistent features of that
category should have gradually outcompeted and dominated the contrasting A-values in the aggregate
norms. If sufficient B-instances occurred in this series, the B-values would be leamed as defaults of the
combined category, so that presenting a second A-instance would trigger a new schema to accommodate
it. The result would be rapid leaming of both A- and B-categories during the subsequent mixed block.

By contrast, if fewer B-instances were presented prior to the second A, the probability of
triggering a new category should be reduced. This reduction would result from the relatively high
residual strengths of the A-values in the aggregate norms, which would lessen the perceived disparity
between those norms and the features of the second A-instance. If subjects failed to dis-aggregate the two
categories (i.e., did not create a separate schema for Category A), then their attribute listings in the mixed
block should show reduced learning of the default values of both categories. In sum, the existence of a
schema-triggering process would imply that increasing the number of B-instances in the pretraining series
would increase increase the subsequent leaming of both categorics.

A simple associative modcl lacking a schema-triggering process would predict a somewhat
different pattern of results. Such models expect that increasing the number of B-instances in pretraining
should increase later B-leaming, consistent with the triggering hypothesis. However, the associative
theory expects that this manipulation would also decrease later A-leaming due to negative transfer at the
level of inter-feature associations. In general, the associative theory predicts that transfer effects will be
consistent in strength and dircction (positive or negative). For example, if presenting a single A-instance
interferes with lcarning the defaults of subsequent B-instances, as both theories predict, then presenting
four to twelve B-instances should greatly reduce default leaming in subsequent As.
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In addition to providing another test of schema-triggering, the present experiment may also
provide an estimate of how many instances {from one a catcgory must be presented to overcome initial
aggregation with its contrast category, at least within the present attribute listing set-up. In the Blocked
condition of Experiment 1 and the Contrast condition of Expcriment 2, both of which were favorable for
schema-triggering and rapid default lecaming, about three to five instances were required to fully learn a
category’s defaults. The present situation should be less favorable for rapid category learning, due to
aggregation of the two categories at the start of training. Thus, a larger number of instances should be
required to leam the category to asymptote and cause triggering when a contrasting stimulus is presented.
Presumably, the degree of leamning at the end of the pretraining block (the difference between variable
and default listings) should predict leaming of both categories during the following mixed block.

Method

Subjects

The subjects were 36 undergraduate students of Stanford University participating in partial
fulfillment of an Introductory Psychology course requirement.

Procedure

The procedures for this experiment were essentially the same of those of the previous two
experiments. Subjects were tested for a single half-hour session in groups of eight to ten. They were
given test booklets similar to those of the other experiments, and allowed to complete the listing task at
their own pace. The listing instructions were identical to those used in Experiments 1 and 2.

Materials and Design

The stimuli in this experiment were the same pictorial insect stimuli used in the last two
experiments. These were divided into categories on the same basis as the stimuli in Experiment 2. The
stimulus set was partitioned into categories on the basis of perfectly correlated values on five binary
attributes. The remaining three attributes varied independently over two values, different for the two
categories. The design shown in Table 2 for Experiment 2 was also true for the present study.

The main differcnce between this experiment and Experiment 2 was the order in which training
instances from the two catcgorics were presenicd. The first instance was always different from the
sccond; following the conventions of previous cxperiments, we refer to the instance presented first as
belonging to Category A. The following N instances were from Catcgory B; the number N of instances
in this serics was the independent variable in this experiment. These first N+1 instances (one A-instance
plus N B-instances) were referred to as the pretraining block. Following this pretraining block was a
mixed block consisting of scven As and six Bs presented in random order (with the constraint that no
more than two instances of the same category could occur in a row). This was referred to as the test
block.

Each of the sixteen possible instances from this sct was presented at least once in this experiment,
and instances were selected for a second or third presentation such that each value of the variable
attributes appeared an equal number of times. As in Experiment 2, two different stimulus sets were
generated such that assignment of dcfault or variable status to a given attribute was balanced across the




experiment as a whole; this balancing was depicted in Table 2. For both of these stimulus sets, booklets
were constructed such that one category of insccts took on the role of Category A (i.e., was presented
first) for a given group of subjects while another group received booklets in which the other category was
presented first. Crossing these two balancing [actors (the stimulus set used and the order in which
categories were presented) with the three levels of the N variable (number of B-instances in the
pretraining series) yielded a total of twelve groups. Three subjects were randomly assigned to each
group, for a total of 36 subjects in this experiment.

