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How to Equate Tests with Little or No Data

Abstract

Standard procedures for equating tests, including those based on
item response theory (IRT), require item responses from large numbers of
examinees. Such data may not be forthcoming for reasons theoretical,
political, or practical. Information about items’ operating characteristics
may be available from other sources, however, such as content and format
specifications, expert opinion, or psychological theories about the skills and
strategies required to solve them. This paper shows how, in the IRT
framework, collateral information about items can be exploited to augment
or even replace examinee responses when linking or equating new tests to
established scales. The procedures are illustrated with data from the Pre-
Professional Skills Test (PPST).
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How to Equate Tests with Little or No Data

Selection and placement testing programs update their tests periodically, as the
specific content of the items becomes obsolete or familiar to prospective examinees.
Because the new test forms may differ in difficulty or accuracy even if they tap the same
underlying skills as the old forms, some kind of “equating” or “linking” is required to
compare results across forms (Angoff, 1984). Standard procedures, including those based
on item response theory (IRT), require examinee responses to both new items and items
already linked to an established scale.! One can determine levels of comparable
performance on new and old test forms to any desired degree of accuracy by increasing the
number of examinees in the linking sample.

Two disparate developments in educational measurement can prevent gathering the
data that standard equating procedures require. First, current legislative activity in New
York is intended to limit the administration of nonoperational items in that state, including
those used in pretesting and equating. Second, the growing interest in modeling the
cognitive processes of solving test items (Embretson, 1985) and the capability of
microcomputers to construct tasks around cognitively salient features (Bejar, 1985; Irvine,
Dann, & Anderson, in press) raise the possibility of custom-building test items for each

- examinee on the spot.

Although operational equating procedures rely solely upon examinee responses,
researchers have been aware for some time of alternative sources of information ahout the
operating characteristics of test items. Lorge and Kruglov (1952, 1953), fo- example,
investigated the degree to which expert and novice judges could predict the difficulties of
arithmetic test items, and Guttman (1959) predicted partial ordenngs and relationships

1 If Test A is administered to Group A and Test B to Group B, the tests can be equated if
either (1) tests A and B contain common items, (2) Groups A and B overlap, or (3) Groups
A and B are representative samples from the same population of examinees (Lord, 1982).
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among inter-item correlations between racial-attitude items constructed according to a facet
design. More recent studies with a psychometric orientation have examined the degree to
which IRT parameters can be predicted from educationally-relevant features of items (e.g.,
Fischer, 1973; Tatsuoka, 1987), and others with a psychological perspective have focused
on task attributes that are important in cognitive processing models (e.g., Whitely, 1976).
The moderate tc high relationships between item features and operating characteristics are
of conside-able theoretical importance, as a framework for assessing test validity and for
constructing tests around principles of learning and knowing.

But moderate to high relationships between item features and operating
characteristics are the information equivalent of small to moderate examinee sam:ples
(Mislevy, 1988)—too little for standard large-sample equating procedures to work
properly. And when it comes to test equating, collateral information differs from response-
data information in a crucial respect: Linking information from examinee responses can be
made arbitranily accurate by increasing the sample size, but information from collateral data
is limited by the strength of its relationship to item operating characteristics. Procedures
have not been available to provide coherent inferences about item operating characteristics,
and the equating and linking functions they imply, from data that contain substantially less
information than large samples of responses.

The present paper attacks this problem for domains in which (i) an IRT model fits
reasonably well, (ii) available collateral information about test items is correlated with their
IRT parameters, and (iii) a start-up data set is available from which to build predictive
distributions for item parameters, given this collateral information. The key idea is the
treatment of the uncertainty associated with the parameters of the new items. The following
section reviews IRT test equating and linking with known itém parameters. Sources of
collateral information, and ways to bring it into the IRT framework, are then discussed.
An example from the Pre-Professional Skills Test (PPST) is introduced. Linking and
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equating procedures are then extended to the case of imperfect knowledge about item
parameters, and illustrated with the PPST data. '

IRT Linking and Equating
An item response theory (IRT) model gives the probability that an examinee will
make a particular response to a particular test item as a function of unobservable parameters
for that examinee and that item (Hambleton, 1989). This paper addresses scalar parametric
models for dichotomous test items, but the ideas apply more generally. Define Fj(8), the

item response function for Item j, as follows:

