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Abstract

A method is presented for constructing replicated services that retain their availability and
integrity despite several servers and clients being corrupted by an intruder, in addition to others
failing benignly. More precisely, a service is replicated by n servers in such a way that a correct
client will accept a correct server’s response if, for some prespecified parameter k, at least k
servers are correct and fewer than k servers are corrupt. The issue of maintaining causality
among client requests is also addressed. A security breach resulting from an intruder’s ability to
effect a violation of causality in the sequence of requests processed by the service is illustrated. An
approach to counter this problem is proposed that requires that fewer than k servers are corrupt
and, to ensure liveness, that £ < n — 2t, where t is the assumed maximum total number of both
corruptions and benign failures suffered by servers in any system run. An important and novel
feature of these schemes is that the client need not be able to identify or authenticate even a single

server. Instead, the client is required only to possess at most two public keys for the service.

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under DARPA/NASA sub-
contract NAG2-593 administered by the NASA Ames Research Center, by grants from GTE, [BM, and Siemens. Inc.,
and by a National Science Foundation Graduate Fellowship. Any opinions, conclusions or recommendations expressed
in this document are those of the authors and do not necessarily reflect the views, policies or decisions of the National
Science Foundation or the Department of Defens»




1 Introduction

Distributed systems are often structured in terms of clients and services. A service exports a set of
commands, which clients invoke by issuing requests to the service. After executing a command, the
service may return an appropriate response to the client that invoked the command. In the simplest
case, the service is implemented by only one server. If this server is not sufficiently immune to failure.
however, then the service must be replicated.

[n hostile environments, replication introduces other problems. For instance, it is often more
difficult, or at least requires more resources, to protect many servers from corruption by an intruder
than it is to protect only a single server. A replicated service should thus be designed to remain
available and correct despite several servers being corrupted by an intruder (in addition to others
failing benignly). One way to do this employs the state machine approach (23] to replicating the
service, so that each server individually computes the resuit and sends it to the client. If the client
authenticates the response from each server and accepts the response, if any, sent by a majority
of servers, then it obtains the correct response if a majority of servers are correct. Such schemes,
however, require that the client be able to identify and authenticate the servers that comprise the
service. This may be difficult if the set of servers can change over time or if there is no trustworthy
source from which the client can obtain the identities and authentication information of the servers.

In this paper we propose a combined solution to these problems using the state machine ap-
proach. In our method, the service is implemented by n servers in such a way that for some pre-
specified parameter k, a correct client accepts a response from the service provided that at least k
servers are correct. Moreover, if fewer than k servers are corrupt, any response accepted at a correct
client is guaranteed to have been computed by a correct server. An important feature of this scheme
is that the client possesses exactly one public key for the service (as opposed to, e.g., one for each
server) and can treat the service as a single object for the purposes of authentication. This enhances
application modularity and significantly simplifies the service interface for clients. We emphasize
that the client need not know the identity of even a single server to authenticate the response of the
service.

Even in a system with fewer than k corrupt servers, at least k correct servers. .ud the above
guarantees, correct clients may accept improper responses from the service if an int-uder has caused
the correct servers to process improper requests or to process requests in an incorrect order. In this
paper we also discuss this issue. We focus on an attack in which an intruder effects and exploits a
violation of causality in the sequence of requests processed by the service. | \Vhile similar to an attack
described in {20], this attack is more severe because it involves corrupi servers.) We also propose a
way to avoid this attack that requires that the client possess at most one additional public key for
the service. that fewer than k servers are corrupt, and. to ensuie liveness, that & < n — 2¢, where ¢
is the assumed maximum total number of both corruptions and benign failures suffered by servers

in any system run.




The above discussion may be evocative of the large body of literature providing solutions to
various distributed computing problems in models where Byzantine failures can occur but authen-
tication is possible (see [17, 24]). Nevertheless, our work has a somewhat different emphasis: we
employ specific cryptographic techniques to achieve the .forementioned results, and in fact a signif-
icant contribution of our work is the demonstration of the practical value of these techniques. QOur
approach thus stands in contrast to the body of literature just described, which typically assumes
only a conventional digital signature scheme.

The remainder of this paper is structured as follows. In section 2 we give a brief overview of
the state machine approach to replication: for more detail, the reader should see [23]. In section 3
we enumerate our assumptions about the system. In section 4 we present a method of implementing
services that provides the availability and integrity guarantees outlined above. In section 3, we
discuss the importance of maintaining causality among client requests and a method to counter an
intruder’s attempts to exploit violations of causality. In section 6 we outline related work, and we

conclude in section 7.