Results and Discussion

The main data for this experiment (listing of variables minus that of defaults for the three
conditions) are shown in Figure 7.

Insert Figure 7 about here

As Figure 7 shows, there is evidence for leaming of both categories in all three conditions of this
experiment. Starting with Category B, default listing decreased over trials during the pretraining block in
all conditions. The decreasing linear trends in default listing were significant over the N trials in the
block for the N=4 and N=12 conditions (t(11) = 3.15, p < .01 and t(11) = 3.20, p < .01, respectively), but
not over the block as a whole for the N=8 condition (t(11) = 1.22, p > .10). However, the decrease was
significant over the first 3 trials of pretraining for the N=8 condition (t(11) = 3.00, p < .02).

The difference scores increased significantly during the pretraining block for Category B in all
three conditions (t(11) = 4.66, p < .C01 for N=4; (1(11) = 6.70, p < .001 for N=8; and (t(11) =5.64,p <
001 for N=12). The difference scores show more learning than the defaults oecause they count both the
increased listing of variables and the decreased listing of defaults that occurred during this block. This
increase was significant in all three conditions (t(11) = 3.99, p < .01 for N=4; t(11) = 6.74, p < .001 for
N=8; t(11) =4.91, p < .001 for N=12).

Default listings tended to increase somewhat (and leaming scores to decrease correspondingly)
for B-instances during the following test block . Comparing average default listing for the test block with
that of the last two B-instances in the pretraining block, a marginal increase in listings was observed in
N=4 (1(11) = 1.90, p < .10), a significant increase in N=12 (1(11) = 2.68, p < .05), and a non-significant
increase in N=8 (1(11) = 1.42, p > .10). However, the listing of defaults remained far below that of
variables during this block (t(11) = 5.64, p < .001 for N=4; t(11) = 5.09, p < .001 for N=8; and t(11) =
7.76, p < .001 for N=12). This indicates that the leaming of B-defaults that occurred during pretraining
transferred to the test block, and was not merely due to temporary habituation to a series of repeated
values.

The listing of A defaults also dcclined significantly over trials in condition N=12 (t(11) = 2.86, p
< .02), nearly significantly in N=4 (1(11) = 1.76. p < .12), and non-significantly in N=8 (1{11)=0.19,2 >
.20). Variable listing increased significantly for Catcgory A in all three conditions, but only over the first
three instances (t(11) = 3.38, p < .01 for N=4; ((11) = 5.70, p < .001 for N=8; and t(11) = 5.63, p < .001
for N=12). Difference scores also increased over the eight A-instances in all three conditions (1(11) =
4.68, p < .001 for N=4; t(11) = A 05, p < .001 for N=8; and t(11) = 7.54, p < .001 for N=12).
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The primary aim of this experiment was to compare leaming among the three groups, and show
that a longer series of B-instances in the pretraining block would cause better leaming of both categories
in the test block. As in Experiment 2, the lack of an uncorrelated control condition in this experiment
weakened the within-groups results as evidence for category leaming in the individual conditions. That
is, it is possible that the higher listing of variables than defaults in some conditions simply reflected
subjects’ preference to list four-valued rather than two-valued attributes. However, comparing data from
the present study to the uncorrelated Control condition in Experiment 1 supports the conclusion that
correlational leaming probably occurred in all three groups in this experiment. Recall that listing of
uncorrelated attributes with both two and four values increased significantly over trials in Experiment 1,
in contrast to the gradually decreasing pattern of default listing in the present experiment. If subjects in
this experiment were listing variables more often than defaults only because the former had more possible
values, listing of both types of attributes should have increased over trials as in Experiment 1. The fact
that default listing tended to decrease in this experiment argues for real category learning in the present
experiment.

We now tum to the between-groups analyses and to the specific tests of our theoretical
hypotheses. The main prediction derived from the schema-triggering hypothesis was that increasing the
number of B instances during the pretraining block should increase leaming of both categories in the
following mixed block. This was expected because increasing the number of B instances should increase
the relative strength of B-values in the aggregated norms, while decreasing the relative strength of
residual A-values from the first trial. This, in turn, should increase the probability of triggering a new
schema when the next A-instance was encountered, because the A-values would have low strengths in the
aggregated nomms and hence should appear relatively surprising with respect to those norms. Once the
categories were dis-aggregated by this triggering, default leaming could occur rapidly for each.

