
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A248 320
III!I~ ~ ~ ~ ~~,' AI It.1111I!1IIIII

DTIC
ELECTE

3 ~APR07 1992

0) THESIS

THE TESTING, ANALYSIS, AND CORRECTION OF THE
UPDATE OPERATION OF A PARALLEL, MULTI-
BACKEND DATABASE SUPERCOMPUTER

by

Michael A. Williams

March, 1992

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited.

92-08897
92 4 06 158 11im 9nn

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved ftr public release; distribution is nlimitted.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Technology Cirricuium (If applicable) Naval Postgraduate School
Naval Postgraduate School 37

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Progrdm t iement No Project ND j,k N. * or% Ona0 A,ew,.

N.m.er

11 TITLE (Include Security Classification)

TIE TESTING, ANALYSIS, AND ('ORRE('TION OF THE UPI)ATE OPERATION OF A PARALLEL MULTI-BACKEND DATABASE
SUPERCOMPUTER

12 PERSONAL AUTHOR(S)

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master's Thesis From To March 1992 34
16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position ofthe Department ol Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Multi-Backend Database Supercomputer, Parallel Update Database Operation

19 ABSTRACT (continue on reverse if necessary and identify by block number)

The Multi-Backend Database Supercomputer IMBDSI is designed to provide high-performance database management parallely for
applications with very large and growing databases. This thesis is a testing, analysis of and correction of the primary database operation
UPI)ATE of MBDS. We provide an overview of the entire MBDS system and then focus on the parallel UPDATE operation in an attempt (A

discover and correct the deficiencies of the original UPDATE algorithm.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
* UNCLASSIFItEUNI IM1i, 0 3r. srASI, l 3 ,IC usEM UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
David K. Hsiao i4I18t646 2253 CMS)

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

THE TESTING, ANALYSIS, AND CORRECTION OF THE UPDATE OPERATION OF A

PARALLEL, MULTI-BACKEND SUPERCOMPUTER

by

Michael A. Williams

Lieutenant, United States Navy

B.S., University of Mississippi, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1992

Michael A. Williams

Approved by: 1d , 0 (((A Yc" p- -
David K. Hsiao, Thesis Advisor

10 fe ioef ~l, Chairman

Department of Computer Technology

ii

ABSTRACT

The Multi-Backend Database Supercomputer (MEDS) is designed to provide high-performance

database management parallely for applications with very large and growing databases. This thesis

is a testing, analysis of and correction of the primary database operation UPDATE of MBDS. We

provide an overview of the entire MEBDS system and then focus on the parallel UPDATE operation

in an attempt to discover and correct the deficiencies of the original UPDATE algorithm.

fAccesjon For

NTIS CRAMl
)TIC TAB 3
U. annourcej

Justification

By
...............

