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ABSTRACT

Due to the increase in data throughput potential provided by high speed (fiber optic) net-

works, existing transport protocols are becoming increasingly incapable of providing reli-

able and timely transfer of data. Whereas in networks of the past it was the transmission

medium that caused the greatest communications delay, it is the case today that the trans-

port protocols themselves have become the bottleneck. This thesis provides detailed in-

sight into the issues that are affecting the development of the next generation of high speed

transport protocols, and includes a formal specification and limited analysis of one such

protocol. Through a dissection of transport protocol functions, this thesis illustrates some

of the problems which are hindering optimal performance, and demonstrates some of the

design considerations of new transport protocols which are providing significant gains in

efficiency. Three of the most promising lightweight transport protocol research projects

are surveyed to provide a frame of reference for the newly emerging design paradigm: tak-

ing advantage of the low error rate of fiber optic media to optimize success, rather than

compensate for failure.
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I. INTRODUCTION

A. BACKGROUND

The introduction of high speed (Gbps) networks into the computer communications

industry has brought to light the need for a redesign effort covering implemented transport

protocols. The order of magnitude increase in data throughput potential provided by fiber

optic media has caused existing transport protocols to become increasingly incapable of

providing timely and reliable transfer of data. Whereas in networks of the past the

physical limitations of the medium caused a significant percentage of the communication

delay, today protocol processing has become the bottleneck. In [NETR90], the authors

show that long latency, high speed networks using current transport protocols could

experience states in which a transmission or network error or buffer overflow could

necessitate retransmission of 60 Mbits of data.

Protocol designers are developing a new generation of transport protocols which

focus upon exploiting the high bandwidth, low transmission error capabilities of fiber

optics. Most current research refers to these new protocols as lightweight, or high-speed

transport protocols. The approach taken to produce these protocols is quite different from

that used in developing past transport protocols in that the design process is centered upon

optimizing performance toward successful packet transmission, rather than toward

building robustness to compensate for transmission failure.

B. OBJECTIVES

In this thesis, the design considerations for lightweight transport protocols will be

investigated in detail. This will include a review of transport protocol functions, and a

discussion of the shortcomings of currently implemented transport protocols which makes



them unacceptable for use with high-speed networks. A survey of current transport

protocol research projects will be presented to illustrate some of the new features which

may be integrated into future communication systems.

The major contribution of this thesis is the formal specification of the lightweight

transport protocol introduced in [NETR90], and an analysis of that protocol in terms of

functional efficiency . Because the formal specification in this thesis is built upon the

informal specification presented in that paper, and because many references will be made

to the informal specification, it will be referred to throughout this thesis as the AT&T

Specification. By modeling the protocol using the System of Communicating Machines

(SCM) model described in [LUND88], the behavior of the protocol is clearly defined, and

its functionality demonstrated.

C. SCOPE

This thesis is a study of the functions and capabilities of lightweight transport

protocols, including the formal specification and analysis discussed above. The

specification presented lends itself very well to simulation or automated analysis of the

protocol in that the communicating machines and processes are well-defined entities

which interact through clearly established communication channels [ROTH92].

Performance tests between this and other lightweight transport protocols have not yet

been conducted, though [DOER90] does present a very informative comparison of the

design features of the most promising research projects.

The formal specification section of this thesis refines the precision of the AT&T

Specification by modifying some of the state machines and data structures used to model

communication processes. The specification also expands the scope of the AT&T

Specification by including the connection establishment and disestablishment functions of

the protocol. The AT&T Specification is not repeated here, and a complete summary of



modifications is not included. In instances where significant modifications were

necessary a discussion of relevant design considerations is included.

An analysis of some specific protocol functions is included to illustrate the use of the

SCM model, and to provide a more convenient presentation of the protocol's execution.

Included in the analysis is a discussion of some of the features of the protocol which may

hinder its performance in some high-speed environments.

The specification does not explicitly present management of a multiplexed

connection. From an abstract viewpoint, the specification could be duplicated for every

logical connection of a multiplexed port, with a logical connection identifier field used to

route incoming packets to the appropriate processing location.

D. ORGANIZATION

This thesis is organized into three primary sections, with topics covered toward the

end of the thesis building upon concepts discussed earlier. The first section contains

Chapters II and III, which cover general transport protocol functions, and a survey of

lightweight protocol research projects. The purpose is to set the stage for the more

detailed discussions and protocol specification which follow. The primary responsibilities

of a transport protocol are studied, and the requirement for lightweight protocols is made

clear.

A general description of the AT&T Transport Protocol is given in Chapter IV, the

formal definition of the SCM model in Chapter V, definitions for the specification

structures in Chapter VI, and the formal specification of the AT&T Transport Protocol in

Chapter VII. Chapters IV through VI are a necessary introduction to the formal

specification in that the specification itself does not elaborate upon the details of its

processes. Having gained an understanding of the various components of the model and

the functionality of the protocol, the reader will find it much easier to follow the formal



specification.

Finally, an analysis of some of the key features of the protocol is presented in Chapter

VIII, and a conclusion to the thesis is provided in Chapter DC. The results of the research

will be discussed, and recommendations for future study will be offered.



H. TRANSPORT PROTOCOLS

A. COMMUNICATIONS ARCHITECTURES

In order to fully understand the function of transport protocols it is necessary to be

familiar with the concept of a communications architecture. Simply stated, a

communications architecture is a set of protocols, each of which uses the services of a

given subset of the protocols, and provides services to another (disjoint) subset. Typically,

the protocols in the architecture are layered or hierarchically organized so that there is a

continuous flow of responsibility, from establishing connectivity between communicating

entities at the lowest level to providing a well integrated user interface at the upper level.

In some architectures a particular protocol may only use the services of the protocol

directly preceding it (in terms of functional responsibility), and may only provide services

to the protocol directly subsequent to it. The most notable example of this structure is the

International Standards Organization (ISO) Open Systems Interface(OSI) model, which

requires a seven layered architecture at each communicating entity. Each layer of the

"stack" contains a separate protocol which is responsible for performing a specific

function relating to transmission or receipt of a data packet. Logically, a given layer

within the stack communicates directly with its corresponding layer in another stack. In

actuality, any communication between two corresponding layers may only be conducted

by passing a data packet through each of the protocol layers preceding them in the stack.

Figure 1 shows an abstract view of the communication process in the ISO OSI model.

In other architectures the relationship between the various protocols may not be so

ordered. In the late 1970's the Defense Advanced Research Projects Agency (DARPA)

constructed a communications architecture which has grown to serve most of the United
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Figure 1 : ISO OSI Communication Architecture Model

States and many foreign countries as well. This architecture is commonly referred to as

TCP/IP, and the international network infrastructure which uses this architecture is called

"The Internet".

In TCP/IP, the protocol set is hierarchically organized rather than strictly layered. As

a result, a particular protocol may use the services of more than one other protocol in the

set, whereas in the OSI model, a particular protocol could only use the services of its

predecessor. The term "layer" does not map into the TCP/IP model precisely, though in

this thesis it will be used to refer to either an OSI layer or a TCP/IP

functional responsibility. Figure 2 shows the organization of the TCP/IP suite of

protocols [STAL88].

B. TRANSPORT PROTOCOL FUNCTIONS

Within a communications architecture the transport protocol is responsible for

ensuring the reliable, end-to-end communication of data and control information. The

transport protocol uses the services of the layers "beneath" it , either directly or indirectly,

to pass data or control packets across a communication channel or network. In the OSI

model, the fourth layer contains the transport protocol (TP4). In TCP/IP, the transport



Figure 2 : TCP/IP Communication Architecture Model

protocol is called the Transmission Control Protocol (TCP), which partially "surrounds"

the Internet Protocol (IP).

A user of a communications system must have confidence that information intended

for transmission to a remote site will get to that site without loss or error. Because the

quality of the communication medium may vary drastically from connection to

connection, and because the nature of the connection itself may vary from a point-to-point

connection to one with multiple intermediary entities, a transport protocol must provide a

range of services to meet the needs of the particular application involved. In general, four

basic responsibilities are covered: connection management, acknowledgment of received

packets, flow control, and error detection and recovery. Though a particular application

may or may not require all of these functions, a transport protocol must be capable of

providing them.

1. Connection Management.

The service provided by a transport protocol may be either connectionless or

connection oriented. In connectionless mode data packets (datagrams) are routed



individually through the network according to routing algorithms which attempt to

optimize network performance in terms of point-to-point delay and congestion control. In

connection oriented (virtual circuit) mode the transport protocol is responsible for

establishing, maintaining, and properly closing a connection between two communicating

entities. Once this connection has been established, all packets follow the same route

between communicating entities and therefore arrive in proper sequential order.

Connectionless service is desirable for short messages which may be confined to

a single packet because there is no overhead associated with establishing and mamtaining

a communication route. Additionally, connectionless mode is more robust in adapting to a

dynamic network environment. Whereas a virtual circuit connection would be

unexpectedly disconnected if any of the nodes or channels along its route failed, a

datagram service could adapt to network failures by rerouting packets along a path that

avoided the failed components.

For transfer of larger files which are split up amongst many packets,

connectionless mode requires the transport protocol to manage the sequencing of those

packets, so that if packets which traveled on different routes are received out of order, they

may be properly reordered. Normally, connection oriented mode is used for transfer of

voluminous data because the overhead necessary to establish the connection is more than

offset by the convenience of sequential data packet delivery.

During connection establishment a number of parameters for the transfer of data

must be negotiated. The degree of reliability required is a determining factor in

initializing parameters which refine flow control algorithms, error detection and

correction capabilities, and acknowledgment schemes. Additionally network parameters

such as maximum bandwidth, buffer space availability at the receiver, and round trip

delay times must be determined. The transport protocol, either by using pre-established

default values or by querying the user or application for desired values, must initialize all



communication parameters necessary to manage the transfer of data.

When a connection involves communicating entities which are capable of

handling multiplexed channels, a determination must be made as to whether control

packets will be interspersed amongst data packets (in-line), or whether they will be

transferred separately on a different logical connection (out-of-line). The advantage of the

out-of-band method is that data packets can be processed in parallel with control packets,

avoiding the need for parsing to determine the content of an incoming packet. In some

cases, however, it may be advantageous to intersperse control and data packets. In cases

where the amount of data to be transferred can be contained in a single packet along with

control information, that packet could serve to both establish a connection and transfer the

data. Again, it is the nature of the connection that will determine the optimal method for

controlling the transfer of data, and it is the transport protocol which must establish the

connection environment according to the requirements of the connection.

2. Acknowledgment of Received Packets

Acknowledgment of packets by the receiving entity is often tied into mechanisms

for performing flow and error control, though in a strict sense there is a purpose to

acknowledgments that is unrelated to either.

The transmitting entity temporarily stores a copy of every data packet which is

transmitted to the receiver. When the receiver provides information to the transmitter

concerning which packets have been received {positive acknowledgment) and, in some

cases, which packets have not been received (negative acknowledgment), the transmitter

is allowed to update its current state by discarding from the storage buffer all data packets

which have been positively acknowledged. This act, in and of itself, may or may not lead

to further actions involved with flow and/or error control. In every case, however, it

allows the transmitter to transition from a state which is temporarily out of



synchronization with the receiver to a state which is in synchronization with the receiver's

state at the time of the acknowledgment. Thus the transmitter and receiver are unified in

their view of the connection state. At the lowest level, this is the purpose of the

acknowledgment process.

In many cases, variables which are used to control the acknowledgment process

are overloaded for use in both flow and error control mechanisms [CLAR88]. As will be

pointed out later, this practice may lead to problems in efficiency where a single lost

packet may hold up transmission of other packets.