These expectations were largely bome out, with one qualification. We originally expected that
the degree of leaming would vary monotonically with the length of the pretraining block, i.e., that
learning would be greater in the N=12 group than for N=8, and greater in N=8 than in N=4. While
learning did tend to be higher in condition N=12 than in the other two conditions, leaming in N=8 was
not greater than that in N=4; if anything, it tended to be slightly less. Thus, increasing the pretraining
block from N=4 to N=8 did not improve leaming, but increasing it to N=12 did.

Turning to statistical comparisons, default listing for category A was significantly less in N=12
than in N=8, t(22) = 2.23, p < .05. The difference was also significant for the difference scores, 1(22) =
2.85, p < .01. Although A-defaults were listed less often in N=12 than in N=4 (by 7.6%), and the lsaming
scores are higher in N=12 (by 10%). neither of these comparisons attained conventional levels of
statistical reliability (1(22) = 0.76 and t(22) = 0.95, respectively). Leaming appeared to be somewhat
higher in N=4 than in N=8, as noted previously, but these differences also failed to reach statistical
significance (1(22) = 1.40 for defaulis and 1(22) = 1.56 for variables, both p-values > .10). When the data
from conditions N=4 and N=8 were pooled, the comparison between difference scores in this combined
condition and in N=12 was marginally significant (1(34) =2.02, p <.10).

Comparisons of Category B lcaming showed a similar ordering of conditions as did those of
Category A. Within the pretraining block, lcarning appcared greater in N=12 than in N=8 and N=4, but
not greater in N=8 than in N=4. Comparing the final trial of the pretraining block in each condition,
default listing was significantly less in N=12 than in N=8 (1(22) = 2.27, p < .05) and in N=4 (1(22) = 2.24,
p < .05), but there was no difference between N=8 and N=4 (1(22) = 0.81, p > .25). The difference scores
showed the same ordering of leaming, although the effects were somewhat weaker than those shown by
the defaults. Difference scores on the last pretraining trial were marginally greater in N=12 than in N=8
(1(22) = 2.06, p < .10), non-significantly greatcr in N=12 than in N=4 (1(22) = 1.47, p > .10), with no
significant difference between N=8 and N=4 (1(22) = 0.75, p > .20).



Tuming to the test block, B leaming was again higher in N=12 and lower in the other two
conditions. Averaged over the six B-instances in the test block, these effects were statistically significant
for the difference scores but not for default listings alone. Difference scores for N=12 exceeded those of
N=8 by 27%, a significant difference (1(22) = 2.14, p < .05). In addition, difference scores were 22%
higher in N=12 than in N=4, a marginally significant effect (1(22) = 1.73, p < .10). No significant
difference was obtained between N=4 and N=8 (1(22) = 0.41). When N=4 and N=8 were pooled together
into a single condition, difference scores in this condition were significantly less than those in the N=12
condition (1(34) = 2.28, p < .05).

Although leaming in the N=12 condition was higher than that of the other two groups in this
experiment, it still did not appear as high as in the test block of the Contrast condition from Experiment 2.
In that condition, all instances presented during the pretraining block were members of the same category,
and thus there was no initial aggregation of categories for subjects to unleam. Although listing of
defaults rose during the first part of the test block for both categories in that experiment, they declined to
near their original levels very quickly, within two or three trials. Although the validity of direct
comparisons between these two experiments is questionable because different subject populations were
sampled, it appears that less leaming occurred during the test block of Experiment 3, even in the N=12
group. Apparently, a single A-instance presented before as many as twelve B-instances was enough to
interfere somewhat with later discrimination of the two categories. This is a surprisingly strong negative
effect, and additional research is needed to further explicate these powerful transfer effects and the
conditions under which they are likely to occur.

Overall, these results are consistent with the schema-triggering hypothesis but not with the one-
process associative model, since the latter cannot account for the increased A-leaming that occurred due
to increasing the number of preceding B-instances. However, neither theory provides any simple
explanation for why leaming should have been less in N=8 than in N=4. Perhaps the most plausible
interpretation of these results is that no real differences existed between N=4 and N=8, only between
these two conditions and N=12. Although N=8 appeared to show slightly less leaming in some
comparisons than N=4, none of these comparisons were statistically significant. Moreover, if leaming is
traced over the first eight trials of the N=12 group, and compared to leaming observed during the
corresponding trials of the N=8 group, more leaming seemed to occur in N=12. For example, the second
four instances in this block showed significantly lower default listings than the first four in N=12 (t(11) =
251, p <.05), but not in N=8 (1(11) = 0.90, p > .20). Thus, it may be that the poor leaming observed in
condition N=8 was to some degree a random effect.

