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Abstract

Standard procedures for equating tests, including those based on

item response theory (IRT), require item responses from large numbers of

examinees. Such data may not be forthcoming for reasons theoretical,

political, or practical. Information about items' operating characteristics

may be available from other sources, however, such as content and format

specifications, expert opinion, or psychological theories about the skills and

strategies required to solve them. This paper shows how, in the IRT

framework, collateral information about items can be exploited to augment

or even replace examinee responses when linking or equating new tests to

established scales. The procedures are illustrated with data from the Pre-

Professional Skills Test (PPST).

Key words: Bayesian estimation, cognitive processes, collateral

information, equating, item response theory
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How to Equate Tests with Little or No Data

Selection and placement testing programs update their tests periodically, as the

specific content of the items becomes obsolete or familiar to prospective examinees.

Because the new test forms may differ in difficulty or accuracy even if they tap the same

underlying skills as the old forms, some kind of "equating" or "linking" is required to

compare results across forms (Angoff, 1984). Standard procedures, including those based

on item response theory (IRT), require examinee responses to both new items and items

already linked to an established scale. 1 One can determine levels of comparable

performance on new and old test forms to any desired degree of accuracy by increasing the

number of examinees in the linking sample.

Two disparate developments in educational measurement can prevent gathering the

data that standard equating procedures require. First, current legislative activity in New

York is intended to limit the administration of nonoperational items in that state, including

those used in pretesting and equating. Second, the growing interest in modeling the

cognitive processes of solving test items (Embretson, 1985) and the capability of

microcomputers to construct tasks around cognitively salient features (Bejar, 1985; Irvine,

Dann, & Anderson, in press) raise the possibility of custom-building test items for each

examinee on the spot.

Although operational equating procedures rely solely upon examinee responses,

researchers have been aware for some time of alternative sources of information about the

operating characteristics of test items. Lorge and Kruglov (1952, 1953), fo- example,

investigated the degree to which expert and novice judges could predict the difficulties of

arithmetic test items, and Guttman (1959) predicted partial orderngs and relationships

SIf Test A is administered to Group A and Test B to Group B, the tests can be equated if

either (1) tests A and B contain common items, (2) G'-ups A and B overlap, or (3) Groups
A and B are representative samples from the same population of examinees (Lord, 1982).
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among inter-item correlations between racial-attitude items constructed according to a facet

design. More recent studies with a psychometric orientation have examined the degree to

which IRT parameters can be predicted from educationally-relevant features of items (e.g.,

Fischer, 1973; Tatsuoka, 1987), and others with a psychological perspective have focused

on task attributes that are important in cognitive processing models (e.g., Whitely, 1976).

The moderate tc high relationships between item features and operating characteristics are

of conside-able theoretical importance, as a framework for assessing test validity and for

constructing tests around principles of learning and knowing.

But moderate to high relationships between item features and operating

characteristics are the information equivalent of small to moderate examinee sap.les

(Mislevy, 1988)-too little for standard large-sample equating procedures to work

properly. And when it comes to test equating, collateral information differs from response-

data information in a crucial respect: Linking information from examinee responses can be

made arbitrarily accurate by increasing the sample size, but information from collateral data

is limited by the strength of its relationship to item operating characteristics. Procedures

have not been available to provide coherent inferences about item operating characteristics,

and the equating and linking functions they imply, from data that contain substantially less

information than large samples of responses.

The present paper attacks this problem for domains in which (i) an IRT model fits

reasonably well, (ii) available collateral information about test items is correlated with their

IRT parameters, and (iii) a start-up data set is available from which to build predictive

distributions for item parameters, given this collateral information. The key idea is the

treatment of the uncertainty associated with the parameters of the new items. The following

section reviews IRT test equating and linking with known item parameters. Sources of

collateral information, and ways to bring it into the IRT framework, are then discussed.

An example from the Pre-Professional Skills Test (PPST) is introduced. Linking and
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equating procedures are then extended to the case of imperfect knowledge about item

parameters, and illustrated with the PPST data.