3. Flow Control

At the transmitter the data to be transferred must be "framed", or inserted into an

appropriate packet format, before it can be transmitted. This encapsulation of the data

allows each protocol layer which is involved in the process to add its own control

information onto the outside of the packet that is passed to it, much as if each layer was

putting its own envelope around the data before passing it on to the next layer, and

ultimately to the receiving entity. A length field and a checksum for error detection is

normally included in each layer's control information to allow the lower layers of the

receiving entity's architecture to determine whether the packet arrived error free.

Once a packet arrives at the receiving entity, these encapsulation layers must be

analyzed and removed at each successive protocol layer until the original data is available

for processing. Additionally, the receiving transport protocol must determine whether the

arriving packet is in sequence (for datagram service), and must also place it into a

reordering buffer for eventual transfer to the receiving entity. The transport protocol must

update the state information maintained by the receiver, and must prepare

acknowledgment messages to be returned to the transmitter. Normally, the transport layer

at the receiving entity must perform much more processing per packet than its peer

10



transport layer at the transmitter.

It is imperative that the transmitter keep itself abreast of the receiver's buffer

status, so that data packets will not arrive at a rate which surpasses the receiver's ability to

process. If this situation does occur, the receiver's buffer will overflow and subsequent

incoming data packets will be lost. Flow control is the mechanism which forces the

transmitter to limit transmission of data packets based upon the current state of the

receiver's buffer.

The most common method used to implement flow control is the window. A

window represents the number of data packets that may be transmitted before pausing for

receipt of a window acknowledgment. A window size is normally based upon the size of

the receiver's buffer space, but may be larger. If the window size is chosen to be larger

than the receiver's buffer size, then the flow control algorithm must ensure that the

number of outstanding data packets (those which have been transmitted but not yet

received), when added to the number of packets currently in the receiver's buffer, does not

exceed the total buffer size. The transmitter must take this into account when calculating

the number of packets that may be transmitted between each acknowledgment from the

receiver.

At one extreme, the transmitter would be forced to delay transmission of each

data packet until acknowledgment of the previous packet was received (a window size of

one packet). This method of flow control is very inefficient and has led to a phenomenon

known as the "silly window syndrome" [DOER90]. On the other hand, exceedingly large

windows would result in frequent overflow of the receiver's buffer, necessitating

retransmission of large numbers of data packets.

11



4. Error Detection and Recovery

Errors may occur in two primary forms: loss of data, or corruption of data (bit

errors). In either case, the only means of recovering from the error is for the transmitter to

retransmit the packet(s) that was not received successfully. The mechanisms used to

detect and recover from network errors are vital to reliable and timely communications

systems.

Once a data packet has been transmitted, there are only two ways that the

transmitter can update its state information based upon the external effects caused by the

packet [ZHAN86]. First, an external report may be received. For example, an

acknowledgment from the receiver may indicate that the packet was successfully

received, and that the receiver's state information was updated appropriately.

Second, the transmitter may use local detection means, i.e. timers, to determine

that either the packet, or the acknowledgment from the receiver, was lost. If no report is

received within a predetermined amount of time, the transmitter will assume that the

packet was lost and will retransmit it. Note that in reliable systems a timer must always be

used, at least as a backup, to recover from lost acknowledgments. Timer values are based

upon an estimate of the round trip delay (RTD) between the two communicating entities.

The goal of timer algorithm designers is to minimize the amount of time necessary to

detect a loss, while at the same time minimizing false alarms which trigger superfluous

retransmission of data packets.

Error recovery mechanisms generally take one of two forms [DOER90]: Positive

Acknowledgment with Retransmission (PAR) or Automatic Repeat Request (ARQ). With

PAR. the receiver only acknowledges packets which have been received error free and in

sequence. Those packets which are not acknowledged will automatically be retransmitted

once they have "timed out", or exceeded their timer value. With ARQ, packets are

12



retransmitted based upon specific information contained in an acknowledgment. This

applies to window acknowledgment, where the packet with the sequence number below

•which every other packet has been successfully received will mark the beginning of the

window.

One method used to recover from lost packet errors is the Go-Back-N (GBN)

method. Once a lost packet has been identified, it and all subsequent packets are

retransmitted to the receiver. This method must always be used with PAR, and with ARQ

if the receiver cannot buffer out of sequence packets. The obvious disadvantage to GBN

is that many packets that were successfully received will be retransmitted.

If the receiver has a reordering buffer in which out of sequence packets can be

handled, then a selective retransmission method may be used with which only the lost

packet is retransmitted. This increases the processing requirements of the receiver, but

may be desirable in long delay or high bandwidth connections in which a great amount of

data may be in transit.

C. DESIGN CONSIDERATIONS

Prior to the introduction of fiber optic transmission media, the limiting factor in

throughput was the transmission media itself. That is, the transport protocol at the

receiving entity could easily process incoming packets at a rate which exceeded the

throughput capacity of the media. Thus, the focus of most attempts to increase throughput

was concentrated on minimizing the number of bits required to complete a transfer of

data.

Bit packing was often used to "get the most" out of every packet that was transmitted.

Additionally, variable length packet fields were used to further rninimize the number of

bits. Though both of these methods placed an additional processing requirement upon the

receiver's transport protocol, the processing rate still exceeded the throughput rate of the

13



medium.

Another problem with pre-fiber transport protocols was packet field limitations. In

[LAP091] the following example is provided:

A cross continental link between New York and California might have a

propagation delay of 30 ms. TCP supplies 16 b for byte-based credit to transmit

data. Therefore, TCP can have 65,000 unacknowledged bytes outstanding. At 1

Gb/s this amounts to 0.5 ms of transmission. After sending this data, the transmitter

must sit idle for approximately 60 ms waiting to get additional credits to transmit

data from the receiver. Obviously, this yields unacceptable throughput performance.

If the credit field were enlarged to 24 b, the transmitter could send for 134 ms, or

about 134 Mb of data before exhausting its credit. This would be sufficient time to

receive additional credit from the receiver.

Flow control mechanisms were often designed as a safeguard against exceptional

situations rather than as a function of primary importance. The consideration was not

whether the receiver could "keep up" with the transmitter's transmission rate, but whether

the transmission rate was saturating the communication channel; a situation marked by an

increase in the number of lost packets.

Network error rates were also much more common with cable than with fiber-

optic media. Error rates of 1 in 10 were common, forcing protocol designers to include

very complex error detection and recovery mechanisms. Designing protocols to

compensate for failure was a primary practice that necessitated the design of very robust,

bulky protocol standards. As will be discussed in a later section of this thesis, the low

error rate of fiber (1 in 10 ) allowed designers to adopt a new paradigm of designing for

success, rather than preparing for failure.

D. PROBLEMS WITH EXISTING TRANSPORT PROTOCOLS

The introduction of fiber optic media proved to be the catalyst for what has become a

communications revolution. The bandwidth available to transfer information has allowed

the dreams of just ten years ago to become reality. As applications which require the

14



quality of service provided by fiber optics have been developed, however, it is apparent

that existing transport protocols will not suffice. In this section, several problems which

are hindering utilization of the full potential offered by fiber optics will be discussed.

1. Timers and Round Trip Delay Estimation

As discussed in section TJ.B.4 (page 11), timers are both a necessity and a weak

point of transport protocols. The purpose of timers is to alert the transport protocol of a

possible lost packet or connection failure. In [ZHAN86], the author explicitly details the

poor performance of timers in the TCP standard. It is important to note that it is the

inherent nature of timers that cause problems rather than the specific implementation of

timers in the TCP protocol. Because timers are alarms which are based upon incomplete

infonnation, the recovery technique used to handle them must be non-optimal.

State synchronization between two communicating entities is based upon the

exchange of control information. When that control information is not available to one of

the entities, there exists a situation in which an assumption must be made as to the state of

the other. The method used by timing mechanisms to determine when a failure might

have occurred is to estimate the round trip delay (RTD), and to take action when an

expected response has not been received within that time period. The problem is in

detennining what value to use for the RTD period.

In a datagram environment such as the Internet, the route taken by any two data

packets may be different, depending on congestion or network failures. Furthermore,

even if the route is the same, delays at either end entity, or any intermediate entity, may

also vary according to the current state of the network. The overall variation in RTD can

be quite significant, and therefore any estimate of the RTD must be assumed to be

questionable at best.

If a timeout value is chosen which is too small, then many packets which may
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have only been delayed will be assumed to have been lost, leading to superfluous

retransmissions which will add to network congestion and compound the problem.

Additionally, reception of duplicate packets will increase the processing burden at the

receiver, also adding to the time that it will take for an acknowledgment to be received by

the transmitter, and again triggering additional unnecessary retransmissions.

A timeout value which is excessive will cause unnecessary waiting for valid

retransmissions by the transmitter, thus decreasing performance of the system and

negating the advantages made available by fiber optic technology. In [ZHAN86], a case is

documented in which retransmission delays went from several hundred milliseconds to

over two minutes. This is obviously unacceptable.

Some algorithms have been developed which modify the timeout value

dynamically, based upon the current perceived state of the network. These algorithms

provide somewhat better performance, but still lead to retransmission surges at the

beginning of a communication session, as there is no way to predict the initial RTD

between two entities.

As discussed earlier, timers are a necessary backup to explicit failure reporting

systems because those systems themselves may fail. Systems which rely upon timers as

their primary failure detection mechanism will continue to exhibit poor performance in

the fiber optic age. In the next chapter, some alternative mechanisms will be discussed

which attempt to circumvent the inherent weakness of timers.

2. Go Back N Method of Error Recovery

When the amount of data which is enroute between the transmitter and the

receiver is relatively small, the Go Back N (GBN) method may prove to be adequate for

recovering lost packets. Indeed, in some systems GBN must be used (page 13). However,

as alluded to in the introduction of this thesis, in long haul fiber optic networks, up to 30
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Mbits or more of data may be outstanding at any given time. Doubling that amount to

account for RTD would create a situation in which 60 Mbits of data would have to be

retransmitted to recover a lost packet using GBN.

If the receiver is capable of buffering out-of-sequence data packets, then a

selective retransmission scheme may be implemented in which only the lost packet is sent

again. This places an increasing processing requirement on the receiver, however, and

may still require timers to determine when a particular packet may be assumed lost.

While it is generally accepted that some form of selective retransmission must be

implemented in fiber optic networks, there exist a variety of research approaches which

attempt to optimize performance for error recovery. Some of these techniques will be

discussed in the next chapter.

3. Flow Control Tied to Error Detection and Recovery

The use of fiber optic media in communications networks has greatly increased

the need for high performance flow control algorithms. Whereas in existing transport

protocols flow control mechanisms are commonly tied in with error detection and

recovery, optimal high speed network performance will require a separation of the two

functions. The following example illustrates the problem [CLAR88]:

Assume that a protocol uses a window acknowledgment scheme with a window

size of 10. Assume also that the following situation exists: the transmitter has

transmitted 12 packets of data, and packet number 2 is lost; the receiver has sent an

acknowledgment to the transmitter indicating that packet number 2 has not yet been

received.

Because the transmitter has already transmitted the next 10 packets after 2, (the

protocol window size), it is prevented from transmitting any additional packets until

the 2nd packet is retransmitted and received error free by the receiver, and the

acknowledgment indicating the increased window allotment has been received by

the transmitter. This evolution takes at least one RTD, and thus causes throughput

to be controlled by how quickly the recovery can be performed.
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Future flow control mechanisms will have to address how fast packets may be

transmitted, rather than how many may be outstanding at a given time. The practice of

overloading variables to control both flow and error recovery will have to be abandoned.

