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Ab. tract

This research deals with unsupervised learning of categories and how such learning is affected by
the sequencing of training instances. Two general models of unsupervised learning arc described, one
based on learning explicit associations between correlated features (associative model), and the other
based on creating distinct schemas to represent each category without explicit learning of feature
correlations (schema-triggering model). An "attribute listing" paradigm was used as an index of
unsupervised learning in three experiments, each of which manipulated the order in which instances from
two different catcgories were presented and evaluated the effects of this manipulation in terms of the two
competing models of unsupervised learning. Strong evidence was found for the use of a discrete
schema-triggering process to learn the categories in these experiments. Moreover, these experiments
demonstrate that the attribute listing paradigm can be used to trace learning functions for unsupervised
learning over a series of instances, enabling the future investigation of many independent variables using
this task.
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I. Research Objectives and Summary of Progress

This project's primary goal is to investigate the learning of categories in unsupervised tasks, i.e.,
when no external tutor is present to provide pre-delincd categories and success-related feedback for the
learner. A second emphasis is on how category knowledge, once acquired, alters the subsequent
interpretation, encoding, and retrieval of individual instances of categories.

During this first year of funding, we have focused our research on two types of task situations.
The first task, called attribute listing, involved presenting adult human subjects with a series of instances
(in our experiments to date, pictures of fictitious insects) and asking them to write down the
distinguishing properties of each instance. The insects varied in type of body, legs, eyes, antennae,
wings, etc. As subjects learned which features were common to all category members (defaults), they
gradually stopped listing these features and shifted to listing mainly features that varied among members
within the category. This listing-pattem occurred because the defaults provided no information relevant
to distinguishing among different instances, whereas variable features did provide such discriminative
information. The tendency to list variable attributes while omitting defaults provides a measure of
category learning which can be traced over trials, i.e., that yield learning functions for the experimental
categories.

The second type of task we've investigated consists of presenting subjects with a series of verbal
stimuli (e.g., lists of features supposedly possessed by different species of trees) and asking them to study
and try to memorize all the features in each list. For example, a particular species of tree might be
described as possessing mossy green bark, tall columnar form, deep spreading roots, smooth leaf margins,
and so on. Following the study of each list, a series of multiple-choice recognition tests was presented to
evaluate subjects' memory for the preceding list. Subjects were allowed to examine only one feature at a
time during the study period. A computer recorded how long they spent looking at each feature. As
subjects learn which features are defaults (have predictable values) for each category, they spend less
time studying these defaults and spend more time studying variable features. This pattern of study times
arises because the defaults are predictable to subjects who have learned the experimental categories; these
defaults ca be "remembered" (or guessed) easily on the recognition tests without explicit memorization in
each individual instance. The decline in study times for default features and corresponding increase for
variable features provides an index of unsupervised learning over instances that closely corresponds to
thatprovided by the attribute listing procedure described above.

We have conducted a number of attribute listing experiments over the last year, three of which
are described in the detailed report attached. These studies were designed to distinguish between two
general theories of unsul-vised learning, which we refer to as the associative vs. schema-triggering
models. The associative model assumes that people learn categories by explicitly recording associations
between co-occurring features, gradually building up a table of correlations that captures the categorical
structure of a given stimulus domain. The schema-triggering model assumes that learners create separate
schemas to represent different categories of instances, and thereby capture co-occurrences among features
without needing to learn explicit correlational rules or associations. These two models differ in several
ways, particulaily in their predictions of how tlhe particular sequence in which instances are presented
affects the difficulty of learning to Ifistinguish the categories. The detailed report describes several
sequencing manipulations designed to discriminate between the two theories of unsupervised learning.
Overall, these experiments provided strong support for the existence of a schema-triggering process in
unsupervised learning.
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With regard to the study time task, our main objective in this first year was to develop and refine
the task itself, asking whether it could provide a convergent measure with the attribute listing task for
testing theories of unsupervised learning. To this end, we have tried out (in pilot studies) several
variations of this task in an attempt to discover which particular experimental arrangements produced the
best measurement of unsupervised learning. One of these experiments was analogous to the first attribute
listing experiment described in the report below. The results of this study-time experiment replicated
those of the earlier attribute listing experiment in essential details. This cutcome provided a
demonstration of the basic utility of the study time task; it also provided additional evidence for the
existence and generality of the schema-triggering process.

In addition to the study time data, the recognition-memory data from this task provide another
converging measure of unsupervised learning. Our results show that memory for both the default and
variable features of instances improved with category learning, as predicted by the learning model
described in our original grant proposal. In fact, memory performance can be traced over trials in this
task to reveal category learning curves similar to those from the study times and the attribute listing task.
What is particularly interesting about this task is that it makes it possible to observe the simultaneous
effects of category learning on instance encoding and retrieval processes. We plan to use this
experimental set-up to run several of the planned memory experiments described in the grant proposal
during our second year of funding.

1!. Planned Publications

1. Clapper, J.P. & Bower, G.H. (1991) Learning and applying category knowledge in
unsupervised domains. In G.H. Bower (Ed.), The psychology of learning and motivation, voL
27, Academic Press: New York.

2. Clapper, J.P. & Bower, G.H. "Schema-triggering in unsupervised learning." - This paper
reports the results of several attribute listing experiments. To be submitted.

3. Clapper. J.P. & Bower, G.H. "The impact of unsupervised category learning on encoding and
remembering instances." -- This paper will describe several study time experiments. To be
submitted.

Il. Participating Personnel

1. Gordon H. Bower, PI
2. John P. Clapper, Research Associate
3. Terry Nellis, undergraduate Research Assistant

IV. Detailed Report of Attribute Listing Studies

A detailed description of three attribute listing experiments follows.



5

Schema-Triggering in Unsupervised Learning

The study of concepts and category learning has long been a focus of research in cognitive
psychology. Most of this research has studied supervised category learning, in which a tutor provides the
subjects with category labels and fccdback relevant to the success criterion of the learning task (e.g.,
Bruner, Goodnow, and Austin, 1956; see Millward, 1971, for a review). By contrast, unsupervised
learning has received much less attention by experimental psychologists. In unsupervised learning,
subjects must invent and use categories without predelincd category labels or feedback from an external
tutor. Many categories that people learn in real life are acquired in observational, untutored conditions,
and thus are examples of unsupervised learning. Much of our knowledge about the properties and
behavior of common physical objects, social interactions, linguistic classes and rul-s, and everyday tasks
and procedures may be learned in this manner (Billman & Heit, 1988). Any learning of pioneers about a
novel environment is unsupervised, since they must invent their ovn categories for describing that
environment, and generate their own criteria for classifying stimuli into these categories.

Several conventional assumptions about stimulus and category representation am presupposed
throughout this article. Stimuli will be described in terms of features, which are specific values of
atributes, e.g., size, color, or shape. For example, blue and brown would be possible values of the
attribute of eye color in humans. Here, we are concerned with how people learn to distinguish categories
based on correlated (consistently co-occurring) attribute values. To illustrate, a collection of fruit flies
bred in a geneticist's laboratory could be described in terms of several attributes such as size, eye color.
wing shape, and so on. If it was then observed that individuals with long wings were also large in size.
with red eyes and hairy legs, whereas those with short wings were small with white eyes and hairless legs,
these patterns of feature co-occurrences would form an inductive basis for recognizing two distinct
categories of fruit flies within that oopulation. Such a characterization of categories in terms of correlated
features is consistent with the treatment of Rosch (1975, 1977) and does not imply that the interfeature
correlations must be perfect (i.e., that categories be defined by necessary and sufficient features). Since a
category would have positive utility so long as some of its features could be predicted with greater-than-
chance reliability, the present characterization admits "fuzzy" categories with probabilistic features.

Theories of Unsupervised Learning

Within the framework of these assumptions, the main theoretical objective is to describe how
people learn such correlational patterns in real stimulus domains. One theory, which we refer to as the
one-process or associative theory of unsupervised learning, simply assumes that people record
associations between all (or some) of the presented features on each learning trial. In this theory, memory
can be imagined as a matix of inter-feature correlations, each of which may be strengthened by
experience and weakened by decay and/or interierence processes. If some features are consistently
correlated in their appearance over many lieaming trials (instances), the associations among these features
will increase in strength relative to those among uncorrelated values. After sufficient training, these
correlations would be strongly encoded in memory. and the pcrs-n could be said to have acquired the
category they imply. For example, at this point the person could predict the values of certain attributes
given the values of some other attributes, i.e, they could lill in the category's default values.

There are two broad types of feature-association theories. The first class of theories assunes that
associations between all presented features are strengthened simultaneously on each trial (e.g., J.A.
Anderson, 1977; Rumelhart & Zipser, 1986). We can refer to these models as "matrix; autoassociators",
since memory is viewed as a matrix of inter-feature associations ,hat are continually updated by new
experiences. The second class of theories here are the rule-sampling or hypothesis-testing theories, in
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which correlational hypotheses are tested sequentially (usually one per trial) against the observed features
in each instance (e.g., Billman & Heit, 1988). These rules are strengthened by confirmation and may also
be weakened by disconfirmation on a given trial. The main difference between these theories and the
matrix models is in whether pairwise associations are strengthened simultaneously or sequentially. For
the most part, these differences are not relevant to the research described below, and so they will not be
discussed further.

A second framework, which we will refer to as the nvo-process or schema-triggering hypothesis,
does not require that inter-feature associations be explicitly recorded in memory. Rather, memory needs
only record an index of the strength or frequency of each individual attribute value. Adjusting strengths
of individual features rather than of pairs of features greatly reduces the amount of information that the
learner must keep track of in memory. Dissimilar instances are assimilated to different sets of norms
(schemas) in long-term memory (see, e.g., Schank & Abelson, 1977; Rumelhart & Ortony, 1977;
Graesser, Woll, Kowalski, & Smith, 1980. Schank, 1982). Thus, inter-feature associations are captured
indirectly, by assimilating instances with different sets of correlated values to different schemas in
memory, rather than by strengthening associations between feature pairs. By contrast, in the associative
models inter-featt re associations are explicitly represented in memory whereas categories are present
only implicitly.