IRT Linking and Equating

An item response theory (IRT) model gives the probability that an examinee will

make a particular response to a particular test item as a function of unobservable parameters

for that examinee and that item (Hambleton, 1989). This paper addresses scalar parametric

models for dichotomous test items, but the ideas apply more generally. Define Fj(O), the

item response function for Item j, as follows:

F 0) -- P(XjfI 1,0) , (1)

where Xj is the response to Item j, 1 for right and 0 for wrong; 0 is the examinee ability

parameter, and P3j is the (possibly vector-valued) parameter for Item j. Our example uses

the 3-parameter logistic IRT model:

F(O)- cj + (l-cj) 'P[aJO-bj)];

here T' is the logistic distribution function, or I(t) = (l+exp(-t)) -1, and Pjs(aj,bj,cj)

conveys the sensitivity of Item j, its difficulty, and the tendency of examinees with very

low values of 0 to answer it correctly. Under the usual IRT assumption of local or

conditional independence, the probability of a vector of responses x=(xl,...,Xn) to n items

is the product over items of terms based on (1):

pOx 1-,B) = 1 FJ(o)x, [-Fj(e)]1"
J=1 (2)

where B=(3-1 .... Jn)-

IRT Linking and Equating when Item Parameters are Known

If item parameters were known, one way to compare performances on different

tests would be to make inferences on the 0 scale, using an estimator such as the maximum
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likelihood estimate or one of the Bayesian estimates described below. The varying degrees

of difficulty and accuracy among test forms are accounted for by the different parameters of

the items that comprise them. Equation (2) is interpreted as a likelihood function for 0,

L(Olx,B), once x has been observed. The value of 0 that maximizes L is the maximum

likelihood estimate (MLE) 0. Its variance, Var(0I0,B), can be approximated by the second

derivative of log L evaluated at 0. The posterior density of 0 with respect to the prior

density p(0) is obtained as

p(Oix,B) - L(OIx,B) p(0). (3)

The mean of (3) is the Bayes mean estimate 0; the variance, Var(Ox,B), indicates the

remaining uncertainty. The mode of (3) is the Bayes modal estimate 0.

Alternatively, the IRT model can be used to generate an equating function between

number-right or percent-correct scores on two tests, through "IRT true-score test equating"

(Dorans, 1990; Lord, 1980). The expected number-right score on Test A for an examinee

with proficiency 0 is given by

TA(e)= p(xj-lI0,j) = ,

je SA jE SA (4)

where SA is the set of indices of items that appear in Test A. The expected score on Test

B, TB( 0), is defined analogously. Scores on two tests are "true-score equated" if they are

expected values of the same value of 0, and the IRT true-score equating line is the plot of

all pairs of equated Test A and Test B true scores: {(TCA(O),'[B(O))) for Oe (...,+0).2

Note that the averaging that occurs in (4) is for fixed 0, over the uncertainty associated with

the observational setting. Specifically, the uncertainty in scores for a given 0 in standard

IRT true-score equating is the 0 or 1 for each xj, with [j assumed known.

2 Under the 3PL, this relationship does not give equatings for scores below the sum of the

cjs on a given test. The practical solution is generally to extend the relationship from the

lowest point on the true-score equating curve linearly down to (0,0).
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Item Parameter Estimation

But item parameters are never known with certainty;, they must be estimated from

observable data of one kind or another-in practice, almost always from samples of

examinee responses. Bayesian inference about B (e.g., Mislevy, 1986; Tsutakawa & Lin,

1986) begins with a (possibly uninformative) prior distribution p(B), a known or

concurrently estimated examinee population density p(O), and a response matrix

X=(xl,...,xN) from a sample of N independently-responding examinees. 3 The posterior

distribution of B is

p(BIX) cc p(B) L(BIX) (5)

where L(BIX) is the marginal likelihood function for the item parameters (Bock & Aitkin,

1981):
Nf

L(BIX) f p(xileiB) p(Oi) dOi.
i=1 J(6)

One can obtain Bayes mean estimates Bor Bayes modal estimates B, and a posterior

variance matrix 1B from (5), leading to the approximations p(BIX) - N(B, B) or

N(B,1B). Alternatively, one obtains the NLE B by maximizing (6) with respect to B.

The consistency of B, B, and B as estimators of B justifies using item parameter estimates

from large samples of examinees as if they were known true values in IRT linking and

scaling; e.g., using L(O1x,B=B) for L(Ox,B) when estimating 0, or p(xj= 10,B=B) for

p(xj= 10,B) when calculating -TA(0 ) and eB( 0 ) in equating (Lord, 1982).