In the next chapter a new method of rate control will be discussed in which packets are

transmitted according to a pre-negotiated number per time period.

4. Non-Standard Formats

Because one of the primary design features of past transport protocols was bit-

packed packet architectures, variable length and variable format fields were often used to

minimize the size of data and control packets. The amount of processing required to

decode the packets at the receiving entity was not a limiting factor in terms of throughput

because the packet processing rate exceeded the packet arrival rate.

With the order of magnitude increase in raw bandwidth made available by fiber

optic media, this practice is no longer acceptable. The most significant performance

measure of any future transport protocol will be its ability to avoid buffer overflow by

passing incoming packets on to the receiving host with a minimal amount of processing.

To achieve this goal, designers are developing operations to quickly interpret and route the

various components of standardized packets to their appropriate place within the

receiving entity's architecture.

To further enhance performance, many protocols will use multiple processors to

process the various components of the data packet in parallel. By using standard format

packets, with fields divided logically in lengths of computer words, the parallel processing

method will significantly reduce the time necessary to process a data packet.

Another approach being taken is to embed as much of the protocol as possible

into the hardware of the receiving entity's protocol processor. For systems which are

consistently used to communicate with standard and constant connection environments,
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specialized hardware architectures will be developed to completely optimize transport

protocols.

With both of these approaches, an increase in bandwidth necessary to achieve

standardization is acceptable. Because systems of the near future will not come close to

using the full available bandwidth offered by fiber optics, the inefficiencies caused by

variable packet architectures will prove negligible.
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IH. SURVEY OF LIGHTWEIGHT TRANSPORT PROTOCOLS

Currently published papers in the field of lightweight transport protocol design

consistently refer to four primary research projects which offer different solutions to the

problems discussed in the previous chapter. The purpose of this chapter is to discuss some

of the mechanisms which are being used to achieve an increase in protocol performance.

The protocols which will be discussed are: Network Bulk Transfer (NETBLT)

(Massachusetts Institute of Technology), Versatile Message Transaction Protocol (VMTP)

(Stanford University), and the Xpress Transfer Protocol (XTP) (Protocol Engines Inc.).

A. NETWORK BULK TRANSFER

The major goal of Network Bulk Transfer (NETBLT) is high throughput. In order to

use as much of the available raw bandwidth as possible, the designers chose to implement

rate control, in which the transmitter sends a predetermined number of packets per time

interval dependent upon the current network congestion and the receiver's ability to

process incoming packets. This rate is independent of round trip delay (RTD) and is

separate from the error recovery mechanism of the protocol.

Using rate control, a minimum time period for packet transmission is established.

This could lead to problems with overhead if timing mechanisms were required to work at

the granularity of a single packet. To alleviate this condition, the transmission is

controlled in groups of packets, called buffers, and is measured in terms of a burst size

(the number of packets in a burst) and a burst rate (the number of milliseconds between

the start of one burst transmission and the start of the next). Using these parameters, the

protocol is able to more accurately reflect the current state of the receiver's resources. For

example, they could represent a slow machine with little buffer space (long burst interval,
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small burst size), or a faster machine with a high process-scheduling overhead (short burst

interval, large burst size) [CLAR88].

Error recovery is also performed at the buffer level. According to the protocol design,

no packets from a buffer will be sent before all packets from the previous buffer have been

sent. The transmitter begins sending data packets at the predetermined rate upon

synchronization with the receiver (accomplished through a transmission message). The

receiver starts a timer upon receipt of the first packet, and by knowing the transmission

rate, calculates the time expected to receive the entire buffer. At the end of this time, if all

packets from the buffer have not arrived, the receiver will send a list of all missing packets

to the transmitter. The transmitter will then retransmit the missing packets in the same

burst with new data packets from the next buffer. Because the packets are identified by

buffer, the receiver does not mix them up. If all packets from a buffer are received, the

receiver sends an acknowledgment of the buffer back to the transmitter.

Testing of the NETBLT protocol resulted in the determination that initial rate control

values must be based upon information available from lower network layers. The current

state of congestion in the network is known most precisely be the gateways which service

the connection. More work is being planned to develop methods of obtaining congestion

information from these gateways.

B. VERSATILE MESSAGE TRANSACTION PROTOCOL

Versatile Message Transaction Protocol (VMTP) also uses selective retransmission to

accomplish error recovery. In contrast with NETBLT, the designers ofVMTP state that

many hosts find it easier and more efficient in processing cost to send a large amount of

data as a single blast of packets, transmitted as fast as the network allows, rather than

pacing the flow [CHER86]. So, while VMTP also uses the mechanism of grouping

packets for transmission, it does not use rate control in the same manner as NETBLT to
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monitor the transmission of these groups.

The goal of VMTP is to allow the transmitter to recognize the occurrence of a

situation in which the transmission rate is consistently overflowing the receiver's buffer.

By analyzing a bit mask from the receiver indicating which packets are missing, the

transmitter determines whether a pattern exists in which every k* packet, for example,

may be lost. If a cyclic pattern of loss exists, the transmitter assumes that it is transmitting

at a frequency which is a constant value greater that the receiver's processing rate, and

adjusts its transmission rate accordingly. The difference between this method and

NETBLT's flow control is that there is no synchronization process between the sender and

receiver, and the receiver has no active role in determining the transmission rate.

Flow control in VMTP is accomplished in units ofpacket groups. In the server-client

environment for which VMTP was specifically designed, the client must be prepared to

accept a full packet group before any packet from the group may be transmitted. In this

way, the server's resources are not tied up waiting for the client to authorize the sending of

additional packets, as with a sliding window protocol. This is a significant achievement

for a system in which many clients may be simultaneously requesting data transfers from

a single server.

C. XPRESS TRANSFER PROTOCOL

Unlike previous transport layer protocols, Xpress Transfer Protocol (XTP) is being

designed to be implemented in hardware as a VLSI chip set. Additionally, XTP will

combine the transport and network layers to achieve an integrated capability to

dynamically adjust transmission parameters based upon current network states.

Flow control in XTP is achieved through the use of parameters which provide

visibility of the receiver's buffer to the transmitter. These parameters indicate which

packets have been passed to the receiving host, which are currently in the buffer, which
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have not been received (gaps in the monotonicaUy increasing sequence), and the current

buffer space available to accept new packets. The parameters are based on units of bytes,

rather than packets, to increase the efficiency with which buffer management processing

may be accomplished. Using this method of flow control, the transmitter bases

transmission of additional packets upon the current state of the receiver's buffer, rather

than on the existence of missing packets. In other words, flow control is effectively

separated from error reporting.

In addition to flow control parameters, XTP uses rate control to adjust the

transmission of data packets. Although the flow control/buffer visibility scheme

discussed above provides the transmitter with some insight regarding the receiver's

resources, it does not provide any information regarding the receiver's ability to manage

the buffer. Rate control, as with the NETBLT protocol, guarantees that the receiver will

have enough time to process back-to-back packet bursts before the next burst is

transmitted. Rate control and flow control together allow XTP to fine tune the

transmission of data packets to a level that is optimal, based upon the current state of the

network and the receiving host. Furthennore, by encompassing the network layer

functions, the XTP transmitter gains additional insight into the state of the network to

detennine initial burst rates for data packets.

Three methods of error recovery are possible with XTP. First, once the receiver

receives an out of order sequence number, it can determine that a gap exists and that

packets may be lost. It can then inform the transmitter of this fact and await

retransmission.

Alternatively, after transmitting a predetermined group of bytes, the transmitter may

request from the receiver a list of gaps for which sequence numbers are missing. The

receiver sends the gap list to the transmitter, and selective retransmission is performed. If

the transmitter does not receive any indication from the receiver, it will eventually
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timeout, thus prompting an additional request for gaps.

D. SUMMARY

The common threads behind all of these protocols are the grouping of packets into

larger entities for purposes of error recovery and flow control, and the inclusion of some

form of rate control for dynamically adjusting the number of packets which are

transmitted during a given time period. Selective repeat is the common error recovery

method, as the go-back-N method would require retransmission of too much properly

received data. As will be demonstrated in the next chapters, the separation of flow control

and error recovery, which is incorporated into all of the protocols discussed in this chapter,

is a necessary design criteria for future transport protocols.

24



IV. THE AT&T TRANSPORT PROTOCOL

A. DESIGN PHILOSOPHY

In any reliable communication system there must exist a mechanism for

synchronizing the states of the communicating entities. The purpose of this state

synchronization process is to provide visibility of the system as a whole to each of the

individual components of the system. Using this information, the component entities may

adjust their execution, if necessary, to bring the system to a stable and steady state.

Without this mechanism, each of the component entities would be isolated, and the

communication system would be reduced to an unreliable "shoot and run" process in

which the fate of a transmitted message would be unknown.

In transport protocols it is the function of control packets to synchronize the states of

the communicating entities. The exchange of state information allows flow control and

error recovery to be performed, thus providing a degree of reliability that is necessary for

most communication processes. Normally, control packets are transmitted based upon the

occurrence of some significant event, such as the receipt of a data packet or timeout of a

retransmission timer.

In the AT&T Transport Protocol a different approach is taken. The designers chose to

exchange complete state information between the communicating entities on a periodic

and frequent basis, independent of significant events which may have occurred. This

method reduces the complexity of protocol processing by removing many of the

procedures required to recover from network inadequacies such as bit-errors, packet loss,

and out of sequence packets, and makes it more amenable to parallel processing

[NETR90] . Additionally, the protocol uses a modified selective repeat error recovery
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mechanism to perform packet retransmission efficiently.

B. ORGANIZATION

The protocol model consists of eight finite state machines (FSM); four for the

transmitting entity (labeled Tl through T4) and four for the receiving entity (Rl through

R4). Each of the four machines at a given entity carries out a specific function and

executes independendy, thus increasing the potential for a parallel processing

implementation of the protocol. The general organization of the machines is illustrated in

Figure 3. The arrows in the figure represent communication from one machine to another.

^^

Tl
(Send new blocks

and retransmit

old blocks)

^
Rl

(Receive

data packets)

1

T4
(Host interface)

T2
(Connect;

process incoming

control packets)

R2
(Connect;

process incoming

control packets)

R4
(Host interface)

W

vST3
(Send transmitter

control packet)

R3
(Send receiver

control packet)

Figure 3 : Machine Organization

C. MODES OF OPERATION

The protocol provides a degree of flexibility by allowing selection of three modes of

operation. In the first mode (mode 0) no flow control or error recovery is executed. This

may be appropriate in systems which have frequently transmitted, short life data packets.

In a remote sensing application, for example, environmental data may be transmitted
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many times per second, with each transmission making the value from the previous

transmission obsolete.

Mode 1 provides flow control, but no error detection or recovery. Mode 2 is the most

reliable mode, providing both flow control and error recovery. The specification in this

thesis does not allow dynamic modification of the operating mode, though theoretically

there is no reason why alteration of the mode could not be implemented.

D. PACKETS AND BLOCKS

To decrease the amount of congestion in the network, the number of

acknowledgments transmitted by the receiver is minimized by acknowledging packets in

groups called blocks. When a block acknowledgment is received by the transmitter, all

packets within that block are effectively acknowledged. Thus, if there are eight packets

per block, the transmission requirement upon the receiver is decreased eight times.

Similarly, if a single packet from a block is lost, all packets from that block are

retransmitted. The careful reader may wonder whether the increase in retransmitted

blocks will outweigh the savings in packet acknowledgments. The point to remember is

that lightweight protocols are designed for success, therefore over a period of time, the

savings in packet acknowledgment will be more significant.