2 State Machine Replication

A state machine consists of a set of state variables and exports a set of (possibly parameterized)
commands. The state variables ~ncode the state of the state machine, and the commands transform
that state. A client of the state machine invokes a command by issuing a request to the state
machine. Each command is implemented by a deterministic program and is executed atomically
with respect to other commands. Commands should be executed by a state machine in an order
that is consistent with Lamport’s causality relation [16]. That is, two requests from the same client
should be processed in the order they were issued, and if one request could have caused another from
a different client, then a state machine receiving both should process the former first. Execution of
each request results in some response (i.e., output), which we assume is returned to the client that
issued the request. Responses of a state machine are completely determined by its initial state and
the sequence of requests it processes.

State machine replication is a general method of implementing a fault-tolerant service by si-
multaneously employing many state machine servers and coordinating client interactions with them.
If all servers are initialized to the same state, and if all correct servers process the same sequence
of requests, then all correct servers will give the same response to any given request. By prop-
erly combining the responses of the servers, where “properly” depends on the type of failures being

considered, the response of the fault-tolerant service is obtained.




3 The System Model

Our system consists of a set of principals, n of which are servers and the remainder of which are
clients. All principals communicate exclusively via a network of arbitrary topology. A principal is
correctin a run of the system if it always satisfies its specification. A principal may failin an arbitrary
manner, limited only by the (conjectured) properties of the cryptosystems and signature schemes we
employ. Our failure model is thus most similar to “Byzantine with message authentication.”

In order to capture the notions of an “accidental” failure versus a purposeful corruption by
an intruder, we partition the failed principals into two sets: the honest principals and the corrupt
principals. Formally, the only property that this partitioning must have is that any principal that
ever suffers “truly Byzantine” failures—i.e., failures that cannot be classified as fail-stop, crash.
omission, or timing failures—must be classified as corrupt. In a given system run. we let corrupt and
correct (in slanted font) denote the numbers of corrupt and correct servers, respectively.

Although principals fail as a single unit, it is convenient to view each principal as consisting of
logically separate modules. (See figure 1.) More precisely, each server consists of a communication
module, a coordination module, and an application module. The communication module is closest to
the network, the application module is furthest, and the coordination module lies in between. The
application module of a server is simply a state machine as described in section 2. The coordination
module delivers a request (¢, m), from client ¢ and with contents m, to that state machine by calling
deliver({c, m)), which places (¢, m) on the end of a list of requests to be processed that is available
to be read by the state machine. We assume that calls to deliver are made strictly sequentially, in
the sense that a call to deliver is not made until all previous calls to deliver have returned. Using
the primitives supplied by the communication module, the coordination module also implements a
respond primitive respond(c, m) by which the state machine can send a response m to a client c.

The communication module implements two communication primitives for use by the coordina-
tion module. The first is a send primitive send(c, m) by which the coordination module can send a
message to a client; this is presumably used in the implementation of respond(c, m) and will not be
used further in this paper. The second is an atomic broadcast primitive abcast(m) by which a server
s can broadcast a message (3, m) to the other servers. Servers’ coordination modules communicate
exclusively through the use of this broadcast primitive. A server’s communication module receives
a message (s, m), from server s and with contents m, by calling receive((s, m)), which places (s.m)
at the end of a list of received messages that is available to be read by the coordination module.
Messages are received only from servers, according to an atomic broadcast protocol R that is tolerant
of t < n server failures; henceforth we assume that a total of at most ¢t servers fail in any system run.

The protocol R satisfies the following specification.

Receipt Atomicity: A message is either received at all correct servers exactly once or is never

received at any correct server.




Figure 1: Structure of principals
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Receipt Validity: A correct server receives a message from a correct server iff the latter previously

broadcast that message.

Receipt Order: A correct server receives message (3, m) before another message (s’, m’) iff all correct

servers do. That is, all correct servers receive the same sequence of messages.