The information-processing steps in one model of this type (see also Clapper & Bower, 1991) are
described below. The learners in this model are assumed to be engaged in ungui,,d exploratien of a
domain of objects, -..- .aming is unsupervised and learners are simply attending to the features of
individual objects without explicitly searching for categories among them. The model p,-ovides an
example of how schema-triggering plus the strengthing of presented features can describe category
learning in unsupervised learning tasks.

1. Categorize the presented stimulus This model assumes that a presented stimulus is
automatically classified into the best-fitting category currently available from long-term memory. The
category (schema) provides a set of attributes for generating an internal description of the stimulus, plus
normative expectations about likely values for each attribute.

2. Evaluate the stimulus features. The features of any stimulus will vary in how well they match
the norms of the reference category. The degree of match between an observed attribute value and the
category norms for that attribute determine the expectedness or noimality of that value (Kahneman &
Miller, 1986; Clapper & Bower, 1991). In terms of describing the current instance with respect to its
reference category, i.e., distinguishing it from other instances of the same category, the informativeness
of a feature is inversely proportional to its expectedness. Since highly expected features are present in
many instances of a category, they provide little basis for discriminating among particular instances. By
contrast, highly unusual or surprising features are present in relatively few instances of the category, and
thus have high utility for distinguishing an instance possessing them from other category members. As
successive instances of a novel category are presented, people should learn to discriminate among
features on the basis of their discriminative informativeness, ignoring consistently repeated (default)
values and focusing on surprising or unpredictable information about the stimulus.

3. Encode the ittance. The relative inlbrmativeness of the different features of an instance
determine their attentional allocation or priority of processing. Those features that are most surprising or
unusual will receive the lion's share of the subject's attention, while defaulis are routinely ignored. The
episodic memory representation that results can be thought of as a set or vector of attribute values, each
with a specific strength of association to the instance. A feature's strength in this representation would be
a direct function of how much attention it received during encoding, which depends in turn on its
informativeness with respect to category norms.
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4. Modify category norms Leamers arc assumed to update their category norms after each
presented instance. Where these modificaion are made depends on the degree of fit between the instance
and the reference category used to encode it.

4a. Assimilation to an existing category. If the instance does not violate category defaults and
cause the subject to invent a new category to accommodate it. then it is assimilated into the previously-
activated reference category. The schema for this category is modified by increasing the strength of each
presented value in proportion to how much attention it received during encoding, i.e., as a function of its
informativeness. Since familiar defaults receive little attention at encoding, their strength in the
underlying norms changes little from trial to trial. The strength of more unusual or informative values, by
contrast, may be increased greatly due to a single presentation.

4b. Invent a new category. If an instance mismatches the best-fitting reference category in excess
of some internal criterion, a new category is "triggered" (i.e.. a separate schema is created to represent
that category) and the instance is assimilated to this new category. Subsequent instances of this type will
then be assimilated to the new category without affecting the norms of the previous category. While the
triggering criterion cannot be precisely specilied at present, we adopt a hueristic assumption that an
instance which violates multiple default values of its reference category will be likely to result in the
invention of a new category to handle these discrepancies. Thus, the degree of mismatch or the "surprise
value' of a stimulus with respect to prior norms is used as a heuristic strategy for deciding when to invent
new categories. This strategy for creating new categories is similar to the "failure-based generalization"
of Schank (1982), and the "surprise heuristic" of Holyoak, Nisbet & Thagard (1986).

The schema for the new category is generated by modifying that of the source category to which
the instance was first assigned. The model assumes that learners transfer all norms of the source category
not specifically violated by the triggering instance to the new category created around that instance. New
attribute norms are created only for those attributes whose unusual values triggered the new category.
This transfer heuristic ensures that learners need to make the fewest possible changes to their existing
norms to handle deviant observations.

Both the schema theory and the explicit learning of inter-feature correlations provide learning
methods by which learners might capture the correlational structure of their environment. However, the
models diffir greatly in their sensitivity to the particular sequence in which training instances are
presented. In particular, schema-triggering should be vulnerable to aggregation errors early in training,
where "aggregation" refers to grouping stimuli that exemplify different correlational patterns into a
single category. Such errors could arise because (a) new categories are triggered by violations of strong
default expectations, and (b) experience is required for such strong expectations to be formed, so that
there may be no strong defaults associated with a category early in training (except those it has inherited
from its source category, see above). To illstrate, imagine two categories, A and B, that have contrasting
default values along several attributes. If instances of the two categories were presented in a mixed or
randomly interspersed sequence from the beginning of training, the triggering hypothesis implies that
subjects might often aggregate the two types of instances into a single overgeneralized category. Such
aggregation would be an error in the sense that a single category would lose information about feature
correlations that would be captured by two separate categories.

By contrast, if several instances of one category were presented before to the first instance of the
other, subjects would have time to learn strong defaults for the first category prior to encountering the
second. When an instance of the second category was presented, it would then violate default
expectations of the first and cause a new schema to be created. Thus, category discrimination should be
improved by separating the categories in the training sequence. We show that the strong predicted effect
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of training sequence on initial discrimination between categories is incompatible with a simple
associative model, which expects discrimination to be much less affected by sequencing.

An Index of Unsupervised Learning

We now describe a procedure that can provide information about the course of category
acquisition in unsupervised learning tasks. This goal of this method is to trace learning over trials for the
default values of each category in a given stimulus set. Specific independent variables can then be
evaluated in terms of their effects on these learning functions.

The stimuli in these tasks consist of several attributes, each of which can take on two or more
alternative values. Categories in the stimulus sets are delined in terms of correlated attributes values. For
example, representing attributes as serial locations in a numerical string, categories could be denoted as
Category A = 1111 lxxx and Category B = 22222xxx, where the numbers (1 or 2) represent default values
of particular attributes and the x's indicate that a particular attribute varies independently of the others.
The basic task consists of showing subjects a series of such stimuli and asking them to list those feanmres
of each stimulus that distinguish it from the other stimuli in the set, while omitting non-distinguishing
featurs from their lists.

Note that if all attributes of the stimuli are uncorrelated, subjects should list the current value of
eazt attribute to distinguish an instance from the other stimuli in the set. By contrast, if the stimulus set
is partitioned into categories as above, then for each instance subjects need only list one of its correlated
attributes values (or otherwise denote its category membership, to distinguish it from stimuli in the other
category), plus the values of the variable (uncorrelated) attributes. There would be no need to list more
than one correlated value, since doing so would provide no extra discriminative information either within
or between categories. This bias in favor of listing uncorrelated (variable) features while omitting
correlated features (category defaults) should evolve gradually over several training trials as successive
instances ar encountered and subjects learn their consistent properties. Thus, this bias can be used as an
index of category learning, i.e., learning should be a monotonic function of the percentage of variables
listed minus the percentage of defaults listed.

Importantly, the choice of this learning index is neutral with respect to the associative vs.
schema-triggering models. Within the associative model, the difference between default and variable
listing results from forming stronger associations in memory between correlated default values than
between uncorrelated variables. Within the schcma-triggering framework, the difference between
defaults and variables lies in their relative strength within the category norms, with default values
regarded as less informative than variables due to their greater expectedness.

Expcrintnr I

The aim of this experiment was to evaluate the attribute listing task as an index of unsupervised
learning, as well as its sensitivity to sequence effects. Listing performance over trials was compared in
three conditions. In the Blocked condition, the stimuli were partitioned into two categories based on
patterns of correlated attribute values. The training sequence was blocked by categories, i.e., a series of
instances from one category was presented, followed by a series of instances from the other category. In
the Mixed condition, the same stimuli were used as in the Blocked condition, but instances of both
categories were randomly interspersed in the training sequence rather than being grouped into separate
blocks. In the Control condition, all the attributes of the stimuli varied independently, so that none of the
attributes were correlated and the stimulus set was not partitioned into distinct categories.
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The first two conditions provided a test of the two models of unsupervised learning described
above. A schema-triggering process implies that early aggregation is likely to occur when contrasting
categories are presented in a mixed sequence, and so much poorer learning was predicted to occur in the
Mixed condition thin in the Blocked condition. An associative model could accommodate interference
between categories in the Mixed condition by assuming that associative interference results from learning
correlations among different values of the same set of attributes. According to this hypothesis, the
category presented first in the Blocked sequence should be learned without imerference, and thus should
be acquired faster than those in the Mixed condition. However, this hypothesis predicts that the second
category in the Blocked condition should be learned more slowly than the first, due to proactive
interference or negative transfer from the first category on learning and remembering associations
between the default values of the second. By contrast, a schema-triggering process predicts that the
second category in a Blocked sequence should be learned as rapidly as the first, and no negative transfer
from the first category should be observed.

The third condition was included in this experiment as a control group by which to evaluate
learning in the other two conditions. This condition was identical to the others except that the stimuli
lacked correlated attributes. Thus, any differences in performance between this condition and the
correlated-attribute conditions must have been due to the presence of these correlations rather than to
other, extraneous, factors.

Methods

Subjects

The subjects were 30 Stanford University undergraduates participating in partial fulfillment of an
Introductory Psychology course requirement.

Procedure

Subjects were tested in groups of eight to ten for a single session of 40 to 50 minutes. The
training instances were realistic line drawings of fictitious insects, presented in a 42-page, 8 by 11.5 inch
booklet. The first two pages of this booklet contained full instructions and an agreement that subjects
signed to indicate their informed consent to participate. A single training instance (insect picture)
appeared on each subsequent page. together with brief instructions for the experimental task.

Subjects were instructed to list the "distinctive* properties of each individual insect, where
distinctive properties were those that would be useful for distinguishing the current instance from others
of the same general type. Subjects were told to imagine that they were writing their lists for a later
multiple-choice recognition test in which they would have to match up each list with the correct insect
from among a large number of distractor items (i.e., other bugs from the same test booklet). Subjects
were instructed to list only those properties that would be useful for identifying an insect on such a !est,
and to omit non-distinguishing properties even if they were highly prominent or noticeable. They were
further told to look only at the page of the booklet that they were currently working on. and not to look
backward or forward at other pages.
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Subjects were allowed to complete the experimental task at their own pace. Once they had
finished, they were given a debriefing page that explaincd the procedures and goals of the experiment, and
were allowed to leave.