E. CONNECTION ESTABLISHMENT

Establishment of a connection involves the standard three-way handshake, and

includes negotiation of certain parameters which will effect the execution of the protocol.

The negotiated parameters include: mode, bandwidth, packet size, block size (in units of

packets), and buffer size. In stable network environments, default values for these

parameters may be relied upon to decrease the burden of negotiation. Additionally, it is

assumed that an estimate of the round trip delay can be calculated during the connection
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establishment process. This value will be used to initialize certain local variables in

machines T3 and R3, and to determine a value for the necessary buffer size at the receiver.

F. BUFFERS

A buffer is required at the receiver to provide a capability to temporarily hold and/or

resequence data packets prior to their being passed on to the receiving host. In order to

prevent frequent overflow of this reordering buffer, it must be large enough to hold the

equivalent of the amount of data that may be transmitted during any RTD period. The

reason for this is that it takes at least one RTD for the transmitter to be notified that a

packet has been lost. During this time, the transmitter will continue to transmit new data

packets, which the receiver may not pass on to the host until the earlier lost packet is

received. Remember that one of the purposes of a transport protocol is to deliver data

packets in sequence to the receiving host. The size of the reordering buffer for this

protocol is calculated as RTD x bandwidth.

G. NOTATION

The following notation is defined in [NETR90], and is presented here for continuity.

• LW, (LW
r ) is the maximum sequence number of the block below which every

packet in every block has been correctly received as known at the transmitter (receiver).

• UW
t
(UW

r)
is the maximum sequence number of the block below which every

block has been transmitted but not necessarily acknowledged as known at the transmitter

(receiver).

• LCI is the logical connection identifier assigned to each logical connection during

connection-establishment phase. Each logical connection has its own pre-negotiated

buffer at the receiver.

• L is the largest allowed number of outstanding blocks chosen at the connection

establishment. L is chosen to be slightly larger than

[(RTD x peak bandwidth) / number ofdata bits in a block]
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and can be thought of as a window.

• LOB is a bit map representing the outstanding blocks between LW
r
and (LWr+L-

1).

• NOU (<L) is the number of outstanding blocks which have been transmitted but

not yet acknowledged by the receiver.

H. THE EVENT clock-tick

The predicate clock-tick is a periodic event which occurs in intervals of time

determined by the round trip delay and data packet transmission rate. This event is used

to initiate an evaluation of internal state variables to determine whether some action

should be taken, such as transmission of state information, retransmission of a data packet

or connection message, etc. It is helpful to think of clocktick as a timing mechanism for

the protocol.
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V. SYSTEM OF COMMUNICATING MACHINES (SCM)

In this section the model used to specify and analyze the protocol is described. A

more detailed description appears in [LUND88].

A system of communicating machines is an ordered pair C = (M,V), where

M = {m
1
,m2 ,...,mn}

is a finite set of machines, and

V- (vj,v2,...,viJ

is a finite set of sliared variables, with two designated subsets R; and W
i
specified for each

machine m
t

. The subset Rj of V is called the set of read access variables for machine m,,

and the subset Wj the set of write access variables for m,\

Each machine m
i
£ M is defined by a tuple (JS^SqJLjJ^jSj), where

(1) 5, is a finite set of states;

(2) sq £ Sj is a designated state called the initial state of m,/

(3) Lj is a finite set of local variables;

(4) N, is a finite set of names, each of which is associated with a unique pair (p,a),

where p is a predicate on the variables of Li u Ri and a is an action on the variables of

L/' vjRiKJWi. Specifically, an action is a partial function

di:LixRi^>Lix Wi

from the values contained in the local variables and read access variables to the values of

the local variables and write access variables.
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(5) X,: Si x Ni —» Si is a transition function, which is a partial function from the

states and names of m
i
to the states ofm

(
*.

Machines model the entities, which in a protocol system are processes and channels.

The shared variables are the means of communication between the machines. Intuitively,

Rj and W, are the subsets of V to which m, has read and write access, respectively. A

machine is allowed to make a transition from one state to another when the predicate

associated with the name for that transition is true. Upon taking the transition, the action

associated with that name is executed. The action changes the values of local and/or

shared variables, thus allowing other predicates to become true.

The set L, of local variables specifies a name and a range for each. The range must be

a finite or countable set of values.

A system state tuple is a tuple of all machine states. That is, if (M,V) is a system of n

communicating machines, and Sp for l<i<n, is the state of machine m,, then the n-tuple

(ty,S2 sn ) is the system state tuple of (M,V).

A system state is a system state tuple, plus the outgoing transitions which are enabled.

That is, two system states are equivalent if every machine is in the same state, and the

same outgoing transitions are enabled.

The initial system state is the system state such that every machine is in its initial

state, and the outgoing transitions are the same as in the initial global state.

The global state of a system consists of the system state, plus the values of all

variables, both local and shared. It may be written as a larger tuple, combining the system

state with the values of the variables. The initial global state is the initial system state,

with the additional requirement that all variables have their initial values. A global sate

corresponds to a system state if every machine is in the same state and the same outgoing

transitions are enabled. That is, a global state consists of a tuple of machine states, plus the

values of all variables. A system state with the same tuple of machine states and the same
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enabled outgoing transitions is the corresponding system state.

Let T(sj ,n) = S2 be a transition which is defined on machine m,-. Transition T is

enabled if the enabling predicate p, associated with name n, is true. Transition T may be

executed whenever m, is in state Sj and the predicate p is true (enabled). The execution of

T is an atomic action, in which both the state change and the action a associated with n

occur simultaneously.

Note that if the values of all variables are restricted to some finite range, then the

model can theoretically be reduced to a simple finite state machine. Otherwise, an infinite

number of global states are possible. However, even if the number of global sates is

infinite, the number of system states is finite, because of the finiteness of each machine.

This may allow a reachability analysis on the system states, when a reachability analysis

on the global states is infinite. Even when the values of all variables are of a finite range,

the number of global states in the equivalent FSM system may be so large as to be

intractable. In this paper, it is shown how this model can reduce these difficulties for a

specific protocol.
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VI. SPECIFICATION STRUCTURES

A. PURPOSE AND SCOPE

The purpose of a formal specification is to clearly define a protocol's behavior in all

possible states, and to provide a vehicle which may be used to demonstrate its execution.

The SCM model uses a combination of FSM's and Predicate Action Tables (PAT) to

provide a framework through which full or partial analysis may be performed. The PAT

contains enabling predicates and resulting actions for every transition in the system, while

the FSM's provide a view of the individual machine states as well as the overall system

state. Beginning in the initial system state, the FSM's provide the set of all possible

outgoing transitions, and the PAT reduces the set of transitions to those which are

currently enabled. In order to follow the specification for this protocol, it is necessary to

be familiar with the various structures and variables which are referenced in the enabling

predicate and action sections of the PAT

B. COMMUNICATION STRUCTURES

Each of the machines in the protocol performs a specific function in coordination with

one other machine according to the organization presented in Figure 3. The machines

communicate through the use of shared variables which affect the truth or false state of

the enabling predicates, and through communication channels which carry messages

from one communicating entity to the other. The communication channels are modeled as

queues with message reordering and deletion allowed. The reordering and deletion is

performed by an implicit channel machine (demon) which has only those two operations.

The following communication structures are used to effect the transfer of data and control
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packets, and to maintain state information used for flow control and error recovery.

1. TjCHAN

TCHAN is the communication channel from the transmitter to the receiver. It

holds message elements which represent data packets, transmitter control packets,

connection requests, connection acknowledgment confirmations, and disconnect

messages. All of these message elements are considered to be of the same type for this

specification. Messages dealing with connection management are enqueued into

TjCHAN by machine T2 and dequeued by machine R2 during the connection

establishment phase and at the close of the connection. During the data transfer phase,

machine Tl enqueues data packets, while machine T3 enqueues transmitter control

packets. Machine Rl removes data packets from TCHAN, and machine R2 removes

transmitter control packets.

2. RjCHAN

As the mirror of TjCHAN, RCHAN handles all message elements transmitted

from the receiver to the transmitter. The only message elements transmitted by the

receiver are connection acknowledgments and receiver control packets, both of which are

removed by machine T2.

3. OUTBUF

OUTBUF is a buffer space into which machine T4 deposits all data packets for

transmission to the receiver. Rather than having the transmitting host be tied up by

network delays, it can dump as much data as possible into the buffer space and divert its

processing time to other applications as it awaits notification that the transfer has been

completed, or that the buffer is empty. Machine Tl removes data from OUTBUF and

34



inserts it into data packets for transmission to the receiver.

4. INBUF

The purpose ofINBUF is to temporarily hold incoming data packets for one of

two reasons: either the receiving host is not ready to receive new packets, or the data

packets have arrived out of sequence and must be reordered and/or held pending

retransmission of a lost packet. The size ofINBUF is critical for proper flow control, and

must be able to hold at least an amount of data equal to the bandwidth delay product (RTD

x bandwidth). At the host's convenience, data packets will be removed from INBUF from

machine R4 as long they are in proper sequential order. Data packets are placed into

INBUF by machine Rl upon retrieval from TCHAN.

5. LUP TABLE

The LUP is the structure through which error recovery is performed. Each time a

data packet is transmitted, a copy of the data field from the packet is placed into the LUP

along with a count value for the block which the packet was contained in. The count field

of each LUP record is initially set to (RTD / Tin ) + cons, where cons is a constant (e.g. 2)

and Tjn = max (RTD / kou , IPT). The constant kou is typically a power of 2, such as 32,

and IPT is the average time between two data packet transmissions.

Thereafter, count is decremented by k every time the transmitter receives a

control packet from the receiver, where k is the interval between two control packet

transmissions expressed in units of Tin . The value of k is initially set equal to Tin , but is

doubled each time that the logical connection is inactive since the last control packet

transmission, up to a maximum value of max (RTD /m , IPT), where m is another constant

(e.g. 8). Upon transmission of the next data packet, k is reset to T
in

.
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The effect of this somewhat complex formula for determining the retransmission

timeout value (count) is that the protocol will automatically adjust itself based upon the

amount of data traffic being transmitted. Thus, the more data that is transmitted, the lower

the initial value of count will be. The result of this dynamic adjustment process is that the

throughput of the protocol is almost independent of the value of the round trip delay

[NETR90].

A block is scheduled for retransmission when its count value reaches zero prior

to acknowledgment. Upon retransmission of a block, all of the LUP entries containing

packets from that block have their count value reset. When a block is acknowledged, all

of the records containing packets within that block are removed from the LUP. The

advantage of maintaining the LUP table in this manner is that explicit timers are not

required to perform error recovery.

6. AREC AND RECEIVE

AREC and RECEIVE are tables maintained by the receiver which are updated as

data packets are received. Initially, all elements of both tables are set to 0. RECEIVE[i] is

set to 1 upon receipt of the / data packet of a block, and AREC[j] is set to 1 upon receipt

of all packets from the / block. AREC and RECEIVE provide the capability for selective

repeat and allow increased throughput by managing multiple blocks of data packets

simultaneously.

The LOB bit map uses AREC and RECEIVE to provide acknowledgment

information to the transmitter through the receiver control packet.

C. MESSAGE TYPES

There are no explicit type declarations within the specification. For the purposes

of this model, messages can be thought to belong to one of four categories: connection
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messages, receiver control packets, transmitter control packets, and data. The following

paragraphs describe these categories in more detail.

1. Connection Messages

Connection messages can be one of four types: connection request (Conn_Req),

connection acknowledgment (Conn_Ack), connection confirmation (ConnConf), and

disconnect (Disc). The connection establishment process follows the standard three-way

handshake.