Nevertheless, the present results raise the possibility of a "threshold™ effect for triggering new
categories, which in this particular experiment occurred between the eighth and the twelfth B-instances.
What would be the implications of such a threshold for the adequacy schema-triggering as a general
explanation of learning from both blocked and mixced sequences? Possibly, subjects might use schema-
triggering 10 speed their category leaming when conditions are favorable for such triggering to occur, but
also track feature corrclations to leam catcgorics more siowly when conditions for triggering are
unfavorable. This issue will be discussed in morc detail below.
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General Discussion

These three experiments showed powerful effects of the sequencing of training instances on
unsupervised leaming. In some cases, lcaming of a caiegory was improved the greater the number of
instances presented from that category. For example, in Experiment 1 lcaming of both categories
increased with number of instances for both Blocked and Mixed training sequences. In Experiment 2,
adding A-instances to the pretraining block (changing it from four As and four Bs to eight As) increased
the ievel of A-leamning in the subsequent test block. And in Experiment 3, adding B instances to the
pretraining block (increasing from four to twelve) improved B-default leaming in the test block
Sometimes, however, leaming was actually reduced by increasing the number of instances presented from
a given category. This seemingly paraioxical effect occurred in Experiment 2 when adding B-instances
to the pretraining block (changing it from a purc block of A-instances t0 a mixed block containing
instances of both categories) decreased later B-leaming in the test block.

A similar interaction with sequencing was observed for transfer effects. For example, Category A
leaming in Experiment 1 was greatly reduced by interspersing the A training instances with members of
Category B (Blocked vs Mixed conditions), an example of negative transfer. In Experiment 2, both
negative and positive transfer between the catcgories was observed. Adding A-instances w0 change a
mixed pretraining block to a pure £ block improved subsequent leaming of category B, a demonstration
of positive transfer. By contrast, adding B-instances 10 change a pure A block to a mixed block of As and
Bs had a stroag negative effect on the leaming scores of subsequent A instances. Experiment 3 also
provided examples of both negative and positive transfer. Adding B-instances 10 the pretraining block
improved later A leaming, a positive effect.  But if we compare the pattemn of results in Experiment 3 to
those in Experiment 2, it appears that adding a single A-instance prior 10 even a fairly long series of B-
instances exerted significant interference on later leaming of both Bs and As. Thus, leaming in the N=12
condition of Experiment 3 appeared peorer that that of the Contrast condition in Experiment 2, even
though a longer block of same-category instances was presensed in the former experiment. The
difference was the single instance of the contrast category locaied at the beginning of the series in
Experiment 3.

We argue that simple feature-associator models ar» unable 10 accommodate these scemingly
contradictory effects, and a2 model with an explicit schema-triggering process is required. Simple
associative models require simple effects; for example, increasing the number of instances from a given
category should increase (or at least not decrease) lcaming of that category. and transfer effects between
categories should be consistently positive or negative. Within the schema model, by contrast, our
sequencing manipulations and their sometimes contradictory cffects are readily interpreted as simple
manipulations of triggering probability. Thus, the triggering model can accommodate the parem of
results obtained in these experiments whereas ihe simple associative model is strongly discredited by
these results.

One question that has reccived little discussion so far is how schema-triggering explains the
lcaming that did occur from mixed training scquences in these experiments. If long series of instances
from the same category are requircd for schema-triggering 10 occur. then how does the theory explain
lcaming in unblocked conditions where such sequences do not occur? One possibility is that categories
are distinguished by schema-triggering when conditions are favorabie for such triggering to occur, but
that simple leaming of inter-feature associatiens is the mechanism for leaming when condidons are
unfavorable for such triggering. According to this hypothcsis. subjects do accumulate information about
inter-feature correlations as they leam successive training instances. so that correlational patterns will
eventually be leamed regardiess of scquence. Howcver, this prooess would be siow relative w0 the much
faster leaming that occurs when subjects can explicitly separate the categories from the start and leam the
defaults of cach without interference from the other. This solution 1o the problem of leaming from mixed
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sequences argues that there may be "strong” and "weak" forces in unsupervised leaming, with the strong
force (triggering of discrete schemas) producing more rapid learing and requiring less information be
maintained in memory (it only requires tracking frequencies of individual values, rather than co-
occurrence frequencies for all possible pairs of valuges), but also requiring fairly specific conditions for its
occurrence.