If B is not well determined--i.e., p(BI"data relevant to B') is too spread out to be

approximated by a single-point density-this approximation understates the uncertainty

associated with subsequent inferences, and, as we shall see, can yield biased estimates.

3 Independent priors are typically posited for B and 0. Independent and identical priors

are also posited for examinees in this presentation, but see Mislevy and Sheehan (1989a)

on the role of collateral information about examinees in item parameter estimation.

n n n u I I I
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"Data relevant to B" can be examinee responses (X), collateral information about the items

(Y), or both. B is poorly determined when the examinee sample is small, or when only

collateral information about the items is available. The preceding paragraphs addressed

p(BIX); the following section addresses p(BIY) and p(BIX,Y). We then return t - methods

for dealing with uncertainty about B in linking and equating.

Collateral Information about Items

This section discusses potential sources of collateral information (yj) about a test

item, and suggests ways to express this information in terms of distributions for the item

parameters Pj. We assume the existence of a start-up data set in which both collateral

information and item parameter estimates are available from a collection of items. The basic

steps are as follows:

1. Identify features of items that are useful in predicting item operating characteristics.

2. Characterize, analytically or empirically, distributions p(pJyj) based on data from

the previously administered items.

3. Employ the distributions obtained in Step 2 as prior distributions for the Ps of new

items, conditional on their collateral data.

Sources of Collateral Information

Expert Judenn. Irving Lorge and his students studied the degree to which

experts' predictions of item difficulty could be used to construct parallel test forms (Lorge

& Kruglov, 1952, 1953; Tinkelman, 1947). Raters turned o'nt to be good at predicting

the relative difficulties of items, but not absolute levels of difficulty. Thomdike (1982)

found that pooled judgements from 20 trained raters accounted for between 55- and 71-

percent of the variance in item difficulties in three aptitude tests-too low, he concluded

with disappointment, to substitute for pretesting, say, a thousand examinees. In Chalifour

and Powers' (1989) study of analytical reasoning items in the Graduate R ecord

Examination (GRE), an experienced item writer's predictions accounted for 72-percent of
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normalized item difficulty variance. Bejar (1983) found item writers' predictions accounted

for only about 20-percent of the variation among difficulties and among item-test

correlations in an English Usage test, and less still in a Sentence Correction test. In a

subsequent study of analogy items, test developers' predictions accounted for 43-percent of

the variance among item difficulties (Enright & Bejar, 1989).

Test Spcification. Educational tests are written to tap skills and knowledge in a

domain of content. Osburn (1968) and I-ively, Patterson, and Page (1968) suggested

building "item forms," or templates to create items, around the important features of a

content domain. Researchers have developed numerous taxonomies to elucidate the content

domains that tests address (e.g., Mayer, 1981; Chaffin & Peirce, 1988). Test

specifications can also address item formats or modalities. Because they are integral to the

test development process, content and format specifications constitute a readily available

source of collateral information about items. Whitely (1976) accounted for 31-percent of

the variance among percents-correct of ve-bal analogy items with a taxonomy of types of

relationships. Drum, Calfee, and Cook (1981) accounted for between 55- and 94-percent

of the variance in percents-correct in 18 reading tests with "surface features" such as

proportion of content words in stems, length of distractors, word frequencies, and

syntactic structures. Chalifour and Powers (1989) accounted for 62-percent of percents-

correct variation and 46-percent of item biserial correlation variation among GRE analytical

reasoning items with seven predictors, including the number of rules presented in a puzzle

and the number of rules actually required to solve it.

Cognitive Processing Requirements. From the psychologist's point of view, the

salient features of an item concern the operations, strategy requirements, or working

memory load of anticipated attempts to solve it. Scheuneman, Gerritz, and Embretson

(1989) accounted for about 65-percent of the variance in item difficulties in the GRE

Psychology Achievement Test and the Reading section of the National Teacher

Examination with variables built around readability, semantic content, cognitive demand,
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and knowledge demand. Mitchell (1983) derived collateral information variables from

theories of cognitive processes for the Word Knowledge (WK) and Paragraph

Comprehension (PC) tests of the Armed Services Vocational Aptitude Battey (ASVAB),

and used them to predict Rasch item difficulty parameters. The proportions of item

difficulty variance accounted for in three ASVAB forms ranged from 17- and 30-percent

for WK, and from 66- to 90-percent for PC.