F6)=P(x;=110.8;) , )
where X; is the response to Item j, 1 for right and 0 for wrong; 6 is the examinee ability
parameter, and B; is the (possibly vector-valued) parameter for Item j. Our example uses

the 3-parameter logistic IRT model:
Fj(0) =cj + (1-cj) ¥[af-by)):

here ¥ is the logistic distribution function, or ¥(t) = (1+exp(-t))'!, and Bj=(a;.bj.c))
conveys the sensitivity of Item j, its difficulty, and the tendency of examinees with very
low values of 6 to answer it correctly. Under the usual IRT assumption of local or
conditional independence, the probability of a vector of responses x=(x},....Xp) to n items
is the product over items of terms based on (1):

dlxi0,8) = [T F®*[1-F;@)"™,

= ¢

where B=(B1.,....Bn)-

IRT Linking and Equating when Item Parameters are Known
If item parameters were known, one way to compare performances on different

tests would be to make inferences on the 0 scale, using an estimator such as the maximum
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likelihood estimate or one of the Bayesian estimates described below. The varying degrees
of difficulty and accuracy among test forms are accounted for by the different parameters of
the items that comprise them. Equation (2) is interpreted as a likelihood function for 6,
L(6ix,B), once x has been observed. The value of 6 that maximizes L is the maximum
likelihood estimate (MLE) 8 Its variance, Var(ale,B), can be approximated by the second
derivative of log L evaluated at 8 The posterior density of 6 with respect to the prior
density p(0) is obtained as

p(6ix,B) =« L(6ix,B) p(0) . 3)

The mean of (3) is the Bayes mean estimate -9_; the variance, Var(06ix,B), indicates the
remaining uncertainty. The mode of (3) is the Bayes modal estimate 3

Alternatively, the IRT model can be used to generate an equating function between
number-right or percent-correct scores on two tests, through “IRT true-score test equating”
(Dorans, 1990; Lord, 1980). The expected number-right score on Test A for an examinee
with proficiency 0 is given by

@)= p(x;=110,8) =D F;®),

j€Sa j€Sa @)
where S, is the set of indices of items thtat appear in Test A. The expected score on Test
B, 15(8), is defined analogously. Scores on two tests are “true-score equated” if they are
expected values of the same value of 0, and the IRT true-score equating line is the plot of
all pairs of equated Test A and Test B true scores: {(14(6),15(6)))} for Be (<o, 42).2
Note that the averaging that occurs in (4) is for fixed 0, over the uncertainty associated with
the observational setting. Specifically, the uncertainty in scores for a given 0 in standard

IRT true-score equating is the 0 or 1 for each x;j, with B; assumed known.

2 Under the 3PL, this relationship does not give equatings for scores below the sum of the
cjs on a given test The practical solution is generally to extend the relationship from the

lowest point on the true-score equating curve linearly down to (0,0).
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Item Parameter Estimation

But item parameters are never known with certainty; they must be estimated from
observable data of one kind or another—in practice, almost always from samples of
examinee responses. Bayesian inference about B (e.g., Mislevy, 1986; Tsutakawa & Lin,

1986) begins with a (possibly uninformative) prior distribution p(B), a known or
concurrently estimated examinee population density p(6), and a response matrix
X=(x1,...,.XN) from a sample of N independently-responding examinees.3 The posterior
distribution of B is

P(BIX) = p(B) L(BIX) (5)
where L(BIX) is the marginal likelihood function for the item parameters (Bock & Aitkin,
1981):

N
LBIX)=]] ] plx;10;,B) p(8;) d8; .

i=1 (6)
One can obtain Bayes mean estimates B or Bayes modal estimates B, and a posterior
variance matrix Zp from (5), leading to the approximations p(BIX) ~ N(B,Zg) or
N(B,=g). Alternatively, one obtains the MLE B by maximizing (6) with respect to B.
The consistency of B, B, and B as estimators of B justifies using item parameter estimates
from large samples of examinees as if they were known true values in IRT linking and
scaling; e.g., using L(6ix,B=B) for L(Ix,B) when estimating 6, or p(xj=1/6,B=B) for
p(xj=116,B) when calculating 7, (0) and t5(6) in equating (Lord, 1982).