Receipt Consistency: The sequence of messages received by an honest server is a prefix of the
1

sequence of messages received by a correct server.
There already exist protocols in the literature that satisfy this specification in various models

and for various definitions of honest. For instance, if the honest principals are defined to include only
those principals suffering crash failures, the system is synchronous, and the network is sufficiently
connected, then the protocol described in [4] for Byzantine faiiures with authentication satisfies this
specification for any choice of ¢ < n. Moreover, Chandra (2] has developed randomized? protocols
satisfying the above specification for the same definition of honest in an asynchronous system. by
combining randomized solutions to consensus [3] and deterministic solutions to reliable broadcast [1].
The required relationship between n and ¢ for these protocols depends on the underlying consensus

and reliable broadcast protocols used. Our protocols do not rely upon any bounds on message

't is shown in [12] that even in a synchronous system, any atomic broadcast protocol that is tolerant of omission
failures and that guarantees consistency with respect to faulty principals requires a majority of correct principals.

Thus, if honest is defined to include thase servers that suffer omission failures, the results of this paper require n > 2t.
2t is well-known that there is no deterministic solution to consensus. and thus atomic broadcast, in an asynchronous

system that can suffer even a single crash failure [10].




transmission times, and so the only such bounds required for our results, if any, are those required
by the particular atomic broadcast protocol used.

A client consists of only two modules, an application module and a communication module. The
application module of a client ¢ is some client program that can issue a request {c. m) to the service
by calling request(m). The communication module of the client implements this primitive, e.g., by
signing and broadcasting (c,m) to the entire network. By assuming that this request eventually
reaches some correct server, and by having that server’s communication module forward this request
by executing abcast({c, m)), the above specification of atomic broadcast can be made to hold for
client requests. That is. we assume that servers also implement a protocol, called D, satisfying the

following properties.

Delivery Atomicity: A request is either delivered at all correct servers exactly once or is never

delivered at any correct server.

Delivery Validity: A correct server delivers a request from a correct client iff the latter previously

issued that request.

Delivery Order: A correct server delivers a request (¢, m) before another request (¢’,m’) iff all

correct servers do. That is, all correct servers deliver the same sequence of requests.

Delivery Consistency: The sequence of requests delivered by an honest server is a prefix of the

sequence of requests delivered by a correct server.

Assuming that each server is initialized to the same state, these properties imply that all correct
and honest servers will produce the same response (or no response) to a given request. The commu-

nication module of a client accepts a response m for the application module by calling accept(m).

4 Preserving Integrity and Availability

Recall from section 1 that our first goal is a service that satisfies the following properties, for some

prespecified k.

Integrity: If corrupt < k, then the response accepted at a correct client. if any. is that computed

by a correct server.

Availability: If correct > k. then a correct client will accept a response from the service.

We satisfy these requirements by replacing the respond(c. m) and accept(m) routines of servers
and clients, respectively, with two new routines, respond’(c, m) and accept’(m), that will ensure these
properties. Therefore, the new structures of principals will be as pictured in figure 2. Although we
have replaced the respond routine with respond’ at the interface provided to the application module




of each server, we assume that respond is still available for execution by the coordination module.

Similarly, we assume that accept is still available to the communication module of each client.

Figure 2: New structure of principals

(a) Server (b) Client
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The respond’ routines at the different servers will employ a (k, n)-threshold signature scheme.
A (k, n)-threshold signature scheme is, informally, a method of generating a public key and n shares
of the corresponding private key in such a way that for any message m, each share can be used to
produce a partial result from m, where any k of these partial results can be combined into a signature
for m that can be verified with the public key. Moreover, knowledge of k shares is necessary to sign
m, in the sense that without the private key it is computationally infeasible to (i) create a signature
for m without k partial resuits for m, (ii) compute a partial result for m without the corresponding
share, or (iii) compute a share or the private key without k other shares.

Cryptanalytic attacks against threshold signature schemes differ from those against their con-
ventional counterparts in that the cryptanalyst may possess some number of shares and be able to
acquire partial results, in addition to message/signature pairs. For our purposes, we will say that a
(k,n)-threshold signature scheme is secure if, informally, there is no feasible algorithm that, given
some numbers of these items of information, can perform any of tasks (i)-(iii) above for some new
message m. Note that to be secure, a signature scheme need not be able to tolerate attacks in which
a cryptanalyst can see the partial results or the signature for any message of its choice, as would be
possible in a chosen message attack. Such attacks can easily be prevented [5].