Diitibutiori,
Availability Codesi

Dist Avail a:idlor
Sp~cjcal

A- IL

TABLE OF CONTENTS

I. AN INTRODUCTION TO THE PARALLEL DATABASE COMPUTER

ARCHITECTURE 1

A. PARALLEL ARCHITECTURE FOR DATABASE MANAGEMENT . 1

B. THE SOFTWARE OF MBDS 4

1. The Controller-Computer Software 4

2. The Backend-Computer Software 5

C. THE FIVE PRIMARY OPERATIONS OF MBDS 8

D. THE GOAL OF THE THESIS 9

E. THE ORGANIZATION OF THE THESIS 9

II. THE UPDATE OPERATION WITHIN MBDS 10

A. BACKGROUND INFORMATION FOR UNDERSTANDING THE

UPDATE ALGORITHM 10

1. The Base Data Organization 10

2. The Meta Data Structure 11

3. The Distributon of Meta and Base Data On

Database Stores 12

a. The Meta-data Distribution 12

b. The Base-data Distribution 14

B. THE UPDATE OPERATION ON MBDS 15

1. The Update Algorithm 15

iv

C. THEORIES ON WHY THE UPDATE OPERATION IS NOT FULLY

FUNCTIONAL WITHIN MBDS 17

1. Theory One: Erroneous Hashing Techniques 17

2. Theory Two: Erroneous Allocations of Memory 17

III. AN ALTERNATIVE METHOD O, IMPLEMENTING THE UPDATE

OPERATION 19

A. DISCUSSION OF THEORY ONE: ERRONEOUS HASHING

TECHNIQUES 19

B. DISCUSSION OF THEORY TWO: ERRONEOUS ALLOCATIONS

OF MEMORY 20

IV. CONCLUSIONS 22

A. THE SU4ARY 22

B. DIPFICULTIES ENCOUNTERED 23

C. RECOMMENDATIONS FOR FUTURE EFFORTS 24

LIST OF REFERENCES 26

INITIAL DISTRIBUTION LIST 27

v

I. AN INTRODUCTION
TO

THE PARALLEL DATABASE COMPUTER ARCHITECTURE

A database management system (DBMS) must provide fast,

accurate and efficient information processing. A today's DBMS

is only adequate for current information processing require-

ments, but not adequate for new applications, such as multi-

media data being utilized in the insurance industry where the

multimedia database is several orders of magnitude bigger than

the largest databases found today. For new applications data-

bases larger than a terabyte (1012 bytes) will not be unusual.

The current DBMS architecture cannot be scaled to such

magnitudes and operations on the very large databases.

Conducting set-oriented database operations in a parallel DBMS

architecture is an area that has shown increasing promise in

solving this problem.

A. PARALLEL ARCHITECTURE FOR DATABASE MANAGENENT

Conducting parallel operations in a supercomputer for

increasing the speed of computations is not a new idea. There

are numerous production-level, numerical-oriented

supercomputers. However, this type of numerical supercomputers

is not effective with the storage and retrieval of a very

large database.

An experimental supercomputer for database operations,

known as the Multibackend Database Supercomputer (MBDS), has

been developed to provide parallel database operations. This

prototype system is a research vehicle located in the

Laboratory for Database Systems Research at NPS and is

utilized for the study of the design and performance of the

parallel and scalable database supercomputer.

The basic motivation of MBDS is to provide an architecture

that spreads the work of DBMS among multiple backends

(dedicated computers), each of which executes the same system

software in parallel, thus drastically improving the DBMS

performance. (Hsiao, 1983,p.302)

MBDS is presently configured with eight parallel database

processors (backends), each of which has three disk drives -

a smaller one for paging programs, a small one for meta data,

and a larger one for the base data of the database. The

architecture of MBDS is illustrated in Figure 1.

MBDS provides the necessary conditions for database

management performance gains and capacity growth through

parallel database management operations. (Hsiao, 1991)

MBDS is considered in two major sections, the controller

section and the backend section. A discussion of the software

for each follows.

2

Paging and Base
Meta-data disks data

An Ethernet
disks

with the 13E
broadcast
capability

To and
from the
frontend C
computer

Database
Backend (BE)

FIGURE 1. THE MULTIBACKEND DATABASE SUPERCOMPUTER (MBDS)

3

B. THE SOFTWARE OF MBDS

1. The Controller-Computer Software

The Controller consists of the following five main

processes: Request (or Transaction) Processing (TP), Post

Processing (PP), Insert-Information-Generator (11G), PUT, and

GET. TP interfaces with the user software of the system,

identifies each user request, pre-processes the request and

broadcast the pre-processed request to all the backends.

Each backend computer in turn places the broadcasted request

in it's request queue.

PP also interfaces with the user software. It performs

post-processing on the database-transaction results and

provides the results to the user. PP interfaces with TP which

allows it to properly identify the intended user.

IIG controls the insertion of records onto a backend's

database store and is responsible for the even distribution of

each record cluster into the database stores of the backends.

IIG maintains the space utilization table which provides the

disk track information required to maintain an even

distribution of records clustered. The space utilization table

keeps the following information up-to-date for each cluster of

records:

(1) Identifies the backend whose database store contains
the first trackfull of records of the cluster.

(2) Identifies the backend whose database store contains
the last trackfull of records of the cluster.

4

(3) Identifies the backend whose database store can
provide the first available trackfull of storage for
inserting new records of the cluster.

Finally, PUT and GET provide the communications link

among computers, i.e., the controller and backends. PUT places

messages on the LAN for transmission to other computers via

either the one-to-one or the broadcasting mode. GET receives

messages from the other computers via the LAN.