If B is not well determined—i.c., p(Bl*data relevant to B”) is too spread out to be
approximated by a single-point density—this approximation understates the uncertainty

associated with subsequent inferences, and, as we shall see, can yield biased estimates.

3 Independent priors are typically posited for B and 6. Independent and identical priors

are also posited for examinees in this presentation, but see Mislevy and Sheehan (1989a)
on the role of collateral information about examinees in item parameter estimation.
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“Data relevant to B” can be examinee responses (X), collateral information about the items
(Y), or both. B is poorly determined when the examinee sample is small, or when only
collateral information about the items is available. The preceding paragraphs addressed
p(BIX); the following section addresses p(B!Y) and p(BIX,Y). We then return 1 » methods
for dealing with uncertainty about B in linking and equating.

Collateral Information about Items

This section discusses potential sources of collateral information (y;) about a test
item, and suggests ways to express this information in terms of distributions for the item'
parameters Bj. We assume the existence of a start-up data set in which both collateral
information and item parameter estimates are available from a collection of items. The basic
steps are as follows:
1. Identify features of items that are useful in predicting item operating characteristics.
2. Characterize, analytically or empirically, distributions p(Bly;) based on data from

the previously administered items.
3. Employ the distributions obtained in Step 2 as prior distributions for the Bs of new

items, conditional on their collateral data.

Sources of Collateral Information

Expert Judgment. Irving Lorge and his students studied the degree to which
experts' predictions of item difficulty could be used to construct parallel test forms (Lorge
& Kruglov, 1952, 1953; Tinkelman, 1947). Raters turned ot to be good at predicting
the relative difficulties of items, but not absolute levels of difficulty. Thorndike (1982)
found that pooled judgements from 20 trained raters accounted for between 55- and 71-
percent of the variance in item difficulties in three aptitude tests—too low, he concluded
with disappointment, to substitute for pretesting, say, a thousand examinees. In Chalifour
and Powers’ (1989) study of analytical reasoning items in the Graduate K.ecord

Examination (GRE), an experienced item writer’s predictions accounted for 72-percent of
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normalized item difficulty variance. Bejar (1983) found item writers' predictions accounted
for only about 20-percent of the variation among difficulties and among item-test
correlations in an English Usage test, and less still in a Sentence Correction test. In a
subsequent study of analogy items, test developers’ predictions accounted for 43-percent of
the variance among item difficulties (Enright & Bejar, 1989).

Test Specifications. Educational tests are written to tap skills and knowledge in a
domain of content. Osburn (1968) and Hively, Patterson, and Page (1968) suggested
building “item forms,” or templates to create items, around the important features of a
content domain. Researchers have developed numerous taxonomies to elucidate the content

domains that tests address (e.g., Mayer, 1981; Chaffin & Peirce, 1988). Test

specifications can also address item formats or modalities. Because they are integral to the
test development process, content and format specifications constitute a readily available
source of collateral information about items. Whitely (1976) accounted for 31-percent of
the variance among percents-correct of ve-bal analogy items with a taxonomy of types of
relationships. Drum, Calfee, and Cook (1981) accounted for between 55- and 94-percent
of the variance in perents-correct in 18 reading tests with “surface features” such as
proportion of content words in stems, length of distractors, word frequencies, and
syntactic structures. Chalifour and Powers (1989) accounted for 62-percent of percents-
correct variation and 46-percent of item biserial correlation variation among GRE analytical
reasoning items with seven predictors, including the number of rules presented in a puzzie
and the number of rules actually required to solve it.

Cognitive Processing Requirements. From the psychologist’s point of view, the
salient features of an item concern the operations, strategy requirements, or working
memory load of anticipated attempts to solve it. Scheuneman, Gerritz, and Embretson
(1989) accounted for about 65-percent of the variance in item difficulties in the GRE
Psychology Achievement Test and the Reading section of the National Teacher

Examination with variables built around readability, semantic content, cognitive demand,
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and knowledge demand. Mitchell (1983) derived collateral information variables from
theories of cognitive processes for the Word Knowledge (WK) and Paragraph
Comprehension (PC) tests of the Armed Services Vocational Aptitude Battery (ASVAB),
and used them to predict Rasch item difficulty parameters. The proportions of item
difficulty variance accounted for in three ASVAB forms ranged from 17- and 30-percent
for WK, and from 66- to 90-percent for PC.