Our respond’ routine is not dependent upon any particular implementation of a (k. n)-threshold
signature scheme, although for concreteness we outline the necessary details of an implementation
proposed in {7]; a detailed understanding of this scheme is not essential. The scheme begins with
an RSA [22] public key (e,.V) and private key d, where .V is the product of two safe primes and




the Carmichael function A is used in place of Euler’s totient function & to create e from 4. That is.
ed = 1 mod A(.V), where A(.V) is the smallest positive integer such that z*Y) = | mod .V for all
z € ZY,. The n shares {K\}1<i<n are generated from d in such a way that for any set T C {l....,n}
of size k, T ,c7(Ki-pi7) = d — 1 mod A(N), where the integers {p; T}icr are fixed a priori and
public. So, by defining the i-th partial result for a message m to be a,,; = mX mod .V, it follows
that for any T C {1,...,n} of size k, Am,r = m - [[;cr(am.i)?*T mod .V is a proper signature for m.3

For our routines we assume that (the coordination module of) each server s; is secretly given
sole possession of K; and any principal can reliably obtain the public key (e, .V) of the service. We do
not discuss how this distribution of private shares or public keys is accomplished. although we note
that all public key systems require similar steps. The integers p; r for all i and T can be “hardwired”
into the implementation of the servers. The respond’(c, m) and accept’(m) routines are implemented

as follows.

Routine respond’(c, m) at server s;:

1. Execute abcast(anm ;).

2. Wait until a set of partial results {am ;}er, |T| = &, for m such that A,, 7 is a valid

signature for m, has been received.

3. Execute respond(c,{(m, Am.1)).

Routine accept’(m) at client ¢:
1. If m is not of the form (m’, S), then return to the calling routine.
2. If § is a valid signature for m’, then execute accept(m’).?

Claim 1 If the threshold signature scheme is secure, then this protocol satisfies Integrity.

Proof. If the signature scheme is secure and corrupt < k, then the corrupt servers cannot generate k
partial results from which to sign a message. Thus, the only message that could be properly signed
is that computed by a correct server. O

Claim 2 This protocol satisfies Availability.

Proof. Suppose that correct > k. By Receipt Validity of R, all correct servers eventually receive
partial results from k correct servers, and so each correct server can compute a proper signature on

its response. O

For reasons of security and efficiency, it is advisable that a message digest of the message be signed. as opposed to
the message itself [5].
‘Here we do not consider attacks on the freshness of responses [25].




In terms of communication complexity, in a failure-free run the replacement of respond with
respond’ results in an additional n executions of R, which can be executed concurrently. Therefore.
the entire protocol that begins when a client issues a request and ends when it accepts a response
consists of three communication “phases” that must be executed roughly sequentially: the request
by the client (one execution of D), the dissemination of partial results (n executions of R), and the
sending of the responses (n executions of respond). This protocol can be optimized in at least two
ways, first by noticing that a client needs to receive only one correctly signed response for Availability
to be sa.isfied. This implies that only ¢ + 1 servers need to be designated to respond to any given
request. In addition, the partial results for the signature of the response need to be broadcast only
to that set of servers. The set of servers designated to respond to a given request can be fixed in
advance or determined dynamically. A second optimization is for servers to communicate partial
results by a reliable broadcast protocol, obtained by removing the Receipt Order requirement and
appropriately weakening the Receipt Consistency requirement of atomic broadcast. Since reliable
broadcast is weaker, it possibly can be implemented more efficieatly. Reliable broadcast can be used
because the order in which partial results are received by servers is not important in this protocol.

Potentially the most computationally expensive part of the algorithm is step 2 of the respond’
routine, in which the server sorts through the partial results it receives until it finds a T of size k
such that A, 7 is a valid signature. The server must examine at most only the first { = min{n, k+1t}
partiai results received (from / unique servers), and at most (D subsets of partial resuit-, because in
[ partial results are at least k correct partial results (if correct > k). While this couid be expensive if
! is large and & = /2, the expected search time for a valid signature should be small in the common
case in most systems, i.e., when n and corrupt are small. One optimization is to have a server always
include its own index in T (i.e., always include its own partial result in the signature computation).
Also, certain heuristics, such as using partial results from a combination of servers that previously
worked. can be used to further reduce the expected search time. Additional optimizations are a topic

of ongoing research.

5 Preserving Input Causality

One guarantee provided in the previous section is that if corrupt < k, then the response accepted at a
correct client will be the response computed by a correct server. Even the output of a correct server,
though, may not reflect the way things “should be” if an intruder has caused the service to deliver
improper requests or to deliver requests in an incorrect order. In general, ensuring proper responses
from a correct server requires access control, because responses computed from state variables that
can be written (directly or indirectly) by corrupt clients cannot be trusted. Access control is an
entire research area in itself and will not be discussed further here.