2. The Backend-Computer Software

In a backend computer, there are five processes that

control all the backend operations. They are Directory

Management (DM), Record Processing (RP), Concurrency Control

(CC), GET, and PUT.

The Directory Management process handles the managing

of meta-data. Meta-data is stored information about the base

data. Collectively, the three meta-data constructs form the

directory of the database. They are attributes, descriptors,

and clusters. An attribute is used to represent a category or

certain common property of the base data, e.g., POPULATION. A

descriptor is used to describe an unique value or a range of

values that an attribute can have. For example, (1000 <

POPULATION < 15000) is a possible descriptor for the attribute

POPULATION. The descriptors that are defined for an attribute,

e.g., population ranges, are mutually exclusive in terms of

5

their values. A cluster is a group of records such that every

record in the cluster satisfies the same set of descriptors.

The condition that the descriptors defined for a given

attribute have mutually exclusive attribute values is an

important one. Mathematically, the descriptors of the

attribute serve to derive equivalence classes which

effectively partition the database into mutually exclusive

sets of records (clusters). These clusters allow for an even

distribution of a database onto the backend stores of MBDS.

The Record Processing (RP) process is responsible for

managing the base-data of the database. Specifically, RP

conducts record retrieval and selection.

Concurrency Control (CC) is responsible for

maintaining meta-data and base-data integrity du-ing execution

of a user request or transaction. Since the data requirements

of a user request may overlap, it is important that data

consistency is maintained while request are being processed.

Each backend has a pair of processes for

communications, the GET process for getting transactions or

messages from LAN and the PUT process for placing responses or

messages on LAN. DM, RP, CC, GET, and PUT are the only five

processes of a backend. These five processes are replicated in

every backend and are supported by an Unix operating system

with TCP/IP protocols. Figure 2 illustrates the relationship

of the controller processes and the backend processes.

6

From the fronter d computer To the fron end computer

The Controller Computer PP

GEr

to other Ethernet (LAN) with

backends Broadcasting Capability

Backend Computer

GE'r PUT

The Meta-Data Store The Base-Data Store
(disks of the (disks of the
backend computer) backend computer)

Figure 2. The Organization of MBDS Processes

7

C. THE FIVE PRIMARY OPERATIONS OF MBDS

The five primary operations of MBDS are Insert, Retrieve,

Delete, Update, and Retrieve Common. Insert operates on a

single record at a time while the other four operate on a set

of records at a time.

A necessary operation for all databases is the Update

operation. The Update operation of MBDS is very complex due to

the following:

(1) Update is a multiple-stage operation, i.e., each
update must first stage the data into database
processors from the database stores for processing,
then perform necessary updates of values, delete the
original data and return the newly updated data back
to database stores. This 4-stage operation must be
conducted by all the database processors and their
corresponding database stores in parallel.
Considerations must be made for coordinations
among the parallel processors, buffering require-
ments between multi-stage data movements and loads
to individual processors.

(2) Handling of an Update query becomes complicated
because:

(a) Clusters and records which may satisfy the
query of an update must be locked with read/
write-deny locks because any use of these
clusters and records before the update
operation is complete may generate erroneous
results.

(b) Clusters and records which are being updated
may become new clusters and new records; thus,
we must now handle the deletion of old clusters
and records and the creation of new clusters
and records.

8

D. THE GOAL OF THE THESIS

The current implementation of Update does not work well.

It can update small database stores only. The Update operation

fails when tested on larger database stores. The cause of this

failure is unknown.

The goal of this thesis is to determine the defect(s) in

the design and implementation of the Update operation. We must

find a theory as to why the original Update does not work and

then verify this theory through tests and analyses. Next,there

is a need for a theory on how to correct the defective Update

operation. Time permitting, we may implement the proposed

corrective measures.

E. THE ORGANIZATION OF THE THESIS

The thesis is organized into three chapters in addition to

this introduction. In Chapter II, we describe the Update

operation logically in the context of the Multibackend

Database Supercomputer. In addition, we present theories on

why the current Update operation is defective. In Chapter III,

we propose new design and implementation in order to overcome

defects of the present Update operation. In Chapter IV, we

summarize our findings and indicate unfinished work which will

require others to carry out.