Characterizing Item Parameter Distributions

Procedures for incorporating collateral information y; about test items ir ~ IRT
include Scheiblechner (1972) and Fischer’s (1973) Linear Logistic Test Model (LLTM) and
Mislevy’s (1988) extension of it. The LLTM is a 1-paranieter logistic (Rasch) IRT model
in which item difficulty parameters are lincar functions of effects for key features of items:

K
Bi=2, YijNk.
k=1

where Bj is the difficulty parameter of Item j; ik is the contribution of Feature k to item
difficulty, for k=1,... K salient itemn features; and yx;, a known collateral information
variable, signifies the extent to which Feature k is represented in Item j. In Fischer's
(1973) calculus example, the collateral information about Item j was a vector of indicator
variables yy;, for k=1,...,7, denoting whether or not cach of seven differentiation rules was
required in its solution.

Fischer and Formann (1982) list many applications of the LLTM in which
meaningful item features account for substantial proportions of item-difficulty variance, but
they note that the original goal of explaining all the variation among item difficulties is
never met in realistic applications. Mislevy (1988) exiended the LLTM to allow for
variation of difficulties among items with the same salient features, by incorporating
residuals around the LLTM estimate with variance ¢2. If the prediction model is built using
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a large number of previously-calibrated test items, a predictive distribution for the difficulty
parameier of a new item might thus be approximated as

K " ~2
PBjly) =N 3 yii Tk, ¢ )

k=1
where yj=(y1j....,yK;j). The mean of the predictive distribution, B; = z Yk; ﬁk, is
essentially the LLTM point estimate for Bj. Note that information about new items from
collateral data can be combined with examinee responses to the same items via (5), as an

informative prior distribution, to yield p(BIX,Y).

An Example from the PPST (Part 1)

The Pre-Professional Skills Test (PPST) is used to measure the reading,
mathematics, and writing skills of prospective teachers during their college years. Our
example concerns the reading tests from eight test forms administered between 1985 and
1990. Each form comprised forty items, although one or two items were excluded from
cach form due to problems with the item or the scoring key. In accordance with the item
overlap design used in the PPST, nearly all of the items on the first form éppcared in one or
more later forms; the last two forms each had twenty unique items. A “baseline” calibration
of the 144 unique items was carried out under the 3PL with a sample of approximately
5000 examinees per form, using Mislevy and Bock’s (1983) BILOG program. A second
“operational” calibration was carried out with a sample of only 500 examinees each for the
first seven forms only, using only the 103 items that did not appear on the eighth form.
This example employs a collateral information model built on the seven-form operational
data to link the eighth left-out form to the operational scale. The results obtained with the
baseline calibration are the standard of evaluation. Part 1 summarizes the building of the
collateral information model, and demonstrates the shortcomings of using the resulting

point estimates of item parameters as if they were known true values.
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The conditional distributions of estimated item parameters in the seven-form
operational calibration were approximated with a multivariate multiple regression model.
The dependent variable was the item parameter vector (slope, intercept, lower asymptote),
or Bj=(a;, -(bj/a)), c;), with a sample size of 100 items. An initial set of 30 collateral
variables consisted of codings of items’ content and cognitive processing features, as
proposed by a team of test developers familiar with the PPST. Two test developers rated
all items from all eight forms; the averages of their ratings were employed throughout The
collateral variables included in the final prediction model were determined from separate
step-down regression analyses on aj, -(bj/a;), and c;. For the predictors included in the
final model, descriptive summaries of the variables, proportions of rater agreement, and
the parameter values in the final multivariate regression mode! appear in Table 1.

[Insert Table 1 about here]

The proportions of variance accounted for by the prediction model were .02, .24,
and .05 for the slope, intercepis, and asymptotes. This corresponds to multiple R’s of .14,
.49, and .22. Figure 1 plots a, b, and ¢ predictions for the 39 Form 8 items against the
baseline values. Considerable variation remains for individual item difficulty (b)
parameters, and the predictions for a and ¢ parameters differ only negligibly from their
averages. Figure 2 presents the test characteristic curves (TCCs) for Form 8 as constructed
from the predictions and the baseline values. The TCCs give expected scores in the
percent-correct metric as a function of 8. Much of the noise apparent in Figure 1 has been
“cancelled out” in Figure 2, as the predicted TCC is surprisingly close to the baseline TCC.
The discrepency is systematic, however. Because only 24-percent of the variance among
item difficulties has been accounted for, estimates of the item difficulty point estimates are
too close to their mean. Items are modeled as more similar than they really are, causing the
predicted TCC to rise too sharply in this region. This problem affects the IRT true-score

equating. Figure 3 shows an equating curve based on operational estimates for Form 7 and
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prediction-based point estimates for Form 8, along with the curve obtained using baseline
item parameter estimates for both tests.