In this section we address the issue of ensuring that requests are delivered in a correct order



by correct servers. Because we assume an atomic broadcast protocol to disseminate client requests.
we concern ourselves only with the requirement that correct servers deliver requests in an order
consistent with causality (see section 2). A common method of preserving causality ainong client
requests is for each client to refrain from sending any messages between the time it issues a request
to the service and the time at which the request is delivered at some honest or correct server {23].
Consider the case, however, in which a correct client issues a request to the service, and after receiving
the request. a corrupt server sends a message to a corrupt client. If the corrupt client subsequently
issues a request, then there is a causal relationship between the two requests. However, it is not clear
how this relationship can be detected by correct servers.

To see why this may be important, suppose that the service of interest is a trading service that
trades stocks and that a client issues a request to purchase shares of stock through this service. After
discovering the intended purchase, a corrupt server could collude with a corrupt client as described
above to issue a request for the same stock to the service. If the ccorrect servers deliver this request
before that of the correct client, this request may adjust the apparent demand for the stock and
raise the price offered to the correct client. Thus, by allowing the causally subsequent request of
the corrupt client to be delivered before the request of the correct client, a type of “insider trading”
may occur. [t is worth noting that access controls alone cannot naturally avoid this problem, as the
intent is that any client can request to purchase stock at any time.

In the remainder of this section, we present new request and delivery routines, respectively
denoted request’(m) and deliver’({c, m)), that replace request(m) and deliver({c, m}). Therefore, if
used with the respond’ and accept’ routines of section 4, principals would be structured as in figure
3. These new routines protect correct clients from the type of attack described above, in the sense
that any request based on information obtained from a correct client’s request (¢, m) can be delivered
at correct servers only after (c.m). As before, we will use deliver in our implementation of deliver’.
and similarly for request and request’.

In the implementation of request’(m), the correct client ¢ encrypts m under a public encryption
key of the service before issuing (c, m). Then, c is provided the following guarantee. The reader
should verify that this guarantee prevents the aforementioned problem, provided that corrupt < k.3

(This k can be chosen independently of that in section 4.)

Causality: If corrupt < k, then if some request is (i) issued after m is decrypted anywhere (other
than the sending client), and (ii) delivered at a correct server, then that request is delivered at

all correct servers after (¢, m).

In addition to satisfying Causality, request’ and deliver’ must also ensure that client requests are
delivered according to the specification of atomic broadcast—i.e., that Delivery Atomicity, Delivery
Validity, Delivery Order, and Delivery Consistency still hold. The implementations of request’ and

*Here we do not consider traffic analysis attacks [25) or attacks that exploit the malleability of the cryptosystem [8].
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Figure 3: New structure of principals
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deliver’ that we propose satisfy all but the “if” direction of Delivery Validity with no further as-
sumptions; to ensure that a correct client’s request will eventually be delivered at all correct servers,
we require k < n — 2¢, and thus n > 2t.

Our deliver’ routine employs a (k, n)-threshold cryptosystem. A (k,n)-threshold cryptosystem
is, informally, a method of generating a public key and n shares of the corresponding private key in
such a way that for any message m encrypted under the public key, each share can be used to produce
a partial resuli from the ciphertext of m, where any & of these partial results can be combined to
decrypt m. Moreover, knowledge of k shares is necessary to decrypt m, in the sense that without
the private key it is computationally infeasible to (i) decrypt m without k& partial results for m,
(ii) compute a partial result for m without the corresponding share, or (iii) compute a share or the
private key without & other shares.

As with threshold signature schemes, cryptanalytic attacks against threshold cryptosystems may
involve the use of partial results and some number of shares, in addition to plaintext/ciphertext pairs.
For our purposes, we will say that a (k,n)-threshold cryptosystem is secure if, informally, there is
no feasible algorithm that, given some numbers of these items of information, can perform any of
tasks (i)—-(ili) above for some new ciphertext m. Again we point out that to be secure, a threshold
cryptosystem need not be able to tolerate attacks in which a cryptanalyst can see the partial results
or the plaintext for any ciphertext of its choice, as would be possible in a chosen ciphertezt attack.
This is in accordance with the security of all implementations of threshold cryptosystemrs thus far
proposed: all proposed implementations are known to be vulnerable to chosen ciphertext attacks.
because the conventional cryptosystems on which they are built are vulnerable to such attacks.