Characterizing Item Parameter Distributions

Procedures for incorporating collateral information yj about test items ir. - IRT

include Scheiblechner (1972) and Fischer's (1973) Linear Logistic Test Model (LLTM) and

Mislevy's (1988) extension of it. The LLTM is a 1-parameter logistic (Rasch) IRT model

in which item difficulty parameters are linear functions of effects for key features of items:

K

P= I ykj"k
k=1

where Pj is the difficulty parameter of Item j; nk is the contribution of Feature k to item

difficulty, for k=1,...,K salient item features; and ykj, a known collateral information

variable, signifies the extent to which Feature k is represented in Itemj. In F scher's

(1973) calculus example, the collateral information about Itemj was a vector of indicator

variables ykj, for k=1, ... ,7, denoting whether or not each of seven differentiation rules was

required in its solution.

Fischer and Formann (1982) list many applications of the LLTM in which

meaningful item features account for substantial proportions of item-difficulty variance, but

they note that the original goal of explaining all the variation among item difficulties is

never met in realistic applications. Mislevy (1988) extended the LLTM to allow for

variation of difficulties among items with the same salient features, by incorporating

residuals around the LLTM estimate with variance O2. If the prediction model is built using
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a large number of previously-calibraied test items, a predictive distribution for the difficulty

parameter of a new item might thus be approximated as

p(Ojlyj) ( Yki Tk, )

where Yj=(Yij, ... ,yKj). The mean of the predictive distribution, Aj Ykj TIk, is

essentially the LLTM point estimate for fj. Note that information about new items from

collateral data can be combined with examinee responses to the same items via (5), as an

informative prior distribution, to yield p(BIX,Y).

An Example from the PPST (Part 1)

The Pre-Professional Skills Test (PPST) is used to measure the reading,

mathematics, and writing skills of prospective teachers during their college years. Our

example concerns the reading tests from eight test forms administered between 1985 and

1990. Each form comprised forty items, although one or two items were excluded from

each form due to problems with the item or the scoring key. In accordance with the item

overlap design used in the PPST, nearly all of the items on the first form appeared in one or

more later forms; the last two forms each had twenty unique items. A "baseline" calibration

of the 144 unique items was carried out under the 3PL with a sample of approximately

5000 examinees per form, using Mislevy and Bock's (1983) BLOG program. A second

"operational" calibration was carried out with a sample of only 500 examinees each for the

first seven forms only, using only the 103 items that did not appear on the eighth form.

This example employs a collateral information model built on the seven-form operational

data to link the eighth left-out form to the operational scale. The results obtained with the

baseline calibration are the standard of evaluation. Part 1 summarizes the building of the

collateral information model, and demonstrates the shortcomings of using the resulting

point estimates of item parameters as if they were known true values.
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The conditional distributions of estimated item parameters in the seven-form

operational calibration were approximated with a multivariate multiple regression model

The dependent variable was the item parameter vector (slope, intercept, lower asymptote),

or Pj(aj, -(b/aj), cj). with a sample size of 100 items. An initial set of 30 collateral

variables consisted of codings of items' content and cognitive processing features, as

proposed by a team of test developers familiar with the PPST. Two test developers rated

all items from all eight forms; the averages of their ratings were employed throughout The

collateral variables included in the final prediction model were determined from separate

step-down regression analyses on aj, -(by/aj), and cj. For the predictors included in the

final model, descriptive summaries of the variables, proportions of rater agreement, and

the parameter values in the final multivariate regression model appear in Table 1.

[Insert Table 1 about here]

The proportions of variance accounted for by the prediction model were .02, .24,

and .05 for the slope, intercepts, and asymptotes. This corresponds to multiple R's of .14,

.49, and .22. Figure 1 plots a, b, and c predictions for the 39 Form 8 items against the

baseline values. Considerable variation remains for individual item difficulty (b)

parameters, and the predictions for a and c parameters differ only negligibly from their

averages. Figure 2 presents the test characteristic curves (TCCs) for Form 8 as constructed

from the predictions and the baseline values. The TCCs give expected scores in the

percent-correct metric as a function of 0. Much of the noise apparent in Figure 1 has been

"cancelled out" in Figure 2, as the predicted TCC is surprisingly close to the baseline TCC.