9

II. THE UPDATE OPERATION WITHIN MBDS

Chapter II presents a logical description of the UPDATE

operation within the context of the MBDS environment and

discusses theories on why UPDATE does not perform well.

A. BACKGROUND INFORMATION FOR UNDERSTANDING THE UPDATE

ALGORITHM

1. The Base Data Organization

As a database computer, MBDS must have a data model to

characterize its database and to allow the user to refer to

the database in terms of its logical properties. The data

model used for MBDS is the attribute-based data model (ABDM).

Every piece of data in the database is characterized

in ABDM as an attribute-value pair. An attribute-value pair is

a member of the Cartesian product of the attribute set and the

value domain of the attribute. As an example, <POPULATION,

30000> is an attribute-value pair having 30000 as the value

for the POPULATION attribute. A record contains at most one

attribute-value pair for each attribute defined in the

database. Certain attribute-value pairs of a record are called

the directory keywords of the record, because either the

attribute-value pairs or their ranges are kept in a directory

for indentifying records. Those attribute-value pairs which

are not kept in the directory are called non-directory

10

keywords. The rest of the record is textual information which

is referred to as the record body. An example of a record is

shown below:

(<FILE,USCensus>, <CITY,Monterey>, <POPULATION, 30000>,

{Temperate,Climate})

The angle brackets, <,>, enclose an attribute-value pair. The

curly brackets, {,}, enclose the record body and the entire

record is enclosed within the parenthesis. All the records of

the database comprise its base data. Realistically, there are

thousands, or even millions, of base data or records, in the

database.

The records of the database are identified by keyword

predicates. A keyword predicate is a tuple consisting of a

directory attribute, a relational operator (=,<,>...), and an

attribute value. An example of a keyword predicate would be

POPULATION < 30000. Keyword predicates, combined in

disjunctive normal form, comprise a query of the database.

The query

(FILE = USCensus and CITY = Monterey)

will be satisfied by all records of the USCensus file with the

City of Monterey.

2. The Meta Data Structure

To manage the database, MBDS uses meta data which are

organized into three tables: attribute table (AT), descriptor-

to-descriptor-id table (DDIT), and the cluster-definition

11

table (CDT), examples of which are given in Figure 3. AT maps

(directory) attributes of AT to the descriptors defined on

them. DDIT maps each descriptor to a unique descriptor id. CDT

maps descriptor-id sets to cluster ids. Each entry consists of

a unique cluster id, a set of descriptor ids whose descriptors

define the cluster, and ids of the records that are in the

cluster. Thus, to access the user data, MBDS must first access

meta data via the AT, DDIT, and CDT.

3. The Distributon of Meta and Base Data On Database

Stores

The distribution of meta data and base data on their

separate database stores takes place differently, although

both types provide for parallel accessing of data. A

description of their differences is provided in the following

sections.

a. The Meta-data Distribution

Meta data are usually one or two orders of

magnitude smaller in size than base data. Due to the

relatively small size of meta data, the designers of MBDS

decided to replicate the meta data onto each backend's

database store. Consequently, all the backends can access

their own meta-data stores and identical sets of attribute,

descriptor, and cluster tables, in parallel

(Hsiao, 1991).

12

ATT'RIBUTE ATITRIBUTE TYPE DDIT ENTRY

POPULATION A D11

CITY C D21

FILE B D31

ATrlUBUT7, TABLE (AT)

ID DESCRIPTOR

D11 0 < POPULATION < 3000C

D21 CITY MONTEREY

ID DESCRIPTOR-ID SET RECORD-ID

Cl {Dll,D21,D32} Rl,R2

C2 {Dll...} Rl,..

CLUSTER-DEFINiTON TABLE (CDT

FIGURE 3

13

b. The Base-data Distribution

Base data comprises the bulk of a database.