Materials

The stimuli were line drawings of fictitious insects, all of which shared a commron "base"
structure (e.g., head, thorax, abdomen) plus eight dimensions of variation (attributes). such as wing shape,
abdominal markings, eye color, etc. (see Figure 1).

Insert Figure I about here

Each attribute had either two or four discrete values (e.g.. wings of different shapes, differently colored
eyes, and so on), depending on the experimental condition to which it was assigned.

The stimuli shown to a given subject were constructed according to one of two differet plans,
depending the condition to which that subject was assigned (see Table 1).

Insert Table I about here

In two of the three experimental groups, the stimulus set was paritioned into two distinct categones.
defined by contrasting sets of correlated attribute values. In these groups five of the eight atnbtes were
binary (two-valued) and their values were perfectly correlated across the instances, such that each
instance contained one of two possible sets of correlated values. An instance's category memberhap was
defined by which of these two clusters of correlated values it contained. Then valuhs will be reftrred to
as the defaut values of each category.

The remaining three attributes in the Category conditions were four-valued and variable within
each category. Two of the four values occurred with equal probability in instances of Category-A. while
the other two occurred with equal probability in ismtances of Category-B. These attributes were
unorrelated within each category, i.e., they varied independently across instances of that category.
Within these constraints, eight instances were generated from each category. fora total of sixteen overall-

The stimuli in the remaining condition were cquivale,: to those in the two correlated conditions
in the number of values assigned to each atiribue (two or four), but differed in lacking correlated
attributes. This will be referred to simply as the Control c. -ition. Two attributes were correlated in all
groups; these were the "wing shape" and "body shape' attnbutes. whch we judged to be the most salient
attributes of the insects. These defaults, which were constant across all three groups, will be referred to as
"base defaults". The four-valued variables were coordiziated with the base defaults in the same way in the
uncorrelated group as in the correlated groups (see Tab. 1). The stimuli in tl'e urcorrelated group can be
divided into two "categories" on the basis of the base defaults !nd ;he pattern of dependent variation of
the four-valued variables. However. several values that am correlated defauits in the other conditions are
uncorrelated variables in this condition.
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The Control condition was designed to show that any greater listing of variables over defaults in
the correlated conditions could not simply be explained as an artifact due to variables possessing more
possible values than defaults (four versus two). It this artifactual explanation were correct. then the same
degree off bias in reporting variables over defaults should be observed in the Control group as in the
correlated conditions. But if the preference for listing variables over defaults is greater in the correlated
groups than among the controls, this difference must b due to subjects' explicit or implicit correlational
leaming

Design

There were three between-subjects conditions in this experiment, two of which had corelaed
values and one of which did not. as explained above. The two correlated conditions employed the same
stimuli and differed only in the order in which training instaces; from the two categories were presented.

In the Blocked condition, instances of the A-category were presented in random order for the first
sixteen tials, followed by sixteen B-instance (each instance of the two categories was presersed twice).
After this "training phase, a final test block of eight trials was presented in which four -ns-u es from
each category were presented together in a mixed sequence. The order of instances in this test block was
random, with the restriction that no more than two instances from the same category could occur in a tow.

In fhe Mixed condition, the same instances were presented as in the Blocked conditim but in a
different order. During the training phase, the 32 A- and B-instances were presersed in an intmixed
se ~ Pher than blocked as in the previous condition. Istance from the two catgoik were
pmsented in random onr. with the restriction that no more than thm i from the same catp
could occur in a row. A final mixed test block of eight instances from the two categries was then
pesened, the same as that used in the Blocked condition. (-e., the same spcic inse Pictures we
premed in the sane order in both conditions).

In the Control condition, instances were presented in random order for the first 32 trial, exc*p
that no more than three instances with the same base default values were allowed to occur in a rw diring
this phase. The final eight test trials were identical to those of the Category conditions, ie., five atutes
were correlated during this block.

Coawerbalarcing

To construct stimuli from the specifications shown in Table 1. particular stimulus attributes were
first assigned to abstract roles in the design. This assignment was held constant across all groups. With
the exception of base defaults, each attribute had four values in half the groups and two values in the
other half. Two different stimulus sets were constructed for each of the three between-subjects coniions
(Blocked. Mixed, and Control). i.e., six booklets %vre constructed and presented to different subjectL
Attributes that were four-valued variables in one group were two-valued defaults in the other group from
the same condition. This ensured that materials effects (e.g.. differences in the baseline salience or
prominence of different attributes) would be balanced over the experiment as a whole.
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Results and Discussion

We begin by discussing the results from the Control condition, since this was intended as a
reference group for evaluaing category learning obsei-ed in the other to conditions. Data from this
codition is displayed in Figure 2.

Insert Fieure 2 about here

For simplicity, listings over trials for the two psuedo-categories (defined by the base defailts) are
separed in this figur although they occurred togcther in traiing-

"ieme are two main results of interest in the Control condition. Fim subjects consindy
pw~ocd to list four-valued attributes over two-valued manbuies overall, four-valued attributes w
listed 19.6% mote often than two-valued attributes (t(9) = 3.93. p < .01). TIds indicaes that an ar $
di:tminive, nati veam w-s perceived sgetr iiwben its variability was incased.

Second. there was a significant tendency for subject t incam s their listing of boh two- id
fowr-vauled an-btes omr the first few trials, after which listing of both types of -- I remained
faidy sale. wMid subjects lecorats revealed significay casing t m or eig t
intanes of both categoui for both two- and four-valued attibutes (for two-valued attrAs t9) =
4.47, p < .01 fer Categor A and t(9) = 4.34. p < -01 for Cateoy B; for four-valued arndules, 1(9) =
2.93, p < .02 for Cingory A and t(9) = 2.09. p < 10 for Category B). The tendency for listing to mrae
during ft early ails did riot ime= the number of values an attribue hak i.e. l in r a ao
ft saw amout for both two- and four-valued atribute.

1U most likey explanation for this incre am that subjcts made ma mcmtlet sumpie of
the a m atles on the first trial. Tbe initial sample can be thought o q W the suk "cts!
hypotesis *out which atntes; might tun out to be informative (ie.. to iffer a r insm s) o
fu trials. This hypothesis was then modified over subiequet isua cs, with A, added or
dekecd from subjects' lists baed on their observed variability. Subjects in this xpenramen lid an
average of sfiglv over half of the eight attributes on the fast trial. S-ni thee ime insufficient to
distinguishe later istances furt er a-tribt we e added to the list as fty we observed to vary

s instancm

In the correlated condition the four-valued variable atributes displayed a simi-ar pattern of
i over trials as did the coresponding four-valued auibutes in the Control condito (compare
Figures 2c. 3c. and 4c). The tend was sigriticar. ocr thc first eight imtancxs for both categoies in the
Blocked condition (t(9) = 4.7 3 .p < .01 for Cateqr-A and t(9) = 2-97. p < .02 for Caegocy-B).

Insrt Figure 3 about here

The same was true in the ixcd condition: corarst analyses showed sigrifu linear t over the fim
eight instanes of both categries (t(9) = 4-79. p < .001 for Caegory-A. t(9) = 3.01. p < .02 for
Category-B).

Inse Figure 4 about her
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In addition, there were no significant differences in overall listings of variable attributes araong the three
conditions (t(18) = 0.76, p > .25 for Blocked vs. Control conditions, t(18) = 1.48, p > .10 for Blocked vs.
Mixed, and t(18) = .70 for Mixed vs. the Controls).

The defaults showed a very different pattern of results from the variables for the correlated
groups. In the Blocked condition, defaults were listed much less often than were the corresponding two-
valued attributes in the Control condition (compare Figures 2b and 3b). Averaged over trials, defaults in
the Blocked condition were listed with a probability of 17 percent, compared to 66 percent for two-valued
attributes in the Control condition (t(18) = 4.70, p < .001). Default listing in the Blocked condition also
showed a strong learning effect over trials. The proportion of defaults listed declined strongly over the
first five A-instances, from 60 percent on the first instance to 7 percent on the fifth; default listing for the
B-category decreased from 80 percent on the first B-trial to 17 percent on the sixth. These trends were
highly significant by a linear contrast analysis computed over the first six instances of each category (t(9)
= 12.78,p < .001 for the A-category, and t(9) = 4.14,p < .01 for the B-category).

Variable attributes were reported 73% more often than defaults in the Blocked condition (t(9) =
10.54, p < .001). The percent listed of variables minus that of defaults on a given trial can be used as a
summary index of learning on that trial. These difference scores averaged much higher in the Blocked
condition than in the the Control condition (t(18) = 6.44 p < .001). The difference scores also showed a
clear increasing trend over the first eight instances of each category block; the linear contrasts were
significant for both the A-category (t(9) = 9.01, p < .001) and the B-category (t(9) = 4.58,p <.01). These
results demonstrate that subjects learned to discriminate among attributes based on their predictability
during the training blocks. The larger difference between two- and four-valued attributes in this condition
compared to the Control group was due to the presence of correlational patterns in the stimuli of the
present condition. The pattern of decreasing default (and increasing variable) listings make it possible to
trace this learning as it increases over instances.

The pattern of responses during the test block was similar to that of the immediately preceding
trials. Compared to corresponding trials in the Control condition, listing of defaults during the test block
was significantly lower in the Blocked condhion (t(18) = 3.66, p < .01), that of variables about the same
(t(18) = 0.95, p > .25), and the differences between them (learning scores) greater (t(18) = 4.23, p < .01).
The fact that higher listing of variables than defaults continued during this block, which presented
instances of both categories in random order, indicates that the earlier biases in subjects' listings were not
a mere artifact of presenting instances of the same category together in thc training sequence. That is, the
increase in subjects' learning scores reflects the acquisition of stable categories rather than local
habituation to a series of repeated values.