The discrepency is systematic, however. Because only 24-percent of the variance among

item difficulties has been accounted for, estimates of the item difficulty point estimates are

too close to their mean. Items are modeled as more similar than they really are, causing the

predicted TCC to rise too sharply in this region. This problem affects the IRT true-score

equating. Figure 3 shows an equating curve based on operational estimates for Form 7 and
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prediction-based point estimates for Form 8, along with the curve obtained using baseline

item parameter estimates for both tests.

[Insert Figures 1-3 about here]

MLEs for 0 and standard errors were calculated for a random sample of 250

examinees fromn Form 8, using baseline item parameters and prediction-based point

estimates. Figure 4 shows the Os. A bias corresponding to the discrepencies in the TCCs

is apparent, especially at the higher end of the distribution. The scatter of the prediction-

based Os around their baseline counterparts reflects increased uncertainty due to incomplete

information about item parameters, since the only difference between the two sets of

estimates is the item parameters used to calculate them. This variance is about .10. Figure

5 shows the relative change in modelled standard errors, or square roots of the variance

estimates Var(010,B), when calculated with prediction-based point estimates of item

parameters in place of B as opposed to baseline values. The average change, about zero4,

is misleading, because the acual standard error of the I estimates should be larger;, simply

calculating Var(010,B) with B in place of B neglects uncertainty about Os due to the

remaining uncertainty about item parameters. We shall see that ignoring this uncertainty

causes posterior variances for Os to be underestimated by about a third in this example.

Up to this point, we have seen that collateral variables do provide potentially useful

information about item parameters. A test characteristic curve and Os calculated with

predicted item parameters, or P3js, are surprisingly good, given that multiple Rs for slopes,

intercepts, and lower asymptotes were only.14, .49, and.10. But the shortcomings of

these "best estimate" point predictions for item parameters are serious enough to prevent us

from simply using them as if they were true Pj values. Biases in Os appear because the Pjs

are too clustered around their average. More seriously, disregarding the uncertainty about

item parameters causes substantial understatement of the uncertainty about Os. In this

4 The curvature is due to the clustering of predicted item difficulties around their average.
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example, a variance component of. 10, about half the average of the usual error variance

estimate for Os, is being ignored.

[Insert Figures 4 & 5 about here]

IRT Linking and Equating when Item Parameters
Are Not Known with Certainty

Consider inferences about 0 with imperfect knowledge about B, conveyed through

p(Bldata), where "data" refers to a calibration-sample X of responses from N examinees,

collateral information about items, or both. The probative value about 0 from x is now

expressed through what is sometimes called an average likelihood function, which accounts

for uncertainty about B by averaging over its distribution:

L(Olx,data concerning B) = f L(Ox,B) p(Bldata concerning B) dB

Tsutakawa compared Bayesian inferences about 0 using p(BIX) and B=B, under the 2-

and 3-parameter logistic models (the 2PL and 3PL). Under the 2PL, the more accurate

estimates of Var(O1x) using p(BIX) were higher than the usual approximation,

Var(Ox,B=fB), by an average of 4 percent with N=400, and up to 30 percent with N=100

(Tsutakawa & Soltys, 1988). Under the 3PL with N=400, increases ranged from 50

percent to over 1000 percent in unfavorable cases (Tsutakawa & Johnson, 1990).

Similarly, uncertainty about item parameters must be taken into account in IRT true-

score equating. For a fixed value of 0, knowledge about the observed score distribution

must take into account uncertainty about item parameters as well as uncertainty about item

responses. This requires integrating over p(Bldata) in (4) to obtain expected scores:

(O) aEE 9], W Yfp(xj= 110,PSj) p(A15data) dfj •
jESAJ (8)

The IRT true-score equating line now matches values of T*(0) and Tc(O).
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We note in passing that this extended definition of IRT true-score equating is

consistent with a familiar practice from true-score test theory: treating total scores with the

same value as equivalent when tests are random samples of items from the same pooL

"True score" in this case is defined as expected percent-coect in the pool, which is

naturally the expected percent-correct in a random sample of items. The fact that some

samples of items will be harder than others is accounted for by adding a between-forms

variance component to statements about the precision of student scores (Cronbach, Gleser,

Nanda, & Rajaratnam, 1972). This component can be reduced if, instead of simple

random sampling, stratified sampling according to content specifications is used to select

items; that is, prespecified numbers of items are selected from "bins" of similar items.