A second hypothesis assumes that triggering of novel schemas can occur probabilistically in a
mixed training sequence, but that the probability of this occurring at any particular point in the sequence
is relatively low. According to this hypothesis, all category discrimination occurs as a discrete, all-or-
none event (triggering), followed by a process of adjusting continuous strength values within each
category. When a blocked sequence is employed, most subjects can be induced to trigger new schemas at
the same point in training, e.g., at the first B-instance presented after a pure block of A-instances. When a
mixed sequence is employed, triggering may occur at different points in training for different subjects.
Some subjects might discriminate between categories virtually from the start of training, others might do
so later in the sequence, and still others might fail to do so by the end of a given training session. The
data from such a process, averaged over a group of subjects, would show much the same pattern of
apparently gradual learning predicted by a single-process associative theory.

If this position is to be plausible, it must be shown that tie conditions for probabilistic schema-
triggering could occur within a mixed sequence. Imagine for a moment that the triggering criterion (the
amount of mismatch between an instance and its source category required for triggering a new category)
varies from subject to subject and from trial to trial within a given task, Given such variability, triggering
might sometimes occur due to only mild discrepancies between an instance and its source category, i.c.,
when the instance violates relatively weak "defaults”. Moreover, the strength of specific values in the
aggregate schema would vary from trial to trial. For example, the strength of the A-default values could
be temporarily increased in a mixed sequence whenever two or three A-instances appear in a row. If a
B-instance were then encountered, its features might appear sufficiently surprising at that point to cause
some subjects to create a new schema to describe that instance. In addition, the number of A-instances
required for this would depend on how much impact each instance had on the norms of the schema, which
could vary with subjects’ momentary attentiveness and overall memorization ability.

The point is that schema-triggering might occur after initial aggregation if random circumstances
were momentarily favorable, i.e., the values of one category were dominant in the aggregated norms
because several instances of that category had occurred in sequence previously, a particular subject
happened form strong encodings of these instances, and that subject’s triggering criterion is momentarily
lenient. If an instance of the contrast category occurs in such circumstances, it could result in the
formation of a new schema. This is in contrast to the blocked conditions used above, in which
circumstances highly favorable to triggering occurred at a single point in the training sequence, so that
most subjects were induced create a ncw category at this specific point.

The results of these experiments provide strong evidence for the existence of a schema-triggering
process, since this process is needed to explain lcaming in the blocked conditions. However, the present
results do not strengly discriminate between these two explanations of unsupervised leaming in mixed
scquences. While parsimony favors the simpler explanation of no explicit recording of feature
correlations (i.e., that all discrimination belween categories is due to an all-or-none triggering event),
these results do not rule out the possibility that lcaming inter-feature associations may also play a role in
unsupervised leamning.
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Generality of the Results

One objection to generalizing from these results to unsupervised leaming in the real world is that
the stimulus variation in these experiments was rather artificial and stereotyped compared to the rich,
complex variation typical of real-world domains. Of course, this point applies to most laboratory
research on category leaming, which commonly employs artificial stimulus sets generated from
combinations of only three or four binary attributes. The purpose of the present experiments was to
evaluate the attribute listing task as an index of unsupervised learning in a relativel, simple situation, and
to use it to make elementary discriminations among models of learning in that situation. Demonstrating
that a process such as schema triggering occurs under "artificial" conditions constitutes a prefectly valid
proof of the existence of that process; it merely leaves the issue of boundary conditions unexplored.

Nevertheless, the basic attribute listing method could be used with many types of stimuli,
including stimuli more complex and naturalistic than those used in the present experiments. For example,
the present stimuli could be modified by adding several levels of continuous variation such as size or
shade to each discrete value of each attribute. Thus, a set of insect stimuli could have two different styles
of wings and three different size levels within each wing style. Such modifications would increase the
background variability of the stimuli and could be used to make them appear more naturalistic. However,
it should not change the basic pattern of results in the attribute listing task, i.e., a shift away from listing
predictable aspects of the stimuli and an increasing focus on unpredictable information as the categories
are leamed.