Subjects' attribute listings also provide strong evidence for learning in the Mixed condition (see
Figure 4). Default values were listed 36 percent less often in this condition than the corresponding two-
valued attributes in the Control condition (t(18) = 3.54, p < .001). Since variable listing was about the
same in the two conditions, difference scores were also higher in this condition than for the controls (52
vs. 20 percent, t(18) = 3.54, p < .002). These results indicate that subjects in the Mixed condition
discriminated more between defaults and variables in their listings than could be explained by a mere
preference in favor of listing four-valued rather than two-valued attributes. Rather, the additional bias
indicates that subjects' listings were affected by the feature correlations in the Mixed condition.

A comparison of Figure 3b and Figure 4b suggests that learning occurred much more rapidly in
the Blocked condition than in the Mixed condition. In [act, no default learning appears to have occurred
in the Mixed condition until after the first five or six instances of each category. Prior to this, listings



14

remained at a fairly constant level, and neither default listings nor difference scores differed significantly
from the same trials in the Control condition. A linear contrast analysis showed no decrease in default
listing over the first six trials of either category (t(9) = 0.99, p > .25 for Category A and t(9) = 1.05, p >
.15 for Category B). Listing of defaults began to decrease in the trials following this, although the linear
trend for default listing did not reach conventional levels of statistical reliability over trials seven to
sixteen for either category (t(9) = 1.57 for Category A and t(9) = 1.58 for Category B; p > .10 for both
tests). The difference scores were apparently a more sensitive indicator of learning in this condition, and
showed significant increases over the first ten trials for both categories (t(9) = 6.52, p < .001 for Category
A and t(9) = 2.52, p < 05 for Category B).

Direct statistical comparisons between the Blocked and Mixed conditions support the conclusion
that learning occurred more rapidly in the Blocked condition. The mean proportion of default values
listed was greater in the Blocked condition by the third instance of Category-A and by the second
instance of Category-B. In addition, learning in the Blocked condition appeared to be complete in less
than five instances for both categories, whereas default listings in the Mixed condition required much
longer to reach their minimum level. Overall, default listings during the training phase were significantly
lower in the Blocked condition for Category-A (t(18) = 2.26, p < .05), although not for Category-B (t(18)
= 0.70, p > .25).

The difference scores appear to have been a more sensitive indicator of sequence effects in this
experiment, probably because variables were listed slightly more often in the Blocked than the Mixed
condition (a non-significant difference, t(18) = 1.48, p > .10). Difference scores were higher in the
Blocked condition for the first eight instances of both Category-A (t(18) = 3.74,p < .002) and Category-B
(t(18) = 2.35, p < .05), and marginally greater for the second eight instances of Category-A (t(18) = 1.96,
p < .10). Pooled over the 32 training trials, difference scores were significantly greater in the Blocked
than the Unblocked condition (t(18) = 2.47, p < .05). For the final test block, there was no significant
difference between Blocked and Unblocked conditions for either difference scores (t(18) = 0.72, p > .25)
or default listings alone (t(18) = 0.03). This suggests that although learning occurred more rapidly in the
Blocked condition, subjects in the Mixed condition caught up by the end of the experiment.

The schema-triggering hypothesis provides a plausible explanation for the slower learning that
occurred in the Mixed condition. This hypothesis implies that subjects would be likely to aggregate both
types of instances into a single category when-they are presented together early in training, thus falling to
capture the correlational structure of the stimulus set. This should occur because subjects in the Mixed
condition would have less time to learn strong defaults for one category before seeing instances of the
other. Due to the lack of strong default expectations, the novel stimulus would be less likely to trigger the
formation of a separate schema and would be more likely to be aggregated together with previous
instances into a single overall category. It might be difficult for subjects to "unlearn" this aggregated
category and acquire the correct category-level discriminations. Assuming that some subjects
discriminated the categories correctly from the start of training (triggering a new category upon seeing the
first discrepant stimulus), some aggregated the categories together at first but later overcame this initial
error, and that some never unlearned their initial overaggregation, the averaged data might match the
pattern of gradually increasing learning observed in this condition. (A process by which the schema-
triggering model could correct for initial errors of overaggregation will be described in more detail in the
General Discussion.

An associative model could explain negative transfer in the Mixed condition as due to associative
interference in learning correlations among different pairs of values from the same set of attributes. A
strong interference process could explain why Category A learning was reduced by interspersing B
instances in the training sequence in the Mixed condition. However, such an interference process would
imply that prior learning of Category A in the Blocked condition should have interfered with subsequent
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learning of Category B, as well. The data show no such negative transfer, if anything, the second
category was learned slightly faster than the first in this group. The associative model provides no
obvious explanation for why A instances would interfere with B learning when interspersed with B
instances in the Mixed condition, but not when presented first as in the Blocked condition.

In sum, the results of this experiment suggest that the attribute listing task can be productively
used as an index of unsupervised learning for both Blocked and Mixed training sequences. Moreover, the
patterns of transfer revealed in comparing these two groups provide evidence that are difficult to
accommodate within the associative model but are readily explained by schema-triggering.

Interestingly, the base defaults behaved somewhat differently in this experiment than did the
other defaults, and the schema-triggering idea can also accommodate these differences. Recall that the
base defaults were judged to be th, most salient attributes of the insect stimuli, and it was considered
likely that subjects would tend to list these particular attributes when they wished to indicate an instance's
category membership. To illustrate, people should prefer to describe the categories as "broad-winged"
versus "narrow-winged" than as, say, "black-eyed" versus "white-eyed", because wings were more
physically prominent than eyes in these stimuli. Consistent with this, base defaults were listed more often
whenever subjects would be expected to want to indicate an instance's category membership. For
example, when a long series of instances from the same category is presented in sequence, the category
membership of each could be readily inferred on the basis of this local context. But when instances are
presented in mixed sequence and category membership cannot be inferred from local context, subjects
could indicate it by listing the most physically prominent default (i.e., wings or body snape) as a proxy
for the category.

Consistent with this account, higher listings were observed for base defaults in the mixed test
block of the Blocked condition than in the last eight trials of preceding same-category training blocks
(t(9) = 2.48, p < .05). No such increase occurred for either variables (t(9) = 1.00, p >.25) or regular
defaults (t(9) = 1.54, p > .10). In other respects the base defaults behaved like the regular defaults in the
Blocked condition, decreasing strongly over the first six instances of each category (t(9) = 2.83, p < .05
for Category A and t(9) = 6.85, p < .001 for Category B). Base defaults stayed fairly constant throughout
the task in the Mixed condition, showing no significant decreasing trends. Any subjects that learned the
categories in the Mixed condition would need to explicitly indicate the category membership of each
instance, since this could not be inferred from context.

Experiment 2

The aim of this experiment was to provide further evidence to discriminate between the
associative and schema-triggering theories. One difference between them is that the associative theory
expects learning of a category to increase monotonically with the number of instances presented, i.e., that
adding to the number of A instances present in a training sequence should always increase, or at least not
decrease, final A learning. By contrast, the schema-triggering theory predicts that in certain situations
learning could actually be decreased by increasing the number of instances presented from a given
category. This could occur if the added instance interfered with initially forming distinct schemas for the
two categories, and caused them to be aggregated together into a single category instead. The present
experiment aims to provide an empirical demonstration of this prediction of the schema-triggering
process.

A second difference is that the associative theory expects transfer or interference effects between
contrast categories to be consistent regardless of how the categories are sequenced or the number of
instances presented from each. For example, if learning of two categories is reduced when they are
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presented together in a mixed training sequence, as in Experiment 1, then there should also be negative
transfer from Category A on learning Category B in a blocked sequence. Similarly, if t--senting four A
instances prior to seeing any Bs interferes with B learning, then increasing that number to eight A
instances should, if anything, increase the degree of proactive interference on B. By contrast, schema-
triggering implies that the direction of transfer (positive or negative) could in some cases be reversed by
manipulations of instance sequencing. Thus, a second aim of this experiment was to test some transfer
predictions of the schema-triggering hypothesis that cannot readily be accommodated within a simple
associative model.

In the following experiment, A and B instances were presented in two different conditions. In
one, a "pretraining" block of eight A-instances was followed by a "test" block of twelve A-instances and
twelve B-instances presented in mixed sequence. In the other, a mixed pretraining block of four A-
instances and four B-instances was followed by the same test block as in the first condition. In the first
condition, called the Contrast condition, the schema model predicts that subjects would learn strong A-
defaults prior to encountering their first B-instance. Thus, they should easily notice the contrast between
the two categories when they encounter this instance, invent a new category to accommodate it, and
rapidly learn new default values for this category. Moreover, encountering the B-instances should not
cause subjects to unlearn or discard the prior A-defaults, i.e., listing of A-defaults should not increase
appreciably during the mixed test block. The schema model predicts that the triggering instance should
be assimilated to the new category it causes the learner to invent, not to the "source" category to which it
was initially assigned. In the second condition, called the Practice condition, learning should be reduced
because subjects will tend to aggregate the two types of instances into a single category, which ignores
the correlational structure of the stimulus set.

Although the schema-triggering theory predicts better learning of B-defaults in the Contrast
condition, a larger number of B-instances actually occur in the Practice condition. A total of four B-
instances are presented during the pretraining block in the Practice condition, whereas no B-instances
occur prior to the test block in the Contrast condition. The associative theory clearly expects better
learning of Category B in the Practice condition, since the inter-feature associations among the B-defaults
receive more practice (repetitions in different instances) in that condition. Moreover, while the triggering
theory predicts that increasing the number of B instances in the pretraining block from zero to four should
interfere with later learning of Category A, increasing the number of A instances from four to eight is
expected to have the opposite effect on later B-learning. The associative model cannot handle this
complex dependence of transfer effects on the sequencing and number of instances presented from each
category. If the predicted results were obtained, they would provide strong evidence for the existence of a
schema-triggering process in unsupervised learning.