Items may not be literally drawn from an existing pool, but conceptually sampled through

the process of writing tests to the same content specifications. This presentation extends

the idea to tests constructed with possibly different numbers of items from different bins.

Numerical procedures to carry out the integration required in (7) and (8) include the

second-order approximation Tsutakawa used and Rubin's (1987) multiple imputations, a

variant of Monte Carlo integration (Mislevy & Yan, in press, apply this technique to

uncertainty about item parameters). The current presentation employs Lewis's (1985)

"expected response curve" approach, which is now described below.

Expected Response Curves

In dichotomous IRT models, the expected value of a correct response to Item j

given e and B is Fj(@)-P(xj=l10,Pj). If Pj is only partially known, through p(P15data), the

probability of a correct response conditional on e but marginal with respect to B can be

written as

() aEp [Fj(O)] f P(xj=llOP ) p(Pjldata) d~j,

an "expected response curve" that gives the probability of correct response conditional on 0

taking into account uncertainty about j (Lewis, 1985).
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Even though Fj*(0) is the expected value of a correct response at each value of 0, it

is not the same as Fj(0) evaluated with the expected value of Pj. The shape of Fj* depends

on the shape of Fj and the shape of p(fj); in general, Fj* and Fj will not be of the same

functional form. A simple example in which they are may aid intuition. Suppose that Fj is

2-parameter normal (2PN) with slope parameter aj and difficulty parameter bj; aj is known

with certainty; and p(bjldata) is N(bj,oa;). Then Fj* is also 2PN, but with bj*=bj and

;1=

In this special case, the location parameter, bj, has the same value as the Bayes mean

estimate for bj. The slope parameter, aj*, is attenuated to account for uncertainty about bj.

Figures 6 and 7 illustrate the situation. Figure 6 concerns a 2PN curve whose slope

is known to be 1 and the whose location is known only up to p(b) - N(0,1). The shaded

region suggests this uncertainty with bands drawn at one and two standard deviations

around the curve defined by b=b=O. This central curve thus corresponds to the best

estimate of b under squared error loss. Also shown is F", which is also a 2PN response

curve, and is also centered at 0, but with a=4 .5=.7071. The attenuation toward a

probability of .5 can be understood from Figure 7, a slice of the posterior distribution for

P(x=1I0,b) at 0=1 as b ranges from -- to +-c. As a result of uncertainty about b, the

distribution for the probability of a correct response response ranges from 0 to 1. Its mean,

which is required in (8), is lower than the probability associated with the most likely value

of b due to the skew. The mean is shifted toward .5, landing, by definition, at F*(1).

[Insert Figures 6 and 7 about here]

If the information about items is independent-that is, p(BIdata)=Ilp(P13data)-then

inferences about 0 that take uncertainty about B into account have the same conditional

independence form as when item parameters are known:II

p(xl0,data concerning B)= -i F*(0)1' [ I F(0)] 'xJ• •

j=1 (9)
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After x is observed, (9) can be interpreted as an expected likelihood function for 0, say

L(xl0,data concerning B), or L(xI0) for short. The posterior p(O1x) is proportional to

L(xIO) p(0), and posterior means and variances for 0 are obtained as usual, except they

take uncertainty about B into account by using Fj*s rather than Fjs.

Equation (9) proves useful even if p(B) is not independent over items. Although

the dependencies among items are ignored, (9) is an example of what Arnold and Strauss

(1988) call a "pseudo-likelihood;" under mild regularity conditions on the Fj*s, its

maximum is a consistent estimator of 0. Thus for large n, Bayesian and likelihood ,oint

estimates of 0 based on (9) have the correct expectation. Indicators of their uncertainty

based on (9), however, such as the variance estimator of 0 and the posterior variance, tend

to be too optimistic. But if the dependencies among item parameter estimates are small-

and they tend toward zero as test length increases (Mislevy & Sheehan, 1989b)-the

underestimation of uncertainty about 0 from this source is minor.