[Insert Figures 1-3 about here]

MLE: for 6 and standard errors were calculated for a random sample of 250
examinees from Form 8, using baseline item parameters and prediction-based point
estimates. Figure 4 shows the gs. A bias corresponding to the discrepencies in the TCCs
is apparent, especially at the higher end of the distribution. The scatter of the prediction-
based 85 around their baseline counterparts reflects increased uncertainty due to incomplete
inforation about item parameters, since the only difference between the two sets of
estimates is the item parameters used to calculate them. This variance is about .10. Figure
5 shows the relative change in modelled standard errors, or square roots of the variance
estimates Var(&ﬁ,B), when calculated with prediction-based point estimates of item
parameters in place of B as opposed to baseline values. The average change, about zero?,
is misleading, because the actual standard error of the © estimates should be larger; simply
calculating Var(gle,B) with B in place of B neglects uncertainty about 8s due to the
remaining uncertainty about item parameters. We shall see that ignoring this uncertainty
causes posterior variances for 6s to be underestimated by about a third in this example.

Up to this point, we have seen that collateral variables do provide potentially useful
information about item parameters. A test characteristic curve ;md as calculated with
predicted item parameters, or Bjs, are surprisingly good, given that multiple Rs for slopes,
intercepts, and lower asymptotes were only .14, .49, and .10. But the shortcomings of
these “best estimate” point predictions for item parameters are scnous enough to pmvcnt us
from simply using them as if thcy were true f; values. Biases in Os appear because the B,s
are too clustered around their average. More seriously, disregarding the uncertainty about

item parameters causes substantial understatement of the uncertainty about 8s. In this

4 The curvature is due to the clustering of predicted item difficulties around their average.
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example, a variance component of .10, about half the average of the usual error variance
estimate for as, is being ignored.
[Insert Figures 4 & 5 about here]
IRT Linking and Equating when Item Parameters
Are Not Known with Certainty
Consider inferences about 6 with imperfect knowledge about B, conveyed through
p(Bldata), where “data” refers to a calibmtion-sampic X of responses from N examinees,
collateral information about items, or both. The probatjve value about 8 from x is now
expressed through what is sometimes called an average likelihood function, which accounts

for uncertainty about B by averaging over its distribution:

L(6Ix,data concerning B) = I L(8ix,B) p(Bldata concerning B) dB .
)]

Tsutakawa compared Bayesian inferences about 0 using p(BIX) and B=B, under the 2-
and 3-parameter logistic models (the 2PL and 3PL). Under the 2PL, the more accurate
estimates of Var(6Ix) using p(BIX) were higher than the usual approximation,
Var(8ix,B=B), by an average of 4 percent with N=400, and up to 30 percent with N=100
(Tsutakawa & Soltys, 1988). Under the 3PL with N=400, increases ranged from 50
percent to over 1000 percent in unfavorable cases (Tsutakawa & Johnson, 1990).
Similarly, uncertainty about item parameters must be taken into account in IRT true-
score equating. For a fixed value of 8, knowledge about the observed score distribution
must take into account uncertainty about item parameters as well as uncertainty about item

responses. This requires integrating over p(Bidata) in (4) to obtain expected scores:

1(0) = Edta(®)] = Y, [ p(xj=110,B)) p(Bjdata) dB; .

jes ®)

The IRT true-score equating line now matches values of TA(6) and (6).
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We note in passing that this extended definition of IRT true-score equating is
consistent with a familiar practice from true-score test theory: treating total scores with the
same value as equivalent when tests are random samples of items from the same pool.
“True score” in this case is defined as expected percent-correct in the pool, which is
naturally the expected percent-correct in a random sample of items. The fact that some
samples of items will be harder than others is accounted for by adding a between-forms
variance component to statements about the precision of student scores (Cronbach, Gleser,
Nanda, & Rajaratnam, 1972). This component can be reduced if, instead of simple
random sampling, stratified sampling according to content specifications is used to select
items; that is, prespecified numbers of items are selected from “bins” of similar items.
Items may not be literally drawn from an existing pool, but conceptually sampled through
the process of writing tests to the same content specifications. This presentation extends
the idea to tests constructed with possibly different numbers of items from different bins.