Method

Subjects

The subjects were 40 undergraduate students of San Jose State University participating in partial
fulfillment of an Introductory Psychology course requirement.
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Procedure

Subjects were tested in groups for a single session of 30 to 45 minutes. The procedure was the
same in most respects as in Experiment 1. The training instances were realistic line drawings of fictitious
insects, presented in booklets similar to those used in Experiment 1. The same instructions were used as
in Experiment 1, i.e., subjects were instructed to list the distinctive properties of each individual insect,
where distinctive properties were those that would be useful for distinguishing the current instance from
others of the same general type, for example, on a later multiple-choice recognition test. Subjects were
instructed to list only those properties that would be useful for idcntifying an insect on such a test, and to
omit non-distinguishing properties even if they were highly prominent or noticeable.

Materials

The same type of pictorial insect stimuli were used as in Experiment 1. These stimuli all shared a
common "base" structure (e.g., head, thorax, abdomen) plus eight dimensions of variation (attributes),
such as wing shape, abdominal markings, eye color, etc. Each attribute had either two or four discrete
values (e.g., wings of different shapes, different colored eyes, and so on), depending on the experimental
condition to which it was assigned. Five of the eight attributes had two values, and these values were
correlated across instances, such that the set was partitioned into two distinct categories defined by
contrasting sets of default attribute values (see Table 2).

Insert Table 2 about here

The remaining three attributes had four values, two of which occurred with equal probability in
Category-A and the other two of which occurred with equal probability in instances of Category-B.
These variable attributes were uncorrelated within each category, i.e., they varied independently across
instances of that category. A total of eight instances could be generated from each category within these
constraints. All sixteen possible instances were presented to subjects in this experiment.

Design

There were two between-subjects conditions in this experiment.

In the Contrast condition, instances of the A-category only were presented for the first eight
trials, followed by a mixed block of twelve A-instances and twelve B-instances. The first block of eight
trials will be referred to as the pretraining block, while the second block of 24 instances will be referred
tO as the test block. The first instance of the test block was always a member of Category B. Instances of
the two categories were presented in a randomly ordered, intermixed sequence, with the constraint that no
more than three instances from the same category were allowed to appear in a row.

In the Practice condition, the eight instances from the pretraining block consisted of four As and
four Bs, rather than eight As as in the previous condition. The four instances from each category were
selected so that both values of each variable attribute occurred twice, and none of the variable attributes
was correlated with any of the others. They were presented in a random order, with the restrictions that
the first instance was a member of Category-A and that no more than two instances from the same
category could occur in sequence. The same 24-instance test block was used as in the Contrast condition.
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Note that the only difference between the two conditions is that in the Practice condition four B-
instances were substituted for four A-instances presented in the Contrast condition.

Counterbalancing

The counterbalancing scheme for this experiment is illustrated in Table 2. As shown Table 2, all
the attributes had four values in one condition and two (correlated) values in the other, except for the first
two attributes. The first two attributes were base defaults, which consisted of the "wing shape" and "body
shape" attributes as in Experiment 1. These were two-valued and correlated in both conditions. The.
balancing scheme shown in Table 2 ensured that materials effects (e.g., differences in baseline
prominence of different attributes) would be balanced over the six attributes that were not base defaults.

Results and Discussion

The Practice condition in this experiment was essentially a replication of the Mixed condition of
Experiment 1. The results are displayed in Figure 5.

Insert Figure 5 about here

1 Compared to the Mixed condition from Experiment 1, somewhat less learning seems to have occurred in

the present condition. Default listings appear to decrease slightly over the course of the experiment, but
the decreasing trends are not statistically significant by linear contrasts conducted over various intervals
of trials. Nor were default listings averaged over the eight trials of the pretraining block lower than those
averaged over the twelve subsequent A-trials (t(17) = 0.07, p > .50) or B-trials (t(17) = 1.51,p> .10). For
the base defaults, a significant difference between early and late trials was obtained in Category A (t(17)
= 2.32,p <.05), but not in Category B (t(17) = 1.16,p> .10).

Turning to the difference scores (listing of defaults subtracted from that of variables) a significant
increase occurred over the first four instances of Category A (t(17) = 3.71, p < .01) and the corresponding
instances of Category B (t(17) = 4.26, p < .001). Some of this increase was due to increased listing of the
variable attributes of both categories during the same trials. This increase was significant by a contrast
analysis for linear trends over the first four instances of Category A (t(17) = 3.35, p < .01) and the first
four instances of Category B (t(17) = 5.31, p < .001). Following the first two pretraining trials, all
difference scores were positive (i.e , variables were listed more often than defaults throughout most of the
experiment).

The apparent learning effects in this condition appeared smaller than those from the
corresponding condition of Experiment 1. However, fewer trials were used in the present experiment (32
instead of 40), and a different subject population was sampled (students of San Jose State University
instead of Stanford University). In addition, it is useful to compare the present results to those of the
Control condition from Experiment 1, in which correlated default values were lacking. In that condition,
subjects significantly increased their listing of two-valued attributes over the first eight to ten trials, as
they became aware that these attribute varied independently over instances and thus were informative for
the listing task. Seen in this light, the slight decrease in default listing observed in the present experiment
probably indicates some real learning of these defaults.
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Without an uncorrelated control condition, it cannot be conclusively demonstrated that default
learning occurred in the Practice condition of the present experiment. However, in this experiment we
were mainly concerned with differences in learning between the Practice and Contrast conditions. As
expected, the pattern of results from the Contrast condition diffcrcd sharply from those of the Practice
condition (see Figure 6).

Insert Figure 6 about here

Here, all the instances presented during the pretraining block were from Category A. The listing of both
A-defaults and base defaults decreased rapidly during this block, from a high of about 41 percent (for
defaults) on the first trial to about 6 percent on the eighth trial. The linear trend over this interval was
significant at the .001 level for both defaults (t(16) = 4.60) and base defaults (t(16) = 5.14). During the
same trials subjects increased their listing of variable attributes from 35 to 73 percent (t(16) = 3.91, p <
.01). A significant linear trend was also observed for the difference scores over this interval (t(16) = 5.23,
p < .001). In sum, the same rapid learning of A-norms that occurred in the Blocked condition of
Experiment 1 was observed in the Contrast condition of the present experiment.

Following the pretraining block, a large increase in default listing occurred when the first B-
instance was presented, from 6 percent on the previous A-trial to 53 percent on the first B-trial (t(16) =
5.37, p < .001). The same effect was apparent in the listing of base defaults (t(16) = 8.17, p < .001).
Following this initial reaction, listing of B-defaults decreased rapidly on subsequent trials. Most of this
decrease occurred between the first and second B-instance (t(16) = 5.10,p < .001), with much less change
in the learning function occurring thereafter. The same was true of the base defaults (t(16) = 3.06, p <
.01), although listing of these attributes remained higher than those of the defaults; his difference
probably reflects subjects' continuing use of these highly prominent features to indicate the category
membership of each instance during the mixed test block. Overall, default learning during this block
appeared at least as rapid as the learning of A-defaults that had occurred during the pretraining block, and
showed no evidence of interference from the preceding block of A-instances.

Following the first B-instance in the test block, listing of A-defaults also increased by a small
amount (about 12 percent); this increase was statistically significant at the .05 level (t(16) = 2.40). This
elevated reponding continued on the second B-instance of the test block, and then tapered off over the
new few trials (see Figure 6). Despite their temporary elevation, listing of A-defaults on this trial was
still substantially less than that of the B-defaults on the first B-trial (by about 32 percent, t(16) = 3.13, p <
.01). This pattern of results seems to indicate that presenting the first B-instance did have some effect on
the default norms of Category-A, contrary to our original predictions. However, subsequent B-instances
apparently did not affect A-norms (i.e., they did not increase listing of A-defaults) suggesting that they
were assimilated only to the newly-inventcd schema for Category B, as predicted by the schema theory.

An important prediction of the schema-triggering theory was that B-defaults should be learned
more rapidly following a block of pure A-instances than following a mixed block composed of both A
and B-instances. This result was predicted due to the greater initial learning of A-defaults that would
occur in the first condition, which favors the triggering of a new schema at the first B-instance. The result
was expected despite the larger number of B-instances presented to subjects in the Practice condition, i.e.,
in spite of the fact that the inter-feature associations of Category B received more repetition in that
condition. Consistent with this prediction, B-defaults were learned much more rapidly and completely in
the Contrast condition than in the Practice condition. On the first B-trial in the test block of the Contrast
condition, default listing was significantly higher than on the corresponding trial of the Practice condition
(t(33) = 2.05, p < .05). This reflects the greater surprisingness of those attributes in that condition; the B-
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values would have been considered default violations by subjects in the Contrast condition, while many
subjects in the Practice condition would have merely regarded them as routine values of familiar variable
attributes. Following the first B-trial, default listing for the next eleven B-instances was lower in the
Contrast condition than in the Practice condition (by an average of 18 percent, t(33) = 2.76, p < .01).

The pattern for base defaults was similar to that for defaults, except that listing of these attributes
did not show as much decrease over trials as did other defaults. Base default listing was significantly
higher in the Contrast condition for the first B-instance of the test block (t(33) = 2.16, p < .05). Following
this, however, there was no significant difference between the two groups in their listing of these
attributes (t(33) = 0.54). This probably reflects subjects' tendency to continue listing base defaults to
indicate the instances' category membership in the mixed test block of the Contrast condition.

The listing of variable attributes was approximately the same in the two groups (t(33) = 1.04, p >
.10). Thus, the pattern of results for the difference scores simply mirrored those for the defaults, and will
not be discussed separately.

Although subjects in the Practice condition saw a larger number of B-instances than did subjects
in the Contrast condition, learning of B-defaults in that condition suffered from negative transfer due to
the four preceding A instances (compared to the learning that would have occurred had only B-instances
been presented during the pretraining block). Importantly, this interference cannot have occurred at the
level of inter-feature associations (or explicit correlational rules), because in that case the amount of
interference from the A-category should have increased directly with the number of A-instances in the
pretraining block, and thus have been greater in the Contrast condition than in the Practice condition. By
contrast, increasing the number of A instances from four to eight eliminated their interference on
subsequent B-learning. The interference in the Practice condition is explained by the schema-triggering
theory as due to inadequate learning of A-defaults prior to encountering the first B-instance, causing
subjects to aggregate both types of instances into a single category. Contrary to an associative
interference hypothesis, increasing the number of A-instances can either facilitate or interfere with later
learning of B-defaults, depending on how the manipulation affects the schema-triggering process (i.e., the
probability that triggering will occur at any given point in the sequence).