Because the acts of signing a message and decrypting a message are operationally identical in

11




the RSA signature scheme and cryptosystem, one implementation of a (k, n)-threshold cryptosystem
can be obtained directly from the (k, n)-threshold signature scheme described in section 4. Messages
would be encrypted under the public key (e, V) of the service in the usual manner, and the i-th
partial result for an encrypted message m = (m’)® mod .V would be defined precisely as in section
4—i.e., am; = m& mod ¥. Then, m' = Apnr = m - [Tier(@m:)P*T for any T of size k. Other
implementations of threshold cryptosystems have been proposed, based upon both the RSA and
ElGamal (9] cryptosystems [6, 14].

Suppose that we are using the RSA threshold cryptosystem described above and that we have
the initial conditions assumed in the previous section; i.e., server s; is secretly given sole possession
of K, any principal can reliably obtain the public key (e, .V) of the service, and all servers know (a
priort) p; T for all i and T. The basic idea of our algorithm is that each client ¢ encrypts the contents
m of its request with the public key of the service, in an attempt to force k servers to cooperate
to decrypt it. Then, each correct or honest server refrains from broadcasting its partial result for
(the ciphertext of) m until the delivery sequence through (c,m) is fixed (locally). In this way, if
corrupt < k, once a corrupt server collects k partial results for m, the sequence of requests through
(c,m) has been fixed at some, and thus all, correct servers, and no requests can be placed before
(¢, m) in the delivery sequence at correct servers.

This algorithm preserves Causality iff each server requires k partial results for m to decrypt
m. Even under the assumption that this cryptosystem is secure, however, this unfortunately is not
the case with this or any proposed implementation of a (k, n)-threshold cryptosystem. The problem
is that our protocol as described above allows a corrupt server to mount chosen ciphertext attacks,
against which neither the RSA nor the ElGamal cryptosystem (nor any threshold cryptosystem based
upon them) is resistant. In our setting, a corrupt server can see at any time how any ciphertext m of
its choosing is decrypted, by simply requesting that a corrupt client ¢ issue (¢, m) as an apparently
legitimate request to the service. The corrupt server can then collect k& partial results for m to see
the plaintext to which m decrypts.

Methods of using chosen ciphertext attacks against the RSA and ElGamal cryptosystems are
well-known. Here we illustrate one method, originally due to Moore (see [3]), by which a corrupt
server can decrypt the RSA ciphertext m = (m/)® mod N in a correct client’s request (¢, m) without

waiting to receive k partial results for m.

1. The corrupt server chooses an arbitrary z and computes y = z° mod .V;i.e., z = y* mod V.8

2. Via a corrupt client, the corrupt server issues a request with contents ym mod .V to the service.

®The obvious simplified form of this attack, in which z and y are chosen so that £ = y = 1 mod .V, could easily
be made unproductive for the corrupt server: if each correct client signs the contents of its request before encrypting
it and each correct server delivers a request on behalf of the client whose signature appears on the decrypted contents
{and not necessarily the client that issued the request), then by issuing a request containing m, the corrupt server
would only expedite the delivery of the correct client’s request.
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3. The corrupt server collects k partial results for ym mod .V and forms (ym)% mod V.

1

4. The corrupt server computes z~! = y~¢ mod .V, and then

=l ym)? = y4*m? = m? = (M) = m mod V.

(NB: If z does not have an inverse mod .V, then the corrupt server can factor .V because

ged(z, V) is a prime factor of V.)

Similar attacks are possible with the threshold cryptosystems described in {6, 14].

Therefore, until a practical threshold cryptosystem is designed that can tolerate chosen cipher-
text attacks, such attacks must be prevented. A simple way to do this is to have a separate public
key for each client. That is, the public key for client ¢; would be a pair (e;, V;), and each server
s; would be given a share K;; for use when cooperating to decrypt a request from client ¢;. This
prevents chosen ciphertext attacks against the keys and ciphertexts of correct clients, because any
request received from a corrupt client will be decrypted using the shares of the key for that client,
and not a correct one. In practice, having separate cryptosystem parameters for each client may
require that each client be individually “registered” with the service outside of the system before
employing the service. While this could limit the settings in which our protocols can be used, we
believe that this is not an unreasonable restriction if maintaining causality among client requests is
of such importance.