Another sense in which the present stimuli appeared artificial was in the fact that the default
values of each category occurred 100 percent reliability, i.e., attributes were perfectly correlated. This
raises the question of whether anything about the current approach implies that categories must be defined
by a set of necessary and sufficient features, an assumption that has been strongly criticized in recent
years (e.g., Wittgenstein, 1953; Rosch, 1975, 1977; Smith and Medin, 1981). The schema-triggering
model presented here makes no such assumption, although it does (reasonably) assume that people try to
avoid violations of default expectations by forming subcategories to capture new patterns whenever they
can do so. The model also assumes that since default violations are unexpected, subjects will tend to
consider them highly informative and assign them a high attentional priority. This reflects the principle
that violations of one’s general beliefs are likely to be important both for distinguishing the particular
situation in which the violation occurred, and possibly for making modifications in the general norms
themselves.

Admittedly, the present experiments do not attempt to demonstrate unsupervised leaming of
categories with probabilistic features, which may limit the generality of the present results. However, the
attribute listing procedure should be generalizable to learning problems in which category defaults are
unreliable, assuming that people can leamn such categorics without feedback. It is clear from people’s
performance in the »resent tasks that many of the "fuzzy" categories used in standard supervised leaming
experiments, in which diagnostic features are highly unrcliable would probably be unleamable for most
subjects without explicit feedback. This simply reflects the greater difficulty of the unsupervised leaming
task, in which subjects must generate their own categories and intemal feedback. Interestingly, the
schema-triggering model predicts that the effects of default reliability should depend on how the
instances are sequenced. If subjects are shown “prototypical” training instances (in which all the
expected default values are present) until they have lcamed to distinguish the categories (i.e., instances
are assimilated to separate schemas), then the leaming should be fairly resistant to later, non-prototypical
instances in which individual defaults are violatcd. However, such instances could have a strong effect
on learning if presented early in training, by interfering with initial discrimination between the categories.
The investigation of such factors should provide intcresting topics for future research, and allow many
productive comparisons to be made between supervised and unsupervised leaming,
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Footnotes
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1. Five subjects were excluded from the data analysis, two from the Practice condition and three
from the Contrast condition. These subjects were excluded because they produced no usable data from
more than one third of the thirty two trials in the experiment. A subject was considered to have produced
no usable data from a given trial if they listed no features on that trial (i.e., they left that page in the
booklet blank), if the only information provided was a comparison to a previous instance (e.g., "same as
the first one"), or if none of the features listed were representable within our eight attribute coding
scheme.




Table 1

Design and Counterbalancing, Experiment 1

Attribute Category (1) Control(l) Category(2) Contrcl(2)
1 (Wings) 1 2 1 2 1 2 1 2
2 (Body) 1 2 1 2 1 2 1 2
3 (Markings) 1 2 1-2 1-2 1-2 3-4 1-2 3-4
4 (Tails) 1 2 1-2 1-2 1-2 3-4 1-2 3-4
5 (Eyes) 1 2 1-2 1-2 1-2 3~-4 1-2 3-4
6 (Legs) 1-2 3-4 1-2 3-4 1 2 1-2 1-2
7 (Jaws) 1-2 3-4 i-2 3-4 1 2 1-2 1-2
8 (Antennae) 1-2 3-4 1-2 3-4 1 2 1-2 1-2




Table 2

Design and Counterbalancing, Experiments 2 & 3
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Figure Captions

Figure 1. Sampie stimuli from Experiment 1. Instances of one category are on the right and instances of
the other are on the left. The correlated attributes in this stimulus set are wings, abdomen shape, abdo-
men shading, mandibles, and antennae; the variable attributes are legs, tails, and eyes.

Figure 2. Attribute listing data plotted plotted over instances for the Control condition of Experiment 1.
The two "pseudo-categories” are separated in these plots, but were presented in random order in the actual
task.

Figure 3. Attribute listing data for the Blocked condition of Experiment 1.

Figure 4. Attribute listing data for the Mixed condition of Experiment 1. The categories are separated in
these plots, but were presented in random order to the subjects.

Figure 5. Auribute listing data for the Practice condition of Experiment 2. The data for the two
categories is presented separately and instances presented during the pretraining block are labeled "Pre-
A" and "Pre-B".

Figure 6. Attribute listing data for the Contrast condition of Experiment 2.

Figure 7. Attribute listings for the three conditions of Experiment 3. Only the difference scores (listing
of variables minus that of defaults) is shown here.
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