While our results show that the learning of B-norms was apparently unimpaired by prior A-
learning in the Contrast condition, there did appear to be a temporary effect on A-norms due to presenting
the first B-instance, i.e., listing of A-defaults increased for several instances following the presentation of
the first B-instance. By contrast, we expected that the B-instance would trigger the invention of a new
category (which apparently occurred), and that the instance would be assimilated only to the new category
and would not affect listings for later instances of the source category (A). One explanation for the
increase is that while the first B-instance triggered a new category as expected, the instance could have
been assimilated both to this new category and to Category-A. The new category would then provide a
better match to subsequent B-instances than would Category A, so for these later instances only the new
B category would be evoked. Meanwhile, the A norms would gradually return to previous levels as
subsequent A-instances were assimilated. The only difference between this account and the schema-
triggering model presented above is that it assumes that instances are always assimilated to the category
to which they were first assigned. If an instance is also sufficiently novel to trigger a new category, then
it will be assimilated to that new category as well.
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Experiment 3

This experiment was a modification of Experiment 2 designed to further investigate schema-
triggering in unsupervised learning. The patterns of transfer (i.e., how the two categories interfere with or
facilitate each other's leaming) in this experiment were expected to provide further evidence requiring the
existence of a schema-triggering process. In particular, the present experiment investigated the effect of
initially over-aggregating two contrast categories into a single class on subjects' ability to eventually
acquire the correct category-level discriminations.

All the conditions in this experiment resembled the Contrast condition of Experiment 2, except
that the series of same-category instances in the pretraining block was preceded by a single instance from
the contrasting category. In the Contrast condition of Experiment 2, eight instances of Category A were
presented in a row prior to a mixed block consisting of both A- and B-instances. These eight instances
were sufficient for most subjects to learn strong A-defaults prior to encountering the first B-instance,
causing a new schema to be triggered upon seeing the B-instance. In the present experiment, rather than
presenting all A-instances during the pretraining block, a single A-instance was presented during the first
trial followed by a series of B-instances (by convention, we always refer to the first-presented category in
the training sequence as Category A). The main independent variable in this experiment was the number
of B-instances that followed the first A-instance in the pretraining block; one group of subjects had four
B-instances in this series, a second group had eight, and a third group had twelve B-instances. Following
this pretraining block, a mixed block of both A- and B-instances, similar to that of Experiment 2, was
presented for the next thirteen trials.

The objective of presenting instances from two different categories on the first two trials was to
cause as many subjects as possible to aggregate the two categories together at the start of training. Since
Category A was presented first, the aggregate norms should have initially been dominated by the values
of that A-instance. As subsequent B-instances were presented, however, the consistent features of that
category should have gradually outcompeted and dominated the contrasting A-values in the aggregate
norms. If sufficient B-instances occurred in this series, the B-values would be learned as defaults of the
combined category, so that presenting a second A-instance would trigger a new schema to accommodate
it. The result would be rapid learning of both A- and B-categories during the subsequent mixed block.

By contrast, if fewer B-instances were presented prior to the second A, the probability of
triggering a new category should be reduced. This reduction would result from the relatively high
residual strengths of the A-values in the aggregate norms, which would lessen the perceived disparity
between those norms and the features of the second A-instance. If subjects failed to dis-aggregate the two
categories (i.e., did not create a separate schema for Category A), then their attribute listings in the mixed
block should show reduced learning of the default values of both categories. In sum, the existence of a
schema-triggering process would imply that increasing the number of B-instances in the pretraining series
would increase increase the subsequent learning of both categories.

A simple associative model lacking a schema-triggering process would predict a somewhat
different pattern of results. Such models expect that increasing the number of B-instances in pretraining
should increase later B-learning, consistent with the triggering hypothesis. However, the associative
theory expects that this manipulation would also decrease later A-learning due to negative transfer at the
level of inter-feature associations. In general, the associative theory predicts that transfer effects will be
consistent in strength and direction (positive or negative). For example, if presenting a single A-instance
interferes with learning the defaults of subsequent B-instances, as both theories predict, then presenting
four to twelve B-instances should greatly reduce default leaming in subsequent As.
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In addition to providing another test of schema-triggering, the present experiment may also
provide an estimate of how many instances from one a category must be presented to overcome initial
aggregation with its contrast category, at least within the present attribute listing set-up. In the Blocked
condition of Experiment I and the Contrast condition of Experiment 2, both of which were favorable for
schema-triggering and rapid default learning, about three to five instances were required to fully learn a
category's defaults. he present situation should be less favorable for rapid category learning, due to
aggregation of the two categories at the start of training. Thus, a larger number of instances should be
required to learn the category to asymptote and cause triggering when a contrasting stimulus is presented.
Presumably, the degree of learning at the end of the pretraining block (the difference between variable
and default listings) should predict learning of both categories during the following mixed block.

Method

Subjects

The subjects were 36 undergraduate students of Stanford University participating in partial
fulfillment of an Introductory Psychology course requirement.

Procedure

The procedures for this experiment were essentially the same of those of the previous two
experiments. Subjects were tested for a single half-hour session in groups of eight to ten. They were
given test booklets similar to those of the other experiments, and allowed to complete the listing task at
their own pace. The listing instructions were identical to those used in Experiments I and 2.

Materials and Design

The stimuli in this experiment were the same pictorial insect stimuli used in the last two
experiments. These were divided into categories on the same basis as the stimuli in Experiment 2. The
stimulus set was partitioned into categories on the basis of perfectly correlated values on five binary
attributes. The remaining three attributes varied independently over two values, different for the two
categories. The design shown in Table 2 for Experiment 2 was also true for the present study.

The main difference between this experiment and Experiment 2 was the order in which training
instances from the two categories were presented. The first instance was always different from the
second; following the conventions of previous experiments, we refer to the instance presented first as
belonging to Category A. The following N instances were from Category B; the number N of instances
in this series was the independent variable in this experiment. These first N+1 instances (one A-instance
plus N B-instances) were referred to as the pretraining block. Following this pretraining block was a
mixed block consisting of seven As and six Bs presented in random order (with the constraint that no
more than two instances of the same category could occur in a row). This was referred to as the test
block.

Each of the sixteen possible instances from this set was presented at least once in this experiment,
and instances were selected for a second or third presentation such that each value of the variable
attributes appeared an equal number of times. As in Experiment 2, two different stimulus sets were
generated such that assignment of default or variable status to a given attribute was balanced across the
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experiment as a whole; this balancing was depicted in Table 2. For both of these stimulus sets, booklets
were constructed such that one category of insects took on the role of Category A (i.e., was presented
first) for a given group of subjects while another group received booklets in which the other category was
presented first. Crossing these two balancing factors (the stimulus set used and the order in which
categories were presented) with the three levels of the N variable (number of B-instances in the
pretraining series) yielded a total of twelve groups. Three subjects were randomly assigned to each
group, for a total of 36 subjects in this experiment.

Results and Discussion

The main data for this experiment (listing of variables minus that of defaults for the three
conditions) are shown in Figure 7.

Insert Figure 7 about here

As Figure 7 shows, there is evidence for learning of both categories in all three conditions of this
experiment Starting with Category B, default listing decreased over trials during the pretraining block in
all conditions. The decreasing linear trends in default listing were significant over the N trials in the
block for the N=4 and N=12 conditions (t(11) = 3.15, p < .01 and t(l1) = 3.2 0, p < .01, respectively), but
not over the block as a whole for the N=8 condition (t(l1) = 1.22, p > .10). However, the decrease was
significant over the first 3 trials of pretraining for the N=8 condition (t(l 1) = 3.00, p < .02).

The difference scores increased significantly during the pretraining block for Category B in all
three conditions (t(l1) = 4.66, p < .001 for N=4; (t(l 1) = 6.70, p < .001 for N=8; and (t(l1) = 5.64. p <
.001 for N=12). The difference scores show more learning than the defaults because they count both the
increased listing of variables and the decreased listing of defaults that occurred during this block. This
increase was significant in all three conditions (t(1 1) = 3.99, p < .01 for N-4; t(l1) = 6.74, p < .001 for
N=8; t(l 1) = 4.91, p < .001 for N=12).

Default listings tended to increase somewhat (and learning scores to decrease correspondingly)
for B-instances during the following test block. Comparing average default listing for the test block with
that of the last two B-instances in the pretraining block, a marginal increase in listings was observed in
N=4 (t(11) = 1.90, p < .10), a significant increase in N=12 (t(1 1) = 2.68, p < .05), and a non-significant
increase in N=8 (t(1l) = 1A2, p > .10). However, the listing of defaults remained far below that of
variables during this block (t(l 1) = 5.64, p < .001 for N=4; t(1 1) = 5.09, p < .001 for N=8; and t(l 1) =
7.76, p < .001 for N=12). This indicates that the learning of B-defaults that occurred during pretraining
transferred to the test block, and was not merely due to temporary habituation to a series of repeated
values.

The listing of A defaults also declined significantly over trials in condition N=12 (t(l 1) = 2.86, p

< .02), nearly significantly in N=4 (t(l 1) = 1.76. p < .12), and non-significantly in N=8 (t(l) =0.19, >
.20). Variable listing increased significantly for Category A in all three conditions, but only over the first
three instances (t(l 1) = 3.38, p < .01 for N=4; t(11) = 5.70, p < .001 for N=8; and t(l 1) = 5.63, p < .001
for N=12). Difference scores also increased over the eight A-instances in all three conditions (t(ll) =
4.68, p < .001 for N=4; t(l 1) - i 05, p < .001 for N=8; and t(l 1) = 7.54, p < .001 for N=12).
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The primary aim of this experiment was to compare learning among the three groups, and show
that a longer series of B-instances in th- pretraining block would cause better learning of both categories
in the test block. As in Experiment 2, the lack of an uncorrelated control condition in this experiment
weakened the within-groups results as evidence for category learning in the individual conditions. That
is, it is possible that the higher listing of variables than defaults in some conditions simply reflected
subjects' preference to list four-valued rather than two-valued attributes. However, comparing data from
the present study to the uncorrelated Control condition in Experiment 1 supports the conclusion that
correlational learning probably occurred in all three groups in this experiment. Recall that listing of
uncorrelated attributes with both two and four values increased significantly over trials in Experiment 1,
in contrast to the gradually decreasing pattern of default listing in the present experiment. If subjects in
this experiment were listing variables more often than defaults only because the former had more possible
values, listing of both types of attributes should have increased over trials as in Experiment 1. The fact
that default listing tended to decrease in this experiment argues for real category learning in the present
experiment.