Numerical procedures to carry out the integration required in (7) and (8) include the
second-order approximation Tsutakawa used and Rubin’s (1987) multiple imputations, a
variant of Monte Carlo integration (Mislevy & Yan, in press, apply this technique to
uncertainty about item parameters). The current presentation employs Lewis’s (1985)
“expected response curve” approach, which is now described below.

Expected Response Curves

In dichotomous IRT models, the expected value of a correct response to Item j
given 0 and B is Fj(6)=P(x;=116,8;). If B; is only partially known, through p(B;ldata), the
probability of a correct response conditional on 6 but marginal with respect to B can be
written as

F;(6) = Ey [F(®)] = I P(x;=11,B;) p(B/data)dB;,

an “expected response curve” that gives the probability of correct response conditional on 6
taking into account uncertainty about B; (Lewis, 1985).
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Even though F,-‘(e) is the expected value of a correct response at each value of 6, it
is not the same as F;j(6) evaluated with the expected value of Bj, The shape of Fj* depends
on the shape of F; and the shape of p(B;); in general, Fj‘ and F;j will not be of the same
functional form. A simple example in which they arc may aid intuition. Suppose that F; is
2-parameter normal (2PN) with slope parameter a; and difficulty parameter bj; aj is known
with centainty; and p(bjldata) is N(Bj,o?). Then Fj* is also 2PN, but with bj'=5j and

aj. = (§2+0'})'m .
In this special case, the location parameter, bj’, has the same value as the Bayes mean
estimate for bj. The slope parameter, a;*, is attenuated to account for uncertainty about bj.

Figures 6 and 7 illustrate the situation. Figure 6 concerns a 2PN curve whose slope
is known to be 1 and the whose location is known only up to p(b) ~ N(0,1). The shaded
region suggests this uncertainty with bands drawn at one and two standard deviations
around the curve defined by b=b=0. This central curve thus corresponds to the best
estimate of b under squared error loss. Also shown is F*, which is also a 2PN response
curve, and is also centered at 0, but with a=V.5=.7071. The attenuation toward a
probability of .5 can be understood from Figure 7, a slice of the posterior distribution for
P(x=116,b) at 6=1 as b ranges from -es to +eo. As a result of uncertainty about b, the
distribution for the probability of a correct response response ranges from 0 to 1. Its mean,
which is required in (8), is lower than the probability associated with the most likely value
of b due to the skew. The mean is shifted toward .5, landing, by definition, at F*(1).

[Insert Figures 6 and 7 about here]

If the information about items is independent—that is, p(Bldata)=[Ip(B;idata)—then

inferences about 0 that take uncertainty about B into account have the same conditional

independence form as when item parameters are known:

p(x8.data concerning B) = [ | ;@)™ [1-Fj(e)1'™ . .
ks €)
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After x is observed, (9) can be interpreted as an expected likelihood function for 0, say
L(x!18,data concerning B), or L(x16) for short. The posterior p(8ix) is proportional to
L(x!8) p(8), and posterior means and variances for 0 are obtained as usual, except they
take uncertainty about B into account by using Fj's rather than Fjs.

Equation (9) proves useful even if p(B) is not independent over items. Although
the dependencies among items are ignored, (9) is an example of what Amold and Strauss
(1988) call a “pseudo-likelihood;” under mild regularity conditions on the F;"s, its
maximum is a consistent estimator of 8. Thus for large n, Bayesian and likelihood noint
estimates of 8 based on (9) have the correct expectation. Indicators of their uncertainty
based on (9), however, such as the variance estimator of 8 and the posterior variance, tend
to be too optimistic. But if the dependencies among item parameter estimates are small—
and they tend toward zero as test length increases (Mislevy & Sheehan, 1989b)—the
underestimation of uncertainty about 6 from this source is minor.

Expected response curves can also be used for IRT true-score equating, with

tA(0)= TF;(0).
i (10)
Since only expectations are involved, (10) is correct whether or not p(B) is not
independent over items.