Upon receiving a signal from its host, the transmitter sends a request for

connection, which contains recommended values for negotiated parameters, to the

receiver. The receiver analyzes the request, and if satisfied with the recommended values

simply returns an acknowledgment of the request. If the receiver cannot operate under the

parameters recommended by the transmitter, it will include modified values for those

parameters in its acknowledgment. The transmitter must then analyze the returned

acknowledgment to determine whether to accept the connection, in which case it sends a

connection confirmation to the receiver, or to reject the connection, in which case it will

send a disconnect message to the receiver and notify the host of the failed connection

attempt. Some implementations may allow the three-way handshake to begin again

automatically upon determination of a failed negotiation, repeating the process until

parameter values are eventually agreed upon.

In the event that a connection confirmation message from the transmitter to the

receiver is lost, and the receiver receives the first data packet when it expects the

confirmation, the connection will be implicit and the receiver will accept the data.
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2. Receiver Control Packets

Receiver control packets contain the state information necessary for the

transmitter to determine which actions are required to become synchronized with the

receiver. The format of the packet is shown in Figure 4.

LCI iype=0 Seq# k LW
r Buffer_available LOB Error Check

Figure 4 : Receiver Control Packet Format

The variable used to hold the instantaneous values of the receiver's state is

Rstate. Each time the event clocktick occurs, the receiver will determine whether to

send a control packet. This determination is based upon the activity on the logical

connection since the last control packet transmission, as discussed on page 35 (LUP

TABLE). If a control packet is to be transmitted, it is placed into the RjCHAN

communication channel (queue) for retrieval by the transmitter.

The Logical Connection Identifier (LCI) is used in support of multiplexed

connections to a single protocol processor or front end machine. The type field identifies

the packet as a receiver control packet, and may be used to quickly route packets in

parallel processing implementations.

The sequence numbers are maintained separately from sequence numbers of other

message types, such as data packets and transmitter control packets, and allow the

transmitter to determine whether the packet has arrived in order. Monotonically

increasing packets are kept and processed, while out of sequence packets are discarded

due to the outdated nature of their variable's values.

The interval between two control packet transmissions is contained in the variable

k, which is used to decrement the count value of LUP records. Buffer_available indicates
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to the transmitter the number of spaces available in the reordering buffer, in units of

blocks. This variable is used to control the flow of data packets to the receiver to prevent

buffer overflow and subsequent loss of packets.

3. Transmitter Control Packets

The information contained in the transmitter control packets allows the receiver

to be "smart" in the sense that it has some indication of the state of the transmitter. It is

sufficient that the receiver play a completely passive role, acknowledging blocks of data

as they arrive, and waiting for retransmission of lost packets at the convenience of the

transmitter. There is a lot the receiver can do, however, to make the transfer of data from

multiple logical connections more efficient, if it has some degree of visibility of the

transmitter's state.

The format of the transmitter control packet is shown in Figure 5. The purpose of

the first four fields is the same as for the receiver control packet. The No. ofblocks queued

field could be used by the receiver to determine how near to completion the transfer on a

particular logical connection is. The receiver could use this information in allocating

shared resources amongst several logical connections.

LCI Type=l Seq# k UW
t

No. of blocks queued Error Check

Figure 5 : Transmitter Control Packet Format

4. Data Packets

The format of a data packet is shown in Figure 6. Again, the purpose of the first

three fields is the same as for the receiver and transmitter control packets.
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LCI Type=2 Seq# Data Error Check

Figure 6 : Data Packet Format

D. OPERATIONS

To allow a more abstract modelling of the protocol within the formal specification

certain operations (subroutines) will be denned here and referenced from the Predicate

Action Table. Each operation will be applicable to particular structures or types previously

defined.

1. Operation to Reconcile Outstanding Blocks

The purpose of this operation is to update the variable NOU, which represents the

number of outstanding blocks as known by the transmitter. This is accomplished by

reconciling consecutive LOB bit-maps, the first of which is maintained by the transmitter

in the bit-map variable HOLD and represents the LOB field from the last receiver state

packet, and the second of which is the LOB field contained in the current receiver state

packet.

Operation Balance
Input Parameters: LW

r
LW

t
, L, HOLD, LOB, NOU

Output Parameters: NOU

Begin
for i = LW

r
to LW

r
-l loop

if not set(HOLD(i-LW
t
+l)) then

dec(NOU); - decrement NOU
end if;

end loop;

for i = LW
r
to LW

t
+L-l loop

if set(LOB(i-LW
r
-l)) and not set(HOLD(i-LW

t
+l)) then
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dec(NOU);
end if;

end loop;

for i = (LW
t
+L-LW

r
+l) to L loop

if set(LOB(i)) then

dec(NOU);
end if;

end loop;

End

2. Operation to Remove Acknowledged Blocks

The purpose of this operation is to update the LUP table by removing all data

packets in blocks which have been acknowledged by the receiver. The LOB bit-map and

the variable LWr both from the current receiver state packet, are used to accomplish this

task.

Operation UpdateJLUP
Input Parameters: LOB, LUP, LW

r

OutPut Parameters: LUP

Begin
for all LUP(i) loop

if LUP(i).seq < LW
r
then

remove(LUP(i));

end if;

end loop;

for all LOB(i) loop

if set(LOB(i)) then

remove(LUP(j)) where LUP(j).seq = LWr+i-l;

end if;

end loop;

End

3. Operation to Insert Received Data into Reordering Buffer

The obvious purpose of this operation is to place the data fields from incoming

data packets into a reordering buffer for sequential transfer to the receiving host. The size
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of the reordering buffer is assumed to be a multiple of the number of packets contained in

a block. That being the case, the reordering buffer can work like a ring buffer in that

modulo arithmetic can be used to "cycle" through the buffer. It is also assumed that L, the

limit on the number of outstanding blocks, will be of such a value as to prevent an

unchecked completion of an entire cycle through the buffer, and thus an inadvertent

overwriting of data. That is, if the receiving host is not retrieving data from the buffer as

fast as it is being deposited, the parameter L will cause the transmitter to delay sending

data blocks until the receiving host has "caught up".

Operation Order_Insert
Input Parameters: INBUF

Pkt (a data packet),

i (the number of packets in a block),

buffer_size (in units of blocks)

Output Parameters: INBUF

Begin
INBUF((Pkt.seq-l mod (buffer_size * i)) + 1) := Pkt.data;

if Pkt.seq-1 mod i = then

dec(buffer_available );

end if;

End

4. Operation to Retrieve Ordered Data Stream from Reordering Buffer

The receiving host will initiate and accomplish retrieval of data from the

reordering buffer. Essentially, as long as there is a steady stream of sequentially ordered

data in the buffer, the receiving host will continue to retrieve it, barring some system

problem of it's own.

Operation OrderedRetrieval
Input Parameters: INBUF, buffer_size (in units of blocks),

i (the number of packets in a block)

Output Parameters: INBUF
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Begin
index := 1 ; — some form of indexing variable

if not empty(INBUF(index)) then

pass the data stream to the host and clear INBUF(index);
inc(index); ~ increment index

if index = buffer_size then

index := 1;

end if;

if index- 1 mod i = then

inc(buffer_available);

end if;

end if;

End

5. Operation to Acknowledge Receipt of Data Blocks

The RECEWE and AREC structures provide the necessary capability to receive

and pass data to the receiving host in terms of packets, while acknowledging receipt of

data to the transmitter in terms of blocks. As with the operations which manipulate the

INBUF structure, this operation will use modulo arithmetic to maintain a "floating

window" bit-map representing the outstanding packets and blocks. To reduce the

complexity of the operation, a sequential ordering of packet sequence numbers and block

numbers will be maintained within the bit-map "window". Thus, if all packets of the i

block are received, but the i block is not the first block of the RECEIVE bit-map, then

the i block will not be cleared until all blocks below i are cleared. This does not affect

the performance of the protocol since L, the limit on the number of outstanding blocks,

will drive the number and range of the blocks represented in the RECEIVE structure.

Operation Process_Packet
Input Parameters: RECEIVE, AREC, LW

r , UWr , L,

X (the sequence number of a data packet),

i (the number of packets in a block)

Output Parameters: RECEIVE, AREC, LW
r , UWr

Begin
if not set(RECEIVE(((X-l div i)-LW

r+2) + (X-l mod i)+l) then

switch_on(RECEIVE(((X-l div i)-LW
r+2) + (X-l mod i)+l);

if (X-l divi)+l > UW
r
then
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UWr
:=(X-ldivi)+l;

end if;

if receipt of the packet completes reception ofan entire block then

if (X-l mod i)+l = LW
r
then

LW
r
:= j where j is the second unset bit in AREC;

copy all bitsfrom the j through L blocks ofRECEIVE into the

first through (L-j+1) blocks o/RECEIVE and clear the

remaining bits;

copy the j through L elements ofAREC into the first

through (L-j+1) elements ofAREC and clear the remaining
elements;

else

switch_on(AREC((X-l div i)-LWr+l))

end if;

end if;

else

discard data packet; — retransmission overlap

end if;

End

6. Operation to Evaluate Connection Request Parameters

As part of the three-way handshake connection establishment procedure, the

receiver must evaluate the transmitter's recommended values for the negotiated

parameters. Because the format of the connection request (ConnReq) message has been

left abstract, the algorithm for evaluating it must also be abstract. The purpose of this

operation is simply to allow the receiver to either accept, without modification, the

transmitter's recommended values, or to modify those parameters which are unacceptable,

and return the modified values as part of the connection acknowledgment message

{Conn Ack).

Operation Evaluate

Input Parameters: ConnReq
Output Parameters: Conn_Ack

Begin

for all negotiated parameters in ConnReq loop

ifparameter
, is not acceptable then
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modify parameter ,;

end if;

insert parametery into Conn_Ack message;

End

7. Operation to Determine Acceptability of Connection Acknowledgment

The transmitter, upon receiving the connection acknowledgment message

(Conn_Ack) from the receiver, must determine whether a successful negotiation of

parameters has occurred. If the values of the parameters returned in the ConnAck

message are acceptable, then a connection confirmation message (ConnjConf) is returned

to the receiver and the connection becomes active. Otherwise, depending upon the

implementation, the transmitter will either retransmit a connection request message

(ConnJReq), or transmit a disconnect (Disc) message and notify its host of a failed

connection attempt.

The operation to determine acceptability of the connection acknowledgment

message returns a boolean result to the transmitter.

Operation acceptable

Input Parameters: Conn_Ack
Output Parameters: boolean result

Begin

for all negotiated parameters in Conn_Ack loop

if parameter
, is not acceptable then

return False;

end if;

return True;

End
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VH. FORMAL SPECIFICATION

In the previous chapters of this thesis, the specification model and the structures used

in the specification have been defined and described in detail. In this chapter, the

specification structures will be used in a manner similar to programming language library

packages. That is, no elaboration of their methods will be revealed. It is assumed that the

reader is familiar with the functions and design characteristics of lightweight transport

protocols, and in particular with the AT&T Transport Protocol.

The first section of this chapter will describe the specific functions of each of the

protocol's FSM's. The second section contains the Variable Initialization Table (VTT) to

provide a consolidated view of all of the local and shared variables referenced within the

specification. Finally, the last section contains the PAT for the specification.

A. FINITE STATE MACHINE DESCRIPTIONS

Each of the machines in the protocol is solely responsible for performing a specific

set of tasks. The machines can be envisioned as executing in parallel, with the caveat that

the current state of shared variables may influence transitions between some states. The

machines have been designed to be deterministic in order to provide a more precise

specification.