The one remaining problem in our protocol is that corrupt servers can provide incorrect partial
results that may disrupt the decryption process. Therefore, it must be possible for a server to
determine when it has properly decrypted a request. To facilitate chis, clients are required to send
with each request a message digest of the request. Message digests have the property that the message
digest of a given message can be computed efficiently, but it is computationally infeasible to produce
two messages having the same message digest or to produce any message having a prespecified
target message digest. Accordingly, we henceforth assume that the included message digest uniquely
identifies, but does not disclose, the contents of the encrypted message and that the joint use of
the message digests and the threshold cryptosystem does not reveal information that a cryptanalyst
could use to circumvent the properties of either one. The validity of this assumption obviously
depends on the chosen implementation of message digests. We also note that if the message digest
function is injective, a message digest does, in fact, uniquely identify a message.” Several efficient
implementations of message digest functions have been proposed (e.g., {18, 21]) but will not be
discussed here. Let digest(m) denote the message digest of m.

Then, the request’ and deliver’ routines execute as follows.
q

"One such implementation employs a deterministic public key cryptosystem: the digest for a message is computed
by encrypting the message under an a priori, commonly known public key, for which the corresponding private key has
been destroyed and is not known.
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Routine request’(m) at client c;:

1. Create the RSA ciphertext m’ = m® mod .V, and message digest D = digest(m) of m.

2. Execute request({m', D)).
Routine deliver’({c;, m)) at server s,:

1. If m is not of the form (m/, D), then return to the calling routine.
2. Execute abcast(a ), where an ; = (m)X+s mod N;.

3. Wait until the first k£ + ¢ partial results {am/; }ier, |T| = k& + t. for m’ have been received
(from k + t unique servers).

4. Search for a subset T’ C T of size k such that digest(Am/ 1v) = D. If such a T’ exists and
Amr, 70 is a valid request, then execute deliver({c;, Am/1)).

Claim 3 This protocol satisfies Delivery Atomicity, Delivery Order, and Delivery Consistency.

Proof. (Delivery Atomicity) By Delivery Atomicity of D, for each client request deliver’ is either
called exactly once at all correct servers or never called at any correct server. Clearly a request of the
latter type is never delivered at any correct server, and so now consider a request (c.m), m = (m’, D},
of the former type. If only fewer than k + ¢ partial results for m’ are received at correct servers, then
the request will never be delivered at any correct server. So, suppose that k + t partial results for
m’ are received at all correct servers. Because partial results are broadcast atomically, all correct
servers employ precisely the same set {am: ;s }ireT, |T] = k + ¢, of partial results when attempting
to decrypt m’. Therefore, one correct server delivers some request iff all correct servers do. and all
correct servers deliver the same request, assuming that D uniquely identifies a single request.

(Delivery Order) By Delivery Order of D, all servers execute the same sequence of deliver’ calls.
And. because any call to deliver’ retirns before deliver’ is called again, it follows from Delivery
Atomicity that all servers execute the same sequence of deliver calls.

(Delivery Consistency) By Delivery Consistency of D, the sequence of deliver’ calls at an honest
server is a prefix of the sequence of deliver’ calls at a correct server. Moreover, because the sequence
of messages received at an honest server is a prefix of the sequence of messages received at a correct
server (by Receipt Consistency of R), if the honest server receives sufficiently many messages. it will
use the same set {am }irer, T = k + t, of partial results to decrypt each request as the correct
servers do. Thus, the sequence of requests delivered at an honest server will be a prefix of the requests

delivered at a correct server. O

Claim 4 If a request is delivered from a correct client at a correct server, then it was issued by that
client. (That is, the “only if” direction of Delivery Validity holds.)
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Proof. By Delivery Validity of D, if deliver’({c,m)) is called at a correct server and ¢ is correct.
then ¢ must have issued this request. Therefore, a request from a correct client can be delivered at

a correct server only if the client issued that request. O

Claim 5 If k < n - 2t, then if a correct client issues a request, it will be delivered at all correct
servers. (That is, if k < n —2t, then the “if” direction of Delivery Validity holds.)

Proof. By Delivery Validity of D, deliver’ is called exactly once for each request (¢, m), m = (m’, D),
issued by a correct client ¢. If £ < n - 2t, then k + ¢t < n -t < correct, and so at least k + ¢t partial
results for m’ are broadcast and, therefore, received at all correct servers. Since the set of k + ¢
partial results used at each correct server contains at least £ partial results from k correct servers,

m’ can be decrypted and delivered. O

From the above claims, we immediately have the following.

Claim 8 Ifk < n—2t, this protocol satisfies the specification of atomic broadcast (for client requests).
We now prove that the above protocol satisfies Causality.

Claim 7 If the threshold cryptosystem is secure, then this protocol satisfies Causality.