Expected response curves can also be used for IRT true-score equating, with

'E() Fj (0). (0
J(10)

Since only expectations are involved, (10) is correct whether or not p(B) is not

independent over items.

Closed-form solutions for F" are not generally available. One way to approximate

F is outlined below.

I. Lay out a grid of 0 values across the range of interest Denote by Om the mth grid point.

2. For Item j, draw a sample of S item parameter values from p(jidata). Denote by j(s) the

sth such draw.

3. Evaluate the probability of a correct response to Item j at em using each N(s) in turn, or

P(xjlB0=()mej=1j(s)). Denote the result Pjm(s).

4. The point on the expected response curve for 0=% is approximated by the average of the

values obtained in Step 3:
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F;*(em) - S1X P (5)
8=1

Steps 2 and 3 generate an empirical approximation of the predictive distribution of

P(Xj= I 11,0j) over the range of Pj for fixed values of 0, an example of which appeared as

Figure 7. Step 4 is finding the posterior mean for P with respect to Aj conditional on each

of the 0 points--approximations of the values on the expected response curve. Subsequent

inferences about 0 can be drawn using these values directly in a discrete approximation of

integrals involving 0 distribution, or after fitting a smooth curve to them.

It is convenient operationally to approximate each F* with the closest curve from a

familiar family-for example, the closest 3PL curve in applications based on the 3PL

model, or the closest 2PL model in applications based on the 1PL or 2PL. This approach

makes it possible to use standard software designed for popular parametric IRT models to

estimate examinee scores, construct tests, or draw equating lines; the only difference is

entering item parameters for expected response curves rather than very precise estimates of

true item parameter values. Let F** denote the target approximation. Given F*, a weighted

least squares estimate of F"° is obtained by minimizing the fitting function

M[F"(€nB")- F'(Om)]2 W(O.)
m--1

with respect to the parameter I3" of F", where W(8,m) is a weighting function that

specifies the relative importance of matching F*" to F" at various points along the 0 scale.

In practical work, one might create simulated examinees at each %r-point in numbers that

reflect the relative importance of fitting F*" at those points and with the proportion F*(0) of

them with correct answers in each group, then run a logit regression analysis or the

LOGIST computer program (Wingersky, 1983) with the "fixed 0" option to estimate the

parameters B** of a best-fitting 2PL or 3PL Additional information that becomes available

over time, say, as examinee responses are acquired in operational testing, can be

incorporated merely by updating item parameter values under the same model.
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An Example from the PPST (Part 2)

Expected response curves for the items of Form 8 were constructed from the

predictive distributions built in Part 1 of the example, with 100 draws of (aj,-(bJ/a),cj) for

each item. Multivariate normal distributions wer employed for each item, with means

given by the multiple regression equations and the covariance matrix shown in Table 1. At

each point in a 0 grid from -3 to +3 in steps of .2, the average modelled percent-correct

was evaluated from each of the 100 plausible values of j. The average of these values

across the grid constituted a discrete, nonparametric estimate of an item's expected

response curve. For each item, the parameters of best-fitting 3PL curves were obtained

using the method outlined in the preceeding section.

Figure 8 shows, for eight representative items, nonparametric expected response

curves and trace lines generated from baseline item parameters, point estimates from

collateral information, and from parameters of 3PL fits to expected response curves. Three

observations can be made from these tracelines, and similar ones for the rest of the items:

1. None of the approximations is impressive as an estimate of the baseline curve, although

again it is their performance as an ensemble that counts.

2. The expected response curves are noticeably shallower than the trace lines based on point

estimates. The uncertainty about the item parameters engenders this "hedging of bets."

3. The 3PL approximations capture the nonparametric approximations quite well. From this

point, we therefore refer to the 3PL fits as expected response curves.

It is essential to remember that "getting good item parameter estimates" is not our objective;

rather, it is to express what we know about item parameters in a way that gives us good

subsequent inferences that involve the unknown item parameter values.