Therefore, they are not replicated for storage. Also, they are

stored on each backend's own high-capacity disk drives using

the following distribution algorithm:

(1) From the Cluster table, the controller picks up a
cluster identifier and its associated records;

(2) The controller blocks a variable-size cluster into
fixed-size trackfuls of records;

(3) The controller determines the identifiers of the
back ends, each of which can provide a track of
available storage for the cluster identified (recall
that the controller IIG has a storage utilization
map to keep track of such information);

(4) The controller sends in parallel all the trackfuls of
records to the backends identified;

(5) Each identified backend places its block of one or
more trackfuls of clustered records into its base-
data store and enters identifiers of records stored
onto the replicated CDT entry corresponding to the
cluster on the meta-data store.

(6) The controller then updates its space utilization map
with respect to this cluster; and

(7) The entire procedure is repeated for all subsequent
clusters.

This one- track-per-backend database distribution

algorithm evenly distributes records of a cluster over a set

of separate, parallel database stores. Subsequent accesses to

the records of a cluster can now be processed in parallel.

14

B. THE UPDATE OPERATION ON MBDS

An UPDATE request is used to modify records of the

database. The format of an UPDATE request consists of two

parts, the query and the modifier. The query specifies which

records of the database are to be modified. The modifier

specifies how the records being modified are to be updated.

For example, the following UPDATE request

UPDATE(FILE= USCensus) (POPULATION = POPULATION + 5000)

will modify all of the records of the USCensus file by

increasing all populations by 5000. In this example, (FILE =

USCensus) is the query and (POPULATION = POPULATION + 5000) is

the modifier.

1. The Update Algorithm

(a) The Update request is broadcasted by the controller

to all the backends.

(b) The Directory Management process on each backend

performs descriptor processing and address generation for the

Update request. Descriptor processing consists of determining

the descriptor ids of the descriptors that satisfy the

keywords in the query. This set of descriptors, which

satisfies the query, is mapped to the Cluster-definition table

(CDT) to determine the appropriate cluster id. Given the

cluster id, the record ids are readily available in CDT. The

set of selected record ids are passed to the address-

generation function which determines the set of track

15

addresses in the secondary storage. These addresses permit

accesses to the records required for the Update operation. The

set of cluster ids are sent to Concurrency Control to be

locked until completion of the Update operation.

(C) Directory Management passes this set of track

addresses to Record Processing for record retrieval and

updating. Updating takes place as follows:

(1) Fetch the entire set of tracks from the database

store (secondary memory). Data are staged in the primary

memory for quicker accesses during the record-modification

phase of the operation.

(2) Reserve a result buffer (updated records that

change clusters are temporarily stored here prior to being

sent to the controller for insertion into a new cluster).

(3) For each address in the set of track addresses,

fetch the track from the disk into the track buffer.

(4) Examine the records in the track buffer one-by-

one. If a record is marked for deletion, disregard it. If a

record does not satisfy the query of the request, disregard

it. If a record satisfies the query of the request, compute

the new value according to the modifier and update the record

in the track buffer. Send the old and new values of the

updated record to DM to determine if the record has changed

clusters. If the newly updated record changes cluster, then

add the record to the result buffer and mark the old record

for deletion in the track buffer.

16

(5) After examining all records in the track buffer,

store the track buffer back to the disk.

(6) Flush the result buffer and send the results to

the IIG process in the Controller for insertion into a new

cluster.

C. THEORIES ON WHY THE UPDATE OPERATION IS NOT FULLY

FUNCTIONAL WITHIN MBDS

1. Theory One: Erroneous Hashing Techniques

In the Update operation, each backend must first

select a set of records to be operated on. Regardless of its

size, this record set is retrieved from the database stores

and stored in the virtual memory temporarily for subsequent

operations. Hashing techniques are used to obtain the

addresses for the temporary storage. The hashing technique

used may be erroneous, causing nearly all of the records to be

stored at the same virtual memory locations.

2. Theory Two: Erroneous Allocations of Memory

Recall that the current Update algorithm works for

small size databases, e.g., 30 record database, but not for

larger size databases, say, 500 records or more. Also,

consider the fact that MBDS supports a concurrent environment

(multiple users active on the system simultaneously). This

concurrency capability forces a partitioning of the primary

memory throughout the system. Limiting the available

memory per user coupled with the fact all modifications for

17

concurrency capability forces a partitioning of the primary

memory throughout the system. Limiting the available

memory per user coupled with the fact all modifications for

an UPDATE is done in the memory leads us to theorize that

there may be a possible problem with memory

allocation/availabiltiy.