Closed-form sclutions for F* are not generally available. One way to approximate
F] is outlined below.

1. Lay out a grid of 8 values across the range of interest. Denote by Oy, the mth grid point.
2. For Item j, draw a sample of S item parameter values from p(Bjldata). Denote by gj(s) the

sth such draw .

3. Evaluate the probability of a correct response to Item j at O, using each B_i(s) in tumn, or

P(xj=110=6Bj=B;(5)). Denote the result Pjm(®).

4. The point on the expected response curve for =8y, is approximated by the average of the

values obtained in Step 3:

—
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S
F;(®m) = S1), P, .

s=1

Steps 2 and 3 generate an empirical approximation of the predictive distribution of
P(X;=118,B;) over the range of B; for fixed values of 6, an example of which appeared as
Figure 7. Step 4 is finding the posterior mean for P with respect to B; conditional on each
of the 6 points—approximations of the values on the expected response curve. Subsequent
inferences about 0 can be drawn using these values directly in a discrete approximation of
integrals involving 6 distribution, or after fitting a smooth curve to them.

It is convenient operationally to approximate each F* with the closest curve from a
familiar family—for example, the closest 3PL curve in applications based on the 3PL
model, or the closest 2PL model in applications based on the 1PL or 2PL. This approach
makes it possible to use standard software designed for popular parametric IRT models to
estimate examinee scores, construct tests, or draw equating lines; the only difference is
entering item parameters for expected response curves rather than very precise estimates of
true item parameter values. Let F** denote the target approximation. Given F*, a weighted -
least squares estimate of F** is obtained by minimizing the fitting function

L 2
Y [F*(8,B*)-F(©,)]* W,

m=1

with respect to the parameter B** of F**, where W(8p,) is a weighting function that
specifies the relative importance of matching F** to F* at various points along the 0 scale.
In practical work, one might create simulated examinees at each Gp-point in numbers that
reflect the relative importance of fitting F** at those points and with the proportion F*(8) of
them with correct answers in each group, then run a logit regression analysis or the
LOGIST computer program (Wingersky, 1983) with the “fixed 8" option to estimate the
narameters B** of a best-fitring 2PL or 3PL. Additional information that becomes available
over time, say, as examinee responses are acquired in operational testing, can be

incorporated merely by updating item parameter values under the same model.




Equating with Little or No Data
Page 17

An Example from the PPST (Part 2)

Expected response curves for the items of Form 8 were constructed from the
predictive distributions built in Part 1 of the example, with 100 draws of (a;,-(by/a)),c;) for
cach item. Multivariate normal distributions were employed for each item, with means
given by the multiple regression equations and the covariance matrix shown in Table 1. At
cach point in a 9 grid from -3 to +3 in steps of .2, the average modelled percent-correct
was evaluated from each of the 100 plausible values of B;. The average of these values
across the grid constituted a discrete, nonparametric estimate of an item’s expected
response curve. For each item, the parameters of best-fitting 3PL curves were obtained
using the method outlined in the preceeding section.

Figure 8 shows, for eight representative items, nonparametric expected response
curves and trace lines generated from baseline item parameters, point estimates from
collateral information, and from parameters of 3PL fits to expected response curves. Three
observations can be made from these tracelines, and similar ones for the rest of the items:
1. None of the approximations is impressive as an estimate of the baseline curve, although

again it is their performance as an ensemble that counts.
2. The expected response curves are noticeably shallower than the trace lines based on point

_estimates. The uncertainty about the item parameters engenders this “hedging of bets.”
3. The 3PL approximations capture the nonparametric approximations quite well. From this

point, we therefore refer to the 3PL fits as expected response curves.
It is essential to remember that *“getting good item parameter estimates” is not our objective;
rather, it is to express what we know about item parameters in a way that gives us good
subsequent inferences that involve the unknown item parameter values.