[Insert Figure 8 about here]

Figure 9 shows the test characteristic curves corresponding to the baseline estimates

and the expected response curves. The bias in the TCC in Figure 2, caused by the
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shrinkage of the point estimates of item response curves to their means, has been largely

eliminated. Similar improvements are made in reducing bias for MLEs, as can be seen by

comparing Figure 10 with Figure 4. Figure 11, which should be compared with Figure 3,

shows the improvement in the estimated uue-score equating line between Form 8 and Form

7. Figure 12 shows the test information curves (TICs) corresponding to the baseline item

parameter estimates, the point predictions generated in Part 1 of the example, and the

expected response curves. The reciprocals of the values on these curves are approximate

squared standard errors for MLEs of Os along the x-axis. The TIC based on point

predictions, because it ignores uncertainty about item parameters, is misleadingly high--

even higher than the TIC based on baseline estimates in the region where the predicted

difficulties are centered. The TIC based on expected response curves is appropriately

lower-about 33-percent lower than the baseline TIC on the average. Figure 13 shows the

proportional increase in the standard errors of the 250 examinees. Since information is

additive over items, one would have to administer 58 items to obtain the same precision

about a typical examinee's 0 when using expected response curves, compared to using 39

items whose true parameters were known with certainty. This is a more honest estimate of

the impact of using items whose parameters are known only through their modest

relationships with available collateral information, to be weighed against the costs of

obtaining information from a large calibration sample of examinees.

[Insert Figures 9-13 about here]

As mentioned above, the predictive distributions built in Part 1 can also be used as

prior distributions to augment information from examinee response data. This was done

with a modified version of BILOG, using responses from a new sample of 250 Form 8

examinees. Multivariate normal posterior distributions were are obtained, with Bayes

modal estimates as means and covariance matrices for each item that reflected the sum of

precision from the collateral-information based prior and 250 examinee responses. 3PL

approximations to expected response curves were again generated. Figures 14 and 15 are
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the resulting TCC and TIC, and Figures 16 and 17 are the MLEs and standard errors for

the same sample of 250 examinees used in Figures 10 and 13. The TCC and individual

MLEs are now quite accurate, in the sense of agreeing with estimates obtained with item

parameter estimates from the baseline sample. Posterior variances for examinees' Os

practically match those obtainable with baseline item parameter estimates.

[Insert Figures 14-17 about here]

By exploiting collateral information about items in a framework that appropriately

accounts for the remaining uncertainty, it was possible in this example to obtain consistent

estimates of examinee abilities and honestly state the uncertainty about them--with no

response data at all for the items used to measure the examinees. Using the same collateral

data to generate a prior distribution for item parameters, a supplemental calibration sample

of 250 examinees provided estimates nearly indistinguishable from those obtained with the

baseline item parameters with 5000 responses or more per item.

Conclusion

The title of this paper is a bit of a come-on; the techniques we describe don't really

equate tests without any data at all. The point is, though, that the data they require are not

the same pretesting- and equating-sample examinee data upon which previous equating

procedures have traditionally relied. Years of research have shown that collateral

information about items can be predictive of item operating characteristics. Recent

developments in statistical methodologies make it possible to exploit this information in the

equating problem, while giving an honest account of the consequences of the remaining

uncertainties. There is no assurance that the collateral information about items available in

any particular application will be sufficiently rich to eliminate or substantially reduce

pretesting and equating. This remains to be discovered case by case. We now hope to

explore the potential of the approach in a variety of settings.
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Table 1
Descriptive Statistics and Parameter Estimates from Multivariate Regression Model

Correlation with
Item Difficulty Parameters in Regression Model

% Rater LowerVariable Rater 1 Rater 2 Agre ment Slope Intercept Asymptote

The Item Passage

3 Syllable Words
per 100 Words .14 .20 .91 -.02321

Sentences per 100
Words .01 .01 .93 .11101

The Item Stem
Closed? .11 .10 .99 -.19720
Hidden Negative? .00 .00 .99 -. 16061
Line References? .11 .11 .96 -.48298

The Options
# Arguments .18 .26 .93 -.07365 -.00190

Aspects of Targetted Solution Strategy

Translate Active &
Passive -. 16 -.05 .90 .19295 .36407

Translate Positive
& Negative .04 .15 .95 -.74103

Process Single
Sentence -.08 -.18 .83 .12783

# Steps .30 .20 .70 -.11304

Residual Covariance Matrix
Slope .05156
Intercept .01821 .49404
Lower Asymptote -.00130 -.00161 .00121
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