18

III. AN ALTERNATIVE METHOD
OF

IMPLEMENTING THE UPDATE OPERATION

In this chapter we focus on the theories presented in

Chapter II. We provide evidence to substantiate the most

promising theory and explain an alternative implementation

method to overcome the problem with UPDATE.

A. DISCUSSION OF THEORY ONE: ERRONEOUS HASHING TECHNIQUES

The original design specifications for the UPDATE

operation, as discussed in Chapter II, were never fully

implemented. In particular, the staging of the entire set of

tracks in the virtual memory via a hashing function was never

implemented. Instead of retrieving the entire set of tracks to

be updated during a single fetch, the UPDATE routine fetches

one track at a time and puts it into the virtual memory. Then,

performs all the required update steps on the records from

this track and stores the newly updated track back to the base

data disk.

Therefore, our research efforts in this area led to the

validation of theory one; and through test and analysis we

discovered and fixed a logic error in the hashing function

utilized by the RETRIEVE operation.

The original hashing function utilized by the RETRIEVE

operation was hashing all the retrieved records into the same

19

location in the virtual memory. Our modified version of the

hashing function accomplishes the desired goal of a hashing

function,i.e., an even distribution of data throughout the

memory area.

B. DISCUSSION OF THEORY TWO: ERRONEOUS ALLOCATIONS OF MUIORY

For theory two we generated several test databases of

various sizes, and attempted to run the UPDATE routine on each

to determine the point of operational failure.

Initially, the UPDATE operation performed successfully on

a database of 30 records. Every UPDATE query used throughout

our test and analysis phase was written to update every record

in the database. Therefore, a successful run on a database of

30 records, implies 30 records were updated. Next, we tested

the UPDATE operation on a database of 35 records and the

entire system crashed. Through debugging we discovered the

point of system failure. The system crashed while attempting

to perform a write routine from the real memory on backend one

to the paging disk on the same backend. Trouble-shooting of

this problem led to the discovery of the following:

Each backend has only 4 million bytes of the real memory.

From this 4 megabytes there are only 1.8 megabytes available

for conducting database operations such as UPDATE. Therefore,

the code required to perform an UPDATE operation must be paged

in and out of the real memory as required. Thus, one use of

the paging disk is to partition the executable code of each

20

backend process into fixed size pages of 1024 bytes and

provide a storage area for these pages. A second use of this

paging disk is to provide a temporary storage area for a

snapshot of the system. In particular, a temporary file is

maintained on the paging disk to allow z user to log on,

conduct operations, and then log off in the middle of a

session without losing his/hers current status of the system.

Since this is a multiple user system, there exists the

possibility of having several separate snapshot files residing

on the paging disk simultaneously.

The MBDS system crashed while conducting an UPDATE

operation on 35 records because the paging disk became full

with too many snapshot files left from prior sessions.

A general cleanup of the paging dir>, I.e., erasing of all

the unnecessary snapshot files can free up enough space to

allow a successful UPDATF operation on the 35 record database.

Next we increased the size of the test database to 50

records and performed a successful UPDATE operation. At this

point we increased the size of the test database by increments

of 50 records and ran the UPDATE operation. Each time the

UPDATE operation ran successfully.

Our final test database was 450 records. A successful

UPDATE was performed on this database, thus convincing us that

the problem was solved. The solution did not lie within the

UPDATE algorithm as originally suspected, but within the

underlying operating system environment.

21

IV. CONCLUSIONS

In this final chapter, we provide some -concluding remarks.

In the first part of the chapter, we furnish a summary of the

thesis work. Next, we discuss the difficulties and problems

encountered while. completing the work for this thesis.

Finally, we provide some recommendations for future efforts.

A. TEE SUMMARY

Performance problems and upgrade issues have always been

an obstacle in traditional mainframe-based, single-backend

database systems. Never has this been more evident today as

the new database application requires a database which is

several orders of magnitude bigger than the largest database

found in conventional applications. The Multi-Backend Database

Supercomputer (MBDS) attempts to overcome this type of problem

through specialization and parallelization of the database

operations on multiple dedicated backend computers.