1. Machine Tl

Machine Tl is responsible for transmitting new data packets, and for

retransmitting data packets which belong to unacknowledged blocks whose count value

has reached zero. Figure 7 depicts the FSM for Tl.

Tl begins executing its tasks upon the global variable T_ACTIVE being set TRUE
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by machine T2 subsequent to successful connection establishment. In mode 0, Tl

transmits data packets, unchecked by flow control or error recovery, until all data has been

transferred. In mode 1, Tl first determines that there is buffer space available to receive

transmit

no flow

flow chk

no err err chk

Figure 7 : Tl State Diagram

additional data packets, and then transmits an appropriate amount of data. This check is

made by comparing the last reported value of buffer_available , from the receiver control

packet, with the current value ofNO U. Data packets will be transmitted until the number

of blocks outstanding equals the amount of buffer space available.

When operating in mode 2, Tl first determines whether there are any records in
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the LUP for which the count field has reached zero. If so, the necessary packets are

retransmitted prior to transmission of any new packets. Retransmission does not require a

check of buffer_available, as receipt of the retransmitted block will create availability in

the reordering buffer by allowing currently buffered blocks to be passed on to the

receiving host. As part of the retransmission process, the count value for the block is

reset.

When all necessary packets have been retransmitted, Tl will begin transmitting

new data packets, flow control permitting. Upon transmission of a complete block, Tl

will increment NOU and UW
t

.

Upon either transmission or retransmission of a data packet, the local variable

sent is set to TRUE. This is an indication to machine T3 that data has been transmitted,

and that the control packet retransmission frequency may have to be adjusted. Each time

machine T3 sends a control packet, the value of sent is reset to FALSE. This interactive

toggling is the mechanism which allows the protocol to adjust the retransmission timeout

period based upon current logical connection activity.

2. Machine T2

Machine T2 is first responsible for connection establishment, and upon successful

connection establishment, for receipt of receiver control packets. T2 activates the

execution of machines Tl, T3, and T4 upon connection establishment, and also ensures

the systematic return to the idle (initial) state of all other transmitter machines upon

connection failure or completion of data transfer. The state diagram for T2 is presented in

Figure 8.

The transmitter will attempt to establish a connection a predetermined number of

times before giving up and reporting to the host that the attempt has failed. The local

variable max_attempts holds the value for the number of attempts that will be executed.
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lmeout

Figure 8 : T2 State Diagram

(An attempt, in this sense, includes the standard three-way handshake).

The event clocktick is used as a pseudo timing mechanism to assist in

determining when an attempt is likely to have failed. Each time a clockJick occurs, the

variable delay is incremented and its value is compared to the variable reset, which holds

the maximum delay value. If delay becomes equal to reset, the current connection attempt

is assumed to have failed, and the value of the counter attempts is incremented. If the

value of attempts becomes equal to max attempts the connection establishment process is

aborted, and the host is notified. If the connection is established, the boolean variable
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T active will be set to TRUE to allow other transmitter machines to begin their execution.

In their idle states, machines Tl, T3, and T4 (state 1) are unable to make a

transition until T_active, which is initially FALSE, becomes TRUE. At this time, T2

transitions into the control packet receiving function, while at the same time it monitors

the boolean variable Disconnect, which will be set to TRUE by machine T3 upon

determination of an unexpected disconnection.

When T2 receives a control packet, it first checks to make sure that the sequence

number is higher than the sequence number of the last packet. Only monotonically

increasing packet sequence numbers are used to update; out of order packets are

discarded. Depending upon the mode of operation, the packet is then used to perfonn

flow and/or error control.

The flow control operation balance updates NOU and LW
t
based upon die current

state of the bit map LOB. The field buffer available from the control packet is also used

to perfonn flow control, as the transmitter first checks this value to determine buffer

availability prior to transmitting any new data packets.

In mode 2, the operation update_LUP is also executed to either remove packets

from acknowledged blocks, or to decrement the count value of all unacknowledged

blocks. If machines Tl and T2 are in contention for use of the LUP, T2 is given priority in

order to prevent superfluous retransmissions.

3. Machine T3

Machine T3 is responsible for the transmission of control packets to the receiver.

By monitoring the transmission of data packets through the variable sent, T3 is able to

adjust the control packet transmission rate according to the transmission rate of data

packets. Figure 9 depicts the state diagram for T3.

Upon activation by the TRUE state of T active, T3 executes its function each
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Figure 9 : T3 State Diagram

time the event clock tick occurs. Each time machine Tl transmits a data packets it sets

the value of the variable sent to TRUE. Alternatively, each time T3 sends a control packet

it sets the value of sent to FALSE. If sent is TRUE when clockJick occurs, then T3 will

automatically send a control packet and reset the value of the local counter £ to 1 , and the

local counter count to 0.

If sent is FALSE upon clock tick, then Tl has not sent a data packet subsequent

to the last control packet transmission, and T3 must determine whether a control packet

51



transmission is necessary or not. Each time two subsequent control packets are

transmitted with no occurrence of a data packet transmission by Tl, the value of k is

doubled, up to a predetermined maximum value kLim. Additionally, each time clock_tick

occurs and the value of sent is FALSE, T3 increments the value of count. When the value

of count becomes equal to the value of k, a control packet is transmitted.

Another function of T3 is to increment the variable scount upon each occurrence

of clockjick. The value of scount is reset to by machine T2 each time a control packet

is received from the receiver. If scount ever reaches the predetermined value of Lim, then

a control packet has not been received from the receiver for Lim occurrences of

clockjick, and the connection is assumed to have been disrupted. At this point, T3 will

set the value of the boolean variable Disconnect to TRUE, and machine T2 will begin

connection termination procedures.

4. Machine T4

Machine T4 performs all interface with the transmitting host. Its state diagram is

shown in Figure 10.

Upon receiving a signal from the host, T4 sets the value of the variable Transmit

to TRUE. This indicates to machine T2 that a connection should be established. Having

set Transmit, T4 delays any further action until the variable T active becomes TRUE,

indicating that the connection has been established. T4 then deposits the data to be

transmitted into the buffer OUTBUF, and awaits notification from T2 , through the

variable T_active, that the transfer has been completed, or the connection has been lost. In

either case, T4 notifies the host of the outcome, and returns to state 0.
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confirm

finish

write

signal

unaccept

start

disc

Figure 10 : T4 State Diagram

5. Machine Rl

Machine Rl is responsible for receiving data packets from machine Tl, and for

either buffering the packets or passing them on to the receiving host. The state diagram is

depicted in Figure 1 1

.

In mode 0, data packets are passed on to the host with no flow or error control

processes being performed. In both mode 1 and mode 2, the operation Order_insert is

executed to place the packets into their proper sequential order prior to delivery to the
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receive

buffer

ack

no ack

Figure 11 : Rl State Diagram

host, while in mode 2 alone, the additional operation Process_Packet is performed.

Order_insert is a flow control mechanism in which the variables buffer {buffer available

in the receiver control packet) and LOB are updated. Process_Packet is an error control

process which updates AREC and RECEIVE.

6. Machine R2

As with machine T2, machine R2 first establishes the connection, and then

receives control packets. The state diagram for R2 is shown in Figure 12.
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finish

start

Figure 1 2 : R2 State Diagram

Upon receipt of a ConnReq message from T2, R2 analyzes the recommended

values for the negotiated parameters using the operation evaluate, and returns a

CoiinAck message to T2, with any modified values for the parameters, if necessary. R2

will then wait for either a ConnConfmessage or the first packet of information, either of

which will cause it to set the variable R active to TRUE to initiate execution of the other

receiver machines. If no message is received from T2 for a predetermined number of

clockjicks, then R2 will return to its idle state (state 0) without notifying any of the other

machines of the attempt. (It is assumed that if negotiation of the connection parameters
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machines of the attempt. (It is assumed that if negotiation of the connection parameters

failed, T2 will not retransmit a Conn Req message prior to R2 returning to state 0.)

Similar to T2, R2 will resst the value of the local counter scount to zero each time

a control packet is received from the transmitter. In this particular example, the receiver

does not use the information from the transmitter's state packet to update any local

variables, though this process could be performed if necessary.

7. Machine R3

Machine R3 is a mirror of machine T3, and as such is responsible for

transmission of control packets. The only difference is that the boolean variable received

is used to monitor the receipt of transmitter control packets in the same way that the

variable sent was used in machine T3. The state diagram for R3 is shown in Figure 13.

Figure 13 : R3 State Diagram
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8. Machine R4

Machine R4 provides the interface to the receiving host by maintaining the

reordering buffer, INBUF. Upon signal from the host, and availability of the next

sequential packet of data, R4 will pass on the data to the host using the operation

Ordered_Retrieval. When an entire block worth of packets have been removed from

INBUF, the variable buffer is incremented to indicate the additional buffer space available.

If the variable Disconnect is set TRUE by machine R3, R4 will notify the host of the

failed connection. The state diagram for R4 is depicted in Figure 14.

Figure 14 : R4 State Diagram
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I. VARIABLE INITIALIZATION TABLE {VST)

The VTT is presented here to provide a consolidated view of all of the variables

referenced within the specification, along with their initial values and the machines which

are influenced by them. Influenced, in this sense, means that a machine reads or writes to

a particular variable within at least one of its transitions.

TABLE 1: VARIABLE INITIALIZATION TABLE

Name Type Range Initial Influence Purpose

Block_size Constant TBD R1J14 Number of packets per

block

Buffer_size Constant TBD R1,R4 Max buffer size at receiver

L Constant Buffer_size T1,T2,R1 Limit on outstanding

packets

mode Enum 0,1,2 TBD T1,T2,R1,R4 Mode of operation

T_active Boolean T, F F T1,T2,T3,T4 Execution start and end

signal

eot Boolean T, F F T4 End of transmission

indicator

Transmit Boolean T, F F T2,T4 Transmission request

indicator

Accept Boolean T, F T T2,T4 Connection acceptability

indicator

Fail Boolean T, F F T2,T4 Failed connection indicator

sent Boolean T, F F T1,T3 Data transmission indicator

attempts Positive 0-MAX T2 Connection attempts

counter

max_attempts Constant TBD T2 Connection attempts limit

LW, Positive 1-MAX 1 T2 Number of blocks

acknowledged

UW
t

Positive 1 -MAX 1 Tl Number of blocks

transmitted

NOU Positive 0-MAX T1,T2 Number of blocks

outstanding

buffer * Positive 0-MAX Buffer_size T1.T2 Current buffer available at

receiver

delay * Positive 0-MAX T2 Connection packet time

counter
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TABLE 1: VARIABLE INITIALIZATION TABLE

Name Iype Range Initial Influence Purpose

reset * Constant TBD T2 Connection packet timeout

value

scount * Positive 0-MAX T2,T3 State packet expectation

counter

Lim * Constant TBD T3 State packet expectation

timeout

count * Positive 0-MAX T3 State packet transmission

counter

k* Positive 1-MAX 1 T3 State packet transmission

interval

kLim * Constant TBD T3 State packet interval limit

Disconnect * Boolean T, F F T2,T3 Disconnection sensor

indicator

high* Positive 0-MAX T2 Highest block transmitted/

received

R_active Boolean T,F F R1,R2,R3,R4 Execution start and end

signal

received Boolean T, F F R1.R3 Data reception indicator

LW
r

Positive 1-MAX 1 Rl Number of blocks

acknowledged

UW
r

Positive 1-MAX 1 Rl Number of blocks

transmitted

J. PREDICATE ACTION TABLE (PAT)

The PAT contains all of the information necessary to follow the execution of the

protocol. All of the transitions, variables, and operations have been defined in prior

sections of this thesis, and the overall function of each machine has been discussed. The