We now turn to the between-groups analyses and to the specific tests of our theoretical
hypotheses. The main prediction derived from the schema-triggering hypothesis was that increasing the
number of B instances during the pretraining block should increase learning of both categories in the
following mixed block. This was expected because increasing the number of B instances should increase
the relative strength of B-values in the aggregated norms, while decreasing the relative strength of
residual A-values from the first trial. This, in turn, should increase the probability of triggering a new
schema when the next A-instance was encountered, because the A-values would have low strengths in the
aggregated norms and hence should appear relatively surprising with respect to those norms. Once the
categories were dis-aggregated by this triggering, default learning could occur rapidly for each.

These expectations were largely borne out, with one qualification. We originally expected that
the degree of leaming would vary monotonically with the length of the pretraining block, i.e., that
learning would be greater in the N=12 group than for N=8, and greater in N=8 than in N=4. While
learning did tend to be higher in condition N=12 than in the other two conditions, learning in N=8 was
not greater than that in N=4; if anything, it tended to be slightly less. Thus, increasing the pretraining
block from N=4 to N=8 did not improve learning, but increasing it to N=12 did.

Turning to statistical comparisons, default listing for category A was significantly less in N=12
than in N=8, t(22) = 2.23, p < .05. The difference was also significant for the difference scores, t(22) =
2.85, p < .01. Although A-defaults were listed less often in N=12 than in N=4 (by 7.6%), and the learning
scores are higher in N=12 (by 10%), neither of these comparisons attained conventional levels of
statistical reliability (t(22) = 0.76 and t(22) = 0.95, respectively). Learning appeared to be somewhat
higher in N=4 than in N=8, as noted previously, but these differences also failed to reach statistical
significance (t(22) = 1.A0 for defaults and t(22) = 1.56 for variables, both p-values > .10). When the data
from conditions N=4 and N=8 were pooled, the comparison between difference scores in this combined
condition and in N=12 was marginally significant (t(34) = 2.02, p <. 10).

Comparisons of Category B learning showed a similar ordering of conditions as did those of
Category A. Within the pretraining block, learning appeared greater in N=12 than in N=8 and N=4, but
not greater in N=8 than in N=4. Comparing the final trial of the pretraining block in each condition,
default listing was significantly less in N= 12 than in N=8 (t(22) = 2.27, p < .05) and in N=4 (t(22) = 2.24,
p < .05). but there was no difference between N=8 and N=4 (t(22) = 0.81, p > .25). The difference scores
showed the same ordering of learning, although the effects were somewhat weaker than those shown by
the defaults. Difference scores on the last pretraining trial were marginally greater in N=12 than in N=8
(t(22) = 2.06, p < .10), non-significantly greater in N=12 than in N=4 (t(22) = 1.47, p > .10), with no
significant difference between N=8 and N=4 (t(22) = 0.75, p> .20).
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Turning to the test block, B learning was again higher in N=12 and lower in the other two
conditions. Averaged over the six B-instances in the test block, these effects were statistically significant
for the difference scores but not for default listings alone. Difference scores for N=12 exceeded those of
N=8 by 27%, a significant difference (t(22) = 2.14. p < .05). In addition, difference scores were 22%
higher in N=12 than in N-4, a marginally significant effect (t(22) = 1.73, p < .10). No significant
difference was obtained between N=4 and N=8 ((22) = 0.41). When N=4 and N=8 were pooled together
into a single condition, difference scores in this condition were significantly less than those in the N=12
condition (t(34) = 2.28, p < .05).

Although learning in the N=12 condition was higher than that of the other two groups in this
experiment, it still did not appear as high as in the test block of the Contrast condition from Experiment 2.
In that condition, all instances presented during the pretraining block were members of the same category,
and thus there was no initial aggregation of categories for subjects to unlearn. Although listing of
defaults rose during the first part of the test block for both categories in that experiment, they declined to
near their original levels very quickly, within two or three trials. Although the validity of direct
comparisons between these two experiments is questionable because different subject populations were
sampled, it appears that less learning occurred during the test block of Experiment 3, even in the N=12
group. Apparently, a single A-instance presented before as many as twelve B-instances was enough to
interfere somewhat with later discrimination of the two categories. This is a surprisingly strong negative
effect, and additional research is needed to further explicate these powerful transfer effects and the
conditions under which they are likely to occur.

Overall, these results are consistent with the schema-triggering hypothesis but not with the one-
process associative model, since the latter cannot account for the increased A-learning that occurred due
to increasing the number of preceding B-instances. However, neither theory provides any simple
explanation for why learning should have been less in N=8 than in N=4. Perhaps the most plausible
interpretation of these results is that no real differences existed between N=4 and N=8, only between
these two conditions and N=12. Although N=8 appeared to show slightly less learning in some
comparisons than N=4, none of these comparisons were statistically significant Moreover, if learning is
traced over the first eight trials of the N=-12 group, and compared to learning observed during the
corresponding trials of the N=8 group, more learning seemed to occur in N=12. For example, the second
four instances in this block showed significantly lower default listings than the first four in N-=12 (t(ll) =
2 .5 1, p < .05), but not in N=8 (t(11) = 0.90, p > .20). Thus, it may be that the poor learning observed in
condition N=8 was to some degree a random effect.

Nevertheless, the present results raise the possibility of a "threshold" effect for triggering new
categories, which in this particular experiment occurred between the eighth and the twelfth B-instances.
What would be the implications of such a threshold f3r the adequacy schema-triggering as a general
explanation of learning from both blocked and mixed sequences? Possibly, subjects might use schema-
triggering to speed their category learning when conditions are favorable for such triggering to occur, but
also track feature correlations to learn categories more slowly when conditions for triggering am
unfavorable. This issue will be discussed in more detail below.
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General Discussion

These three experiments showed powerful effects of the sequencing of training instances on
unsupervised learning. In some cases, learning of a category was improved the greater the number of
instances presented from that category. For example in Experiment 1 learning of both categories
increased with number of instances for both Blocked and Mixed training sequences. In Experiment 2.
adding A-instances to the pretraining block (changing it from four As and four Bs to eight As) increased
the level of A-learning in the subsequent test block. And in Experiment 3. adding B instances to the
pretraining block (increasing from four to twelve) improved B-default learning in the test block.
Sometimes, however, learning was actually reduced by increasing the number of instances presented from
a given category. This seemingly paraioxical effect occurred in Experiment 2 when adding B-instances
to the pretraining block (changing it from a pure block of A-instances to a mixed block containing
instances of both categories) decreased later B-learning in the test block.

A similar interaction with sequencing was observed for transfer effects. For exampLe, Category A
learning in Experiment 1 was greatly reduced by interspersing the A training instances with members of
Category B (Blocked vs Mixed conditions), an example of negative transfer. In Experiment 2. both
negative and positive transfer bet*en the categories was observed. Adding A-instances to change a
mixed pntaining block to a pure A block improved subsequent learning of category B. a d ansration
of positive transfer. By corast adding B-instances to chang a pure A dock to a mixed block of As and
Bs had a strong negative effeca on the learning scorn of subseque A instanes Experiment 3 also
provided examples of both negative and positive trnsfer. Adding B-inuwzs to ft pmernaig block
improved later A learning, a positive effec But if we compare the pamte of rmeul in Experimen 3 t
those in Expezim 2, it appears that adding a single A-instance prir to e a faidy long series of B-
instanes exeted significan imerfererme on later learning of both Bs and As. s lami in the N=12
condition of Experment 3 appeared pooter that that of te Corast conition in Experimctit 2, even
though a longer block of same-category instances was presern in the fomer expeimem 1"be
difference was the single instance of the contrast category located at the beginin of the seres in
Experiment 3.

We argue that simple feature-associator models am unable to accommodate these seemingly
contradictory effect, and a model with an explicit schema-triggering Vrcess is required- Simple
associative models require simple effects; for example, increasing the number of instances from a given
category should increase (or at least not decrease) learning of that category. and transfer effects between
categories should be consistently positive or negative. Wuhin the schema model, by conra our
sequencing manipulations and their sometimes contradictory effects are readily interpreted as simple
manipulations of triggering pwbabiiity. Thus. the triggering model can accommodate the paemn of
results obtained in these experiments -hereas the simple associative model is strongly discre by
these result.

One question that has received little disucussion so far is how schema-triggering explains the
learning that did occur from mixed training sequences in these experimnts. If long series of istances
from the same category are required for sch-,a-triggering to occur, then how does the theory explain
learning in unblocked conditions where such sequce-s do not occur? One possibility is that categories
are distinguished by schema-triggering when conditions are favorable for such triggering to occur, but
that simple learning of inter-feature associations is Le mechanism for learning when conditions are
unfavorable for such triggering. According to this hrohimis, subjects do accumulate information about
inter-feature correlations as they learn successive trining instancm so that correlational panerms ill
eventually be learned regarfless of sequcr"e. Hocver,. this process would be slow relative to the much
faster learning that occurs when subjects can explicitly separate the categories from the srt and learn the
defaults of each without interfere=e from the other. This solution to the problem of leaming from mixed
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sequences argues that there may be "strong" and "weak" forces in unsupervised learning, with the strong
force (triggering of discrete schemas) producing more rapid learning and requiring less information be
maintained in memory (it only requires tracking frequencies of individual values, rather than co-
occurrence frequencies for all possible pairs of values), but also requiring fairly specific conditions for its
occurrence.