A critical tool for any DBMS is the UPDATE operation. The

UPDATE operation on MBDS was not fully functional and required

further testing and analysis in order to determine its defect.

In this thesis effort, we have first gained a thorough

knowledge of the entire MBDS. Secondly, we have acquired a

working knowledge of the C programming language in order to

understand the MBDS operations. Then, we have developed

22

numerous test databases and conducted operational testing of

the UPDATE routine to determine the point of any malfunction.

Having understood the capabilities of the original UPDATE

operation, we then dissect the UPDATE algorithm and look for

a logic flaw. Once convinced that the algorithm has been

sound, we focus our attention towards the underlying operating

system which supports the UPDATE operation. In particular, we

have looked at two possible problem areas: erroneous hashing

techniques, and erroneous allocations of the memory. A

thorough investigation of both has led us to the following

corrections to MBDS:

" Our modified version of the hashing function is utilized
to retrieve records into the virtual memory. It now
supports an even distribution of records throughout the
memory area.

* The UPDATE operation now performs flawlessly with large
test databases, no longer crashing the entire system on
very small databases.

B. DIFFICULTIES ENCOUNTERED

The size of MBDS and the UNIX operating system both

contributed to a steep learning curve for students working on

the MBDS system. The amount of information initially required

by a student to work on MBDS is very large, and requires a

substantial portion of the students alloted thesis time.

Additionally, the student must become very proficient in the

23

C programming language in order to understand the MBDS

implementation.

Once the student has understood MBDS and the UNIX

operating system and becomes proficient in C, the student must

develop a theory or theories of possible defects in UPDATE.

This has not been a trivial task.

C. RECMlMDATIONS FOR FUTURE EFFORTS

The original design specifications for the UPDATE

operation allow for the modifier of an UPDATE query to be one

of five types:

" Type 0: <attribute = constant>

* Type I: <attribute = f(attribute)>

* Type II: <attribute = f(attributel)>

* Type III:<attribute = f(attributel) of Query>

* Type IV: <attribute = f(attributel) of Pointer>

Let a record whose attribute is being modified be referred

to as the record being modified. Then a type-0 modifier sets

the new value of the attribute being modified to constant. A

type-I modifier sets the new value of the new attribute being

modified to be some function of its old value in the record

being modified. A type-II modifier sets the new value of the

attribute being modified to be some function of some other

attribute value in the record being modified. A type-III

modifier sets the new value of the attribute being modified to

24

be some function of some other attribute value in another

record uniquely identified by the query in the modifier.

Finally, a type-IV modifier sets the new value of the

attribute being modifier to be some function of some other

attribute value in another record identified by the pointer.

Currently, only the type-0 modifier is implemented within

the UPDATE operation. Thus, future work on the UPDATE

operation will be to implement the other four types of

modifiers for an UPDATE query.

25

LIST OF REFERENCES

Computer Science Department, Naval Postgraduate School, A
Parallel, Scalable, and Microprocessor-Based Database Computer
for Performance Gains and Capacity Growth, by D. K. Hsiao,
1991.

Hsiao, D. K., Advanced Database Machine Architecture, p. 302,
Prentice-Hall, Inc., 1983.

Hsiao. D. K., Modern Database System Architectures, D. K.
Hsiao, 1991.

Hurson, A. R., Miller, L. L., and Pakzad, S. H., Parallel
Architectures for Database Systems, pp. 31-34, The Institute
of Electrical and Electronics Engineers, Inc., 1989.

26

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station 2
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School 2
Monterey, CA 93943-5100

Robert B. McGhee
Chairman, Department of Computer Science 1
Naval Postgraduate School
Monterey, CA 93943-5100

Curriculum Officer, Code 37
Computer Technology Program 1
Naval Postgraduate School
Monterey, CA 93943-5100

Professor David K. Hsiao, CS HQ
Department of Computer Science 3
Naval Postgraduate School
Monterey, CA 93943-5100

Michael A. Williams
136 Brownell Circle 3
Monterey, CA 93940

27