PAT, along with the FSM's contained in the first section of this chapter, provides the

framework from which either a full or partial analysis can be conducted.
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TABLE 2: PREDICATE ACTION TABLE

Iransition Enabling Predicate Action

Machine Tl

start T_active=T null

finish T active=F null

retransmit T_active=T A mode=2 A expired*(LUP) enqueue(LUP(expired

packet)J_CHAN);

sent:=T; inc(NOU)

transmit T_active=T A not(empty(OUTBUF))
A (mode=0 v ((NOU<L
A buffer-NOU>0)
A (mode=l v not(expired*(LUP)))))

enqueue(DATA,T_CHAN);

sent:=T; inc(UW,);

nojflow mode=0 dequeue(OUTBUF)

flow_chk mode=l v mode=2 inc(NOU)

no_err mode=l dequeue(OUTBUF)

err_chk mode=2 insert(OUTBUF(front),LUP);

dequeue(OUTBUF)

Machine T2

request Transmit=T A Accept=T A Fail=F enqueue(Conrj_/?e<?,T_CHAN)

accept not(empty(R_CHAN)) A

R_CHAN(front)=Conn_Ack A

acceptable*(R_CHAN(front))

T_active:=T;

enqueue(Co«n_Con/,T_CHAN);

dequeue(R_CHAN)

unaccepl not(empty(R_CHAN)) A

R_CHAN(front)=Conn_AcA- A

not(acceptable*(R_CHAN(front)))

Accept:=F; dequeue(R_CHAN)

clock clock tick inc(delay)

time_ok delay<reset null

timeout delay=reset inc( attempts); delay:=0

retry attempts<max_attempts enqueue(Conn_/?e^, T_CHAN)

quit attempts=max_attempts Fail:=T

finish Transmit=F A empty(OUTBUF) A

empty(LUP) A Disconnect=F

T_active:=F; enqueue(Z>wc,T_CHAN)

abort Disconnect=T T_active:=F

rcvstate not(empty(R_CHAN)) A Disconnect^ null

discard R_CHAN(front).seq<=high v

R_CHAN(front)=Con;i Ack

dequeue(R_CHAN)

update R_CHAN( front ).seq>high scount:=0; high:=R_CHAN(front).seq
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TABLE 2: PREDICATE ACTION TABLE

Transition Enabling Predicate Action

no_flow mode=0 dequeue(R_CHAN)

flow_chk mode=l v mode=2 BaIance»(R_CHAN(front).LW
r , LW,

,

L, LOB, NOU);
LW

t
:=R_CHAN(front).LW

r ;

buffer:=R_CHAN(front).buffer_availab

le;

no_err mode=l dequeue(R_CHAN)

err_chk mode=2 Update_LUP*(LW
r , LUP, LOB);

dequeue(R_CHAN)

Machine T3

start T_active=T null

clock clock tick inc(scount)

no_data sent=F inc(count)

delay count<k null

timeout count=k enqueued_state,T_CHAN)\

k:=min(2*kJcLim)

data sent=T enqueue(7 stateJJ2HAN), k:=l

no_disc scount<Lim sent:=F; count:=0

disc scount=Lim Disconnect:=T

confirm T_active=F null

finish T_active=F null

Machine T4

signal transmission signalfrom host Transmit:=T

fail Fail=T Transmit:=F; notify host offailure to

connect

unaccept Accept=F notify host of unacceptable connection

start T_active=T null

write not(full(OUTBUF)) A not(eot) A

T_active=T

eoq\ieue(data stream from host,

OUTBUF)

finish eot A T_active=T Transmit:=F

confirm T_active=F notify host of completion

disc T_active=F notify host ofdisconnect
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TABLE 2: PREDICATE ACTION TABLE

transition Enabling Predicate Action

Machine Rl

start R_active=T null

finish R_active=F A empty(INBUF) null

receive not(empty(T_CHAN)) A

T_CHAN(front)=DAL4

received:=T

no_buf mode=0 pass T_CHAN(front) to host,

dequeue(T_CHAN)

buffer mode=l v mode=2 Order_insert*(INBUF,

T_CHAN(front),

Block_size,

Buffer_size);

dec(buffer); update(LOB)

no_ack mode=l dequeue(T_CHAN)

ack mode=2 Process Packet*(RECEIVE, AREC,
LW

r ,

UW
r , L, T_CHAN(front).seq,

Block_size);

dequeue(T_CHAN)

Machine R2

ack not(empty(T_CHAN)) A

T_C¥lAN(honl)=Conn_Req

evaluate*(Conn Req);

dequeue(T_CHAN);

enqueue(Con« Ack, R_CHAN)

clock clock tick inc(delay)

time_ok delav<reset enqueue(Conn_Ack, R_CHAN)

timeout delay=reset null

start not(empry(T_CHAN)) A

(T_CHAN(front) = Conn Conf v

T_CHAN(front) = (T state))

R_active:=T;

if T_CHAN(front)=Co«n_Con/then

dequeue(T_CHAN); end if;

finish Disconnects A not(empty(T_CHAN)) A

T_CHAN(front)=D/\yc

R_active:=F

update not(empry(T_CHAN)) A

T_CHAN(front)=r_jtaf<? A

T_CHAN(front).seq>high

scount:=0; high:=T_CHAN(front).seq;

dequeue(T_CHAN)

discard not(empty(T_CHAN)) A

(T_CHAN(front)=Conn_Con/ v

T_CHAN(front)=Co/7r? Req v

(T_CHANfront)=r_state A

T_CHAN(fTont).seq<=high))

dequeue(T_CHAN)
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TABLE 2: PREDICATE ACTION TABLE

Transition Enabling Predicate Action

lost_ack not(empty(T_CHAN)) A

T_CHAN(front)=Conn Req

dequeue(T_CHAN);

enqueue^Co««_/4c/t, R_CHAN)

Machine R3

start R_active=T null

clock clock tick inc(scount)

no_data received=F inc(count)

delay count<k null

timeout count=k enqueue(fl_.yfcrte,R_CHAN);

k:=min(2*kjklim)

data received=T enqueue^_5tore.R_CHAN); k:=l

no_disc scount<Lim received:=F; count:=0

disc scount=Lim Disconnect:=T

confirm R_active=F null

finish R_active=F null

Machine R4

start R_active=T A (mode=l v mode=2) null

accept Disconnect=F A not(empty(INBUF)) A

signalfrom host

Ordered_Retrieval*(INBUF,

Buffer_size,

Block_size);

inc(buffer); update(INBUF)

finish R_active=F A empty(INBUF) A

Disconnect=F

null

disc Disconnect=T notify host ofdisconnect
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Vm. ANALYSIS

A. SYSTEM STATE ANALYSIS

The system state analysis for the connection establishment phase of the protocol is

shown in Figure 15. System state analysis is a form of reachability analysis that reduces

the total number of states explored (which can easily become unmanageable). A

discussion of its uses and limitations is given in [LUND91].

In Figure 15, the notation (X,Y) represents a partial system state with machine T2 in

state X and machine R2 in state Y. The other six machines are not shown because only

these two are involved in connection establishment.

The contents of the communication channels (shared variables) and the values of the

local variables are not shown in the diagram, for the sake of brevity. These were figured

into the analysis and should be considered as part of any detailed analysis.

The connection analysis begins with both T2 and R2 in state 0, which is system state

(0,0). The process is initiated when a connection request is received by the transmitter,

indicated by the signal transition being taken by T4. (The reader may confirm by

checking the predicate action table (Table 2) for machine T2; specifically, the enabling

predicate for the request transition). This transition leads to system state (1,0).

In state (1 ,0), either the ack transition by R2 or the clock transition by T2 are possible.

The clock transition is a part of T2's timing process, and will eventually lead to a timeout

and failure to connect if R2 does not respond. The ack transition is taken by R2 upon

receipt of the Conn_Req message from T2, leading to system state (1,1).

If the connection establishment is successful, the process will lead to system state

(2,2) or (2,0), and the data transfer phase will be entered. Unsuccessful attempts lead back
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to state (0,0).

The connection establishment analysis shows a total of 32 system states; 13 of these

are duplicates, so there are 19 unique system states. The analysis shows that the

connection establishment will be completed without deadlock (if the physical link is up),

or that the system will return to the initial system state without deadlock.
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Figure 15 : Connection Establishment Analysis

(The pair (X,Y) represents state X of machine T2 and state Y of machine R2)
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B. FLOW CONTROL AND ERROR RECOVERY ANALYSIS

1. The Problem

As discussed earlier in this thesis, there are inherent problems with combining

flow control and error recovery mechanisms by overloading variables. The most common

result of this practice is that transmission of new data packets is halted pending recovery

of a lost packet, even when buffer space is available to accommodate additional packets.

The high bandwidth available with fiber optic transmission media only exacerbates this

problem.

In this section, the flow control and error recovery mechanisms of the AT&T

Protocol will be analyzed in detail. Basing network parameters upon values used in the

performance analysis section of [NETR90], it will be shown that large delays may be

experienced in data packet transmission. Because most of the flow control problems

encountered relate directly to the window acknowledgment mechanism, a brief discussion

of its use is appropriate.

For any system in which ARQ acknowledgment is used, the minimum amount of

time the transmitter must wait before retransmitting a packet is the RTD plus the

processing time of the receiver. This is the amount of time the transmitter would expect to

wait before receiving an acknowledgment of a packet. Normally, an additional "fudge

factor" is incorporated into the timeout period to allow for variances in RTD. Based upon

research discussed in [NETR90], a retransmission timeout of two to three times the RTD

is recommended by the authors.

As the window size increases, the transmitter is able to increase the amount of

data in transit to the receiver, and thus increase throughput. The problem with large

windows is that an equivalent amount of space must be maintained at the transmitter and

receiver to buffer the data packets. In implementations with multiple logical connections
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to a single machine, this can be costly in terms of storage requirements and access times.

In this protocol, the error recovery mechanism is bound on the lower side by the

' RTD, and on the upper side by the window size. In accordance with the results in

[NETR90], a retransmission timeout of two times the RTD, and a window size of 1024

packets will be used. A one-way delay of 15 ms is arbitrarily chosen, resulting in a

retransmission timeout of 60 ms. Because the count field in the LUP is based upon

control packet transmission rates, and a transmission rate of 3 ms is assumed initially, the

retransmission timeout period is convened to 20. Recall that this value will be

decremented by k, the current control packet transmission rate, each time a receiver

control packet is received.

In the analysis which follows, it will be assumed that a perfectly efficient system

exists in which processing time at the receiver and transmitter is instantaneous. Figure 16

shows the timing diagram which will be used as a reference for the following discussion.

At time ms the transmitter begins transmitting data packets at a rate of 20k per

second (20 per ms). Assume that the first packet is lost. The transmitter continues to

transmit at this rate until forced to stop by some other mechanism within the protocol, i.e.

until buffer^available - NOU = 0. So, every 15 ms, 300 packets are transmitted.

At 30 ms, 600 packets have been transmitted, but due to the RTD the transmitter

is just receiving the first receiver control packet indicating that LW
r
is 1 , and

buffer^available is 1024. NOU at this point is 600. When the transmitter calculates

buffer availability it determines that 424 more packets may be transmitted.

At 36 ms, the receiver sends the control packet indicating an LW
r
equal to 1 (the

first packet was lost), an LOB indicating that packets 2 through 420 have been buffered,

and a buffer^available of 605 (1024 - 419). This control packet will be received by the

transmitter at 51 ms.