Proof. Suppose that the threshold cryptosystem is secure and corrupt < k. Then, the earliest point
at which the ciphertext m’ in a request (¢, m), m = (m’, D), from a correct client ¢ can be decrypted
anywhere is sometime after some correct or honest server broadcasts its partial result for m’. Let
s be the first correct or honest server to broadcast its partial result for m’. By Delivery Order and
Delivery Consistency of D, all correct servers eventually execute (possibly an extension of) the same
sequence of deliver’ calls that s executes. Therefore, all correct servers will execute deliver’({c, m))
before deliver’((¢, m}) for any (¢, ) issued after m’ was decrypted. If all correct servers deliver (the
plaintext corresponding to) m/, then Causality is satisfied. Moreover, because ¢ is correct, the only
way in which m’ could not be delivered at all correct servers is if the correct servers never receive k + ¢
partial results for m’. In this case, the deliver’({c,m)) call at each correct server will never return,

and no more requests will be delivered at any correct server, thus trivially satisfving Causality. O

In a failure-free run, the replacement of deliver with deliver’ results in an additional n executions
of R, which can be executed concurrently. Thus, when this protocol is used to disseminate client
requests and the protocol of section 4 is used to sign responses, the total message complexity is 2n+1
broadcasts (n of which can be reliable only; see section 4) and t + 1 responses, structured in four
communication phases. And, a client may need two public keys for the service, depending on the
particular cryptosystem and signature scheme used.

As in the protocol of section 4, step 4 of deliver’ is potentially expensive, because it may require

a server to sort through (k:') subsets of partial results to be able to decrypt a request. In fact. a
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corrupt client can force each server to sort through (k;:') subsets by sending a ciphertext and digest
that do not “match.” As before, we rely on heuristics, a small ("Z"), and a small corrupt in the
common case to reduce the expected cost of decrypting requests from correct or honest clients. A
bad request from a corrupt client can be detected in a reasonable amount of time if (k:') is small,
and then subsequent requests from that client can be ignored.

Finally, we note that while this protocol prevents a potentially serious attack arising from
violations of causality, it does not necessarily address all such attacks. A further examination of the

relationship between security and causality is a topic of ongoing research.

6 Related Work

This work was largely inspired by [11], which presents a replicated, shared key authentication service.
The authentication service described there allows two principals to establish a secret, shared encryp-
tion key provided that for some prespecified value k, at least k servers are correct and fewer than
k servers are corrupt. The method discussed in the present work cannot immediately be applied to
construct such a service, because of the additional secrecy requirements. However. our method can
be used to construct an analogous public key authentication service and has the additional advantage
that, unlike the service d- -1 in [11], a client need only possess at most two keys for the service,
and not one for each serve.

Using the state machine approach to construct services tolerant of arbitrary failures with au-
thentication was first considered in [15]. Since then, other authors have concentrated upon secure
replication of data. Secure data replication using quorum methods is considered in [13] for the case
in which both data integrity and secrecy are important. In these schemes, however, an intruder that
successfully corrupts a client may also be able to compromise the integrity and secrecy of all data.
Moreover, clients are expected to be able to authenticate data repositories. In [19], a space-efficient
information dispersal algorithm is developed to facilitate the provision of data integrity and avail-
ability. The scheme decomposes a file F into n pieces, each of size |F|/l, such that any [ pieces

suffice to reconstruct F.

7 Conclusion and Future Work

We bave presented a method for securely replicating services using the state machine approach.
Using our protocols. a service can be replicated as n servers in such a way that for some prespecified
parameter k, a client will accept a response computed by a correct server provided that at least
k servers are correct and fewer than k servers are corrupt. We have also addressed the issue of
ensuring causality among client requests. A security breach resulting from an intruder’s ability to

violate causality was illustrated, and a safe and live approach was presented to counter this problem,
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provided that corrupt < k < n—2t. Animportant and novel feature of our methods is that theyv free
the client of the responsibility of learning the identity and public key of each server. This is achieved
by employing two recent advances in cryptography, namely threshold cryptosystems and threshold
signature schemes.

In addition to those topics of ongoing research mentioned in the previous sections, another direc-
tion of research is ways to employ the techniques described here in a hierarchical fashion to enhance
the security of applications. As a simple example of this, one could conceivably employ a different
replicated service to produce each partial result for a message, and then these partial results could
be combined to either sign or decrypt this message appropriately. However, the consequences and
benefits of such designs have not yet been fully investigated and will be discussed further elsewhere.
Another topic that has not been sufficiently studied is how the detection of corrupt clients and servers

can be achieved and exploited to optimize our protocols.
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