[Insert Figure 8 about here]
Figure 9 shows the test characteristic curves corresponding to the baseline estimates

and the expected response curves. The bias in the TCC in Figure 2, caused by the
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shrinkage of the point estimates of item response curves to their means, has been largely
climinated. Similar improvements are made in reducing bias for MLEs, as can be seen by
comparing Figure 10 with Figure 4. Figure 11, which should be compared with Figure 3,
shows the improvement in the estimated true-score equating line between Form 8 and Form
7. Figure 12 shows the test information curves (TICs) corresponding to the baseline item
parameter estimates, the point predictions generated in Part 1 of the example, and the
expected response curves. The reciprocals of the values on these curves are approximate
squared standard errors for MLEs of Os along the x-axis. The TIC based on point
predictions, because it ignores uncertainty about item parameters, is misleadingly high—
even higher than the TIC based on baseline estimates in the region where the predicted
difficulties are centered. The TIC based on expected response curves is appropriately
lower—about 33-percent lower than the baseline TIC on the average. Figure 13 shows the
proportional increase in the standard errors of the 250 examinees. Since information is
additive over items, one would have to administer 58 items to obtain the same precision
about a typical examinee’s 0 when using expected response curves, compared to using 39
items whose true parameters were known with certainty. This is a more honest estimate of
the impact of using items whose parameters are known only through their modest
relationships with available collateral information, to be weighed against the costs of
obtaining information from a large calibration sample of examinees.

[Insert Figures 9-13 about here]

As mentioned above, the predictive distributions built in Part 1 can also be used as
prior distributions to augment information from examinee response data. This was done
with a modified version of BILOG, using responses from a new sample of 250 Form 8
examinees. Multivariate normal posterior distributions were are obtained, with Bayes
modal estimates as means and covariance matrices for each item that reflected the sum of
precision from the collateral-information based prior and 250 examinee responses. 3PL

approximations to expected response curves were again generated. Figures 14 and 15 are




(
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the resulting TCC and TIC, and Figures 16 and 17 are the MLEs and standard errors for
the same sample of 250 examinees used in Figures 10 and 13. The TCC and individual
MLE:s are now quite accurate, in the sense of agreeing with estimates obtained with item
parameter estimates from the baseline sample. Posterior variances for examinees’ 6s
practically match those obtainable with baseline item parameter estimates.
[Insert Figures 14-17 about here]
By exploiting collateral informan'oh about items in a framework that appropriately

accounts for the remaining uncertainty, it was possible in this example to obtain consistent
estimates of examinee abilities and honestly state the uncertainty about them—with no
response data at all for the items used to measure the examinees. Using the same collateral
data to generate a prior distribution for item parameters, a supplemental calibration sample
of 250 examinees provided estimates nearly indistinguishable from those oﬁtained with the

baseline iter parameters with S000 responses or more per item.

Conclusion

The title of this paper is a bit of a come-on; the techniques we describe don’t really
equate tests without any data at all. The point is, though, that the data they require are not
the same pretesting- and equating-sample examinee data upon which previous equating

- procedures have traditionally relied. Years of research have shown that collateral

information about items can be predictive of item operating characteristics. Recent
developments in statistical methodologies make it possible to exploit this information in the
equating problem, while giving an honest account of the consequences of the remaining
uncertainties. There is no assurance that the collateral information about items available in
any particular application will be sufficiently rich to eliminate or substantially reduce
pretesting and equating. This remains to be discovered case by case. We now hope to

explore the potential of the approach in a variety of settings.
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Table 1
Descriptive Statistics and Parameter Estimates from Multivariate Regression Model

En'elation with

Item Difficulty Parameters in Regression Model
% Rater Lower
Variable Rater 1 Rater2 Agreement  Slope Intercept  Asymptote
The Item Passage
3 Syllable Words
per 100 Words .14 .20 91 -.02321
Sentences per 100
Words .01 .01 93 11101
The Item Stem
Closed? 11 .10 .99 -.19720
Hidden Negative? .00 .00 99 -.16061
Line References? 11 .11 .96 -.48298
The Options
# Arguments .18 .26 93 -07365 -.00190

Aspects of Targetted Solution Strategy

Translate Active &

Passive -.16 -.05 .90 .19295 36407
Translate Positive )

& Negative 04 15 .95 -.74103
Process Single

Sentence -.08 -.18 .83 12783
# Steps .30 .20 .70 -.11304

Residual Covariance Matrix

Slope .05156
Intercept .01821 49404

Lower Asymptote -00130 -.00161 00121
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Point Predictions of Item Parameters versus Baseline Estimates
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Comparison of Examinee Standard Errors Calculated with Baseline Estimates of Item
Parameters and Expected Response Curves from Collateral Information and 250 Examinees
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