In addition to receiving the above control packet at 51 ms, the transmitter knows
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ack of lost packet sent
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Figure 16 : Data Transfer Timing Diagram

that it has transmitted 1020 packets, thus it calculates that NOU is equal to 601 (1020 -

419). The flow control equation buffer^available - NOU indicates that four more packets

may be transmitted, which the transmitter accomplishes in the next few microseconds,

bringing the flow control equation equal to zero and halting transmission of further data

packets.
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Meanwhile, at 3 ms the first receiver control packet was transmitted, with a k

value of 1 (equivalent to 3 ms). The value of it was subsequently doubled to 2, and the

next control packet was transmitted at 9 ms. Again, because no data had been received

yet, the value of k was doubled, postponing transmission of the third control packet to 21

ms, or receipt of the first data packet.

The result of the transmitter's update process of these first two receiver control

packets (which were received at 18 and 24 ms, respectively) was that the count value for

block 1 (packet 1) was decremented by 3 (1 + 2), leaving a value of 17. Because the first

data packet was received by the receiver at 15 ms, and data packets continued to arrive

until 66 ms, all subsequent receiver control packets contained a k value of 1, and were

transmitted every 3 ms. Thus, 17 control packets (51 ms) would be needed to decrement

count to zero and prompt a retransmission of packet 1. The 17th packet would be

transmitted by the receiver at 66 ms and received by the transmitter at 81 ms. The

transmitter will thus be idle for 30 ms (51 ms through 81 ms), waiting for a shift of the

window, or an indication of an error.

At 81 ms the transmitter retransmits block 1 (packet 1). Still, it must wait for a

full RTD before it receives acknowledgment from the receiver, and is able to begin

transmission of additional data packets. A total of 60 ms (5 1 ms through 111 ms) has thus

been spent in an idle state, waiting for recovery of the first data packet. Put another way,

60 ms of the first 111 ms was spent idle; well over 50% of the total time.

Given that flow control and error recovery are integrated in this protocol, the only

way to improve the performance is to recover the lost packet more quickly. In this

example, the buffer space available at the receiver was full, preventing additional data

packets from being transmitted. It is apparent though, that even with a buffer size of two

megabytes, the transmitter would have been forced to halt transmission of new data

packets due to the window size of 1024 packets. Even though the additional one
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megabyte of buffer space would have been available, the LOB length would not have

provided visibility of any packets beyond the first 1024. Thus, flow control would have

been constrained by recovery of the error.

2. The Cause

The problem outlined in the previous section can be traced to an overloaded

variable, NOU. The only variables that the transmitter checks prior to transmitting new

data packets are buffer_availabIe and NOU. Thus, one would assume that both of these

variables should be restricted to accomplishing flow control. However, a closer look

reveals a hidden relationship.

The variable buffer^available is received as part of the receiver control packet,

and is dependent only upon the current status of the reordering buffer. In other words, it is

independent of the status of data packets which are enroute from the transmitter.

NOU, on the other hand, is updated upon receipt of the receiver control packet by

the LOB bit map. LOB is limited by the current window position, which is determined by

the value of the parameter LWr The value of LWr is determined by the block number

containing the lost data packet. It is plain to see that NOU is directly influenced by the

lost packet, and thus flow control itself is also directly influenced.

The solution to the problem includes separating the variables used for flow

control from those used for error recovery, updating NOU without the use of LOB. The

formal specification of this solution is beyond the scope of this thesis, but could involve

an error recovery mechanism such as the one outlined in [CLAR88], in which the receiver

sends a list of missing packet sequence numbers to the transmitter upon the transmitter's

request.

A more obvious problem with this protocol is that no mechanism exists to

accomplish rate control. The transmission of data packets is a binary process, that is, it is
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either "on" or "off'. The transmitter is either sending packets at the negotiated

bandwidth, or not at all. There is no provision for the transmitter to adjust the frequency

of transmission based upon the current capability of the receiver to receive them. Again,

separation of the flow control process could allow a more efficient synchronization

between the transmitter and the receiver.

3. An Improved Method

Given that flow control and error recovery are integrated in this protocol, what

changes could be made to circumvent the problem discussed in section 1? The solution to

this problem is predicated upon the transmitter becoming aware of the lost packet as soon

as possible. The only means available to the transmitter for gaining this insight is the LOB

bit map. If the transmitter could use the bit map to determine the probability of a lost

packet, it could initiate error recovery sooner.

Because the first element of the bit map represents the lost block (packet), it will

always be a zero. As blocks with sequence numbers greater than the one containing the

lost packet are received, the subsequent elements in the bit map will be set to one.

Eventually, a pattern of a zero followed by several ones will appear. If the transmitter was

to recognize a predetermined pattern, it could take action to recover the missing element.

How many ones should appear before the transmitter initiates error recovery? In

other words, how long should the transmitter wait before assuming that a packet is lost?

Although this question may sound like a lead in to a timer based solution, there is a major

difference. The transmitter knows that a number of blocks that were transmitted after the

lost packet have been received, therefore the variance in RTD due to network routing is

statistically averaged over a larger sample of packets. It is unlikely that a packet is

experiencing a major network delay if all of the packets around it are not experiencing the

same delay. This evidence should strengthen the transmitter's assumption that the packet
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has indeed been lost.

For the network parameters used in the first section of this chapter, a delay of 10

ms would seem to be enough to indicate the possibility of a lost packet. Figure 17 shows

a modified timing diagram, assuming that the transmitter will recognize a pattern of a zero

followed by 25 ones as a retransmission catalyst. The number 25 was chosen because in a

10 ms period representing the network delay, 200 packets, or 25 blocks, would have been

received by the receiver.

As illustrated in the modified timing diagram, recovery of the error using the

pattern recognition catalyst method occurred at 70 ms, thus decreasing the amount of

transmitter idle time from 60 ms to 19 ms (over 66%). Additionally, the transmitter does

not need to maintain a retransmission counter or timer, except as a backup. By using LW
r

to determine the sequence number of the block containing the lost packet, and LOB to

recognize the catalyst pattern, the transmitter is freed from timely LUP Table updates. If

the block size was based upon a standard bit length computer word, then the pattern

recognition process could be implemented in hardware, thus further increasing the

efficiency of error recovery.

C. DATA FLOW ANALYSIS

Figure 19 contains a partial system state analysis showing the correct behavior of the

protocol for the transmission and acknowledgment of one block of data (eight packets).

The analysis assumes error-free operation in mode 2 and is included to illustrate the steps

required to accomplish data transfer. Network parameters for this section remain the same

as for the previous section, as do the assumptions concerning instantaneous processing at

each communicating entity. The analysis begins at the system state immediately

following successful connection establishment and includes all eight machines.

The notation (ABCD-WXYZ) represents the system state with machine Tl through T4
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Figure 1 7 : Modified Data Transfer Timing Diagram
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is states A through D, and Rl through R4 in states W through Z. In some places, the

system state has been divided to separate the transmitter machines from the receiver

machines in order to show independent processes. Where this occurs, a subscript (T or R )

will be used to clarify which entity is represented by the partial system state.

Additionally, the analysis represents a single path from beginning to end. Divisions

in the path represent actions that occur simultaneously and independently, and are

enclosed in dashed boxes to "encapsulate" the processes. All paths within a box must be

taken prior to exiting the box. For example: in Figure 18 path A leads into the dashed box

at point x. Before traversing the path to point y outside of the box, paths B and C must

both be traversed.

Figure 1 8 : Path Traversal Notation

The elapsed time is displayed to the left of the system state path and notes concerning

actions inherent to certain transitions are displayed to the right of the path. These notes

provide a convenient means of tracing the data transfer phase through the predicate action

table, as they refer to the machines and transitions which are involved at each step in the

process.
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IX. CONCLUSION

A. SUMMARY OF RESEARCH

The objective of this thesis has been to demonstrate the requirement for a new

generation of transport protocols, and to present a formal specification of the high speed

transport protocol introduced in [NETR90]. Fiber optic technology has literally redefined

the functional specification for transport protocols, and by examining the problems of

current transport protocols the new design approach becomes more clear.

This thesis has covered in detail the design considerations of each of the transport

protocol functions: connection management, packet acknowledgment, flow control, and

error detection and recovery. The difference between old and new mechanisms for

implementing these functions was discussed to demonstrate the increased performance

potential provided by transport protocol redesign. The survey of state of the art transport

protocol research projects provided a frame of reference for the detailed investigation of

one particular protocol design.

The system of communicating machines model provides the framework with which

to conduct formal specification of protocols. Using the SCM model, the specification

presented in this thesis was developed and an analysis of some select functions was

performed. Though a complete analysis of the protocol was not accomplished, the

specification provides the base point from which to conduct either a full or partial

analysis. A full system state (reachability) analysis of the protocol may prove to be

somewhat prohibitive however, as the state space explosion problem will be encountered.

The alternative chosen for this thesis was to use timing diagrams to analyze the

behavior of the protocol under realistic network conditions. As demonstrated, the
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protocol has the potential to suffer significant transmission delays due to the integration of

flow control and error recovery mechanisms. An improved error recovery routine was

offered, though it still uses overloaded variables for flow and error control. Indeed, no

optimal solution may exist for optimizing flow control if it is explicitly or implicitly tied

into error recovery.

B. FURTHER RESEARCH OPPORTUNITIES

Many opportunities exist to expand upon the foundation which has been laid with this

thesis. First, a redesign of the protocol may be undertaken to separate the mechanisms for

performing flow control and error recovery. Using the ideas already incorporated into

other prototype lightweight transport protocols, true rate control could be designed into

this protocol. Also, a more efficient method of error recovery, using the theory of frequent

and periodic exchange of state which this protocol is built around, could be integrated into

the design. One interesting method of acknowledgment is to have the receiver control the

retransmission of packets which it expects are lost, based upon the prenegotiated inter-

transmission time.

It would be interesting to develop a protocol analyzer which specifically dealt with

reducing the state space explosion problem by incorporating a set of heuristics for

selecting one of many enabled transitions. Because of the highly independent nature of

the eight machines within the protocol presented in this thesis, some form of state space

reduction will be necessary to accomplish a complete analysis.

An alternative method of analysis for this protocol would be to use graph theory to

develop equations which represented the behavior of the various elements of this protocol.

For example, the transmission rates of control packets is based upon a clearly established,

and predictable, pattern. Additionally, the relationship between data packet and control

packet transmission is also clearly established by formula. If an equation was developed

80



to represent the transmission of control and data packets, then predictions of future system

states could be projected to influence current transitions. This method might also reduce

the state space of the analysis by introducing the theory of smart states, which actually

represented a future series of transitions.

Because of the modular nature of this protocol, it seems that it would be a rather

straightforward problem to develop an object oriented simulation model. Using the

simulation, various network parameters could be tested and analyzed quickly and

inexpensively, thus helping to develop an optimal version of the protocol. If each of the

machines, the transmission media, and the negotiated parameters were designed as

separate objects (classes or generic packages), then the opportunities for simulating many

different environments would be unbounded. Different versions of many protocol layers

could be developed and tested with the model, thus increasing the return on invested time,

and increasing student and faculty interest in the field of high speed networks. The

existence of a simulation program would also alleviate the requirement for an installed

fiber optic network lab.

Fiber optic networks will soon become the standard not only for state of the art

communication systems, but for everyday applications such as cable television and the

public telephone system. To take advantage of the potentials offered by fiber optics, it

will be necessary to implement more effective transport protocols using some of the

design concepts discussed in this thesis. As with any other developing technology, the

ability to apply new theories to dynamically evolving environments will determine

success or failure. This thesis has presented a picture of the current operating

environment of high speed networks and has set the stage for a new generation of

transport level protocol implementations.
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