A second hypothesis assumes that triggering of novel schemas can occur probabilistically in a
mixed training sequence, but that the probability of this occurring at any particular point in the sequence
is relatively low. According to this hypothesis, all category discrimination occurs as a discrete, all-or-
none event (triggering), followed by a process of adjusting continuous strength values within each
category. When a blocked sequence is employed, most subjects can be induced to trigger new schemas at
the same point in training, e.g., at the first B-instance presented after a pure block of A-instances. When a
mixed sequence is employed, triggering may occur at different points in training for different subjects.
Some subjects might discriminate between categories virtually from the start of training, others might do
so later in the sequence, and still others might fail to do so by the end of a given training session. The
data from such a process, averaged over a group of subjects, would show much the same pattern of
apparently gradual learning predicted by a single-process associative theory.

If this position is to be plausible, it must be shown that the conditions for probabilistic schema-
triggering could occur within a mixed sequence. Imagine for a moment that the triggering criterion (the
amount of mismatch between an instance and its source category required for triggering a new category)
varies from subject to subject and from trial to trial within a given task. Given such variability, triggering
might sometimes occur due to only mild discrepancies between an instance and its source category, i.e.,
when the instance violates relatively weak "defaults". Moreover, the strength of specific values in the
aggregate schema would vary from trial to trial. For example, the strength of the A-default values could
be temporarily increased in a mixed sequence whenever two or three A-instances appear in a row. If a
B-instance were then encountered, its features might appear sufficiently surprising at that point to cause
some subjects to create a new schema to describe that instance. In addition, the number of A-instances
required for this would depend on how much impact each instance had on the norms of the schema, which
could vary with subjects' momentary attentiveness and overall memorization ability.

The point is that schema-triggering might occur after initial aggregation if random circumstances
were momentarily favorable, i.e., the values of one category were dominant in the aggregated norms
because several instances of that category had occurred in sequence previously, a particular subject
happened form strong encodings of these instances, and that subject's triggering criterion is momentarily
lenient. If an instance of the contrast category occurs in such circumstances, it could result in the
formation of a new schema. This is in contrast to the blocked conditions used above, in which
circumstances highly favorable to triggering occurred at a single point in the training sequence, so that
most subjects were induced create a new category at this specific point.

The results of these experiments provide strong evidence for the existence of a schema-triggerng
process, since this process is needed to explain leaming in the blocked conditions. However, the present
results do not stc-ngly discriminate between these two explanations of unsupervised learning in mixed
sequences. While parsimony favors the simpler explanation of no explicit recording of feature
correlations (i.e., that all discrimination between categories is due to an all-or-none triggering event),
these results do not rule out the possibility that learning inter-feature associations may also play a role in
unsupervised learning.
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Generality of the Results

One objection to generalizing from these results to unsupervised learning in the real world is that
the stimulus variation in these experiments was rather artificial and stereotyped compared to the rich,
complex variation typical of real-world domains. Of course, this point applies to most laboratory
research on category learning, which commonly employs artificial stimulus sets generated from
combinations of only three or four binary attributes. The purpose of the present experiments was to
evaluate the attribute listing task as an index of unsupervised learning in a relativelyj simple situation, and
to use it to make elementary discriminations among models of learning in that situation. Demonstrating
that a process such as schema triggering occurs under "artificial" conditions constitutes a prefectly valid
proof of the existence of that process; it merely leaves the issue of boundary conditions unexplored.

Nevertheless, the basic attribute listing method could be used with many types of stimuli,
including stimuli more complex and naturalistic than those used in the present experiments. For example,
the present stimuli could be modified by adding several levels of continuous variation such as size or
shade to each discrete value of each attribute. Thus, a set of insect stimuli could have two different styles
of wings and three different size levels within each wing style. Such modifications would increase the
background variability of the stimuli and could be used to make them appear more naturalistic. However,
it should not change the basic pattern of results in the attribute listing task, i.e., a shift away from listing
predictable aspects of the stimuli and an increasing focus on unpredictable information as the categories
are learned.

Another sense in which the present stimuli appeared artificial was in the fact that the default
values of each category occurred 100 percent reliability, i.e., attributes were perfectly correlated. This
raises the question of whether anything about the current approach implies that categories must be defined
by a set of necessary and sufficient features, an assumption that has been strongly criticized in recent
years (e.g., Wittgenstein, 1953; Rosch, 1975, 1977; Smith and Medin, 1981). The schema-triggering
model presented here makes no such assumption, although it does (reasonably) assume that people try to
avoid violations of default expectations by forming subcategories to capture new patterns whenever they
can do so. The model also assumes that since default violations are unexpected, subjects will tend to
consider them highly informative and assign them a high attentional priority. This reflects the principle
that violations of one's general beliefs are likely to be important both for distinguishing the particular
situation in which the violation occurred, and possibly for making modifications in the general norms
themselves.

Admittedly, the present experiments do not attempt to demonstrate unsupervised learning of
categories with probabilistic features, which may limit the generality of the present results. However, the
attribute listing procedure should be generalizable to learning problems in which category defaults are
unreliable, assuming that people can learn such categories without feedback. It is clear from people's
performance in the "resent tasks that many of the "fuzzy" categories used in standard supervised learning
experiments, in which diagnostic features are highly unreliable would probably be unlearnable for most
subjects without explicit feedback. This simply reflects the greater difficulty of the unsupervised learning
task, in which subjects must generate their own categories and internal feedback. Interestingly, the
schema-triggering model predicts that the effects of default reliability should depend on how the
instances are sequenced. If subjects are shown "prototypical" training instances (in which all the
expected default values are present) until they have learned to distinguish the categories (i.e., instances
are assimilated to separate schemas), then the learning should be fairly resistant to later, non-prototypical
instances in which individual defaults are violated. However, such instances could have a strong effect
on learning if presented early in training, by interfering with initial discrimination between the categories.
The investigation of such factors should provide interesting topics for future research, and allow many
productive comparisons to be made between supervised and unsupervised learning.
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Footnotes

This research was supported by Air Force Office of Scientific Research Grant AFOSR-91-0144.

1. Five subjects were excluded from the data analysis, two from the Practice condition and three
from the Contrast condition. These subjects were excluded because they produced no usable data from
more than one third of the thirty two trials in the experiment. A subject was considered to have produced
no usable data from a given trial if they listed no features on that trial (i.e., they left that page in the
booklet blank), if the only information provided was a comparison to a previous instance (e.g., "same as
the first one"), or if none of the features listed were representable within our eight attribute coding
scheme.
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Table 1

Design and Counterbalancing, Experiment 1

Attribute Category(i) Control (1) Category(2) Control (2)

1 (Wings) 1 2 1 2 1 2 1 2
2 (Body) 1 2 1 2 1 2 1 2

3 (Markings) 1 2 1-2 1-2 1-2 3-4 1-2 3-4
4 (Tails) 1 2 1-2 1-2 1-2 3-4 1-2 3-4
5 (Eyes) 1 2 1-2 1-2 1-2 3-4 1-2 3-4

6 (Legs) 1-2 3-4 1-2 3-4 1 2 1-2 1-2
7 (Jaws) 1-2 3-4 1-2 3-4 1 2 1-2 1-2
8 (Antennae) 1-2 3-4 1-2 3-4 1 2 1-2 1-2
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Table 2

Design and Counterbalancing, Experiments 2 & 3

Attribute Group I Group 2

1 (Wings) 1 2 1 2
2 (Body) 1 2 1 2

3 (Markings) 1 2 1-2 3-4
4 (Tails) 1 2 1-2 3-4
5 (Eyes) 1 2 1-2 3-4

6 (Legs) 1-2 3-4 1 2
7 (Jaws) 1-2 3-4 1 2
8 (Antennae) 1-2 3-4 1 2
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Figure Captions

Figure 1. Sample stimuli from Experiment 1. Instances of one category are on the right and instances of
the other are on the left. The correlated attributes in this stimulus set are wings, abdomen shape, abdo-
men shading, mandibles, and antennae; the variable attributes are legs, tails, and eyes.

Figure 2. Attribute listing data plotted plotted over instances for the Control condition of Experiment 1.
The two "pseudo-categories" are separated in these plots, but were presented in random order in the actual
task.

Figure 3. Attribute listing data for the Blocked condition of Experiment 1.

Figure 4. Attribute listing data for the Mixed condition of Experiment 1. The categories are separated in
these plots, but were presented in random order to the subjects.

Figure 5. Attribute listing data for the Practice condition of Experiment 2. The data for the two
categories is presented separately and instances presented during the pretraining block are labeled "Pre-
A" and "Pre-B".

Figure 6. Attribute listing data for the Contrast condition of Experiment 2.

Figure 7. Attribute listings for the three conditions of Experiment 3. Only the difference scores (listing
of variables minus that of defaults) is shown here.
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Figure 1.



Figure 2 35

Base Defaults

CO

0.

A BTest

Trais

Ca

9

A 1111s
Tnais



Figure 3 36

Base Defaults

Co
0

o

(T0

Defaults

0

0
Co

0

C4

Co

C)

A BToo

Trias

Variables

o.

en
C

C

A B Test

Trials

Difference Scores

,ll - iiI*iiII iii 11111111 llll III
Tri



FIgure 4 37

Base Defaults

0

0

0

B Test

Trals

Defaults

0

Cm
0

0

0

0

A B Test

Tras

Variables
0

AB Test

Trals

Difference Scores

0

a0

tTril



Figure 5 38

Base Defaults
to
0

Co

0

0

Pre-A A Pro-B 8

Tris

Defaults

,It
0

C4

Pre-A A Pro-8 a

Trias

Variables

..

C

*CI

0

o

Ci
0

Pre-A A Pre-B

Trials

Difference Scores

0

Co

9

?Pre.A A Pre-B a

Trois



Figure 6 39

Base Defaults

o

0

Pre-A A

-B *ws

Defaults
8

Pr-A A B

Tr is

VariablesTm'

0

Pm-A A B

Difference Scores

0

C

Cm

C

i

ProA A B

TralisDifrneSoe

T0g



Figure 7
40

N-4

A PuS

0N-

IL0

ApidIlk 11
IN~ft

A A".

N-12

T0f


